Science.gov

Sample records for one-dimensional perturbation code

  1. SIMPLE ONE-DIMENSIONAL TRANSPORT CODE FOR MAGNETIZED TARGET FUSION

    SciTech Connect

    STEFANO MIGLUIOLO - MIT

    1999-10-30

    A one-dimensional (in space) time-dependent simulation code is development to study the transport of energy and particles in a field reversed configuration (FRC) plasma that is undergoing radial contraction. This contraction is due to an imploding metallic liner, which is treated through a boundary condition.

  2. Linear Response of One-Dimensional Liquid ^4{He} to External Perturbations

    NASA Astrophysics Data System (ADS)

    Motta, M.; Bertaina, G.; Vitali, E.; Galli, D. E.; Rossi, M.

    2016-11-01

    We study the response of one-dimensional liquid ^4{He} to weak perturbations relying on the dynamical structure factor, S(q,ω ) , recently obtained via ab-initio techniques (Bertaina et al. in Phys Rev Lett 116:135302, 2016). We evaluate the drag force, F_v , experienced by an impurity moving along the system with velocity v and the static response function, χ (q) , describing the density modulations induced by a periodic perturbation with wave vector q.

  3. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    2016-05-01

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a few orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. The method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.

  4. Perturbative and iterative methods for photon transport in one-dimensional waveguides

    NASA Astrophysics Data System (ADS)

    Obi, Kenechukwu C.; Shen, Jung-Tsung

    2015-05-01

    The problems of photon transport in one-dimensional waveguides have recently attracted great attentions. We consider the case of single photons scattering off a Λ-type three-level quantum emitter, and discuss the perturbative treatments of the scattering processes in terms of Born approximation for the Lippmann-Schwinger formalism. We show that the iterative Born series of the scattering amplitudes converge to the exact results obtained by other approaches. The generalization of our work provides a foundational basis for efficient computational schemes for photon scattering problems in one-dimensional waveguides.

  5. Fourier Representation Methods for Møller-Plesset Perturbation Theory in One-Dimensionally Periodic Systems

    NASA Astrophysics Data System (ADS)

    Fripiat, J. G.; Delhalle, J.; Harris, Frank E.

    2007-12-01

    Ab initio studies of one-dimensionally periodic systems are advantageously carried out by methods that employ Fourier representations and the Ewald method for accelerating the lattice sums. This communication desribes the first investigation in which these techniques have been applied at the Mo/ller-Plesset level of perturbation theory, MBPT(2). Second-order corrections to the restricted Hartree-Fock energy and energy bands are reported for H2, Be, and LiH chains, and these results are compared to direct-space extended-system and oligomer computations. The methods described herein exhibit improved convergence relative to the other methods to which they are compared.

  6. Proof of a Conjecture for the One-Dimensional Perturbed Gelfand Problem from Combustion Theory

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Yuan; Wang, Shin-Hwa

    2016-11-01

    We study global bifurcation curves and the exact multiplicity of positive solutions for the two-point boundary value problem arising in combustion theory: u^' ' }(x)+λ exp (au/a+u) =0,quad -1 0} is the Frank-Kamenetskii parameter and a > 0 is the activation energy parameter. We prove that there exists a critical bifurcation value a 0 {≈ 4.069} such that, on the {(λ,||u||_{∞})}-plane, the bifurcation curve is S-shaped for {a > a0} and is monotone increasing for {0 < a ≤q a0}. That is, we prove the long-standing conjecture for the one-dimensional perturbed Gelfand problem. We also study, in the {(a,λ, Vert uVert _{∞})}-space, the shape and structure of the bifurcation surface.

  7. TOPAZ - the transient one-dimensional pipe flow analyzer: code validation and sample problems

    SciTech Connect

    Winters, W.S.

    1985-10-01

    TOPAZ is a ''user friendly'' computer code for modeling the one-dimensional-transient physics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. This document presents a series of sample problems designed to aid potential users in creating TOPAZ input files. To the extent possible, sample problems were selected for which analytical solutions currently exist. TOPAZ comparisons with such solutions are intended to provide a measure of code validation.

  8. A generalized one-dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  9. A generalized one dimensional computer code for turbomachinery cooling passage flow calculations

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Roelke, Richard J.; Meitner, Peter L.

    1989-01-01

    A generalized one-dimensional computer code for analyzing the flow and heat transfer in the turbomachinery cooling passages was developed. This code is capable of handling rotating cooling passages with turbulators, 180 degree turns, pin fins, finned passages, by-pass flows, tip cap impingement flows, and flow branching. The code is an extension of a one-dimensional code developed by P. Meitner. In the subject code, correlations for both heat transfer coefficient and pressure loss computations were developed to model each of the above mentioned type of coolant passages. The code has the capability of independently computing the friction factor and heat transfer coefficient on each side of a rectangular passage. Either the mass flow at the inlet to the channel or the exit plane pressure can be specified. For a specified inlet total temperature, inlet total pressure, and exit static pressure, the code computers the flow rates through the main branch and the subbranches, flow through tip cap for impingement cooling, in addition to computing the coolant pressure, temperature, and heat transfer coefficient distribution in each coolant flow branch. Predictions from the subject code for both nonrotating and rotating passages agree well with experimental data. The code was used to analyze the cooling passage of a research cooled radial rotor.

  10. DOPEX-1D2C: A one-dimensional, two-constraint radiation shield optimization code

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1973-01-01

    A one-dimensional, two-constraint radiation sheild weight optimization procedure and a computer program, DOPEX-1D2C, is described. The DOPEX-1D2C uses the steepest descent method to alter a set of initial (input) thicknesses of a spherical shield configuration to achieve a minimum weight while simultaneously satisfying two dose-rate constraints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. Code input instruction, a FORTRAN-4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is less than 1/2 minute on an IBM 7094.

  11. MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.

    2016-06-01

    The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016 W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.

  12. Benchmarking report for WIGGLE: A one-dimensional transient diffusion theory code

    SciTech Connect

    Pevey, R.E.

    1990-11-01

    WIGGLE is a static/transient one-dimensional diffusion theory calculation written to estimate the axial power profile while safety rods are falling during a scram. The code is used in the LOCA Limits Analysis Package (LLAP), a part of the SRS system for calculating thermal-hydraulic limits. Since WIGGLE was designed to be implemented through LLAP and not as a stand-alone code, it consists entirely of subroutines; the problem data must be passed to it from a driver routine. This project concerned the verification of WIGGLE, which limited it to the determination that WIGGLE is correctly implementing the transient 1D diffusion equation. The approach was to compare the results of the code with three analytic solutions: a static homogeneous calculation of the pre-accident power profile (without end-fittings); a static heterogeneous calculation of the pre-accident power profile (includes end-fittings); and a transient calculation designed to test the time-dependent calculational ability. The results of all three calculations were essentially identical to the analytical solutions, thus giving us confidence that WIGGLE is correctly solving the one-dimensional time-dependent diffusion equation.

  13. TOPP: A post-processor for TOPAZ, the one dimensional pipe flow analysis code

    SciTech Connect

    Martin, R.W.

    1987-07-01

    TOPP is a Lawrence Livermore National Laboratory (LLNL) post-processor for producing graphical results from the one dimensional pipe flow analysis code, TOPAZ. TOPAZ was written by W. S. Winters of Sandia National Laboratory, Livermore (SNLL) and is available on the CRAY computers at LLNL. The SNLL version of TOPAZ produces a very limited set of variables that can be used as input to a post-processor. The version at LLNL has been modified to output every time-dependent variable to an absolute binary file at the user specified minor edit frequency. TOPP reads this absolute binary file and produces a variety of graphical results. 2 refs.

  14. Perturbation expansion for a one-dimensional Anderson model with off-diagonal disorder

    NASA Astrophysics Data System (ADS)

    Bovier, Anton

    1989-09-01

    The weak disorder expansion for a random Schrödinger equation with off-diagonal disorder in one dimension is studied. The invariant measure, the density of states, and the Lyapunov exponent are computed. The most interesting feature in this model appears at the band center, where the differentiated density of states diverges, while the Lyapunov exponent vanishes. The invariant measure approaches an atomic measure concentrated on zero and infinity. The results extend previous work of Markos to all orders of perturbation theory.

  15. Thermodynamic perturbation theory for associating fluids confined in a one-dimensional pore

    SciTech Connect

    Marshall, Bennett D.

    2015-06-21

    In this paper, a new theory is developed for the self-assembly of associating molecules confined to a single spatial dimension, but allowed to explore all orientation angles. The interplay of the anisotropy of the pair potential and the low dimensional space results in orientationally ordered associated clusters. This local order enhances association due to a decrease in orientational entropy. Unlike bulk 3D fluids which are orientationally homogeneous, association in 1D necessitates the self-consistent calculation of the orientational distribution function. To test the new theory, Monte Carlo simulations are performed and the theory is found to be accurate. It is also shown that the traditional treatment in first order perturbation theory fails to accurately describe this system. The theory developed in this paper may be used as a tool to study hydrogen bonding of molecules in 1D zeolites as well as the hydrogen bonding of molecules in carbon nanotubes.

  16. DEXTER: A one-dimensional code for calculating thermionic performance of long converters

    NASA Technical Reports Server (NTRS)

    Sawyer, C. D.

    1971-01-01

    A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.

  17. Dexter - A one-dimensional code for calculating thermionic performance of long converters.

    NASA Technical Reports Server (NTRS)

    Sawyer, C. D.

    1971-01-01

    This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.

  18. User's manual for the one-dimensional hypersonic experimental aero-thermodynamic (1DHEAT) data reduction code

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    1995-01-01

    A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.

  19. Estimating the smoothness of the regular component of the solution to a one-dimensional singularly perturbed convection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Andreev, V. B.

    2015-01-01

    The first boundary value problem for a one-dimensional singularly perturbed convection-diffusion equation with variable coefficients on a finite interval is considered. For the regular component of the solution, unimprovable a priori estimates in the Hölder norms are obtained. The estimates are unimprovable in the sense that they fail on any weakening of the estimating norm.

  20. One-Dimensional Lagrangian Code for Plasma Hydrodynamic Analysis of a Fusion Pellet Driven by Ion Beams.

    SciTech Connect

    1986-12-01

    Version 00 The MEDUSA-IB code performs implosion and thermonuclear burn calculations of an ion beam driven ICF target, based on one-dimensional plasma hydrodynamics and transport theory. It can calculate the following values in spherical geometry through the progress of implosion and fuel burnup of a multi-layered target. (1) Hydrodynamic velocities, density, ion, electron and radiation temperature, radiation energy density, Rs and burn rate of target as a function of coordinates and time, (2) Fusion gain as a function of time, (3) Ionization degree, (4) Temperature dependent ion beam energy deposition, (5) Radiation, -particle and neutron spectra as a function of time.

  1. TOPAZ: The transient one-dimensional pipe flow analyzer: An update on code improvements and increased capabilities

    SciTech Connect

    Winters, W.S.

    1987-09-01

    TOPAZ is a ''user-friendly'' computer code for modeling the one-dimensional, transient physics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. This report, the fourth in a series of reports documenting TOPAZ, discusses coding improvements and the addition of new capabilities. These improvements make the current version of TOPAZ considerably more versatile than the original version which was distributed last year. For example, the new version does not restrict the user to modeling only hydrogen and helium isotope flows. Users now have the capability of modeling arbitrary gas mixture flows. In addition users may define time-dependent functions for mass generation, energy deposition, flow area, and maximum integration time step. Parallel flow paths and flows through channels having noncircular cross-sections may now be simulated. Improvements in TOPAZ mesh generation have been made which permit users to add additional ''plumbing'' to existing models without renumbering the mesh. 7 refs., 3 figs., 8 tabs.

  2. Numerical Zooming Between a NPSS Engine System Simulation and a One-Dimensional High Compressor Analysis Code

    NASA Technical Reports Server (NTRS)

    Follen, Gregory; auBuchon, M.

    2000-01-01

    Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.

  3. User's manual for ONEDANT: a code package for one-dimensional, diffusion-accelerated, neutral-particle transport

    SciTech Connect

    O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.

    1982-02-01

    ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method. (WHK)

  4. TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments

    SciTech Connect

    Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.

    2015-06-15

    A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.

  5. Determination of neutron flux distribution by using ANISN, a one-dimensional discrete S sub n ordinates transport code with anisotropic scattering

    NASA Technical Reports Server (NTRS)

    Ghorai, S. K.

    1983-01-01

    The purpose of this project was to use a one-dimensional discrete coordinates transport code called ANISN in order to determine the energy-angle-spatial distribution of neutrons in a 6-feet cube rock box which houses a D-T neutron generator at its center. The project was two-fold. The first phase of the project involved adaptation of the ANISN code written for an IBM 360/75/91 computer to the UNIVAC system at JSC. The second phase of the project was to use the code with proper geometry, source function and rock material composition in order to determine the neutron flux distribution around the rock box when a 14.1 MeV neutron generator placed at its center is activated.

  6. One-dimensional turbulence

    SciTech Connect

    Kerstein, A.R.

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  7. One-Dimensional Oscillator in a Box

    ERIC Educational Resources Information Center

    Amore, Paolo; Fernandez, Francisco M.

    2010-01-01

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…

  8. One-Dimensional Czedli-Type Islands

    ERIC Educational Resources Information Center

    Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja

    2011-01-01

    The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.

  9. One-Dimensionality and Whiteness

    ERIC Educational Resources Information Center

    Calderon, Dolores

    2006-01-01

    This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…

  10. Finite-temperature second-order many-body perturbation and Hartree-Fock theories for one-dimensional solids: an application to Peierls and charge-density-wave transitions in conjugated polymers.

    PubMed

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-14

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree-Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the "dimerized" low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

  11. Finite-temperature second-order many-body perturbation and Hartree–Fock theories for one-dimensional solids: An application to Peierls and charge-density-wave transitions in conjugated polymers

    SciTech Connect

    He, Xiao; Ryu, Shinsei; Hirata, So

    2014-01-14

    Finite-temperature extensions of ab initio Gaussian-basis-set spin-restricted Hartree–Fock (HF) and second-order many-body perturbation (MP2) theories are implemented for infinitely extended, periodic, one-dimensional solids and applied to the Peierls and charge-density-wave (CDW) transitions in polyyne and all-trans polyacetylene. The HF theory predicts insulating CDW ground states for both systems in their equidistant structures at low temperatures. In the same structures, they turn metallic at high temperatures. Starting from the “dimerized” low-temperature equilibrium structures, the systems need even higher temperatures to undergo a Peierls transition, which is accompanied by geometric as well as electronic distortions from dimerized to non-dimerized forms. The conventional finite-temperature MP2 theory shows a sign of divergence in any phase at any nonzero temperature and is useless. The renormalized finite-temperature MP2 (MP2R) theory is divergent only near metallic electronic structures, but is well behaved elsewhere. MP2R also predicts CDW and Peierls transitions occurring at two different temperatures. The effect of electron correlation is primarily to lower the Peierls transition temperature.

  12. Toroidal Energy Principle (TEP) and perturbed equilibrium code STB

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid; Hu, Di

    2016-10-01

    The MHD energy principle TEP is presented in terms of perturbations of the vector potential, rather than plasma displacement. This form makes TEP capable to discribe both the ideal plasmas stability and the perturbed equilibria. The functional is expressed in two terms. The first one represents the energy of magnetic field and is calculated using working equilibrium coordinate system. The second term, containing plasma displacement is expressed in the compact form using Hamada coordinates. This representation uses the same combinations of metric coefficients as in the equilibrium calculations. The STB code implements the TEP for both ideal MHD and perturbed equilibria. In the first case, it uses the matching conditions of the ideal MHD. In the second case, the 2-D equilibrium islands are introduced in order to resolve the singularity and match the solutions across the resonant surfaces Partially by (a) US DoE Contract No. DE-AC02-09-CH11466, (b) General Fusion Inc.

  13. Finite-temperature coupled-cluster, many-body perturbation, and restricted and unrestricted Hartree–Fock study on one-dimensional solids: Luttinger liquids, Peierls transitions, and spin- and charge-density waves

    SciTech Connect

    Hermes, Matthew R.; Hirata, So

    2015-09-14

    One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.

  14. Supersonic propulsion simulation by incorporating component models in the large perturbation inlet (LAPIN) computer code

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Richard, Jacques C.

    1991-01-01

    An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.

  15. Development of Generalized Perturbation Theory Capability within the SCALE Code Package

    SciTech Connect

    Jessee, Matthew Anderson; Williams, Mark L; DeHart, Mark D

    2009-01-01

    Computational capability has been developed to calculate sensitivity coefficients of generalized responses with respect to cross-section data in the SCALE code system. The focus of this paper is the implementation of generalized perturbation theory (GPT) for one-dimensional and two-dimensional deterministic neutron transport calculations. GPT is briefly summarized for computing sensitivity coefficients for reaction rate ratio responses within the existing framework of the TSUNAMI sensitivity and uncertainty (S/U) analysis code package in SCALE. GPT provides the capability to analyze generalized responses related to reactor analysis, such as homogenized cross-sections, relative powers, and conversion ratios, as well as measured experimental parameters such as 28 (epithermal/thermal 238U capture rates) in thermal benchmarks and fission ratios such as 239Pu(n,f)/235U(n,f) in fast benchmarks. The S/U analysis of these experimental integral responses can be used to augment the existing TSUNAMI S/U analysis capabilities for system similarity assessment and data adjustment. S/U analysis is provided for boiling water reactor pin cell as part of the Organization for Economic Cooperation and Development Uncertainty Analysis in Modeling benchmark.

  16. GATO Code Modification to Compute Plasma Response to External Perturbations

    NASA Astrophysics Data System (ADS)

    Turnbull, A. D.; Chu, M. S.; Ng, E.; Li, X. S.; James, A.

    2006-10-01

    It has become increasingly clear that the plasma response to an external nonaxiymmetric magnetic perturbation cannot be neglected in many situations of interest. This response can be described as a linear combination of the eigenmodes of the ideal MHD operator. The eigenmodes of the system can be obtained numerically with the GATO ideal MHD stability code, which has been modified for this purpose. A key requirement is the removal of inadmissible continuum modes. For Finite Hybrid Element codes such as GATO, a prerequisite for this is their numerical restabilization by addition of small numerical terms to δ,to cancel the analytic numerical destabilization. In addition, robustness of the code was improved and the solution method speeded up by use of the SuperLU package to facilitate calculation of the full set of eigenmodes in a reasonable time. To treat resonant plasma responses, the finite element basis has been extended to include eigenfunctions with finite jumps at rational surfaces. Some preliminary numerical results for DIII-D equilibria will be given.

  17. Transient One-dimensional Pipe Flow Analyzer

    SciTech Connect

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and various form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.

  18. One-dimensional Quantum Fluids

    NASA Astrophysics Data System (ADS)

    Gervais, Guillaume

    2015-03-01

    Fifty year ago, Joachim Mazdak Luttinger generalized the Tomonaga theory of interactions in a one-dimensional metal and show that the prior restrictions imposed by Tomonaga were not necessary. This model is now known as the Tomonaga- Luttinger liquid model (TLL) and most remarkably it does have mathematically exact solutions. In the case of electrons, it predicts that the spin and charge sector should separate, with each of them propagating with their own velocities. While there has been many attempts (some with great success) to observe TLL behaviour in clean quantum wires designed on an ultra-clean semiconductor platform, overall the Luttinger physics is experimentally still in its infancy. For instance, little is known regarding the 1D physics in a strongly-interacting neutral system, whether from the point-of-view of TLL theory or even localization physics. Helium-4, the paradigm superfluid, and Helium-3, the paradigm Fermi liquid, should in principleboth become Luttinger liquids if taken to the one-dimensional limit. In the bosonic case, this is supported by large-scale Quantum Monte Carlo simulations which found that a lengthscale of ~ 2 nm is sufficient for the system to crossover to the 1D regime and display universal Luttinger scaling. At McGill University, an experiment has been constructed to measure the liquid helium mass flow through a single nanopore. The technique consists of drilling a single nanopore in a SiN membrane using a TEM, and then applying a pressure gradient across the membrane. Previously published data in 45nm diameter hole determined the superfluid critical velocity to be close to the limit set by the Feynman vortex rings model. More recent work performed on nanopores with radii as small as 3 nm (and a length of 30nm) show the critical exponent for superfluid velocity to significantly deviate from its bulk value, 2/3. This is an important hint for the crossing over to the one-dimensional state in a strongly-correlated bosonic liquid.

  19. Numerical simulations of hydrodynamic instabilities: Perturbation codes PANSY, PERLE, and 2D code CHIC applied to a realistic LIL target

    NASA Astrophysics Data System (ADS)

    Hallo, L.; Olazabal-Loumé, M.; Maire, P. H.; Breil, J.; Morse, R.-L.; Schurtz, G.

    2006-06-01

    This paper deals with ablation front instabilities simulations in the context of direct drive ICF. A simplified DT target, representative of realistic target on LIL is considered. We describe here two numerical approaches: the linear perturbation method using the perturbation codes Perle (planar) and Pansy (spherical) and the direct simulation method using our Bi-dimensional hydrodynamic code Chic. Numerical solutions are shown to converge, in good agreement with analytical models.

  20. A One Dimensional, Time Dependent Inlet/Engine Numerical Simulation for Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garrard, Doug; Davis, Milt, Jr.; Cole, Gary

    1999-01-01

    The NASA Lewis Research Center (LeRC) and the Arnold Engineering Development Center (AEDC) have developed a closely coupled computer simulation system that provides a one dimensional, high frequency inlet/engine numerical simulation for aircraft propulsion systems. The simulation system, operating under the LeRC-developed Application Portable Parallel Library (APPL), closely coupled a supersonic inlet with a gas turbine engine. The supersonic inlet was modeled using the Large Perturbation Inlet (LAPIN) computer code, and the gas turbine engine was modeled using the Aerodynamic Turbine Engine Code (ATEC). Both LAPIN and ATEC provide a one dimensional, compressible, time dependent flow solution by solving the one dimensional Euler equations for the conservation of mass, momentum, and energy. Source terms are used to model features such as bleed flows, turbomachinery component characteristics, and inlet subsonic spillage while unstarted. High frequency events, such as compressor surge and inlet unstart, can be simulated with a high degree of fidelity. The simulation system was exercised using a supersonic inlet with sixty percent of the supersonic area contraction occurring internally, and a GE J85-13 turbojet engine.

  1. BALOO: A Fast and Versatile Code for Accurate Multireference Variational/Perturbative Calculations.

    PubMed

    Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo; Barone, Vincenzo

    2015-05-12

    We present the new BALOO package for performing multireference variational/perturbative computations for medium- to large-size systems. To this end we have introduced a number of conceptual and technical improvements including full parallelization of the code, use and manipulation of a large panel of reference orbitals, implementation of diagrammatic perturbation treatment, and computation of properties by density matrix perturbed to the first-order. A number of test cases are analyzed with special reference to electronic transitions and magnetic properties to show the versatility, effectiveness, and accuracy of BALOO.

  2. Second virial coefficient of one dimensional gas

    SciTech Connect

    Mijatovic, M.

    1982-08-01

    The second virial coefficient of a one dimensional gas is calculated using the expressions for the scattering amplitude. The scattering amplitude is chosen in the form of rational function of wave vector.

  3. Factorizations of one-dimensional classical systems

    SciTech Connect

    Kuru, Senguel; Negro, Javier

    2008-02-15

    A class of one-dimensional classical systems is characterized from an algebraic point of view. The Hamiltonians of these systems are factorized in terms of two functions that together with the Hamiltonian itself close a Poisson algebra. These two functions lead directly to two time-dependent integrals of motion from which the phase motions are derived algebraically. The systems so obtained constitute the classical analogues of the well known factorizable one-dimensional quantum mechanical systems.

  4. One dimensional representations in quantum optics

    NASA Technical Reports Server (NTRS)

    Janszky, J.; Adam, P.; Foldesi, I.; Vinogradov, An. V.

    1993-01-01

    The possibility of representing the quantum states of a harmonic oscillator not on the whole alpha-plane but on its one dimensional manifolds is considered. It is shown that a simple Gaussian distribution along a straight line describes a quadrature squeezed state while a similar Gaussian distribution along a circle leads to the amplitude squeezed state. The connection between the one dimensional representations and the usual Glauber representation is discussed.

  5. One-dimensional Gromov minimal filling problem

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexandr O.; Tuzhilin, Alexey A.

    2012-05-01

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  6. One-Dimensional Fluids with Positive Potentials

    NASA Astrophysics Data System (ADS)

    Fantoni, Riccardo

    2017-03-01

    We study a class of one-dimensional classical fluids with penetrable particles interacting through positive, purely repulsive, pair-potentials. Starting from some lower bounds to the total potential energy, we draw results on the thermodynamic limit of the given model.

  7. One-dimensional differential Hardy inequality.

    PubMed

    Kalybay, Aigerim

    2017-01-01

    We establish necessary and sufficient conditions for the one-dimensional differential Hardy inequality to hold, including the overdetermined case. The solution is given in terms different from those of the known results. Moreover, the least constant for this inequality is estimated.

  8. Computer model of one-dimensional equilibrium controlled sorption processes

    USGS Publications Warehouse

    Grove, D.B.; Stollenwerk, K.G.

    1984-01-01

    A numerical solution to the one-dimensional solute-transport equation with equilibrium-controlled sorption and a first-order irreversible-rate reaction is presented. The computer code is written in FORTRAN language, with a variety of options for input and output for user ease. Sorption reactions include Langmuir, Freundlich, and ion-exchange, with or without equal valance. General equations describing transport and reaction processes are solved by finite-difference methods, with nonlinearities accounted for by iteration. Complete documentation of the code, with examples, is included. (USGS)

  9. One-dimensional hydrodynamic simulation of high energy density experiments

    NASA Astrophysics Data System (ADS)

    Grinenko, A.

    2009-07-01

    A new one-dimensional hydrodynamic code for simulation of experiments involving the creation of high energy density in matter by means of laser or heavy ion beam irradiation is described. The code uses well-tested second order Lagrangian scheme in combination with the flux-limited van Leer convection algorithm for re-mapping to an arbitrary grid. Simple test cases with self-similar solutions are examined. Finally, the heating of solid targets by lasers and ions beams is investigated as examples.

  10. One dimensional global and local solution for ICRF heating

    SciTech Connect

    Wang, C.Y.; Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.

    1995-02-01

    A numerical code GLOSI [Global and Local One-dimensional Solution for Ion cyclotron range of frequencies (ICRF) heating] is developed to solve one-dimensional wave equations resulting from the use of radio frequency (RF) waves to heat plasmas. The code uses a finite difference method. Due to its numerical stability, the code can be used to find both global and local solutions when imposed with appropriate boundary conditions. Three types of boundary conditions are introduced to describe wave scattering, antenna wave excitation, and fixed tangential wave magnetic field. The scattering boundary conditions are especially useful for local solutions. The antenna wave excitation boundary conditions can be used to excite fast and slow waves in a plasma. The tangential magnetic field boundary conditions are used to calculate impedance matrices, which describe plasma and antenna coupling and can be used by an antenna code to calculate antenna loading. These three types of boundary conditions can also be combined to describe various physical situations in RF plasma heating. The code also includes plasma thermal effects and calculates collisionless power absorption and kinetic energy flux. The plasma current density is approximated by a second-order Larmor radius expansion, which results in a sixth-order ordinary differential equation.

  11. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  12. One-dimensional opal photonic crystals

    NASA Astrophysics Data System (ADS)

    Kapitonov, A. M.

    2008-12-01

    One-dimensional opals are 1D self-assembled close packed colloidal crystals consisting of monodisperse colloidal globules. Polystyrene globules with sizes in the 1.9-10 μm range sit on a flat substrate and touch two neighbors in diametrally opposite contact points. These opals are quasi-1D photonic crystals. Optical modes, including whispering gallery modes of individual globules, coupled collective modes, and nanojet-induced modes, are visualized in 1D opals.

  13. Electrodeposition of one-dimensional nanostructures.

    PubMed

    She, Guangwei; Mu, Lixuan; Shi, Wensheng

    2009-01-01

    Electrodeposition is a simple and flexible method for the synthesis of one-dimensional (1D) nanostructures and has attracted more and more attention in recent years. 1D nanostructures of metals, semiconductors and polymers have been successfully fabricated by electrodeposition. Templates were often used in the electrochemical process to realize the 1D growth. On the other hand, some materials with intrinsic anisotropic crystal structures can also be prepared by the template-free electrochemical method. In this paper, we review the recent patents progress and offer some prospects of future directions in electrodeposition of 1D nanostructures.

  14. A one-dimensional tunable magnetic metamaterial.

    PubMed

    Butz, S; Jung, P; Filippenko, L V; Koshelets, V P; Ustinov, A V

    2013-09-23

    We present experimental data on a one-dimensional super-conducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 rf-SQUIDs. In order to obtain the effective magnetic permeability μr,eff from the measured data, we employ a technique that uses only the complex transmission coefficient S₂₁.

  15. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  16. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  17. One-dimensional spinon spin currents

    NASA Astrophysics Data System (ADS)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    2017-01-01

    Quantum spin fluctuation in a low-dimensional or frustrated magnet breaks magnetic ordering while keeping spin correlation. Such fluctuation has been a central topic in magnetism because of its relevance to high-Tc superconductivity and topological states. However, utilizing such spin states has been quite difficult. In a one-dimensional spin-1/2 chain, a particle-like excitation called a spinon is known to be responsible for spin fluctuation in a paramagnetic state. Spinons behave as a Tomonaga-Luttinger liquid at low energy, and the spin system is often called a quantum spin chain. Here we show that a quantum spin chain generates and carries spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow even in an atomic channel owing to long-range spin fluctuation.

  18. Three one-dimensional structural heating programs

    NASA Technical Reports Server (NTRS)

    Wing, L. D.

    1978-01-01

    Two computer programs for calculating profiles in a ten-element structure consisting of up to ten materials are presented, along with a third program for calculating the mean temperature for a payload container placed in an orbiting vehicle cargo bay. The three programs are related by the sharing of a common analytical technique; the energy balance is based upon one-dimensional heat transfer. The first program, NQLDW112, assumes a non-ablating surface. NQLDW117 is very similar but allows the outermost element to ablate. NQLDW040 calculates an average temperature profile through an idealized model of the real payload cannister and contents in the cargo bay of an orbiting vehicle.

  19. One-dimensional frequency-based spectroscopy.

    PubMed

    Cygan, Agata; Wcisło, Piotr; Wójtewicz, Szymon; Masłowski, Piotr; Hodges, Joseph T; Ciuryło, Roman; Lisak, Daniel

    2015-06-01

    Recent developments in optical metrology have tremendously improved the precision and accuracy of the horizontal (frequency) axis in measured spectra. However, the vertical (typically absorbance) axis is usually based on intensity measurements that are subject to instrumental errors which limit the spectrum accuracy. Here we report a one-dimensional spectroscopy that uses only the measured frequencies of high-finesse cavity modes to provide complete information about the dispersive properties of the spectrum. Because this technique depends solely on the measurement of frequencies or their differences, it is insensitive to systematic errors in the detection of light intensity and has the potential to become the most accurate of all absorptive and dispersive spectroscopic methods. The experimental results are compared to measurements by two other high-precision cavity-enhanced spectroscopy methods. We expect that the proposed technique will have significant impact in fields such as fundamental physics, gas metrology and environmental remote sensing.

  20. Superfluid helium-4 in one dimensional channel

    NASA Astrophysics Data System (ADS)

    Kim, Duk Y.; Banavar, Samhita; Chan, Moses H. W.; Hayes, John; Sazio, Pier

    2013-03-01

    Superfluidity, as superconductivity, cannot exist in a strict one-dimensional system. However, the experiments employing porous media showed that superfluid helium can flow through the pores of nanometer size. Here we report a study of the flow of liquid helium through a single hollow glass fiber of 4 cm in length with an open id of 150 nm between 1.6 and 2.3 K. We found the superfluid transition temperature was suppressed in the hollow cylinder and that there is no flow above the transition. Critical velocity at temperature below the transition temperature was determined. Our results bear some similarity to that found by Savard et. al. studying the flow of helium through a nanohole in a silicon nitrite membrane. Experimental study at Penn State is supported by NSF Grants No. DMR 1103159.

  1. One dimensional simulations of transients in heavy ion injectors

    SciTech Connect

    Barnard, J.J.; Caporaso, G.J.; Yu, S.S.; Eylon, E.

    1993-05-11

    A fast-running time-dependent one-dimensional particle code has been developed to simulate transients in both electrostatic quadrupole and electrostatic column heavy-ion injectors. Two-dimensional effects are incorporated through the use of an approximation to the transverse part of the Laplacian operator. Longitudinal electric fields are solved on a mesh. An external circuit is coupled to the column, and the effect of the beam on the circuit is modeled. Transients such as initial current spikes, space-charge de-bunching, and beam loading of the circuit, are simulated. Future directions for the code include introduction of envelope and centroid equations to provide beam radius and displacement information and the modeling of secondary electron currents arising from beam-spill.

  2. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    SciTech Connect

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung

    2014-05-12

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM{sub 10} hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 10{sup 5}λ{sup −3}. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  3. One-dimensional photonic crystal fishbone hybrid nanocavity with nanoposts

    NASA Astrophysics Data System (ADS)

    Lu, Tsan-Wen; Lin, Pin-Tso; Lee, Po-Tsung

    2014-05-01

    We propose and investigate a one-dimensional photonic crystal (PhC) fishbone (FB) hybrid nanocavity lying on silver substrate with a horizontal air slot. With very few PhC periods, the confined transverse-magnetic, TM10 hybrid mode concentrated within the air slot shows high quality factor over effective mode volume ratio larger than 105λ-3. Most importantly, this FB hybrid nanocavity allows formation of low-index nanoposts within the air slot without significantly affecting the mode properties. These nanoposts guarantee the structural stabilities under different environmental perturbations. Furthermore, capabilities of our proposed design in serving as optical sensors and tweezers for bio-sized nanoparticles are also investigated.

  4. Using the NASA GRC Sectored-One-Dimensional Combustor Simulation

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Mehta, Vishal R.

    2014-01-01

    The document is a user manual for the NASA GRC Sectored-One-Dimensional (S-1-D) Combustor Simulation. It consists of three sections. The first is a very brief outline of the mathematical and numerical background of the code along with a description of the non-dimensional variables on which it operates. The second section describes how to run the code and includes an explanation of the input file. The input file contains the parameters necessary to establish an operating point as well as the associated boundary conditions (i.e. how it is fed and terminated) of a geometrically configured combustor. It also describes the code output. The third section describes the configuration process and utilizes a specific example combustor to do so. Configuration consists of geometrically describing the combustor (section lengths, axial locations, and cross sectional areas) and locating the fuel injection point and flame region. Configuration requires modifying the source code and recompiling. As such, an executable utility is included with the code which will guide the requisite modifications and insure that they are done correctly.

  5. The one-dimensional Gross-Pitaevskii equation and its some excitation states

    SciTech Connect

    Prayitno, T. B.

    2015-04-16

    We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.

  6. The one-dimensional Gross-Pitaevskii equation and its some excitation states

    NASA Astrophysics Data System (ADS)

    Prayitno, T. B.

    2015-04-01

    We have derived some excitation states of the one-dimensional Gross-Pitaevskii equation coupled by the gravitational potential. The methods that we have used here are taken by pursuing the recent work of Kivshar et. al. by considering the equation as a macroscopic quantum oscillator. To obtain the states, we have made the appropriate transformation to reduce the three-dimensional Gross-Pitaevskii equation into the one-dimensional Gross-Pitaevskii equation and applying the time-independent perturbation theory in the general solution of the one-dimensional Gross-Pitaevskii equation as a linear superposition of the normalized eigenfunctions of the Schrödinger equation for the harmonic oscillator potential. Moreover, we also impose the condition by assuming that some terms in the equation should be so small in order to preserve the use of the perturbation method.

  7. TOPAZ - the transient one-dimensional pipe flow analyzer: equations and numerics

    SciTech Connect

    Winters, W.S.

    1985-12-01

    TOPAZ is a ''user friendly'' computer code for modeling the one-dimensional, transient physics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. This report, the third in a series of reports documenting TOPAZ, deals exclusively with governing equations, numerical methods, and code architecture.

  8. One dimensional modeling of blood flow in large networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Lagree, Pierre-Yves; Fullana, Jose-Maria; Lorthois, Sylvie; Institut de Mecanique des Fluides de Toulouse Collaboration

    2014-11-01

    A fast and valid simulation of blood flow in large networks of vessels can be achieved with a one-dimensional viscoelastic model. In this paper, we developed a parallel code with this model and computed several networks: a circle of arteries, a human systemic network with 55 arteries and a vascular network of mouse kidney with more than one thousand segments. The numerical results were verified and the speedup of parallel computing was tested on multi-core computers. The evolution of pressure distributions in all the networks were visualized and we can see clearly the propagation patterns of the waves. This provides us a convenient tool to simulate blood flow in networks.

  9. A collision history-based approach to Sensitivity/Perturbation calculations in the continuous energy Monte Carlo code SERPENT

    SciTech Connect

    Giuseppe Palmiotti

    2015-05-01

    In this work, the implementation of a collision history-based approach to sensitivity/perturbation calculations in the Monte Carlo code SERPENT is discussed. The proposed methods allow the calculation of the eects of nuclear data perturbation on several response functions: the eective multiplication factor, reaction rate ratios and bilinear ratios (e.g., eective kinetics parameters). SERPENT results are compared to ERANOS and TSUNAMI Generalized Perturbation Theory calculations for two fast metallic systems and for a PWR pin-cell benchmark. New methods for the calculation of sensitivities to angular scattering distributions are also presented, which adopts fully continuous (in energy and angle) Monte Carlo estimators.

  10. TOPAZ - the transient one-dimensional pipe flow analyzer: user's manual

    SciTech Connect

    Winters, W.S.

    1985-07-01

    TOPAZ is a ''user friendly'' computer code for modeling the one-dimensional-transient physics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. This document serves as a user's manual for the code, and should provide potential users with enough information to take advantage of many of the code's capabilities. Details regarding equations and numerics, example problems, applications, and modeling assumptions will be discussed in companion documents.

  11. Application of the Ideal Perturbed Equilibrium Code to DIII-D Magnetic Diagnostic Upgrade Designs

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Menard, J. E.; Park, J. K.; Strait, E. J.

    2012-10-01

    The Ideal Perturbed Equilibrium Code (IPEC) has been upgraded with advanced visualization tools and synthetic diagnostics to make its output directly comparable with DIII-D diagnostic measurements. Using the synthetic magnetic diagnostics, IPEC has been used to assist in the design of an advanced 3D magnetic field diagnostic currently being built as an upgrade to the DIII-D tokamak experiment. This poster outlines the application of IPEC modeling to the magnetic diagnostic design, highlighting the power and versatility of both the computational tools and proposed diagnostics. Of the many new measurements that will be possible with the magnetic diagnostic upgrade, special emphasis is given here to the ability to directly measure electromagnetic torques on the plasma. The magnetic diagnostic design will be able to simultaneously measure electromagnetic torque from non-axisymmetric fields with toroidal mode numbers 1, 2 and 3. This will open the door to many new possibilities in studying rotational braking effects that will be further supported by IPEC.

  12. Dispersive excitations in one-dimensional ionic Hubbard model

    NASA Astrophysics Data System (ADS)

    Hafez Torbati, M.; Drescher, Nils A.; Uhrig, Götz S.

    2014-06-01

    A detailed study of the one-dimensional ionic Hubbard model with interaction U is presented. We focus on the band insulating (BI) phase and the spontaneously dimerized insulating (SDI) phase which appears on increasing U. By a recently introduced continuous unitary transformation [H. Krull et al., Phys. Rev. B 86, 125113 (2012), 10.1103/PhysRevB.86.125113] we are able to describe the system even close to the phase transition from BI to SDI although the bare perturbative series diverges before the transition is reached. First, the dispersion of single fermionic quasiparticles is determined in the full Brillouin zone. Second, we describe the binding phenomena between two fermionic quasiparticles leading to an S =0 and to an S =1 exciton. The latter corresponds to the lowest spin excitation and defines the spin gap which remains finite through the transition from BI to SDI. The former becomes soft at the transition, indicating that the SDI corresponds to a condensate of these S =0 excitons. This view is confirmed by a BCS mean-field theory for the SDI phase.

  13. Bulk-edge correspondence of one-dimensional quantum walks

    NASA Astrophysics Data System (ADS)

    Cedzich, C.; Grünbaum, F. A.; Stahl, C.; Velázquez, L.; Werner, A. H.; Werner, R. F.

    2016-05-01

    We outline a theory of symmetry protected topological phases of one-dimensional quantum walks. We assume spectral gaps around the symmetry-distinguished points +1 and -1, in which only discrete eigenvalues are allowed. The phase classification by integer or binary indices extends the classification known for translation invariant systems in terms of their band structure. However, our theory requires no translation invariance whatsoever, and the indices we define in this general setting are invariant under arbitrary symmetric local perturbations, even those that cannot be continuously contracted to the identity. More precisely we define two indices for every walk, characterizing the behavior far to the right and far to the left, respectively. Their sum is a lower bound on the number of eigenstates at +1 and -1. For a translation invariant system the indices add up to zero, so one of them already characterizes the phase. By joining two bulk phases with different indices we get a walk in which the right and left indices no longer cancel, so the theory predicts bound states at +1 or -1. This is a rigorous statement of bulk-edge correspondence. The results also apply to the Hamiltonian case with a single gap at zero.

  14. Spatial modes in one-dimensional models for capillary jets

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; González, H.; García, F. J.

    2016-03-01

    One-dimensional (1D) models are widely employed to simplify the analysis of axisymmetric capillary jets. These models postulate that, for slender deformations of the free surface, the radial profile of the axial velocity can be approximated as uniform (viscous slice, averaged, and Cosserat models) or parabolic (parabolic model). In classical works on spatial stability analysis with 1D models, considerable misinterpretation was generated about the modes yielded by each model. The already existing physical analysis of three-dimensional (3D) axisymmetric spatial modes enables us to relate these 1D spatial modes to the exact 3D counterparts. To do so, we address the surface stimulation problem, which can be treated as linear, by considering the effect of normal and tangential stresses to perturb the jet. A Green's function for a spatially local stimulation having a harmonic time dependence provides the general formalism to describe any time-periodic stimulation. The Green's function of this signaling problem is known to be a superposition of the spatial modes, but in fact these modes are of fundamental nature, i.e., not restricted to the surface stimulation problem. The smallness of the wave number associated with each mode is the criterion to validate or invalidate the 1D approaches. The proposed axial-velocity profiles (planar or parabolic) also have a remarkable influence on the outcomes of each 1D model. We also compare with the classical 3D results for (i) conditions for absolute instability, and (ii) the amplitude of the unstable mode resulting from both normal and tangential surface stress stimulation. Incidentally, as a previous task, we need to re-deduce 1D models in order to include eventual stresses of various possible origins (electrohydrodynamic, thermocapillary, etc.) applied on the free surface, which were not considered in the previous general formulations.

  15. One-dimensional Pt induced chains on Si(337)

    NASA Astrophysics Data System (ADS)

    McChesney, Jessica; Bostwick, A.; Rotenberg, E.; Lapeyre, Gerald

    2006-03-01

    The use of high index Si surfaces as templates for the formation of adsorbate induced one-dimensional chain structures have attracted considerable interest. These systems have been used as a test bed in which to study low-dimension physics and components of nanoelectronics. In addition to the Ag and Au induced chains reported to form on the Si(337) surface, Pt also produces one-dimensional chains. Angle-resolved photoemission spectroscopy was used to investigate the electronic structure of these new Pt chains. The valence band mapping confirms the one-dimensional nature of these chains as seen in LEED. Supported by ONR and DOE.

  16. Torsional Detwinning Domino in Nanotwinned One-Dimensional Nanostructures.

    PubMed

    Zhou, Haofei; Li, Xiaoyan; Wang, Ying; Liu, Zishun; Yang, Wei; Gao, Huajian

    2015-09-09

    How to maintain sustained deformation in one-dimensional nanostructures without localized failure is an important question for many applications of nanotechnology. Here we report a phenomenon of torsional detwinning domino that leads to giant rotational deformation without localized failure in nanotwinned one-dimensional metallic nanostructures. This mechanism is demonstrated in nanotwinned Cu nanorods via molecular dynamics simulations, where coherent twin boundaries are transformed into twist boundaries and then dissolved one by one, resulting in practically unlimited rotational deformation. This finding represents a fundamental advance in our understanding of deformation mechanisms in one-dimensional metallic nanostructures.

  17. One dimensional time-to-explode (ODTX) in HMX spheres

    SciTech Connect

    Breshears, D.

    1997-06-02

    In a series of papers researchers at Lawrence Livermore National Laboratory (LLNL) have reported measurements of the time to explosion in spheres of various high explosives following a rapid, uniform increase in the surface temperature of the sphere. Due to the spherical symmetry, the time-dependent properties of the explosive (temperature, chemical composition, etc.) are functions of the radial spatial coordinate only; thus the name one-dimensional time-to-explosion (ODTX). The LLNL researchers also report an evolving series of computational modeling results for the ODTX experiments, culminating in those obtained using a sophisticated heat transfer code incorporating accurate descriptions of chemical reaction. Although the chemical reaction mechanism used to describe HMX decomposition is quite simple, the computational results agree very well with the experimental data. In addition to reproducing the magnitude and temperature dependence of the measured times to explosion, the computational results also agree with the results of post reaction visual inspection. The ODTX experiments offer a near-ideal example of a transport process (heat transfer in this case) tightly coupled with chemical reaction. The LLNL computational model clearly captures the important features of the ODTX experiments. An obvious question of interest is to what extent the model and/or its individual components (specifically the chemical reaction mechanism) are applicable to other experimental scenarios. Valid exploration of this question requires accurate understanding of (1) the experimental scenario addressed by the LLNL model and (2) details of the application of the model. The author reports here recent work addressing points (1) and (2).

  18. An investigation of dopping profile for a one dimensional heterostructure

    NASA Astrophysics Data System (ADS)

    Huang, Zhaohui

    2005-03-01

    A one-dimensional junction is formed by joining two silicon nanowires whose surfaces are terminated with capping groups of different electronegativity and polarizability. If this heterostructure is doped (with e.g. phosphorous) on the side with the higher bandgap, the system becomes a modulation doped heterostructure with novel one-dimensional electrostatics. We use density functional theory calculations in the pseudopotential approximation, plus empirical model calculations, to investigate doping profiles in this new class of nanostructures.

  19. An exact solution of solute transport by one-dimensional random velocity fields

    USGS Publications Warehouse

    Cvetkovic, V.D.; Dagan, G.; Shapiro, A.M.

    1991-01-01

    The problem of one-dimensional transport of passive solute by a random steady velocity field is investigated. This problem is representative of solute movement in porous media, for example, in vertical flow through a horizontally stratified formation of variable porosity with a constant flux at the soil surface. Relating moments of particle travel time and displacement, exact expressions for the advection and dispersion coefficients in the Focker-Planck equation are compared with the perturbation results for large distances. The first- and second-order approximations for the dispersion coefficient are robust for a lognormal velocity field. The mean Lagrangian velocity is the harmonic mean of the Eulerian velocity for large distances. This is an artifact of one-dimensional flow where the continuity equation provides for a divergence free fluid flux, rather than a divergence free fluid velocity. ?? 1991 Springer-Verlag.

  20. One-dimensional rainbow technique using Fourier domain filtering.

    PubMed

    Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree

    2015-11-16

    Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets.

  1. One-dimensional dynamics in locally heated liquid layers

    NASA Astrophysics Data System (ADS)

    Burguete, J.; Maza, D.; Mancini, H. L.

    2003-01-01

    Recent results on one-dimensional patterns in locally heated experiments are presented. A fluid layer is heated locally by a nearly one-dimensional heater, and subjected to both horizontal and vertical temperature gradients. Depending on the fluid depth and on the temperature difference established across the layer different convective regimes appear. When a very small temperature gradient is applied a basic convective state appears. It consists of two big rolls parallel to the heater and filling the convective cell. A primary instability in the homogeneous basic flow gives rise to a one-dimensional cellular stationary pattern. For higher values of the control parameters, time-dependent patterns appear through a secondary instability. Various regimes are analyzed: oscillations, traveling waves and alternating patterns. The hydrodynamic characteristics of these patterns are provided. Local temperature measurements allows to describe the physical mechanisms responsible for the instabilities. The similarities and discrepancies of the experimental data with some theoretical models are provided.

  2. Few-body route to one-dimensional quantum liquids

    NASA Astrophysics Data System (ADS)

    Valiente, Manuel; Öhberg, Patrik

    2016-11-01

    Gapless many-body quantum systems in one spatial dimension are universally described by the Luttinger liquid effective theory at low energies. Essentially, only two parameters enter the effective low-energy description, namely, the speed of sound and the Luttinger parameter. These are highly system dependent and their calculation requires accurate nonperturbative solutions of the many-body problem. Here we present a simple theoretical method that only uses collisional information to extract the low-energy properties of spinless one-dimensional systems. Our results are in remarkable agreement with available results for integrable models and from large-scale Monte Carlo simulations of one-dimensional helium and hydrogen isotopes. Moreover, we estimate theoretically the critical point for spinodal decomposition in one-dimensional 4He and show that the exponent governing the divergence of the Luttinger parameter near the critical point is exactly 1/2, in excellent agreement with Monte Carlo simulations.

  3. Some topological states in one-dimensional cold atomic systems

    SciTech Connect

    Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang

    2015-07-15

    Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.

  4. Quantum solution for the one-dimensional Coulomb problem

    SciTech Connect

    Nunez-Yepez, H. N.; Salas-Brito, A. L.; Solis, Didier A.

    2011-06-15

    The one-dimensional hydrogen atom has been a much studied system with a wide range of applications. Since the pioneering work of Loudon [R. Loudon, Am. J. Phys. 27, 649 (1959).], a number of different features related to the nature of the eigenfunctions have been found. However, many of the claims made throughout the years in this regard are not correct--such as the existence of only odd eigenstates or of an infinite binding-energy ground state. We explicitly show that the one-dimensional hydrogen atom does not admit a ground state of infinite binding energy and that the one-dimensional Coulomb potential is not its own supersymmetric partner. Furthermore, we argue that at the root of many such false claims lies the omission of a superselection rule that effectively separates the right side from the left side of the singularity of the Coulomb potential.

  5. SOLA-STAR: a one-dimensional ICED-ALE hydrodynamics program for spherically symmetric flows

    SciTech Connect

    Cloutman, L.D.

    1980-07-01

    This report describes a simple, general-purpose, and efficient algorithm for solving one-dimensional spherically symmetric, transient fluid-dynamics problems using a variation of the ICED-ALE technique. Included are the finite difference equations, three test problems that illustrate various capabilities of the program, and a complete code description, including a listing, sample data decks and output, a summary of important variable names, and hints for conversion to other operating systems.

  6. Heat flow between species in one-dimensional particle plasma simulations

    NASA Technical Reports Server (NTRS)

    Lawson, William S.; Gray, Perry C.

    1991-01-01

    The theory of Eldridge and Feix (1962) is presently applied to characterize the rate of heat flow between two one-dimensional particle species. Formulas derived assuming initial Maxwellian distributions, while complex, are judged applicable to simulators. Tests of the theory by simulations using Langdon and Birdsall's (1985) standard code yield results which indicate that heat flow between species may become rapid when the actual (not necessarily the intended) temperatures differ: thereby presenting a substantial hazard.

  7. Simple way of determining the dependence of the Hamiltonian on the action variable for certain one-dimensional potentials

    NASA Astrophysics Data System (ADS)

    Susskind, S. M.

    1986-07-01

    By further developing an idea found in Goldstein's book Classical Mechanics together with a trivial generalization of the virial theorem, an alternative and simple perturbative procedure for obtaining H=H(J) for certain one-dimensional potentials is presented. The anharmonic oscillator and the Stark effect for hydrogen, both in one dimension, are given as examples of the method.

  8. Ballistic transport in one-dimensional random dimer photonic crystals

    NASA Astrophysics Data System (ADS)

    Cherid, Samira; Bentata, Samir; Zitouni, Ali; Djelti, Radouan; Aziz, Zoubir

    2014-04-01

    Using the transfer-matrix technique and the Kronig Penney model, we numerically and analytically investigate the effect of short-range correlated disorder in Random Dimer Model (RDM) on transmission properties of the light in one dimensional photonic crystals made of three different materials. Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that one kind of these layers always appear in pairs. It is shown that the one dimensional random dimer photonic crystals support two types of extended modes. By shifting of the dimer resonance toward the host fundamental stationary resonance state, we demonstrate the existence of the ballistic response in these systems.

  9. Random registry shifts in quasi-one-dimensional adsorbate systems

    NASA Astrophysics Data System (ADS)

    Schäfer, J.; Erwin, S. C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S. D.; Hellberg, C. S.; Horn, K.

    2003-02-01

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3×2 unit cell and yet a 3×1 diffraction pattern is resolved for the example of Ba/Si(111)-(3×2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3×1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  10. Random registry shifts in quasi-one-dimensional adsorbate systems

    SciTech Connect

    Schafer, J.; Erwin, S.C.; Hansmann, M.; Song, Z.; Rotenberg, E.; Kevan, S.D.; Hellberg, C.S.; Horn, K.

    2003-02-18

    The apparent contradiction of one-dimensional adsorbate chains on Si(111) having a 3x2 unit cell and yet a 3x1 diffraction pattern is resolved for the example of Ba/Si(111)-(3x2). Random registry shifts between adsorbate chains are observed in tunneling microscopy, with very short interchain correlation lengths. Fourier analysis provides a natural explanation for a pseudo-(3x1) diffraction pattern. Within density-functional theory such registry shifts can occur with essentially negligible energy cost, leading to entropy-driven, virtually perfect disorder. Substrate states of high symmetry and one-dimensional character are inferred to promote this phenomenon.

  11. Lie symmetry algebra of one-dimensional nonconservative dynamical systems

    NASA Astrophysics Data System (ADS)

    Liu, Cui-Mei; Wu, Run-Heng; Fu, Jing-Li

    2007-09-01

    Lie symmetry algebra of linear nonconservative dynamical systems is studied in this paper. By using 1-1 mapping, the Lie point and Lie contact symmetry algebras are obtained from two independent solutions of the one-dimensional linear equations of motion.

  12. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  13. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-05-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  14. Approximate Approaches to the One-Dimensional Finite Potential Well

    ERIC Educational Resources Information Center

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-01-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…

  15. The Long Decay Model of One-Dimensional Projectile Motion

    ERIC Educational Resources Information Center

    Lattery, Mark Joseph

    2008-01-01

    This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…

  16. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  17. Teaching Module for One-Dimensional, Transient Conduction.

    ERIC Educational Resources Information Center

    Ribando, Robert J.; O'Leary, Gerald W.

    1998-01-01

    Describes a PC-based teaching module designed to instruct engineering students in transient one-dimensional conduction heat transfer analysis. The discussion considers problem formulation, nondimensionalization, discretization, numerical stability and the time-step restriction, program operation, and program verification. (MES)

  18. Toward precise solution of one-dimensional velocity inverse problems

    SciTech Connect

    Gray, S.; Hagin, F.

    1980-01-01

    A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent.

  19. Optically induced zener tunneling in one-dimensional lattices.

    PubMed

    Fratalocchi, Andrea; Assanto, Gaetano; Brzdakiewicz, Kasia A; Karpierz, Mirek A

    2006-03-15

    We investigate Landau-Zener tunneling in one-dimensional liquid crystalline waveguide arrays by all-optical impression of acceleration with an additional beam. We derive the Zener model from the governing equations and demonstrate a novel approach to Floquet-Bloch band tunneling.

  20. Comment on ``Strongly convergent method to solve one-dimensional quantum problems''

    NASA Astrophysics Data System (ADS)

    Taşeli, H.

    1997-07-01

    Vargas et al. [Phys. Rev. E 53, 1954 (1996)] presented a numerical matrix method to solve the one-dimensional Schrödinger equation subject to Dirichlet boundary conditions. It is a well-known fact that the eigensolutions of such a confined system converge asymptotically to those of the corresponding unbounded problem as the boundary value increases. However, it is verified computationally that the results given by Vargas et al. are inaccurate, especially for the excited states of the perturbed oscillator Hamiltonian.

  1. Luttinger parameter of quasi-one-dimensional para -H2

    NASA Astrophysics Data System (ADS)

    Ferré, G.; Gordillo, M. C.; Boronat, J.

    2017-02-01

    We have studied the ground-state properties of para-hydrogen in one dimension and in quasi-one-dimensional configurations using the path-integral ground-state Monte Carlo method. This method produces zero-temperature exact results for a given interaction and geometry. The quasi-one-dimensional setup has been implemented in two forms: the inner channel inside a carbon nanotube coated with H2 and a harmonic confinement of variable strength. Our main result is the dependence of the Luttinger parameter on the density within the stable regime. Going from one dimension to quasi-one dimension, keeping the linear density constant, produces a systematic increase of the Luttinger parameter. This increase is, however, not enough to reach the superfluid regime and the system always remain in the quasicrystal regime, according to Luttinger liquid theory.

  2. Fibonacci anyon excitations of one-dimensional dipolar lattice bosons

    NASA Astrophysics Data System (ADS)

    Äńurić, Tanja; Biedroń, Krzysztof; Zakrzewski, Jakub

    2017-02-01

    We study a system of dipolar bosons in a one-dimensional optical lattice using exact diagonalization and density matrix renormalization group methods. In particular, we analyze low energy properties of the system at an average filling of 3/2 atoms per lattice site. We identify the region of the parameter space where the system has non-Abelian Fibonacci anyon excitations that correspond to fractional domain walls between different charge-density waves. When such one-dimensional systems are combined into a two-dimensional network, braiding of Fibonacci anyon excitations has potential application for fault tolerant, universal, topological quantum computation. Contrary to previous calculations, our results also demonstrate that super-solid phases are not present in the phase diagram for the discussed 3/2 average filling. Instead, decreasing the value of the nearest-neighbor tunneling strength leads to a direct, Berezinskii-Kosterlitz-Thouless, superfluid to charge-density-wave quantum phase transition.

  3. One-dimensional Si nanolines in hydrogenated Si(001)

    NASA Astrophysics Data System (ADS)

    François, Bianco; Köster, Sigrun A.; Owen, James G. H.; Renner, Christoph; Bowler, David R.

    2012-02-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the H-terminated silicon (001) surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometre long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality. Phys. Rev. B, 84, 035328 (2011)

  4. Average reflected power from a one-dimensional slab of discrete scatterers

    NASA Technical Reports Server (NTRS)

    Saatchi, Sasan S.; Lang, Roger H.

    1990-01-01

    Reflection from a one-dimensional random medium of discrete scatterers is considered. The discrete scattering medium is modeled by a Poisson impulse process with concentration lambda. By employing the Markov property of the Poisson impulse process, an exact functional integro-differential equation of the Kolmogorov-Feller type is found for the average reflected power. Approximate solutions to this equation are obtained by regular perturbation and two variable expansion techniques in the limit of small lambda. The regular perturbation results is valid for small slab thicknesses, while the two-variable result is uniformly valid for any thickness. The two-variable result shows that as the slab size becomes infinite all of the incident power is reflected on the average.

  5. On numerical modeling of one-dimensional geothermal histories

    USGS Publications Warehouse

    Haugerud, R.A.

    1989-01-01

    Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.

  6. Duality and phase diagram of one-dimensional transport

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Somendra M.

    2007-02-01

    The idea of duality in one-dimensional nonequilibrium transport is introduced by generalizing the observations by Mukherji and Mishra. A general approach is developed for the classification and characterization of the steady state phase diagrams which are shown to be determined by the nature of the zeros of a set of coarse-grained functions that encode the microscopic dynamics. A new class of nonequilibrium multicritical points has been identified.

  7. Single parameter scaling in one-dimensional localization revisited

    PubMed

    Deych; Lisyansky; Altshuler

    2000-03-20

    The variance of the Lyapunov exponent is calculated exactly in the one-dimensional Anderson model with random site energies distributed according to the Cauchy distribution. We find a new significant scaling parameter in the system, and derive an exact analytical criterion for single parameter scaling which differs from the commonly used condition of phase randomization. The results obtained are applied to the Kronig-Penney model with the potential in the form of periodically positioned delta functions with random strength.

  8. Defects in a nonlinear pseudo one-dimensional solid

    NASA Astrophysics Data System (ADS)

    Blanchet, Graciela B.; Fincher, C. R., Jr.

    1985-03-01

    These infrared studies of acetanilide together with the existence of two equivalent structures for the hydrogen-bonded chain suggest the possibility of a topological defect state rather than a Davydov soliton as suggested previously. Acetanilide is an example of a class of one-dimensional materials where solitons are a consequence of a twofold degenerate structure and the nonlinear dynamics of the hydrogen-bonded network.

  9. Thermalization in a one-dimensional integrable system

    SciTech Connect

    Grisins, Pjotrs; Mazets, Igor E.

    2011-11-15

    We present numerical results demonstrating the possibility of thermalization of single-particle observables in a one-dimensional system, which is integrable in both the quantum and classical (mean-field) descriptions (a quasicondensate of ultracold, weakly interacting bosonic atoms are studied as a definite example). We find that certain initial conditions admit the relaxation of single-particle observables to the equilibrium state reasonably close to that corresponding to the Bose-Einstein thermal distribution of Bogoliubov quasiparticles.

  10. Nonequilibrium statistical mechanics in one-dimensional bose gases

    NASA Astrophysics Data System (ADS)

    Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.

    2016-06-01

    We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.

  11. One-dimensional quantum pump simulated by cold atoms

    NASA Astrophysics Data System (ADS)

    Xiao, Yun-Chang; Zhu, Ming-Han; Liu, Zheng-Qin

    2015-05-01

    Quantum pump set up in one-dimensional (1D) channel was proposed by the cold atom simulation. The target pumping system is driven by the double time-dependent potentials. We investigated that the system can be achieved via the study of the cold atoms simulation. And by using the Floquet scattering method and the related transport theories in the mesoscopic systems, simulations of the pumping processes were presented in detail.

  12. Fast Integration of One-Dimensional Boundary Value Problems

    NASA Astrophysics Data System (ADS)

    Campos, Rafael G.; Ruiz, Rafael García

    2013-11-01

    Two-point nonlinear boundary value problems (BVPs) in both unbounded and bounded domains are solved in this paper using fast numerical antiderivatives and derivatives of functions of L2(-∞, ∞). This differintegral scheme uses a new algorithm to compute the Fourier transform. As examples we solve a fourth-order two-point boundary value problem (BVP) and compute the shape of the soliton solutions of a one-dimensional generalized Korteweg-de Vries (KdV) equation.

  13. Thermal breakage of a discrete one-dimensional string.

    PubMed

    Lee, Chiu Fan

    2009-09-01

    We study the thermal breakage of a discrete one-dimensional string, with open and fixed ends, in the heavily damped regime. Basing our analysis on the multidimensional Kramers escape theory, we are able to make analytical predictions on the mean breakage rate and on the breakage propensity with respect to the breakage location on the string. We then support our predictions with numerical simulations.

  14. Analysis of necking based on a one-dimensional model

    NASA Astrophysics Data System (ADS)

    Audoly, Basile; Hutchinson, John W.

    2016-12-01

    Dimensional reduction is applied to derive a one-dimensional energy functional governing tensile necking localization in a family of initially uniform prismatic solids, including as particular cases rectilinear blocks in plane strain and cylindrical bars undergoing axisymmetric deformations. The energy functional depends on both the axial stretch and its gradient. The coefficient of the gradient term is derived in an exact and general form. The one-dimensional model is used to analyze necking localization for nonlinear elastic materials that experience a maximum load under tensile loading, and for a class of nonlinear materials that mimic elastic-plastic materials by displaying a linear incremental response when stretch switches from increasing to decreasing. Bifurcation predictions for the onset of necking from the simplified theory compared with exact results suggest the approach is highly accurate at least when the departures from uniformity are not too large. Post-bifurcation behavior is analyzed to the point where the neck is fully developed and localized to a region on the order of the thickness of the block or bar. Applications to the nonlinear elastic and elastic-plastic materials reveal the highly unstable nature of necking for the former and the stable behavior for the latter, except for geometries where the length of the block or bar is very large compared to its thickness. A formula for the effective stress reduction at the center of a neck is established based on the one-dimensional model, which is similar to that suggested by Bridgman (1952).

  15. Dynamical structure factor of one-dimensional hard rods

    NASA Astrophysics Data System (ADS)

    Motta, M.; Vitali, E.; Rossi, M.; Galli, D. E.; Bertaina, G.

    2016-10-01

    The zero-temperature dynamical structure factor S (q ,ω ) of one-dimensional hard rods is computed using state-of-the-art quantum Monte Carlo and analytic continuation techniques, complemented by a Bethe ansatz analysis. As the density increases, S (q ,ω ) reveals a crossover from the Tonks-Girardeau gas to a quasisolid regime, along which the low-energy properties are found in agreement with the nonlinear Luttinger liquid theory. Our quantitative estimate of S (q ,ω ) extends beyond the low-energy limit and confirms a theoretical prediction regarding the behavior of S (q ,ω ) at specific wave vectors Qn=n 2 π /a , where a is the core radius, resulting from the interplay of the particle-hole boundaries of suitably rescaled ideal Fermi gases. We observe significant similarities between hard rods and one-dimensional 4He at high density, suggesting that the hard-rods model may provide an accurate description of dense one-dimensional liquids of quantum particles interacting through a strongly repulsive, finite-range potential.

  16. NASA One-Dimensional Combustor Simulation--User Manual for S1D_ML

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J.; Paxson, Daniel E.

    2014-01-01

    The work presented in this paper is to promote research leading to a closed-loop control system to actively suppress thermo-acoustic instabilities. To serve as a model for such a closed-loop control system, a one-dimensional combustor simulation composed using MATLAB software tools has been written. This MATLAB based process is similar to a precursor one-dimensional combustor simulation that was formatted as FORTRAN 77 source code. The previous simulation process requires modification to the FORTRAN 77 source code, compiling, and linking when creating a new combustor simulation executable file. The MATLAB based simulation does not require making changes to the source code, recompiling, or linking. Furthermore, the MATLAB based simulation can be run from script files within the MATLAB environment or with a compiled copy of the executable file running in the Command Prompt window without requiring a licensed copy of MATLAB. This report presents a general simulation overview. Details regarding how to setup and initiate a simulation are also presented. Finally, the post-processing section describes the two types of files created while running the simulation and it also includes simulation results for a default simulation included with the source code.

  17. One-Dimensional Scanning Approach to Shock Sensing

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Adamovsky, Girgory; Floyd, Bertram

    2009-01-01

    Measurement tools for high speed air flow are sought both in industry and academia. Particular interest is shown in air flows that exhibit aerodynamic shocks. Shocks are accompanied by sudden changes in density, pressure, and temperature. Optical detection and characterization of such shocks can be difficult because the medium is normally transparent air. A variety of techniques to analyze these flows are available, but they often require large windows and optical components as in the case of Schlieren measurements and/or large operating powers which precludes their use for in-flight monitoring and applications. The one-dimensional scanning approach in this work is a compact low power technique that can be used to non-intrusively detect shocks. The shock is detected by analyzing the optical pattern generated by a small diameter laser beam as it passes through the shock. The optical properties of a shock result in diffraction and spreading of the beam as well as interference fringes. To investigate the feasibility of this technique a shock is simulated by a 426 m diameter optical fiber. Analysis of results revealed a direct correlation between the optical fiber or shock location and the beam s diffraction pattern. A plot of the width of the diffraction pattern vs. optical fiber location reveals that the width of the diffraction pattern was maximized when the laser beam is directed at the center of the optical fiber. This work indicates that the one-dimensional scanning approach may be able to determine the location of an actual shock. Near and far field effects associated with a small diameter laser beam striking an optical fiber used as a simulated shock are investigated allowing a proper one-dimensional scanning beam technique.

  18. A Sectored-One-Dimensional Model for Simulating Combustion Instabilities in Premix Combustors

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1999-01-01

    A one-dimensional, CFD based combustor simulation has been developed that exhibits self-excited, thermoacoustic oscillations in premixed combustor geometries that typically have large, abrupt changes in cross sectional area. The combustor geometry is approximated by dividing it into a finite number of one-dimensional sectors. Within each sector, the equations of motion are integrated numerically, along with a species transport and a reaction equation. Across the sectors, mass and energy are conserved, and momentum loss is prescribed using appropriately compatible boundary conditions that account for the area change. The resulting simulation and associated boundary conditions essentially represent a one-dimensional, multi-block technique. Details of the simulation code are presented herein. Results are then shown comparing experimentally observed and simulated operation of a particular combustor rig that exhibited different instabilities at different operating points. It will be shown that the simulation closely matched the rig data in oscillation amplitudes, frequencies, and operating points at which the instabilities occurred. Finally, advantages and limitations of the simulation technique are discussed.

  19. Three material and four material one-dimensional phononic crystals

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco

    2017-01-01

    In this work, we studied one-dimensional phononic structures for selective acoustic filtering. The structures are composed of three and four materials which have different elastic properties. We have observed that the phononic band gaps split in two and three transmission valleys for the three-material and the four-material based phononic structures, respectively. Furthermore, the number of transmission peaks between the split gaps is directly related to the number of unit cells composing the phononic structures. The observations of this work can be useful for the fabrication of acoustic filters with the possibility to select the transmission of particular frequencies.

  20. Parallel solution of sparse one-dimensional dynamic programming problems

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1989-01-01

    Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.

  1. Quantum mechanics of graphene with a one-dimensional potential

    SciTech Connect

    Miserev, D. S.; Entin, M. V.

    2012-10-15

    Electron states in graphene with a one-dimensional potential have been studied. An approximate solution has been obtained for a small angle between vectors of the incident electron momentum and potential gradient. Exactly solvable problems with a potential of the smoothened step type U(x) Utanh(x/a) and a potential with a singularity U(x) = -U/(|x| + d) are considered. The transmission/reflection coefficients and phases for various potential barriers are determined. A quasi-classical solution is obtained.

  2. A statistical formulation of one-dimensional electron fluid turbulence

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.

    1977-01-01

    A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.

  3. One-dimensional hydrodynamic model generating a turbulent cascade

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sakajo, Takashi

    2016-05-01

    As a minimal mathematical model generating cascade analogous to that of the Navier-Stokes turbulence in the inertial range, we propose a one-dimensional partial-differential-equation model that conserves the integral of the squared vorticity analog (enstrophy) in the inviscid case. With a large-scale random forcing and small viscosity, we find numerically that the model exhibits the enstrophy cascade, the broad energy spectrum with a sizable correction to the dimensional-analysis prediction, peculiar intermittency, and self-similarity in the dynamical system structure.

  4. One-dimensional model of fluidized-bed combustor dynamics

    SciTech Connect

    Perez, R.B.

    1980-01-01

    Starting from Soo's basic multiphase equations, a set of one-dimensional time-dependent hydrodynamic and enthalpy equations was developed for a fluidized bed reactor by averaging over its cross sectional area. The following effects were not considered in the derivation of the FBC equations: forces to accelerate the apparent mass of the solid particle, basset force, heat exchange by radiation between solids and fluid or within each phase, and electrodynamic effects. Within these restrictions, the material developed here forms the basis for a sequel to this report devoted to the development of stability studies and to the application of stochastic methods for FBC surveillance.

  5. One-dimensional intense laser pulse solitons in a plasma

    SciTech Connect

    Sudan, R.N.; Dimant, Y.S.; Shiryaev, O.B.

    1997-05-01

    A general analytical framework is developed for the nonlinear dispersion relations of a class of large amplitude one-dimensional isolated envelope solitons for modulated light pulse coupled to electron plasma waves, previously investigated numerically [Kozlov {ital et al.}, Zh. Eksp. Teor. Fiz. {bold 76}, 148 (1979); Kaw {ital et al.}, Phys. Rev. Lett. {bold 68}, 3172 (1992)]. The analytical treatment of weakly nonlinear solitons [Kuehl and Zhang, Phys. Rev. E {bold 48}, 1316 (1993)] is extended to the strongly nonlinear limit. {copyright} {ital 1997 American Institute of Physics.}

  6. Singular Spectrum of Lebesgue Measure Zerofor One-Dimensional Quasicrystals

    NASA Astrophysics Data System (ADS)

    Lenz, Daniel

    The spectrum of one-dimensional discrete Schr\\"odinger operators associated to strictly ergodic dynamical systems is shown to coincide with the set of zeros of the Lyapunov exponent if and only if the Lyapunov exponent exists uniformly. This is used to obtain Cantor spectrum of zero Lebesgue measure for all aperiodic subshifts with uniform positive weights. This covers, in particular, all aperiodic subshifts arising from primitive substitutions including new examples as e.g. the Rudin-Shapiro substitution. Our investigation is not based on trace maps. Instead it relies on an Oseledec type theorem due to A. Furman and a uniform ergodic theorem due to the author.

  7. Numerical computations on one-dimensional inverse scattering problems

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Hariharan, S. I.

    1983-01-01

    An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.

  8. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces.

    PubMed

    Xia, Deying; Brueck, S R J

    2008-09-01

    This communication reports strongly anisotropic wetting behavior on one-dimensional nanopatterned surfaces. Contact angles, degree of anisotropy, and droplet distortion are measured on micro- and nanopatterned surfaces fabricated with interference lithography. Both the degree of anisotropy and the droplet distortion are extremely high as compared with previous reports because of the well-defined nanostructural morphology. The surface is manipulated to tune with the wetting from hydrophobic to hydrophilic while retaining the structural wetting anisotropy with a simple silica nanoparticle overcoat. The wetting mechanisms are discussed. Potential applications in microfluidic devices and evaporation-induced pattern formation are demonstrated.

  9. Quantum Criticality of Quasi-One-Dimensional Topological Anderson Insulators

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Bagrets, Dmitry; Fritz, Lars; Kamenev, Alex; Schmiedt, Hanno

    2014-05-01

    We present an analytic theory of quantum criticality in the quasi-one-dimensional topological Anderson insulators of class AIII and BDI. We describe the systems in terms of two parameters (g, χ) representing localization and topological properties, respectively. Surfaces of half-integer valued χ define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow describing the class A quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given. We check the quantitative validity of our theory by comparison to numerical transfer matrix computations.

  10. Correlations in light propagation in one-dimensional waveguides

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha; Ruostekoski, Janne

    2016-05-01

    We study light propagation between atoms in a one-dimensional waveguide both analytically and using numerical simulations. We employ classical electrodynamics, but in the limit of low light intensity the results are essentially exact also for quantum mechanics. We characterize the cooperative interactions between the atoms mediated by the electromagnetic field. The focus is on resonance shifts for various statistics of the positions of the atoms, such as statistically independent positions or atoms in a regular lattice. These shifts, potentially important if 1D waveguides are to be used in metrology, are different from the usual resonance shifts found in three spatial dimensions.

  11. Saturable discrete vector solitons in one-dimensional photonic lattices

    SciTech Connect

    Vicencio, Rodrigo A.; Smirnov, Eugene; Rueter, Christian E.; Kip, Detlef; Stepic, Milutin

    2007-09-15

    Localized vectorial modes, with equal frequencies and mutually orthogonal polarizations, are investigated both analytically and experimentally in a one-dimensional photonic lattice with defocusing saturable nonlinearity. It is shown that these modes may span over many lattice elements and that energy transfer among the two components is both phase and intensity dependent. The transverse electrically polarized mode exhibits a single-hump structure and spreads in cascades in saturation, while the transverse magnetically polarized mode exhibits splitting into a two-hump structure. Experimentally such discrete vector solitons are observed in lithium niobate lattices for both coherent and mutually incoherent excitations.

  12. Coupling of impurity modes in one-dimensional periodic systems.

    PubMed

    Royo, P; Stanley, R P; Ilegems, M

    2001-07-01

    One-dimensional periodic dielectric structures are known to exhibit band gaps because of their symmetry. Defect states can be found in the band gaps if an impurity layer is added to the lattice such that the symmetry of the structure is broken. In this paper, we consider the case where a second impurity layer is added and we discuss the existence of coupling between the two defects. We discuss the possibility of exploiting the coupling of impurity modes in the realization of tunable wavelength emitting devices and dual-wavelength vertical-cavity surface-emitting lasers.

  13. One-dimensional metal oxide nanostructures for heterogeneous catalysis.

    PubMed

    Zhang, Qian; Wang, Hsin-Yi; Jia, Xinli; Liu, Bin; Yang, Yanhui

    2013-08-21

    Metal oxides are of paramount importance in heterogeneous catalysis as either supports or active phases. Controlled synthesis of one-dimensional (1D) metal oxide nanostructures has received enormous attention in heterogeneous catalysis due to the possibility of tailoring the properties of metal oxides by tuning their shapes, sizes, and compositions. This feature article highlights recent advances in shape controlled synthesis of 1D metal oxide nanostructures and their applications in heterogeneous catalysis, with the aim of introducing new insights into the heterogeneous catalyst design.

  14. Wave propagation in one-dimensional microscopic granular chains

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Hsun; Daraio, Chiara

    2016-11-01

    We employ noncontact optical techniques to generate and measure stress waves in uncompressed, one-dimensional microscopic granular chains, and support our experiments with discrete numerical simulations. We show that the wave propagation through dry particles (150 μm radius) is highly nonlinear and it is significantly influenced by the presence of defects (e.g., surface roughness, interparticle gaps, and misalignment). We derive an analytical relation between the group velocity and gap size, and define bounds for the formation of highly nonlinear solitary waves as a function of gap size and axial misalignment.

  15. Molecular nanostamp based on one-dimensional porphyrin polymers.

    PubMed

    Kanaizuka, Katsuhiko; Izumi, Atsushi; Ishizaki, Manabu; Kon, Hiroki; Togashi, Takanari; Miyake, Ryosuke; Ishida, Takao; Tamura, Ryo; Haga, Masa-aki; Moritani, Youji; Sakamoto, Masatomi; Kurihara, Masato

    2013-08-14

    Surface design with unique functional molecules by a convenient one-pot treatment is an attractive project for the creation of smart molecular devices. We have employed a silane coupling reaction of porphyrin derivatives that form one-dimensional polymer wires on substrates. Our simple one-pot treatment of a substrate with porphyrin has successfully achieved the construction of nanoscale bamboo shoot structures. The nanoscale bamboo shoots on the substrates were characterized by atomic force microscopy (AFM), UV-vis spectra, and X-ray diffraction (XRD) measurements. The uneven and rigid nanoscale structure has been used as a stamp for constructing bamboo shoot structures of fullerene.

  16. Polarization hydrodynamics in a one-dimensional polariton condensate

    NASA Astrophysics Data System (ADS)

    Larré, P.-É.; Pavloff, N.; Kamchatnov, A. M.

    2013-12-01

    We study the hydrodynamics of a nonresonantly pumped polariton condensate in a quasi-one-dimensional quantum wire taking into account the spin degree of freedom. We clarify the relevance of the Landau criterion for superfluidity in this dissipative two-component system. Two Cherenkov-like critical velocities are identified corresponding to the opening of different channels of radiation: one of (damped) density fluctuations and another of (weakly damped) polarization fluctuations. We determine the drag force exerted onto an external obstacle and propose experimentally measurable consequences of the specific features of the fluctuations of polarization.

  17. Absolute negative mobility in a one-dimensional overdamped system

    NASA Astrophysics Data System (ADS)

    Chen, Ru-Yin; Nie, Lin-Ru; Pan, Wan-Li; Zhang, Jian-Qiang

    2015-10-01

    A one-dimensional overdamped system consisting of a symmetric periodic potential, a constant bias force and a trichotomous noise was investigated. In the frame of master equations, we derived analytical expression of its current. By means of numerical calculations, the results indicate that the current first increases, then decreases and finally increases with the bias force increasing, i.e., an absolute negative mobility (ANM) phenomenon. Our further investigations presented dependence of the ANM phenomenon on parameters of the noise. Its intrinsic physical mechanism was also open up, and a minimal model with ANM phenomenon is demonstrated.

  18. One-dimensional neutron imager for the Sandia Z facility.

    PubMed

    Fittinghoff, David N; Bower, Dan E; Hollaway, James R; Jacoby, Barry A; Weiss, Paul B; Buckles, Robert A; Sammons, Timothy J; McPherson, Leroy A; Ruiz, Carlos L; Chandler, Gordon A; Torres, José A; Leeper, Ramon J; Cooper, Gary W; Nelson, Alan J

    2008-10-01

    A multiinstitution collaboration is developing a neutron imaging system for the Sandia Z facility. The initial system design is for slit aperture imaging system capable of obtaining a one-dimensional image of a 2.45 MeV source producing 5x10(12) neutrons with a resolution of 320 microm along the axial dimension of the plasma, but the design being developed can be modified for two-dimensional imaging and imaging of DT neutrons with other resolutions. This system will allow us to understand the spatial production of neutrons in the plasmas produced at the Z facility.

  19. Quantum Simulations of One-Dimensional Nanostructures under Arbitrary Deformations

    NASA Astrophysics Data System (ADS)

    Koskinen, Pekka

    2016-09-01

    A powerful technique is introduced for simulating mechanical and electromechanical properties of one-dimensional nanostructures under arbitrary combinations of bending, twisting, and stretching. The technique is based on an unconventional control of periodic symmetry which eliminates artifacts due to deformation constraints and quantum finite-size effects and allows transparent electronic-structure analysis. Via density-functional tight-binding implementation, the technique demonstrates its utility by predicting nonlinear electromechanical properties in carbon nanotubes and abrupt behavior in the structural yielding of Au7 and Mo6 S6 nanowires. The technique drives simulations markedly closer to the realistic modeling of these slender nanostructures under experimental conditions.

  20. Coherent Backscattering of Light Off One-Dimensional Atomic Strings

    NASA Astrophysics Data System (ADS)

    Sørensen, H. L.; Béguin, J.-B.; Kluge, K. W.; Iakoupov, I.; Sørensen, A. S.; Müller, J. H.; Polzik, E. S.; Appel, J.

    2016-09-01

    We present the first experimental realization of coherent Bragg scattering off a one-dimensional system—two strings of atoms strongly coupled to a single photonic mode—realized by trapping atoms in the evanescent field of a tapered optical fiber, which also guides the probe light. We report nearly 12% power reflection from strings containing only about 1000 cesium atoms, an enhancement of 2 orders of magnitude compared to reflection from randomly positioned atoms. This result paves the road towards collective strong coupling in 1D atom-photon systems. Our approach also allows for a straightforward fiber connection between several distant 1D atomic crystals.

  1. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  2. Scanned gate microscopy of a one-dimensional quantum dot.

    PubMed

    Zhang, Lingfeng M; Fogler, Michael M

    2006-10-01

    We analyze electrostatic interaction between a sharp conducting tip and a thin one-dimensional wire, e.g., a carbon nanotube, in a scanned gate microscopy (SGM) experiment. The problem is analytically tractable if the wire resides on a thin dielectric substrate above a metallic backgate. The characteristic spatial scale of the electrostatic coupling to the tip is equal to its height above the substrate. Numerical simulations indicate that imaging of individual electrons by SGM is possible once the mean electron separation exceeds this scale (typically, a few tens of nm). Differences between weakly and strongly invasive SGM regimes are pointed out.

  3. Numerical Simulations of One-dimensional Microstructure Dynamics

    SciTech Connect

    Berezovski, M.; Berezovski, A.; Engelbrecht, J.

    2010-05-21

    Results of numerical simulations of one-dimensional wave propagation in microstructured solids are presented and compared with the corresponding results of wave propagation in given layered media. A linear microstructure model based on Mindlin theory is adopted and represented in the framework of the internal variable theory. Fully coupled systems of equations for macro-motion and microstructure evolution are rewritten in the form of conservation laws. A modification of wave propagation algorithm is used for numerical calculations. It is shown how the initial microstructure model can be improved in order to match the results obtained by both approaches.

  4. Information transmission for one-dimensional stimuli: the role of strategies.

    PubMed

    De Sanctis, Pierfilippo; Sommer, Werner

    2009-05-01

    Important evidence about the information flow between perceptual and motor processes has been obtained from the lateralized readiness potential (LRP) recorded in two-choice go/nogo tasks. Here, we investigated the effect of time pressure on information transmission for one-dimensional stimuli (four squares differing in size). In between- and within-subject designs, respectively, Experiments 1 and 2 showed that under time pressure partial information initiates hand decision and response preparation before complete size information is available. These findings appear to be at odds with the asynchronous discrete coding model. Experiment 3 assessed the mechanisms behind these effects by manipulating the relative difficulty of extracting hand- and go/nogo-specific information from the size of the stimuli. Consistent with asynchronous coding, our results suggest that serial-consecutive processes in extracting partial and full size information may occur also for one-dimensional stimuli. Our data are inconclusive as to the question of discreteness or continuity of information transmission. On a more general level, our data support the notion of flexibility in the coding of perceptual dimensions to adapt performance to environmental conditions.

  5. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    PubMed

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  6. Investigation of fast ion behavior using orbit following Monte-Carlo code in magnetic perturbed field in KSTAR

    NASA Astrophysics Data System (ADS)

    Shinohara, Kouji; Suzuki, Yasuhiro; Kim, Junghee; Kim, Jun Young; Jeon, Young Mu; Bierwage, Andreas; Rhee, Tongnyeol

    2016-11-01

    The fast ion dynamics and the associated heat load on the plasma facing components in the KSTAR tokamak were investigated with the orbit following Monte-Carlo (OFMC) code in several magnetic field configurations and realistic wall geometry. In particular, attention was paid to the effect of resonant magnetic perturbation (RMP) fields. Both the vacuum field approximation as well as the self-consistent field that includes the response of a stationary plasma were considered. In both cases, the magnetic perturbation (MP) is dominated by the toroidal mode number n  =  1, but otherwise its structure is strongly affected by the plasma response. The loss of fast ions increased significantly when the MP field was applied. Most loss particles hit the poloidal limiter structure around the outer mid-plane on the low field side, but the distribution of heat loads across the three limiters varied with the form of the MP. Short-timescale loss of supposedly well-confined co-passing fast ions was also observed. These losses started within a few poloidal transits after the fast ion was born deep inside the plasma on the high-field side of the magnetic axis. In the configuration studied, these losses are facilitated by the combination of two factors: (i) the large magnetic drift of fast ions across a wide range of magnetic surfaces due to a low plasma current, and (ii) resonant interactions between the fast ions and magnetic islands that were induced inside the plasma by the external RMP field. These effects are expected to play an important role in present-day tokamaks.

  7. Dislocation-mediated melting of one-dimensional Rydberg crystals

    SciTech Connect

    Sela, Eran; Garst, Markus; Punk, Matthias

    2011-08-15

    We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom per site at zero temperature. An external laser drive with Rabi frequency {Omega} and laser detuning {Delta} creates Rydberg excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions. This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in the ({Delta},{Omega}) plane with a rich topology. As a function of {Delta}, the Rydberg blockade effect gives rise to a series of crystalline phases commensurate with the optical lattice that form a so-called devil's staircase. The Rabi frequency {Omega}, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the crystalline states. Upon increasing {Omega}, we find that generically a commensurate-incommensurate transition to a floating Rydberg crystal that supports gapless phonon excitations occurs first. For even larger {Omega}, dislocations within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg scattering of light.

  8. Optical parametric oscillation in one-dimensional microcavities

    NASA Astrophysics Data System (ADS)

    Lecomte, Timothée; Ardizzone, Vincenzo; Abbarchi, Marco; Diederichs, Carole; Miard, Audrey; Lemaitre, Aristide; Sagnes, Isabelle; Senellart, Pascale; Bloch, Jacqueline; Delalande, Claude; Tignon, Jerome; Roussignol, Philippe

    2013-04-01

    We present a comprehensive investigation of optical parametric oscillation in resonantly excited one-dimensional semiconductor microcavities with embedded quantum wells. Such solid-state structures feature a fine control over light-matter coupling and produce a photonic/polaritonic mode fan that is exploited for the efficient emission of parametric beams. We implement an energy-degenerate optical parametric oscillator with balanced signal and idler intensities via a polarization-inverting mechanism. In this paper, we (i) precisely review the multimode photonic/polaritonic structure of individual emitters, (ii) provide a thorough comparison between experiment and theory, focusing on the power and the threshold dependence on the exciton-photon detuning, (iii) discuss the influence of inhomogeneous broadening of the excitonic transition and finite size, and (iv) find that a large exciton-photon detuning is a key parameter to reach a high output power and a high conversion efficiency. Our study highlights the predictive character of the polariton interaction theory and the flexibility of one-dimensional semiconductor microcavities as a platform to study parametric phenomena.

  9. Magnetic Stimulation of One-Dimensional Neuronal Cultures

    PubMed Central

    Rotem, Assaf; Moses, Elisha

    2008-01-01

    Transcranial magnetic stimulation is a remarkable tool for neuroscience research, with a multitude of diagnostic and therapeutic applications. Surprisingly, application of the same magnetic stimulation directly to neurons that are dissected from the brain and grown in vitro was not reported to activate them to date. Here we report that central nervous system neurons patterned on large enough one-dimensional rings can be magnetically stimulated in vitro. In contrast, two-dimensional cultures with comparable size do not respond to excitation. This happens because the one-dimensional pattern enforces an ordering of the axons along the ring, which is designed to follow the lines of the magnetically induced electric field. A small group of sensitive (i.e., initiating) neurons respond even when the network is disconnected, and are presumed to excite the entire network when it is connected. This implies that morphological and electrophysiological properties of single neurons are crucial for magnetic stimulation. We conjecture that the existence of a select group of neurons with higher sensitivity may occur in the brain in vivo as well, with consequences for transcranial magnetic stimulation. PMID:18326634

  10. Majorana fermion exchange in quasi-one-dimensional networks

    NASA Astrophysics Data System (ADS)

    Clarke, David J.; Sau, Jay D.; Tewari, Sumanta

    2011-07-01

    Heterostructures of spin-orbit coupled materials with s-wave superconductors are thought to be capable of supporting zero-energy Majorana bound states. Such excitations are known to obey non-Abelian statistics in two dimensions, and are thus relevant to topological quantum computation (TQC). In a one-dimensional system, Majorana states are localized to phase boundaries. In order to bypass the constraints of one dimension, a wire network may be created, allowing the exchange of Majoranas by way of junctions in the network. Alicea have proposed such a network as a platform for TQC, showing that the Majorana bound states obey non-Abelian exchange statistics even in quasi-one-dimensional systems. Here we show that the particular realization of non-Abelian statistics produced in a Majorana wire network is highly dependent on the local properties of individual wire junctions. For a simply connected network, the possible realizations can be characterized by the chirality of individual junctions. There is in general no requirement for junction chiralities to remain consistent across a wire network. We show how the chiralities of different junctions may be compared experimentally and discuss the implications for TQC in Majorana wire networks.

  11. Hydrogen peroxide stabilization in one-dimensional flow columns.

    PubMed

    Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J

    2011-09-25

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  12. Hydrogen peroxide stabilization in one-dimensional flow columns

    NASA Astrophysics Data System (ADS)

    Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.

    2011-09-01

    Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.

  13. Stopping time of a one-dimensional bounded quantum walk

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Zhan, Xiang; Zhang, Peng; Xue, Peng

    2016-11-01

    The stopping time of a one-dimensional bounded classical random walk (RW) is defined as the number of steps taken by a random walker to arrive at a fixed boundary for the first time. A quantum walk (QW) is a non-trivial generalization of RW, and has attracted a great deal of interest from researchers working in quantum physics and quantum information. In this paper, we develop a method to calculate the stopping time for a one-dimensional QW. Using our method, we further compare the properties of stopping time for QW and RW. We find that the mean value of the stopping time is the same for both of these problems. However, for short times, the probability for a walker performing a QW to arrive at the boundary is larger than that for a RW. This means that, although the mean stopping time of a quantum and classical walker are the same, the quantum walker has a greater probability of arriving at the boundary earlier than the classical walker. Project supported by the National Natural Science Foundation of China (Grant Nos. 11222430, 11434011, and 11474049), the National Basic Research Program of China (Grant No. 2012CB922104), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ03).

  14. Transmission resonances anomaly in one-dimensional disordered quantum systems

    NASA Astrophysics Data System (ADS)

    Eisenbach, A.; Bliokh, Y.; Freilkher, V.; Kaveh, M.; Berkovits, R.

    2016-07-01

    Connections between the electronic eigenstates and conductivity of one-dimensional (1D) disordered systems is studied in the framework of the tight-binding model. We show that for weak disorder only part of the states exhibit resonant transmission and contribute to the conductivity. The rest of the eigenvalues are not associated with peaks in transmission and the amplitudes of their wave functions do not exhibit a significant maxima within the sample. Moreover, unlike ordinary states, the lifetimes of these "hidden" modes either remain constant or even decrease (depending on the coupling with the leads) as the disorder becomes stronger. In a wide range of the disorder strengths, the averaged ratio of the number of transmission peaks to the total number of the eigenstates is independent of the degree of disorder and is close to the value √{2 /5 }, which was derived analytically in the weak-scattering approximation. These results are in perfect analogy to the spectral and transport properties of light in one-dimensional randomly inhomogeneous media [Y. P. Bliokh et al., New J. Phys. 17, 113009 (2015), 10.1088/1367-2630/17/11/113009], which provides strong grounds to believe that the existence of hidden, nonconducting modes is a general phenomenon inherent to 1D open random systems, and their fraction of the total density of states is the same for quantum particles and classical waves.

  15. Bound states of the spin-orbit coupled ultracold atom in a one-dimensional short-range potential

    SciTech Connect

    Jursenas, Rytis; Ruseckas, Julius

    2013-05-15

    We solve the bound state problem for the Hamiltonian with the spin-orbit and the Raman coupling included. The Hamiltonian is perturbed by a one-dimensional short-range potential V which describes the impurity scattering. In addition to the bound states obtained by considering weak solutions through the Fourier transform or by solving the eigenvalue equation on a suitable domain directly, it is shown that ordinary point-interaction representations of V lead to spin-orbit induced extra states.

  16. Spin accumulation on a one-dimensional mesoscopic Rashba ring.

    PubMed

    Zhang, Zhi-Yong

    2006-04-26

    The nonequilibrium spin accumulation on a one-dimensional (1D) mesoscopic Rashba ring is investigated with unpolarized current injected through ideal leads. Due to the Rashba spin-orbit (SO) coupling and back-scattering at the interfaces between the leads and the ring, a beating pattern is formed in the fast oscillation of spin accumulation. If every beating period is complete, a plateau is formed, where the variation of spin accumulation with the external voltage is slow, but if new incomplete periods emerge in the envelope function, a transitional region appears. This plateau structure and the beating pattern are related to the tunnelling through spin-dependent resonant states. Because of the Aharonov-Casher (AC) effect, the average spin accumulation oscillates quasi-periodically with the Rashba SO coupling and has a series of zeros. In some situations, the direction of the average spin accumulation can be reversed by the external voltage in this 1D Rashba ring.

  17. Strongly Interacting One-dimensional Systems with Small Mass Imbalance

    NASA Astrophysics Data System (ADS)

    Volosniev, Artem G.

    2017-03-01

    We study a strongly interacting system of N identical bosons and one impurity in a one-dimensional trap. First, we assume that the particles have identical masses and analyze the corresponding set-up. After that, we study the influence of a small mass asymmetry on our analysis. In particular, we discuss how the structure of the wave function and the degeneracy in the impenetrable regime depend on the mass ratio and the shape of the trapping potential. To illustrate our findings, we consider a four-body system in a box and in an oscillator. We show that in the former case the system has the smallest energy when a heavy (light) impurity is close to the edge (center) of the trap. And we demonstrate that the opposite is true in the latter case.

  18. Medical image denoising using one-dimensional singularity function model.

    PubMed

    Luo, Jianhua; Zhu, Yuemin; Hiba, Bassem

    2010-03-01

    A novel denoising approach is proposed that is based on a spectral data substitution mechanism through using a mathematical model of one-dimensional singularity function analysis (1-D SFA). The method consists in dividing the complete spectral domain of the noisy signal into two subsets: the preserved set where the spectral data are kept unchanged, and the substitution set where the original spectral data having lower signal-to-noise ratio (SNR) are replaced by those reconstructed using the 1-D SFA model. The preserved set containing original spectral data is determined according to the SNR of the spectrum. The singular points and singularity degrees in the 1-D SFA model are obtained through calculating finite difference of the noisy signal. The theoretical formulation and experimental results demonstrated that the proposed method allows more efficient denoising while introducing less distortion, and presents significant improvement over conventional denoising methods.

  19. Experiment and simulation on one-dimensional plasma photonic crystals

    SciTech Connect

    Zhang, Lin; Ouyang, Ji-Ting

    2014-10-15

    The transmission characteristics of microwaves passing through one-dimensional plasma photonic crystals (PPCs) have been investigated by experiment and simulation. The PPCs were formed by a series of discharge tubes filled with argon at 5 Torr that the plasma density in tubes can be varied by adjusting the discharge current. The transmittance of X-band microwaves through the crystal structure was measured under different discharge currents and geometrical parameters. The finite-different time-domain method was employed to analyze the detailed properties of the microwaves propagation. The results show that there exist bandgaps when the plasma is turned on. The properties of bandgaps depend on the plasma density and the geometrical parameters of the PPCs structure. The PPCs can perform as dynamical band-stop filter to control the transmission of microwaves within a wide frequency range.

  20. One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ

    SciTech Connect

    Hsu, P.; Hust, G.; McClelland, M.; Gresshoff, M.

    2014-11-12

    Incidents caused by fire and combat operations can heat energetic materials that may lead to thermal explosion and result in structural damage and casualty. Some explosives may thermally explode at fairly low temperatures (< 100 C) and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory has been used for decades to measure times to explosion, threshold thermal explosion temperature, and determine kinetic parameters of energetic materials. Samples of different configurations (pressed part, powder, paste, and liquid) can be tested in the system. The ODTX testing can also provide useful data for assessing the thermal explosion violence of energetic materials. This report summarizes the recent ODTX experimental data and modeling results for 2,6-diamino-3,5-dintropyrazine (ANPZ).

  1. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  2. Characterizing high- n quasi-one-dimensional strontium Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Hiller, Moritz; Yoshida, Shuhei; Burgdörfer, Joachim; Ye, Shuzhen; Zhang, Xinyue; Dunning, F. Barry

    2014-05-01

    The production of high- n, n ~ 300 , quasi-one-dimensional strontium Rydberg atoms by two-photon excitation of selected extreme Stark states in the presence of a weak dc field is examined using a crossed laser-atom beam geometry. The polarization of the product states is probed using three independent techniques which are analyzed with the aid of classical-trajectory Monte Carlo simulations that employ initial ensembles based on quantum calculations using a two-active-electron model. Comparisons between theory and experiment demonstrate that the product states have large dipole moments, ~ 1 . 0 - 1 . 2n2 a . u . and that they can be engineered using pulsed electric fields to create a wide variety of target states. Research supported by the NSF, the Robert A Welch Foundation, and the FWF (Austria).

  3. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors.

    PubMed

    Cunningham, Paul D; Boercker, Janice E; Foos, Edward E; Lumb, Matthew P; Smith, Anthony R; Tischler, Joseph G; Melinger, Joseph S

    2011-08-10

    The creation of a single electron-hole pair (i.e., exciton) per incident photon is a fundamental limitation for current optoelectronic devices including photodetectors and photovoltaic cells. The prospect of multiple exciton generation per incident photon is of great interest to fundamental science and the improvement of solar cell technology. Multiple exciton generation is known to occur in semiconductor nanostructures with increased efficiency and reduced threshold energy compared to their bulk counterparts. Here we report a significant enhancement of multiple exciton generation in PbSe quasi-one-dimensional semiconductors (nanorods) over zero-dimensional nanostructures (nanocrystals), characterized by a 2-fold increase in efficiency and reduction of the threshold energy to (2.23 ± 0.03)E(g), which approaches the theoretical limit of 2E(g). Photovoltaic cells based on PbSe nanorods are capable of improved power conversion efficiencies, in particular when operated in conjunction with solar concentrators.

  4. Equilibrium properties of a one-dimensional kinetic system.

    NASA Technical Reports Server (NTRS)

    Williams, J. H.; Joyce, G.

    1973-01-01

    One-dimensional systems of N = 500 and 250 particles in equilibrium are numerically simulated utilizing the method of molecular dynamics. Periodic boundary conditions are imposed. The classical two-body interaction potential is short range, repulsive and has a corresponding finite force. The equations of state are determined for densities both less and greater than one. Corresponding theoretical isochores are determined from models based on nearest-neighbor interactions and on a truncated virial expansion, and a comparison is made with the experimental isochores. Time independent radial distributions are constructed numerically and discussed. A change of state from a solidlike state to a fluid-gas state based on the penetrability of the particles is predicted. The transition temperatures are estimated from the radial distribution functions and the nearest-neighbor model. Self-diffusion is observed and the corresponding constants are determined from the velocity autocorrelation functions.

  5. Solution of a one-dimensional ablation model

    NASA Astrophysics Data System (ADS)

    Rupertijunior, Nerbe Jose

    1991-11-01

    Ablation in multilayered one-dimensional media is studied. A finite element technique using a Streamline Upwind/Petrov-Galerkin (SU/PG) formulation is employed with a moving mesh which adapts itself to the moving boundary at each time step. The SU/PG formulation is used to avoid oscillations caused by first order derivatives in the energy equation. Ablation problems with time-dependent heat fluxes and a typical example in aerospace thermal protection applications are solved. Critical comparisons are made with finite differences results recently obtained through the control volume approach with exponential differencing. The generalized integral transform technique (GITT) is used as an alternative solution to ablation in multilayered media and to validate the results obtained by the finite element method. The eigenvalues needed in the GITT solution are determined simultaneously with the tansformed temperatures by rewriting the associated transcedental equations into ordinary differential equations.

  6. Switching synchronization in one-dimensional memristive networks

    NASA Astrophysics Data System (ADS)

    Slipko, Valeriy A.; Shumovskyi, Mykola; Pershin, Yuriy V.

    2015-11-01

    We report on a switching synchronization phenomenon in one-dimensional memristive networks, which occurs when several memristive systems with different switching constants are switched from the high- to low-resistance state. Our numerical simulations show that such a collective behavior is especially pronounced when the applied voltage slightly exceeds the combined threshold voltage of memristive systems. Moreover, a finite increase in the network switching time is found compared to the average switching time of individual systems. An analytical model is presented to explain our observations. Using this model, we have derived asymptotic expressions for memory resistances at short and long times, which are in excellent agreement with results of our numerical simulations.

  7. Magnons in one-dimensional k-component Fibonacci structures

    SciTech Connect

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-07

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  8. One-dimensional Electron Gases at Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Zhong, Zhicheng; Shafer, P.; Liu, Xiaoran; Kareev, M.; Middey, S.; Meyers, D.; Arenholz, E.; Chakhalian, Jak

    Emergence of two-dimensional electron gases (2DEG) at the oxide interfaces of two dissimilar insulators is a remarkable manifestation of interface engineering. With continuously reduced dimensionality, it arises an interesting question: could one-dimensional electron gases (1DEG) be designed at oxide interfaces? So far there is no report on this. Here, we report on the formation of 1DEG at the carefully engineered titanate heterostructures. Combined resonant soft X-ray linear dichroism with electrical transport and the first-principles calculations have confirmed the formation of 1DEG driven by the interfacial symmetry breaking. Our findings provide a route to engineer new electronic and magnetic states. This work was supported by Gordon and Betty Moore Foundation, DODARO, DOE, and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy.

  9. A Reduced Order, One Dimensional Model of Joint Response

    SciTech Connect

    DOHNER,JEFFREY L.

    2000-11-06

    As a joint is loaded, the tangent stiffness of the joint reduces due to slip at interfaces. This stiffness reduction continues until the direction of the applied load is reversed or the total interface slips. Total interface slippage in joints is called macro-slip. For joints not undergoing macro-slip, when load reversal occurs the tangent stiffness immediately rebounds to its maximum value. This occurs due to stiction effects at the interface. Thus, for periodic loads, a softening and rebound hardening cycle is produced which defines a hysteretic, energy absorbing trajectory. For many jointed sub-structures, this hysteretic trajectory can be approximated using simple polynomial representations. This allows for complex joint substructures to be represented using simple non-linear models. In this paper a simple one dimensional model is discussed.

  10. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications.

    PubMed

    Tian, Jifa; Xu, Zhichuan; Shen, Chengmin; Liu, Fei; Xu, Ningsheng; Gao, Hong-Jun

    2010-08-01

    One-dimensional (1D) boron nanostructures are very potential for nanoscale electronic devices since their physical properties including electric transport and field emission have been found very promising as compared to other well-developed 1D nanomaterials. In this article, we review the current progress that has been made on 1D boron nanostructures in terms of theoretical prediction, synthetic techniques, characterizations and potential applications. To date, the synthesis of 1D boron nanostructures has been well-developed. The popular structures include nanowires, nanobelts, and nanocones. Some of these 1D nanostructures exhibited improved electric transport properties over bulk boron materials as well as promising field emission properties. By current experimental findings, 1D boron nanostructures are promising to be one of core materials for future nanodevices. More efforts are expected to be made in future on the controlled growth of 1D boron nanostructures and tailoring their physical properties.

  11. One-dimensional quantum spin heterojunction as a thermal switch

    NASA Astrophysics Data System (ADS)

    Yang, Chuan-Jing; Jin, Li-Hui; Gong, Wei-Jiang

    2016-03-01

    We study the thermal transport through a quantum spin-1 2 heterojunction, which consists of a finite-size chain with two-site anisotropic XY interaction and three-site XZX+YZY interaction coupled at its ends to two semi-infinite isotropic XY chains. By performing the Jordan-Wigner transformation, the original spin Hamiltonian is mapped onto a fermionic Hamiltonian. Then, the fermionic structure is discussed, and the heat current as a function of structural parameters is evaluated. It is found that the magnetic fields applied at respective chains play different roles in adjusting the heat current in this heterojunction. Moreover, the interplay between the anisotropy of the XY interaction and the three-site spin interaction assists to further control the thermal transport. In view of the numerical results, we propose this heterojunction to be an alternate candidate for manipulating the heat current in one-dimensional (1D) systems.

  12. CHARGE ORDER FLUCTUATIONS IN ONE-DIMENSIONAL SILICIDES

    PubMed Central

    Zeng, Changgan; Kent, P. R.C.; Kim, Tae-Hwan; Li, An-Ping; Weitering, Hanno H.

    2014-01-01

    Metallic nanowires are of great interest as interconnects in future nanoelectronic circuits. They also represent important systems for understanding the complexity of electronic interactions and conductivity in one-dimension. We have fabricated exceptionally long and uniform YSi2 nanowires via self-assembly of yttrium atoms on Si(001). The thinnest wires represent one of the closest realizations of the isolated Peierls chain, exhibiting van-Hove type singularities in the one-dimensional density of states and charge order fluctuations below 150 K. The structure of the wire was determined though a detailed comparison of scanning tunneling microscopy data and first-principles calculations. Sporadic broadenings of the wires’ cross section imply the existence of a novel metal-semiconductor junction whose electronic properties are governed by the finite-size- and temperature-scaling of the charge ordering correlation. PMID:18552849

  13. Chaos in a one-dimensional compressible flow.

    PubMed

    Gerig, Austin; Hübler, Alfred

    2007-04-01

    We study the dynamics of a one-dimensional discrete flow with open boundaries--a series of moving point particles connected by ideal springs. These particles flow towards an inlet at constant velocity, pass into a region where they are free to move according to their nearest neighbor interactions, and then pass an outlet where they travel with a sinusoidally varying velocity. As the amplitude of the outlet oscillations is increased, we find that the resident time of particles in the chamber follows a bifurcating (Feigenbaum) route to chaos. This irregular dynamics may be related to the complex behavior of many particle discrete flows or is possibly a low-dimensional analogue of nonstationary flow in continuous systems.

  14. Majorana fermion exchange in strictly one-dimensional structures

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Vazifeh, M. M.; Franz, M.

    2015-04-01

    It is generally thought that the adiabatic exchange of two identical particles is impossible in one spatial dimension. Here we describe a simple protocol that permits the adiabatic exchange of two Majorana fermions in a one-dimensional topological superconductor wire. The exchange relies on the concept of “Majorana shuttle” whereby a π domain wall in the superconducting order parameter which hosts a pair of ancillary majoranas delivers one zero mode across the wire while the other one tunnels in the opposite direction. The method requires some tuning of parameters and does not, therefore, enjoy full topological protection. The resulting exchange statistics, however, remain non-Abelian for a wide range of parameters that characterize the exchange.

  15. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  16. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  17. Capillary condensation in one-dimensional irregular confinement

    NASA Astrophysics Data System (ADS)

    Handford, Thomas P.; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2013-07-01

    A lattice-gas model with heterogeneity is developed for the description of fluid condensation in finite sized one-dimensional pores of arbitrary shape. Mapping to the random-field Ising model allows an exact solution of the model to be obtained at zero-temperature, reproducing the experimentally observed dependence of the amount of fluid adsorbed in the pore on external pressure. It is demonstrated that the disorder controls the sorption for long pores and can result in H2-type hysteresis. Finite-temperature Metropolis dynamics simulations support analytical findings in the limit of low temperatures. The proposed framework is viewed as a fundamental building block of the theory of capillary condensation necessary for reliable structural analysis of complex porous media from adsorption-desorption data.

  18. Erosion by a one-dimensional random walk

    NASA Astrophysics Data System (ADS)

    Chisholm, Rebecca H.; Hughes, Barry D.; Landman, Kerry A.

    2014-08-01

    We consider a model introduced by Baker et al. [Phys. Rev. E 88, 042113 (2013), 10.1103/PhysRevE.88.042113] of a single lattice random walker moving on a domain of allowed sites, surrounded by blocked sites. The walker enlarges the allowed domain by eroding the boundary at its random encounters with blocked boundary sites: attempts to step onto blocked sites succeed with a given probability and convert these sites to allowed sites. The model interpolates continuously between the Pólya random walker on the one-dimensional lattice and a "blind" walker who attempts freely, but always aborts, moves to blocked sites. We obtain some exact results about the walker's location and the rate of erosion.

  19. Critical conductance of a one-dimensional doped Mott insulator

    NASA Astrophysics Data System (ADS)

    Garst, M.; Novikov, D. S.; Stern, Ady; Glazman, L. I.

    2008-01-01

    We consider the two-terminal conductance of a one-dimensional Mott insulator undergoing the commensurate-incommensurate quantum phase transition to a conducting state. We treat the leads as Luttinger liquids. At a specific value of compressibility of the leads, corresponding to the Luther-Emery point, the conductance can be described in terms of the free propagation of noninteracting fermions with charge e/2 . At that point, the temperature dependence of the conductance across the quantum phase transition is described by a Fermi function. The deviation from the Luther-Emery point in the leads changes the temperature dependence qualitatively. In the metallic state, the low-temperature conductance is determined by the properties of the leads, and is described by the conventional Luttinger-liquid theory. In the insulating state, conductance occurs via activation of e/2 charges, and is independent of the Luttinger-liquid compressibility.

  20. Quantum quench dynamics in analytically solvable one-dimensional models

    NASA Astrophysics Data System (ADS)

    Iucci, Anibal; Cazalilla, Miguel A.; Giamarchi, Thierry

    2008-03-01

    In connection with experiments in cold atomic systems, we consider the non-equilibrium dynamics of some analytically solvable one-dimensional systems which undergo a quantum quench. In this quench one or several of the parameters of the Hamiltonian of an interacting quantum system are changed over a very short time scale. In particular, we concentrate on the Luttinger model and the sine-Gordon model in the Luther-Emery point. For the latter, we show that the order parameter and the two-point correlation function relax in the long time limit to the values determined by a generalized Gibbs ensemble first discussed by J. T. Jaynes [Phys. Rev. 106, 620 (1957); 108, 171 (1957)], and recently conjectured by M. Rigol et.al. [Phys. Rev. Lett. 98, 050405 (2007)] to apply to the non-equilibrium dynamics of integrable systems.

  1. Atom-Molecule Coherence in a One-Dimensional System

    NASA Astrophysics Data System (ADS)

    Citro, R.; Orignac, E.

    2005-09-01

    We study a model of one-dimensional fermionic atoms with a narrow Feshbach resonance that allows them to bind in pairs to form bosonic molecules. We show that at low energy, a coherence develops between the molecule and fermion Luttinger liquids. At the same time, a gap opens in the spin excitation spectrum. The coherence implies that the order parameters for the molecular Bose-Einstein condensation and the atomic BCS pairing become identical. Moreover, both bosonic and fermionic charge density wave correlations decay exponentially, in contrast with a usual Luttinger liquid. We exhibit a Luther-Emery point where the systems can be described in terms of noninteracting pseudofermions. At this point we discuss the threshold behavior of density-density response functions.

  2. Configurational and energy landscape in one-dimensional Coulomb systems

    NASA Astrophysics Data System (ADS)

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  3. Configurational and energy landscape in one-dimensional Coulomb systems.

    PubMed

    Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel

    2017-02-01

    We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.

  4. Magnons in one-dimensional k-component Fibonacci structures

    NASA Astrophysics Data System (ADS)

    Costa, C. H.; Vasconcelos, M. S.

    2014-05-01

    We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: Sn(k)=Sn-1(k)Sn-k(k) (n ≥k=0,1,2,…), where Sn(k) is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.

  5. One-dimensional three-body problem via symbolic dynamics.

    PubMed

    Tanikawa, Kiyotaka; Mikkola, Seppo

    2000-09-01

    Symbolic dynamics is applied to the one-dimensional three-body problem with equal masses. The sequence of binary collisions along an orbit is expressed as a symbol sequence of two symbols. Based on the time reversibility of the problem and numerical data, inadmissible (i.e., unrealizable) sequences of collisions are systematically found. A graph for the transitions among various regions in the Poincare section is constructed. This graph is used to find an infinite number of periodic sequences, which implies an infinity of periodic orbits other than those accompanying a simple periodic orbit called the Schubart orbit. Finally, under reasonable assumptions on inadmissible sequences, we prove that the set of admissible symbol sequences forms a Cantor set. (c) 2000 American Institute of Physics.

  6. Stepwise nanopore evolution in one-dimensional nanostructures.

    PubMed

    Choi, Jang Wook; McDonough, James; Jeong, Sangmoo; Yoo, Jee Soo; Chan, Candace K; Cui, Yi

    2010-04-14

    We report that established simple lithium (Li) ion battery cycles can be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide, silicon, and silver nanowires. Moreover, porosities of these 1D nanomaterials can be controlled in a stepwise manner by the number of Li-battery cycles. Subsequent pore characterization at the end of each cycle allows us to obtain detailed snapshots of the distinct pore evolution properties in each material due to their different atomic diffusion rates and types of chemical bonds. Also, this stepwise characterization led us to the first observation of pore size increases during cycling, which can be interpreted as a similar phenomenon to Ostwald ripening in analogous nanoparticle cases. Finally, we take advantage of the unique combination of nanoporosity and 1D materials and demonstrate nanoporous silicon nanowires (poSiNWs) as excellent supercapacitor (SC) electrodes in high power operations compared to existing devices with activated carbon.

  7. Crystallographic shear mechanisms in Rh one-dimensional oxides

    NASA Astrophysics Data System (ADS)

    Hernando, María; Boulahya, Khalid; Parras, Marina; González-Calbet, José M.

    2005-02-01

    Electron diffraction and high resolution electron microscopy have been used to characterize two new one-dimensional superstructures in the A sbnd Rh sbnd O system (A = Ca, Sr) related to the 2H-ABO 3-type. They are formed by the intergrowth of n A 3A'BO 6 blocks, showing the Sr 4RhO 6-type, with A 12A' 2B 8O 30 blocks, constituted by two A 3O 9 and two A 3A'O 6 layers alternating in the stacking sequence 1:1, leading to the A 27A' 7B 13O 60 ( n=5) and A 30A' 8B 14O 66 ( n=6) compositions. A crystallographic shear mechanism is proposed to describe the structural relationship between Sr 4RhO 6 (A 3A'BO 6-type) and the new superstructures.

  8. Quasi one dimensional transport in individual electrospun composite nanofibers

    SciTech Connect

    Avnon, A. Datsyuk, V.; Trotsenko, S.; Wang, B.; Zhou, S.

    2014-01-15

    We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, we calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.

  9. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis.

    PubMed

    Xiao, Fang-Xing; Miao, Jianwei; Tao, Hua Bing; Hung, Sung-Fu; Wang, Hsin-Yi; Yang, Hong Bin; Chen, Jiazang; Chen, Rong; Liu, Bin

    2015-05-13

    Semiconductor-based photocatalysis and photoelectrocatalysis have received considerable attention as alternative approaches for solar energy harvesting and storage. The photocatalytic or photoelectrocatalytic performance of a semiconductor is closely related to the design of the semiconductor at the nanoscale. Among various nanostructures, one-dimensional (1D) nanostructured photocatalysts and photoelectrodes have attracted increasing interest owing to their unique optical, structural, and electronic advantages. In this article, a comprehensive review of the current research efforts towards the development of 1D semiconductor nanomaterials for heterogeneous photocatalysis and photoelectrocatalysis is provided and, in particular, a discussion of how to overcome the challenges for achieving full potential of 1D nanostructures is presented. It is anticipated that this review will afford enriched information on the rational exploration of the structural and electronic properties of 1D semiconductor nanostructures for achieving more efficient 1D nanostructure-based photocatalysts and photoelectrodes for high-efficiency solar energy conversion.

  10. A radiating one-dimensional current sheet configuration

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1993-01-01

    The structure of the x-independent (one-dimensional) forced current sheet including a self consistent By component is investigated for the case of small normal field component, Bz/B0 much less than 1. A hybrid (kinetic ions, massless fluid electrons) simulation model is used to demonstrate that such a current sheet has a time-dependent structure which radiates incompressible Alfven waves with amplitude of the order of the asymptotic (lobe) field strength B0. The central density enhancement acts as the source of a propagating wavetrain in which Bx rotates into By and back again. One of the characteristic signatures of the radiating current sheet is the presence of a reversal in Bx (or By) without a corresponding increase in density.

  11. Entangling Qubits in a One-Dimensional Harmonic Oscillator

    NASA Astrophysics Data System (ADS)

    Owen, Edmund; Dean, Matthew; Barnes, Crispin

    2012-02-01

    We present a method for generating entanglement between qubits associated with a pair of particles interacting in a one-dimensional harmonic potential. By considering the effect of the interaction on the energy spectrum of the system, we show that, under certain approximations, a ``power-of-SWAP" operation is performed on the initial two-qubit quantum state without requiring any time-dependent control. Initialization errors and deviations from our approximation are shown to have a negligible effect on the final state. Using a GPU-accelerated iteration scheme to find numerical solutions to the two-particle time-dependent Schr"odinger equation, we demonstrate that it is possible to generate maximally entangled Bell states between the two qubits with high fidelity for a range of possible interaction potentials.

  12. One-dimensional photonic crystals as selective back reflectors

    NASA Astrophysics Data System (ADS)

    Gondek, Ewa; Karasiński, Paweł

    2013-06-01

    Using the sol-gel technology and dip-coating method involving the deposition of silica layers and titania layers, we have fabricated symmetrical structures with one-dimensional photonic crystals on both sides of glass substrates. For the structure with five bilayers (SiO2/TiO2) we have obtained the maximum reflectance of 0.967 for the wavelength λr=493 nm and full width at half maximum of the main reflectance peak of FWHM=185 nm. The fabricated structures have been analyzed theoretically with the application of the transfer matrix 2×2 method, allowing for complex refraction indexes for the component layers. The paper presents the applied theoretical model and the discussion involving the calculated and experimental results. Good agreement between the calculation and experimental results has been obtained. The elaborated photonic structures can be applied in solar light concentrators for photovoltaic systems.

  13. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  14. A One-Dimensional Synthetic-Aperture Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Doiron, Terence; Piepmeier, Jeffrey

    2010-01-01

    A proposed one-dimensional synthetic- aperture microwave radiometer could serve as an alternative to either the two-dimensional synthetic-aperture radiometer described in the immediately preceding article or to a prior one-dimensional one, denoted the Electrically Scanned Thinned Array Radiometer (ESTAR), mentioned in that article. The proposed radiometer would operate in a pushbroom imaging mode, utilizing (1) interferometric cross-track scanning to obtain cross-track resolution and (2) the focusing property of a reflector for along-track resolution. The most novel aspect of the proposed system would be the antenna (see figure), which would include a cylindrical reflector of offset parabolic cross section. The reflector could be made of a lightweight, flexible material amenable to stowage and deployment. Other than a stowage/deployment mechanism, the antenna would not include moving parts, and cross-track scanning would not entail mechanical rotation of the antenna. During operation, the focal line, parallel to the cylindrical axis, would be oriented in the cross-track direction, so that placement of receiving/radiating elements at the focal line would afford the desired along-track resolution. The elements would be microwave feed horns sparsely arrayed along the focal line. The feed horns would be oriented with their short and long cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis to obtain fan-shaped beams having their broad and narrow cross-sectional dimensions parallel and perpendicular, respectively, to the cylindrical axis. The interference among the beams would be controlled in the same manner as in the ESTAR to obtain along-cylindrical- axis (cross-track) resolution and cross-track scanning.

  15. One-dimensional cloud fluid model for propagating star formation

    NASA Technical Reports Server (NTRS)

    Titus, Timothy N.; Struck-Marcell, Curtis

    1990-01-01

    The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.

  16. Fast Ion Effects on Fishbones and n=1 Kinks in JET Simulated by a Non-perturbative NOVA-KN Code

    SciTech Connect

    N.N. Gorelenkov; C.Z. Cheng; V.G. Kiptily; M.J. Mantsinen; S.E. Sharapov; the JET-EFDA Contributors

    2004-10-28

    New global non-perturbative hybrid code, NOVA-KN, and simulations of resonant type modes in JET [Joint European Torus] plasmas driven by energetic H-minority ions are presented. The NOVA-KN code employs the ideal-MHD description for the background plasma and treats non-perturbatively the fast particle kinetic response, which includes the fast ion finite orbit width (FOW) effect. In particular, the n = 1 fishbone mode, which is in precession drift resonance with fast ions, is studied. The NOVA-KN code is applied to model an n = 1 (f = 50-80kHz) MHD activity observed recently in JET low density plasma discharges with high fast ion (H-minority) energy content generated during the ion cyclotron resonance heating (ICRH). This n = 1 MHD activity is interpreted as the instability of the n = 1 precession drift frequency fishbone modes.

  17. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    NASA Technical Reports Server (NTRS)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  18. Quasi-one Dimensional Topological Insulator: Möbius Molecular Devices in Peierls Transition

    NASA Astrophysics Data System (ADS)

    Gong, Zhi-Rui; Song, Zhi; Sun, Chang-Pu

    2016-10-01

    We show that, assisted by the Peierls transition of lattice, as a quasi-one dimensional (Q1D) tight binding system, a Möbius molecular device can behave as a simple topological insulator. With the Peierls phase transition to form a domain wall, the solitonary zero modes exist as the ground state of this electron-phonon hybrid system, which is protected by the Z2 topology of the Möbius strip. The robustness of the ground state prevents these degenerate zero modes from their energy spectrum splitting caused by any perturbation. Supported by the National Natural Science Foundation of China under Grant No. 11504241 and the Natural Science Foundation of Shenzhen University under Grant No. 201551

  19. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs.

    PubMed

    Gerace, Dario; Andreani, Lucio Claudio

    2004-05-01

    A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi guided modes are calculated for the case of self-standing membranes as well as for silicon-on-insulator structures. Photonic band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of quasiguided modes above the light line depend in a nontrivial way on structure parameters, mode index, and wave vector. The results of this study may be useful for the design of integrated 1D photonic structures with low radiative losses.

  20. Corrections to the Eckhaus' stability criterion for one-dimensional stationary structures

    NASA Astrophysics Data System (ADS)

    Malomed, B. A.; Staroselsky, I. E.; Konstantinov, A. B.

    1989-01-01

    Two amendments to the well-known Eckhaus' stability criterion for small-amplitude non-linear structures generated by weak instability of a spatially uniform state of a non-equilibrium one-dimensional system against small perturbations with finite wavelengths are obtained. Firstly, we evaluate small corrections to the main Eckhaus' term which, on the contrary so that term, do not have a universal form. Comparison of those non-universal corrections with experimental or numerical results gives a possibility to select a more relevant form of an effective nonlinear evolution equation. In particular, the comparison with such results for convective rolls and Taylor vortices gives arguments in favor of the Swift-Hohenberg equation. Secondly, we derive an analog of the Eckhaus criterion for systems degenerate in the sense that in an expansion of their non-linear parts in powers of dynamical variables, the second and third degree terms are absent.

  1. Boundary-induced dynamics in one-dimensional topological systems and memory effects of edge modes

    NASA Astrophysics Data System (ADS)

    He, Yan; Chien, Chih-Chun

    2016-07-01

    Dynamics induced by a change of boundary conditions reveals rate-dependent signatures associated with topological properties in one-dimensional Kitaev chain and SSH model. While the perturbation from a change of the boundary propagates into the bulk, the density of topological edge modes in the case of transforming to open boundary condition reaches steady states. The steady-state density depends on the transformation rate of the boundary and serves as an illustration of quantum memory effects in topological systems. Moreover, while a link is physically broken as the boundary condition changes, some correlation functions can remain finite across the broken link and keep a record of the initial condition. By testing those phenomena in the nontopological regimes of the two models, none of the interesting signatures of memory effects can be observed. Our results thus contrast the importance of topological properties in boundary-induced dynamics.

  2. A new method to calculate Berry phase in one-dimensional quantum anomalous Hall insulator

    NASA Astrophysics Data System (ADS)

    Liao, Yi

    2016-08-01

    Based on the residue theorem and degenerate perturbation theory, we derive a new, simple and general formula for Berry phase calculation in a two-level system for which the Hamiltonian is a real symmetric matrix. The special torus topology possessed by the first Brillouin zone (1 BZ) of this kind of systems ensures the existence of a nonzero Berry phase. We verify the correctness of our formula on the Su-Schrieffer-Heeger (SSH) model. Then the Berry phase of one-dimensional quantum anomalous Hall insulator (1DQAHI) is calculated analytically by applying our method, the result being -π/2 -π/4 sgn (B) [ sgn (Δ - 4 B) + sgn (Δ) ]. Finally, illuminated by this idea, we investigate the Chern number in the two-dimensional case, and find a very simple way to determine the parameter range of the non-trivial Chern number in the phase diagram.

  3. Statistical properties of chaos demonstrated in a class of one-dimensional maps

    NASA Astrophysics Data System (ADS)

    Csordás, András; Györgyi, Géza; Szépfalusy, Péter; Tél, Tamás

    1993-01-01

    One-dimensional maps with complete grammar are investigated in both permanent and transient chaotic cases. The discussion focuses on statistical characteristics such as Lyapunov exponent, generalized entropies and dimensions, free energies, and their finite size corrections. Our approach is based on the eigenvalue problem of generalized Frobenius-Perron operators, which are treated numerically as well as by perturbative and other analytical methods. The examples include the universal chaos function relevant near the period doubling threshold. Special emphasis is put on the entropies and their decay rates because of their invariance under the most general class of coordinate changes. Phase-transition-like phenomena at the border state of chaos due to intermittency and super instability are presented.

  4. Formation and stability of the self-consistent one-dimensional tail current sheet

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Coroniti, F. V.

    1992-01-01

    The paper investigates the formation, the structure, and the stability of self-consistent one-dimensional current sheets in which the ions carry most of the current and momentum (the occurrence of which was suggested by observations of Mitchell et al., 1990; and Sergeev et al., 1990). Results of the analysis showed that, for the case of a cold current sheet, the characteristic thickness lamba equals to about (Bz/B0) exp 4/3 c/omega(p0), where Bz is the normal field component, B0 is the asymptotic magnitude of the reversing field, and c/omega(p0)is the collisionless ion skin depth based on lobe density. A two-dimensional self-consistent dynamical simulation model is developed, which demonstrates that these idealized current sheets are unstable to kink perturbations driven by the anisotropic pressure distribution produced by the chaotic nature of the particle orbits in a field-reversal region.

  5. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    SciTech Connect

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  6. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and

  7. One-dimensional flows of an imperfect diatomic gas

    NASA Technical Reports Server (NTRS)

    1959-01-01

    With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)

  8. A disorder-enhanced quasi-one-dimensional superconductor

    PubMed Central

    Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.

    2016-01-01

    A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209

  9. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    PubMed Central

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-01-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g−1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics. PMID:26689375

  10. Topological water wave states in a one-dimensional structure

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Zhang, Baile

    2016-07-01

    Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves.

  11. Approximate approaches to the one-dimensional finite potential well

    NASA Astrophysics Data System (ADS)

    Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.

    2011-11-01

    The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (mi) is taken to be distinct from mass outside (mo). A relevant parameter is the mass discontinuity ratio β = mi/mo. To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σl = 2moV0L2/planck2 (or σ = β2σl for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E~1/Lγ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.

  12. One-dimensional Kac model of dense amorphous hard spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, H.; Ikeda, A.

    2015-08-01

    We introduce a new model of hard spheres under confinement for the study of the glass and jamming transitions. The model is a one-dimensional chain of the d-dimensional boxes each of which contains the same number of hard spheres, and the particles in the boxes of the ends of the chain are quenched at their equilibrium positions. We focus on the infinite-dimensional limit (d \\to ∞) of the model and analytically compute the glass transition densities using the replica liquid theory. From the chain length dependence of the transition densities, we extract the characteristic length scales at the glass transition. The divergence of the lengths are characterized by the two exponents, -1/4 for the dynamical transition and -1 for the ideal glass transition, which are consistent with those of the p-spin mean-field spin glass model. We also show that the model is useful for the study of the growing length scale at the jamming transition.

  13. One-Dimensional Quasi-Relativistic Particle in the Box

    NASA Astrophysics Data System (ADS)

    Kaleta, Kamil; Kwaśnicki, Mateusz; Małecki, Jacek

    2013-09-01

    The eigenvalues and eigenfunctions of the one-dimensional quasi-relativistic Hamiltonian (-ℏ2c2d2/dx2 + m2c4)1/2 + Vwell(x) (the Klein-Gordon square-root operator with electrostatic potential) with the infinite square well potential Vwell(x) are studied. Eigenvalues represent energies of a "massive particle in the box" quasi-relativistic model. Approximations to eigenvalues λn are given, uniformly in n, ℏ, m, c and a, with error less than C1ℏca-1exp(-C2ℏ-1mca)n-1. Here 2a is the width of the potential well. As a consequence, the spectrum is simple and the nth eigenvalue is equal to (nπ/2 - π/8)ℏc/a + O(1/n) as n → ∞. Non-relativistic, zero mass and semi-classical asymptotic expansions are included as special cases. In the final part, some L2 and L∞ properties of eigenfunctions are studied.

  14. Trapped Atoms in One-Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Kimble, H.

    2013-05-01

    I describe one-dimensional photonic crystals that support a guided mode suitable for atom trapping within a unit cell, as well as a second probe mode with strong atom-photon interactions. A new hybrid trap is analyzed that combines optical and Casimir-Polder forces to form stable traps for neutral atoms in dielectric nanostructures. By suitable design of the band structure, the atomic spontaneous emission rate into the probe mode can exceed the rate into all other modes by more than tenfold. The unprecedented single-atom reflectivity r0 ~= 0 . 9 for the guided probe field could create new scientific opportunities, including quantum many-body physics for 1 D atom chains with photon-mediated interactions and high-precision studies of vacuum forces. Towards these goals, my colleagues and I are pursuing numerical simulation, device fabrication, and cold-atom experiments with nanoscopic structures. Funding is provided by by the IQIM, an NSF PFC with support of the Moore Foundation, by the AFOSR QuMPASS MURI, by the DoD NSSEFF program (HJK), and by NSF Grant PHY0652914 (HJK). DEC acknowledges funding from Fundacio Privada Cellex Barcelona.

  15. Energy transport in one-dimensional disordered granular solids.

    PubMed

    Achilleos, V; Theocharis, G; Skokos, Ch

    2016-02-01

    We investigate the energy transport in one-dimensional disordered granular solids by extensive numerical simulations. In particular, we consider the case of a polydisperse granular chain composed of spherical beads of the same material and with radii taken from a random distribution. We start by examining the linear case, in which it is known that the energy transport strongly depends on the type of initial conditions. Thus, we consider two sets of initial conditions: an initial displacement and an initial momentum excitation of a single bead. After establishing the regime of sufficiently strong disorder, we focus our study on the role of nonlinearity for both sets of initial conditions. By increasing the initial excitation amplitudes we are able to identify three distinct dynamical regimes with different energy transport properties: a near linear, a weakly nonlinear, and a highly nonlinear regime. Although energy spreading is found to be increasing for higher nonlinearities, in the weakly nonlinear regime no clear asymptotic behavior of the spreading is found. In this regime, we additionally find that energy, initially trapped in a localized region, can be eventually detrapped and this has a direct influence on the fluctuations of the energy spreading. We also demonstrate that in the highly nonlinear regime, the differences in energy transport between the two sets of initial conditions vanish. Actually, in this regime the energy is almost ballistically transported through shocklike excitations.

  16. Charge transport through one-dimensional Moiré crystals

    PubMed Central

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations. PMID:26786067

  17. Charge transport through one-dimensional Moiré crystals

    NASA Astrophysics Data System (ADS)

    Bonnet, Roméo; Lherbier, Aurélien; Barraud, Clément; Rocca, Maria Luisa Della; Lafarge, Philippe; Charlier, Jean-Christophe

    2016-01-01

    Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have been particularly investigated in stacked hexagonal 2D atomic lattices like twisted graphene layers and graphene deposited on hexagonal boron-nitride. In this letter, we report both experimentally and theoretically evidence of superlattices physics in transport properties of one-dimensional (1D) Moiré crystals. Rolling-up few layers of graphene to form a multiwall carbon nanotube adds boundaries conditions that can be translated into interference fringes-like Moiré patterns along the circumference of the cylinder. Such a 1D Moiré crystal exhibits a complex 1D multiple bands structure with clear and robust interband quantum transitions due to the presence of mini-Dirac points and pseudo-gaps. Our devices consist in a very large diameter (>80 nm) multiwall carbon nanotubes of high quality, electrically connected by metallic electrodes acting as charge reservoirs. Conductance measurements reveal the presence of van Hove singularities assigned to 1D Moiré superlattice effect and illustrated by electronic structure calculations.

  18. Characterization of Thermal Transport in One-dimensional Solid Materials

    PubMed Central

    Liu, Guoqing; Lin, Huan; Tang, Xiaoduan; Bergler, Kevin; Wang, Xinwei

    2014-01-01

    The TET (transient electro-thermal) technique is an effective approach developed to measure the thermal diffusivity of solid materials, including conductive, semi-conductive or nonconductive one-dimensional structures. This technique broadens the measurement scope of materials (conductive and nonconductive) and improves the accuracy and stability. If the sample (especially biomaterials, such as human head hair, spider silk, and silkworm silk) is not conductive, it will be coated with a gold layer to make it electronically conductive. The effect of parasitic conduction and radiative losses on the thermal diffusivity can be subtracted during data processing. Then the real thermal conductivity can be calculated with the given value of volume-based specific heat (ρcp), which can be obtained from calibration, noncontact photo-thermal technique or measuring the density and specific heat separately. In this work, human head hair samples are used to show how to set up the experiment, process the experimental data, and subtract the effect of parasitic conduction and radiative losses. PMID:24514072

  19. Numerical Method of Characteristics for One-Dimensional Blood Flow.

    PubMed

    Acosta, Sebastian; Puelz, Charles; Riviére, Béatrice; Penny, Daniel J; Rusin, Craig G

    2015-08-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.

  20. Screw dislocation-driven growth of one-dimensional nanomaterials

    NASA Astrophysics Data System (ADS)

    Meng, Fei

    Nanoscience and nanotechnology are impacting our lives in many ways, from electronic and photonic devices to biosensors. They also hold the promise of tackling the renewable energy challenges facing us. However, one limiting scientific challenge is the effective and efficient bottom-up synthesis of nanomaterials. In this thesis, we discuss the fundamental theories of screw dislocation-driven growth of various nanostructures including one-dimensional nanowires and nanotubes, two-dimensional nanoplates, and three-dimensional hierarchical tree-like nanostructures. We then introduce the transmission electron microscopy (TEM) techniques to structurally characterize the dislocation-driven nanomaterials for future searching and identifying purposes. We summarize the guidelines for rationally designing the dislocation-driven growth and discuss specific examples to illustrate how to implement the guidelines. We also show that dislocation growth is a general and versatile mechanism that can be used to grow a variety of nanomaterials via distinct reaction chemistry and synthetic methods. The fundamental investigation and development of dislocation-driven growth of nanomaterials will create a new dimension to the rational design and synthesis of increasingly complex nanomaterials.

  1. One-dimensional consolidation in unsaturated soils under cyclic loading

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Lee, Jhe-Wei; Chu, Hsiuhua

    2016-05-01

    The one-dimensional consolidation model of poroelasticity of Lo et al. (2014) for an unsaturated soil under constant loading is generalized to include an arbitrary time-dependent loading. A closed-form solution for the pore water and air pressures along with the total settlement is derived by employing a Fourier series representation in the spatial domain and a Laplace transformation in the time domain. This solution is illustrated for the important example of a fully-permeable soil cylinder with an undrained initial condition acted upon by a periodic stress. Our results indicate that, in terms of a dimensionless time scale, the transient solution decays to zero most slowly in a water-saturated soil, whereas for an unsaturated soil, the time for the transient solution to die out is inversely proportional to the initial water saturation. The generalization presented here shows that the diffusion time scale for pore water in an unsaturated soil is orders of magnitude greater than that in a water-saturated soil, mainly because of the much smaller hydraulic conductivity of the former.

  2. One-dimensional surface phonon polaritons in boron nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoji G.; Ghamsari, Behnood G.; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O.; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C.

    2014-08-01

    Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications.

  3. One-dimensional surface phonon polaritons in boron nitride nanotubes.

    PubMed

    Xu, Xiaoji G; Ghamsari, Behnood G; Jiang, Jian-Hua; Gilburd, Leonid; Andreev, Gregory O; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Berini, Pierre; Walker, Gilbert C

    2014-08-26

    Surface polaritons, which are electromagnetic waves coupled to material charge oscillations, have enabled applications in concentrating, guiding and harvesting optical energy below the diffraction limit. Surface plasmon polaritons involve oscillations of electrons and are accessible in noble metals at visible and near-infrared wavelengths, whereas surface phonon polaritons (SPhPs) rely on phonon resonances in polar materials, and are active in the mid-infrared. Noble metal surface plasmon polaritons have limited applications in the mid-infrared. SPhPs at flat interfaces normally possess long polariton wavelengths and provide modest field confinement/enhancement. Here we demonstrate propagating SPhPs in a one-dimensional material consisting of a boron nitride nanotube at mid-infrared wavelengths. The observed SPhP exhibits high field confinement and enhancement, and a very high effective index (neff~70). We show that the modal and propagation length characteristics of the SPhPs may be controlled through the nanotube size and the supporting substrates, enabling mid-infrared applications.

  4. Dynamic response of one-dimensional bosons in a trap

    SciTech Connect

    Golovach, Vitaly N.; Minguzzi, Anna; Glazman, Leonid I.

    2009-10-15

    We calculate the dynamic structure factor S(q,{omega}) of a one-dimensional (1D) interacting Bose gas confined in a harmonic trap. The effective interaction depends on the strength of the confinement enforcing the (1D) motion of atoms; interaction may be further enhanced by superimposing an optical lattice on the trap potential. In the compressible state, we find that the smooth variation in the gas density around the trap center leads to softening of the singular behavior of S(q,{omega}) at the first Lieb excitation mode compared to the behavior predicted for homogeneous 1D systems. Nevertheless, the density-averaged response S(q,{omega}) remains a nonanalytic function of q and {omega} at the first Lieb excitation mode in the limit of weak trap confinement. The exponent of the power-law nonanalyticity is modified due to the inhomogeneity in a universal way and thus bears unambiguously the information about the (homogeneous) Lieb-Liniger model. A strong optical lattice causes formation of Mott phases. Deep in the Mott regime, we predict a semicircular peak in S(q,{omega}) centered at the on-site repulsion energy, {omega}=U. Similar peaks of smaller amplitudes exist at multiples of U as well. We explain the suppression of the dynamic response with entering into the Mott regime, observed recently by Clement et al. [Phys. Rev. Lett. 102, 155301 (2009)], based on an f-sum rule for the Bose-Hubbard model.

  5. Weak lasing in one-dimensional polariton superlattices.

    PubMed

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G; Altshuler, Boris L; Kavokin, Alexey V; Chen, Zhanghai

    2015-03-31

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton-polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating.

  6. Weak lasing in one-dimensional polariton superlattices

    PubMed Central

    Zhang, Long; Xie, Wei; Wang, Jian; Poddubny, Alexander; Lu, Jian; Wang, Yinglei; Gu, Jie; Liu, Wenhui; Xu, Dan; Shen, Xuechu; Rubo, Yuri G.; Altshuler, Boris L.; Kavokin, Alexey V.; Chen, Zhanghai

    2015-01-01

    Bosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain—a stable lasing many-body state exists within certain intervals of the bosonic influxes. This recently described weak lasing regime is formed by the spontaneously symmetry breaking and phase-locking self-organization of bosonic modes, which results in an essentially many-body state with a stable balance between gains and losses. Here we report, to our knowledge, the first observation of the weak lasing phase in a one-dimensional condensate of exciton–polaritons subject to a periodic potential. Real and reciprocal space photoluminescence images demonstrate that the spatial period of the condensate is twice as large as the period of the underlying periodic potential. These experiments are realized at room temperature in a ZnO microwire deposited on a silicon grating. The period doubling takes place at a critical pumping power, whereas at a lower power polariton emission images have the same periodicity as the grating. PMID:25787253

  7. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  8. Supercurrent states in one-dimensional finite-size rings

    NASA Astrophysics Data System (ADS)

    Kashurnikov, Vladimir A.; Podlivaev, Alexei I.; Prokof'ev, Nikolai V.; Svistunov, Boris V.

    1996-05-01

    We consider topological supercurrent excitations (SC's) in one-dimensional (1D) mesoscopic rings. In the superfluid phase such excitations are well defined except for (i) a tunneling between resonating states with clockwise and counterclockwise currents, which may be characterized by the amplitude Δ, and (ii) a decay of SC assisted by phonons of the substrate, both effects being macroscopically small. Our approach, being based on the hydrodynamical action for the phase field and its generalization to the effective Hamiltonian, explicitly takes into account transitions between the states with different topological numbers and turns out to be very effective for the calculation of Δ and estimation of the decay width of SC, as well as for the unified description of all known 1D superfluid-insulator transitions. Most attention is paid to the calculation of the macroscopic scaling of Δ (the main superfluid characteristic of a mesoscopic system) under different conditions: a commensurate system, a system with single impurity, and a disordered system. The results are in a very good agreement with the exact-diagonalization spectra of the boson Hubbard models. Apart from really 1D electron wires we discuss two other important experimental systems: the 2D electron gas in the fractional quantum Hall effect state and quasi-1D superconducting rings. We suggest some experimental setups for studying SC, e.g., via persistent current measurements, resonant electromagnetic absorption or echo signals, and relaxation of the metastable current states.

  9. Validation and Comparison of One-Dimensional Graound Motion Methodologies

    SciTech Connect

    B. Darragh; W. Silva; N. Gregor

    2006-06-28

    Both point- and finite-source stochastic one-dimensional ground motion models, coupled to vertically propagating equivalent-linear shear-wave site response models are validated using an extensive set of strong motion data as part of the Yucca Mountain Project. The validation and comparison exercises are presented entirely in terms of 5% damped pseudo absolute response spectra. The study consists of a quantitative analyses involving modeling nineteen well-recorded earthquakes, M 5.6 to 7.4 at over 600 sites. The sites range in distance from about 1 to about 200 km in the western US (460 km for central-eastern US). In general, this validation demonstrates that the stochastic point- and finite-source models produce accurate predictions of strong ground motions over the range of 0 to 100 km and for magnitudes M 5.0 to 7.4. The stochastic finite-source model appears to be broadband, producing near zero bias from about 0.3 Hz (low frequency limit of the analyses) to the high frequency limit of the data (100 and 25 Hz for response and Fourier amplitude spectra, respectively).

  10. Numerical method of characteristics for one-dimensional blood flow

    NASA Astrophysics Data System (ADS)

    Acosta, Sebastian; Puelz, Charles; Rivière, Béatrice; Penny, Daniel J.; Rusin, Craig G.

    2015-08-01

    Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant.

  11. Solitary Wave in One-dimensional Buckyball System at Nanoscale.

    PubMed

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-02-19

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale.

  12. Multi-symplectic, Lagrangian, one-dimensional gas dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.

    2015-05-01

    The equations of Lagrangian, ideal, one-dimensional, compressible gas dynamics are written in a multi-symplectic form using the Lagrangian mass coordinate m and time t as independent variables, and in which the Eulerian position of the fluid element x = x(m, t) is one of the dependent variables. This approach differs from the Eulerian, multi-symplectic approach using Clebsch variables. Lagrangian constraints are used to specify equations for xm, xt, and St consistent with the Lagrangian map, where S is the entropy of the gas. We require St = 0 corresponding to advection of the entropy S with the flow. We show that the Lagrangian Hamiltonian equations are related to the de Donder-Weyl multi-momentum formulation. The pullback conservation laws and the symplecticity conservation laws are discussed. The pullback conservation laws correspond to invariance of the action with respect to translations in time (energy conservation) and translations in m in Noether's theorem. The conservation law due to m-translation invariance gives rise to a novel nonlocal conservation law involving the Clebsch variable r used to impose ∂S(m, t)/∂t = 0. Translation invariance with respect to x in Noether's theorem is associated with momentum conservation. We obtain the Cartan-Poincaré form for the system, and use it to obtain a closed ideal of two-forms representing the equation system.

  13. Developing one-dimensional implosions for inertial confinement fusion science

    DOE PAGES

    Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; ...

    2016-12-12

    Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield overmore » the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.« less

  14. Developing one-dimensional implosions for inertial confinement fusion science

    SciTech Connect

    Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; Olson, Richard Edward; Wilson, Douglas Carl; Kyrala, George Amine; Perry, Theodore Sonne; Batha, Steven H.; Dewald, Eddie L.; Ralph, Joe E.; Strozzi, David J.; MacPhee, Andy G.; Callahan, Debbie A.; Hinkel, Denise; Hurricane, Omar A.; Leeper, Ramon J.; Zylstra, Alex B.; Peterson, Robert Ross; Haines, Brian Michael; Yin, Lin; Bradley, Paul Andrew; Shah, Rahul C.; Braun, Tom; Biener, Jorgan; Kozioziemski, Bernie J.; Sater, Jim D.; Biener, Monika M.; Hamza, Alex V.; Nikroo, Abbas; Berzak Hopkins, Laura F.; Ho, Darwin; LePape, Sebastian; Meezan, Nathan B.; Montgomery, David S.; Daughton, William Scott; Merritt, Elizabeth Catherine; Cardenas, Tana; Dodd, Evan S.

    2016-12-12

    Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield over the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.

  15. One-dimensional quantum walk with a moving boundary

    SciTech Connect

    Kwek, Leong Chuan; Setiawan

    2011-09-15

    Quantum walks are interesting models with potential applications to quantum algorithms and physical processes such as photosynthesis. In this paper, we study two models of one-dimensional quantum walks, namely, quantum walks with a moving absorbing wall and quantum walks with one stationary and one moving absorbing wall. For the former, we calculate numerically the survival probability, the rate of change of average position, and the rate of change of standard deviation of the particle's position in the long time limit for different wall velocities. Moreover, we also study the asymptotic behavior and the dependence of the survival probability on the initial particle's state. While for the latter, we compute the absorption probability of the right stationary wall for different velocities and initial positions of the left wall boundary. The results for these two models are compared with those obtained for the classical model. The difference between the results obtained for the quantum and classical models can be attributed to the difference in the probability distributions.

  16. Solitary Wave in One-dimensional Buckyball System at Nanoscale

    PubMed Central

    Xu, Jun; Zheng, Bowen; Liu, Yilun

    2016-01-01

    We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624

  17. A Smart Colorful Supercapacitor with One Dimensional Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Liu, Cihui; Liu, Xing; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-12-01

    To meet the pressing demands for portable and flexible equipment in contemporary society, developing flexible, lightweight, and sustainable supercapacitor systems with large power densities, long cycle life, and ease of strongly required. However, estimating the state-of-charge of existing supercapacitors is difficult, and thus their service life is limited. In this study, we fabricate a flexible color indicative supercapacitor device with mesoporous polyaniline (mPANI)/Poly(N-Isopropyl acrylamide-Graphene Oxide-Acrylic Acid) (P(NiPPAm-GO-AA)) one dimensional photonic crystals (1DPCs) as the electrode material through a low-cost, eco-friendly, and scalable fabrication process. We found that the state-of-charge could be monitored by the structural color oscillation due to the change in the photonic band gap position of the 1DPCs. The flexible 1DPCs supercapacitor is thin at 3 mm and exhibits good specific capacitance of 22.6 F g-1 with retention of 91.1% after 3,000 cycles. This study shows the application of the 1DPCs supercapacitor as a visual ultrathin power source. The technology may find many applications in future wearable electronics.

  18. Nucleation and growth of nanoscaled one-dimensional materials

    NASA Astrophysics Data System (ADS)

    Cui, Hongtao

    Nanoscaled one-dimensional materials have attracted great interest due to their novel physical and chemical properties. The purpose of this dissertation is to study the nucleation and growth mechanisms of carbon nanotubes and silicon nitride nanowires with their field emission applications in mind. As a result of this research, a novel methodology has been developed to deposit aligned bamboo-like carbon nanotubes on substrates using a methane and ammonia mixture in microwave plasma enhanced chemical deposition. Study of growth kinetics suggests that the carbon diffusion through bulk catalyst particles controls growth in the initial deposition process. Microstructures of carbon nanotubes are affected by the growth temperature and carbon concentration in the gas phase. High-resolution transmission electron microscope confirms the existence of the bamboo-like structure. Electron diffraction reveals that the iron-based catalyst nucleates and sustains the growth of carbon nanotubes. A nucleation and growth model has been constructed based upon experimental data and observations. In the study of silicon nitride nanoneedles, a vapor-liquid-solid model is employed to explain the nucleation and growth processes. Ammonia plasma etching is proposed to reduce the size of the catalyst and subsequently produce the novel needle-like nanostructure. High-resolution transmission electron microscope shows the structure is well crystallized and composed of alpha-silicon nitride. Other observations in the structure are also explained.

  19. Majorana Fermions in Disordered Quasi-One-Dimensional Topological Superconductors

    NASA Astrophysics Data System (ADS)

    Potter, Andrew; Lee, Patrick

    2012-02-01

    Majorana fermions have long been predicted to emerge in certain quantum Hall states and other naturally occurring p-wave superconductors. However, these materials are quite delicate and consequently the experimental realization of Majorana fermions remains elusive. The possibility of engineering 1D networks of topological superconducting wires from conventional materials offers a promising alternative route to realize Majorana fermions and probe their predicted non-Abelian statistics. In practice, it is impossible to fabricate perfectly clean and strictly one-dimensional structures; how do these non-idealities affect the proposed Majorana states? This talk will show that Majorana end states are robust away from the strict 1D limit, so long as the sample width is not much larger than the superconducting coherence length. The effects of disorder are potentially more severe, as impurity scattering is generally pair-breaking and tends to suppress the gap protecting the Majorana modes. Finally, we propose new candidate materials and geometries that greatly simplify the experimental setup and mitigate the harmful effects of disorder.

  20. Topological phase in one-dimensional Rashba wire

    NASA Astrophysics Data System (ADS)

    Sa-Ke, Wang; Jun, Wang; Jun-Feng, Liu

    2016-07-01

    We study the possible topological phase in a one-dimensional (1D) quantum wire with an oscillating Rashba spin-orbital coupling in real space. It is shown that there are a pair of particle-hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin-orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap. Project supported by the National Natural Science Foundation of China (Grant Nos. 115074045 and 11204187) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284).

  1. Single ions trapped in a one-dimensional optical lattice.

    PubMed

    Enderlein, Martin; Huber, Thomas; Schneider, Christian; Schaetz, Tobias

    2012-12-07

    We report on three-dimensional optical trapping of single ions in a one-dimensional optical lattice formed by two counterpropagating laser beams. We characterize the trapping parameters of the standing-wave using the ion as a sensor stored in a hybrid trap consisting of a radio-frequency (rf), a dc, and the optical potential. When loading ions directly from the rf into the standing-wave trap, we observe a dominant heating rate. Monte Carlo simulations confirm rf-induced parametric excitations within the deep optical lattice as the main source. We demonstrate a way around this effect by an alternative transfer protocol which involves an intermediate step of optical confinement in a single-beam trap avoiding the temporal overlap of the standing-wave and the rf field. Implications arise for hybrid (rf-optical) and pure optical traps as platforms for ultracold chemistry experiments exploring atom-ion collisions or quantum simulation experiments with ions, or combinations of ions and atoms.

  2. Topological water wave states in a one-dimensional structure

    PubMed Central

    Yang, Zhaoju; Gao, Fei; Zhang, Baile

    2016-01-01

    Topological concepts have been introduced into electronic, photonic, and phononic systems, but have not been studied in surface-water-wave systems. Here we study a one-dimensional periodic resonant surface-water-wave system and demonstrate its topological transition. By selecting three different water depths, we can construct different types of water waves - shallow, intermediate and deep water waves. The periodic surface-water-wave system consists of an array of cylindrical water tanks connected with narrow water channels. As the width of connecting channel varies, the band diagram undergoes a topological transition which can be further characterized by Zak phase. This topological transition holds true for shallow, intermediate and deep water waves. However, the interface state at the boundary separating two topologically distinct arrays of water tanks can exhibit different bands for shallow, intermediate and deep water waves. Our work studies for the first time topological properties of water wave systems, and paves the way to potential management of water waves. PMID:27373982

  3. Interspecies tunneling in one-dimensional Bose mixtures

    SciTech Connect

    Pflanzer, Anika C.; Zoellner, Sascha; Schmelcher, Peter

    2010-02-15

    We study the ground-state properties and quantum dynamics of few-boson mixtures with strong interspecies repulsion in one-dimensional traps. If one species localizes at the center, e.g., due to a very large mass compared to the other component, it represents an effective barrier for the latter, and the system can be mapped onto identical bosons in a double well. For weaker localization, the barrier atoms begin to respond to the light component, leading to an induced attraction between the mobile atoms that may even outweigh their bare intraspecies repulsion. To explain the resulting effects, we derive an effective Hubbard model for the lighter species accounting for the back action of the barrier in correction terms to the lattice parameters. Also the tunneling is drastically affected: by varying the degree of localization of the 'barrier' atoms, the dynamics of intrinsically noninteracting bosons can change from Rabi oscillations to effective pair tunneling. For identical fermions (or fermionized bosons), this leads to the tunneling of attractively bound pairs.

  4. One-dimensional kinetics modifications for BWR reload methods

    SciTech Connect

    Chandola, V.; Robichaud, J.D.

    1990-01-01

    Yankee Atomic Electric Company (YAEC) currently uses RETRAN-02 to analyze limiting transients and establish operating minimum critical power ratio (MCPR) limits for Vermont Yankee (VY) boiling water reactor (BWR) reload analysis. The US Nuclear Regulatory Commission-approved analysis methods, used in previous cycles, use the point-kinetics modeling option in RETRAN-02 to represent transient-induced neutronic feedback. RETRAN-02 also contains a one-dimensional (1-D) kinetics neutronic feedback model option that provides a more accurate transient power prediction than the point-kinetics model. In the past few fuel cycles, the thermal or MCPR operating margin at VY has eroded due to increases in fuel cycle length. To offset this decrease, YAEC has developed the capability to use the more accurate 1-D kinetics RETRAN option. This paper reviews the qualification effort for the YAEC BWR methods. This paper also presents a comparison between RETRAN-02 predictions using 1-D and point kinetics for the limiting transient, and demonstrates the typical gain in thermal margin from 1-D kinetics.

  5. Carbyne with finite length: The one-dimensional sp carbon

    PubMed Central

    Pan, Bitao; Xiao, Jun; Li, Jiling; Liu, Pu; Wang, Chengxin; Yang, Guowei

    2015-01-01

    Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual potential properties remains intense. We report the first synthesis of carbyne with finite length, which is clearly composed of alternating single bonds and triple bonds, using a novel process involving laser ablation in liquid. Spectroscopic analyses confirm that the product is the structure of sp hybridization with alternating carbon-carbon single bonds and triple bonds and capped by hydrogen. We observe purple-blue fluorescence emissions from the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of carbyne. Condensed-phase carbyne crystals have a hexagonal lattice and resemble the white crystalline powder produced by drying a carbyne solution. We also establish that the combination of gold and alcohol is crucial to carbyne formation because carbon-hydrogen bonds can be cleaved with the help of gold catalysts under the favorable thermodynamic environment provided by laser ablation in liquid and because the unique configuration of two carbon atoms in an alcohol molecule matches the elementary entity of carbyne. This laboratory synthesis of carbyne will enable the exploration of its properties and applications. PMID:26601318

  6. Transmission properties of one-dimensional ternary plasma photonic crystals

    SciTech Connect

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  7. Fractal geometry in an expanding, one-dimensional, Newtonian universe.

    PubMed

    Miller, Bruce N; Rouet, Jean-Louis; Le Guirriec, Emmanuel

    2007-09-01

    Observations of galaxies over large distances reveal the possibility of a fractal distribution of their positions. The source of fractal behavior is the lack of a length scale in the two body gravitational interaction. However, even with new, larger, sample sizes from recent surveys, it is difficult to extract information concerning fractal properties with confidence. Similarly, three-dimensional N-body simulations with a billion particles only provide a thousand particles per dimension, far too small for accurate conclusions. With one-dimensional models these limitations can be overcome by carrying out simulations with on the order of a quarter of a million particles without compromising the computation of the gravitational force. Here the multifractal properties of two of these models that incorporate different features of the dynamical equations governing the evolution of a matter dominated universe are compared. For each model at least two scaling regions are identified. By employing criteria from dynamical systems theory it is shown that only one of them can be geometrically significant. The results share important similarities with galaxy observations, such as hierarchical clustering and apparent bifractal geometry. They also provide insights concerning possible constraints on length and time scales for fractal structure. They clearly demonstrate that fractal geometry evolves in the mu (position, velocity) space. The observed patterns are simply a shadow (projection) of higher-dimensional structure.

  8. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  9. Reentrant phase coherence in a quasi-one-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Ansermet, Diane; Petrovic, Alexander P.; He, Shikun; Chernyshov, Dmitri; Hoesch, Moritz; Salloum, Diala; Gougeon, Patrick; Potel, Michel; Boeri, Lilia; Andersen, Ole K.; Panagopoulos, Christos

    Short coherence lengths characteristic of low-dimensional superconductors are related to high critical fields or temperatures. Fatally, such materials are often sensitive to disorder and suffer from phase fluctuations in the order parameter which diverge with temperature T, magnetic field H or current I. To solve synthesis and fluctuation problems, we propose to build superconductors from inhomogeneous composites of nanofilaments. Single crystals of quasi-one-dimensional Na2-δMo6Se6 featuring Na vacancy disorder (δ ~ 0 . 2) behave as percolative networks of superconducting nanowires. Long range order is established via transverse coupling between individual filaments, yet phase coherence is unstable to fluctuations and localization in the zero-(T, H, I) limit. A region of reentrant phase coherence develops upon raising (T, H, I) and is attributed to an enhancement of the transverse coupling due to electron delocalization. The observed reentrance in the electronic transport coincides with a peak in the Josephson energy EJ at non-zero (T, H, I). Na2-δMo6Se6 is a blueprint for a new generation of low dimensional superconductors with resilience to phase fluctuations at high (T, H, I). This work was supported by the National Research Foundation, Singapore, through Grant NRF-CRP4-2008-04.

  10. One-dimensional simulation of lanthanide isotachophoresis using COMSOL.

    PubMed

    Dixon, Derek R; Clark, Sue B; Ivory, Cornelius F

    2012-03-01

    Electrokinetic separations can be used to quickly separate rare earth metals to determine their forensic signature. In this work, we simulate the concentration and separation of trivalent lanthanide cations by isotachophoresis. A one-dimensional simulation is developed using COMSOL v4.0a, a commercial finite element simulator, to represent the isotachophoretic separation of three lanthanides: lanthanum, terbium, and lutetium. The binding ligand chosen for complexation with the lanthanides is α-hydroxyisobutyric acid (HIBA) and the buffer system includes acetate, which also complexes with the lanthanides. The complexes formed between the three lanthanides, HIBA, and acetate are all considered in the simulation. We observe that the presence of only lanthanide:HIBA complexes in a buffer system with 10 mM HIBA causes the slowest lanthanide peak (lutetium) to split from the other analytes. The addition of lanthanide:acetate complexes into the simulation of the same buffer system eliminates this splitting. Decreasing the concentration of HIBA in the buffer to 7 mM causes the analyte stack to migrate faster through the capillary.

  11. Automated quantification of one-dimensional nanostructure alignment on surfaces

    NASA Astrophysics Data System (ADS)

    Dong, Jianjin; Goldthorpe, Irene A.; Mohieddin Abukhdeir, Nasser

    2016-06-01

    A method for automated quantification of the alignment of one-dimensional (1D) nanostructures from microscopy imaging is presented. Nanostructure alignment metrics are formulated and shown to be able to rigorously quantify the orientational order of nanostructures within a two-dimensional domain (surface). A complementary image processing method is also presented which enables robust processing of microscopy images where overlapping nanostructures might be present. Scanning electron microscopy (SEM) images of nanowire-covered surfaces are analyzed using the presented methods and it is shown that past single parameter alignment metrics are insufficient for highly aligned domains. Through the use of multiple parameter alignment metrics, automated quantitative analysis of SEM images is shown to be possible and the alignment characteristics of different samples are able to be quantitatively compared using a similarity metric. The results of this work provide researchers in nanoscience and nanotechnology with a rigorous method for the determination of structure/property relationships, where alignment of 1D nanostructures is significant.

  12. Nonequilibrium electronic transport in a one-dimensional Mott insulator

    SciTech Connect

    Heidrich-Meisner, F.; Gonzalez, Ivan; Al-Hassanieh, K. A.; Feiguin, A. E.; Rozenberg, M. J.; Dagotto, Elbio R

    2010-01-01

    We calculate the nonequilibrium electronic transport properties of a one-dimensional interacting chain at half filling, coupled to noninteracting leads. The interacting chain is initially in a Mott insulator state that is driven out of equilibrium by applying a strong bias voltage between the leads. For bias voltages above a certain threshold we observe the breakdown of the Mott insulator state and the establishment of a steady-state elec- tronic current through the system. Based on extensive time-dependent density-matrix renormalization-group simulations, we show that this steady-state current always has the same functional dependence on voltage, independent of the microscopic details of the model and we relate the value of the threshold to the Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric breakdown picture. Finally, we also discuss the real-time evolution of the current, and characterize the current-carrying state resulting from the breakdown of the Mott insulator by computing the double occupancy, the spin structure factor, and the entanglement entropy.

  13. Thermal transport in disordered one-dimensional spin chains

    NASA Astrophysics Data System (ADS)

    Poboiko, Igor; Feigel'man, Mikhail

    2015-12-01

    We study a one-dimensional anisotropic XXZ Heisenberg spin-1/2 chain with weak random fields hizSiz by means of Jordan-Wigner transformation to spinless Luttinger liquid with disorder and bosonization technique. First, we reinvestigate the phase diagram of the system in terms of dimensionless disorder γ =

    /J2≪1 and anisotropy parameter Δ =Jz/Jx y , we find the range of these parameters where disorder is irrelevant in the infrared limit and spin-spin correlations are described by power laws, and compare it with previously obtained numerical and analytical results. Then we use the diagram technique in terms of plasmon excitations to study the low-temperature (T ≪J ) behavior of heat conductivity κ and spin conductivity σ in this power-law phase. The obtained Lorentz number L ≡κ /σ T differs from the value derived earlier by means of the memory function method. We argue also that in the studied region inelastic scattering is strong enough to suppress quantum interference in the low-temperature limit.

  14. Cooperative eigenmodes and scattering in one-dimensional atomic arrays

    NASA Astrophysics Data System (ADS)

    Bettles, Robert J.; Gardiner, Simon A.; Adams, Charles S.

    2016-10-01

    Collective coupling between dipoles can dramatically modify the optical response of a medium. Such effects depend strongly on the geometry of the medium and the polarization of the light. Using a classical coupled dipole model, here we investigate the simplest case of one-dimensional arrays of interacting atomic dipoles driven by a weak laser field. Changing the polarization and direction of the driving field allows us to separately address superradiant, subradiant, redshifted, and blueshifted eigenmodes, as well as observe strong Fano-like interferences between different modes. The cooperative eigenvectors can be characterized by the phase difference between nearest-neighbor dipoles, ranging from all oscillating in phase to all oscillating out of phase with their nearest neighbors. Investigating the eigenvalue behavior as a function of atom number and lattice spacing, we find that certain eigenmodes of an infinite atomic chain have the same decay rate as a single atom between two mirrors. The effects we observe provide a framework for collective control of the optical response of a medium, giving insight into the behavior of more complicated geometries, as well as providing further evidence for the dipolar analog of cavity QED.

  15. Digital noise generators using one-dimensional chaotic maps

    SciTech Connect

    Martínez-Ñonthe, J. A; Palacios-Luengas, L.; Cruz-Irisson, M.; Vazquez Medina, R.; Díaz Méndez, J. A.

    2014-05-15

    This work shows how to improve the statistical distribution of signals produced by digital noise generators designed with one-dimensional (1-D) chaotic maps. It also shows that in a digital electronic design the piecewise linear chaotic maps (PWLCM) should be considered because they do not have stability islands in its chaotic behavior region, as it occurs in the case of the logistic map, which is commonly used to build noise generators. The design and implementation problems of the digital noise generators are analyzed and a solution is proposed. This solution relates the output of PWLCM, usually defined in the real numbers' domain, with a codebook of S elements, previously defined. The proposed solution scheme produces digital noise signals with a statistical distribution close to a uniform distribution. Finally, this work shows that it is possible to have control over the statistical distribution of the noise signal by selecting the control parameter of the PWLCM and using, as a design criterion, the bifurcation diagram.

  16. Conjugated Molecules Described by a One-Dimensional Dirac Equation.

    PubMed

    Ernzerhof, Matthias; Goyer, Francois

    2010-06-08

    Starting from the Hückel Hamiltonian of conjugated hydrocarbon chains (ethylene, allyl radical, butadiene, pentadienyl radical, hexatriene, etc.), we perform a simple unitary transformation and obtain a Dirac matrix Hamiltonian. Thus already small molecules are described exactly in terms of a discrete Dirac equation, the continuum limit of which yields a one-dimensional Dirac Hamiltonian. Augmenting this Hamiltonian with specially adapted boundary conditions, we find that all the orbitals of the unsaturated hydrocarbon chains are reproduced by the continuous Dirac equation. However, only orbital energies close to the highest occupied molecular orbital/lowest unoccupied molecular orbital energy are accurately predicted by the Dirac equation. Since it is known that a continuous Dirac equation describes the electronic structure of graphene around the Fermi energy, our findings answer the question to what extent this peculiar electronic structure is already developed in small molecules containing a delocalized π-electron system. We illustrate how the electronic structure of small polyenes carries over to a certain class of rectangular graphene sheets and eventually to graphene itself. Thus the peculiar electronic structure of graphene extends to a large degree to the smallest unsaturated molecule (ethylene).

  17. Simulation of magnetic island dynamics under resonant magnetic perturbation with the TEAR code and validation of the results on T-10 tokamak data

    SciTech Connect

    Ivanov, N. V.; Kakurin, A. M.

    2014-10-15

    Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEAR code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.

  18. ONE-DIMENSIONAL ACCELERATOR IN PULSAR OUTER MAGNETOSPHERE REVISITED

    SciTech Connect

    Lin, G. F.; Zhang, L.

    2009-07-10

    We re-examine the one-dimensional (1D) vacuum and nonvacuum accelerators in the outer magnetosphere of rotation-powered pulsars by considering the limit of trans-field height through pair-production process. In the original 1D nonvacuum outer gap model, both the Poisson equation for electrical potential and the Boltzmann equations of particles and gamma-rays are solved self-consistently by assuming the trans-field height as a free parameter, usually resulting in a narrow outer gap (i.e., gap length along magnetic field lines is short). In the modified 1D nonvacuum outer gap model, two improvements have been made: the trans-field height is limited by photon-photon pair production process and the outer boundary of the outer gap can be extended outside the light cylinder. Under the above assumptions, we self-consistently solve the Poisson equation for electrical potential, and the Boltzmann equations of electrons/positrons and gamma-rays in both vacuum and nonvacuum outer gaps for the parameters of both Vela and Geminga pulsars. We obtain an approximate geometry of the outer gap, i.e., the trans-field height is limited by the pair-production process and increases with the radial distance to the star, and the width of the outer gap starts at the inner boundary (near the null charge surface in the vacuum case) and ends at the outer boundary which is located inside or outside the light cylinder depending on the inclination angle. Our calculated results also indicate that gamma-ray spectrum from a wide outer gap is flatter than the one from a narrow outer gap and the relation between the electric field and trans-field height has an important effect on the structure of the outer gap.

  19. Filtration-guided assembly for patterning one-dimensional nanostructures.

    PubMed

    Zhang, Yaozhong; Wang, Chuan; Yeom, Junghoon

    2017-04-07

    Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm(2) within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.

  20. One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials

    NASA Astrophysics Data System (ADS)

    Erman, Fatih; Gadella, Manuel; Uncu, Haydar

    2017-02-01

    In this paper, we consider the one-dimensional semirelativistic Schrödinger equation for a particle interacting with N Dirac delta potentials. Using the heat kernel techniques, we establish a resolvent formula in terms of an N ×N matrix, called the principal matrix. This matrix essentially includes all the information about the spectrum of the problem. We study the bound state spectrum by working out the eigenvalues of the principal matrix. With the help of the Feynman-Hellmann theorem, we analyze how the bound state energies change with respect to the parameters in the model. We also prove that there are at most N bound states and explicitly derive the bound state wave function. The bound state problem for the two-center case is particularly investigated. We show that the ground state energy is bounded below, and there exists a self-adjoint Hamiltonian associated with the resolvent formula. Moreover, we prove that the ground state is nondegenerate. The scattering problem for N centers is analyzed by exactly solving the semirelativistic Lippmann-Schwinger equation. The reflection and the transmission coefficients are numerically and asymptotically computed for the two-center case. We observe the so-called threshold anomaly for two symmetrically located centers. The semirelativistic version of the Kronig-Penney model is shortly discussed, and the band gap structure of the spectrum is illustrated. The bound state and scattering problems in the massless case are also discussed. Furthermore, the reflection and the transmission coefficients for the two delta potentials in this particular case are analytically found. Finally, we solve the renormalization group equations and compute the beta function nonperturbatively.

  1. Filtration-guided assembly for patterning one-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Yaozhong; Wang, Chuan; Yeom, Junghoon

    2017-04-01

    Tremendous progress has been made in synthesizing various types of one-dimensional (1D) nanostructures (NSs), such as nanotubes and nanowires, but some technical challenges still remain in the deterministic assembly of the solution-processed 1D NSs for device integration. In this work we investigate a scalable yet inexpensive nanomaterial assembly method, namely filtration-guided assembly (FGA), to place nanomaterials into desired locations as either an individual entity or ensembles, and form functional devices. FGA not only addresses the assembly challenges but also encompasses the notion of green nanomanufacturing, maximally utilizing nanomaterials and eliminating a waste stream of nanomaterials into the environment. FGA utilizes selective filtration of 1D NSs through the open windows on the nanoporous filter membrane whose surface is patterned by a polymer mask for guiding the 1D NS deposition. The modified soft-lithographic technique called blanket transfer (BT) is employed to create the various photoresist patterns of sub-10-micron resolution on the nanoporous filter membrane like mixed cellulose acetate. We use single-walled carbon nanotubes (SWCNTs) as a model 1D NS and demonstrate the fabrication of an array pattern of homogeneous 1D NS network films over an area of 20 cm2 within 10 min. The FGA-patterned SWCNT network films are transferred onto the substrate using the adhesive-based transfer technique, and show the highly uniform film thickness and resistance measurements across the entire substrate. Finally, the electrical performance of the back-gated transistors made from the FGA and transfer method of 95% pure SWCNTs is demonstrated.

  2. One dimensional blood flow in a planetocentric orbit

    NASA Astrophysics Data System (ADS)

    Haranas, Ioannis; Gkigkitzis, Ioannis

    2012-05-01

    All life on earth is accustomed to the presence of gravity. When gravity is altered, biological processes can go awry. It is of great importance to ensure safety during a spaceflight. Long term exposure to microgravity can trigger detrimental physiological responses in the human body. Fluid redistribution coupled with fluid loss is one of the effects. In particular, in microgravity blood volume is shifted towards the thorax and head. Sympathetic nervous system-induced vasoconstriction is needed to maintain arterial pressure, while venoconstriction limits venous pooling of blood prevents further reductions in venous return of blood to the heart. In this paper, we modify an existing one dimensional blood flow model with the inclusion of the hydrostatic pressure gradient that further depends on the gravitational field modified by the oblateness and rotation of the Earth. We find that the velocity of the blood flow VB is inversely proportional to the blood specific volume d, also proportional to the oblateness harmonic coefficient J2, the angular velocity of the Earth ωE, and finally proportional to an arbitrary constant c. For c = -0.39073 and ξH = -0.5 mmHg, all orbits result to less blood flow velocities than that calculated on the surface of the Earth. From all considered orbits, elliptical polar orbit of eccentricity e = 0.2 exhibit the largest flow velocity VB = 1.031 m/s, followed by the orbits of inclination i = 45°and 0°. The Earth's oblateness and its rotation contribute a 0.7% difference to the blood flow velocity.

  3. Spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity

    SciTech Connect

    Golubkov, A A; Makarov, Vladimir A

    2011-11-30

    We present a brief review of the results of fifty years of development efforts in spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity. The recent original results obtained by the authors show the fundamental possibility of determining, from experimental data, the coordinate dependences of complex quadratic susceptibility tensor components of a onedimensionally inhomogeneous (along the z axis) medium with an arbitrary frequency dispersion, if the linear dielectric properties of the medium also vary along the z axis and are described by a diagonal tensor of the linear dielectric constant. It is assumed that the medium in question has the form of a plane-parallel plate, whose surfaces are perpendicular to the direction of the inhomogeneity. Using the example of several components of the tensors X{sup (2)}(z, {omega}{sub 1} {+-} {omega}{sub 2}; {omega}{sub 1}, {+-} {omega}{sub 2}), we describe two methods for finding their spatial profiles, which differ in the interaction geometry of plane monochromatic fundamental waves with frequencies {omega}{sub 1} and {omega}{sub 2}. The both methods are based on assessing the intensity of the waves propagating from the plate at the sum or difference frequency and require measurements over a range of angles of incidence of the fundamental waves. Such measurements include two series of additional estimates of the intensities of the waves generated under special conditions by using the test and additional reference plates, which eliminates the need for complicated phase measurements of the complex amplitudes of the waves at the sum (difference) frequency.

  4. Concerning isothermal self-similar blast waves. I - One-dimensional flow and its stability. II - Two-dimensional flow and its stability. [in stellar atmosphere

    NASA Technical Reports Server (NTRS)

    Lerche, I.

    1978-01-01

    One-dimensional self-similar isothermal flow behind a blast wave propagating in a medium whose density varies with distance is investigated for the cases of one-dimensional and two-dimensional flow. The isothermal flow model is adopted as an alternative to adiabatic models of self-similar flow, which neglect heat flux. The topology of the one-dimensional flow solutions, the singularities, and the influence of boundary conditions are discussed; the instability of the isothermal blast waves against nonself-similar perturbations is also considered. The number of critical points in the two-dimensional solutions is found to vary from the number in the one-dimensional problem.

  5. A quasi-one-dimensional model of thermoacoustics in the presence of mean flow

    NASA Astrophysics Data System (ADS)

    Holzinger, Tobias; Baumgartner, Armin; Polifke, Wolfgang

    2015-01-01

    In thermoacoustic regenerators, the interaction of thermo-viscous boundary layers and axial temperature gradients causes a conversion from thermal energy to acoustic power or vice versa. In this paper, an improved analytical model for thermoacoustic boundary layer effects in the presence of mean flow is derived and analyzed. Previous formulations of the thermo-acoustic effect take into account effects of mean flow on acoustic propagation only implicitly, i.e. in as much as mean flow influences the mean temperature field. The new model, however, includes additional terms in the perturbation equations, which describe explicitly the interaction between steady mean flow and acoustics. For a parallel plate pore the three-dimensional thermoacoustic equations are derived and reduced to a transversally averaged system of differential equations by applying Green's function technique and suitable assumptions. The resulting one-dimensional perturbation equations are then solved numerically for two sets of boundary conditions to obtain the linear scattering matrix coefficients. The solutions, generated for a wide range of frequencies, can be applied in a low-order "network model" context to study the stability of thermoacoustic devices. The impact of mean flow on the thermoacoustic interaction is investigated and validated against full computational fluid dynamics simulations of laminar, compressible flow for one specific configuration. It is shown that at low frequencies (Womersley number < 1) the new formulation predicts the acoustic behavior more accurately than the earlier formulations. Finally, the ideas and benefit of further improved and more complex models for higher Mach numbers are discussed.

  6. One-dimensional daisyworld: spatial interactions and pattern formation.

    PubMed

    Adams, B; Carr, J; Lenton, T M; White, A

    2003-08-21

    The zero-dimensional daisyworld model of Watson and Lovelock (1983) demonstrates that life can unconsciously regulate a global environment. Here that model is extended to one dimension, incorporating a distribution of incoming solar radiation and diffusion of heat consistent with a spherical planet. Global regulatory properties of the original model are retained. The daisy populations are initially restricted to hospitable regions of the surface but exert both global and local feedback to increase this habitable area, eventually colonizing the whole surface. The introduction of heat diffusion destabilizes the coexistence equilibrium of the two daisy types. In response, a striped pattern consisting of blocks of all black or all white daisies emerges. There are two mechanisms behind this pattern formation. Both are connected to the stability of the system and an overview of the mathematics involved is presented. Numerical experiments show that this pattern is globally determined. Perturbations in one region have an impact over the whole surface but the regulatory properties of the system are not compromised by transient perturbations. The relevance of these results to the Earth and the wider climate modelling field is discussed.

  7. Gaussian-Schell model sources in one-dimensional first-order systems with loss or gain.

    PubMed

    Kauderer, M

    1993-02-20

    A detailed examination of the propagation of Gaussian-Schell model sources in one-dimensional, possibly nonlossless, first-order systems is constructed. The laws of focusing are derived. The conditions for periodicity of the Gaussian-Schell model source are derived. This result generalizes the well-known result -2 perturbation stability of the solutions is studied. A physical realization of an arbitrary nonlossless one-dimensional ABCD system is derived, which yields a convenient formula for deciding whether the ABCD system has loss or gain. Special attention is devoted to real and ripple systems.

  8. Universal entanglement spectra of gapped one-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei

    2017-03-01

    We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the

  9. Strong correlations and topological order in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    De Gottardi, Wade Wells

    This thesis presents theoretical studies of strongly correlated systems as well as topologically ordered systems in 1D. Non-Fermi liquid behavior characteristic of interacting 1D electron systems is investigated with an emphasis on experimentally relevant setups and observables. The existence of end Majorana fermions in a 1D p-wave superconductor subject to periodic, incommensurate and disordered potentials is studied. The Tomonaga-Luttinger liquid (TLL), a model of interacting electrons in one spatial dimension, is considered in the context of two systems of experimental interest. First, a study of the electronic properties of single-walled armchair carbon nanotubes in the presence of transverse electric and magnetic fields is presented. As a result of their effect on the band structure and electron wave functions, fields alter the nature of the (effective) Coulomb interaction in tubes. In particular, it is found that fields couple to nanotube bands (or valleys), a quantum degree of freedom inherited from the underlying graphene lattice. As revealed by a detailed TLL calculation, it is predicted that fields induce electrons to disperse into their spin, band, and charge components. Fields also provide a means of tuning the shell-filling behavior associated with short tubes. The phenomenon of charge fractionalization is investigated in a one-dimensional ring. TLL theory predicts that momentum-resolved electrons injected into the ring will fractionalize into clockwise- and counterclockwise-moving quasiparticles. As a complement to transport measurements in quantum wires connected to leads, non-invasive measures involving the magnetic field profiles around the ring are proposed. Topological aspects of 1D p-wave superconductors are explored. The intimate connection between non-trivial topology (fermions) and spontaneous symmetry breaking (spins) in one-dimension is investigated. Building on this connection, a spin ladder system endowed with vortex degrees of freedom is

  10. Extracting complexity waveforms from one-dimensional signals

    PubMed Central

    Kalauzi, Aleksandar; Bojić, Tijana; Rakić, Ljubisav

    2009-01-01

    Background Nonlinear methods provide a direct way of estimating complexity of one-dimensional sampled signals through calculation of Higuchi's fractal dimension (1

  11. Quasi-one-dimensional models for glassy dynamics

    NASA Astrophysics Data System (ADS)

    Pal, Prasanta

    2011-12-01

    We describe analytical calculations and simulations of the quasi-one-dimensional (Q1-D) model for glassy dynamics. In the Q1-D models, hard rods undergo single-file diffusion through a series of narrow channels connected by J intersections. The topology of the model is specified by J, the maximum number of rods in each middle channel K, and the number of rods N. We assume that the rods cannot turn at the intersections, and thus there is a single, continuous route through the system. This model displays hallmarks of glassy dynamics including caging behavior and subdiffusion, rapid growth in the structural relaxation time and collective particle rearrangements. The mean-square displacement Sigma(t) for the Q1-D model displays four dynamical regimes: 1) short-time diffusion Sigma( t) ˜ t, 2) a plateau Sigma(t) ˜ t0 caused by caging behavior, 3) single-file diffusion characterized by anomalous scaling Sigma(t) ˜ t0.5 at intermediate times, and 4) a crossover to long-tine diffusion Sigma(t) ˜ t for times that grow with the system size. We develop a general procedure for calculating analytically the structural relaxation time tD, beyond which the system undergoes long-time diffusion, as a function of density and system topology. The method involves several steps: 1) uniquely defining the set of microstates for the system and transitions among them, 2) constructing networks of connected microstates and identifying minimal, closed, directed loops that give rise to structural relaxation, 3) calculating the probabilities for obtaining each of the microstates that form the closed loops and for transitioning from one microstate to another, and 4) using these probabilities to deduce the dependence of tD on packing fraction. We find that to obeys power-law scaling tD ˜ (φ g-φ)-alpha, where φ g (the packing fraction corresponding to complete kinetic arrest) and alpha depend on the system topology, and can be calculated exactly. The analytical calculations are supported

  12. An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State

    SciTech Connect

    Kamm, James Russell

    2015-03-05

    This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equation of state and for the JWL equation of state.

  13. Optimal one-dimensional apodizations and shaped pupils for planet finding coronagraphy.

    PubMed

    Kasdin, N Jeremy; Vanderbei, Robert J; Littman, Michael G; Spergel, David N

    2005-03-01

    The realization that direct imaging of extrasolar planets could be technologically feasible within the next decade or so has inspired a great deal of recent research into high-contrast imaging. We have contributed several design ideas, all of which can be described as shaped pupil coronagraphs. We offer a complete and unified survey of one-dimensional shaped pupil designs, some of which have been published in our previous papers. We also introduce a promising new design, which we call bar-code masks. With these masks we can achieve the required contrast with a fairly large discovery zone and throughput, but most importantly they are perhaps the easiest to manufacture and might therefore stand up best to refined analyses.

  14. Electron acceleration at nearly perpendicular collisionless shocks. I - One-dimensional simulations without electron scale fluctuations

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Burgess, D.; Wu, C. S.

    1989-01-01

    Under certain conditions electrons can be reflected and effectively energized at quasi-perpendicular shocks. This process is most prominent close to the point where the upstream magnetic field is tangent to the curved shock. A theoretical explanation of the underlying physical mechanism has been proposed which assumes conservation of magnetic moment and a static, simplified shock profile are performed. Test particle calculations of the electron reflection process in order to examine the results of the theoretical analysis without imposing these restrictive conditions. A one-dimensional hybrid simulation code generates the characteristic field variations across the shock. Special emphasis is placed on the spatial and temporal length scales involved in the mirroring process. The simulation results agree generally well with the predictions from adiabatic theory. The effects of the cross-shock potential and unsteadiness are quantified, and the influence of field fluctuations on the reflection process is discussed.

  15. Accurate Prediction of One-Dimensional Protein Structure Features Using SPINE-X.

    PubMed

    Faraggi, Eshel; Kloczkowski, Andrzej

    2017-01-01

    Accurate prediction of protein secondary structure and other one-dimensional structure features is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. SPINE-X is a software package to predict secondary structure as well as accessible surface area and dihedral angles ϕ and ψ. For secondary structure SPINE-X achieves an accuracy of between 81 and 84 % depending on the dataset and choice of tests. The Pearson correlation coefficient for accessible surface area prediction is 0.75 and the mean absolute error from the ϕ and ψ dihedral angles are 20(∘) and 33(∘), respectively. The source code and a Linux executables for SPINE-X are available from Research and Information Systems at http://mamiris.com .

  16. Lempel-Ziv complexity analysis of one dimensional cellular automata.

    PubMed

    Estevez-Rams, E; Lora-Serrano, R; Nunes, C A J; Aragón-Fernández, B

    2015-12-01

    Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

  17. The seasonal effect in one-dimensional Daisyworld.

    PubMed

    Biton, Eli; Gildor, Hezi

    2012-12-07

    We have studied the effects of seasonal Solar Radiation Forcing (SRF) on the climate self-regulatory capability of life, using a latitudinal-dependent Daisyworld model. Because the seasonal polarity of SRF increases poleward, habitable conditions exist in the equatorial regions year round, whereas, in the high latitudes, harsh winters cause annual extinction of life, and only the summers are inhabited or regulated by life. Seasonality affects climate regulation by two major mechanisms: (1) the cold winter conditions in the high latitudes reduce the global temperature below the optimal temperature; (2) during summer, life experiences higher SRF anomalies and, therefore, shifts to higher albedo when compared to annual mean SRF. In turn, a full capacity for temperature regulation is reached at lower SRF, and the range of SRF over which life regulates climate is significantly reduced. Lastly, initiation/extinction of life at low/highly-perturbed SRF occurs at the poles. Therefore, an irreversible global extinction occurs once life passes its regulatory capacity in the poles. We conduct extensive sensitivity analyses on various model parameters (latitudinal heat diffusion, heat capacity, and population death rate), strengthening the generality/robustness of the above net seasonal effects. Applications to other SRF fluctuation, as Milankovitch cycles are discussed.

  18. Continuous-Energy Adjoint Flux and Perturbation Calculation using the Iterated Fission Probability Method in Monte Carlo Code TRIPOLI-4® and Underlying Applications

    NASA Astrophysics Data System (ADS)

    Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.; Malvagi, F.

    2014-06-01

    Pile-oscillation experiments are performed in the MINERVE reactor at the CEA Cadarache to improve nuclear data accuracy. In order to precisely calculate small reactivity variations (<10 pcm) obtained in these experiments, a reference calculation need to be achieved. This calculation may be accomplished using the continuous-energy Monte Carlo code TRIPOLI-4® by using the eigenvalue difference method. This "direct" method has shown limitations in the evaluation of very small reactivity effects because it needs to reach a very small variance associated to the reactivity in both states. To answer this problem, it has been decided to implement the exact perturbation theory in TRIPOLI-4® and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4® is described. To illustrate the effciency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the "direct" estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the "direct" method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high

  19. Absence of localization in a disordered one-dimensional ring threaded by an Aharonov-Bohm flux.

    PubMed

    Heinrichs, Jean

    2009-07-22

    Absence of localization is demonstrated analytically to leading order in weak disorder in a one-dimensional Anderson model of a ring threaded by an Aharonov-Bohm (AB) flux. The result follows from adapting an earlier perturbation treatment of disorder in a superconducting ring subjected to an imaginary vector potential proportional to a depinning field for flux lines bound to random columnar defects parallel to the axis of the ring. The absence of localization in the ring threaded by an AB flux for sufficiently weak disorder is compatible with large free-electron-type persistent current obtained in recent studies of the above model.

  20. One-dimensional statistical parametric mapping in Python.

    PubMed

    Pataky, Todd C

    2012-01-01

    Statistical parametric mapping (SPM) is a topological methodology for detecting field changes in smooth n-dimensional continua. Many classes of biomechanical data are smooth and contained within discrete bounds and as such are well suited to SPM analyses. The current paper accompanies release of 'SPM1D', a free and open-source Python package for conducting SPM analyses on a set of registered 1D curves. Three example applications are presented: (i) kinematics, (ii) ground reaction forces and (iii) contact pressure distribution in probabilistic finite element modelling. In addition to offering a high-level interface to a variety of common statistical tests like t tests, regression and ANOVA, SPM1D also emphasises fundamental concepts of SPM theory through stand-alone example scripts. Source code and documentation are available at: www.tpataky.net/spm1d/.

  1. One-dimensional gravity in infinite point distributions.

    PubMed

    Gabrielli, A; Joyce, M; Sicard, F

    2009-10-01

    The dynamics of infinite asymptotically uniform distributions of purely self-gravitating particles in one spatial dimension provides a simple and interesting toy model for the analogous three dimensional problem treated in cosmology. In this paper we focus on a limitation of such models as they have been treated so far in the literature: the force, as it has been specified, is well defined in infinite point distributions only if there is a centre of symmetry (i.e., the definition requires explicitly the breaking of statistical translational invariance). The problem arises because naive background subtraction (due to expansion, or by "Jeans swindle" for the static case), applied as in three dimensions, leaves an unregulated contribution to the force due to surface mass fluctuations. Following a discussion by Kiessling of the Jeans swindle in three dimensions, we show that the problem may be resolved by defining the force in infinite point distributions as the limit of an exponentially screened pair interaction. We show explicitly that this prescription gives a well defined (finite) force acting on particles in a class of perturbed infinite lattices, which are the point processes relevant to cosmological N -body simulations. For identical particles the dynamics of the simplest toy model (without expansion) is equivalent to that of an infinite set of points with inverted harmonic oscillator potentials which bounce elastically when they collide. We discuss and compare with previous results in the literature and present new results for the specific case of this simplest (static) model starting from "shuffled lattice" initial conditions. These show qualitative properties of the evolution (notably its "self-similarity") like those in the analogous simulations in three dimensions, which in turn resemble those in the expanding universe.

  2. A Generalized One Dimensional Computer Code for Turbomachinery Cooling Passage Flow Calculations

    DTIC Science & Technology

    1989-07-12

    literature or using the correlations avail- rangement and Taslim and Spring [10] for staggered able in the literature (with modifications). For val...compared with the experi- For laminar flow in plain passages rotating about mental data of Taslim and Spring [46,471 in figures a parallel axis, the...1-197, 1986. stream flow [10] Taslim , M.E., and Spring, S.D., "Experimentalt conditions Heat Transfer and Friction Factors in Turbu- )’ total

  3. Further Development of a One-Dimensional Unsteady Euler Code for Wave Rotor Applications.

    DTIC Science & Technology

    1987-03-01

    precision value of N NEW**(I) Stored values of ** for the next time level PARRAY Array of pressures for plotting Pi/Pj PR The ratio of the pressure...NtBERI C NO - DOUBLE PRECISION VALUE OF N C NEI4**(I)- STORED VALUES OF M* FOR THE NEXT TIME LEVEL C PARRAY - ARRAY OF PRESSURES FOR PLOTTING C PRI... PARRAY ,DARRAY .SARRAY ,QARRAY ,XARRAY COMMONt AR*DQIIVSPN C --- ENTER THE APPROPRIATE VALUES BE LOM --- Na 101 GRAPHSa1 C C --- FOR GRAPH a 1 OR 2

  4. A Computer Code for a One-Dimensional Dynamic Model of the Mesosphere and Lower Thermosphere.

    DTIC Science & Technology

    1984-03-07

    11111-111U1 MICROCOPY RESOLUTION TEST CHART )ARDS-I963-A % . - - - ~~RrPRnnt1CV4 Al GO rNv~’~ ~W AFGL-TR-84-0 183 ENVIRONMENTAL RESEARCH PAPERS . NO...thermosphere between 50 and 400 km is presented. The model is based on a numerical solution of large sets of partial differential equations for the con...gases. It then became obvious that any realistic atmospheric simulation should be based upon the equations of motion for the particles as well as their

  5. WONDY V: a one-dimensional finite-difference wave-propagation code

    SciTech Connect

    Kipp, M.E.; Lawrence, R.J.

    1982-06-01

    WONDY V solves the finite difference analogs to the Lagrangian equations of motion in one spatial dimension (planar, cylindrical, or spherical). Simulations of explosive detonation, energy deposition, plate impact, and dynamic fracture are possible, using a variety of existing material models. In addition, WONDY has proven to be a powerful tool in the evaluation of new constitutive models. A preprocessor is available to allocate storage arrays commensurate with problem size, and automatic rezoning may be employed to improve resolution. This document provides a description of the equations solved, available material models, operating instructions, and sample problems.

  6. One-dimensional high-order compact method for solving Euler's equations

    NASA Astrophysics Data System (ADS)

    Mohamad, M. A. H.; Basri, S.; Basuno, B.

    2012-06-01

    In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results

  7. One dimensional PIC simulation of relativistic Buneman instability

    NASA Astrophysics Data System (ADS)

    Rajawat, Roopendra Singh; Sengupta, Sudip

    2016-10-01

    Spatio-temporal evolution of the relativistic Buneman instability has been investigated in one dimension using an in-house developed particle-in-cell simulation code. Starting from the excitation of the instability, its evolution has been followed numerically till its quenching and beyond. The simulation results have been quantitatively compared with the fluid theory and are found to be in conformity with the well known fact that the maximum growth rate (γmax) reduces due to relativistic effects and varies with γ e 0 and m/M as γ m a x ˜ /√{ 3 } 2 √{ γ e 0 } ( /m 2 M ) 1 / 3 , where γ e 0 is the Lorentz factor associated with the initial electron drift velocity (v0) and (m/M) is the electron to ion mass ratio. Further it is observed that in contrast to the non-relativistic results [A. Hirose, Plasma Phys. 20, 481 (1978)] at the saturation point, the ratio of electrostatic field energy density ( ∑ k | E k | 2 / 8 π ) to initial drift kinetic energy density (W0) scales with γ e 0 as ˜ 1 / γe 0 2 . This novel result on the scaling of energy densities has been found to be in quantitative agreement with the scalings derived using fluid theory.

  8. One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.

    2007-01-01

    The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.

  9. Coherent oscillations and incoherent tunneling in a one-dimensional asymmetric double-well potential.

    PubMed

    Benderskii, V A; Kats, E I

    2002-03-01

    For a model one-dimensional asymmetric double-well potential we calculated the so-called survival probability (i.e., the probability for a particle initially localized in one well to remain there). We use a semiclassical (WKB) solution of the Schrödinger equation. It is shown that behavior essentially depends on transition probability, and on a dimensionless parameter Lambda that is a ratio of characteristic frequencies for low-energy nonlinear in-well oscillations and interwell tunneling. For the potential describing a finite motion (double-well) one has always a regular behavior. For Lambda<1, there are well defined resonance pairs of levels and the survival probability has coherent oscillations related to resonance splitting. However, for Lambda>1 there are no oscillations at all for the survival probability, and there is almost an exponential decay with the characteristic time determined by Fermi golden rule. In this case, one may not restrict himself to only resonance pair levels. The number of levels perturbed by tunneling grows proportionally to square root of [Lambda] (in other words, instead of isolated pairs there appear the resonance regions containing the sets of strongly coupled levels). In the region of intermediate values of Lambda one has a crossover between both limiting cases, namely, the exponential decay with subsequent long period recurrent behavior.

  10. U(1) chiral symmetry in a one-dimensional interacting electron system with spin

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2016-11-01

    We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.

  11. Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Rossow, W. B.; Yao, M.-S.; Wolfson, M.

    1981-01-01

    The potential complexity of the feedback between global mean cloud amount and global mean surface temperature when variations of the vertical cloud distribution are included is illustrated. This is done by studying the behavior of a one-dimensional radiative-convective model with two types of cloud variation: (1) variable cloud cover with constant optical thickness and (2) variable optical thickness with constant cloud cover. The variable parameter is calculated on the assumption that a correlation exists between cloud amount and precipitation or the vertical flux convergence of latent heat. Since the vertical latent heat flux is taken to be a fraction of the total heat flux, modeled by convective adjustment, the sensitivity of the results to two different critical lapse rates is examined. These are a constant 6.5 K/km lapse rate and a temperature-dependent, moist adiabatic lapse rate. The effects of the vertical structure of climate perturbations on the nature of the cloud feedback are also examined. The model results reveal that changes in the vertical cloud distribution and mean cloud optical thickness can be as important to climate variations as are changes in the total cloud cover.

  12. Effective one-dimensional diffusion on curved surfaces: Catenoid and pseudosphere

    NASA Astrophysics Data System (ADS)

    Chacón-Acosta, Guillermo; Pineda, Inti; Dagdug, Leonardo

    2014-01-01

    We present the effective diffusion coefficient for the diffusion in a narrow generally asymmetric channel embedded on a curved surface, in the case of simple diffusion of pointlike particles without interaction and under no external forces. First, we define the diffusion equation for anisotropic diffusion involving a version of the Laplace-Beltrami operator. Then, we choose symmetric surfaces whose metric components only depend on one of the local coordinates and thus, apply the Kalinay-Percus' projection method. With this method one can project two-dimensional anisotropic diffusion into the corresponding effective one-dimensional generalized Fick-Jacobs equation to the lowest order. The perturbation series to all orders converges and as a general result the effective diffusion coefficient on a curved surface depending on the longitudinal local coordinate was obtained and is presented. It contains metric terms that can be related with the Gaussian curvature of the surface. We illustrate our results by studying asymmetric conical channel configurations on two surfaces, namely, the catenoid that is a minimal surface, and the pseudosphere that is a surface with negative constant curvature.

  13. Maximum group velocity in a one-dimensional model with a sinusoidally varying staggered potential

    NASA Astrophysics Data System (ADS)

    Nag, Tanay; Sen, Diptiman; Dutta, Amit

    2015-06-01

    We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an "engineered" initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.

  14. Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.

    PubMed

    Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo

    2017-01-11

    Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp(1) bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.

  15. One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2012-01-01

    Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.

  16. Linear and nonlinear optical response of one-dimensional semiconductors: finite-size and Franz–Keldysh effects

    NASA Astrophysics Data System (ADS)

    Bonabi, Farzad; Pedersen, Thomas G.

    2017-04-01

    The dipole moment formalism for the optical response of finite electronic structures breaks down in infinite ones, for which a momentum-based method is better suited. Focusing on simple chain structures, we compare the linear and nonlinear optical response of finite and infinite one-dimensional semiconductors. This comparison is then extended to cases including strong electro-static fields breaking translational invariance. For large electro-static fields, highly non-perturbative Franz–Keldysh (FK) features are observed in both linear and nonlinear spectra. It is demonstrated that dipole and momentum formalisms agree in the limit of large structures provided the intraband momentum contributions are carefully treated. This convergence is established even in the presence of non-perturbative electro-static fields.

  17. Energy transport mechanism in the form of proton soliton in a one-dimensional hydrogen-bonded polypeptide chain.

    PubMed

    Kavitha, L; Priya, R; Ayyappan, N; Gopi, D; Jayanthi, S

    2016-01-01

    The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes.

  18. Simulation of Thermal Stratification in BWR Suppression Pools with One Dimensional Modeling Method

    SciTech Connect

    Haihua Zhao; Ling Zou; Hongbin Zhang

    2014-01-01

    The suppression pool in a boiling water reactor (BWR) plant not only is the major heat sink within the containment system, but also provides the major emergency cooling water for the reactor core. In several accident scenarios, such as a loss-of-coolant accident and extended station blackout, thermal stratification tends to form in the pool after the initial rapid venting stage. Accurately predicting the pool stratification phenomenon is important because it affects the peak containment pressure; the pool temperature distribution also affects the NPSHa (available net positive suction head) and therefore the performance of the Emergency Core Cooling System and Reactor Core Isolation Cooling System pumps that draw cooling water back to the core. Current safety analysis codes use zero dimensional (0-D) lumped parameter models to calculate the energy and mass balance in the pool; therefore, they have large uncertainties in the prediction of scenarios in which stratification and mixing are important. While three-dimensional (3-D) computational fluid dynamics (CFD) methods can be used to analyze realistic 3-D configurations, these methods normally require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, resulting in a long simulation time. For mixing in stably stratified large enclosures, the BMIX++ code (Berkeley mechanistic MIXing code in C++) has been developed to implement a highly efficient analysis method for stratification where the ambient fluid volume is represented by one-dimensional (1-D) transient partial differential equations and substructures (such as free or wall jets) are modeled with 1-D integral models. This allows very large reductions in computational effort compared to multi-dimensional CFD modeling. One heat-up experiment performed at the Finland POOLEX facility, which was designed to study phenomena relevant to Nordic design BWR suppression pool including thermal stratification and mixing, is used for

  19. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    EPA Science Inventory

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  20. One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications

    NASA Astrophysics Data System (ADS)

    Ramis, Rafael

    2017-02-01

    A new one-dimensional hydrodynamic algorithm, specifically developed for Inertial Confinement Fusion (ICF) applications, is presented. The scheme uses a fully conservative Lagrangian formulation in planar, cylindrical, and spherically symmetric geometries, and supports arbitrary equations of state with separate ion and electron components. Fluid equations are discretized on a staggered grid and stabilized by means of an artificial viscosity formulation. The space discretized equations are advanced in time using an implicit algorithm. The method includes several numerical parameters that can be adjusted locally. In regions with low Courant-Friedrichs-Lewy (CFL) number, where stability is not an issue, they can be adjusted to optimize the accuracy. In typical problems, the truncation error can be reduced by a factor between 2 to 10 in comparison with conventional explicit algorithms. On the other hand, in regions with high CFL numbers, the parameters can be set to guarantee unconditional stability. The method can be integrated into complex ICF codes. This is demonstrated through several examples covering a wide range of situations: from thermonuclear ignition physics, where alpha particles are managed as an additional species, to low intensity laser-matter interaction, where liquid-vapor phase transitions occur.

  1. One-dimensional model of the equiaxed grain formation in multi-crystalline silicon

    NASA Astrophysics Data System (ADS)

    Beaudhuin, M.; Duffar, T.; Lemiti, M.; Zaidat, K.

    2011-03-01

    During solidification of low purity silicon for photovoltaic (PV) cells, solute rejection at the growth interface leads to an increase of the carbon concentration in the liquid phase and then to the precipitation of silicon carbide (SiC). When the precipitate radius becomes higher than the silicon critical nucleus radius, SiC can act as a refining agent for the Si and Si equiaxed grains appear in the liquid. The grain structure of the ingot changes from columnar to small grains, also known as grits. We developed a one-dimensional analytical model of this series of phenomena, including C segregation, SiC nucleation and growth, Si nucleation on the SiC precipitates and subsequent growth of the Si equiaxed grains. The equations are implemented under Matlab software in order to predict the columnar to equiaxed transition (CET) during the directional solidification of PV Si. We carried out calculations of the position and thickness of the equiaxed areas and of the number and size of Si grits as a function of the main process parameters: thermal gradient and growth velocity. Recommendations in order to adapt the growth process parameters to the initial carbon content are given. It is expected that coupling this model to global 3D numerical simulation codes could help improving the yield of ingot solidification.

  2. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients

    NASA Astrophysics Data System (ADS)

    Pérez Guerrero, J. S.; Skaggs, T. H.

    2010-08-01

    SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.

  3. An adaptive mesh-moving and refinement procedure for one-dimensional conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Flaherty, Joseph E.; Arney, David C.

    1993-01-01

    We examine the performance of an adaptive mesh-moving and /or local mesh refinement procedure for the finite difference solution of one-dimensional hyperbolic systems of conservation laws. Adaptive motion of a base mesh is designed to isolate spatially distinct phenomena, and recursive local refinement of the time step and cells of the stationary or moving base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. These adaptive procedures are incorporated into a computer code that includes a MacCormack finite difference scheme wih Davis' artificial viscosity model and a discretization error estimate based on Richardson's extrapolation. Experiments are conducted on three problems in order to qualify the advantages of adaptive techniques relative to uniform mesh computations and the relative benefits of mesh moving and refinement. Key results indicate that local mesh refinement, with and without mesh moving, can provide reliable solutions at much lower computational cost than possible on uniform meshes; that mesh motion can be used to improve the results of uniform mesh solutions for a modest computational effort; that the cost of managing the tree data structure associated with refinement is small; and that a combination of mesh motion and refinement reliably produces solutions for the least cost per unit accuracy.

  4. Thermal Decomposition of Trinitrotoluene (TNT) with a New One-Dimensional Time to Explosion (ODTX) Apparatus

    SciTech Connect

    Tran, T D; Simpson, R L; Maienschein, J; Tarver, C

    2001-03-23

    The thermal explosion of trinitrotoluene (TNT) is used as a basis for evaluating the performance of a new One-Dimensional-Time-to-Explosion (ODTX) apparatus. The ODTX experiment involves holding a 12.7 mm-diameter spherical explosive sample under confinement (150 MPa) at a constant elevated temperature until the confining pressure is exceeded by the evolution of gases during chemical decomposition. The resulting time to explosion as a function of temperature provides valuable decomposition kinetic information. A comparative analysis of the measurements obtained from the new unit and an older system is presented. Discussion on selected performance aspects of the new unit will also be presented. The thermal explosion of TNT is highly dependent on the material. Analysis of the time to explosion is complicated by historical and experimental factors such as material variability, sample preparation, temperature measurement and system errors. Many of these factors will be addressed. Finally, a kinetic model using a coupled thermal and heat transport code (chemical TOPAZ) was used to match the experimental data.

  5. One-dimensional numerical modeling of Blue Jet and its impact on stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Duruisseau, F.; Thiéblemont, R.; Huret, N.

    2011-12-01

    In the stratosphere the ozone layer is very sensitive to the NOx abundance. The ionisation of N2 and O2 molecules by TLE's (Transient Luminous Events) is a source of NOx which is currently not well quantified and could act as a loss of ozone. In this study a one dimensional explicit parameterization of a Blue-Jet propagation based on that proposed by Raizer et al. (2006 and 2007) has been developed. This parameterization considers Blue-Jet as a streamer initiated by a bidirectional leader discharge, emerging from the anvil and sustained by moderate cloud charge. The streamer growth varies with the electrical field induced by initial cloud charge and the initial altitude. This electrical parameterization and the chemical mechanisms associated with the discharge have been implemented into a detailed chemical model of stratospheric ozone including evolution of nitrogen, chlorine and bromine species. We will present several tests performed to validate the electrical code and evaluate the propagation velocity and the maximum altitude attains by the blue jet as a function of electrical parameters. The results obtained giving the spatiotemporal evolution of the electron density are then used to initiate the specific chemistry associated with the Blue Jet. Preliminary results on the impact of such discharge on the ozone content and the whole stratospheric system will be presented.

  6. FEEDBACK FROM CENTRAL BLACK HOLES IN ELLIPTICAL GALAXIES: TWO-DIMENSIONAL MODELS COMPARED TO ONE-DIMENSIONAL MODELS

    SciTech Connect

    Novak, Gregory S.; Ostriker, Jeremiah P.; Ciotti, Luca

    2011-08-10

    We extend the black hole (BH) feedback models of Ciotti, Ostriker, and Proga to two dimensions. In this paper, we focus on identifying the differences between the one-dimensional and two-dimensional hydrodynamical simulations. We examine a normal, isolated L{sub *} galaxy subject to the cooling flow instability of gas in the inner regions. Allowance is made for subsequent star formation, Type Ia and Type II supernovae, radiation pressure, and inflow to the central BH from mildly rotating galactic gas which is being replenished as a normal consequence of stellar evolution. The central BH accretes some of the infalling gas and expels a conical wind with mass, momentum, and energy flux derived from both observational and theoretical studies. The galaxy is assumed to have low specific angular momentum in analogy with the existing one-dimensional case in order to isolate the effect of dimensionality. The code then tracks the interaction of the outflowing radiation and winds with the galactic gas and their effects on regulating the accretion. After matching physical modeling to the extent possible between the one-dimensional and two-dimensional treatments, we find essentially similar results in terms of BH growth and duty cycle (fraction of the time above a given fraction of the Eddington luminosity). In the two-dimensional calculations, the cool shells forming at 0.1-1 kpc from the center are Rayleigh-Taylor unstable to fragmentation, leading to a somewhat higher accretion rate, less effective feedback, and a more irregular pattern of bursting compared with the one-dimensional case.

  7. Symmetries and invariant solutions of the one-dimensional Boltzmann equation for inelastic collisions

    NASA Astrophysics Data System (ADS)

    Ilyin, O. V.

    2016-02-01

    We consider the one-dimensional integro-differential Boltzmann equation for Maxwell particles with inelastic collisions. We show that the equation has a five-dimensional algebra of point symmetries for all dissipation parameter values and obtain an optimal system of one-dimensional subalgebras and classes of invariant solutions.

  8. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs

    PubMed Central

    Kumar, Manish; Atkins, Joshua; Cairns, Murray; Ali, Ayesha; Tanwar, Pradeep S.

    2016-01-01

    Dysregulated Wnt signalling is associated with human infertility and testicular cancer. However, the role of Wnt signalling in male germ cells remains poorly understood. In this study, we first confirmed the activity of Wnt signalling in mouse, dog and human testes. To determine the physiological importance of the Wnt pathway, we developed a mouse model with germ cell-specific constitutive activation of βcatenin. In young mutants, similar to controls, germ cell development was normal. However, with age, mutant testes showed defective spermatogenesis, progressive germ cell loss, and flawed meiotic entry of spermatogonial cells. Flow sorting confirmed reduced germ cell populations at the leptotene/zygotene stages of meiosis in mutant group. Using thymidine analogues-based DNA double labelling technique, we further established decline in germ cell proliferation and differentiation. Overactivation of Wnt/βcatenin signalling in a spermatogonial cell line resulted in reduced cell proliferation, viability and colony formation. RNA sequencing analysis of testes revealed significant alterations in the non-coding regions of mutant mouse genome. One of the novel non-coding RNAs was switched on in mutant testes compared to controls. QPCR analysis confirmed upregulation of this unique non-coding RNA in mutant testis. In summary, our results highlight the significance of Wnt signalling in male germ cells. PMID:27992363

  9. One-dimensional conduction through supporting electrolytes: Two-scale cathodic Debye layer

    NASA Astrophysics Data System (ADS)

    Almog, Yaniv; Yariv, Ehud

    2011-10-01

    Supporting-electrolyte solutions comprise chemically inert cations and anions, produced by salt dissolution, together with a reactive ionic species that may be consumed and generated on bounding ion-selective surfaces (e.g., electrodes or membranes). Upon application of an external voltage, a Faraday current is thereby established. It is natural to analyze this ternary-system process through a one-dimensional transport problem, employing the thin Debye-layer limit. Using a simple model of ideal ion-selective membranes, we have recently addressed this problem for moderate voltages [Yariv and Almog, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.176101 105, 176101 (2010)], predicting currents that scale as a fractional power of Debye thickness. We address herein the complementary problem of moderate currents. We employ matched asymptotic expansions, separately analyzing the two inner thin Debye layers adjacent to the ion-selective surfaces and the outer electroneutral region outside them. A straightforward calculation following comparable singular-perturbation analyses of binary systems is frustrated by the prediction of negative ionic concentrations near the cathode. Accompanying numerical simulations, performed for small values of Debye thickness, indicate a number unconventional features occurring at that region, such as inert-cation concentration amplification and electric-field intensification. The current-voltage correlation data of the electrochemical cell, obtained from compilation of these simulations, does not approach a limit as the Debye thickness vanishes. Resolution of these puzzles reveals a transformation of the asymptotic structure of the cathodic Debye layer. This reflects the emergence of an internal boundary layer, adjacent to the cathode, wherein field and concentration scaling differs from those of the Gouy-Chapman theory. The two-scale feature of the cathodic Debye layer is manifested through a logarithmic voltage scaling with Debye

  10. One-dimensional frustrated plaquette compass model: Nematic phase and spontaneous multimerization

    NASA Astrophysics Data System (ADS)

    Brzezicki, Wojciech; Oleś, Andrzej M.

    2016-06-01

    We introduce a one-dimensional (1D) pseudospin model on a ladder where the Ising interactions along the legs and along the rungs alternate between XiXi +1 and ZiZi +1 for even/odd bond (rung). We include also the next-nearest-neighbor Ising interactions on plaquettes' diagonals that alternate in such a way that a model where only leg interactions are switched on is equivalent to the one when only the diagonal ones are present. Thus in the absence of rung interactions the model can interpolate between two 1D compass models. The model possesses local symmetries which are the parities within each 2 ×2 cell (plaquette) of the ladder. We find that for different values of the interaction it can realize ground states that differ by the patterns formed by these local parities. By exact diagonalization we derive detailed phase diagrams for small systems of L =4 , 6, and 8 plaquettes, and use next L =12 to identify generic phases that appear in larger systems as well. Among them we find a nematic phase with macroscopic degeneracy when the leg and diagonal interactions are equal and the rung interactions are larger than a critical value. By performing a perturbative expansion around this phase we find indeed a very complex competition around the nematic phase which has to do with releasing frustration in this range of parameters. The nematic phase is similar to the one found in the two-dimensional compass model. For particular parameters the low-energy sector of the present plaquette model reduces to a 1D compass model with spins S =1 which suggests that it realizes peculiar crossovers within the class of compass models. Finally, we show that the model can realize phases with broken translation invariance which can be either dimerized, trimerized, etc., or completely disordered and highly entangled in a well identified window of the phase diagram.

  11. One-Dimensional Analysis of Thermal Stratification in AHTR and SFR Coolant Pools

    SciTech Connect

    Haihua Zhao; Per F. Peterson

    2007-10-01

    Thermal stratification phenomena are very common in pool type reactor systems, such as the liquid-salt cooled Advanced High Temperature Reactor (AHTR) and liquid-metal cooled fast reactor systems such as the Sodium Fast Reactor (SFR). It is important to accurately predict the temperature and density distributions both for design optimation and accident analysis. Current major reactor system analysis codes such as RELAP5 (for LWR’s, and recently extended to analyze high temperature reactors), TRAC (for LWR’s), and SASSYS (for liquid metal fast reactors) only provide lumped-volume based models which can only give very approximate results and can only handle simple cases with one mixing source. While 2-D or 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries, yet such fine grid resolution is difficult or impossible to provide for studying the reactor response to transients due to computational expense. Therefore, new methods are needed to support design optimization and safety analysis of Generation IV pool type reactor systems. Previous scaling has shown that stratified mixing processes in large stably stratified enclosures can be described using one-dimensional differential equations, with the vertical transport by free and wall jets modeled using standard integral techniques. This allows very large reductions in computational effort compared to three-dimensional numerical modeling of turbulent mixing in large enclosures. The BMIX++ (Berkeley mechanistic MIXing code in C++) code was originally developed at UC Berkeley to implement such ideas. This code solves mixing and heat transfer problems in stably stratified enclosures. The code uses a Lagrangian approach to solve 1-D transient governing equations for the ambient fluid and uses analytical or 1-D integral models to compute substructures. By including liquid salt properties, BMIX++ code is

  12. One-Dimensional Perovskite Manganite Oxide Nanostructures: Recent Developments in Synthesis, Characterization, Transport Properties, and Applications.

    PubMed

    Li, Lei; Liang, Lizhi; Wu, Heng; Zhu, Xinhua

    2016-12-01

    One-dimensional nanostructures, including nanowires, nanorods, nanotubes, nanofibers, and nanobelts, have promising applications in mesoscopic physics and nanoscale devices. In contrast to other nanostructures, one-dimensional nanostructures can provide unique advantages in investigating the size and dimensionality dependence of the materials' physical properties, such as electrical, thermal, and mechanical performances, and in constructing nanoscale electronic and optoelectronic devices. Among the one-dimensional nanostructures, one-dimensional perovskite manganite nanostructures have been received much attention due to their unusual electron transport and magnetic properties, which are indispensable for the applications in microelectronic, magnetic, and spintronic devices. In the past two decades, much effort has been made to synthesize and characterize one-dimensional perovskite manganite nanostructures in the forms of nanorods, nanowires, nanotubes, and nanobelts. Various physical and chemical deposition techniques and growth mechanisms are explored and developed to control the morphology, identical shape, uniform size, crystalline structure, defects, and homogenous stoichiometry of the one-dimensional perovskite manganite nanostructures. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, structural characterization, fundamental properties, and unique applications of one-dimensional perovskite manganite nanostructures in nanotechnology. It begins with the rational synthesis of one-dimensional perovskite manganite nanostructures and then summarizes their structural characterizations. Fundamental physical properties of one-dimensional perovskite manganite nanostructures are also highlighted, and a range of unique applications in information storages, field-effect transistors, and spintronic devices are discussed. Finally, we conclude this review with some perspectives/outlook and future

  13. A one-dimensional study of the evolution of the microwave breakdown in air

    SciTech Connect

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Tarakanov, V. P.; Nusinovich, G. S.

    2015-09-15

    The microwave breakdown in air is simulated numerically within a simple 1D model taking into account a perturbation of electromagnetic field by plasma. The simulations were performed using two qualitatively different codes. One of these codes is based on computation of Maxwell equations, whereas the other one utilizes an approximation of quasi-monochromatic electromagnetic field. There is a good agreement between simulation results obtained by using both codes. Calculations have been carried out in a wide range of air pressures and field frequencies; also varied were initial spatial distributions of plasma density. The results reveal strong dependence of the breakdown evolution on the relation between the field frequency and the gas pressure as well as on the presence of extended rarefied background plasma. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave propagating towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with a formation of plasma filament array. The extended background plasma can suppress formation of the plasma filament array completely even at high pressures (or low frequencies)

  14. Effect of interchain frustration in quasi-one-dimensional conductors at half-filling

    NASA Astrophysics Data System (ADS)

    Tsuchiizu, M.; Suzumura, Y.; Bourbonnais, C.

    2007-04-01

    We examine the effect of frustrated interchain hoppings t_{\\perp 1} and t_{\\perp 2} on one-dimensional Mott insulators. By applying an N_\\perp -chain two-loop renormalization-group method to the half-filled quasi-one-dimensional Hubbard model, we show that the system remains insulating even for the large t_{\\perp 1} as far as t_{\\perp 2}=0 and vice versa, whereas a metallic state emerges by increasing both interchain hoppings. We also discuss the metallic behaviour suggested in the quasi-one-dimensional organic compound (TTM-TTP)I3 under high pressure.

  15. Spectral butterfly and electronic localization in rippled-graphene nanoribbons: Mapping onto effective one-dimensional chains

    NASA Astrophysics Data System (ADS)

    Roman-Taboada, Pedro; Naumis, Gerardo G.

    2015-07-01

    We report an exact map into one-dimensional effective chains of the tight-binding Hamiltonian for electrons in armchair and zigzag graphene nanoribbons with any uniaxial ripple. This mapping is used for studying the effect of uniaxial periodic ripples, taking into account the relative orientation changes between π orbitals. Such effects are important for short-wavelength ripples, while for long-wave ones, the system behaves nearly as strained graphene. The spectrum has a complex nature, akin to the Hofstadter butterfly with a rich localization behavior. Gaps at the Fermi level and dispersionless bands were observed, as well. The complex features of the spectrum arise as a consequence of the quasiperiodic or periodic nature of the effective one-dimensional system. Some features of these systems can be understood by considering weakly coupled dimers. The eigenenergies of such dimers are highly degenerate, and the net effect of the ripple can be seen as a perturbation potential that splits the energy spectrum. Several particular cases were analytically solved to understand this feature.

  16. Time-dependent calculations of transfer ionization by fast proton-helium collision in one-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Serov, Vladislav V.; Kheifets, A. S.

    2014-12-01

    We analyze a transfer ionization (TI) reaction in the fast proton-helium collision H++He →H0+He2 ++ e- by solving a time-dependent Schrödinger equation (TDSE) under the classical projectile motion approximation in one-dimensional kinematics. In addition, we construct various time-independent analogs of our model using lowest-order perturbation theory in the form of the Born series. By comparing various aspects of the TDSE and the Born series calculations, we conclude that the recent discrepancies of experimental and theoretical data may be attributed to deficiency of the Born models used by other authors. We demonstrate that the correct Born series for TI should include the momentum-space overlap between the double-ionization amplitude and the wave function of the transferred electron.

  17. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    NASA Astrophysics Data System (ADS)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  18. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    NASA Technical Reports Server (NTRS)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  19. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    ERIC Educational Resources Information Center

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  20. Simulating higher-dimensional geometries in GADRAS using approximate one-dimensional solutions.

    SciTech Connect

    Thoreson, Gregory G.; Mitchell, Dean J; Harding, Lee T.

    2013-02-01

    The Gamma Detector Response and Analysis Software (GADRAS) software package is capable of simulating the radiation transport physics for one-dimensional models. Spherical shells are naturally one-dimensional, and have been the focus of development and benchmarking. However, some objects are not spherical in shape, such as cylinders and boxes. These are not one-dimensional. Simulating the radiation transport in two or three dimensions is unattractive because of the extra computation time required. To maintain computational efficiency, higher-dimensional geometries require approximations to simulate them in one-dimension. This report summarizes the theory behind these approximations, tests the theory against other simulations, and compares the results to experimental data. Based on the results, it is recommended that GADRAS users always attempt to approximate reality using spherical shells. However, if fissile material is present, it is imperative that the shape of the one-dimensional model matches the fissile material, including the use of slab and cylinder geometry.

  1. On global solutions for quasilinear one-dimensional parabolic problems with dynamical boundary conditions

    NASA Astrophysics Data System (ADS)

    Gvelesiani, Simon; Lippoth, Friedrich; Walker, Christoph

    2015-12-01

    We provide sufficient and almost optimal conditions for global existence of classical solutions in parabolic Hölder spaces to quasilinear one-dimensional parabolic problems with dynamical boundary conditions.

  2. One-Dimensional Hybrid Satellite Track Model for the Dynamics Explorer 2 (DE 2) Satellite

    NASA Technical Reports Server (NTRS)

    Deng, Wei; Killeen, T. L.; Burns, A. G.; Johnson, R. M.; Emery, B. A.; Roble, R. G.; Winningham, J. D.; Gary, J. B.

    1995-01-01

    A one-dimensional hybrid satellite track model has been developed to calculate the high-latitude thermospheric/ionospheric structure below the satellite altitude using Dynamics Explorer 2 (DE 2) satellite measurements and theory. This model is based on Emery et al. satellite track code but also includes elements of Roble et al. global mean thermosphere/ionosphere model. A number of parameterizations and data handling techniques are used to input satellite data from several DE 2 instruments into this model. Profiles of neutral atmospheric densities are determined from the MSIS-90 model and measured neutral temperatures. Measured electron precipitation spectra are used in an auroral model to calculate particle impact ionization rates below the satellite. These rates are combined with a solar ionization rate profile and used to solve the O(+) diffusion equation, with the measured electron density as an upper boundary condition. The calculated O(+) density distribution, as well as the ionization profiles, are then used in a photochemical equilibrium model to calculate the electron and molecular ion densities. The electron temperature is also calculated by solving the electron energy equation with an upper boundary condition determined by the DE 2 measurement. The model enables calculations of altitude profiles of conductivity and Joule beating rate along and below the satellite track. In a first application of the new model, a study is made of thermospheric and ionospheric structure below the DE 2 satellite for a single orbit which occurred on October 25, 1981. The field-aligned Poynting flux, which is independently obtained for this orbit, is compared with the model predictions of the height-integrated energy conversion rate. Good quantitative agreement between these two estimates has been reached. In addition, measurements taken at the incoherent scatter radar site at Chatanika (65.1 deg N, 147.4 deg W) during a DE 2 overflight are compared with the model

  3. Quasicrystalline electronic states of a one-dimensionally modulated Ag film.

    PubMed

    Moras, P; Theis, W; Ferrari, L; Gardonio, S; Fujii, J; Horn, K; Carbone, C

    2006-04-21

    Ag films on GaAs(110) exhibit a one-dimensional quasiperiodic modulation, resulting in a Fibonacci sequence of parallel stripes with two different widths. Valence level photoemission shows that the Ag electronic states acquire a unique character along the quasiperiodic direction, distinctively manifested by a hierarchy of energy level replicas and avoided crossings at characteristic intervals in reciprocal space. These observations demonstrate the strong influence of the one-dimensional quasiperiodic potential on the Ag film states.

  4. Elementary excitations for the one-dimensional Hubbard model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Tomiyama, A.; Suga, S.; Okiji, A.

    1997-07-01

    The elementary excitations for the one-dimensional Hubbard model at finite temperatures are studied with the use of the Bethe ansatz solution. The formulation is based on the method of Yang and Yang, which was developed for the one-dimensional boson systems with the 0953-8984/9/27/014/img1-function type interaction. The dispersion relations and the excitation spectrums are obtained numerically for the charge and the spin degrees of freedom.

  5. SPEFO---A Simple, Yet Powerful Program for One-Dimensional Spectra Processing

    NASA Astrophysics Data System (ADS)

    Skoda, Petr

    SPEFO is a small, yet powerful program used for processing stellar spectra at the Astronomical Institute of the Academy of Sciences of the Czech Republic in Ondřejov. It was originally written in 1990 by Dr. Jiři Horn for processing spectral plates obtained with the 2m telescope of the Ondřejov observatory and scanned with the local five channel microphotometer. Since then the code had been under constant improvement until the sudden death of the author in December 1994. Currently SPEFO is used mainly for the reduction of data from the Ondřejov Reticon detector (1872 pixels, 12 bit A/D), however it can process data from other instruments too, provided that they are in FITS one-dimensional format. The code was written in Turbo Pascal for MS-DOS; the size of the binaries is less than 350 KB. SPEFO will run on an ordinary PC computer with very modest hardware demands (PC AT 286, 1 MB RAM, 30 MB HD color EGA or VGA). Despite its small size the program is very powerful, and user friendly as well. The basic data reduction tasks such as derivation of the dispersion function, spectrum rectification, Fourier noise filtering, radial velocity and equivalent width measurements are performed in an easy manner, and the user can immediately see changes to the data on a screen plot (e.g., the line position is determined in the ``oscilloscopic'' mode by finding the coincidence of the displayed line and its interactively shifted mirrored profile, the continuum level spline is recalculated after fixing each new point, etc.). The main output of SPEFO is a table of radial velocities of measured stellar lines (including the atmospheric line correction), their equivalent widths and higher order moments, relative central line intensities and FWHM, together with the HPGL plot file. The program can do basic operations on spectra like comparison of two spectra, subtraction, adding, production of differential spectra or the transformation by rotational broadening. SPEFO can also deal with

  6. The parallel implementation of the one-dimensional Fourier transformed Vlasov Poisson system

    NASA Astrophysics Data System (ADS)

    Eliasson, Bengt

    2005-08-01

    A parallel implementation of an algorithm for solving the one-dimensional, Fourier transformed Vlasov-Poisson system of equations is documented, together with the code structure, file formats and settings to run the code. The properties of the Fourier transformed Vlasov-Poisson system is discussed in connection with the numerical solution of the system. The Fourier method in velocity space is used to treat numerical problems arising due the filamentation of the solution in velocity space. Outflow boundary conditions in the Fourier transformed velocity space removes the highest oscillations in velocity space. A fourth-order compact Padé scheme is used to calculate derivatives in the Fourier transformed velocity space, and spatial derivatives are calculated with a pseudo-spectral method. The parallel algorithms used are described in more detail, in particular the parallel solver of the tri-diagonal systems occurring in the Padé scheme. Program summaryTitle of program:vlasov Catalogue identifier:ADVQ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVQ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Operating system under which the program has been tested: Sun Solaris; HP-UX; Read Hat Linux Programming language used: FORTRAN 90 with Message Passing Interface (MPI) Computers: Sun Ultra Sparc; HP 9000/785; HP IPF (Itanium Processor Family) ia64 Cluster; PCs cluster Number of lines in distributed program, including test data, etc.:3737 Number of bytes in distributed program, including test data, etc.:18 772 Distribution format: tar.gz Nature of physical problem: Kinetic simulations of collisionless electron-ion plasmas. Method of solution: A Fourier method in velocity space, a pseudo-spectral method in space and a fourth-order Runge-Kutta scheme in time. Memory required to execute with typical data: Uses typically of the order 10 5-10 6 double precision numbers. Restriction on the complexity of the problem: The program uses

  7. Interacting one dimensional electron systems and stripe phase of high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Jaefari, Akbar

    In this dissertation, I will consider the problem of coupled one dimensional electronic systems particularly in connection with the stripe phases of high temperature superconductors. Three major problems have been addressed in this dissertation. In chapter one, I consider the problem of the Local Density of States for spin-gapped one-dimensional charge density wave (CDW) states and Mott insulators in the presence of a hard-wall boundary. I calculate the boundary contribution to the single-particle Green function in the low-energy limit using field theory techniques and analyze it in terms of its Fourier transform in both time and space. The boundary LDOS in the CDW case exhibits a singularity at momentum 2kF, which is indicative of the pinning of the CDW order at the impurity. Several dispersing features has been observed at frequencies above the spin gap, which provide a characteristic signature of spin-charge separation. This demonstrates that the boundary LDOS can be used to infer properties of the underlying bulk system. In the presence of a boundary magnetic field mid-gap states localized at the boundary emerge with signature in the LDOS. I discuss implications of these results for STM experiments on quasi-1D systems such as two-leg ladder materials like Sr14Cu24O41. By exchanging the roles of charge and spin sectors, all our results directly carry over to the case of one-dimensional Mott insulators. In the second chapter, I study an extended Hubbard-Heisenberg model on two types of two leg ladders, a model without flux and a model with flux pi per plaquette. In the case of the conventional (flux-less) ladder the Pair density wave state arises for certain filling fractions when commensurability conditions is satisfied. For the flux pi ladder the pair density wave phase is generally present. The PDW phase is characterized by a finite spin gap and a superconducting order parameter with a finite (commensurate in this case) wave vector and power

  8. Dynamic simulation of wavy-stratified two-phase flow with the one-dimensional two-fluid model

    NASA Astrophysics Data System (ADS)

    Fullmer, William D.

    The one-dimensional two-fluid model is the basis for the description of the transport of mass, momentum and energy in the thermal-hydraulic codes used for nuclear reactor safety analysis. Unlike other physical transport models, the one-dimensional two-fluid model suffers from the possibility of being ill-posed as an initial-boundary value problem depending on the flow conditions and the relevant physical closure laws. Typically, the ill-posedness is dealt with through either excessive numerical damping or the addition of unphysical closure laws designed for the sole purpose of hyperbolization. Unfortunately both methods eliminate the instability along with the problem of ill-posedness causing the model to undoubtedly lose some of its inherent dynamic capability. In this work, a one-dimensional two-fluid model for horizontal or slightly inclined stratified flow is developed. Higher order physical models that are often neglected, such as surface tension and axial viscous stress, are retained for their short-wavelength stability properties. Characteristic, dispersion and nonlinear analyses are performed to demonstrate that the resulting model is linearly well-posed and nonlinearly well-behaved. While it has been known that higher-order differential terms are able to regularize the short-wavelength problem of ill-posedness without removing the long-wavelength instability, the literature is relatively silent on the consequences of using a model under linearly unstable conditions. Using carefully selected conditions in an idealized infinite domain, it is demonstrated for the first time that the one-dimensional two-fluid model exhibits chaotic behavior in addition to limit cycles and asymptotic stability. The chaotic behavior is a consequence of the long-wavelength linear instability (energy source) the nonlinearity (energy transfer) and the short-wavelength dissipation (energy sink). Since the model is chaotic, solutions exhibit a sensitive dependence on initial

  9. The character of W-doped one-dimensional VO{sub 2} (M)

    SciTech Connect

    Li Jing; Liu Chunyan; Mao Lijuan

    2009-10-15

    The one-dimensional W-doped VO{sub 2} (M) solid solutions with a various doped content were successfully synthesized under hydrothermal condition and subsequent calcination for the first time, and physical-chemical and phase transformation character were explored, subsequently. DSC analyses displayed that the phase-transition temperature of VO{sub 2} (M) solid solution could be linearly tuned with the doped content. Promisingly, the one-dimensional W-doped VO{sub 2} (M) had a good thermochromic property. - Graphical Abstract: One-dimensional W-doped VO{sub 2} (M) solid solutions with a various doped content were synthesized under hydrothermal condition and subsequent calcination. The physical-chemical and phase transformation character were explored, subsequently.

  10. Superfluid, solid, and supersolid phases of dipolar bosons in a quasi-one-dimensional optical lattice

    SciTech Connect

    Fellows, Jonathan M.; Carr, Sam T.

    2011-11-15

    We discuss a model of dipolar bosons trapped in a weakly coupled planar array of one-dimensional tubes. We consider the situation where the dipolar moments are aligned by an external field, and we find a rich phase diagram as a function of the angle of this field exhibiting quantum phase transitions between solid, superfluid, and supersolid phases. In the low energy limit, the model turns out to be identical to one describing quasi-one-dimensional superconductivity in condensed matter systems. This opens the possibility of using bosons as a quantum analog simulator of electronic systems, a scenario arising from the intricate relation between statistics and interactions in quasi-one-dimensional systems.

  11. Robust unidirectional transport in a one-dimensional metacrystal with long-range hopping

    NASA Astrophysics Data System (ADS)

    Longhi, S.

    2016-11-01

    In two- and three-dimensional structures, topologically protected chiral edge modes offer a powerful mean to realize robust light transport. However, little attention has been paid so far to robust one-way transport in one-dimensional systems. Here it is shown that unidirectional transport, which is immune to disorder and backscattering, can occur in certain one-dimensional metacrystals with long-range hopping without resorting to topological protection. Such metacrystals are described by an effective Hermitian Hamiltonian with broken time-reversal symmetry, and transport does not require adiabatic (Thouless) pumping. A simple implementation in optics of such one-dimensional metacrystals, based on transverse light dynamics in a self-imaging optical cavity with phase gratings, is suggested.

  12. One-dimensional light localization with classical scatterers: An advanced undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Kemp, K. J.; Barker, S.; Guthrie, J.; Hagood, B.; Havey, M. D.

    2016-10-01

    The phenomenon of electronic wave localization through disorder remains an important area of fundamental and applied research. Localization of all wave phenomena, including light, is thought to exist in a restricted one-dimensional geometry. We present here a series of experiments to illustrate, using a straightforward experimental arrangement and approach, the localization of light in a quasi-one-dimensional physical system. In the experiments, reflected and transmitted light from a stack of glass slides of varying thickness reveals an Ohm's law type behavior for small thicknesses, and evolution to exponential decay of the transmitted power for larger thicknesses. For larger stacks of slides, a weak departure from one-dimensional behavior is also observed. The experiment and analysis of the results, showing many of the essential features of wave localization, is relatively straightforward, economical, and suitable for laboratory experiments at an undergraduate level.

  13. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide

    SciTech Connect

    Arkhipenko, V. I.; Simonchik, L. V. Usachonak, M. S.; Callegari, Th.; Sokoloff, J.

    2014-09-28

    We demonstrate the ability to develop one-dimensional electromagnetic band gap structure in X-band waveguide solely by using the positive columns of glow discharges in neon at the middle pressure. Plasma inhomogeneities are distributed uniformly along a typical X-band waveguide with cross section of 23×10 mm². It is shown that electron densities larger than 10¹⁴ cm ⁻³ are needed in order to create an effective one-dimensional electromagnetic band gap structure. Some applications for using the one-dimensional electromagnetic band gap structure in waveguide as a control of microwave (broadband filter and device for variation of pulse duration) are demonstrated.

  14. Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems

    SciTech Connect

    Stimming, H.-P.; Mauser, N. J.; Mazets, I. E.

    2010-07-02

    We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter, we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled, and compare with the Luttinger-liquid theory.

  15. The estimation of biological tissues trauma under their perforation by one-dimensional implants

    NASA Astrophysics Data System (ADS)

    Shil'ko, S.; Chernous, D.; Panin, S.

    2015-11-01

    The subject of paper is a base stage of positioning of one-dimensional implants (fixing, diagnostic) element, stretching through an aperture in a biotissue. Corresponding mechanical and mathematical model describes implant interaction with biotissues in the conditions of sticking and sliding of contacting surfaces. Theoretical dependences for implant elongation and the maximum value of stress tensor intensity in interfacing volumes of the material are presented, allowing one to calculate the frictional and mechanical characteristics of one-dimensional implant and to estimate the injuring action from biomechanics point of view.

  16. Oscillatory motion of a camphor grain in a one-dimensional finite region

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Sakurai, Tatsunari; Kitahata, Hiroyuki

    2016-10-01

    The motion of a self-propelled particle is affected by its surroundings, such as boundaries or external fields. In this paper, we investigated the bifurcation of the motion of a camphor grain, as a simple actual self-propelled system, confined in a one-dimensional finite region. A camphor grain exhibits oscillatory motion or remains at rest around the center position in a one-dimensional finite water channel, depending on the length of the water channel and the resistance coefficient. A mathematical model including the boundary effect is analytically reduced to an ordinary differential equation. Linear stability analysis reveals that the Hopf bifurcation occurs, reflecting the symmetry of the system.

  17. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect

    Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.

    2009-01-01

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  18. One-dimensional edge state of Bi thin film grown on Si(111)

    SciTech Connect

    Kawakami, Naoya; Lin, Chun-Liang; Kawai, Maki; Takagi, Noriaki; Arafune, Ryuichi

    2015-07-20

    The geometric and electronic structures of the Bi thin film grown on Si(111) were investigated by using scanning tunneling microscopy and spectroscopy. We have found two types of edges, one of which hosts an electronic state localized one-dimensionally. We also revealed the energy dispersion of the localized edge state from the evolution of quasiparticle interference patterns as a function of energy. These spectroscopic findings well reproduce those acquired for the cleaved surface of the bulk Bi crystal [I. K. Drozdov et al., Nat. Phys. 10, 664 (2014)]. The present results indicate that the deposited Bi film provides a tractable stage for further scrutiny of the one-dimensional edge state.

  19. Fluctuations of the heat flux of a one-dimensional hard particle gas

    NASA Astrophysics Data System (ADS)

    Brunet, E.; Derrida, B.; Gerschenfeld, A.

    2010-04-01

    Momentum-conserving one-dimensional models are known to exhibit anomalous Fourier's law, with a thermal conductivity varying as a power law of the system size. Here we measure, by numerical simulations, several cumulants of the heat flux of a one-dimensional hard particle gas. We find that the cumulants, like the conductivity, vary as power laws of the system size. Our results also indicate that cumulants higher than the second follow different power laws when one compares the ring geometry at equilibrium and the linear case in contact with two heat baths (at equal or unequal temperatures).

  20. One-dimensional silver nanostructures on single-wall carbon nanotubes.

    PubMed

    Mercado, Eunice; Santiago, Steven; Baez, Luis; Rivera, Daniel; Gonzalez, Miguel; Rivera-Ramos, Milton E; Leon, Madeline; Castro, Miguel E

    2011-11-23

    We report the synthesis and characterization of one-dimensional silver nanostructures using single-wall carbon nanotubes (SWCNT) as a template material. Transmission electron microscopy and scanning tunneling microscopy are consistent with the formation of a one-dimensional array of silver particles on SWCNT. We observe evidence for the excitation of the longitudinal silver plasmon mode in the optical absorption spectra of Ag-SWCNT dispersions, even in the lowest silver concentrations employed. The results indicate that silver deposits on SWCNT may be candidates for light-to-energy conversion through the coupling of the electric field excited in arrays of plasmonic particles.

  1. Decoherence and relaxation of a single electron in a one-dimensional conductor

    NASA Astrophysics Data System (ADS)

    Marguerite, A.; Cabart, C.; Wahl, C.; Roussel, B.; Freulon, V.; Ferraro, D.; Grenier, Ch.; Berroir, J.-M.; Plaçais, B.; Jonckheere, T.; Rech, J.; Martin, T.; Degiovanni, P.; Cavanna, A.; Jin, Y.; Fève, G.

    2016-09-01

    We study the decoherence and relaxation of a single elementary electronic excitation propagating in a one-dimensional chiral conductor. Using two-particle interferences in the electronic analog of the Hong-Ou-Mandel experiment, we analyze quantitatively the decoherence scenario of a single electron propagating along a quantum Hall edge channel at filling factor 2. The decoherence results from the emergence of collective neutral excitations induced by Coulomb interaction and leading, in one dimension, to the destruction of the elementary quasiparticle. This study establishes the relevance of electron quantum optics setups to provide stringent tests of strong interaction effects in one-dimensional conductors described by the Luttinger liquids paradigm.

  2. Acousto-optical interaction in fishbone-like one-dimensional phoxonic crystal nanobeam

    NASA Astrophysics Data System (ADS)

    Hsiao, Fu-Li; Hsieh, Hao-Yu; Hsieh, Cheng-Yi; Chiu, Chien-Chang

    2014-09-01

    We demonstrate the simultaneous existence of slow photonic and phononic modes in a fishbone-like one-dimensional phoxonic crystal nanobeam. The phoxonic crystal nanobeam, which is formed by a suspended fishbone-like silicon waveguide, is not only an optical one-dimensional grating waveguide but also a waveguide with acoustic local resonance. Because of the slow group velocities, the acousto-optical interactions are significantly enhanced. The operating optical wavelength and acoustic frequency can be manipulated individually by varying certain geometric parameters of the nanobeam.

  3. An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice

    NASA Astrophysics Data System (ADS)

    Ananthanarayan, B.; Bijnens, Johan; Ghosh, Shayan; Hebbar, Aditya

    2016-12-01

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper.

  4. Fringe pattern demodulation using the one-dimensional continuous wavelet transform: field-programmable gate array implementation.

    PubMed

    Abid, Abdulbasit

    2013-03-01

    This paper presents a thorough discussion of the proposed field-programmable gate array (FPGA) implementation for fringe pattern demodulation using the one-dimensional continuous wavelet transform (1D-CWT) algorithm. This algorithm is also known as wavelet transform profilometry. Initially, the 1D-CWT is programmed using the C programming language and compiled into VHDL using the ImpulseC tool. This VHDL code is implemented on the Altera Cyclone IV GX EP4CGX150DF31C7 FPGA. A fringe pattern image with a size of 512×512 pixels is presented to the FPGA, which processes the image using the 1D-CWT algorithm. The FPGA requires approximately 100 ms to process the image and produce a wrapped phase map. For performance comparison purposes, the 1D-CWT algorithm is programmed using the C language. The C code is then compiled using the Intel compiler version 13.0. The compiled code is run on a Dell Precision state-of-the-art workstation. The time required to process the fringe pattern image is approximately 1 s. In order to further reduce the execution time, the 1D-CWT is reprogramed using Intel Integrated Primitive Performance (IPP) Library Version 7.1. The execution time was reduced to approximately 650 ms. This confirms that at least sixfold speedup was gained using FPGA implementation over a state-of-the-art workstation that executes heavily optimized implementation of the 1D-CWT algorithm.

  5. Comparing the Impact of Dynamic and Static Media on Students' Learning of One-Dimensional Kinematics

    ERIC Educational Resources Information Center

    Mešic, Vanes; Dervic, Dževdeta; Gazibegovic-Busuladžic, Azra; Salibašic, Džana; Erceg, Nataša

    2015-01-01

    In our study, we aimed to compare the impact of simulations, sequences of printed simulation frames and conventional static diagrams on the understanding of students with regard to the one-dimensional kinematics. Our student sample consisted of three classes of middle years students (N = 63; mostly 15 year-olds). These three classes served as…

  6. ONEOptimal: A Maple Package for Generating One-Dimensional Optimal System of Finite Dimensional Lie Algebra

    NASA Astrophysics Data System (ADS)

    Miao, Qian; Hu, Xiao-Rui; Chen, Yong

    2014-02-01

    We present a Maple computer algebra package, ONEOptimal, which can calculate one-dimensional optimal system of finite dimensional Lie algebra for nonlinear equations automatically based on Olver's theory. The core of this theory is viewing the Killing form of the Lie algebra as an invariant for the adjoint representation. Some examples are given to demonstrate the validity and efficiency of the program.

  7. The appropriateness of one-dimensional Yucca Mountain hydrologic calculations; Yucca Mountain Site Characterization Project

    SciTech Connect

    Eaton, R.R.

    1993-07-01

    This report brings into focus the results of numerous studies that have addressed issues associated with the validity of assumptions which are used to justify reducing the dimensionality of numerical calculations of water flow through Yucca Mountain, NV. it is shown that, in many cases, one-dimensional modeling is more rigorous than previously assumed.

  8. Computer Simulation of a Particle in a One-Dimensional Double or Triple Potential Well.

    ERIC Educational Resources Information Center

    Humberston, J. W.; And Others

    1983-01-01

    A computer program was written for a model system in quantum mechanics (particle in a one-dimensional finite square well potential). Described is a major extension of the single-well program to treat problem of a particle in a double/triple finite square potential well. Technical/educational features of the program are considered. (Author/JN)

  9. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Voinov, Yu. P.; Shchavlev, V. V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2016-12-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  10. Analysis of reverse combustion in tar sands: a one-dimensional model

    SciTech Connect

    Amr, A.

    1980-08-01

    This paper describes a one-dimensional numerical model which simulates oil recovery from tar sands by reverse combustion. The method of lines is used to solve the nonlinear differential equations describing the flow. The effects of volumetric air flux on the peak temperature, flame velocity, and oil recovery efficiency are reported. The results are compared to the results of relevant experimental studies.

  11. Cooperative jump motions of jammed particles in a one-dimensional periodic potential.

    PubMed

    Sakaguchi, Hidetsugu

    2009-12-01

    Cooperative jump motions are studied for mutually interacting particles in a one-dimensional periodic potential. The diffusion constant for the cooperative motion in systems including a small number of particles is numerically calculated and it is compared with theoretical estimates. We find that the size distribution of the cooperative jump motions obeys an exponential law in a large system.

  12. Facile synthesis of one-dimensional peapod-like Sb@C submicron-structures

    SciTech Connect

    Luo, W; Lorger, S; Wang, B; Bommier, C; Ji, XL

    2014-01-01

    We demonstrate a novel synthetic route to fabricate a one-dimensional peapod-like Sb@C structure with disperse Sb submicron-particles encapsulated in carbon submicron-tubes. The synthetic route may well serve as a general methodology for fabricating carbon/metallic fine structures by thermally reducing their carbon-coated metal oxide composites.

  13. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2-]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials.

  14. Transmission resonances and supercritical states in a one-dimensional cusp potential

    SciTech Connect

    Villalba, Victor M.; Greiner, Walter

    2003-05-01

    We solve the two-component Dirac equation in the presence of a spatially one-dimensional symmetric cusp potential. We compute the scattering and bound state solutions and we derive the conditions for transmission resonances as well as for supercriticality.

  15. Simple Two-Dimensional Corrections for One-Dimensional Pulse Tube Models

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Kittel, P.; Timmerhaus, K. D.; Radebaugh, R.

    2004-01-01

    One-dimensional oscillating flow models are very useful for designing pulse tubes. They are simple to use, not computationally intensive, and the physical relationship between temperature, pressure and mass flow are easy to understand when used in conjunction with phasor diagrams. They do not possess, however, the ability to directly calculate thermal and momentum diffusion in the direction transverse to the oscillating flow. To account for transverse effects, lumped parameter corrections, which are obtained though experiment, must be used. Or two-dimensional solutions of the differential fluid equations must be obtained. A linear two-dimensional solution to the fluid equations has been obtained. The solution provides lumped parameter corrections for one-dimensional models. The model accounts for heat transfer and shear flow between the gas and the tube. The complex Nusselt number and complex shear wall are useful in describing these corrections, with phase relations and amplitudes scaled with the Prandtl and Valensi numbers. The calculated ratio, a, between a two-dimensional solution of the oscillating temperature and velocity and a one-dimensional solution for the same shows a scales linearly with Va for Va less than 30. In this region alpha less than 0.5, that is, the enthalpy flow calculated with a two-dimensional model is 50% of a calculation using a one-dimensional model. For Va greater than 250, alpha = 0.8, showing that diffusion is still important even when it is confined to a thing layer near the tube wall.

  16. Newton's method for nonlinear stochastic wave equations driven by one-dimensional Brownian motion.

    PubMed

    Leszczynski, Henryk; Wrzosek, Monika

    2017-02-01

    We consider nonlinear stochastic wave equations driven by one-dimensional white noise with respect to time. The existence of solutions is proved by means of Picard iterations. Next we apply Newton's method. Moreover, a second-order convergence in a probabilistic sense is demonstrated.

  17. Improving the accuracy of the discrete gradient method in the one-dimensional case.

    PubMed

    Cieśliński, Jan L; Ratkiewicz, Bogusław

    2010-01-01

    We present two numerical schemes of high accuracy for one-dimensional dynamical systems. They are modifications of the discrete gradient method and keep its advantages, including stability and conservation of the energy integral. However, their accuracy is higher by several orders of magnitude.

  18. ONE-DIMENSIONAL HYDRODYNAMIC/SEDIMENT TRANSPORT MODEL FOR STREAM NETWORKS: TECHNICAL REPORT

    EPA Science Inventory

    This technical report describes a new sediment transport model and the supporting post-processor, and sampling procedures for sediments in streams. Specifically, the following items are described herein:

    EFDC1D - This is a new one-dimensional hydrodynamic and sediment tr...

  19. WHY ONE-DIMENSIONAL MODELS FAIL IN THE DIAGNOSIS OF AVERAGE SPECTRA FROM INHOMOGENEOUS STELLAR ATMOSPHERES

    SciTech Connect

    Uitenbroek, Han

    2011-07-20

    We investigate the feasibility of representing a structured multi-dimensional stellar atmosphere with a single one-dimensional average stratification for the purpose of spectral diagnosis of the atmosphere's average spectrum. In particular, we construct four different one-dimensional stratifications from a single snapshot of a magnetohydrodynamic simulation of solar convection: one by averaging its properties over surfaces of constant height and three by averaging over surfaces of constant optical depth at 500 nm. Using these models, we calculate continuum and atomic and molecular line intensities and their center-to-limb variations. From an analysis of the emerging spectra, we identify three main reasons why these average representations are inadequate for accurate determination of stellar atmospheric properties through spectroscopic analysis. These reasons are nonlinearity in the Planck function with temperature, which raises the average emergent intensity of an inhomogeneous atmosphere above that of an average-property atmosphere, even if their temperature-optical depth stratification is identical; nonlinearities in molecular formation with temperature and density, which raise the abundance of molecules of an inhomogeneous atmosphere over that in a one-dimensional model with the same average properties; and the anisotropy of convective motions, which strongly affects the center-to-limb variation of line-core intensities. We argue therefore that a one-dimensional atmospheric model that reproduces the mean spectrum of an inhomogeneous atmosphere necessarily does not reflect the average physical properties of that atmosphere and is therefore inherently unreliable.

  20. A simple model of a one-dimensional, randomly rough, non-Gaussian surface

    NASA Astrophysics Data System (ADS)

    Méndez, E. R.; Jiménez, G. D.; Maradudin, A. A.

    2016-09-01

    , 928 (1993)) measured and calculated the independent elements of the Stokes matrix for in-plane scattering from a one-dimensional, randomly rough, metal surface. They found that the agreement between the computer simulation results and the experimental results for these matrix elements was significantly improved if the statistical properties of the surface profi

  1. An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors.

    PubMed

    Luo, Liyan; Xu, Luping; Zhang, Hua

    2015-07-07

    In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.

  2. Simple One-Dimensional Quantum-Mechanical Model for a Particle Attached to a Surface

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2010-01-01

    We present a simple one-dimensional quantum-mechanical model for a particle attached to a surface. It leads to the Schrodinger equation for a harmonic oscillator bounded on one side that we solve in terms of Weber functions and discuss the behaviour of the eigenvalues and eigenfunctions. We derive the virial theorem and other exact relationships…

  3. Results from field tests of the one-dimensional Time-Encoded Imaging System.

    SciTech Connect

    Marleau, Peter; Brennan, James S.; Brubaker, Erik

    2014-09-01

    A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.

  4. One-dimensional organic lead halide perovskites with efficient bluish white-light emission

    PubMed Central

    Yuan, Zhao; Zhou, Chenkun; Tian, Yu; Shu, Yu; Messier, Joshua; Wang, Jamie C.; van de Burgt, Lambertus J.; Kountouriotis, Konstantinos; Xin, Yan; Holt, Ethan; Schanze, Kirk; Clark, Ronald; Siegrist, Theo; Ma, Biwu

    2017-01-01

    Organic-inorganic hybrid metal halide perovskites, an emerging class of solution processable photoactive materials, welcome a new member with a one-dimensional structure. Herein we report the synthesis, crystal structure and photophysical properties of one-dimensional organic lead bromide perovskites, C4N2H14PbBr4, in which the edge sharing octahedral lead bromide chains [PbBr4 2−]∞ are surrounded by the organic cations C4N2H14 2+ to form the bulk assembly of core-shell quantum wires. This unique one-dimensional structure enables strong quantum confinement with the formation of self-trapped excited states that give efficient bluish white-light emissions with photoluminescence quantum efficiencies of approximately 20% for the bulk single crystals and 12% for the microscale crystals. This work verifies once again that one-dimensional systems are favourable for exciton self-trapping to produce highly efficient below-gap broadband luminescence, and opens up a new route towards superior light emitters based on bulk quantum materials. PMID:28051092

  5. Resonant transmission and velocity renormalization of third sound in one-dimensional random lattices

    SciTech Connect

    Kono, K.; Nakada, S. )

    1992-08-24

    Localization properties of third sound were studied experimentally in one-dimensional random lattices. Transmission spectra were measured and compared with those in periodic, Fibonacci, and Thue-Morse lattices. Not only the resonant transmission but also the phase-velocity renormalization of third sound was observed in the random lattices.

  6. One-dimensional alignment of strong Lewis acid sites in a porous coordination polymer.

    PubMed

    Kajiwara, Takashi; Higuchi, Masakazu; Yuasa, Akihiro; Higashimura, Hideyuki; Kitagawa, Susumu

    2013-11-18

    A new lanthanoid porous coordination polymer, La-BTTc (BTTc = benzene-1,3,5-tris(2-thiophene-5-carboxylate)), was synthesized and structurally characterized to have densely aligned one-dimensional open metal sites, which were found to act as strong Lewis acid sites after the removal of the coordinated solvent.

  7. DENSITY-DEPENDENT FLOW IN ONE-DIMENSIONAL VARIABLY-SATURATED MEDIA

    EPA Science Inventory

    A one-dimensional finite element is developed to simulate density-dependent flow of saltwater in variably saturated media. The flow and solute equations were solved in a coupled mode (iterative), in a partially coupled mode (non-iterative), and in a completely decoupled mode. P...

  8. One-Dimensional Collision Carts Computer Model and Its Design Ideas for Productive Experiential Learning

    ERIC Educational Resources Information Center

    Wee, Loo Kang

    2012-01-01

    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a…

  9. Monte Carlo Study of One-Dimensional Ising Models with Long-Range Interactions

    NASA Astrophysics Data System (ADS)

    Tomita, Yusuke

    2009-01-01

    Recently, Fukui and Todo have proposed a new effective Monte Carlo algorithm for long-range interacting systems. Using the algorithm with the nonequilibrium relaxation method, we investigated long-range interacting one-dimensional Ising models both ferromagnetic and antiferromagnetic with the nearest-neighbor ferromagnetic interaction. For the antiferromagnetic model, we found the systems are paramagnetic at finite temperatures.

  10. Apparent power-law behavior of conductance in disordered quasi-one-dimensional systems.

    PubMed

    Rodin, A S; Fogler, M M

    2010-09-03

    The dependence of hopping conductance on temperature and voltage for an ensemble of modestly long one-dimensional wires is studied numerically using the shortest-path algorithm. In a wide range of parameters this dependence can be approximated by a power law rather than the usual stretched-exponential form. The relation to recent experiments and prior analytical theory is discussed.

  11. Functional equation for the crossover in the model of one-dimensional Weierstrass random walks

    NASA Astrophysics Data System (ADS)

    Rudoi, Yu. G.; Kotel'nikova, O. A.

    2016-12-01

    We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion.

  12. Uniqueness of continuum one-dimensional Gibbs states for slowly decaying interactions

    SciTech Connect

    Klein, D.

    1986-04-01

    We consider one-dimensional grand-canonical continuum Gibbs states corresponding to slowly decaying, superstable, many-body interactions. Absence of phase transitions, in the sense of uniqueness of the tempered Gibbs state, is proved for interactions with an Nth body hardcore for arbitrarily large N.

  13. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1983-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. Previously announced in STAR as N80-25055

  14. On One-Dimensional Stretching Functions for Finite-Difference Calculations

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1980-01-01

    The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.

  15. On one-dimensional stretching functions for finite-difference calculations. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1979-01-01

    The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.

  16. Fractional charge pumping of interacting bosons in one-dimensional superlattice

    NASA Astrophysics Data System (ADS)

    Zeng, Tian-Sheng; Zhu, W.; Sheng, D. N.

    2016-12-01

    Motivated by experimental realizations of integer quantized charge pumping in one-dimensional superlattices [Nat. Phys. 12, 350 (2016), 10.1038/nphys3584; Nat. Phys. 12, 296 (2016), 10.1038/nphys3622], we generalize and propose the adiabatic pumping of a fractionalized charge in interacting bosonic systems. This is achieved by dynamically sweeping the modulated potential in a class of one-dimensional interacting systems. As concrete examples, we show the charge pumping of interacting bosons at certain fractionally occupied fillings. We find that, for a given ground state, the charge pumping in a complete potential cycle is quantized to the fractional value related to the corresponding Chern number, characterized by the motion of the charge polarization per site. Moreover, the difference between charge polarizations of two ground states is quantized to an intrinsic constant revealing the fractional elementary charge of quasiparticle.

  17. Local chiral symmetry and charge-density waves in one-dimensional conductors

    NASA Astrophysics Data System (ADS)

    Sakita, B.; Shizuya, K.

    1990-09-01

    Symmetry-related features of charge-density-wave transport phenomena are studied using a non-mean-field effective Lagrangian approach. It is pointed out that a local chiral symmetry (based on the Kač-Moody algebra) emerges in the low-energy structure of one-dimensional electron-phonon systems. From this symmetry follow directly power-law correlations of both electrons and phonons. The Peierls instability is suppressed owing to one-dimensional fluctuations. Still the charge-density wave arises and the chiral anomaly can account for acceleration of a sliding charge-density wave along with a phonon-drag effect. The problem of pinning of charge-density waves is discussed in relation to explicit breakings of the chiral symmetry.

  18. Traces of Integrability in Relaxation of One-Dimensional Two-Mass Mixtures

    NASA Astrophysics Data System (ADS)

    Hwang, Zaijong; Cao, Frank; Olshanii, Maxim

    2014-05-01

    We study relaxation in a one-dimensional two-mass mixture of hard-core particles. Special attention is paid to the region of light-to-heavy mass ratios around m / M =√{ 5} - 2 = 0 . 236 ... . At this mass ratio, each heavy-light-heavy subsystem constitutes a little known non-equal-mass generalization of Newton's Cradle, and an anomalous slow-down of relaxation is expected as a result. We further list and classify all other instances of integrability in the one-dimensional three-body hard-core systems, where integrability is especially prominent at the quantum level and leads to the famous ``scattering without diffraction'' phenomenon. The principal experimental application of our results is with two-specie mixtures in optical lattices, in which the effective masses--that can be controlled at will--are assumed to replace the real ones. Supported by the NSF and ONR.

  19. One-dimensional behavior and high thermoelectric power factor in thin indium arsenide nanowires

    SciTech Connect

    Mensch, P.; Karg, S. Schmidt, V.; Gotsmann, B.; Schmid, H.; Riel, H.

    2015-03-02

    Electrical conductivity and Seebeck coefficient of quasi-one-dimensional indium arsenide (InAs) nanowires with 20 nm diameter are investigated. The carrier concentration of the passivated nanowires was modulated by a gate electrode. A thermoelectric power factor of 1.7 × 10{sup −3} W/m K{sup 2} was measured at room temperature. This value is at least as high as in bulk-InAs and exceeds by far typical values of thicker InAs nanowires with three-dimensional properties. The interpretation of the experimental results in terms of power-factor enhancement by one-dimensionality is supported by model calculations using the Boltzmann transport formalism.

  20. One-dimensional mimicking of electronic structure: The case for exponentials

    NASA Astrophysics Data System (ADS)

    Baker, Thomas E.; Stoudenmire, E. Miles; Wagner, Lucas O.; Burke, Kieron; White, Steven R.

    2015-06-01

    An exponential interaction is constructed so that one-dimensional atoms and chains of atoms mimic the general behavior of their three-dimensional counterparts. Relative to the more commonly used soft-Coulomb interaction, the exponential greatly diminishes the computational time needed for calculating highly accurate quantities with the density matrix renormalization group. This is due to the use of a small matrix product operator and to exponentially vanishing tails. Furthermore, its more rapid decay closely mimics the screened Coulomb interaction in three dimensions. Choosing parameters to best match earlier calculations, we report results for the one-dimensional hydrogen atom, uniform gas, and small atoms and molecules both exactly and in the local density approximation.

  1. Exact canonically conjugate momenta approach to a one-dimensional neutron-proton system, I

    NASA Astrophysics Data System (ADS)

    Nishiyama, Seiya; da Providência, João

    2015-06-01

    Introducing collective variables, a collective description of nuclear surface oscillations has been developed with the first-quantized language, contrary to the second-quantized one in Sunakawa's approach for a Bose system. It overcomes difficulties remaining in the traditional theories of nuclear collective motions: Collective momenta are not exact canonically conjugate to collective coordinates and are not independent. On the contrary to such a description, Tomonaga first gave the basic idea to approach elementary excitations in a one-dimensional Fermi system. The Sunakawa's approach for a Fermi system is also expected to work well for such a problem. In this paper, on the isospin space, we define a density operator and further following Tomonaga, introduce a collective momentum. We propose an exact canonically momenta approach to a one-dimensional neutron-proton (N-P) system under the use of the Grassmann variables.

  2. Spin-drag relaxation time in one-dimensional spin-polarized Fermi gases

    NASA Astrophysics Data System (ADS)

    Rainis, Diego; Polini, Marco; Tosi, M. P.; Vignale, G.

    2008-01-01

    Spin propagation in systems of one-dimensional interacting fermions at finite temperature is intrinsically diffusive. The spreading rate of a spin packet is controlled by a transport coefficient termed “spin drag” relaxation time τsd . In this paper we present both numerical and analytical calculations of τsd for a two-component spin-polarized cold Fermi gas trapped inside a tight atomic waveguide. At low temperatures we find an activation law for τsd , in agreement with earlier calculations of Coulomb drag between slightly asymmetric quantum wires, but with a different and much stronger temperature dependence of the prefactor. Our results provide a fundamental input for microscopic time-dependent spin-density functional theory calculations of spin transport in one-dimensional inhomogeneous systems of interacting fermions.

  3. Polaritonic normal-mode splitting and light localization in a one-dimensional nanoguide

    NASA Astrophysics Data System (ADS)

    Haakh, Harald R.; Faez, Sanli; Sandoghdar, Vahid

    2016-11-01

    We theoretically investigate the interaction of light and a collection of emitters in a subwavelength one-dimensional medium (nanoguide), where enhanced emitter-photon coupling leads to efficient multiple scattering of photons. We show that the spectrum of the transmitted light undergoes normal-mode splitting even though no external cavity resonance is employed. By considering densities much higher than those encountered in cold atom experiments, we study the influence of the near-field dipole coupling and disorder on the resulting complex super-radiant and subradiant polaritonic states. In particular, we provide evidence for the longitudinal localization of light in a one-dimensional open system and provide a polaritonic phase diagram. Our results motivate a number of experiments, where new coherent superposition states of light and matter can be realized in the solid state.

  4. Quasi-one-dimensional spin-orbit-coupled correlated insulator in a multinuclear coordinated organometallic crystal

    NASA Astrophysics Data System (ADS)

    Merino, J.; Jacko, A. C.; Khosla, A. L.; Powell, B. J.

    2016-11-01

    We show how quasi-one-dimensional correlated insulating states arise at two-thirds filling in organometallic multinuclear coordination complexes described by layered decorated honeycomb lattices. The interplay of spin-orbit coupling and electronic correlations leads to pseudospin-one moments arranged in weakly coupled chains with highly anisotropic exchange and a large trigonal splitting. We show that the in-plane exchange coupling is very different from the interlayer coupling; in particular the latter is much larger, despite the underlying hopping integrals being close to isotropic. Surprisingly, the effective dimensionality of the pseudospin model is strongly dependent on the strength of the electronic correlations: With increasing Hubbard U the pseudospin-one model becomes increasingly one dimensional, even though the crystal is almost isotropic. We predict that the trigonal splitting leads to a quantum phase transition from a Haldane phase to a topologically trivial phase as the relative strength of the spin-orbit coupling increases.

  5. Topological insulator and particle pumping in a one-dimensional shaken optical lattice

    NASA Astrophysics Data System (ADS)

    Mei, Feng; You, Jia-Bin; Zhang, Dan-Wei; Yang, X. C.; Fazio, R.; Zhu, Shi-Liang; Kwek, L. C.

    2014-12-01

    We propose a simple method to simulate and detect topological insulators with cold atoms trapped in a one-dimensional bichromatic optical lattice subjected to a time-periodic modulation. The tight-binding form of this shaken system is equivalent to the periodically driven Aubry-Andre model. We demonstrate that this model can be mapped into a two-dimensional Chern insulator model, whose energy spectrum hosts a topological phase within an experimentally accessible parameter regime. By tuning the laser phase adiabatically, such one-dimensional system constitutes a natural platform to realize topological particle pumping. We show that the Chern number characterizing the topological features of this system can be measured by detecting the density shift after one cycle of pumping.

  6. Nonlinear Asymptotic Integration Algorithms for One-dimensional Autonomous Dissipative First-order Odes

    NASA Technical Reports Server (NTRS)

    Haslach, Henry W., Jr.; Freed, Alan D.; Walker, Kevin P.

    1994-01-01

    Nonlinear asymptotic integrators are applied to one-dimensional, nonlinear, autonomous, dissipative, ordinary differential equations. These integrators, including a one-step explicit, a one-step implicit, and a one- and two-step midpoint algorithm, are designed to follow the asymptotic behavior of a system approaching a steady state. The methods require that the differential equation be written in a particular asymptotic form. This is always possible for a one-dimensional equation with a globally asymptotic steady state. In this case, conditions are obtained to guarantee that the implicit algorithms are well defined. Further conditions are determined for the implicit methods to be contractive. These methods are all first order accurate, while under certain conditions the midpoint algorithms may also become second order accurate. The stability of each method is investigated and an estimate of the local error is provided.

  7. One-dimensional CdS nanostructures: a promising candidate for optoelectronics.

    PubMed

    Li, Huiqiao; Wang, Xi; Xu, Junqi; Zhang, Qi; Bando, Yoshio; Golberg, Dmitri; Ma, Ying; Zhai, Tianyou

    2013-06-11

    As a promising candidate for optoelectronics, one-dimensional CdS nanostructures have drawn great scientific and technical interest due to their interesting fundamental properties and possibilities of utilization in novel promising optoelectronical devices with augmented performance and functionalities. This progress report highlights a selection of important topics pertinent to optoelectronical applications of one-dimensional CdS nanostructures over the last five years. This article begins with the description of rational design and controlled synthesis of CdS nanostructure arrays, alloyed nanostructucures and kinked nanowire superstructures, and then focuses on the optoelectronical properties, and applications including cathodoluminescence, lasers, light-emitting diodes, waveguides, field emitters, logic circuits, memory devices, photodetectors, gas sensors, photovoltaics and photoelectrochemistry. Finally, the general challenges and the potential future directions of this exciting area of research are highlighted.

  8. Quantitative electron diffraction evidence for one-dimensional ordering in magnetite above the Verwey transition.

    PubMed

    Pacaud, J; Zuo, J M; Hoier, R; Matsumura, S

    2003-10-01

    Energy-filtered electron diffraction and three-dimensional reciprocal lattice mapping was used to study the nature of diffuse scattering in magnetite above the Verwey transition temperature. Characteristic Huang scattering associated with a single molecular polaron is observed at room temperature. As the temperature is lowered, the experiment shows narrowing of diffuse scattering in the (001) directions and additional ringlike diffuse scattering at q approximately 0.8, which suggests the presence of one-dimensional structures above the Verwey transition. Experimental measurements of temperature-dependent correlation lengths and diffuse scattering intensity indicate an increase in the number and length of the one-dimensional structure as the temperature is cooled toward the transition. This study demonstrates the electron sensitivity to atomic displacement and the quality of electron diffraction data for studying phase transition in complex materials.

  9. Fractional quantization of the topological charge pumping in a one-dimensional superlattice

    NASA Astrophysics Data System (ADS)

    Marra, Pasquale; Citro, Roberta; Ortix, Carmine

    2015-03-01

    A one-dimensional quantum charge pump transfers a quantized charge in each pumping cycle. This quantization is topologically robust, being analogous to the quantum Hall effect. The charge transferred in a fraction of the pumping period is instead generally unquantized. We show, however, that with specific symmetries in parameter space the charge transferred at well-defined fractions of the pumping period is quantized as integer fractions of the Chern number. We illustrate this in a one-dimensional Harper-Hofstadter model and show that the fractional quantization of the topological charge pumping is independent of the specific boundary conditions taken into account. We further discuss the relevance of this phenomenon for cold atomic gases in optical superlattices.

  10. Ordering of small particles in one-dimensional coherent structures by time-periodic flows.

    PubMed

    Pushkin, D O; Melnikov, D E; Shevtsova, V M

    2011-06-10

    Small particles transported by a fluid medium do not necessarily have to follow the flow. We show that for a wide class of time-periodic incompressible flows inertial particles have a tendency to spontaneously align in one-dimensional dynamic coherent structures. This effect may take place for particles so small that often they would be expected to behave as passive tracers and be used in PIV measurement technique. We link the particle tendency to form one-dimensional structures to the nonlinear phenomenon of phase locking. We propose that this general mechanism is, in particular, responsible for the enigmatic formation of the "particle accumulation structures" discovered experimentally in thermocapillary flows more than a decade ago and unexplained until now.

  11. Spin-incoherent one-dimensional spin-1 Bose Luttinger liquid

    NASA Astrophysics Data System (ADS)

    Jen, H. H.; Yip, S.-K.

    2016-09-01

    We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In this regime highly degenerate spin configurations emerge since the energy splitting between different spin states is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large momentum (p ) asymptotic is analytically derived, showing the universal 1 /p4 dependence. We demonstrate that the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite temperature.

  12. A one-dimensional model of solid-earth electrical resistivity beneath Florida

    USGS Publications Warehouse

    Blum, Cletus; Love, Jeffrey J.; Pedrie, Kolby; Bedrosian, Paul A.; Rigler, E. Joshua

    2015-11-19

    An estimated one-dimensional layered model of electrical resistivity beneath Florida was developed from published geological and geophysical information. The resistivity of each layer is represented by plausible upper and lower bounds as well as a geometric mean resistivity. Corresponding impedance transfer functions, Schmucker-Weidelt transfer functions, apparent resistivity, and phase responses are calculated for inducing geomagnetic frequencies ranging from 10−5 to 100 hertz. The resulting one-dimensional model and response functions can be used to make general estimates of time-varying electric fields associated with geomagnetic storms such as might represent induction hazards for electric-power grid operation. The plausible upper- and lower-bound resistivity structures show the uncertainty, giving a wide range of plausible time-varying electric fields.

  13. One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS

    SciTech Connect

    Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.

    2015-06-01

    The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.

  14. Thermodynamics of a one-dimensional self-gravitating gas with periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Miller, Bruce N.; Pirjol, Dan

    2017-02-01

    We study the thermodynamic properties of a one-dimensional gas with one-dimensional gravitational interactions. Periodic boundary conditions are implemented as a modification of the potential consisting of a sum over mirror images (Ewald sum), regularized with an exponential cutoff. As a consequence, each particle carries with it its own background density. Using mean-field theory, we show that the system has a phase transition at a critical temperature. Above the critical temperature the gas density is uniform, while below the critical point the system becomes inhomogeneous. Numerical simulations of the model, which include the caloric curve, the equation of state, the radial distribution function, and the largest Lyapunov exponent, confirm the existence of the phase transition, and they are in good agreement with the theoretical predictions.

  15. Relaxational processes in the one-dimensional Ising model with long-range interactions

    NASA Astrophysics Data System (ADS)

    Tomita, Yusuke

    2016-12-01

    Relaxational processes in ordered phases of one-dimensional Ising models with long-range interactions are investigated by Monte Carlo simulations. Three types of spin model, the pure ferromagnetic, the diluted ferromagnetic, and the spin glass models, are examined. The effective dimension of the one-dimensional systems are controlled by a parameter σ , which tunes the rate of interaction decay. Systematical investigations of droplet dynamics, from the lower to the upper critical dimension, are conducted by changing the value of σ . Comparing numerical data with the droplet theory, it is found that the surface dimension of droplets is distributed around the effective dimension. The distribution in the surface dimension makes the droplet dynamics complex and extremely enhances dynamical crossover.

  16. Relaxational processes in the one-dimensional Ising model with long-range interactions.

    PubMed

    Tomita, Yusuke

    2016-12-01

    Relaxational processes in ordered phases of one-dimensional Ising models with long-range interactions are investigated by Monte Carlo simulations. Three types of spin model, the pure ferromagnetic, the diluted ferromagnetic, and the spin glass models, are examined. The effective dimension of the one-dimensional systems are controlled by a parameter σ, which tunes the rate of interaction decay. Systematical investigations of droplet dynamics, from the lower to the upper critical dimension, are conducted by changing the value of σ. Comparing numerical data with the droplet theory, it is found that the surface dimension of droplets is distributed around the effective dimension. The distribution in the surface dimension makes the droplet dynamics complex and extremely enhances dynamical crossover.

  17. Twisting phonons in complex crystals with quasi-one-dimensional substructures.

    PubMed

    Chen, Xi; Weathers, Annie; Carrete, Jesús; Mukhopadhyay, Saikat; Delaire, Olivier; Stewart, Derek A; Mingo, Natalio; Girard, Steven N; Ma, Jie; Abernathy, Douglas L; Yan, Jiaqiang; Sheshka, Raman; Sellan, Daniel P; Meng, Fei; Jin, Song; Zhou, Jianshi; Shi, Li

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.

  18. One-dimensional electronic transport at the organic charge-transfer interfaces under high pressures

    SciTech Connect

    Kang, N.; Auban-Senzier, P.; Li, C.; Poulard, C.; Pasquier, C. R.

    2014-05-12

    We have characterized the charge transport properties of the electronic state at the interface between tetrathiofulvalene and 7,7,8,8-tetracyanoquinodimethane organic crystals as a function of pressure. At low temperature and for all studied pressures, the conductance and the current through the interface exhibit a power-law dependence on both temperature and bias voltage which reveal features of quasi-one-dimensional character. The transport behavior as well as the pressure dependence of the power-law exponent is consistent with a one-dimensional Wigner crystal model. Our results demonstrate that organic heterointerfaces can provide an ideal platform for exploring the rich electronic phenomena in low-dimensional systems.

  19. Non-equilibrium one-dimensional two-phase flow in variable area channels

    NASA Technical Reports Server (NTRS)

    Rohatgi, U. S.; Reshotko, E.

    1975-01-01

    A one-dimensional nonequilibrium flow analysis has been formulated for a one component two phase flow. The flow is considered homogeneous and essentially isothermal. Phase change is assumed to occur at heterogeneous nucleation sites and the growth of the vapor bubbles is governed by heat conduction from the liquid to the bubble. The analysis adjusted for friction is applied to liquid nitrogen flow in a venturi and comparison is made with the NASA experimental results of Simoneau. Good agreement with the experiments is obtained when one assumes the effective activation energy for nucleus formation to be small but nonzero. The computed pressure distributions deviate from the experimental results in the throat region of the venturi in a manner consistent with centrifugal effects not accounted for in the one-dimensional theory. The results are shown to depend not only on cavitation number but on additional dimensionless parameters governing the nonequilibrium production and subsequent growth of nuclei.

  20. Tunable terahertz multichannel filter based on one-dimensional superconductor-dielectric photonic crystals

    SciTech Connect

    Liu, Yang; Yi, Lin

    2014-12-14

    By means of the transfer matrix method, the transmission properties of one-dimensional photonic crystals (PCs) consisting of superconductor and dielectric have been systematically investigated within the terahertz frequency range (0.1–10 THz). It is shown that comb-like resonant peaks in transmission band can be formed without adding any defect layer in superconductor-dielectric PCs, which means that such a one-dimensional periodic structure can serve as a tunable terahertz multichannel filter by using the PCs passband. Furthermore, the influences coming from the period of the structure, the thickness of the components, the permittivity of the dielectric layers, temperature, and the normal conducting electrons on the filtering properties are also numerically investigated.

  1. Current Fluctuations in the One-Dimensional Symmetric Exclusion Process with Open Boundaries

    NASA Astrophysics Data System (ADS)

    Derrida, B.; Douçot, B.; Roche, P.-E.

    2004-05-01

    We calculate the first four cumulants of the integrated current of the one dimensional symmetric simple exclusion process of $N$ sites with open boundary conditions. For large system size $N$, the generating function of the integrated current depends on the densities $\\rho_a$ and $\\rho_b$ of the two reservoirs and on the fugacity $z$, the parameter conjugated to the integrated current, through a single parameter. Based on our expressions for these first four cumulants, we make a conjecture which leads to a prediction for all the higher cumulants. In the case $\\rho_a=1$ and $\\rho_b=0$, our conjecture gives the same universal distribution as the one obtained by Lee, Levitov and Yakovets for one dimensional quantum conductors in the metallic regime.

  2. ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.

    SciTech Connect

    McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon

    2005-01-01

    This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.

  3. Perpetual motion of a mobile impurity in a one-dimensional quantum gas

    NASA Astrophysics Data System (ADS)

    Lychkovskiy, O.

    2014-03-01

    Consider an impurity particle injected in a degenerate one-dimensional gas of noninteracting fermions (or, equivalently, Tonks-Girardeau bosons) with some initial momentum p0. We examine the infinite-time value of the momentum of the impurity, p∞, as a function of p0. A lower bound on |p∞(p0)| is derived under fairly general conditions. The derivation, based on the existence of the lower edge of the spectrum of the host gas, does not resort to any approximations. The existence of such bound implies the perpetual motion of the impurity in a one-dimensional gas of noninteracting fermions or Tonks-Girardeau bosons at zero temperature. The bound admits an especially simple and useful form when the interaction between the impurity and host particles is everywhere repulsive.

  4. Electron trapping and transport by supersonic solitons in one-dimensional systems

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J. S.

    1978-01-01

    A one-dimensional chain of ions or molecules and electrons described by a Froehlich-type Hamiltonian with quartic phonon anharmonicities is investigated. It is shown that the anharmonic lattice supports supersonic solitons which under favorable circumstances may trap electrons and transport them along the lattice. For a lattice constant/soliton spatial extent quotient of the order of 0.1, rough estimates give electron trapping energies in the meV range. They imply a useful temperature range, up to tens of degrees K, for observing the new effect. The activation energy of a lattice soliton is proportional to the molecular mass and is therefore quite high (about 1 eV) for typical quasi-one-dimensional organic systems.

  5. One-dimensional silicon nanolines in the Si(001):H surface

    NASA Astrophysics Data System (ADS)

    Bianco, F.; Köster, S. A.; Longobardi, M.; Owen, J. H. G.; Bowler, D. R.; Renner, Ch.

    2013-12-01

    We present a detailed study of the structural and electronic properties of a self-assembled silicon nanoline embedded in the monohydride Si(001):H surface, known as the Haiku stripe. The nanoline is a perfectly straight and defect free endotaxial structure of huge aspect ratio; it can grow micrometer long at a constant width of exactly four Si dimers (1.54 nm). Another remarkable property is its capacity to be exposed to air without suffering any degradation. The nanoline grows independently of any step edges at tunable densities, from isolated nanolines to a dense array of nanolines. In addition to these unique structural characteristics, scanning tunnelling microscopy and density functional theory reveal a one-dimensional state confined along the Haiku core. This nanoline is a promising candidate for the long sought after electronic solid-state one-dimensional model system to explore the fascinating quantum properties emerging in such reduced dimensionality.

  6. Theory of finite-entanglement scaling at one-dimensional quantum critical points.

    PubMed

    Pollmann, Frank; Mukerjee, Subroto; Turner, Ari M; Moore, Joel E

    2009-06-26

    Studies of entanglement in many-particle systems suggest that most quantum critical ground states have infinitely more entanglement than noncritical states. Standard algorithms for one-dimensional systems construct model states with limited entanglement, which are a worse approximation to quantum critical states than to others. We give a quantitative theory of previously observed scaling behavior resulting from finite entanglement at quantum criticality. Finite-entanglement scaling in one-dimensional systems is governed not by the scaling dimension of an operator but by the "central charge" of the critical point. An important ingredient is the universal distribution of density-matrix eigenvalues at a critical point [P. Calabrese and A. Lefevre, Phys. Rev. A 78, 032329 (2008)10.1103/PhysRevA.78.032329]. The parameter-free theory is checked against numerical scaling at several quantum critical points.

  7. Consistent treatment of viscoelastic effects at junctions in one-dimensional blood flow models

    NASA Astrophysics Data System (ADS)

    Müller, Lucas O.; Leugering, Günter; Blanco, Pablo J.

    2016-06-01

    While the numerical discretization of one-dimensional blood flow models for vessels with viscoelastic wall properties is widely established, there is still no clear approach on how to couple one-dimensional segments that compose a network of viscoelastic vessels. In particular for Voigt-type viscoelastic models, assumptions with regard to boundary conditions have to be made, which normally result in neglecting the viscoelastic effect at the edge of vessels. Here we propose a coupling strategy that takes advantage of a hyperbolic reformulation of the original model and the inherent information of the resulting system. We show that applying proper coupling conditions is fundamental for preserving the physical coherence and numerical accuracy of the solution in both academic and physiologically relevant cases.

  8. Apparent Power-Law Behavior of Conductance in Disordered Quasi-One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Rodin, Aleksandr; Fogler, Michael

    2011-03-01

    Observation of power-law dependence of conductance on temperature and voltage has been reported for a wide variety of low-dimensional systems(nano-wires, nano-tubes, and conducting polymers). This behavior has been attributed to the Luttinger liquid effects expected in a pure one-dimensional wire. However, the systems studied were neither one-dimensional nor defect-free. Using numerical simulations we show that the power-law behavior can arise from variable-range hopping in an ensemble of non-interacting disordered wires connected in parallel. This power-law behavior holds in restricted ranges of voltage and temperature, typical of experimental situations. Physically, it comes from rare, but highly conducting hopping paths that appear by chance in some members of the ensemble. The power-law exponents and their dependence on system parameters are consistent with the great majority of available empirical data. Supported by Grant NSF DMR-0706654.

  9. Absence of superfluidity in a quasi-one-dimensional parahydrogen fluid adsorbed inside carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Del Maestro, Adrian; Boninsegni, Massimo

    2017-02-01

    A recent claim of superfluid behavior of parahydrogen adsorbed inside armchair carbon nanotubes [M. Rossi and F. Ancilotto, Phys. Rev. B 94, 100502 (2016), 10.1103/PhysRevB.94.100502] is disproven by means of first-principles computer simulations. Conclusive numerical evidence shows that the low-temperature equilibrium thermodynamic phase of parahydrogen adsorbed inside a (10 ,10 ) armchair nanotube features a crystalline shell adsorbed on the inner surface of the tube, and a well-separated quasi-one-dimensional central column showing no evidence of possible fluid or superfluid behavior. Rather, the system is quasicrystalline and nonsuperfluid; its physical character is qualitatively identical to that observed in similar confined settings extensively studied in the past. The incorrect prediction of superfluidity stems from the erroneous use of an effective one-dimensional interaction potential that does not describe parahydrogen at the center of the nanotube.

  10. Dynamics of localized waves in one-dimensional random potentials: Statistical theory of the coherent forward scattering peak

    NASA Astrophysics Data System (ADS)

    Lee, Kean Loon; Grémaud, Benoît; Miniatura, Christian

    2014-10-01

    As recently discovered [T. Karpiuk et al., Phys. Rev. Lett. 109, 190601 (2012), 10.1103/PhysRevLett.109.190601], Anderson localization in a bulk disordered system triggers the emergence of a coherent forward scattering (CFS) peak in momentum space, which twins the well-known coherent backscattering (CBS) peak observed in weak localization experiments. Going beyond the perturbative regime, we address here the long-time dynamics of the CFS peak in a one-dimensional random system and we relate this novel interference effect to the statistical properties of the eigenfunctions and eigenspectrum of the corresponding random Hamiltonian. Our numerical results show that the dynamics of the CFS peak is governed by the logarithmic level repulsion between localized states, with a time scale that is, with good accuracy, twice the Heisenberg time. This is in perfect agreement with recent findings based on the nonlinear sigma model. In the stationary regime, the width of the CFS peak in momentum space is inversely proportional to the localization length, reflecting the exponential decay of the eigenfunctions in real space, while its height is exactly twice the background, reflecting the Poisson statistical properties of the eigenfunctions. It would be interesting to extend our results to higher dimensional systems and other symmetry classes.

  11. One-dimensional model of interacting-step fluctuations on vicinal surfaces: analytical formulas and kinetic Monte Carlo simulations.

    PubMed

    Patrone, Paul N; Einstein, T L; Margetis, Dionisios

    2010-12-01

    We study analytically and numerically a one-dimensional model of interacting line defects (steps) fluctuating on a vicinal crystal. Our goal is to formulate and validate analytical techniques for approximately solving systems of coupled nonlinear stochastic differential equations (SDEs) governing fluctuations in surface motion. In our analytical approach, the starting point is the Burton-Cabrera-Frank (BCF) model by which step motion is driven by diffusion of adsorbed atoms on terraces and atom attachment-detachment at steps. The step energy accounts for entropic and nearest-neighbor elastic-dipole interactions. By including Gaussian white noise to the equations of motion for terrace widths, we formulate large systems of SDEs under different choices of diffusion coefficients for the noise. We simplify this description via (i) perturbation theory and linearization of the step interactions and, alternatively, (ii) a mean-field (MF) approximation whereby widths of adjacent terraces are replaced by a self-consistent field but nonlinearities in step interactions are retained. We derive simplified formulas for the time-dependent terrace-width distribution (TWD) and its steady-state limit. Our MF analytical predictions for the TWD compare favorably with kinetic Monte Carlo simulations under the addition of a suitably conservative white noise in the BCF equations.

  12. Quantum Monte Carlo study of the Bose-polaron problem in a one-dimensional gas with contact interactions

    NASA Astrophysics Data System (ADS)

    Parisi, L.; Giorgini, S.

    2017-02-01

    We present a theoretical study based upon quantum Monte Carlo methods of the Bose polaron in one-dimensional systems with contact interactions. In this instance of the problem of a single impurity immersed in a quantum bath, the medium is a Lieb-Liniger gas of bosons ranging from the weakly interacting to the Tonks-Girardeau regime, whereas the impurity is coupled to the bath via a different contact potential, producing both repulsive and attractive interactions. Both the case of a mobile impurity, having the same mass as the particles in the medium, and the case of a static impurity with infinite mass are considered. We make use of numerical techniques that allow us to calculate the ground-state energy of the impurity, its effective mass, and the contact parameter between the impurity and the bath. These quantities are investigated as a function of the strength of interactions between the impurity and the bath and within the bath. In particular, we find that the effective mass rapidly increases to very large values when the impurity gets strongly coupled to an otherwise weakly repulsive bath. This heavy impurity hardly moves within the medium, thereby realizing the "self-localization" regime of the Landau-Pekar polaron. Furthermore, we compare our results with predictions of perturbation theory valid for weak interactions and with exact solutions available when the bosons in the medium behave as impenetrable particles.

  13. Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2014-02-01

    The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.

  14. Exact solution of three-dimensional transport problems using one-dimensional models. [in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1986-01-01

    Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.

  15. Light propagation in tunable exciton-polariton one-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Sedov, E. S.; Cherotchenko, E. D.; Arakelian, S. M.; Kavokin, A. V.

    2016-09-01

    Simulations of propagation of light beams in specially designed multilayer semiconductor structures (one-dimensional photonic crystals) with embedded quantum wells reveal characteristic optical properties of resonant hyperbolic metamaterials. A strong dependence of the refraction angle and the optical beam spread on the exciton radiative lifetime is revealed. We demonstrate the strong negative refraction of light and the control of the group velocity of light by an external bias through its effect upon the exciton radiative properties.

  16. Characterization of one-dimensional cellular automata rules through topological network features

    NASA Astrophysics Data System (ADS)

    D'Alotto, Lou; Pizzuti, Clara

    2016-10-01

    The paper investigates the relationship between the classification schemes, defined by Wolfram and Gilman, of one-dimensional cellular automata through concepts coming from network theory. An automaton is represented with a network, generated from the elementary rule defining its behavior. Characteristic features of this graph are computed and machine learning classification models are built. Such models allow to classify automaton rules and to compare Wolfram's and Gilman's classes by comparing the classes predicted by these models.

  17. Conditioned quantum motion of an atom in a continuously monitored one-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Blattmann, Ralf; Mølmer, Klaus

    2016-05-01

    We consider a quantum particle on a one-dimensional lattice subject to weak local measurements and study its stochastic dynamics conditioned on the measurement outcomes. Depending on the measurement strength our analysis of the quantum trajectories reveals dynamical regimes ranging from quasicoherent wave-packet oscillations to a Zeno-type dynamics. We analyze how these dynamical regimes are directly reflected in the spectral properties of the noisy measurement records.

  18. One-dimensional photonic crystals with an amplitude-modulated dielectric constant in the unit cell.

    PubMed

    Carretero, Luis; Ulibarrena, Manuel; Blaya, Salvador; Fimia, Antonio

    2004-05-10

    Photonic band structures of one-dimensional photonic crystals with an amplitude-modulated dielectric constant in the unit cell were studied. With this structure two bandgaps in the visible and one in the IR region were predicted. Experimental measurements of the two photonic bandgaps in the visible spectrum were made in a photonic crystal recorded in a holographic emulsion. Good agreement between experimental and theoretical results was obtained.

  19. Quasi-one-dimensional modes in strip plates: Theory and experiment

    SciTech Connect

    Arreola, A.; Báez, G.; Méndez-Sánchez, R. A.

    2014-01-14

    Using acoustic resonance spectroscopy we measure the elastic resonances of a strip rectangular plate with all its ends free. The experimental setup consist of a vector network analyzer, a high-fidelity audio amplifier, and electromagnetic-acoustic transducers. The one-dimensional modes are identified from the measured spectra by comparing them with theoretical predictions of compressional and bending modes of the plate modeled as a beam. The agreement between theory and experiment is excellent.

  20. A Review of One Dimensional Shaped Charge Theory. Part 1. Jet Formation

    DTIC Science & Technology

    1984-11-01

    o A REVIEW OF ONE DIMENSIONAL SHAPED CHARGE THEORY PART 1 - JET FORMATION 1o INTRODUCTION -,. ". The shaped charge warhead , based on the Munroe...these weapons has recently been given by Backofen (1]. Shaped charge warheads are currently in use by the Australian Army in the 66 mm M72L A2 (IAW) and...charge warheads for defeat of submarine pressure hulls, as in the Stingray torpedo used by the Royal Navy. MRL has been engaged on various investigations

  1. Motion of Cesium Atoms in the One-Dimensional Magneto-Optical Trap

    NASA Technical Reports Server (NTRS)

    Li, Yimin; Chen, Xuzong; Wang, Qingji; Wang, Yiqiu

    1996-01-01

    The force to which Cs atoms are subjected in the one-dimensional magneto-optical trap (lD-MOT) is calculated, and properties of this force are discussed. Several methods to increase the number of Cs atoms in the lD-MOT are presented on the basis of the analysis of the capture and escape of Cs atoms in the ID-MOT.

  2. Propagation behavior of incoherent beams in one-dimensional photonic crystals.

    PubMed

    Ding, Fei-Na; Chen, Yuan-Yuan; Shi, Jie-Long

    2010-03-01

    The propagation properties of Gaussian Schell-model spatially incoherent beams through a one-dimensional photonic crystal (1DPC) are investigated. The dynamical evolution of incoherent beams in 1DPC and the Goos-Hänchen lateral shift of the transmitted beams are obtained. The mutual effects of coherence and bandgap of the PC on the evolution of incoherent beams are analyzed. The incidence angle of the incoherent beam also has an influence on the incoherent electric field and the lateral shift.

  3. The paramagnetic properties of one-dimensional spin-1 single-ion anisotropic ferromagnet

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Jun; Chen, Yuan; Fu, Liang-Jie; Lin, Rui-Na; Song, Chuang-Chuang

    2009-06-01

    One-dimensional single-ion anisotropic ferromagnet with spin-1 is investigated by means of Green's function treatment in this paper. The model Hamiltonian includes a Heisenberg ferromagnetic term, an external magnetic field, and a second-order single-ion anisotropy. The magnetic properties of the system are treated by the random phase approximation for the exchange interaction term and the Anderson-Callen approximation for the anisotropy term. Our paramagnetic results are in agreement with the other theoretical results.

  4. Study of thermal throat of RBCC combustor based on one-dimensional analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ya-jun; Li, Jiang; Qin, Fei; He, Guo-qiang; Shi, Lei

    2015-12-01

    An analysis model was developed to better understand the formation mechanism and variation law of the thermal throat in a rocket-based combined-cycle (RBCC) combustor. This analysis model is based on one-dimensional flow equations and consideration of the variation in factors such as the area, exothermic distribution, and the fuel-rich jet of the rocket. The influence law for the thermal throat under the interaction of the exothermic distribution and the variation of the area is consistent with the heat release models for a gaseous jet and liquid kerosene. The effective cross-sectional area of the jet was calculated and incorporated into the model. The results calculated using the one-dimensional model were found to be consistent with those obtained from a three-dimensional numerical simulation. The position of the thermal throat was predicted with an error of 0.36%. The maximum relative errors of the static pressure among the corresponding points were 7.4% and 9.3% for the static temperature and total pressure, respectively. The one-dimensional model and three-dimensional numerical simulation were validated using experimental data obtained in direct-connect testing. Except for the cavity region, the maximum relative error of the corresponding points between the simulation results and test results was less than 8.9%, and that between the model results and test results was 10.4%. Compared to the fuel equivalence ratio, the expansion ratio, injection location, and exothermic rate have a significant impact on the position of the thermal throat. An optimization study of the RBCC combustor for the ramjet mode was conducted by adjusting the thermal throat. The thrust performance improved by 31.6% at Ma3 after optimization. These results indicate the important role that the one-dimensional model can play in analyzing the thermal throat and guiding the preliminary design of an RBCC combustor.

  5. Exact Solution of the One-Dimensional Non-Abelian Coulomb Gas at Large {ital N}

    SciTech Connect

    Semenoff, G.W.; Tirkkonen, O.; Zarembo, K. |

    1996-09-01

    The problem of computing the thermodynamic properties of a one-dimensional gas of particles which transform in the adjoint representation of the gauge group and interact through non-Abelian electric fields is formulated and solved in the large {ital N} limit. The explicit solution exhibits a first order confinement-deconfinement phase transition with computable properties and describes two-dimensional adjoint QCD in the limit where matter field masses are large. {copyright} {ital 1996 The American Physical Society.}

  6. Comment on 'Absolute negative mobility in a one-dimensional overdamped system'

    NASA Astrophysics Data System (ADS)

    Spiechowicz, J.; Kostur, M.; Łuczka, J.

    2016-04-01

    Recently Ru-Yin Chen et al. (Phys. Lett. A 379 (2015) 2169-2173) presented results on the absolute negative mobility (ANM) in a one-dimensional overdamped system and claimed that a new minimal model of ANM was proposed. We suggest that the authors introduced a mistake in their calculations. Then we perform a precise numerical simulation of the corresponding Langevin equation to show that the ANM phenomenon does not occur in the considered system.

  7. Interlayer Aharonov-Bohm interference in tilted magnetic fields in quasi-one-dimensional organic conductors.

    PubMed

    Cooper, Benjamin K; Yakovenko, Victor M

    2006-01-27

    Different types of angular magnetoresistance oscillations in quasi-one-dimensional layered materials, such as organic conductors (TMTSF)2X, are explained in terms of Aharonov-Bohm interference in interlayer electron tunneling. A two-parameter pattern of oscillations for generic orientations of a magnetic field is visualized and compared to the experimental data. Connections with angular magnetoresistance oscillations in other layered materials are discussed.

  8. Residual entropy and waterlike anomalies in the repulsive one dimensional lattice gas

    SciTech Connect

    Silva, Fernando Barbosa V. da; Oliveira, Fernando Albuquerque; Barbosa, Marco Aurélio A.

    2015-04-14

    The thermodynamics and kinetics of the one dimensional lattice gas with repulsive interaction are investigated using transfer matrix technique and Monte Carlo simulations. This simple model is shown to exhibit waterlike anomalies in density, thermal expansion coefficient, and self-diffusion. An unified description for the thermodynamic anomalies in this model is achieved based on the ground state residual entropy which appears in the model due to mixing entropy in a ground state phase transition.

  9. Photonic band structure of one-dimensional aperiodic superlattices composed of negative refraction metamaterials

    NASA Astrophysics Data System (ADS)

    Tyc, Michał H.; Salejda, Włodzimierz; Klauzer-Kruszyna, Agnieszka; Tarnowski, Karol

    2007-05-01

    The dispersion relation for polarized light transmitting through a one-dimensional superlattice composed of aperiodically arranged layers made of ordinary dielectric and negative refraction metamaterials is calculated with finite element method. Generalized Fibonacci, generalized Thue-Morse, double-periodic and Rudin-Shapiro superlattices are investigated, using their periodic approximants. Strong dispersion of metamaterials is taken into account. Group velocities and effective refraction indices in the structures are calculated. The self-similar structure of the transmission spectra is observed.

  10. One-dimensional Fibonacci grating for far-field super-resolution imaging.

    PubMed

    Wu, Kedi; Wang, Guo Ping

    2013-06-15

    One-dimensional Fibonacci gratings are used to transform evanescent waves into propagating waves for far-field super-resolution imaging. By detecting far-field intensity distributions of light through objects in front of the Fibonacci grating in free space, we can observe the objects with nearly λ/9 spatial resolution. Analytical results are verified by numerical simulations. We also discuss the effect of sampling error on imaging resolution of the system.

  11. Spin wave localization in one-dimensional magnonic microcavity comprising yttrium iron garnet

    SciTech Connect

    Kanazawa, Naoki; Goto, Taichi Inoue, Mitsuteru

    2014-08-28

    We demonstrate the localization of magnetostatic surface waves, i.e., spin waves, in a one-dimensional magnonic microcavity substantialized with periodical conductivity modulation. The narrow localized state is observed inside band gaps and is responsible for a sharp transmission peak. The experimental results strongly agree with the theoretical prediction made with the shape magnetic anisotropy of the propagating medium composed of yttrium iron garnet taken into account.

  12. Emergence of correlated optics in one-dimensional waveguides for classical and quantum atomic gases

    NASA Astrophysics Data System (ADS)

    Ruostekoski, Janne; Javanainen, Juha

    2016-09-01

    We analyze the emergence of correlated optical phenomena in the transmission of light through a waveguide that confines classical or ultracold quantum degenerate atomic ensembles. The conditions of the correlated collective response are identified in terms of atom density, thermal broadening, and photon losses by using stochastic Monte Carlo simulations and transfer matrix methods of transport theory. We also calculate the "cooperative Lamb shift" for the waveguide transmission resonance, and discuss line shifts that are specific to effectively one-dimensional waveguide systems.

  13. Transition from a Two-Dimensional Superfluid to a One-Dimensional Mott Insulator

    SciTech Connect

    Bergkvist, Sara; Rosengren, Anders; Saers, Robert; Lundh, Emil; Rehn, Magnus; Kastberg, Anders

    2007-09-14

    A two-dimensional system of atoms in an anisotropic optical lattice is studied theoretically. If the system is finite in one direction, it is shown to exhibit a transition between a two-dimensional superfluid and a one-dimensional Mott insulating chain of superfluid tubes. Monte Carlo simulations are consistent with the expectation that the phase transition is of Kosterlitz-Thouless type. The effect of the transition on experimental time-of-flight images is discussed.

  14. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    SciTech Connect

    Huang, H. J. E-mail: hhjhuangkimo@gmail.com; Liu, B. H.; Lin, C. T.; Su, W. S.

    2015-11-15

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  15. A refined one-dimensional rotordynamics model with three-dimensional capabilities

    NASA Astrophysics Data System (ADS)

    Carrera, E.; Filippi, M.

    2016-03-01

    This paper evaluates the vibration characteristics of various rotating structures. The present methodology exploits the one-dimensional Carrera Unified Formulation (1D CUF), which enables one to go beyond the kinematic assumptions of classical beam theories. According to the component-wise (CW) approach, Lagrange-like polynomial expansions (LE) are here adopted to develop the refined displacement theories. The LE elements make it possible to model each structural component of the rotor with an arbitrary degree of accuracy using either different displacement theories or localized mesh refinements. Hamilton's Principle is used to derive the governing equations, which are solved by the Finite Element Method. The CUF one-dimensional theory includes all the effects due to rotation, namely the Coriolis term, spin softening and geometrical stiffening. The numerical simulations have been performed considering a thin ring, discs and bladed-deformable shafts. The effects of the number and the position of the blades on the dynamic stability of the rotor have been evaluated. The results have been compared, when possible, with the 2D and 3D solutions that are available in the literature. CUF models appear very practical to investigate the dynamics of complex rotating structures since they provide 2D and quasi-3D results, while preserving the computational effectiveness of one-dimensional solutions.

  16. Graphics processing unit accelerated one-dimensional blood flow computation in the human arterial tree.

    PubMed

    Itu, Lucian; Sharma, Puneet; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2013-12-01

    One-dimensional blood flow models have been used extensively for computing pressure and flow waveforms in the human arterial circulation. We propose an improved numerical implementation based on a graphics processing unit (GPU) for the acceleration of the execution time of one-dimensional model. A novel parallel hybrid CPU-GPU algorithm with compact copy operations (PHCGCC) and a parallel GPU only (PGO) algorithm are developed, which are compared against previously introduced PHCG versions, a single-threaded CPU only algorithm and a multi-threaded CPU only algorithm. Different second-order numerical schemes (Lax-Wendroff and Taylor series) are evaluated for the numerical solution of one-dimensional model, and the computational setups include physiologically motivated non-periodic (Windkessel) and periodic boundary conditions (BC) (structured tree) and elastic and viscoelastic wall laws. Both the PHCGCC and the PGO implementations improved the execution time significantly. The speed-up values over the single-threaded CPU only implementation range from 5.26 to 8.10 × , whereas the speed-up values over the multi-threaded CPU only implementation range from 1.84 to 4.02 × . The PHCGCC algorithm performs best for an elastic wall law with non-periodic BC and for viscoelastic wall laws, whereas the PGO algorithm performs best for an elastic wall law with periodic BC.

  17. Synthesis High Sensivity ZnO Cholesterol Biosensor with One Dimensional Nanostructures

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; Jhuang, P. G.; Tang, J. F.; Chu, S. Y.; Hsu, CW

    2016-05-01

    Chelosterol ZnO biosensors were synthesized by hydrothermal method with predeposited ALD-ZnO seed layers. The ZnO nanostructures were examined by SEM, XRD, AFM, respectively. The XRD is used to analyze the crystal structures of ZnO seed layers that were grown by ALD process, then using SEM and AFM to analysis the surface morphologies of them. Growing of one dimensional ZnO nanostructures on seed layer of 10nm thickness, reveals high sensitivity of 3.15 uA (mg/dl)-1cm-2(121.96 uAmM-1cm-2) and low Km value of 29mM in 25-100mg/dl cholesterol concentration range. The response time could be as low as 10seconds. In the study, it is found that increasing the aspect ratio of ZnO one dimensional nanostructure also increases the sensitivity and expends the linear measureable range of detecting cholesterol in solution. The thickness of seed layer has a significant influence on sensitivity for one dimensional nano ZnO cholesterol biosensor.

  18. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    NASA Astrophysics Data System (ADS)

    Huang, H. J.; Liu, B.-H.; Lin, C.-T.; Su, W. S.

    2015-11-01

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  19. Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential

    PubMed Central

    Levinsen, Jesper; Massignan, Pietro; Bruun, Georg M.; Parish, Meera M.

    2015-01-01

    A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights because they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. We propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal’s triangle emerges in the expression for the ground-state wave function. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount. PMID:26601220

  20. Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami

    SciTech Connect

    Stephanopoulos, Nicholas; Liu, Minghui; Tong, Gary J; Li, Zhe; Liu, Yan; Yan, Hao; Francis, Matthew B

    2010-06-24

    DNA origami was used as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. To do this, we first modified the interior surface of bacteriophage MS2 capsids with fluorescent dyes as a model cargo. An unnatural amino acid on the external surface was then coupled to DNA strands that were complementary to those extending from origami tiles. Two different geometries of DNA tiles (rectangular and triangular) were used. The capsids associated with tiles of both geometries with virtually 100% efficiency under mild annealing conditions, and the location of capsid immobilization on the tile could be controlled by the position of the probe strands. The rectangular tiles and capsids could then be arranged into one-dimensional arrays by adding DNA strands linking the corners of the tiles. The resulting structures consisted of multiple capsids with even spacing (~100 nm). We also used a second set of tiles that had probe strands at both ends, resulting in a one-dimensional array of alternating capsids and tiles. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multicomponent systems from biological scaffolds using the power of rationally engineered DNA nanostructures.

  1. Rational solutions to two- and one-dimensional multicomponent Yajima-Oikawa systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchao; Chen, Yong; Feng, Bao-Feng; Maruno, Ken-ichi

    2015-07-01

    Exact explicit rational solutions of two- and one-dimensional multicomponent Yajima-Oikawa (YO) systems, which contain multi-short-wave components and single long-wave one, are presented by using the bilinear method. For two-dimensional system, the fundamental rational solution first describes the localized lumps, which have three different patterns: bright, intermediate and dark states. Then, rogue waves can be obtained under certain parameter conditions and their behaviors are also classified to above three patterns with different definition. It is shown that the simplest (fundamental) rogue waves are line localized waves which arise from the constant background with a line profile and then disappear into the constant background again. In particular, two-dimensional intermediate and dark counterparts of rogue wave are found with the different parameter requirements. We demonstrate that multirogue waves describe the interaction of several fundamental rogue waves, in which interesting curvy wave patterns appear in the intermediate times. Different curvy wave patterns form in the interaction of different types fundamental rogue waves. Higher-order rogue waves exhibit the dynamic behaviors that the wave structures start from lump and then retreat back to it, and this transient wave possesses the patterns such as parabolas. Furthermore, different states of higher-order rogue wave result in completely distinguishing lumps and parabolas. Moreover, one-dimensional rogue wave solutions with three states are constructed through the further reduction. Specifically, higher-order rogue wave in one-dimensional case is derived under the parameter constraints.

  2. Integration of Local Observations into the One Dimensional Fog Model PAFOG

    NASA Astrophysics Data System (ADS)

    Thoma, Christina; Schneider, Werner; Masbou, Matthieu; Bott, Andreas

    2012-05-01

    The numerical prediction of fog requires a very high vertical resolution of the atmosphere. Owing to a prohibitive computational effort of high resolution three dimensional models, operational fog forecast is usually done by means of one dimensional fog models. An important condition for a successful fog forecast with one dimensional models consists of the proper integration of observational data into the numerical simulations. The goal of the present study is to introduce new methods for the consideration of these data in the one dimensional radiation fog model PAFOG. First, it will be shown how PAFOG may be initialized with observed visibilities. Second, a nudging scheme will be presented for the inclusion of measured temperature and humidity profiles in the PAFOG simulations. The new features of PAFOG have been tested by comparing the model results with observations of the German Meteorological Service. A case study will be presented that reveals the importance of including local observations in the model calculations. Numerical results obtained with the modified PAFOG model show a distinct improvement of fog forecasts regarding the times of fog formation, dissipation as well as the vertical extent of the investigated fog events. However, model results also reveal that a further improvement of PAFOG might be possible if several empirical model parameters are optimized. This tuning can only be realized by comprehensive comparisons of model simulations with corresponding fog observations.

  3. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems.

    PubMed

    Andersen, M E S; Dehkharghani, A S; Volosniev, A G; Lindgren, E J; Zinner, N T

    2016-06-21

    Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique.

  4. An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems

    PubMed Central

    Andersen, M. E. S.; Dehkharghani, A. S.; Volosniev, A. G.; Lindgren, E. J.; Zinner, N. T.

    2016-01-01

    Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique. PMID:27324113

  5. Band gap characterization and slow light effects in periodic and quasiperiodic one dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Zaghdoudi, J.; Kuszelewicz, R.; Kanzari, M.; Rezig, B.

    2008-04-01

    Slow light offers many opportunities for photonic devices by increasing the effective interaction length of imposed refractive index changes. The slow wave effect in photonic crystals is based on their unique dispersive properties and thus entirely dielectric in nature. In this work we demonstrate an interesting opportunity to decrease drastically the group velocity of light in one-dimensional photonic crystals constructed form materials with large dielectric constant without dispersion). We use numerical analysis to study the photonic properties of periodic (Bragg mirror) and quasiperiodic one dimensional photonic crystals realized to engineer slow light effects. Various geometries of the photonic pattern have been characterized and their photonic band-gap structure analyzed. Indeed, one dimensional quasi periodic photonic multilayer structure based on Fibonacci, Thue-Morse, and Cantor sequences were studied. Quasiperiodic structures have a rich and highly fragmented reflectivity spectrum with many sharp resonant peaks that could be exploited in a microcavity system. A comparison of group velocity through periodic and quasiperiodic photonic crystals was discussed in the context of slow light propagation. The velocity control of pulses in materials is one of the promising applications of photonic crystals. The material systems used for the numerical analysis are TiO II/SiO II and Te/SiO II which have a refractive index contrast of approximately 1.59 and 3.17 respectively. The proposed structures were modelled using the Transfer Matrix Method.

  6. The Art of Extracting One-Dimensional Flow Properties from Multi-Dimensional Data Sets

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.; Gaffney, R. L.

    2007-01-01

    The engineering design and analysis of air-breathing propulsion systems relies heavily on zero- or one-dimensional properties (e:g: thrust, total pressure recovery, mixing and combustion efficiency, etc.) for figures of merit. The extraction of these parameters from experimental data sets and/or multi-dimensional computational data sets is therefore an important aspect of the design process. A variety of methods exist for extracting performance measures from multi-dimensional data sets. Some of the information contained in the multi-dimensional flow is inevitably lost when any one-dimensionalization technique is applied. Hence, the unique assumptions associated with a given approach may result in one-dimensional properties that are significantly different than those extracted using alternative approaches. The purpose of this effort is to examine some of the more popular methods used for the extraction of performance measures from multi-dimensional data sets, reveal the strengths and weaknesses of each approach, and highlight various numerical issues that result when mapping data from a multi-dimensional space to a space of one dimension.

  7. Entanglement pre-thermalization in a one-dimensional Bose gas

    NASA Astrophysics Data System (ADS)

    Kaminishi, Eriko; Mori, Takashi; Ikeda, Tatsuhiko N.; Ueda, Masahito

    2015-12-01

    An isolated quantum system often shows relaxation to a quasi-stationary state before reaching thermal equilibrium. Such a pre-thermalized state was observed in recent experiments in a one-dimensional Bose gas after it had been coherently split into two. Although the existence of local conserved quantities is usually considered to be the key ingredient of pre-thermalization, the question of whether non-local correlations between the subsystems can influence pre-thermalization of the entire system has remained unanswered. Here we study the dynamics of coherently split one-dimensional Bose gases and find that the initial entanglement combined with energy degeneracy due to parity and translation invariance strongly affects the long-term behaviour of the system. The mechanism of this entanglement pre-thermalization is quite general and not restricted to one-dimensional Bose gases. In view of recent experiments with a small and well-defined number of ultracold atoms, our predictions based on exact few-body calculations could be tested in experiments.

  8. Laser one-dimensional range profile and the laser two-dimensional range profile of cylinders

    NASA Astrophysics Data System (ADS)

    Gong, Yanjun; Wang, Mingjun; Gong, Lei

    2015-10-01

    Laser one-dimensional range profile, that is scattering power from pulse laser scattering of target, is a radar imaging technology. The laser two-dimensional range profile is two-dimensional scattering imaging of pulse laser of target. Laser one-dimensional range profile and laser two-dimensional range profile are called laser range profile(LRP). The laser range profile can reflect the characteristics of the target shape and surface material. These techniques were motivated by applications of laser radar to target discrimination in ballistic missile defense. The radar equation of pulse laser is given in this paper. This paper demonstrates the analytical model of laser range profile of cylinder based on the radar equation of the pulse laser. Simulations results of laser one-dimensional range profiles of some cylinders are given. Laser range profiles of cylinder, whose surface material with diffuse lambertian reflectance, is given in this paper. Laser range profiles of different pulse width of cylinder are given in this paper. The influences of geometric parameters, pulse width, attitude on the range profiles are analyzed.

  9. Large Eddy Simulation of Spatially Developing Turbulent Reacting Shear Layers with the One-Dimensional Turbulence Model

    NASA Astrophysics Data System (ADS)

    Hoffie, Andreas Frank

    Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky

  10. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories.

  11. On the Exit Boundary Condition for One-Dimensional Calculations of Pulsed Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Paxson, Daniel E.

    2002-01-01

    In one-dimensional calculations of pulsed detonation engine (PDE) performance, the exit boundary condition is frequently taken to be a constant static pressure. In reality, for an isolated detonation tube, after the detonation wave arrives at the exit plane, there will be a region of high pressure, which will gradually return to ambient pressure as an almost spherical shock wave expands away from the exit, and weakens. Initially, the flow is supersonic, unaffected by external pressure, but later becomes subsonic. Previous authors have accounted for this situation either by assuming the subsonic pressure decay to be a relaxation phenomenon, or by running a two-dimensional calculation first, including a domain external to the detonation tube, and using the resulting exit pressure temporal distribution as the boundary condition for one-dimensional calculations. These calculations show that the increased pressure does affect the PDE performance. In the present work, a simple model of the exit process is used to estimate the pressure decay time. The planar shock wave emerging from the tube is assumed to transform into a spherical shock wave. The initial strength of the spherical shock wave is determined from comparison with experimental results. Its subsequent propagation, and resulting pressure at the tube exit, is given by a numerical blast wave calculation. The model agrees reasonably well with other, limited, results. Finally, the model was used as the exit boundary condition for a one-dimensional calculation of PDE performance to obtain the thrust wall pressure for a hydrogen-air detonation in tubes of length to diameter ratio (L/D) of 4, and 10, as well as for the original, constant pressure boundary condition. The modified boundary condition had no performance impact for values of L/D > 10, and moderate impact for L/D = 4.

  12. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    DOE PAGES

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; ...

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocitymore » and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.« less

  13. Limitations of one-dimensional mesoscale PBL parameterizations in reproducing mountain-wave flows

    SciTech Connect

    Munoz-Esparza, Domingo; Sauer, Jeremy A.; Linn, Rodman R.; Kosovic, Branko

    2015-12-08

    In this study, mesoscale models are considered to be the state of the art in modeling mountain-wave flows. Herein, we investigate the role and accuracy of planetary boundary layer (PBL) parameterizations in handling the interaction between large-scale mountain waves and the atmospheric boundary layer. To that end, we use recent large-eddy simulation (LES) results of mountain waves over a symmetric two-dimensional bell-shaped hill [Sauer et al., J. Atmos. Sci. (2015)], and compare them to four commonly used PBL schemes. We find that one-dimensional PBL parameterizations produce reasonable agreement with the LES results in terms of vertical wavelength, amplitude of velocity and turbulent kinetic energy distribution in the downhill shooting flow region. However, the assumption of horizontal homogeneity in PBL parameterizations does not hold in the context of these complex flow configurations. This inappropriate modeling assumption results in a vertical wavelength shift producing errors of ≈ 10 m s–1 at downstream locations due to the presence of a coherent trapped lee wave that does not mix with the atmospheric boundary layer. In contrast, horizontally-integrated momentum flux derived from these PBL schemes displays a realistic pattern. Therefore results from mesoscale models using ensembles of one-dimensional PBL schemes can still potentially be used to parameterize drag effects in general circulation models. Nonetheless, three-dimensional PBL schemes must be developed in order for mesoscale models to accurately represent complex-terrain and other types of flows where one-dimensional PBL assumptions are violated.

  14. One-Dimensional Parametric Determining form for the Two-Dimensional Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Foias, Ciprian; Jolly, Michael S.; Lithio, Dan; Titi, Edriss S.

    2017-03-01

    The evolution of a determining form for the 2D Navier-Stokes equations (NSE) which is an ODE on a space of trajectories is completely described. It is proved that at every stage of its evolution, the solution is a convex combination of the initial trajectory and a chosen, fixed steady state, with a dynamical convexity parameter θ , which will be called the characteristic determining parameter. That is, we show a separation of variables formula for the solution of the determining form. Moreover, for a given initial trajectory, the dynamics of the infinite-dimensional determining form are equivalent to those of the characteristic determining parameter θ which is governed by a one-dimensional ODE. This one-dimensional ODE is used to show that if the solution to the determining form converges to the fixed state it does so no faster than O(τ ^{-1/2}) , otherwise it converges to a projection of some other trajectory in the global attractor of the NSE, but no faster than O(τ ^{-1}) , as τ → ∞, where τ is the evolutionary variable in determining form. The one-dimensional ODE is also exploited in computations which suggest that the one-sided convergence rate estimates are in fact achieved. The ODE is then modified to accelerate the convergence to an exponential rate. It is shown that the zeros of the scalar function that governs the dynamics of θ , which are called characteristic determining values, identify in a unique fashion the trajectories in the global attractor of the 2D NSE

  15. Self-consistent mode-coupling approach to one-dimensional heat transport

    NASA Astrophysics Data System (ADS)

    Delfini, Luca; Lepri, Stefano; Livi, Roberto; Politi, Antonio

    2006-06-01

    In the present Rapid Communication we present an analytical and numerical solution of the self-consistent mode-coupling equations for the problem of heat conductivity in one-dimensional systems. Such a solution leads us to propose a different scenario to accommodate the known results obtained so far for this problem. More precisely, we conjecture that the universality class is determined by the leading order of the nonlinear interaction potential. Moreover, our analysis allows us to determine the memory kernel, whose expression puts on a more firm basis the previously conjectured connection between anomalous heat conductivity and anomalous diffusion.

  16. One-dimensional weak antilocalization in single-crystal Bi2Te3 nanowires

    PubMed Central

    Ning, Wei; Du, Haifeng; Kong, Fengyu; Yang, Jiyong; Han, Yuyan; Tian, Mingliang; Zhang, Yuheng

    2013-01-01

    Angle-dependent magnetoconductance was measured on an individual surface-curved Bi2Te3 single-crystal nanowire fabricated by electrochemical deposition, where the evolution of surface conduction with wire diameters was investigated. It was found that the magnetoconductance of these nanowires in low field regime can be well described by one-dimensional (1D) weak antilocalization (WAL) model, where the dephasing length of the electrons follows T−1/3 dependence but insensitive to the wire diameter. Meanwhile, such a 1D surface WAL was found to be enhanced significantly with the decrease of the wire diameter. PMID:23535588

  17. Rapid sintering of silicon nitride foams decorated with one-dimensional nanostructures by intense thermal radiation

    NASA Astrophysics Data System (ADS)

    Li, Duan; Guzi de Moraes, Elisângela; Guo, Peng; Zou, Ji; Zhang, Junzhan; Colombo, Paolo; Shen, Zhijian

    2014-08-01

    Silicon nitride foams were prepared by direct foaming and subsequent rapid sintering at 1600 °C. The intense thermal radiation generated under the pressureless spark plasma sintering condition facilitated necking of Si3N4 grains. The prepared foams possessed a porosity of ˜80 vol% and a compressive strength of ˜10 MPa, which required only ˜30 min for the entire sintering processes. Rapid growth of one-dimensional SiC nanowires from the cell walls was also observed. Thermodynamic calculations indicated that the vapor-liquid-solid model is applicable to the formation of SiC nanowires under vacuum.

  18. Stochastic aspects of one-dimensional discrete dynamical systems: Benford's law

    NASA Astrophysics Data System (ADS)

    Snyder, Mark A.; Curry, James H.; Dougherty, Anne M.

    2001-08-01

    Benford's law owes its discovery to the ``Grubby Pages Hypothesis,'' a 19th century observation made by Simon Newcomb that the beginning pages of logarithm books were grubbier than the last few pages, implying that scientists referenced the values toward the front of the books more frequently. If a data set satisfies Benford's law, then it's significant digits will have a logarithmic distribution, which favors smaller significant digits. In this article we demonstrate two ways of creating discrete one-dimensional dynamical systems that satisfy Benford's law. We also develop a numerical simulation methodology that we use to study dynamical systems when analytical results are not readily available.

  19. Synthesis of Functionalized Mono-, Bis-, and Trisethynyltriptycenes for One-Dimensional Self-Assembly on Surfaces.

    PubMed

    Sirven, Agnès M; Garbage, Romain; Qiao, Yun; Kammerer, Claire; Rapenne, Gwénaël

    2015-10-12

    This paper describes the synthesis of triptycene-based building blocks that are able to interact through hydrogen bonds to form one-dimensional self-assembled motifs on surfaces. We designed 9,10-diethynyltriptycene derivatives functionalized at the ethynyl end groups by a variety of hydrogen-bonding groups for homomolecular recognition and complementary building blocks for heteromolecular recognition. We also present the synthesis of bis- and trisethynyltriptycenes with terminal alkyne functional groups available for on-surface azide-alkyne cycloaddition reaction to expand the potential of the triptycene building block.

  20. Spectral and localization properties for the one-dimensional Bernoulli discrete Dirac operator

    NASA Astrophysics Data System (ADS)

    de Oliveira, César R.; Prado, Roberto A.

    2005-07-01

    An one-dimensional (1D) Dirac tight-binding model is considered and it is shown that its nonrelativistic limit is the 1D discrete Schrödinger model. For random Bernoulli potentials taking two values (without correlations), for typical realizations and for all values of the mass, it is shown that its spectrum is pure point, whereas the zero mass case presents dynamical delocalization for specific values of the energy. The massive case presents dynamical localization (excluding some particular values of the energy). Finally, for general potentials the dynamical moments for distinct masses are compared, especially the massless and massive Bernoulli cases.

  1. Quasi-One-Dimensional Electronic States Inside and Outside Helium-Plated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Motta, M.; Galli, D. E.; Liebrecht, M.; Del Maestro, A.; Cole, M. W.

    2016-10-01

    About one-half a century ago, it was realized that electrons experience a repulsive barrier when approaching the surface of condensed phases of helium, hydrogen, and neon. This led to the proposal and subsequent observation of image-potential surface-bound electronic states, which exhibit intriguing quasi-two-dimensional behavior. In the present work, we report similar quasi-one-dimensional electronic states by exploring single-wall carbon nanotubes coated both inside and outside by thin helium films. Electrons near such structures are localized in the radial direction, but free to move along the nanotube axis. The many-body aspects of the system are discussed qualitatively.

  2. A monoclinic form of dendocarbin A: a borderline case of one-dimensional isostructural polymorphism.

    PubMed

    Paz, Cristian; Burgos, Viviana; Suarez, Sebastián; Baggio, Ricardo

    2015-04-01

    The title compound, dendocarbin A [systematic name: (1R,5aS,9aS,9bR)-1-hydroxy-6,6,9a-trimethyldodecahydronaphtho[1,2-c]furan-3-one], C15H22O3, is a sesquiterpene lactone isolated from Drimys winteri var chilensis. The monoclinic phase described herein displays an identical molecular structure to the orthorhombic phase that we reported previously [Paz Robles et al. (2014). Acta Cryst. C70, 1007-1010], while varying significantly in chain pitch, and can thus be considered as a borderline case of one-dimensional isostructural polymorphism.

  3. Interior radiances in optically deep absorbing media. I - Exact solutions for one-dimensional model.

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Plass, G. N.

    1973-01-01

    An exact analytic solution to the one-dimensional scattering problem with arbitrary single scattering albedo and arbitrary surface albedo is presented. Expressions are given for the emergent flux from a homogeneous layer, the internal flux within the layer, and the radiative heating. A comparison of these results with the values calculated from the matrix operator theory indicates an exceedingly high accuracy. A detailed study is made of the error in the matrix operator results and its dependence on the accuracy of the starting value.

  4. One-dimensional quantum liquids with power-law interactions: the Luttinger staircase.

    PubMed

    Dalmonte, M; Pupillo, G; Zoller, P

    2010-10-01

    We study one-dimensional fermionic and bosonic gases with repulsive power-law interactions 1/|x|(β), with β>1, in the framework of Tomonaga-Luttinger liquid (TLL) theory. We obtain an accurate analytical expression linking the TLL parameter to the microscopic Hamiltonian, for arbitrary β and strength of the interactions. In the presence of a small periodic potential, power-law interactions make the TLL unstable towards the formation of a cascade of lattice solids with fractional filling, a "Luttinger staircase." Several of these quantum phases and phase transitions are realized with ground state polar molecules and weakly bound magnetic Feshbach molecules.

  5. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

    PubMed

    Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

    2016-08-01

    Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

  6. Rapid sintering of silicon nitride foams decorated with one-dimensional nanostructures by intense thermal radiation.

    PubMed

    Li, Duan; Guzi de Moraes, Elisângela; Guo, Peng; Zou, Ji; Zhang, Junzhan; Colombo, Paolo; Shen, Zhijian

    2014-08-01

    Silicon nitride foams were prepared by direct foaming and subsequent rapid sintering at 1600 °C. The intense thermal radiation generated under the pressureless spark plasma sintering condition facilitated necking of Si3N4 grains. The prepared foams possessed a porosity of ∼80 vol% and a compressive strength of ∼10 MPa, which required only ∼30 min for the entire sintering processes. Rapid growth of one-dimensional SiC nanowires from the cell walls was also observed. Thermodynamic calculations indicated that the vapor-liquid-solid model is applicable to the formation of SiC nanowires under vacuum.

  7. One-dimensional hard x-ray field retrieval using a moveable structure

    SciTech Connect

    Guizar-Sicairos, M.; Evans-Lutterodt, K.; Isakovic, A.F.; Stein, A.; Warren, J.B.; Sandy, A.R.; Narayanan, S.; Fienup, J.R.

    2010-08-16

    We present a technique that allows measuring the field of an x-ray line focus using far-field intensity measurements only. One-dimensional phase retrieval with transverse translation diversity is used to recover a hard x-ray beam focused by a compound kinoform lens. The reconstruction is found to be in good agreement with independent knife-edge scan measurements taken at separated planes. The approach avoids the need for measuring the beam profile at focus and allows narrower beams to be measured than the traditional knife-edge scan.

  8. An effective screened Coulomb interaction in a quasi-one-dimensional system

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Miao, Wen-Dan; Zhai, Li-Xue

    2014-01-01

    In this paper, we derive an analytical expression for the screened Coulomb potential between charge carriers in quasi-one-dimensional (Q1D) semiconductor structures. As an application, this potential has been used to investigate the screening effect on the binding energy of a neutral donor (D0) in quantum wires (QWRs). It is found that the screening effect decreases the neutral donor binding energy, and the screening effects are more obvious in wide QWRs than that in narrow ones. Dependence of screening length on temperature and carrier concentration has also been discussed.

  9. Generalized Airy functions for use in one-dimensional quantum mechanical problems

    NASA Technical Reports Server (NTRS)

    Eaves, J. O.

    1972-01-01

    The solution of the one dimensional, time independent, Schroedinger equation in which the energy minus the potential varies as the nth power of the distance is obtained from proper linear combinations of Bessel functions. The linear combinations called generalized Airy functions, reduce to the usual Airy functions Ai(x) and Bi(x) when n equals 1 and have the same type of simple asymptotic behavior. Expressions for the generalized Airy functions which can be evaluated by the method of generalized Gaussian quadrature are obtained.

  10. Two-Point Phase Correlations of a One-Dimensional Bosonic Josephson Junction

    SciTech Connect

    Betz, T.; Manz, S.; Buecker, R.; Berrada, T.; Koller, Ch.; Schmiedmayer, J.; Kazakov, G.; Mazets, I. E.; Stimming, H.-P.; Perrin, A.; Schumm, T.

    2011-01-14

    We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling. The thermal equilibrium state is characterized by probing the full statistical distribution function of the two-point phase correlation. Comparison to a stochastic model allows us to measure the coupling strength and temperature and hence a full characterization of the system.

  11. Anomalous wave function statistics on a one-dimensional lattice with power-law disorder.

    PubMed

    Titov, M; Schomerus, H

    2003-10-24

    Within a general framework, we discuss the wave function statistics in the Lloyd model of Anderson localization on a one-dimensional lattice with a Cauchy distribution for random on-site potential. We demonstrate that already in leading order in the disorder strength, there exists a hierarchy of anomalies in the probability distributions of the wave function, the conductance, and the local density of states, for every energy which corresponds to a rational ratio of wavelength to lattice constant. Power-law rather than log-normal tails dominate the short-distance wave-function statistics.

  12. Kink model of state switching in quasi-one-dimensional nanosystems

    SciTech Connect

    Petukhov, B. V.

    2015-03-15

    A method for the analytical calculation of the kinetics of state switching induced by external field in quasi-one-dimensional systems has been developed. This method is based on the Kolmogorov approach, which was proposed to describe statistical crystallization. As applied to magnetic systems, it allows one to calculate magnetization curves and hysteresis loops. The results of analytical calculation are confirmed by stochastic Monte Carlo simulation, which also makes it possible to find characteristics of mixed domain states formed as a result of the multiple cycling of the external field amplitude.

  13. Analysis of some fully-discrete algorithms for the one-dimensional heat equation

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Tezduyar, T. E.

    1985-01-01

    The present investigation is concerned with a fully discrete accuracy and stability analysis of the one-dimensional heat equation, taking into account the evaluation of two-pass explicit schemes which simultaneously employ lumped and coupled capacity matrices. Schemes of the considered characteristics are not amenable to uncoupled semidiscrete and ordinary differential equation analyses. The obtained results illustrate that superior behavior may be achieved by schemes of the employed type when compared with the performance of the standard one-pass explicit schemes. The key idea in the considered approach is related to the utilization of a reduced-quadrature capacity matrix in the evaluation of the right-hand-side residual.

  14. The dressed states of an electron in a one-dimensional two δ -functions potential

    NASA Astrophysics Data System (ADS)

    Chirilã, C.; Boca, M.; Dinu, V.; Florescu, V.

    2003-11-01

    We study, in the framework of the high-frequency Floquet theory, the one-dimensional system consisting of an electron interacting with a symmetric two δ-functions potential in the presence of an intense monochromatic homogeneous electric field. Most of the results concern the attractive case. They include the dependence of the bound states energies of the dressed potential and of some of its resonances positions on the electric field parameter α_0 (the classical free electron quiver motion amplitude) and on the distance between the two centers and the description of the evolution from resonances to laser induced levels via two antibound states. The repulsive case is described briefly.

  15. Troposphere-stratosphere interactions in a one-dimensional model of Jovian photochemistry

    NASA Technical Reports Server (NTRS)

    Landry, Bridget; Yung, Yuk L.; Allen, Mark

    1991-01-01

    The case of a chemically unreactive species flowing downward through the stratosphere and troposphere with a constant flux is presently treated by a one-dimensional Jovian atmosphere model which encompasses the coupling between a rapidly mixed troposphere and a stagnant stratosphere, so that the contrast between the peak stratosphere and tropopause concentrations is reflective of the variation between the lower stratosphere and upper troposphere eddy diffusion coefficients. Numerical simulations of unreactive CO and C2H6 species indicate that upper troposphere abundances may possess a substantial photochemical contribution. The implications of these modeling results for higher spectral resolution observations are noted.

  16. A one-dimensional model for the quantum efficiency of front-surface-field solar cells

    NASA Astrophysics Data System (ADS)

    Yernaux, M. I.; Battochio, C.; Verlinden, P.; van de Wiele, F.

    1984-11-01

    A one-dimensional analytical model is proposed to calculate the photocurrent generated in interdigitated back contact solar cells with a high-low junction at the front illuminated surface. The high-low junction is simulated by constant doping levels, mobilities and lifetimes. A study of the quantum efficiency of front-surface-field (FSF) solar cells is made and the computer results are compared with experimental results. A method of determining the real and the effective surface recombination velocity of FSF solar cells is proposed.

  17. One-Dimensional Contact Mode Interdigitated Center of Pressure Sensor (CMIPS)

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Kang, Jinho; Park, Cheol; Harrison, Joycelyn S.; Guerreiro, Nelson M.; Hubbard, James E.

    2009-01-01

    A one dimensional contact mode interdigitated center of pressure sensor (CMIPS) has been developed. The experimental study demonstrated that the CMIPS has the capability to measure the overall pressure as well as the center of pressure in one dimension, simultaneously. A theoretical model for the CMIPS is established here based on the equivalent circuit of the configuration of the CMIPS as well as the material properties of the sensor. The experimental results match well with theoretical modeling predictions. A system mapped with two or more pieces of the CMIPS can be used to obtain information from the pressure distribution in multi-dimensions.

  18. Peculiar transmission property of acoustic waves in a one-dimensional layered phononic crystal

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Wang, Wengang; Liu, Zhengyou; Shi, Jing; Wen, Weijia

    2007-03-01

    In this article, we report both theoretical calculation and experimental observation of acoustic waves abnormally through a one-dimensional layered transmitted phononic crystal at frequencies within the band gap into a material of large acoustic impedance mismatch, with an efficiency as high as unity. The transmission peaks can be interpreted as a result of the interference of acoustic waves reflected from all periodically aligned interfaces. The condition for the appearance of peaks is analyzed in detail and the optimized layer number is given for different configurations.

  19. One-dimensional velocity model of the Middle Kura Depresion from local earthquakes data of Azerbaijan

    NASA Astrophysics Data System (ADS)

    Yetirmishli, G. C.; Kazimova, S. E.; Kazimov, I. E.

    2011-09-01

    We present the method for determining the velocity model of the Earth's crust and the parameters of earthquakes in the Middle Kura Depression from the data of network telemetry in Azerbaijan. Application of this method allowed us to recalculate the main parameters of the hypocenters of the earthquake, to compute the corrections to the arrival times of P and S waves at the observation station, and to significantly improve the accuracy in determining the coordinates of the earthquakes. The model was constructed using the VELEST program, which calculates one-dimensional minimal velocity models from the travel times of seismic waves.

  20. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  1. Phase separation and pairing regimes in the one-dimensional asymmetric Hubbard model

    SciTech Connect

    Barbiero, L.; Casadei, M.; Dalmonte, M.; Ercolessi, E.; Ortolani, F.

    2010-06-01

    We address some open questions regarding the phase diagram of the one-dimensional Hubbard model with asymmetric hopping coefficients and balanced species. In the attractive regime we present a numerical study of the passage from on-site pairing dominant correlations at small asymmetries to charge-density waves in the region with markedly different hopping coefficients. In the repulsive regime we exploit two analytical treatments in the strong- and weak-coupling regimes in order to locate the onset of phase separation at small and large asymmetries, respectively.

  2. Bound States of One-Dimensional Helium Atom by Discretization of Space and Time

    NASA Astrophysics Data System (ADS)

    Weatherford, Charles

    2001-05-01

    The computational theory for calculation of the solution of the time-dependent Schrödinger equation for two electrons [C.A. Weatherford, Computational Chemistry: Reviews of Current Trends, Vol. 5, ed. J. Leszczynski, World Scientific 2000] is reviewed and adapted to the case of the one-dimensional helium atom. This results in a new computational time-dependent exchange/correlation theory. A solution algorithm which discretizes space using a spectral discrete variable basis of synthetic cartesian polynomials, and discretizes time using a spectral element discrete variable basis of Chebyshev polynomials, is presented. Supported by NSF CREST grant HRD-9707076, and by NASA grant NAG5-10148.

  3. Controlled Growth of one-dimensional zinc oxide nanostructures in the pulsed electrodeposition mode

    SciTech Connect

    Klochko, N. P. Khrypunov, G. S.; Myagchenko, Yu. O.; Melnychuk, E. E.; Kopach, V. R.; Klepikova, E. S.; Lyubov, V. M.; Kopach, A. V.

    2012-06-15

    Zinc oxide nanostructures are objects of study in the field of optoelectronics, solar power engineering, nanosensorics, and catalysis. For the purpose of the controlled growth of one-dimensional submicrometer zinc oxide structures in the pulsed electrodeposition mode, the effect of the pulse electrolysis parameters on the morphology of ZnO layers, their optical properties, and structural and substructural characteristics is determined using X-ray diffraction, optical spectrophotometry, and atomic-force microscopy. The possibility of fabricating arrays of ZnO nanowires with different geometrical shapes, perpendicular to the substrate surface, by varying the frequency of cathode-substrate potential pulses is shown.

  4. Analytical evaluation of thermal conductance and heat capacities of one-dimensional material systems

    SciTech Connect

    Saygi, Salih

    2014-02-15

    We theoretically predict some thermal properties versus temperature dependence of one dimensional (1D) material nanowire systems. A known method is used to provide an efficient and reliable analytical procedure for wide temperature range. Predicted formulas are expressed in terms of Bloch-Grüneisen functions and Debye functions. Computing results has proved that the expressions are in excellent agreement with the results reported in the literature even if it is in very low dimension limits of nanowire systems. Therefore the calculation method is a fully predictive approach to calculate thermal conductivity and heat capacities of nanowire material systems.

  5. Hamiltonian field description of the one-dimensional Poisson-Vlasov equations

    SciTech Connect

    Morrison, P.J.

    1981-07-01

    The one-dimensional Poisson-Vlasov equations are cast into Hamiltonian form. A Poisson Bracket in terms of the phase space density, as sole dynamical variable, is presented. This Poisson bracket is not of the usual form, but possesses the commutator properties of antisymmetry, bilinearity, and nonassociativity by virtue of the Jacobi requirement. Clebsch potentials are seen to yield a conventional (canonical) formulation. This formulation is discretized by expansion in terms of an arbitrary complete set of basis functions. In particular, a wave field representation is obtained.

  6. Black phosphorus-based one-dimensional photonic crystals and microcavities

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco

    2016-11-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  7. Inverse scattering for the one-dimensional Helmholtz equation: fast numerical method.

    PubMed

    Belai, Oleg V; Frumin, Leonid L; Podivilov, Evgeny V; Shapiro, David A

    2008-09-15

    The inverse scattering problem for the one-dimensional Helmholtz wave equation is studied. The equation is reduced to a Fresnel set that describes multiple bulk reflection and is similar to the coupled-wave equations. The inverse scattering problem is equivalent to coupled Gel'fand-Levitan-Marchenko integral equations. In the discrete representation its matrix has Töplitz symmetry, and the fast inner bordering method can be applied for its inversion. Previously the method was developed for the design of fiber Bragg gratings. The testing example of a short Bragg reflector with deep modulation demonstrates the high efficiency of refractive-index reconstruction.

  8. Fabrication of one-dimensional programmable-height nanostructures via dynamic stencil deposition.

    PubMed

    Wasserman, J L; Lucas, K; Lee, S H; Ashton, A; Crowl, C T; Marković, N

    2008-07-01

    Dynamic stencil deposition (DSD) techniques offer a variety of fabrication advantages not possible with traditional lithographic processing, such as the ability to directly deposit nanostructures with programmable-height profiles. However, DSD systems have not enjoyed widespread usage due to their complexity. We demonstrate a simple, low-profile, portable, one-dimensional nanotranslation system that facilitates access to nanoscale DSD abilities. Furthermore we show a variety of fabricated programmable-height nanostructures, including parallel arrays of such structures, and suggest other applications that exploit the unique capabilities of DSD fabrication methods.

  9. Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    SciTech Connect

    Vittoria, Fabio A. Diemoz, Paul C.; Endrizzi, Marco; Olivo, Alessandro; Wagner, Ulrich H.; Rau, Christoph; Robinson, Ian K.

    2014-03-31

    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.

  10. Nonlinear modulation of Rabi oscillations in a one-dimensional nonlinear periodic photonic structure.

    PubMed

    Zang, Xiao-Fei; Jiang, Chun; Zhu, Hai-Bin

    2009-09-01

    We study nonlinear dynamics of classical electromagnetic wave propagation in a one-dimensional nonlinear periodic photonic structure. It is found that the period of Rabi oscillations can be modulated by the relatively weak nonlinearity (2V0/gamma>1). When nonlinearity is relatively strong compared to the strength of resonant coupling (2V0/gamma<1), Rabi oscillations is suppressed and the system shows a dynamical behavior, i.e., energy localizes in one mode rather than full oscillation between two degenerated modes. Phase plane analysis is applied to explain these dynamical phenomena.

  11. Topological Bose-Mott insulators in a one-dimensional optical superlattice.

    PubMed

    Zhu, Shi-Liang; Wang, Z-D; Chan, Y-H; Duan, L-M

    2013-02-15

    We study topological properties of the Bose-Hubbard model with repulsive interactions in a one-dimensional optical superlattice. We find that the Mott insulator states of the single-component (two-component) Bose-Hubbard model under fractional fillings are topological insulators characterized by a nonzero charge (or spin) Chern number with nontrivial edge states. For ultracold atomic experiments, we show that the topological Chern number can be detected through measuring the density profiles of the bosonic atoms in a harmonic trap.

  12. Phase diagram of Bose-Fermi mixtures in one-dimensional optical lattices.

    PubMed

    Pollet, Lode; Troyer, Matthias; Van Houcke, Kris; Rombouts, Stefan M A

    2006-05-19

    The ground state phase diagram of the one-dimensional Bose-Fermi Hubbard model is studied in the canonical ensemble using a quantum Monte Carlo method. We focus on the case where both species have half filling in order to maximize the pairing correlations between the bosons and the fermions. In case of equal hopping we distinguish among phase separation, a Luttinger liquid phase, and a phase characterized by strong singlet pairing between the species. True long-range density waves exist with unequal hopping amplitudes.

  13. Dimerized ground state in the one-dimensional spin-1 boson Hubbard model

    SciTech Connect

    Apaja, Vesa; Syljuaasen, Olav F.

    2006-09-15

    We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.

  14. Strongly-coupled Josephson junction array for simulation of frustrated one-dimensional spin models

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengwei; Du, Lianghui; Zhou, Xingxiang; Han, Yongjian; Guo, Guangcan

    2013-03-01

    We study the capacitance-coupled Josephson-junction array beyond the small-coupling limit. We find that, when the scale of the system is large, its Hamiltonian can be obtained without the small-coupling approximation and the system can be used to simulate strongly frustrated one-dimensional Ising spin problems. To engineer the system Hamiltonian for an ideal theoretical model, we apply a dynamical-decoupling technique to eliminate undesirable couplings in the system. Using a six-site junction array as an example, we numerically evaluate the system to show that it exhibits important characteristics of the frustrated spin model.

  15. On-surface formation of one-dimensional polyphenylene through Bergman cyclization.

    PubMed

    Sun, Qiang; Zhang, Chi; Li, Zhiwen; Kong, Huihui; Tan, Qinggang; Hu, Aiguo; Xu, Wei

    2013-06-12

    On-surface fabrication of covalently interlinked conjugated nanostructures has attracted significant attention, mainly because of the high stability and efficient electron transport ability of these structures. Here, from the interplay of scanning tunneling microscopy imaging and density functional theory calculations, we report for the first time on-surface formation of one-dimensional polyphenylene chains through Bergman cyclization followed by radical polymerization on Cu(110). The formed surface nanostructures were further corroborated by the results for the ex situ-synthesized molecular product after Bergman cyclization. These findings are of particular interest and importance for the construction of molecular electronic nanodevices on surfaces.

  16. Spectral properties near the Mott transition in the one-dimensional Hubbard model.

    PubMed

    Kohno, Masanori

    2010-09-03

    The single-particle spectral properties near the Mott transition in the one-dimensional Hubbard model are investigated by using the dynamical density-matrix renormalization group method and the Bethe ansatz. The pseudogap, hole-pocket behavior, spectral-weight transfer, and upper Hubbard band are explained in terms of spinons, holons, antiholons, and doublons. The Mott transition is characterized by the emergence of a gapless mode whose dispersion relation extends up to the order of hopping t (spin exchange J) in the weak (strong) interaction regime caused by infinitesimal doping.

  17. Pseudo one-dimensional analysis of polymer electrolyte fuel cell cold-start

    SciTech Connect

    Mukherjee, Partha P; Mukundan, Rangachary; Borup, Rodney L; Wang, Yun; Mishlera, Jeff

    2009-01-01

    This paper investigates the electrochemical kinetics, oxygen transport, and solid water formation in polymer electrolyte fuel cell (PEFC) during cold start. Following [Yo Wang, J. Electrochem. Soc., 154 (2007) B1041-B1048], we develop a pseudo one-dimensional analysis, which enables the evaluation of the impact of ice volume fraction and temperature variations on cell performance during cold-start. The oxygen profile, starvation ice volume fraction, and relevant overpotentials are obtained. This study is valuable for studying the characteristics of PEFC cold-start.

  18. Dispersion relations for stationary light in one-dimensional atomic ensembles

    NASA Astrophysics Data System (ADS)

    Iakoupov, Ivan; Ott, Johan R.; Chang, Darrick E.; Sørensen, Anders S.

    2016-11-01

    We investigate the dispersion relations for light coupled to one-dimensional ensembles of atoms with different level schemes. The unifying feature of all the considered setups is that the forward and backward propagating quantum fields are coupled by the applied classical drives such that the group velocity can vanish in an effect known as "stationary light." We derive the dispersion relations for all the considered schemes, highlighting the important differences between them. Furthermore, we show that additional control of stationary light can be obtained by treating atoms as discrete scatterers and placing them at well-defined positions. For the latter purpose, a multimode transfer matrix theory for light is developed.

  19. One-dimensional nonlinear elastodynamic models and their local conservation laws with applications to biological membranes.

    PubMed

    Cheviakov, A F; Ganghoffer, J-F

    2016-05-01

    The framework of incompressible nonlinear hyperelasticity and viscoelasticity is applied to the derivation of one-dimensional models of nonlinear wave propagation in fiber-reinforced elastic solids. Equivalence transformations are used to simplify the resulting wave equations and to reduce the number of parameters. Local conservation laws and global conserved quantities of the models are systematically computed and discussed, along with other related mathematical properties. Sample numerical solutions are presented. The models considered in the paper are appropriate for the mathematical description of certain aspects of the behavior of biological membranes and similar structures.

  20. Inhomogeneous superconductivity in quasi-one dimensional organic conductors and ropes of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bellafi, B.; Haddad, S.; Sfar, I.; Charfi-Kaddour, S.

    2009-03-01

    It has been reported that, in quasi-one dimensional organic conductors, superconductivity may coexist macroscopically with non-superconducting states giving rise to an inhomogeneous phase. We investigate, based on the time-dependent Ginzburg-Landau theory, the effect of disorder on the stability of the superconducting phase in such a mixed state. We also focus on the interplay between superconductivity and disorder in ropes of carbon nanotubes. We show that the superconducting transition temperature in quasi-one organic conductors is reduced by disorder but does not obey the Abrikosov-Gorkov law. However, and contrary to what is expected, disorder can further superconductivity in ropes of carbon nanotubes.