Magnetic properties of manganese based one-dimensional spin chains.
Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu
2015-12-14
We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively.
Magnetic properties of manganese based one-dimensional spin chains.
Asha, K S; Ranjith, K M; Yogi, Arvind; Nath, R; Mandal, Sukhendu
2015-12-14
We have correlated the structure-property relationship of three manganese-based inorganic-organic hybrid structures. Compound 1, [Mn2(OH-BDC)2(DMF)3] (where BDC = 1,4-benzene dicarboxylic acid and DMF = N,N'-dimethylformamide), contains Mn2O11 dimers as secondary building units (SBUs), which are connected by carboxylate anions forming Mn-O-C-O-Mn chains. Compound 2, [Mn2(BDC)2(DMF)2], contains Mn4O20 clusters as SBUs, which also form Mn-O-C-O-Mn chains. In compound 3, [Mn3(BDC)3(DEF)2] (where DEF = N,N'-diethylformamide), the distorted MnO6 octahedra are linked to form a one-dimensional chain with Mn-O-Mn connectivity. The magnetic properties were investigated by means of magnetization and heat capacity measurements. The temperature dependent magnetic susceptibility of all the three compounds could be nicely fitted using a one-dimensional S = 5/2 Heisenberg antiferromagnetic chain model and the value of intra-chain exchange coupling (J/k(B)) between Mn(2+) ions was estimated to be ∼1.1 K, ∼0.7 K, and ∼0.46 K for compounds 1, 2, and 3, respectively. Compound 1 does not undergo any magnetic long-range-order down to 2 K while compounds 2 and 3 undergo long-range magnetic order at T(N) ≈ 4.2 K and ≈4.3 K, respectively, which are of spin-glass type. From the values of J/k(B) and T(N) the inter-chain coupling (J(⊥)/k(B)) was calculated to be about 0.1J/k(B) for both compounds 2 and 3, respectively. PMID:26455515
Thermal transport in disordered one-dimensional spin chains
NASA Astrophysics Data System (ADS)
Poboiko, Igor; Feigel'man, Mikhail
2015-12-01
We study a one-dimensional anisotropic XXZ Heisenberg spin-1/2 chain with weak random fields hizSiz by means of Jordan-Wigner transformation to spinless Luttinger liquid with disorder and bosonization technique. First, we reinvestigate the phase diagram of the system in terms of dimensionless disorder γ =
Spin guides and spin splitters: waveguide analogies in one-dimensional spin chains.
Makin, Melissa I; Cole, Jared H; Hill, Charles D; Greentree, Andrew D
2012-01-01
Here we show a mapping between waveguide theory and spin-chain transport, opening an alternative approach to solid-state quantum information transport. By applying temporally varying control profiles to a spin chain, we design a virtual waveguide or "spin guide" to conduct spin excitations along defined space-time trajectories of the chain. We show that the concepts of confinement, adiabatic bend loss, and beam splitting can be mapped from optical waveguide theory to spin guides, and hence to "spin splitters." Importantly, the spatial scale of applied control pulses is required to be large compared to the interspin spacing, thereby allowing the design of scalable control architectures.
NASA Astrophysics Data System (ADS)
Duan, Y. F.; Yao, K. L.; Yi, L.
Based on a theoretical model proposed for an organic bipartite lozenge ferrimagnetic chain, the spin configuration of π electrons and the dimerization are investigated. With the Hartree-Fock approximation, the strong electron-phonon coupling and the electron-electron interaction in the one-dimensional system are taken into account self-consistently. It is shown that around the middle of the chain appears a π electron spin polarization cloud with alternation of sign and amplitude of the spin density extending over a certain distance, which extends all over the chain with no decay when the e-e interaction is larger than a critical value. In the stable ferrimagnetic state, the antiferromagnetic exchange interaction between electrons at site A and site B along the chain will become very strong, and almost zero dimerization happens for the chain.
Thermodynamics of spin chains of Haldane-Shastry type and one-dimensional vertex models
Enciso, Alberto; Finkel, Federico; Gonzalez-Lopez, Artemio
2012-11-15
We study the thermodynamic properties of spin chains of Haldane-Shastry type associated with the A{sub N-1} root system in the presence of a uniform external magnetic field. To this end, we exactly compute the partition function of these models for an arbitrary finite number of spins. We then show that these chains are equivalent to a suitable inhomogeneous classical Ising model in a spatially dependent magnetic field, generalizing the results of Basu-Mallick et al. for the zero magnetic field case. Using the standard transfer matrix approach, we are able to compute in closed form the free energy per site in the thermodynamic limit. We perform a detailed analysis of the chains' thermodynamics in a unified way, with special emphasis on the zero field and zero temperature limits. Finally, we provide a novel interpretation of the thermodynamic quantities of spin chains of Haldane-Shastry type as weighted averages of the analogous quantities over an ensemble of classical Ising models. - Highlights: Black-Right-Pointing-Pointer Partition function of spin chains of Haldane-Shastry type in magnetic field. Black-Right-Pointing-Pointer Equivalence to classical inhomogeneous Ising models. Black-Right-Pointing-Pointer Free energy per site, other thermodynamic quantities in thermodynamic limit. Black-Right-Pointing-Pointer Zero field, zero temperature limits. Black-Right-Pointing-Pointer Thermodynamic equivalence with ensemble of classical Ising models.
Generation of concurrence between two qubits locally coupled to a one-dimensional spin chain
NASA Astrophysics Data System (ADS)
Nag, Tanay; Dutta, Amit
2016-08-01
We consider a generalized central spin model, consisting of two central qubits and an environmental spin chain (with periodic boundary condition) to which these central qubits are locally and weakly connected either at the same site or at two different sites separated by a distance d . Our purpose is to study the subsequent temporal generation of entanglement, quantified by concurrence, when initially the qubits are in an unentangled state. In the equilibrium situation, we show that the concurrence survives for a larger value of d when the environmental spin chain is critical. Importantly, a common feature observed both in the equilibrium and the nonequilibrium situations while the latter is created by a sudden but global change of the environmental transverse field is that the two qubits become maximally entangled for the critical quenching. Following a nonequilibrium evolution of the spin chain, our study for d ≠0 indicates that there exists a threshold time above which concurrence attains a finite value. Additionally, we show that the number of independent decohering channels (DCs) is determined by d as well as the local difference of the transverse field of the two underlying Hamiltonians governing the time evolution; the concurrence can be enhanced by a higher number of independent channels. The qualitatively similar behavior displayed by the concurrence for critical and off-critical quenches, as reported here, is characterized by analyzing the nonequilibrium evolution of these channels. The concurrence is maximum when the decoherence factor or the echo associated with the most rapidly DC decays to zero; on the contrary, the condition when the concurrence vanishes is determined nontrivially by the associated decay of one of the intermediate DCs. Analyzing the reduced density of a single qubit, we also explain the observation that the dephasing rate is always slower than the unentanglement rate. We further establish that the maximally and minimally decohering
NASA Astrophysics Data System (ADS)
Popov, Alexander P.; Gloria Pini, Maria; Rettori, Angelo
2016-03-01
The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii-Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls-Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain.
Quantum phase transitions in composite matrix product states of one-dimensional spin-1/2 chains
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2015-02-01
For matrix product states of one-dimensional spin-1/2 chains, we investigate the properties of quantum phase transition of the proposed composite system. We find that the system has three different ferromagnetic phases, one line of the two ferromagnetic phases coexisting equally describes the paramagnetic state, and the other two lines of two ferromagnetic phases coexisting equally describe the ferrimagnetic states, while the three phases coexisting equally point describes the ferromagnetic state. Whether on phase transition lines or at the phase transition point, the system is always in an isolated mediate-coupling state, the physical quantities are discontinuous and the system has long-range correlation and has long-range classical correlation and long-range quantum correlation. We believe that our work is helpful for comprehensively and profoundly understanding the quantum phase transitions, and of some certain guidance and enlightening on the classification and measure of quantum correlation of quantum many-body systems.
NASA Astrophysics Data System (ADS)
Nag, Tanay
2016-06-01
We take a central spin model (CSM), consisting of a one-dimensional environmental Ising spin chain and a single qubit connected globally to all the spins of the environment, to study the excess energy (EE) of the environment and the logarithm of decoherence factor namely, generalized fidelity susceptibility per site (GFSS), associated with the qubit under a periodic driving of the transverse field term of environment across its critical point using the Floquet theory. The coupling to the qubit, prepared in a pure state, with the transverse field of the spin chain yields two sets of EE corresponding to the two species of Floquet operators. In the limit of weak coupling, we derive an approximated expression of GFSS after an infinite number of driving period which can successfully estimate the low- and intermediate-frequency behavior of GFSS obtained numerically with a large number of time periods. Our main focus is to analytically investigate the effect of system-environment coupling strength on the EEs and GFSS and relate the behavior of GFSS to EEs as a function of frequency by plausible analytical arguments. We explicitly show that the low-frequency beatinglike pattern of GFSS is an outcome of two frequencies, causing the oscillations in the two branches of EEs, that are dependent on the coupling strength. In the intermediate frequency regime, dip structure observed in GFSS can be justified by the resonance peaks of EEs at those coupling parameter-dependent frequencies; high-frequency saturation behavior of EEs and GFSS are controlled by the same static Hamiltonian and the associated saturation values are related to the coupling strength.
Ren, Jie; Liu, Guang-Hua; You, Wen-Long
2015-03-18
We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other. PMID:25707024
Detection of gapped phases of a one-dimensional spin chain with on-site and spatial symmetries
NASA Astrophysics Data System (ADS)
Prakash, Abhishodh; West, Colin G.; Wei, Tzu-Chieh
2016-07-01
We investigate the phase diagram of a quantum spin-1 chain whose Hamiltonian is invariant under a global on-site A4, translation, and lattice inversion symmetries. We detect different gapped phases characterized by a symmetry protected topological (SPT) order and symmetry breaking using matrix product state order parameters. We observe a rich variety of phases of matter characterized by a combination of symmetry breaking and symmetry fractionalization and also the interplay between the on-site and spatial symmetries. Examples of continuous phase transitions directly between topologically nontrivial SPT phases are also observed.
NASA Astrophysics Data System (ADS)
Jiang, Jian-Jun; Liu, Yong-Jun; Zhang, Song-Jun; Yang, Cui-Hong
2009-10-01
We investigate the effect of frustration on spin-wave excitation spectra and the properties of the quasi-one-dimensional Heisenberg chain using a spin-wave-wave analysis, the exact diagonalization method and the density matrix renormalization group method. The results show that frustration can cause the softening of the acoustic excitation spectrum ω3, as well as the hardening of the optical excitation spectrum ω1. As a function of the frustration parameter α, the phase diagram exhibits a ferromagnetic phase, a narrow canted phase and a singlet phase. The results obtained from numerical methods show that the spin gap obviously opens and the tetramer-dimer state dominates the properties of the ground state in the singlet phase.
One-dimensional spin-orbit interferometer
NASA Astrophysics Data System (ADS)
Li, Tommy; Sushkov, Oleg P.
2013-04-01
We demonstrate that the combination of an external magnetic field and the intrinsic spin-orbit interaction results in nonadiabatic precession of the electron spin after transmission through a quantum point contact (QPC). We suggest that this precession may be observed in a device consisting of two QPCs situated in series. The pattern of resonant peaks in the transmission is strongly influenced by the non-Abelian phase resulting from this precession. Moreover, an unusual type of resonance which is associated with suppressed, rather than enhanced, transmission (i.e., antiresonance) emerges in the strongly nonadiabatic regime. The shift in the resonant transmission peaks is dependent on the spin-orbit interaction and therefore offers a way to directly measure these interactions in a ballistic one-dimensional system.
One-dimensional quantum spin heterojunction as a thermal switch
NASA Astrophysics Data System (ADS)
Yang, Chuan-Jing; Jin, Li-Hui; Gong, Wei-Jiang
2016-03-01
We study the thermal transport through a quantum spin-1 2 heterojunction, which consists of a finite-size chain with two-site anisotropic XY interaction and three-site XZX+YZY interaction coupled at its ends to two semi-infinite isotropic XY chains. By performing the Jordan-Wigner transformation, the original spin Hamiltonian is mapped onto a fermionic Hamiltonian. Then, the fermionic structure is discussed, and the heat current as a function of structural parameters is evaluated. It is found that the magnetic fields applied at respective chains play different roles in adjusting the heat current in this heterojunction. Moreover, the interplay between the anisotropy of the XY interaction and the three-site spin interaction assists to further control the thermal transport. In view of the numerical results, we propose this heterojunction to be an alternate candidate for manipulating the heat current in one-dimensional (1D) systems.
NASA Astrophysics Data System (ADS)
Prasai, Narayan; Cohn, Joshua; Rebello, Alwyn; Smith, Michael; Neumeier, John J.
2014-03-01
We report thermal conductivity (κ) measurements on single crystals of the S = 1 / 2 antiferromagnetic spin-chain compound CuSb2O6 over the temperature range 5 K <= T <= 300 K . Similar measurements on the non-magnetic analog compound, ZnSb2O6, allow for a comparison of the lattice thermal conductivities. The role of spin-phonon coupling and twinning on the anisotropic thermal transport of CuSb2O6 will be discussed. This material is based upon work supported by the U.S. Department of Energy Office of Basic Energy Sciences grant DE-FG02-12ER46888 (Univ. Miami) and the National Science Foundation under grant DMR-0907036 (Mont. St. Univ.).
Quantum quench in an atomic one-dimensional Ising chain.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C
2013-08-01
We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response. PMID:23952393
One-Dimensional Ising Model with "k"-Spin Interactions
ERIC Educational Resources Information Center
Fan, Yale
2011-01-01
We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…
Spin transport in a one-dimensional anisotropic Heisenberg model.
Znidarič, Marko
2011-06-01
We analytically and numerically study spin transport in a one-dimensional Heisenberg model in linear-response regime at infinite temperature. It is shown that as the anisotropy parameter Δ is varied spin transport changes from ballistic for Δ<1 to anomalous at the isotropic point Δ=1, to diffusive for finite Δ>1, ending up as a perfect isolator in the Ising limit of infinite Δ. Using perturbation theory for large Δ a quantitative prediction is made for the dependence of diffusion constant on Δ. PMID:21702588
Spin correlations and impurities in one-dimensional gapped spin systems
NASA Astrophysics Data System (ADS)
Xu, Guangyong
2000-05-01
Magnetic excitations and impurity effects in the quasi- one-dimensional spin systems Y2BaNiO5 and Cu(NO3)2 . 2.5D2O have been studied by neutron scattering. Both materials exhibit an energy gap between their ground state and first excited state. Unlike most crystalline and weakly disordered three dimensional magnets, no long-ranged magnetic order exists in these 1-D antiferromagnetic systems and new magnetic phenomena occur. With Ni2+ ions carrying spins S = 1, and coupled antiferromagnetically along the chain, Y2BaNiO 5 is one of the best experimental realizations of a Haldane spin chain. Using neutron scattering, we studied in detail low energy excitations in pure Y2BaNiO5 over the temperature range 0 < T ~ Δ/kB. In addition, effects of doping by chemical substitution in this spin liquid were also examined. Our results from Mg doped Y2BaNiO5 confirmed the theoretical prediction of chain end spin-1/2 degrees of freedom in spin-1 AFM chains. Doping with Ca into Y2BaNiO5 leads to novel excited states that fill the Haldane gap. Our data provide evidence of antiferromagnetic spin-polarization clouds around impurity sites and suggest an alternative interpretation of similar data in over-doped 2-D superconducting cuprates. Cu(NO3)2 . 2.5D2), is a strongly dimerized alternating chain compound. We have performed the first detailed mapping of the full single-particle spectrum of the material for 0.06 < kBT/J1, < 1.5. At low T there is a coherent, dispersive mode which is well-described by the Single Mode Approximation with exchange constants J 1 = 0.442(2) meV and J2 = 0.106(2) meV for the strong and weak nearest-neighbor couplings along the chain. With increasing temperature, the overall spectral weight decreases in the same way as for an ensemble of independent spin pairs. The relaxation rate is thermally activated, and wave-vector dependent.
Uniaxial magnetic anisotropy of quasi-one-dimensional Fe chains on Pb/Si
Sun, Da-li; Wang, De-yong; Du, Hai-Feng; Ning, Wei; Gao, Jian-Hua; Fang, Ya-Peng; Zhang, Xiang-Qun; Sun, Young; Cheng, Zhao-Hua; Shen, Jian
2009-01-01
We fabricated quasi-one-dimensional Fe chains on a 4{sup o} miscut Si (111) substrate with a Pb film as a buffer layer. The magnetic properties and morphology of Fe chains were investigated by means of scanning tunneling microscope (STM) and surface magneto-optical Kerr effect (SMOKE). STM images show that Fe chains are formed by Fe random islands along the steps of the Pb film due to step decoration. SMOKE data indicate that the Fe chains exhibit in-plane uniaxial magnetic anisotropy along the step direction. The effective in-plane uniaxial anisotropy constant at room temperature was determined by means of electron spin resonance.
Dynamical spin structure factor of one-dimensional interacting fermions
NASA Astrophysics Data System (ADS)
Zyuzin, Vladimir A.; Maslov, Dmitrii L.
2015-02-01
We revisit the dynamic spin susceptibility χ (q ,ω ) of one-dimensional interacting fermions. To second order in the interaction, backscattering results in a logarithmic correction to χ (q ,ω ) at q ≪kF , even if the single-particle spectrum is linearized near the Fermi points. Consequently, the dynamic spin structure factor Im χ (q ,ω ) is nonzero at frequencies above the single-particle continuum. In the boson language, this effect results from the marginally irrelevant backscattering operator of the sine-Gordon model. Away from the threshold, the high-frequency tail of Im χ (q ,ω ) due to backscattering is larger than that due to finite mass by a factor of kF/q . We derive the renormalization group equations for the coupling constants of the g -ology model at finite ω and q and find the corresponding expression for χ (q ,ω ) , valid to all orders in the interaction but not in the immediate vicinity of the continuum boundary, where the finite-mass effects become dominant.
Spin-incoherent one-dimensional spin-1 Bose Luttinger liquid
NASA Astrophysics Data System (ADS)
Jen, H. H.; Yip, S.-K.
2016-09-01
We investigate spin-incoherent Luttinger liquid of a one-dimensional spin-1 Bose gas in a harmonic trap. In this regime highly degenerate spin configurations emerge since the energy splitting between different spin states is much less than the thermal energy of the system, while the temperature is low enough that the lowest energetic orbitals are occupied. As an example we numerically study the momentum distribution of a one-dimensional spin-1 Bose gas in Tonks-Girardeau gas limit and in the sector of zero magnetization. We find that the momentum distributions broaden as the number of atoms increase due to the averaging of spin function overlaps. Large momentum (p ) asymptotic is analytically derived, showing the universal 1 /p4 dependence. We demonstrate that the spin-incoherent Luttinger liquid has a momentum distribution also distinct from spinless bosons at finite temperature.
One-dimensional Mn atom chains templated on a Si(001) surface
NASA Astrophysics Data System (ADS)
Köster, Sigrun A.; Owen, James H. G.; Bianco, François; Sena, Alex M. P.; Bowler, David R.; Renner, Christoph
2011-03-01
Single-atom chains on a wide gap substrate are a very attractive embodiment of a truly one-dimensional system to explore the remarkable physical properties emerging in such low dimensions. We present self-assembled single-atom Mn chains on a Si(001) surface with Bi nanolines, which serve to increase greatly the average length of the Mn chains. They grow perpendicular to the Si(001) dimer rows, at densities which can be adjusted by means of the growth parameter. High resolution scanning tunneling microscopy (STM) micrographs are in perfect agreement with density functional theory (DFT), providing detailed insight into the chain structure. We further discuss low temperature STM spectroscopy and spin dependent DFT modeling suggesting Mn-chains are indeed a suitable candidate to observe electronic and magnetic properties in one-dimension experimentally. This work was supported by the MaNEP research program via the swiss national science foundation (SNF).
Spin decoherence of mobile impurity in a one dimensional spin bath
NASA Astrophysics Data System (ADS)
Devakul, Trithep; Feiguin, Adrian
2015-03-01
We study the spin decoherence of a mobile impurity interacting locally with a one dimensional spin bath. In contrast to the central spin model, where a single central spin interacts with the bath via long ranged interactions, our model considers only local exchange interactions, while allowing the impurity to move to neighboring sites via hopping t. We consider a spin- 1 / 2 impurity, and study the decoherence, tracing over the position degree of freedom. In the large t limit, the delocalized impurity behaves identically to a localized spin interacting with the bath, same as a central spin. This model allows one to treat a central spin problem - which inherently builds up long-range entanglement within the bath - instead as a Hamiltonian with only local interactions. Numerical calculations are done at various regimes of parameters, and comparison with the central spin model is discussed.
Mechanism of spin and charge separation in one-dimensional quantum antiferromagnets
Mudry, C.; Fradkin, E. )
1994-10-15
We reconsider the problem of separation of spin and charge in one-dimensional quantum antiferromagnets. We show that spin and charge separation in one-dimensional strongly correlated systems cannot be described by the slave-boson or fermion representation within any perturbative treatment of the interactions between the slave holons and slave spinons. The constraint of single occupancy must be implemented exactly. As a result the slave fermions and bosons are not part of the physical spectrum. Instead, the excitations that carry the separate spin and charge quantum numbers are solitons. To prove this result, it is sufficient to study the pure spinon sector in the slave-boson representation. We start with a short-range resonating-valence-bond state spin liquid mean-field theory for the frustrated antiferromagnetic spin-1/2 chain. We derive an effective theory for the fluctuations of the Affleck-Marston and Anderson order parameters. We show how to recover the phase diagram as a function of the frustration by treating the fluctuations nonperturbatively.
Entanglement vs. gap for one-dimensional spin systems
Hastings, Matthew; Aharonov, Dorit; Gottesman, Daniel
2008-01-01
We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension. The area law for a one-dimensional system states that for the ground state, the entanglement of any interval is upper-bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap {Delta} is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small {Delta}. To help resolve this asymptotic behavior, we construct a family of one-dimensional local systems for which some intervals have entanglement entropy which is polynomial in 1/{Delta}, whereas previously studied systems had the entropy of all intervals bounded by a constant times log(1/{Delta}).
Synthetic magnetic fluxes and topological order in one-dimensional spin systems
NASA Astrophysics Data System (ADS)
Graß, Tobias; Muschik, Christine; Celi, Alessio; Chhajlany, Ravindra W.; Lewenstein, Maciej
2015-06-01
Engineering topological quantum order has become a major field of physics. Many advances have been made by synthesizing gauge fields in cold atomic systems. Here we carry over these developments to other platforms which are extremely well suited for quantum engineering, namely, trapped ions and nano-trapped atoms. Since these systems are typically one-dimensional, the action of artificial magnetic fields has so far received little attention. However, exploiting the long-range nature of interactions, loops with nonvanishing magnetic fluxes become possible even in one-dimensional settings. This gives rise to intriguing phenomena, such as fractal energy spectra, flat bands with localized edge states, and topological many-body states. We elaborate on a simple scheme for generating the required artificial fluxes by periodically driving an XY spin chain. Concrete estimates demonstrating the experimental feasibility for trapped ions and atoms in wave guides are given.
Spin waves in one-dimensional bicomponent magnonic quasicrystals
NASA Astrophysics Data System (ADS)
Rychły, J.; Kłos, J. W.; Mruczkiewicz, M.; Krawczyk, M.
2015-08-01
We studied a finite Fibonacci sequence of Co and Py stripes aligned side by side and in direct contact with each other. Calculations based on a continuous model, including exchange and dipole interactions, were performed for structures feasible for fabrication and characterization of the main properties of magnonic quasicrystals. We have shown the fractal structure of the magnonic spectrum with a number of magnonic gaps of different widths. Moreover, localization of spin waves in quasicrystals and the existence of surface spin waves in finite quaiscrystal structure is demonstrated.
Polar Phase of One-dimensional Bosons with Large Spin
Tsvelik, A.M.; Shlyapnikov, G.
2011-06-20
Spinor ultracold gases in one dimension (1D) represent an interesting example of strongly correlated quantum fluids. They have a rich phase diagram and exhibit a variety of quantum phase transitions. We consider a 1D spinor gas of bosons with a large spin S. A particular example is the gas of chromium atoms (S = 3), where the dipolar collisions efficiently change the magnetization and make the system sensitive to the linear Zeeman effect. We argue that in 1D the most interesting effects come from the pairing interaction. If this interaction is negative, it gives rise to a (quasi)condensate of singlet bosonic pairs with an algebraic order at zero temperature, and for (2S+1) >> 1 the saddle point approximation leads to physically transparent results. Since in 1D one needs a finite energy to destroy a pair, the spectrum of spin excitations has a gap. Hence, in the absence of a magnetic field, there is only one gapless mode corresponding to phase fluctuations of the pair quasicondensate. Once the magnetic field exceeds the gap, another condensate emerges, namely the quasicondensate of unpaired bosons with spins aligned along the magnetic field. The spectrum then contains two gapless modes corresponding to the singlet-paired and spin-aligned unpaired Bose condensed particles, respectively. At T = 0, the corresponding phase transition is of the commensurate-incommensurate type.
One-dimensional extended Hubbard model with spin-triplet pairing ground states
NASA Astrophysics Data System (ADS)
Tanaka, Akinori
2016-10-01
We show that the one-dimensional extended Hubbard model has saturated ferromagnetic ground states with the spin-triplet electron pair condensation in a certain range of parameters. The ground state wave functions with fixed electron numbers are explicitly obtained. We also construct two ground states in which both the spin-rotation and the gauge symmetries are broken, and show that these states are transferred from one to the other by applying the edge operators. The edge operators are reduced to the Majorana fermions in a special case. These symmetry breaking ground states are shown to be stabilized by a superconducting mean field Hamiltonian which is related to the Kitaev chain with the charge-charge interaction.
Study of dipolar many-body system in a one-dimensional zig-zag chain
NASA Astrophysics Data System (ADS)
Ghimire, Niraj R.; Yelin, Susanne F.
2016-05-01
The goal is to understand the many-body properties of a one-dimensional zig-zag chain of a fixed number of classical dipolar spins. This is a system that could potentially be modeled by ultracold polar molecules, and be extended such that topological quantities in triangular or hexagonal lattices can be studied. In order to achieve this, we use the density-matrix renormalization group (DMRG) method and find the ground state of the spin S = 1 / 2 model. For this purpose, we will take into account nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping and interactions which can be expressed as functions of angles between the dipoles.
NASA Astrophysics Data System (ADS)
Jiang, Lei; Qu, Chunlei; Zhang, Chuanwei
2016-06-01
The recent experimental realization of one-dimensional (1D) equal Rashba-Dresselhaus spin-orbit coupling (ERD-SOC) for cold atoms provides a disorder-free and highly controllable platform for the implementation and observation of Majorana fermions (MFs), analogous to the broadly studied solid-state nanowire-superconductor heterostructures. However, the corresponding 1D chains of cold atoms possess strong quantum fluctuation, which may destroy the superfluids and MFs. In this paper, we show that such 1D topological chains with MFs may be on demand generated in a two- or three-dimensional nontopological optical lattice with 1D ERD-SOC by modifying local potentials on target locations using experimentally already implemented atomic gas microscopes or patterned (e.g., double- or triple-well) optical lattices. All ingredients in our scheme have been experimentally realized, and the combination of them may pave the way for the experimental observation of MFs in a clean system.
Jiang, Xiao-Ming; Li, Xiao-Guo; Zhang, Ming-Jian; Liu, Zhi-Fa; Liu, Yong; Liu, Jun-Ming; Guo, Guo-Cong
2015-01-01
Exploration of new spin systems with low-dimensional subunits have been of great interest in the past decades due to their interesting physical properties and potential applications in molecular spintronics. Two inorganic supramolecular complexes, (Hg3S2)(FeCl4) and (Hg3S2)(CoCl4), with trigonally aligned 1-D infinite magnetic ∞1(FeCl4)2− or ∞1(CoCl4)2− chains have been prepared by solid-state reactions. They exhibit 3-D long-range spin order with strong field dependence and field induced metamagnetic behavior. The intrachain and interchain magnetic coupling constants were estimated by DFT+U and DFT+U+SOC calculations and the both complexes can be regarded as partially frustrated spin systems. The spin Hamiltonian was constructed, the ground state is proposed to be incommensurate spiral spin order, which differs from the commensurate 120° spin structure ground state of fully frustrated trigonal case by a little canted angle. This study shows that cooperative magnetic ordering induced by geometric frustration can be realized in inorganic supramolecular systems assembled by weak van der Waals’ interactions. PMID:26648133
Slow dynamics of the magnetization in one-dimensional coordination polymers: single-chain magnets.
Miyasaka, Hitoshi; Julve, Miguel; Yamashita, Masahiro; Clérac, Rodolphe
2009-04-20
Slow relaxation of the magnetization (i.e., "magnet-like" behavior) in materials composed of magnetically isolated chains was observed for the first time in 2001. This type of behavior was predicted in the 1960s by Glauber in a chain of ferromagnetically coupled Ising spins (the so-called Glauber dynamics). In 2002, this new class of nanomagnets was named single-chain magnets (SCMs) by analogy to single-molecule magnets that are isolated molecules displaying related superparamagnetic properties. A long-range order occurs only at T = 0 K in any pure one-dimensional (1D) system, and thus such systems remain in their paramagnetic state at any finite temperature. Nevertheless, the combined action of large uniaxial anisotropy and intrachain magnetic interactions between high-spin magnetic units of the 1D arrangement promotes long relaxation times for the magnetization reversal with decreasing temperature, and finally at significantly low temperatures, the material can behave as a magnet. In this Forum Article, we summarize simple theoretical approaches used for understanding typical SCM behavior and some rational synthetic strategies to obtain SCM materials together with representative examples of SCMs previously reported.
Thermal conductivity of a classical one-dimensional spin-phonon system
NASA Astrophysics Data System (ADS)
Savin, A. V.; Tsironis, G. P.; Zotos, X.
2007-06-01
We investigate the thermal conduction properties of a one-dimensional lattice of atoms carrying classical spins and coupled vibrationally. The spin degrees of freedom interact via a classical Heisenberg interaction, while the vibrational degrees of freedom are coupled through nearest-neighbor linear as well as nonlinear forces. The thermal conductivity in spin-phonon systems has both a phononic as well as a magnetic contribution. We use extensive numerical simulations and evaluate the magnetic and phononic thermal current correlation functions as well as the combined thermal conductivity coefficient. We employ two distinct numerical approaches: The first is based on the linear response theory and proceeds through an evaluation of the energy current correlation function using the Green-Kubo formula. The second is through a simulation of the stochastic baths and a subsequent direct numerical evaluation of the magnetic and phononic heat currents. We find an anomalous thermal conductivity when the spins are coupled to a harmonic acoustic phonon chain. However, when the harmonic phonon chain contains, additionally, an optical mode, we find that the thermal conductivity is normal for a certain regime of on-site force parameters, while it becomes anomalous when the on-site frequency becomes larger than a certain value. Coupling thus to a harmonic system with an optical mode provides a case of tunable conductivity that switches from being diffusive to ballistic as a function of structural model parameters or of the temperature. When the spins are coupled to anharmonic chains, we find an anomalous conductivity when the phonon chain is acoustic, for instance, in the Fermi-Past-Ulam case, or a normal one when the nonlinearity is of optic type. For the cases analyzed, we provide quantitative information on the exponent characterizing the power law decay of the energy current correlation function and determine size and temperature dependencies of the conductivity coefficient
Large Bragg Reflection from One-Dimensional Chains of Trapped Atoms Near a Nanoscale Waveguide
NASA Astrophysics Data System (ADS)
Corzo, Neil V.; Gouraud, Baptiste; Chandra, Aveek; Goban, Akihisa; Sheremet, Alexandra S.; Kupriyanov, Dmitriy V.; Laurat, Julien
2016-09-01
We report experimental observations of a large Bragg reflection from arrays of cold atoms trapped near a one-dimensional nanoscale waveguide. By using an optical lattice in the evanescent field surrounding a nanofiber with a period nearly commensurate with the resonant wavelength, we observe a reflectance of up to 75% for the guided mode. Each atom behaves as a partially reflecting mirror and an ordered chain of about 2000 atoms is sufficient to realize an efficient Bragg mirror. Measurements of the reflection spectra as a function of the lattice period and the probe polarization are reported. The latter shows the effect of the chiral character of nanoscale waveguides on this reflection. The ability to control photon transport in 1D waveguides coupled to spin systems would enable novel quantum network capabilities and the study of many-body effects emerging from long-range interactions.
Quantum distance and the Euler number index of the Bloch band in a one-dimensional spin model.
Ma, Yu-Quan
2014-10-01
We study the Riemannian metric and the Euler characteristic number of the Bloch band in a one-dimensional spin model with multisite spins exchange interactions. The Euler number of the Bloch band originates from the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone. We study this approach analytically in a transverse field XY spin chain with three-site spin coupled interactions. We define a class of cyclic quantum distance on the Bloch band and on the ground state, respectively, as a local characterization for quantum phase transitions. Specifically, we give a general formula for the Euler number by means of the Berry curvature in the case of two-band models, which reveals its essential relation to the first Chern number of the band insulators. Finally, we show that the ferromagnetic-paramagnetic phase transition in zero temperature can be distinguished by the Euler number of the Bloch band.
Entanglement dynamics of one-dimensional driven spin systems in time-varying magnetic fields
Alkurtass, Bedoor; Sadiek, Gehad; Kais, Sabre
2011-08-15
We study the dynamics of nearest-neighbor entanglement for a one-dimensional spin chain with a nearest-neighbor time-dependent Heisenberg coupling J(t) between the spins in the presence of a time-dependent external magnetic field h(t) at zero and finite temperatures. We consider different forms of time dependence for the coupling and magnetic field: exponential, hyperbolic, and periodic. Solving the system numerically, we examined the system-size effect on the entanglement asymptotic value. It was found that, for a small system size, the entanglement starts to fluctuate within a short period of time after applying the time-dependent coupling. The period of time increases as the system size increases and disappears completely as the size goes to infinity. Testing the effect of the transition constant for an exponential or hyperbolic coupling showed a direct impact on the asymptotic value of the entanglement; the larger the constant is, the lower the asymptotic value and the more rapid decay of entanglement are, which confirms the nonergodic character of the system. We also found that, when J(t) is periodic, the entanglement shows a periodic behavior with the same period, which disappears upon applying periodic magnetic field with the same frequency. Solving the case J(t)={lambda}h(t), for constant {lambda}, exactly, we showed that the time evolution and asymptotic value of entanglement are dictated solely by the parameter {lambda}=J/h rather than the individual values of J and h, not only when they are time independent and at zero temperature, but also when they are time dependent but proportional at zero and finite temperatures for all degrees of anisotropy.
Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect.
Schecter, Michael; Rudner, Mark S; Flensberg, Karsten
2015-06-19
We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.
Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect.
Schecter, Michael; Rudner, Mark S; Flensberg, Karsten
2015-06-19
We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase. PMID:26197005
Spin-Lattice Order in One-Dimensional Conductors: Beyond the RKKY Effect
NASA Astrophysics Data System (ADS)
Schecter, Michael; Rudner, Mark S.; Flensberg, Karsten
2015-06-01
We investigate magnetic order in a lattice of classical spins coupled to an isotropic gas of one-dimensional conduction electrons via local exchange interactions. The frequently discussed Ruderman-Kittel-Kasuya-Yosida effective exchange model for this system predicts that spiral order is always preferred. Here we consider the problem nonperturbatively, and find that such order vanishes above a critical value of the exchange coupling that depends strongly on the lattice spacing. The critical coupling tends to zero as the lattice spacing becomes commensurate with the Fermi wave vector, signaling the breakdown of the perturbative Ruderman-Kittel-Kasuya-Yosida picture, and spiral order, even at weak coupling. We provide the exact phase diagram for arbitrary exchange coupling and lattice spacing, and discuss its stability. Our results shed new light on the problem of utilizing a spiral spin-lattice state to drive a one-dimensional superconductor into a topological phase.
Spin wave localization in one-dimensional magnonic microcavity comprising yttrium iron garnet
Kanazawa, Naoki; Goto, Taichi Inoue, Mitsuteru
2014-08-28
We demonstrate the localization of magnetostatic surface waves, i.e., spin waves, in a one-dimensional magnonic microcavity substantialized with periodical conductivity modulation. The narrow localized state is observed inside band gaps and is responsible for a sharp transmission peak. The experimental results strongly agree with the theoretical prediction made with the shape magnetic anisotropy of the propagating medium composed of yttrium iron garnet taken into account.
Dimerized ground state in the one-dimensional spin-1 boson Hubbard model
Apaja, Vesa; Syljuaasen, Olav F.
2006-09-15
We have investigated the one-dimensional spin-1 boson Hubbard model with antiferromagnetic interactions using quantum Monte Carlo methods. We obtain the shapes of the two lowest Mott lobes and show that the ground state within the lowest Mott lobe is dimerized. The results presented here are relevant for optically trapped antiferromagnetic spin-1 bosons. An experimental signature of the dimerized ground state is modulated Bragg peaks in the noise distribution of the atomic cloud obtained after switching off the trap. These Bragg peaks are located at wave vectors corresponding to half-integer multiples of the reciprocal wave vector of the optical lattice.
NASA Astrophysics Data System (ADS)
Hao, Yajiang
2016-05-01
We investigate the ground state density distributions of anti-ferromagnetic spin-1 Bose gases in a one dimensional harmonic potential in the full interacting regimes. The ground state is obtained by diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of noninteracting Bose gas and spin components. The study reveals that in the situation of a weak spin-dependent interaction the total density profiles evolve from a Gaussian-like distribution to a Fermi-like shell structure of N peaks with the increasing of spin-independent interaction. The increasing spin-exchange interaction always weakens the fermionization of the density distribution such that the total density profiles show the shell structure of less peaks and even show single peak structure in the limit of the strong spin-exchange interaction. The weakening of fermionization results from the formation of composite atoms induced by the spin-exchange interaction. It is also shown that phase separation occurs for the spinor Bose gas with a weak spin-exchange interaction, meanwhile the spin-independent interaction is strong.
Liu, Xia-Ji Hu, Hui
2014-11-15
We calculate the frequency of collective modes of a one-dimensional repulsively interacting Fermi gas with high-spin symmetry confined in harmonic traps at zero temperature. This is a system realizable with fermionic alkaline-earth-metal atoms such as {sup 173}Yb, which displays an exact SU(κ) spin symmetry with κ⩾2 and behaves like a spinless interacting Bose gas in the limit of infinite spin components κ→∞, namely high-spin bosonization. We solve the homogeneous equation of state of the high-spin Fermi system by using Bethe ansatz technique and obtain the density distribution in harmonic traps based on local density approximation. The frequency of collective modes is calculated by exactly solving the zero-temperature hydrodynamic equation. In the limit of large number of spin-components, we show that the mode frequency of the system approaches that of a one-dimensional spinless interacting Bose gas, as a result of high-spin bosonization. Our prediction of collective modes is in excellent agreement with a very recent measurement for a Fermi gas of {sup 173}Yb atoms with tunable spin confined in a two-dimensional tight optical lattice.
Theory of the optical conductivity of spin liquid states in one-dimensional Mott insulators.
Katsura, Hosho; Sato, Masahiro; Furuta, Takashi; Nagaosa, Naoto
2009-10-23
The low-energy dynamical optical response of dimerized and undimerized spin liquid states in a one-dimensional charge transfer Mott insulator is theoretically studied. An exact analysis is given for the low-energy asymptotic behavior using conformal field theory for the undimerized state. In the dimerized state, the infrared absorption due to the bound state of two solitons, i.e., the breather mode, is predicted with an accurate estimate for its oscillator strength, offering a way to detect experimentally the excited singlet state. The effects of external magnetic fields are also discussed.
Standing spin waves and solitons in a quasi-one-dimensional spiral structure
Kiselev, V. V. Raskovalov, A. A.
2013-02-15
On the basis of the sine-Gordon model, we calculated the absorption spectrum for the external pump power in a quasi-one-dimensional spiral structure of easy-plane magnets without the inversion center in the presence of a static magnetic field perpendicular to the magnetic spiral axis. It is shown that these data can be used for determining the material constants of the magnet and diagnostics of spin waves and solitons in its spiral structure. The possibility of using magnetooptical methods to observe local translations of the spiral structure during formation and motion of solitons in it is discussed.
Hidden nonsymmorphic symmetry in optical lattices with one-dimensional spin-orbit coupling
NASA Astrophysics Data System (ADS)
Chen, Hua; Liu, Xiong-Jun; Xie, X. C.
2016-05-01
We uncover the nonsymmorphic symmetry and investigate its effects on the noncollinear band structures of a quasi-two-dimensional optical lattice with synthetic one-dimensional spin-orbit coupling and a tunable Zeeman field. The perpendicular Zeeman field breaks time-reversal symmetry and lifts the Kramers degeneracy which is protected by time-reversal and generalized inversion symmetries. Interestingly, we find that the degeneracy of Bloch bands on the border of the Brillouin zone is immune to the Zeeman field. This degeneracy, reminiscent of that in nonsymmorphic crystals, is protected by the hidden glide-plane symmetry that comprises a physical reflection involving both spatial and spin degrees of freedom followed by a nonprimitive lattice translation. Furthermore, we show that the band degeneracy can be lifted by the glide-plane-symmetry-breaking lattice potential. Finally, we propose to detect these effects by measuring a dynamical structure factor with optical Bragg spectroscopy.
Phase separation of trapped spin-imbalanced Fermi gases in one-dimensional optical lattices
Heidrich-Meisner, F.; Orso, G.; Feiguin, A. E.
2010-05-15
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local-density approximation (LDA) and density-matrix renormalization-group (DMRG) simulations. Based on the exact equation of state obtained by Bethe ansatz, the LDA predicts that the gas phase separates into shells with a partially polarized core and fully paired wings, the latter occurring below a critical spin polarization. This behavior is also seen in numerically exact DMRG calculations at sufficiently large particle numbers. We show that, unlike in the continuum case, the critical polarization is a nonmonotonic function of the interaction strength and vanishes in the limit of large interactions.
Chiruta, Daniel; Linares, Jorge E-mail: miya@spin.phys.s.u-tokyo.ac.jp; Boukheddaden, Kamel; Miyashita, Seiji E-mail: miya@spin.phys.s.u-tokyo.ac.jp
2014-05-21
In order to explain clearly the role of the open boundary conditions (OBCs) on phase transition in one dimensional system, we consider an Ising model with both short-range (J) and long-range (G) interactions, which has allowed us to study the cooperative nature of spin-crossover (SCO) materials at the nanometer scale. At this end, we developed a transfer-matrix method for one-dimensional (1D) SCO system with free boundary conditions, and we give numerical evidences for how the thermal spin transition curves vary as a function of the physical parameters (J, G) or an applied pressure. Moreover for OBCs case, we have derived the bulk, surface and finite-size contributions to the free energy and we have investigated the variation of these energies as function of J and system size. We have found that the surface free energy behaves like J〈σ〉{sup 2}, where 〈σ〉 is the average magnetization per site. Since the properties of the nanometric scale are dramatically influenced by the system's size (N), our analytical outcomes for the size dependence represent a step to achieve new characteristic of the future devices and also a way to find various novel properties which are absent in the bulk materials.
NASA Astrophysics Data System (ADS)
Kurokawa, Shu; Yamamoto, Daisuke; Hirashige, Kenji; Sakai, Akira
2016-04-01
We found one-dimensional chains of carbon particles on Ag(111) and Au(111) surfaces after the deposition of carbon using an arc-plasma gun (APG). The observed periodicity of the chains on Ag(111) was 0.58-0.6 nm. Ex situ Fourier transform infrared (FT-IR) spectroscopy indicated two peaks at 1343 and 1406 cm-1. The simulation of the infrared spectrum for a tetramer of C20 fullerenes showed good agreement with the experimental result. From these findings, we propose the formation of chains of C20 fullerenes as the most probable explanation of the results of both scanning tunneling microscopy (STM) and FT-IR spectroscopy.
Quantum spin transistor with a Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-10-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
One-dimensional Au chains on TiO2(110)
NASA Astrophysics Data System (ADS)
Kiejna, Adam; Pabisiak, Tomasz
2007-03-01
One-dimensional (1D) Au chains on the 1x2 missing row (mr) defected, and the added row (ar) reconstructed, TiO2(110) surfaces are calculated from first principles. Single, dimer, and triple Au rows were considered. The single Au row binds strongly to the mr (2.83 eV) but much weaker to the ar surface (1.56 eV). On the mr surface the bonding of Au is mainly to the Ti atoms below, and to the neighboring Au atoms. In the mr surface the binding energy is decreasing with the number of Au atoms per row, while in the ar surface converse is observed. Even for triple Au rows the binding per atom (2.42 eV) is by 0.17 eV stronger for the mr than for the ar, the latter being suggested as the most favored structure of the clean surface. Thus, Au forms on the 1x2 missing row TiO2(110) surface strongly adsorbed 1D chains. The charge density distribution and the increased density of occupied states around the Fermi edge suggest metallic behavior of the Au rows. The bonding to the substrate is predominantly covalent. Intra- and inter-chain spacings are determined by the substrate periodicity. The large inter-chain distance (13 å) on the more or less insulating substrate makes this system ideal for studies of 1D phenomena.
Hidden one-dimensional spin modulation in a three-dimensional metal.
Feng, Yejun; Wang, Jiyang; Palmer, A; Aguiar, J A; Mihaila, B; Yan, J-Q; Littlewood, P B; Rosenbaum, T F
2014-01-01
Pressure can transform a transparent material into an opaque one, quench the moments in a magnet and force solids to flow like liquids. At 15 GPa, the pressure found 500 km below the earth's surface, the semiconductors silicon and germanium superconduct. Yet, at this same pressure, we show here that the magnetism in metallic GdSi remains completely robust even as it shrinks by one-seventh of its volume. Non-resonant X-ray magnetic diffraction in a specially designed diamond anvil cell, combined with band structure calculations, reveal the stability of the incommensurate spin density wave, which can be traced to a persistently nested portion of the Fermi surface that becomes increasingly one-dimensional under pressure. A cooperative interaction between nested, itinerant spins and local magnetic moments provides the organizing principle for the modulated magnetic order, salient both for its insights into the role of topology in ordered states and its potential functionality. PMID:24939672
Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes
NASA Astrophysics Data System (ADS)
Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu
2014-11-01
Materials with reduced dimensionality have attracted much interest in various fields of fundamental and applied science. True one-dimensional (1D) crystals with single-atom thickness have been realized only for few elemental metals (Au, Ag) or carbon, all of which showed very short lifetimes under ambient conditions. We demonstrate here a successful synthesis of stable 1D ionic crystals in which two chemical elements, one being a cation and the other an anion, align alternately inside carbon nanotubes. Unusual dynamical behaviours for different atoms in the 1D lattice are experimentally corroborated and suggest substantial interactions of the atoms with the nanotube sheath. Our theoretical studies indicate that the 1D ionic crystals have optical properties distinct from those of their bulk counterparts and that the properties can be engineered by introducing atomic defects into the chains.
Wired up: interconnecting two-dimensional materials with one-dimensional atomic chains.
Rong, Youmin; Warner, Jamie H
2014-12-23
Atomic wires are chains of atoms sequentially bonded together and epitomize the structural form of a one-dimensional (1D) material. In graphene, they form as interconnects between regions when the nanoconstriction eventually becomes so narrow that it is reduced to one atom thick. In this issue of ACS Nano, Cretu et al. extend the discovery of 1D atomic wire interconnects in two-dimensional (2D) materials to hexagonal boron nitride. We highlight recent progress in the area of 1D atomic wires within 2D materials, with a focus on their atomic-level structural analysis using aberration-corrected transmission electron microscopy. We extend this discussion to the formation of nanowires in transition metal dichalcogenides under similar electron-beam irradiation conditions. The future outlook for atomic wires is considered in the context of new 2D materials and hybrids of C, B, and N. PMID:25474120
Wired up: interconnecting two-dimensional materials with one-dimensional atomic chains.
Rong, Youmin; Warner, Jamie H
2014-12-23
Atomic wires are chains of atoms sequentially bonded together and epitomize the structural form of a one-dimensional (1D) material. In graphene, they form as interconnects between regions when the nanoconstriction eventually becomes so narrow that it is reduced to one atom thick. In this issue of ACS Nano, Cretu et al. extend the discovery of 1D atomic wire interconnects in two-dimensional (2D) materials to hexagonal boron nitride. We highlight recent progress in the area of 1D atomic wires within 2D materials, with a focus on their atomic-level structural analysis using aberration-corrected transmission electron microscopy. We extend this discussion to the formation of nanowires in transition metal dichalcogenides under similar electron-beam irradiation conditions. The future outlook for atomic wires is considered in the context of new 2D materials and hybrids of C, B, and N.
New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure
Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing
2015-10-15
Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.
A New One-dimensional Quantum Material - Ta2Pd3Se8 Atomic Chain
NASA Astrophysics Data System (ADS)
Liu, Xue; Liu, Jinyu; Hu, Jin; Yue, Chunlei; Mao, Zhiqiang; Wei, Jiang; Antipina, Liubov; Sorokin, Pavel; Sanchez, Ana
Since the discovery of carbon nanotube, there has been a persistent effort to search for other one dimensional (1D) quantum systems. However, only a few examples have been found. We report a new 1D example - semiconducting Ta2Pd3Se8. We demonstrate that the Ta2Pd3Se8 nanowire as thin as 1.3nm can be easily obtained by applying simple mechanical exfoliation from its bulk counterpart. High resolution TEM shows an intrinsic 1D chain-like crystalline morphology on these nano wires, indicating weak bonding between these atomic chains. Theoretical calculation shows a direct bandgap structure, which evolves from 0.53eV in the bulk to 1.04eV in single atomic chain. The field effect transistor based on Ta2Pd3Se8 nanowire achieved a promising performance with 104On/Off ratio and 80 cm2V-1s-1 mobility. Low temperature transport study reflects two different mechanisms, variable range hopping and thermal activation, which dominate the transport properties at different temperature regimes. Ta2Pd3Se8 nanowire provides an intrinsic 1D material system for the study low dimensional condensed matter physics.
Single-photon transport through an atomic chain coupled to a one-dimensional nanophotonic waveguide
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Zeng, Xiaodong; Zhu, Shi-Yao; Zubairy, M. Suhail
2015-08-01
We study the dynamics of a single-photon pulse traveling through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single-photon pulse with finite bandwidth can even approach 100 % . The spectrum of the reflected and transmitted photon can also be significantly different from the single-atom case. Many interesting physical phenomena can occur in this system such as the photonic band-gap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single-photon frequency filter, single-photon modulation, and may find important applications in quantum information.
Single Photon Transport through an Atomic Chain Coupled to a One-dimensional Photonic Waveguide
NASA Astrophysics Data System (ADS)
Liao, Zeyang; Zeng, Xiaodong; Zubairy, M. Suhail
2015-03-01
We study the dynamics of a single photon pulse travels through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our result is consistent with previous calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single photon pulse with finite bandwidth can even approach 100%. The spectrum of the reflected and transmitted photon can also be significantly different from the single atom case. Many interesting physics can occur in this system such as the photonic bandgap effects, quantum entanglement generation, Fano-type interference, superradiant effects and nonlinear frequency conversion. For engineering, this system may be used as a single photon frequency filter, single photon modulation and photon storage.
Properties of a finite fully spin-polarized free homogeneous one-dimensional electron gas
Ciftja, Orion
2015-01-15
The homogeneous electron gas model has been quite successful to predict the bulk properties of systems of electrons at various densities. In many occasions, a simplified free homogeneous electron gas model represents a powerful first approximation to a real system. Despite our considerable knowledge on the bulk properties of a homogeneous electron gas, advances in nanoscience and nanotechnology call for a greater effort to understand the opposite limit of small finite systems of electrons with size-dependent properties. In this work, we provide a detailed description of the properties of a finite fully spin-polarized (spinless) free homogeneous one-dimensional electron gas, the simplest of the free homogeneous electron gases. We derive exact analytical results for various quantities such as the one-particle density function, two-particle density function, one-particle density matrix, pair correlation function and energy of finite systems with an arbitrary number of electrons. The results obtained provide a detailed view on how various quantities corresponding to a finite system approach their bulk (thermodynamic limit) value.
Berman, D. H.; Khodas, M.; Flatté, M. E.
2014-10-15
We study the spin transport in a quasi-one-dimensional channel defined in a two-dimensional electron gas. The combined action of geometrical confinement and the spin precession is analyzed. We demonstrate that for certain orientations of the in-plane magnetic field and for specific range of its magnitude the spin polarization exhibits a strong decrease referred to as ballistic spin resonance (BSR). The phenomenon is due to the commensuration of the Zeeman and inter-subband energy splitting. We show that the BSR requires a finite spin-orbit (SO) interaction although the condition for the BSR onset is independent on SO coupling.
NASA Astrophysics Data System (ADS)
Assaad, F. F.
2008-10-01
We use a recently developed extension of the weak-coupling diagrammatic determinantal quantum Monte Carlo method to investigate the spin, charge, and single-particle spectral functions of the one-dimensional quarter filled Holstein model with phonon frequency ω0=0.1t . As a function of the dimensionless electron-phonon coupling we observe a transition from a Luttinger to a Luther-Emery liquid with dominant 2kf charge fluctuations. Emphasis is placed on the temperature dependence of the single-particle spectral function. At high temperatures and in both phases it is well accounted for within a self-consistent Born approximation. In the low-temperature Luttinger liquid phase we observe features that compare favorably with a bosonization approach retaining only forward scattering. In the Luther-Emery phase, the spectral function at low temperatures shows a quasiparticle gap that matches half the spin gap, whereas at temperatures above which this quasiparticle gap closes characteristic features of the Luttinger liquid model are apparent. Our results are based on lattice simulations on chains up to L=20 for two-particle properties and on cluster dynamical mean-field theory calculations with clusters up to 12 sites for the single-particle spectral function.
NASA Astrophysics Data System (ADS)
Li, Hui; Hu, Chang Wen
2004-12-01
Novel one-dimensional (1D) chains of three lanthanide complexes La(L 1) 3(CH 3OH)]·CH 3OH (L 1=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L 2) 3(H 2O) 2]·2.75H 2O (L 2=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L 3) 3(CH 3OH) 2(H 2O)]·CH 3OH (L 3=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C 29H 29LaO 11, monoclinic, P2 1/ n, a=15.4289(12) Å, b=7.9585(6) Å, c=23.041(2) Å, β=99.657(2)°, Z=4, R1=0.0637, w R2=0.0919; for 2: C 27H 30.50LaO 13.75, triclinic, P-1, a=8.4719(17) Å, b=13.719(3) Å, c=14.570(3) Å, α=62.19(3)°, β=99.657(2)°, γ=78.22(3)°, Z=2, R1=0.0384, w R2=0.0820; and for 3: C 30H 35LaO 13, monoclinic, P2(1)/ c, a=9.5667(6) Å, b=24.3911(15) Å, c=14.0448(9) Å, β=109.245(2)°, Z=4, R1=0.0374, w R2=0.0630. All the three structure data were collected using graphite monochromated molybdenum Kα radiation and refined using full-matrix least-squares techniques on F 2. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1- 3.
Self-Assembly of One-Dimensional Nanocrystal Superlattice Chains Mediated by Molecular Clusters.
Zhang, Xianfeng; Lv, Longfei; Ji, Li; Guo, Guannan; Liu, Limin; Han, Dandan; Wang, Biwei; Tu, Yaqi; Hu, Jianhua; Yang, Dong; Dong, Angang
2016-03-16
Self-assembly of nanocrystal (NC) building blocks into mesoscopic superstructures with well-defined symmetry and geometry is essential for creating new materials with rationally designed properties. Despite the tremendous progress in colloidal assembly, it remains a fundamental challenge to assemble isotropic spherical NCs into one-dimensional (1D) ordered superstructures. Here, we report a new and general methodology that utilizes molecular clusters to induce the anisotropic assembly of NCs in solution, yielding polymer-like, single-NC-wide linear chains comprising as many as ∼1000 close-packed NCs. This cluster-assisted assembly process is applicable to various metallic, semiconductor, and magnetic NCs of different sizes and shapes. Mechanistic investigation reveals that the solvent-induced association of clusters plays a key role in driving the anisotropic assembly of NCs. Our work opens a solution-based route for linearly assembling NCs and represents an important step toward the bottom-up construction of 1D ordered NC superstructures. PMID:26936281
Effect of gate-driven spin resonance on the conductance through a one-dimensional quantum wire
NASA Astrophysics Data System (ADS)
Sadreev, Almas F.; Sherman, E. Ya.
2013-09-01
We consider quasiballistic electron transmission in a one-dimensional quantum wire subject to both time-independent and periodic potentials of a finger gate that results in a local time-dependent Rashba-type spin-orbit coupling. A spin-dependent conductance is calculated as a function of external constant magnetic field, the electric field frequency, and potential strength. The results demonstrate the effect of the gate-driven electric dipole spin resonance in a transport phenomenon such as spin-flip electron transmission.
NASA Astrophysics Data System (ADS)
Münder, W.; Weichselbaum, A.; Holzner, A.; von Delft, Jan; Henley, C. L.
2010-07-01
A useful concept for finding numerically the dominant correlations of a given ground state in an interacting quantum lattice system in an unbiased way is the correlation density matrix (CDM). For two disjoint, separated clusters, it is defined to be the density matrix of their union minus the direct product of their individual density matrices and contains all the correlations between the two clusters. We show how to extract from the CDM a survey of the relative strengths of the system's correlations in different symmetry sectors and the nature of their decay with distance (power law or exponential), as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. To achieve this goal, we introduce a new method of analysing the CDM, termed the dominant operator basis (DOB) method, which identifies in an unbiased fashion a small set of operators for each cluster that serve as a basis for the dominant correlations of the system. We illustrate this method by analysing the CDM for a spinless extended Hubbard model that features a competition between charge density correlations and pairing correlations, and show that the DOB method successfully identifies their relative strengths and dominant correlators. To calculate the ground state of this model, we use the density matrix renormalization group, formulated in terms of a variational matrix product state (MPS) approach within which subsequent determination of the CDM is very straightforward. In an extended appendix, we give a detailed tutorial introduction to our variational MPS approach for ground state calculations for one-dimensional quantum chain models. We present in detail how MPSs overcome the problem of large Hilbert space dimensions in these models and describe all the techniques needed for handling them in practice.
NASA Astrophysics Data System (ADS)
Xianlong, Gao
2008-08-01
Using the Bethe-ansatz density-functional theory, we study a one-dimensional Hubbard model of confined attractively interacting fermions in the presence of a uniformly distributed disorder. The strongly correlated Luther-Emery nature of the attractive one-dimensional Hubbard model is fully taken into account as the reference system in the density-functional theory. The effects of the disorder are investigated on the atomic density waves in the weak-to-intermediate attractive interaction and on the spin-singlet dimers of doubly occupied sites in the strongly attractive regime. It is found that atomic density waves are sensitive to the disorder and the spin-singlet dimers of doubly occupied sites are quite unstable against the disorder. We also show that a very weak disorder could smear the singularities in the stiffness, thus, suppresses the spin-singlet pairs.
NASA Astrophysics Data System (ADS)
Lue, N.-Y.; Wu, G. Y.
2010-04-01
We investigate theoretically the spin-filtering effect in a quasi-one-dimensional (Q1D) electron liquid with spin-orbit interaction. The Q1D system considered is formed from a two-dimensional electron-gas (2DEG) subject to both a lateral confining potential and an interface potential perpendicular to the 2DEG. Spin and charge degrees of freedom in the system are mixed by the interface potential through the Rashba mechanism of spin-orbit interaction [A. V. Moroz and C. H. W. Barnes, Phys. Rev. B 60, 14272 (1999)] and we show that when a spin-dependent δ potential is further introduced into the system, for example, via implantation of magnetic/ferromagnetic impurities, the mixing leads to the spin-filtering effect which favors electrons with a certain spin orientation to transport through the δ potential. In particular, we calculate the scaling dimension of electron scattering both by spin-flip and by spin-independent δ potentials when the temperature is varied and show that, in the spin-flip case, the scaling of electron scattering with temperature varies with spin orientation. Conductance is calculated for both spin and charge transport, and the spin-filtering effect is discussed quantitatively in terms of the conductance.
Basu, Banasri; Bandyopadhyay, Pratul; Majumdar, Priyadarshi
2011-03-15
We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one-dimensional spin chains. At the critical region, the entanglement entropy of a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.
Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface
Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del; Cherian, C. T.; Özyilmaz, B.
2015-01-19
We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures.
NASA Astrophysics Data System (ADS)
Badrtdinov, D. I.; Volkova, O. S.; Tsirlin, A. A.; Solovyev, I. V.; Vasiliev, A. N.; Mazurenko, V. V.
2016-08-01
We study electronic and magnetic properties of the quasi-one-dimensional spin-1/2 magnet Ba3Cu3Sc4O12 with a distinct orthogonal connectivity of CuO4 plaquettes. An effective low-energy model taking into account spin-orbit coupling was constructed by means of first-principles calculations. On this basis, a complete microscopic magnetic model of Ba3Cu3Sc4O12 , including symmetric and antisymmetric anisotropic exchange interactions, is derived. The anisotropic exchanges are obtained from a distinct first-principles numerical scheme combining, on one hand, the local density approximation taking into account spin-orbit coupling, and, on the other hand, a projection procedure along with the microscopic theory by Moriya [Phys. Rev. 120, 91 (1960), 10.1103/PhysRev.120.91]. The resulting tensors of the symmetric anisotropy favor collinear magnetic order along the structural chains with the leading ferromagnetic coupling J1≃-9.88 meV. The interchain interactions J8≃0.21 and J5≃0.093 meV are antiferromagnetic. Quantum Monte Carlo simulations demonstrate that the proposed model reproduces the experimental Neel temperature, magnetization, and magnetic susceptibility data. The modeling of neutron-diffraction data reveals an important role of the covalent Cu-O bonding in Ba3Cu3Sc4O12 .
Magnetic tetrastability in a spin chain
NASA Astrophysics Data System (ADS)
Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude
2016-08-01
Bistability in magnetism is extensively used, in particular for information storage. Here an alternative approach using tetrastable magnetic domains in one-dimensional (1D) spin systems is presented. Using numerical and analytical calculations, we show that a spin chain with a canting angle of π/4 possesses four energy-equivalent states. We discuss the static properties of this canted 1D system such as the profile and the energy of the domain walls as they govern the dynamics of the magnetization. The realization of this π/4 canted spin chain could enable the encoding of the information on four bits, which is a potential alternative toward the increase of storage density.
Mapping of spin wave propagation in a one-dimensional magnonic crystal
NASA Astrophysics Data System (ADS)
Ordóñez-Romero, César L.; Lazcano-Ortiz, Zorayda; Drozdovskii, Andrey; Kalinikos, Boris; Aguilar-Huerta, Melisa; Domínguez-Juárez, J. L.; Lopez-Maldonado, Guillermo; Qureshi, Naser; Kolokoltsev, Oleg; Monsivais, Guillermo
2016-07-01
The formation and evolution of spin wave band gaps in the transmission spectrum of a magnonic crystal have been studied. A time and space resolved magneto inductive probing system has been used to map the spin wave propagation and evolution in a geometrically structured yttrium iron garnet film. Experiments have been carried out using (1) a chemically etched magnonic crystal supporting the propagation of magnetostatic surface spin waves, (2) a short microwave pulsed excitation of the spin waves, and (3) direct spin wave detection using a movable magneto inductive probe connected to a synchronized fast oscilloscope. The results show that the periodic structure not only modifies the spectra of the transmitted spin waves but also influences the distribution of the spin wave energy inside the magnonic crystal as a function of the position and the transmitted frequency. These results comprise an experimental confirmation of Bloch's theorem in a spin wave system and demonstrate good agreement with theoretical observations in analogue phononic and photonic systems. Theoretical prediction of the structured transmission spectra is achieved using a simple model based on microwave transmission lines theory. Here, a spin wave system illustrates in detail the evolution of a much more general physical concept: the band gap.
Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice.
Hamner, C; Zhang, Yongping; Khamehchi, M A; Davis, Matthew J; Engels, P
2015-02-20
We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system.
Spin-Orbit-Coupled Bose-Einstein Condensates in a One-Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Hamner, C.; Zhang, Yongping; Khamehchi, M. A.; Davis, Matthew J.; Engels, P.
2015-02-01
We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system.
Scaling of the largest dynamical barrier in the one-dimensional long-range Ising spin glass
NASA Astrophysics Data System (ADS)
Monthus, Cécile; Garel, Thomas
2014-01-01
The long-range one-dimensional Ising spin glass with random couplings decaying as J(r )∝r-σ presents a spin-glass phase Tc(σ)>0 for 0≤σ<1 (the limit σ =0 corresponds to the mean-field Sherrington-Kirkpatrick model). We use the eigenvalue method introduced in our previous work (C. Monthus and T. Garel, J. Stat. Mech. 2009, P12017) to measure the equilibrium time teq(N ) at temperature T =Tc(σ)/2 as a function of the number N of spins. We find the activated scaling lnteq(N )¯˜Nψ with the same barrier exponent ψ ≃0.33 in the whole region 0≤σ<1.
Sanjeewa, Liurukara D.; Garlea, Vasile O.; McGuire, Michael A.; McMillen, Colin D.; Cao, Huibo; Kolis, Joseph W.
2016-06-06
The descloizite-type compound, SrMn(VO4)(OH), was synthesized as large single crystals (1-2mm) using a high-temperature high-pressure hydrothermal technique. X-ray single crystal structure analysis reveals that the material crystallizes in the acentric orthorhombic space group of P212121 (no. 19), Z = 4. The structure exhibits a one-dimensional feature, with [MnO4] chains propagating along the a-axis which are interconnected by VO4 tetrahedra. Raman and infrared spectra were obtained to identify the fundamental vanadate and hydroxide vibrational modes. Magnetization data reveal a broad maximum at approximately 80 K, arising from one-dimensional magnetic correlations with intrachain exchange constant of J/kB = 9.97(3) K between nearestmore » Mn neighbors and a canted antiferromagnetic behavior below TN = 30 K. Single crystal neutron diffraction at 4 K yielded a magnetic structure solution in the lower symmetry of the magnetic space group P21 with two unique chains displaying antiferromagnetically ordered Mn moments oriented nearly perpendicular to the chain axis. Lastly, the presence of the Dzyaloshinskii Moriya antisymmetric exchange interaction leads to a slight canting of the spins and gives rise to a weak ferromagnetic component along the chain direction.« less
NASA Astrophysics Data System (ADS)
Koike, Harunobu; Kubo, Takashi; Uchida, Kazuyuki; Chikamatsu, Masayuki; Azumi, Reiko; Mase, Kazuhiko; Kanai, Kaname
2013-04-01
We directly observed development of an energy band in a one-dimensional biradical molecular chain, which is constructed by exploiting the covalency between organic biradical molecules of a diphenyl derivative of s-indacenodiphenalene (Ph2-IDPL). The morphology and crystallinity of the Ph2-IDPL films were controlled by varying film growth conditions. Ultraviolet photoemission spectroscopy revealed the process of energy band development in the biradical molecular chain, clearly showing that the dispersion width of the π-band was extremely broad, exceeding 1 eV.
Universal entanglement spectra in critical spin chains
NASA Astrophysics Data System (ADS)
Lundgren, Rex; Blair, Jonathan; Laurell, Pontus; Regnault, Nicolas; Fiete, Gregory A.; Greiter, Martin; Thomale, Ronny
2016-08-01
We advocate that in critical spin chains, and possibly in a larger class of one-dimensional critical models, a gap in the momentum-space entanglement spectrum separates the universal part of the spectrum, which is determined by the associated conformal field theory, from the nonuniversal part, which is specific to the model. To this end, we provide affirmative evidence from multicritical spin chains with low-energy sectors described by the SU(2 ) 2 or the SU(3 ) 1 Wess-Zumino-Witten model.
NASA Astrophysics Data System (ADS)
He, Zhangzhen; Ueda, Yutaka
2008-02-01
Magnetic behaviors of β-Cu2V2O7 single crystals are investigated by means of magnetic susceptibility, magnetization, and heat capacity measurements. Our experimental results show that β-Cu2V2O7 is a quasi-one-dimensional antiferromagnet with Néel temperature of ˜26K . The intrachain and interchain exchanges are estimated to be J∥=39K and J⊥=13.8K , respectively. Also, paramagnetic anisotropy is observed in the system, while a typical spin-flop transition is observed with magnetic field applied along the c axis. Magnetic anisotropy energy at 5K is estimated to be K=6.05(5)×105ergs/cm3 . Spins of Cu2+ ions are suggested to arrange parallel to the c axis and perpendicular to the chains.
Rupture and healing of one-dimensional chains in a parametric magnetic ratchet potential
NASA Astrophysics Data System (ADS)
Tierno, Pietro; Reddy, Sathavaram V.; Johansen, Tom H.; Fischer, Thomas M.
2007-04-01
Transverse paramagnetic particle chains parametrically driven by a magnetic ratchet potential rupture and heal upon collision with an obstacle. The overdamped transverse dynamics is frozen during the time the particles stay in the ratchet potential wells and kicked during the time the particles hop to the next well. On time scales large compared to the parametric modulation period the healing of the hole in the chain is determined by dipolar repulsion and hydrodynamic friction of the paramagnetic particles.
Ma, Fang; Bai, Dongsheng; Xu, Hongliang
2014-12-01
We present a theoretical investigation of the electric properties of two kinds of one-dimensional lithium bonded chains: (NC-Li)n and (NC-CC-Li)n (n = 1-8). The resulting (NC-Li)n and (NC-CC-Li)n were found to exhibit enhanced first hyperpolarizabilities (β 0) with increasing n, and a slight change in the absorption maximum wavelength λmax at the crucial transition. Comparing with (NC-Li)n, (NC-CC-Li)n exhibited particularly drastically enhanced β 0 values due to clearly enhanced coupled oscillators and double-degenerated charge transitions. β 0 is known to be the microscopic origin of the second-order non-linear optical (NLO) property, and λmax is an approximate measure of the transparency achievable, thus both are important indices of high-performance NLO molecules. Therefore, our investigations into one-dimensional lithium bond chains will be beneficial to understanding the relationship between β 0 and λmax, thus aiding the design of one-dimensional NLO materials with excellent transparence-efficiency.
S=2 quasi-one-dimensional spin waves in CrCl2
Stone, Matthew B; Ehlers, Georg; Granroth, Garrett E
2013-01-01
We examine the magnetic excitation spectrum in the S = 2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the N eel temperature and the ratio of the two largest exchange constants is Jc=Jb = 4:51:6. However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase.
Numerical analysis of spin-orbit-coupled one-dimensional Fermi gas in a magnetic field
NASA Astrophysics Data System (ADS)
Chan, Y. H.
2015-06-01
Based on the density-matrix renormalization group and the infinite time-evolving block decimation methods we study the interacting spin-orbit-coupled 1D Fermi gas in a transverse magnetic field. We find that the system with an attractive interaction can have a polarized insulator phase, a superconducting (SC) phase, a Luther-Emery (LE) phase, and a band insulator phase as we vary the chemical potential and the strength of the magnetic field. Spin-orbit coupling (SOC) enhances the triplet pairing order at zero momentum in both the SC and the LE phase, which leads to an algebraically decaying correlation with the same exponent as that of the singlet pairing one. In contrast to the Fulde-Ferrell-Larkin-Ovchinnikov phase found in the spin imbalanced system without SOC, pairings at finite momentum in these two phases have larger exponents hence do not dictate the long-range behavior. We also test for the presence of Majorana fermions in this system. Unlike results from the mean-field study, we do not find positive evidence of Majorana fermions.
Thermodynamic compressibility and spin-splitting in one-dimensional quantum wires
NASA Astrophysics Data System (ADS)
Smith, Luke W.; Hamilton, A. R.; Thomas, K. J.; Pepper, M.; Farrer, I.; Anderson, D.; Jones, G. A. C.; Ritchie, D. A.
2012-02-01
We study spin-splitting and the much-debated 0.7 structure in GaAs quantum wires using compressibility measurements that directly probe the thermodynamic density of states. Two quantum wires are simultaneously defined in the upper and lower well of a GaAs/AlGaAs double quantum well heterostructure, using midline-gated split-gate devices [1]. The lower wire probes the ability of the upper wire to screen the electric field from a biased surface gate. The technique is sensitive enough to resolve spin splitting of the 1D subbands in the presence of an in-plane magnetic field. The compressibility response of the 0.7 structure is measured, and its evolution with increasing temperature and magnetic field is studied [2]. Despite the sensitivity of our measurements we see no evidence of the formation of the quasibound state predicted by the Kondo model of the 0.7 structure. Instead our data are more consistent with theories which predict that the 0.7 structure arises as a result of spontaneous spin polarization. [4pt] [1] I.M. Castleton et al, Physica B 249, 157 (1998).[0pt] [2] L.W. Smith et al, Phys. Rev. Lett. 107, 126801 (2011)
Néel to spin-Peierls transition in a quasi-one-dimensional Heisenberg model coupled to bond phonons
NASA Astrophysics Data System (ADS)
Pillay, Jason Cornelius; Wierschem, Keola; Sengupta, Pinaki
2013-08-01
The zero and finite temperature spin-Peierls transitions in a quasi-one-dimensional spin-(1)/(2) Heisenberg model coupled to adiabatic bond phonons is investigated using the stochastic series expansion (SSE) quantum Monte Carlo (QMC) method. The quantum phase transition from a gapless Néel state to a spin-gapped Peierls state is studied in the parameter space spanned by spatial anisotropy, interchain coupling strength, and spin-lattice coupling strength. It is found that for any finite interchain coupling, the transition to a dimerized Peierls ground state only occurs when the spin-lattice coupling exceeds a finite, nonzero critical value. This is in contrast to the pure 1D model (zero interchain coupling), where adiabatic/classical phonons lead to a dimerized ground state for any nonzero spin-phonon interaction. The phase diagram in the parameter space shows that for a strong interchain coupling, the relation between the interchain coupling and the critical value of the spin-phonon interaction is linear whereas for weak interchain coupling, this behavior is found to have a natural logarithmlike relation. No region was found to have a long range magnetic order and dimerization occurring simultaneously. Instead, the Néel state order vanishes simultaneously with the setting in of the spin-Peierls state. For the thermal phase transition, a continuous heat capacity with a peak at the critical temperature Tc shows a second order phase transition. The variation of the equilibrium bond length distortion δeq with temperature showed a power law relation which decayed to zero as the temperature was increased to Tc, indicating a continuous transition from the dimerized phase to a paramagnetic phase with uniform bond length and zero antiferromagnetic susceptibility.
The first ionothermal synthesis of a germanium phosphate with one-dimensional chain-like structure.
Wang, Wei; Li, Yang; Liu, Lei; Dong, Jinxiang
2012-09-21
A novel germanium phosphate with a chain-like framework constructed from GeO(4)N(2) octahedra and PO(4) tetrahedra, [NH(4)](2)[Ge(NH(3))(2)(PO(4))(2)]·0.38H(2)O, was first synthesized via in situ decomposition of urea from ionic eutectic mixtures comprising urea and quaternary ammonium salts. PMID:22847659
Magnetic and Superfluid Transitions in the One-Dimensional Spin-1 Boson Hubbard Model
Batrouni, G. G.; Rousseau, V. G.; Scalettar, R. T.
2009-04-10
Recent progress in experiments on trapped ultracold atoms has made it possible to study the interplay between magnetism and superfluid-insulator transitions in the boson Hubbard model. We report on quantum Monte Carlo simulations of the spin-1 boson Hubbard model in the ground state. For antiferromagnetic interactions favoring singlets, we present exact numerical evidence that the superfluid-insulator transition is first (second) order for even (odd) Mott lobes. Inside even lobes, we search for nematic-to-singlet first order transitions. In the ferromagnetic case where transitions are all continuous, we map the phase diagram and show the superfluid to be ferromagnetic. We compare the quantum Monte Carlo phase diagram with a third order perturbation calculation.
Zhou, Jing; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.; White, Michael G.
2015-03-14
The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, butmore » exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions« less
Zhou, Jing; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.; White, Michael G.
2015-03-14
The morphology and electronic structure of vapor deposited 4,4'-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy (STM). When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [110] direction of the Au(111) substrate, but exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free –NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at -0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions
Electric and magnetic excitation of coherent magnetic plasmon waves in a one-dimensional meta-chain.
Zhu, C; Liu, H; Wang, S M; Li, T; Cao, J X; Zheng, Y J; Li, L; Wang, Y; Zhu, S N; Zhang, X
2010-12-01
A one-dimensional diatomic meta-chain with equal-size holes and different-length slits is designed. Broadband coherent magnetic plasmon waves (MPW) are formed in such a system, excited by both the electric resonance in the slits and the magnetic resonance in the holes in a wide range of incidence angles (0°-40°) and broad frequency bands (200-230 THz). The dispersion properties of the MPW measured in our experiments agree with the theoretical calculation based on the Lagrange model. The coherent MPWs reported in this paper may have applications in subwavelength integrated nanocircuits.
One-dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibers
NASA Astrophysics Data System (ADS)
Si, Tie-Yan
2015-12-01
A quantum chain model of multiple molecule motors is proposed as a mathematical physics theory for the microscopic modeling of classical force-velocity relation and tension transients in muscle fibers. The proposed model was a quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibers, which has not yet been empirically defined and was much more complicated than the hyperbolic relationships. Using the same Hamiltonian model, a mathematical force-velocity relationship was proposed to explain the tension observed when the muscle was stimulated with an alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency could be explained physically by the Doppler effect in this quantum chain model. Further more, quantum physics phenomena were applied to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transient curves were found to correspond to the theoretical output of quantum two- and three-level models. Mathematical modeling electric stimulus as photons exciting a quantum three-level particle reproduced most of the tension transient curves of water bug Lethocerus maximus. Project supported by the Fundamental Research Foundation for the Central Universities of China.
NASA Astrophysics Data System (ADS)
Ruhman, Jonathan; Altman, Ehud
2014-03-01
Majorana zero modes can emerge at the edge of a nano wire subject to Rashba like spin-orbit interaction and a Zeeman field, which is coupled through a proximity effect to an s-wave superconductor. Can the zero modes obtain even if the superconductivity is intrinsic, due to attractive interactions in the single channel wire, with strictly conserved charge? We answer this question in the affirmative and provide an exact low energy description of the Majorana modes at the interface between a low density ``trivial'' Luttinger liquid on one side and a high density ``topological'' Luttinger liquid on the other side. The energy splitting of a pair of such modes at the edges of a topological segment of length L scales as 1 /L K / 2 where K > 1 is the Luttinger parameter. We discuss how to detect these Majorana modes in systems of ultra cold atoms, where an intrinsic attractive interaction is indeed much more natural than proximity induced pairing. Supported by ERC Synergy grant UQUAM.
Phosphorene under electron beam: from monolayer to one-dimensional chains.
Vierimaa, Ville; Krasheninnikov, Arkady V; Komsa, Hannu-Pekka
2016-04-21
Phosphorene, a single sheet of black phosphorus, is an elemental two-dimensional material with unique properties and potential applications in semiconductor technology. While few-layer flakes of the material have been characterized using transmission electron microscopy, very little is known about its response to electron irradiation, which may be particularly important in the context of top-down engineering of phosphorus nanostructures using a focused electron beam. Here, using first-principles simulations, we study the production of defects in a single phosphorene sheet under impacts of energetic electrons. By employing the McKinley-Feshbach formalism and accounting for the thermal motion of atoms, we assess the cross section for atom displacement as a function of electron energy. We further investigate the energetics and dynamics of point defects and the stability of ribbons and edges under an electron beam. Finally, we show that P atomic chains should be surprisingly stable, and their atomic structure is not linear giving rise to the absence of a gap in the electronic spectrum. PMID:27004746
Phosphorene under electron beam: from monolayer to one-dimensional chains
NASA Astrophysics Data System (ADS)
Vierimaa, Ville; Krasheninnikov, Arkady V.; Komsa, Hannu-Pekka
2016-04-01
Phosphorene, a single sheet of black phosphorus, is an elemental two-dimensional material with unique properties and potential applications in semiconductor technology. While few-layer flakes of the material have been characterized using transmission electron microscopy, very little is known about its response to electron irradiation, which may be particularly important in the context of top-down engineering of phosphorus nanostructures using a focused electron beam. Here, using first-principles simulations, we study the production of defects in a single phosphorene sheet under impacts of energetic electrons. By employing the McKinley-Feshbach formalism and accounting for the thermal motion of atoms, we assess the cross section for atom displacement as a function of electron energy. We further investigate the energetics and dynamics of point defects and the stability of ribbons and edges under an electron beam. Finally, we show that P atomic chains should be surprisingly stable, and their atomic structure is not linear giving rise to the absence of a gap in the electronic spectrum.
Phosphorene under electron beam: from monolayer to one-dimensional chains.
Vierimaa, Ville; Krasheninnikov, Arkady V; Komsa, Hannu-Pekka
2016-04-21
Phosphorene, a single sheet of black phosphorus, is an elemental two-dimensional material with unique properties and potential applications in semiconductor technology. While few-layer flakes of the material have been characterized using transmission electron microscopy, very little is known about its response to electron irradiation, which may be particularly important in the context of top-down engineering of phosphorus nanostructures using a focused electron beam. Here, using first-principles simulations, we study the production of defects in a single phosphorene sheet under impacts of energetic electrons. By employing the McKinley-Feshbach formalism and accounting for the thermal motion of atoms, we assess the cross section for atom displacement as a function of electron energy. We further investigate the energetics and dynamics of point defects and the stability of ribbons and edges under an electron beam. Finally, we show that P atomic chains should be surprisingly stable, and their atomic structure is not linear giving rise to the absence of a gap in the electronic spectrum.
Yoo-Kong, Sikarin; Liewrian, Watchara
2015-12-01
We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain. PMID:26701710
NASA Astrophysics Data System (ADS)
Nishimoto, Satoshi; Drechsler, Stefan-Ludwig; Kuzian, Roman; Richter, Johannes; van den Brink, Jeroen
2015-12-01
We quantify the stability of the formation of multipolar states against always present interchain couplings in quasi-one-dimensional spin-1/2 chain systems with a frustrating in-chain J1-J2 exchange, including parameter regimes that are of direct relevance to many edge-shared cuprate spin-chain compounds. Three representative types of antiferromagnetic interchain coupling and the presence of uniaxial exchange anisotropy are considered. The magnetic phase diagrams are determined by density matrix renormalization group calculations and completed by very accurate analytic and numerical results for the nematic and the dipolar phases employing the hard-core-boson approach. We establish that a sizable interchain coupling has a strong influence on the possible instability of multipolar phases at high magnetic fields in the vicinity of the saturation fields in favor of the usual dipolar one-magnon phase. Moreover, skew interchain couplings strongly affect the pitch of spiral states. Our theoretical results bring to the fore candidate materials close to quantum nematic/triatic ordering.
Chiral spin liquids in arrays of spin chains
NASA Astrophysics Data System (ADS)
Gorohovsky, Gregory; Pereira, Rodrigo G.; Sela, Eran
2015-06-01
We describe a coupled-chain construction for chiral spin liquids in two-dimensional spin systems. Starting from a one-dimensional zigzag spin chain and imposing SU(2) symmetry in the framework of non-Abelian bosonization, we first show that our approach faithfully describes the low-energy physics of an exactly solvable model with a three-spin interaction. Generalizing the construction to the two-dimensional case, we obtain a theory that incorporates the universal properties of the chiral spin liquid predicted by Kalmeyer and Laughlin: charge-neutral edge states, gapped spin-1/2 bulk excitations, and ground-state degeneracy on the torus signaling the topological order of this quantum state. In addition, we show that the chiral spin liquid phase is more easily stabilized in frustrated lattices containing corner-sharing triangles, such as the extended kagome lattice, than in the triangular lattice. Our field-theoretical approach invites generalizations to more exotic chiral spin liquids and may be used to assess the existence of the chiral spin liquid as the ground state of specific lattice systems.
NASA Astrophysics Data System (ADS)
Qin, Ling; Chen, Peng-Yu; Zhao, Gao-Chao; Zuo, Wei-Juan; Li, Jin
2016-12-01
Two compounds with cation chains and monomers, [Co1/2(bpbenz)1/2]+·[Co1/2(oba)]- (1) and [Ni(DPT)(H2O)4]2+ [tpdc]2- (2) have been synthesized under hydrothermal condition (bpbenz = 1,4-bis(4-pyridyl)benzene, H2oba = 4,4‧-oxybis- (benzoate), DPT = 2,5-dipyridinethiophene, H2tpdc = biphenyldicarboxylic acid). In compound 1, the monomer [Co1/2(oba)]- anions stack in three orientations to generate a 1D pseudo channels encapsulation of cationic chains [Co1/2(bpbenz)1/2]+. When considering the H-bonding interaction between coordinated water O atoms of the [Co1/2(bpbenz) 1/2]+ cationic chain and uncoordinated carboxylate oxygen atoms of the [Co1/2(oba)]- anion, a binodal 3,6-coordinated 3D architecture is generated. Like 1, the one-dimensional cation chains [Ni(DPT)(H2O)4]2+ locate in pseudo-channels by [tpdc]2- monomers anions in compound 2. A 3D net is also generated considering the H-bonding interaction.
NASA Astrophysics Data System (ADS)
Araki, Gako; Suzuki, Kazuaki; Nakayama, Hideyuki; Ishii, Kikujiro
1991-05-01
N-methylacetamide (NMA) crystal forms one-dimensional hydrogen-bond chains, which are similar to those in an acetanilide (ACN) crystal for which an unconventional vibrational band accompanying the amide-I band has been observed. Infrared spectra of NMA crystals show an additional band on the small-wave-number side of the amide-II band as the temperature is lowered. There is a close resemblance between this band and the band of ACN. It is likely that these bands appear by the same mechanism. The polaron model, which has been employed to explain the band of ACN, was found to be applicable also to the case of NMA, although the main vibrational mode is amide I in ACN and amide II in NMA.
Kavitha, L; Priya, R; Ayyappan, N; Gopi, D; Jayanthi, S
2016-01-01
The dynamics of protons in a one-dimensional hydrogen-bonded (HB) polypeptide chain (PC) is investigated theoretically. A new Hamiltonian is formulated with the inclusion of higher-order molecular interactions between peptide groups (PGs). The wave function of the excitation state of a single particle is replaced by a new wave function of a two-quanta quasi-coherent state. The dynamics is governed by a higher-order nonlinear Schrödinger equation and the energy transport is performed by the proton soliton. A nonlinear multiple-scale perturbation analysis has been performed and the evolution of soliton parameters such as velocity and amplitude is explored numerically. The proton soliton is thermally stable and very robust against these perturbations. The energy transport by the proton soliton is more appropriate to understand the mechanism of energy transfer in biological processes such as muscle contraction, DNA replication, and neuro-electric pulse transfer on biomembranes.
NASA Astrophysics Data System (ADS)
Lin, Hung-Jui; Liu, Yu-Chiao; Tseng, Yu-Jui; Wu, Jing-Yun
2016-10-01
Reactants slow diffusion of Ag(I) salts with 3,4‧-bis(pyridylmethyl)amine (3,4‧-bpma), an unsymmetric bis-pyridyl ligand equipped with a non-innocent amine backbone, afforded polymeric coordination adducts 1-5 having a general formula {[Ag(3,4‧-bpma)(solv)]X}n (solv = H2O, CH3OH, and none; X= CF3CO2-, BF4-, ClO4-, CF3SO3-, and SbF6-). Single-crystal X-ray diffraction (SCXRD) analyses reveal that colorless crystals of Ag(I) coordination polymers (CPs) 1-5 have very similar one-dimensional (1D) non-flat chain structures, which are preferentially depicted as a "zipper-like" rather than a ladder-like or a double-stranded chain topologies. The 3,4‧-bpma ligand in these Ag(I) CPs displays a μ3-bridging mode with a gauche-trans (1,4, and 5) and a trans-trans (2 and 3) conformations. Noteworthy, anions do not show strong influence on structural modulation of Ag(I) CPs in the solid state, but really affect CP conformations and packing fashions, indicative of a ligand-dominated assembly process for such a Ag(I)-3,4‧-bpma system. Thermal stabilities and solid-state photoluminescence properties of crystalline materials 1-5 were investigated.
Direct measurement of the spin gap in a quasi-one-dimensional clinopyroxene: NaTiSi2O6
Silverstein, Harlyn J.; Smith, Alison E.; Mauws, Cole; Abernathy, Douglas L.; Zhou, Haidong; Dun, Zhiling; van Lierop, Johan; Wiebe, Christopher R.
2014-10-13
True inorganic Spin-Peierls materials are extremely rare, but NaTiSi2O6 was at one time considered an ideal candidate due to it having well separated chains of edge-sharing TiO6 octahedra. At low temperatures, this material undergoes a phase transition from C2/c to Pmore » $$\\bar{1}$$ symmetry, where Ti3+-Ti3+ dimers begin to form within the chains. However, it was quickly realized with magnetic susceptibility that simple spin fluctuations do not progress to the point of enabling such a transition. Since then, considerable experimental and theoretical endeavours have been taken to find the true ground state of this system and explain how it manifests. Here, we employ the use of x-ray diffraction, neutron spectroscopy, and magnetic susceptibility to directly and simultaneously measure the symmetry loss, spin singlet-triplet gap, and phonon modes. Lastly, we observed a gap of 53(3) meV, fit to the magnetic susceptibility, and compared to previous theoretical models to unambiguously assign NaTiSi2O6 as having an orbital-assisted Peierls ground state.« less
Liang, Junjun; Zhou, Xiaofan; Chui, Pak Hong; Zhang, Kuang; Gu, Shi-jian; Gong, Ming; Chen, Gang; Jia, Suotang
2015-01-01
Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a state-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential. PMID:26443006
NASA Astrophysics Data System (ADS)
Demontis, Pierfranco; Stara, Giovanna; Suffritti, Giuseppe B.
2004-05-01
Nanosecond scale molecular dynamics simulations of the behavior of the one-dimensional water molecule chains adsorbed in the parallel nanochannels of bikitaite, a rare lithium containing zeolite, were performed at different temperatures and for the fully and partially hydrated material. New empirical potential functions have been developed for representing lithium-water interactions. The structure and the vibrational spectrum of bikitaite were in agreement both with experimental data and Car-Parrinello molecular dynamics results. Classical molecular dynamics simulations were extended to the nanosecond time scale in order to study the flip motion of water molecules around the hydrogen bonds connecting adjacent molecules in the chains, which has been observed by NMR experiments, and the dehydration mechanism at high temperature. Computed relaxation times of the flip motion follow the Arrhenius behavior found experimentally, but the activation energy of the simulated system is slightly underestimated. Based on the results of the simulations, it may be suggested that the dehydration proceeds by a defect-driven stepwise diffusion. The diffusive mechanism appears as a single-file motion: the molecules never pass one another, even at temperatures as high as about 1000 K, nor can they switch between different channels. However, the mean square displacement (MSD) of the molecules, computed with respect to the center of mass of the simulated system, shows an irregular trend from which the single-file diffusion cannot be clearly evidenced. If the MSDs are evaluated with respect to the center of mass of the molecules hosted in each channel, the expected dependence on the square root of time finally appears.
On Many-Body Localization for Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Imbrie, John Z.
2016-06-01
For a one-dimensional spin chain with random local interactions, we prove that many-body localization follows from a physically reasonable assumption that limits the amount of level attraction in the system. The construction uses a sequence of local unitary transformations to diagonalize the Hamiltonian and connect the exact many-body eigenfunctions to the original basis vectors.
Wang Xiaoting; Schirmer, Sophie G.; Bayat, Abolfazl; Bose, Sougato
2010-07-15
We discuss how to prepare an Ising chain in a GHZ state using a single global control field only. This model does not require the spins to be individually addressable and is applicable to quantum systems such as cold atoms in optical lattices, some liquid- or solid-state NMR experiments, and many nanoscale quantum structures. We show that GHZ states can always be reached asymptotically from certain easy-to-prepare initial states using adiabatic passage, and under certain conditions finite-time reachability can be ensured. To provide a reference useful for future experimental implementations, three different control strategies to achieve the objective--adiabatic passage, Lyapunov control, and optimal control--are compared, and their advantages and disadvantages discussed, in particular in the presence of realistic imperfections such as imperfect initial state preparation, system inhomogeneity, and dephasing.
Antiferromagnetic order in single crystals of the S =2 quasi-one-dimensional chain MnCl3(bpy)
NASA Astrophysics Data System (ADS)
Shinozaki, Shin-ichi; Okutani, Akira; Yoshizawa, Daichi; Kida, Takanori; Takeuchi, Tetsuya; Yamamoto, Shoji; Risset, Olivia N.; Talham, Daniel R.; Meisel, Mark W.; Hagiwara, Masayuki
2016-01-01
A suite of experimental tools, including high-field magnetization and electron spin resonance (ESR) studies in magnetic fields of up to 50 T and heat capacity studies up to 9 T, have revealed antiferromagnetic order in single crystals of the Heisenberg S =2 chain compound MnCl3(bpy), where bpy is 2 ,2'-bipyridine . The Néel temperature, which depends on the strength of the applied magnetic field and its orientation with respect to the crystalline axes that was revealed by heat capacity measurements, is near 11.5 K in zero field. The spin-flop transition is identified in the magnetization curve acquired at 1.7 K and at μoHSFc=24 T along the c axis. The transition field HSF is lower than that expected from the previous antiferromagnetic resonance (AFMR) studies on a powder sample. The identification of the long-range antiferromagnetic order resolves an earlier report by Granroth et al. [Phys. Rev. Lett. 77, 1616 (1996)], 10.1103/PhysRevLett.77.1616 that identified MnCl3(bpy) as an S =2 Haldane system down to 40 mK. The ESR studies identify a wide range of antiferromagnetic resonance modes that provide additional microscopic information about the g values (ga*=2.09 , gb=1.92 , and gc=2.07 ), the zero-field splitting constants, D /kB=-1.5 K and E /kB=-0.17 K when the nearest-neighbor spin interaction J /kB=31.2 K, which is evaluated from fitting the susceptibility, and the anisotropy of this compound (easy axis is the c axis, the second easy-axis is the b axis, and the hard axis is the a* axis), when using a standard (two-sublattice) AFMR analysis that does not quantitatively reproduce the observed HSFc value. The observed resonance mode indicates the frequency minimum at HSFc.
NASA Astrophysics Data System (ADS)
Bagatskii, M. I.; Sumarokov, V. V.; Barabashko, M. S.
2016-02-01
The heat capacity at constant pressure CP of 1D-chains of methane molecules adsorbed in the grooves on the outer surface of the bundles of closed single-walled nanotubes was measured in the temperature range from 2 to 60 K for the first time. The behavior of the temperature dependence of CP below 12 K indicates the presence of a Schottky-type anomaly originated from the tunneling between the lowest energy levels of the rotational spectra of the A, T, and E nuclear-spin species of methane molecules. The feature observed in the vicinity of 14 K is presumably caused by an orientational phase transition, in which the nature of the rotational motion of the molecules changes from libration to hindered rotation. It was found that the rotational heat capacity in the temperature range of 30-40 K is close to that of freely rotating methane molecules. An increase in the derivative dCP(T)/dT above 40 K and the feature in the CP(T) near 52 K are due to the decay of 1D chains of CH4.
NASA Astrophysics Data System (ADS)
Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-Ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo
2016-03-01
Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as “ferrite plating”. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.
Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo
2016-03-15
Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as "ferrite plating". The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management.
Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo
2016-01-01
Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as "ferrite plating". The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management. PMID:26975208
Kirihara, Akihiro; Kondo, Koichi; Ishida, Masahiko; Ihara, Kazuki; Iwasaki, Yuma; Someya, Hiroko; Matsuba, Asuka; Uchida, Ken-ichi; Saitoh, Eiji; Yamamoto, Naoharu; Kohmoto, Shigeru; Murakami, Tomoo
2016-01-01
Heat-flow sensing is expected to be an important technological component of smart thermal management in the future. Conventionally, the thermoelectric (TE) conversion technique, which is based on the Seebeck effect, has been used to measure a heat flow by converting the flow into electric voltage. However, for ubiquitous heat-flow visualization, thin and flexible sensors with extremely low thermal resistance are highly desired. Recently, another type of TE effect, the longitudinal spin Seebeck effect (LSSE), has aroused great interest because the LSSE potentially offers favourable features for TE applications such as simple thin-film device structures. Here we demonstrate an LSSE-based flexible TE sheet that is especially suitable for a heat-flow sensing application. This TE sheet contained a Ni0.2Zn0.3Fe2.5O4 film which was formed on a flexible plastic sheet using a spray-coating method known as “ferrite plating”. The experimental results suggest that the ferrite-plated film, which has a columnar crystal structure aligned perpendicular to the film plane, functions as a unique one-dimensional spin-current conductor suitable for bendable LSSE-based sensors. This newly developed thin TE sheet may be attached to differently shaped heat sources without obstructing an innate heat flux, paving the way to versatile heat-flow measurements and management. PMID:26975208
Slave fermion formalism for the tetrahedral spin chain
NASA Astrophysics Data System (ADS)
Mohan, Priyanka; Rao, Sumathi
2016-09-01
We use the SU(2) slave fermion approach to study a tetrahedral spin 1/2 chain, which is a one-dimensional generalization of the two dimensional Kitaev honeycomb model. Using the mean field theory, coupled with a gauge fixing procedure to implement the single occupancy constraint, we obtain the phase diagram of the model. We then show that it matches the exact results obtained earlier using the Majorana fermion representation. We also compute the spin-spin correlation in the gapless phase and show that it is a spin liquid. Finally, we map the one-dimensional model in terms of the slave fermions to the model of 1D p-wave superconducting model with complex parameters and show that the parameters of our model fall in the topological trivial regime and hence does not have edge Majorana modes.
INTERACTING QUANTUM SPIN CHAINS
ZHELUDEV,A.
2001-09-09
A brief review of recent advances in neutron scattering studies of low-dimensional quantum magnets is followed by a particular example. The separation of single-particle and continuum states in the weakly-coupled S = l/2 chains system BaCu{sub 2}Si{sub 2}O{sub 7} is described in some detail.
Quasi-local conserved charges and spin transport in spin-1 integrable chains
NASA Astrophysics Data System (ADS)
Piroli, Lorenzo; Vernier, Eric
2016-05-01
We consider the integrable one-dimensional spin-1 chain defined by the Zamolodchikov-Fateev (ZF) Hamiltonian. The latter is parametrized, analogously to the XXZ spin-1/2 model, by a continuous anisotropy parameter and at the isotropic point coincides with the well-known spin-1 Babujian-Takhtajan Hamiltonian. Following a procedure recently developed for the XXZ model, we explicitly construct a continuous family of quasi-local conserved operators for the periodic spin-1 ZF chain. Our construction is valid for a dense set of commensurate values of the anisotropy parameter in the gapless regime where the isotropic point is excluded. Using the Mazur inequality, we show that, as for the XXZ model, these quasi-local charges are enough to prove that the high-temperature spin Drude weight is non-vanishing in the thermodynamic limit, thus establishing ballistic spin transport at high temperature.
NASA Astrophysics Data System (ADS)
Cho, Weejee; Platt, Christian; McKenzie, Ross H.; Raghu, Srinivas
2015-10-01
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin-triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has more sign changes than required by the point-group symmetry.
NASA Astrophysics Data System (ADS)
Platt, Christian; Cho, Weejee; McKenzie, Ross H.; Raghu, Sri
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four Molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.
NASA Astrophysics Data System (ADS)
Aspelmeier, T.; Wang, Wenlong; Moore, M. A.; Katzgraber, Helmut G.
2016-08-01
The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.
Aspelmeier, T; Wang, Wenlong; Moore, M A; Katzgraber, Helmut G
2016-08-01
The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems.
Aspelmeier, T; Wang, Wenlong; Moore, M A; Katzgraber, Helmut G
2016-08-01
The one-dimensional Ising spin-glass model with power-law long-range interactions is a useful proxy model for studying spin glasses in higher space dimensions and for finding the dimension at which the spin-glass state changes from having broken replica symmetry to that of droplet behavior. To this end we have calculated the exponent that describes the difference in free energy between periodic and antiperiodic boundary conditions. Numerical work is done to support some of the assumptions made in the calculations and to determine the behavior of the interface free-energy exponent of the power law of the interactions. Our numerical results for the interface free-energy exponent are badly affected by finite-size problems. PMID:27627255
NASA Astrophysics Data System (ADS)
Chang, C.-P.; Chu, M.-W.; Jeng, H. T.; Cheng, S.-L.; Lin, J. G.; Yang, J.-R.; Chen, C. H.
2014-03-01
The success of semiconductor technology is largely ascribed to controlled impacts of strains and defects on the two-dimensional interfacial charges. Interfacial charges also appear in oxide heterojunctions such as LaAlO3/SrTiO3 and (Nd0.35Sr0.65)MnO3/SrTiO3. How the localized strain field of one-dimensional misfit dislocations, defects resulting from the intrinsic misfit strains, would affect the extended oxide-interfacial charges is intriguing and remains unresolved. Here we show the atomic-scale observation of one-dimensional electron chains formed in (Nd0.35Sr0.65)MnO3/SrTiO3 by the condensation of characteristic two-dimensional interfacial charges into the strain field of periodically arrayed misfit dislocations, using chemical mapping and quantification by scanning transmission electron microscopy. The strain-relaxed inter-dislocation regions are readily charge depleted, otherwise decorated by the pristine charges, and the corresponding total-energy calculations unravel the undocumented charge-reservoir role played by the dislocation-strain field. This two-dimensional-to-one-dimensional electronic condensation represents a novel electronic-inhomogeneity mechanism at oxide interfaces and could stimulate further studies of one-dimensional electron density in oxide heterostructures.
Inverse design of disordered stealthy hyperuniform spin chains
NASA Astrophysics Data System (ADS)
Chertkov, Eli; DiStasio, Robert A.; Zhang, Ge; Car, Roberto; Torquato, Salvatore
2016-02-01
Positioned between crystalline solids and liquids, disordered many-particle systems which are stealthy and hyperuniform represent new states of matter that are endowed with novel physical and thermodynamic properties. Such stealthy and hyperuniform states are unique in that they are transparent to radiation for a range of wave numbers around the origin. In this work, we employ recently developed inverse statistical-mechanical methods, which seek to obtain the optimal set of interactions that will spontaneously produce a targeted structure or configuration as a unique ground state, to investigate the spin-spin interaction potentials required to stabilize disordered stealthy hyperuniform one-dimensional (1D) Ising-type spin chains. By performing an exhaustive search over the spin configurations that can be enumerated on periodic 1D integer lattices containing N =2 ,3 ,...,36 sites, we were able to identify and structurally characterize all stealthy hyperuniform spin chains in this range of system sizes. Within this pool of stealthy hyperuniform spin configurations, we then utilized such inverse optimization techniques to demonstrate that stealthy hyperuniform spin chains can be realized as either unique or degenerate disordered ground states of radial long-ranged (relative to the spin-chain length) spin-spin interactions. Such exotic ground states appear to be distinctly different from spin glasses in both their inherent structural properties and the nature of the spin-spin interactions required to stabilize them. As such, the implications and significance of the existence of these disordered stealthy hyperuniform ground-state spin systems warrants further study, including whether their bulk physical properties and excited states, like their many-particle system counterparts, are singularly remarkable, and can be experimentally realized.
Field dependent spin transport of anisotropic Heisenberg chain
NASA Astrophysics Data System (ADS)
Rezania, H.
2016-04-01
We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.
Transferring information through a mixed-five-spin chain channel
NASA Astrophysics Data System (ADS)
Arian Zad, Hamid; Movahhedian, Hossein
2016-08-01
We initially introduce one-dimensional mixed-five-spin chain with Ising-XY model which includes mixture of spins-1/2 and spins-1. Here, it is considered that nearest spins (1,1/2) have Ising-type interaction and nearest spins (1/2,1/2) have both XY-type and Dzyaloshinskii-Moriya (DM) interactions together. Nearest spins (1,1) have XX Heisenberg interaction. This system is in the vicinity of an external homogeneous magnetic field B in thermal equilibrium state. We promote the quantum information transmitting protocol verified for a normal spin chain with simple model (refer to Rossini D, Giovannetti V and Fazio R 2007 Int. J. Quantum Infor. 5 439) (widely in reference: Giovannetti V and Fazio R 2005 Phys. Rev. A 71 032314) by means of considering the suggested mixed-five-spin chain as a quantum communication channel for transmitting both qubits and qutrits ideally. Hence, we investigate some useful quantities such as quantum capacity and quantum information transmission rate for the system. Finally, we conclude that, when the DM interaction between spins (1/2,1/2) increases the system is a more ideal channel for transmitting information.
NASA Astrophysics Data System (ADS)
Soltanieh-ha, Mohammad; Feiguin, Adrian E.
2014-10-01
The physics of the strongly interacting Hubbard chain (with t /U ≪1 ) at finite temperatures undergoes a crossover to a spin-incoherent regime when the temperature is very small relative to the Fermi energy, but larger than the characteristic spin energy scale. This crossover can be understood by means of Ogata and Shiba's factorized wave function, where charge and spin are totally decoupled, and assuming that the charge remains in the ground state, while the spin is thermally excited and at an effective "spin temperature." We use the time-dependent density matrix renormalization group method to calculate the dynamical contributions of the spin, to reconstruct the single-particle spectral function of the electrons. The crossover is characterized by a redistribution of spectral weight both in frequency and momentum, with an apparent shift by kF of the minimum of the dispersion.
Exact fractional revival in spin chains
NASA Astrophysics Data System (ADS)
Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei
2016-09-01
The occurrence of fractional revival in quantum spin chains is examined. Analytic models where this phenomenon can be exhibited in exact solutions are provided. It is explained that spin chains with fractional revival can be obtained by isospectral deformations of spin chains with perfect state transfer.
Otake, Ken-ichi; Otsubo, Kazuya; Sugimoto, Kunihisa; Fujiwara, Akihiko; Kitagawa, Hiroshi
2016-03-01
One-dimensional (1D) electronic systems have attracted significant attention for a long time because of their various physical properties. Among 1D electronic systems, 1D halogen-bridged mixed-valence transition-metal complexes (the so-called MX chains) have been thoroughly studied owing to designable structures and electronic states. Here, we report the syntheses, structures, and electronic properties of three kinds of novel neutral MX-chain complexes. The crystal structures consist of 1D chains of Pt-X repeating units with (1R,2R)-(-)-diaminocychlohexane and CN(-) in-plane ligands. Because of the absence of a counteranion, the neutral MX chains have short interchain distances, so that strong interchain electronic interaction is expected. Resonance Raman spectra and diffuse-reflectance UV-vis spectra indicate that their electronic states are mixed-valence states (charge-density-wave state: Pt(2+)···X-Pt(4+)-X···Pt(2+)···X-Pt(4+)-X···). In addition, the relationship between the intervalence charge-transfer (IVCT) band gap and the degree of distortion of the 1D chain shows that the neutral MX chains have a larger IVCT band gap than that of cationic MX-chain complexes. These results provide new insight into the physical and electronic properties of 1D chain compounds. PMID:26901774
Yu, Fei; Li, Dan-Dan; Cheng, Lin; Yin, Zheng; Zeng, Ming-Hua; Kurmoo, Mohamedally
2015-02-16
In search of porous materials for selective sorption and iodine inclusion, we have found two networks made of chains with a kink at the metal nodes held together by supramolecular interactions (H-bond and π···π stacking). The solvent can be removed and replaced reversibly without loss of crystallinity, as demonstrated by single-crystal-to-single-crystal crystallography. In contrast, iodine uptake degrades the crystallinity to amorphous, and it regains its crystalline state after removal of the iodine at 200 °C. Slight differences in behavior of the sorption and inclusion properties between the tetrahedral metal nodes, Zn and Co, are associated with the size of the nodes. An important feature is the extent of iodine that can be included between the chains that is doubled with temperature from 30 to 100 °C and exceeds the weight in mass of the compounds.
NASA Astrophysics Data System (ADS)
Meyer, S.; Schäfer, J.; Blumenstein, C.; Höpfner, P.; Bostwick, A.; McChesney, J. L.; Rotenberg, E.; Claessen, R.
2011-03-01
Atomic nanowires formed by Au on Ge(001) are scrutinized for the band topology of the conduction electron system by k-resolved photoemission. Two metallic electron pockets are observed. Their Fermi surface sheets form straight lines without undulations perpendicular to the chains within experimental uncertainty. The electrons hence emerge as strictly confined to one dimension. Moreover, the system is stable against a Peierls distortion down to 10 K, lending itself for studies of the spectral function.
Zhou, Jing; Li, Yan; Zahl, Percy; Sutter, Peter; Stacchiola, Dario J.; White, Michael G.
2015-03-14
The morphology and electronic structure of vapor deposited 4,4′-biphenyldiisocyanide (BPDI) on a Au(111) surface were investigated using variable-temperature scanning tunneling microscopy. When deposited at room temperature, BPDI molecules form one-dimensional molecular chains similar to that recently observed for the structurally related 1,4-phenyl diisocyanide (PDI). Compared to PDI, the longer periodicity for the BPDI molecular chains is consistent with the addition of a second phenyl ring and supports a structural model in which the BPDI molecules lie parallel to the surface and interconnected by Au-adatoms. The molecular chains are mostly aligned along the [11{sup -}0] direction of the Au(111) substrate, but exhibit frequent changes in angle that are consistent with directions between fcc and hcp three-fold hollow sites. Dispersion-corrected density functional theory calculations for one-dimensional chains of BPDI molecules bound end-to-end via their isocyanide groups to Au-adatoms reproduce the observed periodicity of the chains and show that this morphology is energetically favored over upright binding with one free —NC group. The spatially resolved conductance (dI/dV) map for BPDI on Au(111) exhibits a feature centered at −0.67 eV below the Fermi level which are delocalized along the chain with maxima at the Au-adatom and biphenyl positions. This occupied resonant feature is close to that previously observed for the PDI in both photoemission and conductance measurements and is attributed to an occupied interfacial state resulting from BPDI-Au interactions.
NASA Astrophysics Data System (ADS)
Samardak, Alexander S.; Davydenko, Alexander V.; Ognev, Alexey V.; Jeon, Yoo Sang; Choi, Young Soo; Kim, Young Keun
2016-10-01
Understanding the ferromagnetic behavior of coupled magnetic nanoparticles (NPs) in a chain structure, called a “nanochain (NC)”, will open up new routes for its practical use. Here, we report the magnetization reversal modes in isolated magnetite (Fe3O4) NPs with diameters of 100 and 200 nm, as well as those of one-dimensional (1D) self-assembled NCs consisting of these NPs. NCs consisting of 100-nm diameter NPs switched through a transverse domain wall-like motion. Meanwhile, in 200-nm diameter NPs and NCs, we observed 3D magnetic vortex states that were more energetically favorable than single domain or multidomain states.
Magnetic entanglement in spin-1/2 XY chains
NASA Astrophysics Data System (ADS)
Fumani, Fatemeh Khastehdel; Nemati, Somayyeh; Mahdavifar, Saeed; Darooneh, Amir Hosein
2016-03-01
In the study of entanglement in a spin chain, people often consider the nearest-neighbor spins. The motivation is the prevailing role of the short range interactions in creating quantum correlation between the 1st neighbor (1N) spins. Here, we address the same question between farther neighbor spins. We consider the one-dimensional (1D) spin-1/2 XY model in a magnetic field. Using the fermionization approach, we diagonalize the Hamiltonian of the system. Then, we provide the analytical results for entanglement between the 2nd, 3rd and 4th neighbor (denoted as 2N, 3N, and 4N respectively) spins. We find a magnetic entanglement that starts from a critical entangled-field (hcE) at zero temperature. The critical entangled-field depends on the distance between the spins. In addition to the analytical results, the mentioned phenomenon is confirmed by the numerical Lanczos calculations. By adding the temperature to the model, the magnetic entanglement remains stable up to a critical temperature, Tc. Our results show that entanglement spreads step by step to farther neighbors in the spin chain by reducing temperature. At first, the 1N spins are entangled and then further neighbors will be entangled respectively. Tc depends on the value of the magnetic field and will be maximized at the quantum critical field.
Superconductivity in Ta3Pd3Te14 with quasi-one-dimensional PdTe2 chains.
Jiao, Wen-He; He, Lan-Po; Liu, Yi; Xu, Xiao-Feng; Li, Yu-Ke; Zhang, Chu-Hang; Zhou, Nan; Xu, Zhu-An; Li, Shi-Yan; Cao, Guang-Han
2016-02-15
We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta3Pd3Te14 containing edge-sharing PdTe2 chains along crystallographic b axis, similar to the recently discovered superconductor Ta4Pd3Te16. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is ΔC/(γ(n)T(c)) ≈ 1.35, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta3Pd3Te14 is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta3Pd3Te14 with a lower T(c), compared to that of Ta4Pd3Te16, may be attributed to the lower density of states.
Superconductivity in Ta3Pd3Te14 with quasi-one-dimensional PdTe2 chains
Jiao, Wen-He; He, Lan-Po; Liu, Yi; Xu, Xiao-Feng; Li, Yu-Ke; Zhang, Chu-Hang; Zhou, Nan; Xu, Zhu-An; Li, Shi-Yan; Cao, Guang-Han
2016-01-01
We report bulk superconductivity at 1.0 K in a low-dimensional ternary telluride Ta3Pd3Te14 containing edge-sharing PdTe2 chains along crystallographic b axis, similar to the recently discovered superconductor Ta4Pd3Te16. The electronic heat capacity data show an obvious anomaly at the transition temperature, which indicates bulk superconductivity. The specific-heat jump is ΔC/(γnTc) ≈ 1.35, suggesting a weak coupling scenario. By measuring the low-temperature thermal conductivity, we conclude that Ta3Pd3Te14 is very likely a dirty s-wave superconductor. The emergence of superconductivity in Ta3Pd3Te14 with a lower Tc, compared to that of Ta4Pd3Te16, may be attributed to the lower density of states. PMID:26876362
NASA Astrophysics Data System (ADS)
Sakaguchi, Takehiro; Kakurai, Kazuhisa; Yokoo, Tetsuya; Akimitsu, Jun
1996-09-01
Magnetic excitations of the ideal one-dimensional, spin S=1, antiferromagnet Y2BaNiO5 are studied by means of inelastic neutron scattering on single crystal sample. Our experimental results at low temperature indicate that Y2BaNiO5 can be regarded as the best isotropic Haldane-system sofar studied with the intrachain exchange energy J/k B=-24.1 meV and the averaged gap Δ(T=7 K)=8.5 meV. Y2BaNiO5 exhibits a good magnetic one-dimensionality with the inter-/intrachain exchange ratio of |J‧/J|≤10-4 and has only very small easy-axis and in-plane single ion anisotropy of |D/J|=0.03 and |E/J|˜0.01. In addition the temperature dependence of the Haldane gap Δ(T) and its damping rate was determined.
NASA Astrophysics Data System (ADS)
Wu, Xianxin; Yang, Fan; Le, Congcong; Yuan, Jing; Qin, Shengshan; Fan, Heng; Hu, Jiangping
The recently discovered quasi-one dimensional superconductors A2Cr3As3(A=K,Rb,Cs), are found to possess strong frustrated magnetic fluctuations and are nearby a novel in-out co-planar magnetic ground state. Then, we find that the triplet pz-wave pairing is strongly favored. Finally, with pz wave pairing state, we obtain the specific heat, superfluid density, Knight shift and spin relaxation rate and find that all these properties at low temperature (T <
NASA Astrophysics Data System (ADS)
Platt, Christian; Cho, Weejee; McKenzie, Ross H.; Thomale, Ronny; Raghu, S.
2016-06-01
Previous theoretical studies [W. Cho, C. Platt, R. H. McKenzie, and S. Raghu, Phys. Rev. B 92, 134514 (2015), 10.1103/PhysRevB.92.134514; N. Lera and J. V. Alvarez, Phys. Rev. B 92, 174523 (2015), 10.1103/PhysRevB.92.174523] have suggested that Li0.9Mo6O17 , a quasi-one-dimensional "purple bronze" compound, exhibits spin-triplet superconductivity and that the gap function changes sign across the two nearly degenerate Fermi surface sheets. We investigate the role of spin-orbit coupling (SOC) in determining the symmetry and orientation of the d vector associated with the superconducting order parameter. We propose that the lack of local inversion symmetry within the four-atom unit cell leads to a spin-orbit coupling analogous to that proposed for graphene, MoS2, or SrPtAs. In addition, from a weak-coupling renormalization group treatment of an effective model Hamiltonian, we find that SOC favors the odd parity A1 u state with Sz=±1 over the B states with Sz=0 , where z denotes the least-conducting direction. We discuss possible definitive experimental signatures of this superconducting state.
Spin chains and string theory.
Kruczenski, Martin
2004-10-15
Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.
NASA Astrophysics Data System (ADS)
Ito, Hiroshi; Asai, Takayuki; Shimizu, Yasuhiro; Hayama, Hiromi; Yoshida, Yukihiro; Saito, Gunzi
2016-07-01
We report an antiferromagnetic (AF) ordering at ambient pressure and a superconducting transition under pressure for κ - (ET) 2C F3S O3 [ ET =bis (ethylenedithio)tetrathiafulvalene], which has a two-dimensional electronic system with quasi-one-dimensional triangular spin lattice. At ambient pressure, AF ordering was detected at TN=2.5 K by 1H NMR, subsequent to two structural phase transitions at 230 and 190 K. Under hydrostatic pressures, metallic behavior appeared above ˜1.1 GPa, and a superconducting transition (maximum onset Tc=4.8 K at ˜1.3 GPa) was observed up to 2.2 GPa. Superconductivity was also found under c -axis strain, which reduced t'/t , but was absent under b -axis strain which increased t'/t .
NASA Astrophysics Data System (ADS)
Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.; Zinner, N. T.
2016-04-01
We have developed an efficient computational method to treat long, one-dimensional systems of strongly interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly perfect state transfer.
Dynamics of Composite Haldane Spin Chains in IPA-CuCl_{3}
Masuda, Takatsugu; Zheludev, Andrey I; Manaka, H.; Regnault, L.-P.; Chung, J.-H.; Qiu, Y.
2006-01-01
Magnetic excitations in the quasi-one-dimensional antiferromagnet IPA-CuCl{sub 3} are studied by cold neutron inelastic scattering. Strongly dispersive gap excitations are observed. Contrary to previously proposed models, the system is best described as an asymmetric quantum spin ladder. The observed spectrum is interpreted in terms of composite Haldane spin chains. The key difference from actual S = 1 chains is a sharp cutoff of the single-magnon spectrum at a certain critical wave vector.
Stability of global entanglement in thermal states of spin chains
Brennen, Gavin K.; Bullock, Stephen S.
2004-11-01
We investigate the entanglement properties of a one-dimensional chain of qubits coupled via nearest-neighbor spin-spin interactions. The entanglement measure used is the n-concurrence, which is distinct from other measures on spin chains such as bipartite entanglement in that it can quantify 'global' entanglement across the spin chain. Specifically, it computes the overlap of a quantum state with its time-reversed state. As such, this measure is well suited to study ground states of spin-chain Hamiltonians that are intrinsically time-reversal-symmetric. We study the robustness of n-concurrence of ground states when the interaction is subject to a time-reversal antisymmetric magnetic field perturbation. The n-concurrence in the ground state of the isotropic XX model is computed and it is shown that there is a critical magnetic field strength at which the entanglement experiences a jump discontinuity from the maximum value to zero. The n-concurrence for thermal mixed states is derived and a threshold temperature is computed below which the system has nonzero entanglement.
NASA Astrophysics Data System (ADS)
De, Santanu; Kumar, Kranti; Banerjee, A.; Chaddah, P.
2016-05-01
We have found that the geometrically frustrated spin chain compound Ca3Co2O6 belonging to Ising like universality class with uniaxial anisotropy shows kinetic arrest of first order intermediate phase (IP) to ferrimagnetic (FIM) transition. In this system, dc magnetization measurements followed by different protocols suggest the coexistence of high temperature IP with equilibrium FIM phase in low temperature. Formation of metastable state due to hindered first order transition has also been probed through cooling and heating in unequal field (CHUF) protocol. Kinetically arrested high temperature IP appears to persist down to almost the spin freezing temperature in this system.
Spin chains with electrons in Penning traps
Ciaramicoli, G.; Marzoli, I.; Tombesi, P.
2007-03-15
We demonstrate that spin chains are experimentally feasible using electrons confined in micro-Penning traps, supplemented with local magnetic field gradients. The resulting Heisenberg-like system is characterized by coupling strengths showing a dipolar decay. These spin chains can be used as a channel for short-distance quantum communication. Our scheme offers high accuracy in reproducing an effective spin chain with relatively large transmission rate.
NASA Astrophysics Data System (ADS)
Tacchi, S.; Madami, M.; Gubbiotti, G.; Carlotti, G.; Goolaup, S.; Adeyeye, A. O.; Singh, N.; Kostylev, M. P.
2010-11-01
The Brillouin light-scattering technique has been applied to study collective spin waves in a dense array of dipolarly coupled Ni80Fe20 stripes of alternating widths, during the magnetization reversal process. Both the saturated “ferromagnetic” state, where the magnetizations of wide and narrow stripes are parallel, and the “antiferromagnetic” state, characterized by an antiparallel alignment of the static magnetization in adjacent stripes, have been analyzed. The experimental data provide strong evidence of sustained collective excitations in the form of Bloch waves with permitted and forbidden magnonic energy bands. The measured frequencies as a function of the exchanged wave vector have been satisfactorily reproduced by numerical simulations which enabled us to calculate the spatial profiles of the Bloch waves, showing that some of the modes are preferentially localized in either the wide or the narrow stripes. We estimated the expected light-scattering cross section for each mode at different magnetic ground states, achieving a good agreement with the measured intensities. The alternating-width stripes system studied here represents a one-dimensional artificial magnonic crystal with a complex base and can be considered as a model system for reprogrammable dynamical response, where the band structure of collective spin waves can be tailored by changing the applied magnetic field.
NASA Astrophysics Data System (ADS)
Nocera, A.; Soltanieh-ha, M.; Perroni, C. A.; Cataudella, V.; Feiguin, A. E.
2014-11-01
We calculate the spectral function of the one-dimensional Hubbard-Holstein model using the time-dependent density matrix renormalization group, focusing on the regime of large local Coulomb repulsion, and away from electronic half-filling. We argue that, from weak to intermediate electron-phonon coupling, phonons interact only with the electronic charge, and not with the spin degrees of freedom. For strong electron-phonon interaction, spinon and holon bands are not discernible anymore and the system is well described by a spinless polaronic liquid. In this regime, we observe multiple peaks in the spectrum with an energy separation corresponding to the energy of the lattice vibrations (i.e., phonons). We support the numerical results by introducing a well controlled analytical approach based on Ogata-Shiba's factorized wave function, showing that the spectrum can be understood as a convolution of three contributions, originating from charge, spin, and lattice sectors. We recognize and interpret these signatures in the spectral properties and discuss the experimental implications.
Quantum correlations and coherence in spin-1 Heisenberg chains
NASA Astrophysics Data System (ADS)
Malvezzi, A. L.; Karpat, G.; ćakmak, B.; Fanchini, F. F.; Debarba, T.; Vianna, R. O.
2016-05-01
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.
Bethe vectors for XXX-spin chain
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Fuksa, Jan; Isaev, Alexei
2014-11-01
The paper deals with algebraic Bethe ansatz for XXX-spin chain. Generators of Yang-Baxter algebra are expressed in basis of free fermions and used to calculate explicit form of Bethe vectors. Their relation to N-component models is used to prove conjecture about their form in general. Some remarks on inhomogeneous XXX-spin chain are included.
Dynamical Structure Factors of quasi-one-dimensional antiferromagnets
NASA Astrophysics Data System (ADS)
Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel
2007-03-01
For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.
Transport of spin qubits with donor chains under realistic experimental conditions
Mohiyaddin, Fahd A.; Kalra, Rachpon; Laucht, Arne; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea
2016-07-25
The ability to transport quantum information across some distance can facilitate the design and operation of a quantum processor. One-dimensional spin chains provide a compact platform to realize scalable spin transport for a solid-state quantum computer. Here, we model odd-sized donor chains in silicon under a range of experimental nonidealities, including variability of donor position within the chain. We show that the tolerance against donor placement inaccuracies is greatly improved by operating the spin chain in a mode where the electrons are confined at the Si-SiO2 interface. We then estimate the required time scales and exchange couplings, and the levelmore » of noise that can be tolerated to achieve high-fidelity transport. As a result, we also propose a protocol to calibrate and initialize the chain, thereby providing a complete guideline for realizing a functional donor chain and utilizing it for spin transport.« less
Transport of spin qubits with donor chains under realistic experimental conditions
NASA Astrophysics Data System (ADS)
Mohiyaddin, Fahd A.; Kalra, Rachpon; Laucht, Arne; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea
2016-07-01
The ability to transport quantum information across some distance can facilitate the design and operation of a quantum processor. One-dimensional spin chains provide a compact platform to realize scalable spin transport for a solid-state quantum computer. Here, we model odd-sized donor chains in silicon under a range of experimental nonidealities, including variability of donor position within the chain. We show that the tolerance against donor placement inaccuracies is greatly improved by operating the spin chain in a mode where the electrons are confined at the Si-SiO2 interface. We then estimate the required time scales and exchange couplings, and the level of noise that can be tolerated to achieve high-fidelity transport. We also propose a protocol to calibrate and initialize the chain, thereby providing a complete guideline for realizing a functional donor chain and utilizing it for spin transport.
One-dimensional Ising model with multispin interactions
NASA Astrophysics Data System (ADS)
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
Correlation functions of the integrable spin-s chain
NASA Astrophysics Data System (ADS)
Ribeiro, G. A. P.; Klümper, A.
2016-06-01
We study the correlation functions of su(2) invariant spin-s chains in the thermodynamic limit. We derive nonlinear integral equations for an auxiliary correlation function ω for any spin s and finite temperature T. For the spin-3/2 chain for arbitrary temperature and zero magnetic field we obtain algebraic expressions for the reduced density matrix of two-sites. In the zero temperature limit, the density matrix elements are evaluated analytically and appear to be given in terms of Riemann’s zeta function values of even and odd arguments. Dedicated to Professor Rodney Baxter on the occasion of his 75th birthday.
The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains
Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar; Evangelisti, Stefano; Leininger, Thierry
2015-12-28
The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum is associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.
Quantum spin chains with fractional revival
NASA Astrophysics Data System (ADS)
Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei
2016-08-01
A systematic study of fractional revival at two sites in XX quantum spin chains is presented. Analytic models with this phenomenon are obtained by combining two basic ways of realizing fractional revival in a spin chain. The first proceeds through isospectral deformations of spin chains with perfect state transfer. The second makes use of couplings provided by the recurrence coefficients of polynomials with a bi-lattice orthogonality grid. The latter method leads to analytic models previously identified that can exhibit perfect state transfer in addition to fractional revival.
NASA Astrophysics Data System (ADS)
Duan, Y. F.; Duan, Y. F.; Yao, K. L.; Yao, K. L.; Yao, K. L.; Chen, J. S.
The ground state properties and spin-density wave of a class of quasi-one dimensional polymeric organic and inorganic chains are studied by the mean-field theory and the Hartree-Fock approximation. The topological structure of the bipartite lozenge chain possesses a flat-band structure of the energy band. In the ground state, the electrons along the chain will form an antiferromagnetic spin-density wave. Away from half filling, a very rich magnetic phase diagram has been found. The ferrimagnetic ground state of the system will be more stable with increasing of the on-site Hubbard term.
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Random SU(2)-symmetric spin-S chains
NASA Astrophysics Data System (ADS)
Quito, V. L.; Hoyos, José A.; Miranda, E.
2016-08-01
We study the low-energy physics of a broad class of time-reversal invariant and SU(2)-symmetric one-dimensional spin-S systems in the presence of quenched disorder via a strong-disorder renormalization-group technique. We show that, in general, there is an antiferromagnetic phase with an emergent SU (2 S +1 ) symmetry. The ground state of this phase is a random singlet state in which the singlets are formed by pairs of spins. For integer spins, there is an additional antiferromagnetic phase which does not exhibit any emergent symmetry (except for S =1 ). The corresponding ground state is a random singlet one but the singlets are formed mostly by trios of spins. In each case the corresponding low-energy dynamics is activated, i.e., with a formally infinite dynamical exponent, and related to distinct infinite-randomness fixed points. The phase diagram has two other phases with ferromagnetic tendencies: a disordered ferromagnetic phase and a large spin phase in which the effective disorder is asymptotically finite. In the latter case, the dynamical scaling is governed by a conventional power law with a finite dynamical exponent.
Ivanov, Dmitri A; Abanov, Alexander G
2013-02-01
We propose to describe correlations in classical and quantum systems in terms of full counting statistics of a suitably chosen discrete observable. The method is illustrated with two exactly solvable examples: the classical one-dimensional Ising model and the quantum spin-1/2 XY chain. For the one-dimensional Ising model, our method results in a phase diagram with two phases distinguishable by the long-distance behavior of the Jordan-Wigner strings. For the anisotropic spin-1/2 XY chain in a transverse magnetic field, we compute the full counting statistics of the magnetization and use it to classify quantum phases of the chain. The method, in this case, reproduces the previously known phase diagram. We also discuss the relation between our approach and the Lee-Yang theory of zeros of the partition function. PMID:23496467
Slowest local operators in quantum spin chains.
Kim, Hyungwon; Bañuls, Mari Carmen; Cirac, J Ignacio; Hastings, Matthew B; Huse, David A
2015-07-01
We numerically construct slowly relaxing local operators in a nonintegrable spin-1/2 chain. Restricting the support of the operator to M consecutive spins along the chain, we exhaustively search for the operator that minimizes the Frobenius norm of the commutator with the Hamiltonian. We first show that the Frobenius norm bounds the time scale of relaxation of the operator at high temperatures. We find operators with significantly slower relaxation than the slowest simple "hydrodynamic" mode due to energy diffusion. Then we examine some properties of the nontrivial slow operators. Using both exhaustive search and tensor network techniques, we find similar slowly relaxing operators for a Floquet spin chain; this system is hydrodynamically "trivial," with no conservation laws restricting their dynamics. We argue that such slow relaxation may be a generic feature following from locality and unitarity. PMID:26274145
Integrable deformations of the XXZ spin chain
NASA Astrophysics Data System (ADS)
Beisert, Niklas; Fiévet, Lucas; de Leeuw, Marius; Loebbert, Florian
2013-09-01
We consider integrable deformations of the XXZ spin chain for periodic and open boundary conditions. In particular, we classify all long-range deformations and study their impact on the spectrum. As compared to the XXX case, we have the z-spin at our disposal, which induces two additional deformations: the short-range magnetic twist and a new long-range momentum-dependent twist.
Thermodynamic properties of mixed-spin chains in magnetic field by the transfer matrix method
NASA Astrophysics Data System (ADS)
Fu, H. H.; Yao, K. L.; Liu, Z. L.
2006-10-01
Motivated by recent experimental synthesis of molecule-based ferrimagnetics, we have investigated the thermodynamic properties of one-dimensional antiferromagnetic-ferromagnetic mixed spin- {1}/{2} lozenge chain in external magnetic fields at low temperature, using the transfer matrix method. The magnetization and the specific heat of the spin system have been evaluated numerically from the free energy. The magnetization as a function of the magnetic field at low temperature shows step-like plateau characterized by three critical magnetic fields, which reflects the competing effect of magnetic interactions and thermal fluctuations. The double-peak structure in the curves of the specific heat is also found, which comes from the huge variation of the long-range order parameters. Our results show that the thermodynamic properties of the mixed spin- {1}/{2} molecule-based ferrimagnetics are very analogous to the behaviors of the spin-1 and spin- {1}/{2} mixed antiferromagentic chain.
Li, Lei-Lei; Cao, Gao-Juan; Zhao, Jun-Wei; He, Huan; Yang, Bai-Feng; Yang, Guo-Yu
2016-06-01
Under hydrothermal conditions, six series of novel lanthanide (Ln) organogermanates (LnGs) [Ln8Ge12(μ3-O)24E12(H2O)16]·14H2O (Ln(3+) = Pr(3+), 1; Nd(3+), 2; Sm(3+), 3; Eu(3+), 4; Gd(3+), 5; one-dimensional (1-D) LnG cluster organic chain (LnGCOC)), {[Nd8Ge12(μ3-O)24E12(H2O)10](μ2-H2O)2[Nd8Ge12(μ3-O)24E12(H2O)16]}·18H2O (6, two-dimensional (2-D) planar LnG cluster organic layer (LnGCOL)), {[Ln2GeE(HO)2O(H2O)(CH3COO)2(CO3)]2[Ln8Ge12E12(μ3-O)24(H2O)10]}·6H2O (Ln(3+) = Pr(3+), 7; Nd(3+), 8; 2-D wave-shaped LnGCOL), [TbGeE(HO)2O(H2O)(pca)]2[Tb8Ge12E12(μ3-O)24(H2O)8]·10H2O (9, three-dimensional (3-D) LnG cluster organic framework (LnGCOF)), {([Nd(pza)2(H2O)2]2[Nd8Ge12E12(μ3-O)24(H2O)12])([Nd(pza)2]2[Nd8Ge12E12(Hpza)2(μ3-O)24(H2O)10])}·4OH·14H2O (10, 3-D LnGCOF), {[Nd8Ge12E12(μ3-O)24(H2O)10][Nd(pca)(pda)(H2O)]2}·12H2O (11, 3-D LnGCOF) and {[Nd8Ge12E12(μ3-O)24(H2O)10][Nd(pza)(pda)(H2O)]2}·12H2O (12, 3-D LnGCOF) (Hpca = 2-picolinic acid, H2pda = 2,6-pyridinedicarboxylic acid, Hpza = 2-pyrazinecarboxylic acid) were prepared by introducing the second auxiliary ligands into the organogermanate-lanthanide-oxide reaction system. The obtainment of these LnGs realized the utilization of the second auxiliary ligands inducing the assembly from 1-D LnGCOCs to 2-D LnGCOLs and 3-D LnGCOFs based on LnG cluster (LnGC) {Ln8Ge12E12(μ3-O)24(H2O)16}({Ln8Ge12}) units and Ln-organic complexes or organic ligand connectors. It should be noted that the well-organized structural constructions of 1-12 can be visualized as the gradual replacement of active water sites located at equatorial and polar positions on the hypothetical [Ln8Ge12(μ3-O)24E12(H2O)18] LnGC core with oxygen or nitrogen atoms from organic ligands. The solid-state luminescent properties of 2, 3, 4, 6, and 8-12 have been investigated at room temperature. PMID:27216949
Yang, Y. S.; Marsiglio, F.; Madsen, M.; Gaulin, Bruce D.; Rogge, R. B.; Fernandez-Baca, Jaime A
2002-01-01
Inelastic neutron-scattering profiles of spin waves in the dilute quasi-one-dimensional Ising-like antiferromagnet CsCo{sub 0.83}Mg{sub 0.17}Br{sub 3} have been investigated. Calculations of S{sup xx}(Q,{omega}), based on an effective spin Hamiltonian, accurately describe the experimental spin-wave spectrum of the 2J mode. The Q dependence of the energy of this spin-wave mode follows the analytical prediction {omega}{sub xx}(Q)=(2J)(1-5{var_epsilon}{sup 2}cos{sup 2}Qa+2{var_epsilon}{sup 2}){sup 1/2}, calculated by Ishimura and Shiba using perturbation theory.
Antiferromagnetic Spin-S Chains with Exactly Dimerized Ground States
NASA Astrophysics Data System (ADS)
Michaud, Frédéric; Vernay, François; Manmana, Salvatore R.; Mila, Frédéric
2012-03-01
We show that spin S Heisenberg spin chains with an additional three-body interaction of the form (Si-1·Si)(Si·Si+1)+H.c. possess fully dimerized ground states if the ratio of the three-body interaction to the bilinear one is equal to 1/[4S(S+1)-2]. This result generalizes the Majumdar-Ghosh point of the J1-J2 chain, to which the present model reduces for S=1/2. For S=1, we use the density matrix renormalization group method to show that the transition between the Haldane and the dimerized phases is continuous with a central charge c=3/2. Finally, we show that such a three-body interaction appears naturally in a strong-coupling expansion of the Hubbard model, and we discuss the consequences for the dimerization of actual antiferromagnetic chains.
Entanglement negativity in random spin chains
NASA Astrophysics Data System (ADS)
Ruggiero, Paola; Alba, Vincenzo; Calabrese, Pasquale
2016-07-01
We investigate the logarithmic negativity in strongly disordered spin chains in the random-singlet phase. We focus on the spin-1/2 random Heisenberg chain and the random X X chain. We find that for two arbitrary intervals, the disorder-averaged negativity and the mutual information are proportional to the number of singlets shared between the two intervals. Using the strong-disorder renormalization group (SDRG), we prove that the negativity of two adjacent intervals grows logarithmically with the intervals' length. In particular, the scaling behavior is the same as in conformal field theory, but with a different prefactor. For two disjoint intervals the negativity is given by a universal simple function of the cross ratio, reflecting scale invariance. As a function of the distance of the two intervals, the negativity decays algebraically in contrast with the exponential behavior in clean models. We confirm our predictions using a numerical implementation of the SDRG method. Finally, we also implement density matrix renormalization group simulations for the negativity in open spin chains. The chains accessible in the presence of strong disorder are not sufficiently long to provide a reliable confirmation of the SDRG results.
Heisenberg antiferromagnetic chain with multiple spin 1/2 particles of different flavors per site
NASA Astrophysics Data System (ADS)
Duki, Solomon F.; Yu, Yi-Kuo
Motivated by the discoveries of quasi-1D magnetic systems, we studied a quantum mechanical spin lattice system consisting of a one-dimensional antiferromagnetic Heisenberg chain. In this system we considered M spin 1/2 particles of different flavors per site, and the low-lying states, ground state included, of the Hamiltonian was solved numerically using the exact diagonalization method for finite cluster sizes. We have also obtained the corresponding solutions for systems of the same chain length but with one spin M/2 particle per site. The low energy spectra of both systems are then compared. For M = 2 and M =3, our result shows that the two spin chain systems (one spin M/2 per site vs. M spin 1/2 of different flavors per site) have the same excitation spectra at low energy and the number of overlapped states increases as the size of the cluster increases. The observed overlap also indicates that low energy excitations of the M flavored spin 1/2 chain system selects the high spin states, effectively satisfying the Hund's Rule even though the system does not possess the orbital angular momentum. This work was supported by the Intramural Research Program of the National Library of Medicine at the National Institutes of Health.
One-Dimensionality and Whiteness
ERIC Educational Resources Information Center
Calderon, Dolores
2006-01-01
This article is a theoretical discussion that links Marcuse's concept of one-dimensional society and the Great Refusal with critical race theory in order to achieve a more robust interrogation of whiteness. The author argues that in the context of the United States, the one-dimensionality that Marcuse condemns in "One-Dimensional Man" is best…
Albia, Jason R.; Albao, Marvin A.
2015-03-15
Classical nucleation theory predicts that the evolution of mean island density with temperature during growth in one-dimensional systems obeys the Arrhenius relation. In this study, kinetic Monte Carlo simulations of a suitable atomistic lattice-gas model were performed to investigate the experimentally observed non-Arrhenius scaling behavior of island density in the case of one-dimensional Al islands grown on Si(100). Previously, it was proposed that adatom desorption resulted in a transition temperature signaling the departure from classical predictions. Here, the authors demonstrate that desorption above the transition temperature is not possible. Instead, the authors posit that the existence of a transition temperature is due to a combination of factors such as reversibility of island growth, presence of C-defects, adatom diffusion rates, as well as detachment rates at island ends. In addition, the authors show that the anomalous non-Arrhenius behavior vanishes when adatom binds irreversibly with C-defects as observed in In on Si(100) studies.
Freezing distributed entanglement in spin chains
D'Amico, Irene; Lovett, Brendon W.; Spiller, Timothy P.
2007-09-15
We show how to freeze distributed entanglement that has been created from the natural dynamics of spin chain systems. The technique that we propose simply requires single-qubit operations and isolates the entanglement in specific qubits at the ends of branches. Such frozen entanglement provides a useful resource, for example for teleportation or distributed quantum processing. The scheme can be applied to a wide range of systems--including actual spin systems and alternative qubit embodiments in strings of quantum dots, molecules, or atoms.
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs.
Martirosyan, A; Saakian, David B
2011-08-01
We apply the Hamilton-Jacobi equation (HJE) formalism to solve the dynamics of the chemical master equation (CME). We found exact analytical expressions (in large system-size limit) for the probability distribution, including explicit expression for the dynamics of variance of distribution. We also give the solution for some simple cases of the model with time-dependent rates. We derived the results of the Van Kampen method from the HJE approach using a special ansatz. Using the Van Kampen method, we give a system of ordinary differential equations (ODEs) to define the variance in a two-dimensional case. We performed numerics for the CME with stationary noise. We give analytical criteria for the disappearance of bistability in the case of stationary noise in one-dimensional CMEs. PMID:21928964
Exact solution of the one-dimensional Hubbard model with arbitrary boundary magnetic fields
NASA Astrophysics Data System (ADS)
Li, Yuan-Yuan; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2014-02-01
The one-dimensional Hubbard model with arbitrary boundary magnetic fields is solved exactly via the Bethe ansatz methods. With the coordinate Bethe ansatz in the charge sector, the second eigenvalue problem associated with the spin sector is constructed. It is shown that the second eigenvalue problem can be transformed into that of the inhomogeneous XXX spin chain with arbitrary boundary fields which can be solved via the off-diagonal Bethe ansatz method.
Thermodynamics of Inozemtsev's elliptic spin chain
NASA Astrophysics Data System (ADS)
Klabbers, Rob
2016-06-01
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
Temperature dependence of the NMR relaxation rate 1 /T1 for quantum spin chains
NASA Astrophysics Data System (ADS)
Dupont, Maxime; Capponi, Sylvain; Laflorencie, Nicolas
2016-10-01
We present results of numerical simulations performed on one-dimensional spin chains in order to extract the so-called relaxation rate 1 /T1 accessible through NMR experiments. Building on numerical tensor network methods using the matrix product states formalism, we can follow the nontrivial crossover occurring in critical chains between the high-temperature diffusive classical regime and the low-temperature response described by the Tomonaga-Luttinger liquid (TLL) theory, for which analytical expressions are known. In order to compare analytics and numerics, we focus on a generic spin-1 /2 X X Z chain which is a paradigm of gapless TLL, as well as a more realistic spin-1 anisotropic chain, modeling the DTN material, which can be either in a trivial gapped phase or in a TLL regime induced by an external magnetic field. Thus, by monitoring the finite temperature crossover, we provide quantitative limits on the range of validity of TLL theory, that will be useful when interpreting experiments on quasi-one-dimensional materials.
NASA Astrophysics Data System (ADS)
Vekua, T.; Sun, G.
2016-07-01
Exact asymptotic expressions of the uniform parts of the two-point correlation functions of bilinear spin operators in the Heisenberg antiferromagnetic spin-1/2 chain are obtained. Apart from the algebraic decay, the logarithmic contribution is identified, and the numerical prefactor is determined. We also confirm numerically the multiplicative logarithmic correction of the staggered part of the bilinear spin operators <
Experimental demonstration of stimulated polarization wave in a chain of nuclear spins
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Adams, Travis; Khitrin, Anatoly
2007-03-01
A one-dimensional Ising chain irradiated by weak resonant transverse field is the simplest model of quantum amplifier [Phys. Rev. A 71, 062338 (2005)]. The quantum state of the chain is stationary when all the qubits (spins) are in the same state. However, when the first qubit is flipped, it triggers a stimulated wave of flipped qubits, propagating through the chain. Such ``quantum domino" dynamics induces huge change in the total polarization, a macroscopic observable. Here we present the experimental demonstration of this quantum amplification process on a four-qubit system by using nuclear magnetic resonance technique. The physical system is a linear chain of four ^13C nuclear spins in a molecule of fully ^ 13C-labeled sodium butyrate dissolved in D2O. The pseudopure ground state (with all spins up) is prepared by multi-frequency partial saturation. The wave of flipped spins has been clearly observed when the first spin of the chain is flipped. We define a coefficient of amplification as the relative enhancement of the total polarization change. In our experimental system, the measured coefficient of amplification is about 3.
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ionsmore » on the spinel lattice.« less
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.
2015-01-01
We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice. PMID:26644220
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn_{2}O_{4}
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S. -W.; Ratcliff, W.
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn_{2}O_{4}. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn^{3+} ions on the spinel lattice.
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4
NASA Astrophysics Data System (ADS)
Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.
2015-12-01
We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.
Quasi-one-dimensional quantum spin liquid in the Cu(C4H4N2)(NO3)2 insulator
NASA Astrophysics Data System (ADS)
Shaginyan, V. R.; Stephanovich, V. A.; Popov, K. G.; Kirichenko, E. V.
2016-01-01
We analyze measurements of the magnetization, differential susceptibility and specific heat of quasi-onedimensional insulator Cu(C4H4N2)(NO3)2 (CuPzN) subjected to magnetic fields. We show that the thermodynamic properties are defined by quantum spin liquid formed with spinons, with the magnetic field tuning the insulator CuPzN towards quantum critical point related to fermion condensation quantum phase transition (FCQPT) at which the spinon effective mass diverges kinematically. We show that the FCQPT concept permits to reveal and explain the scaling behavior of thermodynamic characteristics. For the first time, we construct the schematic T-H (temperature-magnetic field) phase diagram of CuPzN that contains Landau-Fermi-liquid, crossover and non-Fermi liquid parts, thus resembling that of heavy-fermion compounds.
Information transmission and control in a chaotically kicked spin chain
NASA Astrophysics Data System (ADS)
Aubourg, Lucile; Viennot, David
2016-06-01
We study spin chains submitted to disturbed kick trains described by classical dynamical processes. The spin chains are coupled by Heisenberg and Ising-Z models. We consider chaotic processes by using the kick irregularity in the multipartite system (the spin chain). We show that both couplings transmit the chaos disorder differently along the spin chain but conserve the horizon of coherence (when the disorder into the kick bath is transmitted to the spin chain). An example of information transmission between the spins of the chain coupled by a Heisenberg interaction shows the interest of the horizon of coherence. The use of some chosen stationary kicks disturbed by a chaotic environment makes it possible to modify the information transmission between the spins and to perform a free control during the horizon of coherence.
Coltrin, M.E. ); Kee, R.J.; Evans, G.H.; Meeks, E.; Rupley, F.M.; Grcar, J.F. )
1991-08-01
In rotating-disk reactor a heated substrate spins (at typical speeds of 1000 rpm or more) in an enclosure through which the reactants flow. The rotating disk geometry has the important property that in certain operating regimes{sup 1} the species and temperature gradients normal to the disk are equal everywhere on the disk. Thus, such a configuration has great potential for highly uniform chemical vapor deposition (CVD),{sup 2--5} and indeed commercial rotating-disk CVD reactors are now available. In certain operating regimes, the equations describing the complex three-dimensional spiral fluid motion can be solved by a separation-of-variables transformation{sup 5,6} that reduces the equations to a system of ordinary differential equations. Strictly speaking, the transformation is only valid for an unconfined infinite-radius disk and buoyancy-free flow. Furthermore, only some boundary conditions are consistent with the transformation (e.g., temperature, gas-phase composition, and approach velocity all specified to be independent of radius at some distances above the disk). Fortunately, however, the transformed equations will provide a very good practical approximation to the flow in a finite-radius reactor over a large fraction of the disk (up to {approximately}90% of the disk radius) when the reactor operating parameters are properly chosen, i.e, high rotation rates. In the limit of zero rotation rate, the rotating disk flow reduces to a stagnation-point flow, for which a similar separation-of-variables transformation is also available. Such flow configurations ( pedestal reactors'') also find use in CVD reactors. In this report we describe a model formulation and mathematical analysis of rotating-disk and stagnation-point CVD reactors. Then we apply the analysis to a compute code called SPIN and describe its implementation and use. 31 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Coltrin, M. E.; Kee, R. J.; Evans, G. H.; Meeks, E.; Rupley, F. M.; Grcar, J. F.
1991-08-01
In a rotating-disk reactor, a heated substrate spins (at typical speeds of 1000 rpm or more) in an enclosure through which the reactants flow. The rotating disk geometry has the important property that in certain operating regimes the species and temperature gradients normal to the disk are equal everywhere on the disk. Thus, such a configuration has great potential for highly uniform chemical vapor deposition (CVD), and indeed commercial rotating-disk CVD reactors are now available. In certain operating regimes, the equations describing the complex three-dimensional spiral fluid motion can be solved by a separation-of-variables transformation that reduces the equations to a system of ordinary differential equations. Strictly speaking, the transformation is only valid for an unconfined infinite-radius disk and buoyancy-free flow. Furthermore, only some boundary conditions are consistent with the transformation (e.g., temperature, gas-phase composition, and approach velocity all specified to be independent of radius at some distances above the disk). Fortunately, however, the transformed equations will provide a very good practical approximation to the flow in a finite-radius reactor over a large fraction of the disk (up to approximately 90 percent of the disk radius) when the reactor operating parameters are properly chosen, i.e., high rotation rates. In the limit of zero rotation rate, the rotating disk flow reduces to a stagnation-point flow, for which a similar separation-of-variables transformation is also available. Such flow configurations ('pedestal reactors') also find use in CVD reactors. In this report we describe a model formulation and mathematical analysis of rotating-disk and stagnation-point CVD reactors. Then we apply the analysis to a compute code called SPIN and describe its implementation and use.
Dimerization transitions in spin-1 chains
NASA Astrophysics Data System (ADS)
Chepiga, Natalia; Affleck, Ian; Mila, Frédéric
2016-06-01
We study spontaneous dimerization transitions in a Heisenberg spin-1 chain with additional next-nearest-neighbor and three-site interactions using extensive numerical simulations and a conformal field-theory analysis. We show that the transition can be second order in the Wess-Zumino-Witten (WZW) SU (2) 2 or Ising universality class, or first order. We argue that these features are generic because of a marginal operator in the WZW SU (2) 2 model and because of two topologically distinct nondimerized phases with or without edge states. We also provide explicit numerical evidence of conformal towers of singlets inside the spin gap at the Ising transition. Implications for other models are briefly discussed.
Entanglement in the XY spin chain
NASA Astrophysics Data System (ADS)
Its, A. R.; Jin, B.-Q.; Korepin, V. E.
2005-04-01
We consider the entanglement in the ground state of the XY model of an infinite chain. Following Bennett, Bernstein, Popescu and Schumacher, we use the entropy of a sub-system as a measure of entanglement. Vidal, Latorre, Rico and Kitaev have conjectured that the von Neumann entropy of a large block of neighbouring spins approaches a constant as the size of the block increases. We evaluate this limiting entropy as a function of anisotropy and transverse magnetic field. We use the methods based on the integrable Fredholm operators and the Riemann-Hilbert approach. It is shown how the entropy becomes singular at the phase transition points.
Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P
2015-06-10
We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.
Frustrated magnetism in the spin-chain metal Yb2Fe12P7.
Baumbach, R E; Hamlin, J J; Janoschek, M; Singleton, J; Maple, M B
2016-02-01
Magnetization measurements for magnetic fields [Formula: see text] up to 60 T are reported for the noncentrosymmetric spin-chain metal Yb2Fe12P7. These measurements reveal behavior that is consistent with Ising-like spin chain magnetism that produces pronounced spin degeneracy. In particular, we find that although a Brillouin field dependence is observed in M(H) for [Formula: see text] with a saturation moment that is close to the expected value for free ions of Yb(3+) , non-Brillouin-like behavior is seen for [Formula: see text] with an initial saturation moment that is nearly half the free ion value. In addition, hysteretic behavior that extends above the ordering temperature [Formula: see text] is seen for [Formula: see text] but not for [Formula: see text], suggesting out-of-equilibrium physics. This point of view is strengthened by the observation of a spin reconfiguration in the ordered state for [Formula: see text] which is only seen for [Formula: see text] and after polarizing the spins. Together with the heat capacity data, these results suggest that the anomalous low temperature phenomena that were previously reported (Baumbach 2010 et al Phys. Rev. Lett. 105 106403) are driven by spin degeneracy that is related to the Ising-like one dimensional chain-like configuration of the Yb ions.
Frustrated magnetism in the spin-chain metal Yb2Fe12P7
NASA Astrophysics Data System (ADS)
Baumbach, R. E.; Hamlin, J. J.; Janoschek, M.; Singleton, J.; Maple, M. B.
2016-02-01
Magnetization measurements for magnetic fields {μ0}H up to 60 T are reported for the noncentrosymmetric spin-chain metal Yb2Fe12P7. These measurements reveal behavior that is consistent with Ising-like spin chain magnetism that produces pronounced spin degeneracy. In particular, we find that although a Brillouin field dependence is observed in M(H) for H\\bot ~c with a saturation moment that is close to the expected value for free ions of Yb3+ , non-Brillouin-like behavior is seen for H~\\parallel ~c with an initial saturation moment that is nearly half the free ion value. In addition, hysteretic behavior that extends above the ordering temperature {{T}\\text{M}} is seen for H~\\parallel ~c but not for H~\\bot ~c , suggesting out-of-equilibrium physics. This point of view is strengthened by the observation of a spin reconfiguration in the ordered state for H~\\parallel ~c which is only seen for T≤slant {{T}\\text{M}} and after polarizing the spins. Together with the heat capacity data, these results suggest that the anomalous low temperature phenomena that were previously reported (Baumbach 2010 et al Phys. Rev. Lett. 105 106403) are driven by spin degeneracy that is related to the Ising-like one dimensional chain-like configuration of the Yb ions.
Taxonomy of particles in Ising spin chains.
Liu, Dan; Lu, Ping; Müller, Gerhard; Karbach, Michael
2011-08-01
The statistical mechanics of particles with shapes on a one-dimensional lattice is investigated in the context of the s=1 Ising chain with uniform nearest-neighbor coupling, quadratic single-site potential, and a magnetic field, which supports four distinct ground states: |↑↓↑↓⋯>, |∘∘⋯>, |↑↑⋯>, |↑∘↑∘⋯>. The complete spectrum is generated from each ground state by particles from a different set of six or seven species. Particles and elements of the pseudovacuum are characterized by motifs (patterns of several consecutive site variables). Particles are floating objects that can be placed into open slots on the lattice. Open slots are recognized as permissible links between motifs. The energy of a particle varies between species but is independent of where it is placed. Placement of one particle changes the open-slot configuration for particles of all species. This statistical interaction is encoded in a generalized Pauli principle, from which the multiplicity of states for a given particle combination is determined and used for the exact statistical mechanical analysis. Particles from all species belong to one of four categories: compacts, hosts, tags, or hybrids. Compacts and hosts find open slots in segments of pseudovacuum. Tags find open slots inside hosts. Hybrids are tags with hosting capability. In the taxonomy of particles proposed here, "species" is indicative of structure and "category" indicative of function. The hosting function splits the Pauli principle into exclusion and accommodation parts. Near phase boundaries, the state of the Ising chain at low temperature is akin to that of miscible or immiscible liquids with particles from one species acting as surfactant molecules.
NASA Astrophysics Data System (ADS)
Nandy, Atanu; Pal, Biplab; Chakrabarti, Arunava
2016-08-01
It is shown that an entire class of off-diagonally disordered linear lattices composed of two basic building blocks and described within a tight-binding model can be tailored to generate absolutely continuous energy bands. It can be achieved if linear atomic clusters of an appropriate size are side-coupled to a suitable subset of sites in the backbone, and if the nearest-neighbor hopping integrals, in the backbone and in the side-coupled cluster, bear a certain ratio. We work out the precise relationship between the number of atoms in one of the building blocks in the backbone and that in the side attachment. In addition, we also evaluate the definite correlation between the numerical values of the hopping integrals at different subsections of the chain, that can convert an otherwise point spectrum (or a singular continuous one for deterministically disordered lattices) with exponentially (or power law) localized eigenfunctions to an absolutely continuous spectrum comprising one or more bands (subbands) populated by extended, totally transparent eigenstates. The results, which are analytically exact, put forward a non-trivial variation of the Anderson localization (Anderson P. W., Phys. Rev., 109 (1958) 1492), pointing towards its unusual sensitivity to the numerical values of the system parameters and, go well beyond the other related models such as the Random Dimer Model (RDM) (Dunlap D. H. et al., Phys. Rev. Lett., 65 (1990) 88).
On the particle excitations in the XXZ spin chain
NASA Astrophysics Data System (ADS)
Ovchinnikov, A. A.
2013-12-01
We continue to study the excited states for the XXZ spin chain corresponding to the complex roots of the Bethe Ansatz equations with the imaginary part equal to π/2. We propose the particle-hole symmetry which relates the eigenstates build up from the two different pseudovacuum states. We find the XXX spin chain limit for the eigenstates with the complex roots. We also comment on the low-energy excited states for the XXZ spin chain.
Non-Abelian topological spin liquids from arrays of quantum wires or spin chains
NASA Astrophysics Data System (ADS)
Huang, Po-Hao; Chen, Jyong-Hao; Gomes, Pedro R. S.; Neupert, Titus; Chamon, Claudio; Mudry, Christopher
2016-05-01
We construct two-dimensional non-Abelian topologically ordered states by strongly coupling arrays of one-dimensional quantum wires via interactions. In our scheme, all charge degrees of freedom are gapped, so the construction can use either quantum wires or quantum spin chains as building blocks, with the same end result. The construction gaps the degrees of freedom in the bulk, while leaving decoupled states at the edges that are described by conformal field theories (CFT) in (1 +1 ) -dimensional space and time. We consider both the cases where time-reversal symmetry (TRS) is present or absent. When TRS is absent, the edge states are chiral and stable. We prescribe, in particular, how to arrive at all the edge states described by the unitary CFT minimal models with central charges c <1 . These non-Abelian spin liquid states have vanishing quantum Hall conductivities, but nonzero thermal ones. When TRS is present, we describe scenarios where the bulk state can be a non-Abelian, nonchiral, and gapped quantum spin liquid, or a gapless one. In the former case, we find that the edge states are also gapped. The paper provides a brief review of non-Abelian bosonization and affine current algebras, with the purpose of being self-contained. To illustrate the methods in a warm-up exercise, we recover the tenfold way classification of two-dimensional noninteracting topological insulators using the Majorana representation that naturally arises within non-Abelian bosonization. Within this scheme, the classification reduces to counting the number of null singular values of a mass matrix, with gapless edge modes present when left and right null eigenvectors exist.
Integrable spin chains and scattering amplitudes
NASA Astrophysics Data System (ADS)
Bartels, J.; Lipatov, L. N.; Prygarin, A.
2011-11-01
In this review, we show that the multi-particle scattering amplitudes in {N}=4 SYM at large Nc and in the multi-Regge kinematics for some physical regions have the high energy behavior appearing from the contribution of the Mandelstam cuts in the complex angular momentum plane of the corresponding t-channel partial waves. These Mandelstam cuts or Regge cuts result from gluon composite states in the adjoint representation of the gauge group SU(Nc). In the leading logarithmic approximation (LLA), their contribution to the six-point amplitude is in full agreement with the known two-loop result. The Hamiltonian for the Mandelstam states constructed from n gluons in LLA coincides with the local Hamiltonian of an integrable open spin chain. We construct the corresponding wavefunctions using the integrals of motion and the Baxter-Sklyanin approach.
Hermes, Matthew R.; Hirata, So
2015-09-14
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree–Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree–Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard–Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga–Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids.
Hermes, Matthew R; Hirata, So
2015-09-14
One-dimensional (1D) solids exhibit a number of striking electronic structures including charge-density wave (CDW) and spin-density wave (SDW). Also, the Peierls theorem states that at zero temperature, a 1D system predicted by simple band theory to be a metal will spontaneously dimerize and open a finite fundamental bandgap, while at higher temperatures, it will assume the equidistant geometry with zero bandgap (a Peierls transition). We computationally study these unique electronic structures and transition in polyyne and all-trans polyacetylene using finite-temperature generalizations of ab initio spin-unrestricted Hartree-Fock (UHF) and spin-restricted coupled-cluster doubles (CCD) theories, extending upon previous work [He et al., J. Chem. Phys. 140, 024702 (2014)] that is based on spin-restricted Hartree-Fock (RHF) and second-order many-body perturbation (MP2) theories. Unlike RHF, UHF can predict SDW as well as CDW and metallic states, and unlike MP2, CCD does not diverge even if the underlying RHF reference wave function is metallic. UHF predicts a gapped SDW state with no dimerization at low temperatures, which gradually becomes metallic as the temperature is raised. CCD, meanwhile, confirms that electron correlation lowers the Peierls transition temperature. Furthermore, we show that the results from all theories for both polymers are subject to a unified interpretation in terms of the UHF solutions to the Hubbard-Peierls model using different values of the electron-electron interaction strength, U/t, in its Hamiltonian. The CCD wave function is shown to encompass the form of the exact solution of the Tomonaga-Luttinger model and is thus expected to describe accurately the electronic structure of Luttinger liquids. PMID:26374011
Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases
NASA Astrophysics Data System (ADS)
Deuretzbacher, F.; Becker, D.; Santos, L.
2016-08-01
One-dimensional spinor gases with strong δ interaction fermionize and form a spin chain. The spatial degrees of freedom of this atom chain can be described by a mapping to spinless noninteracting fermions and the spin degrees of freedom are described by a spin-chain model with nearest-neighbor interactions. Here, we compute momentum and occupation-number distributions of up to 16 strongly interacting spinor fermions and bosons as a function of their spin imbalance, the strength of an externally applied magnetic field gradient, the length of their spin, and for different excited states of the multiplet. We show that the ground-state momentum distributions resemble those of the corresponding noninteracting systems, apart from flat background distributions, which extend to high momenta. Moreover, we show that the spin order of the spin chain—in particular antiferromagnetic spin order—may be deduced from the momentum and occupation-number distributions of the system. Finally, we present efficient numerical methods for the calculation of the single-particle densities and one-body density matrix elements and of the local exchange coefficients of the spin chain for large systems containing more than 20 strongly interacting particles in arbitrary confining potentials.
NASA Astrophysics Data System (ADS)
Yamamoto, S.
2000-11-01
In response to recent nuclear magnetic resonance measurements on a ferrimagnetic chain compound NiCu(C 7H 6N 2O 6)(H 2O) 3·2H 2O [Solid State Commun. 113 (2000) 433], we calculate the nuclear spin-lattice relaxation rate 1/ T1 in terms of a modified spin-wave theory. Emphasizing that the dominant relaxation mechanism arises from the direct (single-magnon) process rather than the Raman (two-magnon) one, we explain the observed temperature and applied-field dependences of 1/ T1. Ferrimagnetic relaxation phenomena are generally discussed and novel ferrimagnets with extremely slow dynamics are predicted.
Universal quantum computation with ordered spin-chain networks
NASA Astrophysics Data System (ADS)
Tserkovnyak, Yaroslav; Loss, Daniel
2011-09-01
It is shown that anisotropic spin chains with gapped bulk excitations and magnetically ordered ground states offer a promising platform for quantum computation, which bridges the conventional single-spin-based qubit concept with recently developed topological Majorana-based proposals. We show how to realize the single-qubit Hadamard, phase, and π/8 gates as well as the two-qubit controlled-not (cnot) gate, which together form a fault-tolerant universal set of quantum gates. The gates are implemented by judiciously controlling Ising exchange and magnetic fields along a network of spin chains, with each individual qubit furnished by a spin-chain segment. A subset of single-qubit operations is geometric in nature, relying on control of anisotropy of spin interactions rather than their strength. We contrast topological aspects of the anisotropic spin-chain networks to those of p-wave superconducting wires discussed in the literature.
Quantum Coherence of Strongly Correlated Defects in Spin Chains
NASA Astrophysics Data System (ADS)
Bertaina, Sylvain; Dutoit, Charles-Emmanuel; Van Tol, Johan; Dressel, Martin; Barbara, Bernard; Stepanov, Anatoli
Most of qubit systems known to date are isolated paramagnetic centres in magnetically diluted samples since their dilution allows to considerably weaken the dipole-dipole inter-qubit interaction and thus to prevent the decoherence. Here we suggest an alternative approach for spin qubits which are built on spin S = 1/2 defects in magnetically concentrated strongly correlated systems - spin chains. The corresponding qubits are made of spin solitons resulting from local breaking of transitional symmetry associated with point-defects. We provide the first evidence for coherence and Rabi oscillations of spin solitons in isotropic Heisenberg chains, simple antiferromagnetic-Ńeel or spin-Peierls, proving that they can be manipulated as single spin S = 1/2. The entanglement of these many-body soliton states over macroscopic distances along chains gives rise to networks of coupled qubits which could easily be decoupled at will in extensions of this work.
Entanglement dynamics in one-dimensional quantum cellular automata
Brennen, Gavin K.; Williams, Jamie E.
2003-10-01
Several proposed schemes for the physical realization of a quantum computer consist of qubits arranged in a cellular array. In the quantum circuit model of quantum computation, an often complex series of two-qubit gate operations is required between arbitrarily distant pairs of lattice qubits. An alternative model of quantum computation based on quantum cellular automata (QCA) requires only homogeneous local interactions that can be implemented in parallel. This would be a huge simplification in an actual experiment. We find some minimal physical requirements for the construction of unitary QCA in a one-dimensional Ising spin chain and demonstrate optimal pulse sequences for information transport and entanglement distribution. We also introduce the theory of nonunitary QCA and show by example that nonunitary rules can generate environment assisted entanglement.
Quantum phase transition in dimerised spin-1/2 chains
NASA Astrophysics Data System (ADS)
Das, Aparajita; Bhadra, Sreeparna; Saha, Sonali
2015-11-01
Quantum phase transition in dimerised antiferromagnetic Heisenberg spin chain has been studied. A staircase structure in the variation of concurrence within strongly coupled pairs with that of external magnetic field has been observed indicating multiple critical (or critical like) points. Emergence of entanglement due to external magnetic field or magnetic entanglement is observed for weakly coupled spin pairs too in the same dimer chain. Though closed dimerised isotropic XXX Heisenberg chains with different dimer strengths were mainly explored, analogous studies on open chains as well as closed anisotropic (XX interaction) chains with tilted external magnetic field have also been studied.
Initializing an unmodulated spin chain to operate as a high-quality quantum data bus
Bayat, Abolfazl; Bose, Sougato; Banchi, Leonardo; Verrucchi, Paola
2011-06-15
We study the quality of state and entanglement transmission through quantum channels described by spin chains varying both the system parameters and the initial state of the channel. We consider a vast class of one-dimensional many-body models which contains some of the most relevant experimental realizations of quantum data buses. In particular, we consider spin-1/2 XY and XXZ models with open boundary conditions. Our results show a significant difference between free-fermionic (noninteracting) systems (XY) and interacting ones (XXZ), where in the former case initialization can be exploited for improving the entanglement distribution, while in the latter case it also determines the quality of state transmission. In fact, we find that in noninteracting systems the exchange with fermions in the initial state of the chain always has a destructive effect, and we prove that it can be completely removed in the isotropic XX model by initializing the chain in a ferromagnetic state. On the other hand, in interacting systems constructive effects can arise by scattering between hopping fermions and a proper initialization procedure. Our results are an example in which state and entanglement transmission show maxima at different points as the interactions and initializations of spin chain channels are varied.
Dislocation-mediated melting of one-dimensional Rydberg crystals
Sela, Eran; Garst, Markus; Punk, Matthias
2011-08-15
We consider cold Rydberg atoms in a one-dimensional optical lattice in the Mott regime with a single atom per site at zero temperature. An external laser drive with Rabi frequency {Omega} and laser detuning {Delta} creates Rydberg excitations whose dynamics is governed by an effective spin-chain model with (quasi) long-range interactions. This system possesses intrinsically a large degree of frustration resulting in a ground-state phase diagram in the ({Delta},{Omega}) plane with a rich topology. As a function of {Delta}, the Rydberg blockade effect gives rise to a series of crystalline phases commensurate with the optical lattice that form a so-called devil's staircase. The Rabi frequency {Omega}, on the other hand, creates quantum fluctuations that eventually lead to a quantum melting of the crystalline states. Upon increasing {Omega}, we find that generically a commensurate-incommensurate transition to a floating Rydberg crystal that supports gapless phonon excitations occurs first. For even larger {Omega}, dislocations within the floating Rydberg crystal start to proliferate and a second, Kosterlitz-Thouless-Nelson-Halperin-Young dislocation-mediated melting transition finally destroys the crystalline arrangement of Rydberg excitations. This latter melting transition is generic for one-dimensional Rydberg crystals and persists even in the absence of an optical lattice. The floating phase and the concomitant transitions can, in principle, be detected by Bragg scattering of light.
Dimerizations in spin-S antiferromagnetic chains with three-spin interaction
NASA Astrophysics Data System (ADS)
Wang, Zheng-Yuan; Furuya, Shunsuke C.; Nakamura, Masaaki; Komakura, Ryo
2013-12-01
We discuss spin-S antiferromagnetic Heisenberg chains with three-spin interactions, next-nearest-neighbor interactions, and bond alternation. First, we prove rigorously that there exist parameter regions of the exact dimerized ground state in this system. This is a generalization of the Majumdar-Ghosh model to arbitrary S. Next, we discuss the ground-state phase diagram of the models by introducing several effective field theories and the universality classes of the transitions are described by the level-2S SU (2) Wess-Zumino-Witten model and the Gaussian model. Finally, we determine the phase diagrams of S =1 and S =3/2 systems by using exact diagonalization and level spectroscopy.
One-Dimensional Heat Conduction
Sutton, Steven B.
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition, ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.
One-Dimensional Heat Conduction
1992-03-09
ICARUS-LLNL was developed to solve one-dimensional planar, cylindrical, or spherical conduction heat transfer problems. The IBM PC version is a family of programs including ICARUSB, an interactive BASIC heat conduction program; ICARUSF, a FORTRAN heat conduction program; PREICAR, a BASIC preprocessor for ICARUSF; and PLOTIC and CPLOTIC, interpretive BASIC and compiler BASIC plot postprocessor programs. Both ICARUSB and ICARUSF account for multiple material regions and complex boundary conditions, such as convection or radiation. In addition,more » ICARUSF accounts for temperature-dependent material properties and time or temperature-dependent boundary conditions. PREICAR is a user-friendly preprocessor used to generate or modify ICARUSF input data. PLOTIC and CPLOTIC generate plots of the temperature or heat flux profile at specified times, plots of the variation of temperature or heat flux with time at selected nodes, or plots of the solution grid. First developed in 1974 to allow easy modeling of complex one-dimensional systems, its original application was in the nuclear explosive testing program. Since then it has undergone extensive revision and been applied to problems dealing with laser fusion target fabrication, heat loads on underground tests, magnetic fusion switching tube anodes, and nuclear waste isolation canisters.« less
Nuclear spin relaxation in ordered bimetallic chain compounds
NASA Astrophysics Data System (ADS)
Yamamoto, Shoji
2000-01-01
A theoretical interpretation is given to recent proton spin relaxation-time ( T1) measurements on NiCu(C 7H 6N 2O 6)(H 2O) 3·2H 2O, which is an ideal one-dimensional ferrimagnetic Heisenberg model system of alternating spins 1 and {1}/{2}. The relaxation rate T1-1 is formulated in terms of the spin-wave theory and is evaluated by the use of a quantum Monte Carlo method. Calculations of the temperature and applied-field ( H) dependences of T1-1 are in total agreement with the experimental findings. T1 behaves as T1-1∝ H-1/2, which turns out an indirect observation of the quadratic dispersion relations dominating the low-energy physics of quantum ferrimagnets.
Exact models for trimerization and tetramerization in spin chains
NASA Astrophysics Data System (ADS)
Rachel, Stephan; Greiter, Martin
2008-10-01
We present exact models for an antiferromagnetic S=1 spin chain describing trimerization as well as for an antiferromagnetic S=3/2 spin chain describing tetramerization. These models can be seen as generalizations of the Majumdar-Ghosh model. For both models, we provide a local Hamiltonian and its exact threefold or fourfold degenerate ground state wave functions, respectively. We numerically confirm the validity of both models using exact diagonalization and discuss the low-lying excitations.
Fulde-Ferrell-Larkin-Ovchinnikov critical polarization in one-dimensional fermionic optical lattices
NASA Astrophysics Data System (ADS)
França, Vivian V.; Hörndlein, Dominik; Buchleitner, Andreas
2012-09-01
We deduce an expression for the critical polarization PC below which the Fulde-Ferrell-Larkin-Ovchinnikov state emerges in one-dimensional lattices with spin-imbalanced populations. We provide and explore the phase diagram of unconfined chains as a function of polarization, interaction, and particle density. For harmonically confined systems, we supply a quantitative mapping, which also allows applying our phase diagram for confined chains. We find analytically and confirm numerically that the upper bound for the critical polarization is universal: PCmax=1/3 for any density, interaction, and confinement strength.
Criticality without frustration for quantum spin-1 chains.
Bravyi, Sergey; Caha, Libor; Movassagh, Ramis; Nagaj, Daniel; Shor, Peter W
2012-11-16
Frustration-free (FF) spin chains have a property that their ground state minimizes all individual terms in the chain Hamiltonian. We ask how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1/2 chains are known to have unentangled ground states, the case s=1 remains less explored. We propose the first example of a FF translation-invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of a critical behavior. The ground state can be viewed as the uniform superposition of balanced strings of left and right brackets separated by empty spaces. Entanglement entropy of one half of the chain scales as 1/2 log n+O(1), where n is the number of spins. We prove that the energy gap above the ground state is polynomial in 1/n. The proof relies on a new result concerning statistics of Dyck paths which might be of independent interest. PMID:23215521
One-dimensional Cooper pairing
NASA Astrophysics Data System (ADS)
Mendoza, R.; Fortes, M.; de Llano, M.; Solís, M. A.
2011-09-01
We study electron pairing in a one-dimensional (1D) fermion gas at zero temperature under zero- and finite-range, attractive, two-body interactions. The binding energy of Cooper pairs (CPs) with zero total or center-of-mass momentum (CMM) increases with attraction strength and decreases with interaction range for fixed strength. The excitation energy of 1D CPs with nonzero CMM display novel, unique properties. It satisfies a dispersion relation with two branches: a phonon-like linear excitation for small CP CMM; this is followed by roton-like quadratic excitation minimum for CMM greater than twice the Fermi wavenumber, but only above a minimum threshold attraction strength. The expected quadratic-in-CMM dispersion in vacuo when the Fermi wavenumber is set to zero is recovered for any coupling. This paper completes a three-part exploration initiated in 2D and continued in 3D.
Quantum gates controlled by spin chain soliton excitations
Cuccoli, Alessandro; Nuzzi, Davide; Vaia, Ruggero; Verrucchi, Paola
2014-05-07
Propagation of soliton-like excitations along spin chains has been proposed as a possible way for transmitting both classical and quantum information between two distant parties with negligible dispersion and dissipation. In this work, a somewhat different use of solitons is considered. Solitons propagating along a spin chain realize an effective magnetic field, well localized in space and time, which can be exploited as a means to manipulate the state of an external spin (i.e., a qubit) that is weakly coupled to the chain. We have investigated different couplings between the qubit and the chain, as well as different soliton shapes, according to a Heisenberg chain model. It is found that symmetry properties strongly affect the effectiveness of the proposed scheme, and the most suitable setups for implementing single qubit quantum gates are singled out.
Coherent-state transfer via highly mixed quantum spin chains
Cappellaro, Paola; Viola, Lorenza; Ramanathan, Chandrasekhar
2011-03-15
Spin chains have been proposed as quantum wires in many quantum-information processing architectures. Coherent transmission of quantum information in spin chains over short distances is enabled by their internal dynamics, which drives the transport of single-spin excitations in perfectly polarized chains. Given the practical challenge of preparing the chain in a pure state, we propose to use a chain that is initially in the maximally mixed state. We compare the transport properties of pure and mixed-state chains and find similarities that enable the experimental study of pure-state transfer via mixed-state chains. We also demonstrate protocols for the perfect transfer of quantum information in these chains. Remarkably, mixed-state chains allow the use of Hamiltonians that do not preserve the total number of single-spin excitations and are more readily obtainable from the naturally occurring magnetic dipolar interaction. We discuss experimental implementations using solid-state nuclear magnetic resonance and defect centers in diamond.
Birth and death processes and quantum spin chains
NASA Astrophysics Data System (ADS)
Grünbaum, F. Alberto; Vinet, Luc; Zhedanov, Alexei
2013-06-01
This paper underscores the intimate connection between the quantum walks generated by certain semi-infinite spin chain Hamiltonians and classical birth and death processes. It is observed that transition amplitudes between single excitation states of the spin chains have an expression in terms of orthogonal polynomials which is analogous to the Karlin-McGregor representation formula of the transition probability functions for classes of birth and death processes. As an application, we present a characterization of spin systems for which the probability to return to the point of origin at some time is 1 or almost 1.
Sign structure and ground-state properties for a spin-S t-J chain
NASA Astrophysics Data System (ADS)
Wang, Qing-Rui; Ye, Peng
2014-07-01
The antiferromagnetic Heisenberg spin chain of odd spin S is in the Haldane phase with several defining physical properties, such as thermodynamical ground-state degeneracy, symmetry-protected edge states, and nonzero string order parameter. If nonzero hole concentration δ and hole hopping energy t are considered, the spin chain is replaced by a spin-S t-J chain. The motivation of this paper is to generalize the discussions of the Haldane phase to the doped spin chain. The first result of this paper is that, for the model considered here, the Z2 sign structure in the usual Ising basis can be totally removed by two consecutive unitary transformations consisting of a spatially local one and a nonlocal one. Direct from the sign structure, the second result of this paper is that the Marshall theorem and the Lieb-Mattis theorem for pure spin systems are generalized to the t-J chain for arbitrary S and δ. A corollary of the theorem provides us with the ground-state degeneracy in the thermodynamic limit. The third result of this paper is about the phase diagram. We show that the defining properties of the Haldane phase survive in the small t /J limit. The large t /J phase supports a gapped spin sector with similar properties (ground-state degeneracy, edge state, and string order parameter) of the Haldane chain, although the charge sector is gapless.
Heat Transport in Spin Chains with Weak Spin-Phonon Coupling.
Chernyshev, A L; Rozhkov, A V
2016-01-01
The heat transport in a system of S=1/2 large-J Heisenberg spin chains, describing closely Sr(2)CuO(3) and SrCuO(2) cuprates, is studied theoretically at T≪J by considering interactions of the bosonized spin excitations with optical phonons and defects. Treating rigorously the multiboson processes, we derive a microscopic spin-phonon scattering rate that adheres to an intuitive picture of phonons acting as thermally populated defects for the fast spin excitations. The mean-free path of the latter exhibits a distinctive T dependence reflecting a critical nature of spin chains and gives a close description of experiments. By the naturalness criterion of realistically small spin-phonon interaction, our approach stands out from previous considerations that require large coupling constants to explain the data and thus imply a spin-Peierls transition, absent in real materials. PMID:26799043
Entanglement dynamics via geometric phases in quantum spin chains
Castro, C. S.; Sarandy, M. S.
2011-04-15
We introduce a connection between entanglement induced by interaction and geometric phases acquired by a composite quantum spin system. We begin by analyzing the evaluation of cyclic (Aharonov-Anandan) and noncyclic (Mukunda-Simon) geometric phases for general spin chains evolving in the presence of time-independent magnetic fields. Then, by considering Heisenberg chains, we show that the interaction geometric phase, namely, the total geometric phase with subtraction of free spin contributions, is directly related to the global (Meyer-Wallach) entanglement exhibited by an initially separable state during its evolution in Hilbert space. This is analytically shown for N=2 spins and numerically illustrated for larger chains. This relationship promotes the interaction geometric phase to an indicator of global entanglement in the system, which may constitute a useful tool for quantum tasks based on entanglement as a resource to their performance.
Local Spin Relaxation within the Random Heisenberg Chain
NASA Astrophysics Data System (ADS)
Herbrych, J.; Kokalj, J.; Prelovšek, P.
2013-10-01
Finite-temperature local dynamical spin correlations Snn(ω) are studied numerically within the random spin-1/2 antiferromagnetic Heisenberg chain. The aim is to explain measured NMR spin-lattice relaxation times in BaCu2(Si0.5Ge0.5)2O7, which is the realization of a random spin chain. In agreement with experiments we find that the distribution of relaxation times within the model shows a very large span similar to the stretched-exponential form. The distribution is strongly reduced with increasing T, but stays finite also in the high-T limit. Anomalous dynamical correlations can be associated with the random singlet concept but not directly with static quantities. Our results also reveal the crucial role of the spin anisotropy (interaction), since the behavior is in contrast with the ones for the XX model, where we do not find any significant T dependence of the distribution.
Engineering quantum magnetism in one-dimensional trapped Fermi gases with p -wave interactions
NASA Astrophysics Data System (ADS)
Yang, Lijun; Guan, Xiwen; Cui, Xiaoling
2016-05-01
The highly controllable ultracold atoms in a one-dimensional (1D) trap provide a new platform for the ultimate simulation of quantum magnetism. In this regard, the Néel antiferromagnetism and the itinerant ferromagnetism are of central importance and great interest. Here we show that these magnetic orders can be achieved in the strongly interacting spin-1/2 trapped Fermi gases with additional p -wave interactions. In this strong-coupling limit, the 1D trapped Fermi gas exhibits an effective Heisenberg spin X X Z chain in the anisotropic p -wave scattering channels. For a particular p -wave attraction or repulsion within the same species of fermionic atoms, the system displays ferromagnetic domains with full spin segregation or the antiferromagnetic spin configuration in the ground state. Such engineered magnetisms are likely to be probed in a quasi-1D trapped Fermi gas of 40K atoms with very close s -wave and p -wave Feshbach resonances.
Emergent SU(3) Symmetry in Random Spin-1 Chains
NASA Astrophysics Data System (ADS)
Quito, V. L.; Hoyos, José A.; Miranda, E.
2015-10-01
We show that generic SU(2)-invariant random spin-1 chains have phases with an emergent SU(3) symmetry. We map out the full zero-temperature phase diagram and identify two different phases: (i) a conventional random-singlet phase (RSP) of strongly bound spin pairs [SU(3) "mesons"] and (ii) an unconventional RSP of bound SU(3) "baryons," which are formed, in the great majority, by spin trios located at random positions. The emergent SU(3) symmetry dictates that susceptibilities and correlation functions of both dipolar and quadrupolar spin operators have the same asymptotic behavior.
Emergent SU(3) Symmetry in Random Spin-1 Chains.
Quito, V L; Hoyos, José A; Miranda, E
2015-10-16
We show that generic SU(2)-invariant random spin-1 chains have phases with an emergent SU(3) symmetry. We map out the full zero-temperature phase diagram and identify two different phases: (i) a conventional random-singlet phase (RSP) of strongly bound spin pairs [SU(3) "mesons"] and (ii) an unconventional RSP of bound SU(3) "baryons," which are formed, in the great majority, by spin trios located at random positions. The emergent SU(3) symmetry dictates that susceptibilities and correlation functions of both dipolar and quadrupolar spin operators have the same asymptotic behavior. PMID:26550897
Long-distance entanglement and quantum teleportation in XX spin chains
Campos Venuti, L.; Giampaolo, S. M.; Illuminati, F.; Zanardi, P.
2007-11-15
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: (i) open, dimerized XX chains, and (ii) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model (i) supports true long-distance entanglement at zero temperature, while model (ii) supports 'quasi-long-distance' entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model (i) and algebraic in model (ii), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.
Time independent universal computing with spin chains: quantum plinko machine
NASA Astrophysics Data System (ADS)
Thompson, K. F.; Gokler, C.; Lloyd, S.; Shor, P. W.
2016-07-01
We present a scheme for universal quantum computing using XY Heisenberg spin chains. Information is encoded into packets propagating down these chains, and they interact with each other to perform universal quantum computation. A circuit using g gate blocks on m qubits can be encoded into chains of length O({g}3+δ {m}3+δ ) for all δ \\gt 0 with vanishingly small error.
Exchange anisotropy as mechanism for spin-stripe formation in frustrated spin chains
NASA Astrophysics Data System (ADS)
Pregelj, M.; Zaharko, O.; Herak, M.; Gomilšek, M.; Zorko, A.; Chapon, L. C.; Bourdarot, F.; Berger, H.; Arčon, D.
2016-08-01
We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound β -TeVO4 . A combination of magnetic-torque, neutron-diffraction, and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems
NASA Astrophysics Data System (ADS)
Suwa, Hidemaro
2013-03-01
We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad
Atomic spin chains as testing ground for quantum magnetism
NASA Astrophysics Data System (ADS)
Otte, Sander
2015-03-01
The field of quantum magnetism aims to capture the rich emergent physics that arises when multiple spins interact, in terms of elementary models such as the spin 1/2 Heisenberg chain. Experimental platforms to verify these models are rare and generally do not provide the possibility to detect spin correlations locally. In my lab we use low-temperature scanning tunneling microscopy to design and build artificial spin lattices with atomic precision. Inelastic electron tunneling spectroscopy enables us to identify the ground state and probe spin excitations as a function of system size, location inside the lattice and coupling parameter values. Two types of collective excitations that play a role in many dynamic magnetic processes are spin waves (magnons) and spinons. Our experiments enable us to study both types of excitations. First, we have been able to map the standing spin wave modes of a ferromagnetic bit of six atoms, and to determine their role in the collective reversal process of the bit (Spinelli et al., Nature Materials 2014). More recently, we have crafted antiferromagnetic spin 1/2 XXZ chains, which allow us to observe spinon excitations, as well as the stepwise transition to a fully aligned phase beyond the critical magnetic field (Toskovic et al., in preparation). These findings create a promising experimental environment for putting quantum magnetic models to the test. Research funded by NWO and FOM.
Exciton quasicondensation in one-dimensional systems
NASA Astrophysics Data System (ADS)
Werman, Yochai; Berg, Erez
2015-06-01
Two Luttinger liquids, with an equal density and opposite sign of charge carriers, may exhibit enhanced excitonic correlations. We term such a system an exciton quasicondensate, with a possible realization being two parallel oppositely doped quantum wires, coupled by repulsive Coulomb interactions. We show that this quasiexciton condensate can be stabilized in an extended range of parameters, in both spinless and spinful systems. We calculate the interwire tunneling current-voltage characteristic, and find that a negative differential conductance is a signature of excitonic correlations. For spinful electrons, the excitonic regime is shown to be distinct from the usual quasi-long-range ordered Wigner crystal phase characterized by power-law density wave correlations. The two phases can be clearly distinguished through their interwire tunneling current-voltage characteristics. In the quasiexciton condensate regime the tunneling conductivity diverges at low temperatures and voltages, whereas in the Wigner crystal it is strongly suppressed. Both the Wigner crystal and the excitonic regime are characterized by a divergent Coulomb drag at low temperature. Finally, metallic carbon nanotubes are considered as a special case of such a one-dimensional setup, and it is shown that exciton condensation is favorable due to the additional valley degree of freedom.
Measurement-based teleportation along quantum spin chains.
Barjaktarevic, J P; McKenzie, R H; Links, J; Milburn, G J
2005-12-01
We examine the teleportation of an unknown spin-1/2 quantum state along a quantum spin chain with an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It is established that any state from a Bell subspace may be used as a channel to perform unit fidelity teleportation. The space of all spin-0 many-body states, which includes the ground states of many known antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation parameter [symbol: see text] is introduced, and a bound on the teleportation fidelity is given in terms of [symbol: see text].
Ovchinnikov, A. S.; Bostrem, I. G.; Sinitsyn, V. E.; Boyarchenkov, A. S.; Baranov, N. V.; Inoue, K.
2006-11-01
Based on a quantum dissipation theory of open systems, we present a theoretical study of slow dynamics of magnetization for the ordered state of the molecule-based magnetic complex [Mn(hfac){sub 2}BNO{sub H}] composed from antiferromagnetically coupled ferrimagnetic (5/2,1) spin chains. Experimental investigations of the magnetization process in pulsed fields have shown that this compound exhibits a metamagnetic AF-FI transition at a critical field in the order of the interchain coupling. A strong frequency dependence for the ac susceptibility has been revealed in the vicinity of the AF-FI transition and was associated with an AF-FI interface kink motion. We model these processes by a field-driven domain-wall motion along the field-unfavorable chains correlated with a dissipation effect due to a magnetic system-bath coupling. The calculated longitudinal magnetization has a two-step relaxation after the field is switched off and are found in good agreement with the experiment. The relaxation time determined from the imaginary part of the model ac susceptibility agrees qualitatively with that found from the remanent magnetization data.
Propagation of nonclassical correlations across a quantum spin chain
Campbell, S.; Apollaro, T. J. G.; Di Franco, C.; Banchi, L.; Cuccoli, A.; Vaia, R.; Plastina, F.; Paternostro, M.
2011-11-15
We study the transport of quantum correlations across a chain of interacting spin-1/2 particles. As a quantitative figure of merit, we choose a symmetric version of quantum discord and compare it with the transported entanglement, addressing various operating regimes of the spin medium. Discord turns out to be better transported for a wide range of working points and initial conditions of the system. We relate this behavior to the efficiency of propagation of a single excitation across the spin chain. Moreover, we point out the role played by a magnetic field in the dynamics of discord in the effective channel embodied by the chain. Our analysis can be interestingly extended to transport processes in more complex networks and the study of nonclassical correlations under general quantum channels.
Spin transport of weakly disordered Heisenberg chain at infinite temperature
NASA Astrophysics Data System (ADS)
Khait, Ilia; Gazit, Snir; Yao, Norman Y.; Auerbach, Assa
2016-06-01
We study the disordered Heisenberg spin chain, which exhibits many-body localization at strong disorder, in the weak to moderate disorder regime. A continued fraction calculation of dynamical correlations is devised, using a variational extrapolation of recurrents. Good convergence for the infinite chain limit is shown. We find that the local spin correlations decay at long times as C ˜t-β , whereas the conductivity exhibits a low-frequency power law σ ˜ωα . The exponents depict subdiffusive behavior β <1 /2 ,α >0 at all finite disorders and convergence to the scaling result α +2 β =1 at large disorders.
On Transport Properties of Isotropic Quasiperiodic XY Spin Chains
NASA Astrophysics Data System (ADS)
Kachkovskiy, Ilya
2016-07-01
We consider isotropic XY spin chains whose magnetic potentials are quasiperiodic and the effective one-particle Hamiltonians have absolutely continuous spectra. For a wide class of such XY spin chains, we obtain lower bounds on their Lieb-Robinson velocities {mathfrak{v}} in terms of group velocities of their effective Hamiltonians: mathfrak{v}{≥slant} {mathop {ess sup}_{[0,1]}}2/πdE/dN. where E is considered as a function of the integrated density of states.
NASA Astrophysics Data System (ADS)
Onoda, Masashige; Ishibashi, Takehiko
2015-04-01
The phase transition and spin dynamics of LiVFPO4 insertion electrode with the S = 1 linear chain of V-F-V are explored through measurements of x-ray diffraction, magnetization, and nuclear magnetic resonance. LiVFPO4 exhibits the one-dimensional paramagnetism above the antiferromagnetic transition temperature TN = 10 K, at around which the 7Li spin-lattice relaxation rate shows the critical behavior of spin fluctuations, while at the lower temperature, it has the exponential dependence attributed to the ground singlet state with an energy gap. For LiVF1-δOδPO4 with 0 < δ < 1 isolated by the full structure determination, the mixed valent V ions may have the one-dimensional property and a significant crystal field effect accompanied with the lowering of the flat voltage in the Li ion batteries.
Lateral electronic screening in quasi-one-dimensional plasmons
NASA Astrophysics Data System (ADS)
Lichtenstein, T.; Tegenkamp, C.; Pfnür, H.
2016-09-01
The properties of one-dimensional (1D) plasmons are rather unexplored. We investigated the plasmonic collective excitations, measured as one-dimensional plasmon dispersions with electron energy loss spectroscopy, highly resolved both in energy and lateral momentum, for both phases of Au induced chains on stepped Si(553) substrates. We observe 1D dispersions that are strongly influenced by the lateral chain width and by the interchain coupling. Indications for the existence of two different plasmons originating from two surface bands of the systems are given for the low coverage phase.
Emergent quasi-one-dimensionality in a kagome magnet: A simple route to complexity
NASA Astrophysics Data System (ADS)
Gong, Shou-Shu; Zhu, Wei; Yang, Kun; Starykh, Oleg A.; Sheng, D. N.; Balents, Leon
2016-07-01
We study the ground-state phase diagram of the quantum spin-1 /2 Heisenberg model on the kagome lattice with first- (J1<0 ) , second- (J2<0 ) , and third-neighbor interactions (Jd>0 ) by means of analytical low-energy field theory and numerical density-matrix renormalization group (DMRG) studies. The results offer a consistent picture of the Jd-dominant regime in terms of three sets of spin chains weakly coupled by the ferromagnetic interchain interactions J1 ,2. When either J1 or J2 is much stronger than the other one, the model is found to support one of two cuboctohedral phases, cuboc1, and cuboc2. These cuboc states host noncoplanar long-ranged magnetic order and possess finite scalar spin chirality. However, in the compensated regime J1≃J2 , a valence bond crystal phase emerges between the two cuboc phases. We find excellent agreement between an analytical theory based on coupled spin chains and unbiased DMRG calculations, including at a very detailed level of comparison of the structure of the valence bond crystal state. To our knowledge, this is the first such comprehensive understanding of a highly frustrated two-dimensional quantum antiferromagnet. We find no evidence of either the one-dimensional gapless spin liquid or the chiral spin liquids, which were previously suggested by parton mean-field theories.
Electronic and magnetic properties of spiral spin-density-wave states in transition-metal chains
NASA Astrophysics Data System (ADS)
Tanveer, M.; Ruiz-Díaz, P.; Pastor, G. M.
2016-09-01
The electronic and magnetic properties of one-dimensional (1D) 3 d transition-metal nanowires are investigated in the framework of density functional theory. The relative stability of collinear and noncollinear (NC) ground-state magnetic orders in V, Mn, and Fe monoatomic chains is quantified by computing the frozen-magnon dispersion relation Δ E (q ⃗) as a function of the spin-density-wave vector q ⃗. The dependence on the local environment of the atoms is analyzed by varying systematically the lattice parameter a of the chains. Electron correlation effects are explored by comparing local spin-density and generalized-gradient approximations to the exchange and correlation functional. Results are given for Δ E (q ⃗) , the local magnetic moments μ⃗i at atom i , the magnetization-vector density m ⃗(r ⃗) , and the local electronic density of states ρi σ(ɛ ) . The frozen-magnon dispersion relations are analyzed from a local perspective. Effective exchange interactions Ji j between the local magnetic moments μ⃗i and μ⃗j are derived by fitting the ab initio Δ E (q ⃗) to a classical 1D Heisenberg model. The dominant competing interactions Ji j at the origin of the NC magnetic order are identified. The interplay between the various Ji j is revealed as a function of a in the framework of the corresponding magnetic phase diagrams.
NASA Astrophysics Data System (ADS)
Sadiek, Gehad; Almalki, Samaher
2016-07-01
We consider a finite one-dimensional Heisenberg XYZ spin chain under the influence of a dissipative Lindblad environment obeying the Born-Markovian constraint in presence of an external magnetic field with closed and open boundary conditions. We present an exact numerical solution for the Lindblad master equation of the system in the Liouville space. The dynamics and asymptotic behavior of the nearest-neighbor and beyond-nearest-neighbor pairwise entanglements in the system are investigated under the effect of spatial anisotropy, temperature, system size, and different initial states. The entanglements in the free spin system exhibit nonuniform oscillatory behavior that varies significantly depending on the system size, anisotropy, and initial state. The x y spatial anisotropy dictates the asymptotic behavior of the different entanglements in the system under the influence of the environment regardless of the initial state. Higher anisotropy yields higher steady-state value of the nearest-neighbor entanglement whereas a complete isotropy wipes it out. The longer range entanglements respond differently to the anisotropy variation. The anisotropy in the z direction may enhance the entanglements depending on the interplay with the magnetic field applied in the same direction. As the temperature is raised, the steady state of the short-range entanglements is found to be robust within very small nonzero temperature range that depends critically on the spatial anisotropy. Moreover, the end to end entanglement transfer time and speed through the open boundary chain vary considerably based on the degree of anisotropy and temperature of the environment.
Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential
Levinsen, Jesper; Massignan, Pietro; Bruun, Georg M.; Parish, Meera M.
2015-01-01
A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights because they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. We propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal’s triangle emerges in the expression for the ground-state wave function. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount. PMID:26601220
Matrix product states for su(2) invariant quantum spin chains
NASA Astrophysics Data System (ADS)
Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas
2016-08-01
A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.
Quantum phase transitions in spin-1 compass chains
NASA Astrophysics Data System (ADS)
Liu, Guang-Hua; Kong, Long-Juan; You, Wen-Long
2015-11-01
The ground-state phase diagram and quantum phase transitions (QPTs) in a spin-1 compass chain are investigated by the infinite time-evolving block decimation (iTEBD) method. Various phases are discerned by energy densities, spin correlations and entanglement entropy. A generalized string correlator is found to be capable of describing the nonlocal string order in the disordered phase. Furthermore, in the noncritical disordered phase, the spin-spin correlations are found to decay exponentially. Except for a multicritical point ( J 1 = 0, J 2 = 0), the QPTs are determined to have second-order characters. In addition, the central charges on these critical phase boundaries are determined to be c = 1 / 2, therefore these QPTs belong to the Ising universality class.
Hybrid surface-relief/volume one dimensional holographic gratings
NASA Astrophysics Data System (ADS)
Lucchetta, D. E.; Spegni, P.; Di Donato, A.; Simoni, F.; Castagna, R.
2015-04-01
Many one dimensional optically patterned photopolymers exist as surface relief or volume phase gratings. However, as far as we know, holographically recorded acrylate-based gratings in which both configurations are present are not described in literature. In this work we report a two steps fabrication process in which a large-area high-resolution hybrid volume/surface relief grating phase gratings is created in a thin film of multiacrylate material spinned on a proper designed substrate. Optical and morphological investigations, made on the optically patterned area, confirm the presence of a one dimensional double (surface relief and Bragg volume phase) periodic structure.
Spin Chains and Electron Transfer at Stepped Silicon Surfaces.
Aulbach, J; Erwin, S C; Claessen, R; Schäfer, J
2016-04-13
High-index surfaces of silicon with adsorbed gold can reconstruct to form highly ordered linear step arrays. These steps take the form of a narrow strip of graphitic silicon. In some cases--specifically, for Si(553)-Au and Si(557)-Au--a large fraction of the silicon atoms at the exposed edge of this strip are known to be spin-polarized and charge-ordered along the edge. The periodicity of this charge ordering is always commensurate with the structural periodicity along the step edge and hence leads to highly ordered arrays of local magnetic moments that can be regarded as "spin chains." Here, we demonstrate theoretically as well as experimentally that the closely related Si(775)-Au surface has--despite its very similar overall structure--zero spin polarization at its step edge. Using a combination of density-functional theory and scanning tunneling microscopy, we propose an electron-counting model that accounts for these differences. The model also predicts that unintentional defects and intentional dopants can create local spin moments at Si(hhk)-Au step edges. We analyze in detail one of these predictions and verify it experimentally. This finding opens the door to using techniques of surface chemistry and atom manipulation to create and control silicon spin chains.
Spin Chains and Electron Transfer at Stepped Silicon Surfaces.
Aulbach, J; Erwin, S C; Claessen, R; Schäfer, J
2016-04-13
High-index surfaces of silicon with adsorbed gold can reconstruct to form highly ordered linear step arrays. These steps take the form of a narrow strip of graphitic silicon. In some cases--specifically, for Si(553)-Au and Si(557)-Au--a large fraction of the silicon atoms at the exposed edge of this strip are known to be spin-polarized and charge-ordered along the edge. The periodicity of this charge ordering is always commensurate with the structural periodicity along the step edge and hence leads to highly ordered arrays of local magnetic moments that can be regarded as "spin chains." Here, we demonstrate theoretically as well as experimentally that the closely related Si(775)-Au surface has--despite its very similar overall structure--zero spin polarization at its step edge. Using a combination of density-functional theory and scanning tunneling microscopy, we propose an electron-counting model that accounts for these differences. The model also predicts that unintentional defects and intentional dopants can create local spin moments at Si(hhk)-Au step edges. We analyze in detail one of these predictions and verify it experimentally. This finding opens the door to using techniques of surface chemistry and atom manipulation to create and control silicon spin chains. PMID:26974012
Energy transport between two integrable spin chains
NASA Astrophysics Data System (ADS)
Biella, Alberto; De Luca, Andrea; Viti, Jacopo; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario
2016-05-01
We study the energy transport in a system of two half-infinite XXZ chains initially kept separated at different temperatures, and later connected and let free to evolve unitarily. By changing independently the parameters of the two halves, we highlight, through bosonization and time-dependent matrix-product-state simulations, the different contributions of low-lying bosonic modes and of fermionic quasiparticles to the energy transport. In the simulations we also observe that the energy current reaches a finite value which only slowly decays to zero. The general picture that emerges is the following. Since integrability is only locally broken in this model, a preequilibration behavior may appear. In particular, when the sound velocities of the bosonic modes of the two halves match, the low-temperature energy current is almost stationary and described by a formula with a nonuniversal prefactor interpreted as a transmission coefficient. Thermalization, characterized by the absence of any energy flow, occurs only on longer time scales which are not accessible with our numerics.
Exact solution of the one-dimensional super-symmetric t-J model with unparallel boundary fields
NASA Astrophysics Data System (ADS)
Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2014-04-01
The exact solution of the one-dimensional super-symmetric t-J model under generic integrable boundary conditions is obtained via the Bethe ansatz methods. With the coordinate Bethe ansatz, the corresponding R-matrix and K-matrices are derived for the second eigenvalue problem associated with spin degrees of freedom. It is found that the second eigenvalue problem can be transformed into that of the transfer matrix of the inhomogeneous XXX spin chain, which allows us to obtain the spectrum of the Hamiltonian and the associated Bethe ansatz equations by the off-diagonal Bethe ansatz method.
Massive Triplet Excitations in a Magnetized Anisotropic Haldane Spin Chain
Zheludev, Andrey I; Honda, Z.; Broholm, C. L.; Katsumada, K.; Shapiro, S. M.; Kolezhuk, A.; Park, S.; Qiu, Y.
2003-01-01
Inelastic neutron scattering experiments on the Haldane-gap quantum antiferromagnet Ni(C{sub 5}D{sub 14}N{sub 2}){sub 2}N{sub 3}(PF{sub 6}) are performed at mK temperatures in magnetic fields of almost twice the critical field H{sub c} applied perpendicular to the spin chains. Above H{sub c} a reopening of the spin gap is clearly observed. In the high-field Neel-ordered state the spectrum is dominated by three distinct excitation branches. A theoretical model consistently describing the experimental data is proposed.
Q-operators for the open Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Frassek, Rouven; Szécsényi, István M.
2015-12-01
We construct Q-operators for the open spin-1/2 XXX Heisenberg spin chain with diagonal boundary matrices. The Q-operators are defined as traces over an infinite-dimensional auxiliary space involving novel types of reflection operators derived from the boundary Yang-Baxter equation. We argue that the Q-operators defined in this way are polynomials in the spectral parameter and show that they commute with transfer matrix. Finally, we prove that the Q-operators satisfy Baxter's TQ-equation and derive the explicit form of their eigenvalues in terms of the Bethe roots.
Scaling behavior of spin gap of the bond alternating anisotropic spin-1/2 Heisenberg chain
NASA Astrophysics Data System (ADS)
Paul, Susobhan; Ghosh, Asim Kumar
2016-05-01
Scaling behavior of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain has been studied both in ferromagnetic (FM) and antiferromagnetic (AFM) cases. Spin gap has been estimated by using exact diagonalization technique. All those quantities have been obtained for a region of anisotropic parameter Δ defined by 0≤Δ≤1. Spin gap is found to develop as soon as the non-uniformity in the alternating bond strength is introduced in the AFM regime which furthermore sustains in the FM regime as well. Scaling behavior of the spin gap has been studied by introducing scaling exponent. The variation of scaling exponents with Δ is fitted with a regular function.
Quantum simulation of antiferromagnetic spin chains in an optical lattice.
Simon, Jonathan; Bakr, Waseem S; Ma, Ruichao; Tai, M Eric; Preiss, Philipp M; Greiner, Markus
2011-04-21
Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins. In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials.
NASA Astrophysics Data System (ADS)
Ivanov, Nedko B.; Ummethum, Jörg; Schnack, Jürgen
2014-10-01
For the time being isotropic three-body exchange interactions are scarcely explored and mostly used as a tool for constructing various exactly solvable one-dimensional models, although, generally speaking, such competing terms in generic Heisenberg spin systems can be expected to support specific quantum effects and phases. The Heisenberg chain constructed from alternating S = 1 and σ = 1/2 site spins defines a realistic prototype model admitting extra three-body exchange terms. Based on numerical density-matrix renormalization group (DMRG) and exact diagonalization (ED) calculations, we demonstrate that the additional isotropic three-body terms stabilize a variety of partially-polarized states as well as two specific non-magnetic states including a critical spin-liquid phase controlled by two Gaussinal conformal theories as well as a critical nematic-like phase characterized by dominant quadrupolar S-spin fluctuations. Most of the established effects are related to some specific features of the three-body interaction such as the promotion of local collinear spin configurations and the enhanced tendency towards nearest-neighbor clustering of the spins. It may be expected that most of the predicted effects of the isotropic three-body interaction persist in higher space dimensions.
Quantum error correction for state transfer in noisy spin chains
NASA Astrophysics Data System (ADS)
Kay, Alastair
2016-04-01
Can robustness against experimental imperfections and noise be embedded into a quantum simulation? In this paper, we report on a special case in which this is possible. A spin chain can be engineered such that, in the absence of imperfections and noise, an unknown quantum state is transported from one end of the chain to the other, due only to the intrinsic dynamics of the system. We show that an encoding into a standard error-correcting code (a Calderbank-Shor-Steane code) can be embedded into this simulation task such that a modified error-correction procedure on readout can recover from sufficiently low rates of noise during transport.
Entanglement in the XX spin chain with an energy current
Eisler, V.
2005-04-01
We consider the ground state of an XX chain that is constrained to carry a current of energy. The von Neumann entropy of a block of L neighboring spins, describing entanglement of the block with the rest of the chain, is computed. Recent calculations have revealed that the entropy in the XX model diverges logarithmically with the size of the subsystem. We show that the presence of the energy current increases the prefactor of the logarithmic growth. This result indicates that the emergence of the energy current gives rise to an increase of entanglement.
Fluctuations of the heat exchanged between two quantum spin chains
NASA Astrophysics Data System (ADS)
Landi, Gabriel T.; Karevski, Dragi
2016-03-01
The statistics of the heat exchanged between two quantum XX spin chains prepared at different temperatures is studied within the assumption of weak coupling. This provides simple formulas for the average heat and its corresponding characteristic function, from which the probability distribution may be computed numerically. These formulas are valid for arbitrary sizes and therefore allow us to analyze the role of the thermodynamic limit in this nonequilibrium setting. It is found that all thermodynamic quantities are extremely sensitive to the quantum phase transition of the XX chain.
Optimization of excitation transfer in a spin chain
NASA Astrophysics Data System (ADS)
Gurman, Vladimir I.; Guseva, Irina S.; Fesko, Oles V.
2016-06-01
A revised formulation of the problem of fastest transfer of the excitation in a spin chain is considered on the base of Shrödinger equation which Hamiltonian depends linearly on control. It is taken into account that the excitation of the first or last spin means that it has greatest amplitude equal to the chain invariant whereas its phase is undefined and can be considered as an additional control variable. The role of this additional control is analyzed via transformation of the original problem with unbounded linear control to the regular derived problem known from the theory of degenerate problems [1, 2], in the same way as in [2]. The overall procedure is demonstrated in computational experiments with the use of visual examples.
Communication at the quantum speed limit along a spin chain
Murphy, Michael; Montangero, Simone; Giovannetti, Vittorio; Calarco, Tommaso
2010-08-15
Spin chains have long been considered as candidates for quantum channels to facilitate quantum communication. We consider the transfer of a single excitation along a spin-1/2 chain governed by Heisenberg-type interactions. We build on the work of Balachandran and Gong [V. Balachandran and J. Gong, Phys. Rev. A 77, 012303 (2008)] and show that by applying optimal control to an external parabolic magnetic field, one can drastically increase the propagation rate by two orders of magnitude. In particular, we show that the theoretical maximum propagation rate can be reached, where the propagation of the excitation takes the form of a dispersed wave. We conclude that optimal control is not only a useful tool for experimental application, but also for theoretical inquiry into the physical limits and dynamics of many-body quantum systems.
Anderson localisation in spin chains for perfect state transfer
NASA Astrophysics Data System (ADS)
Ronke, Rebecca; Estarellas, Marta P.; D'Amico, Irene; Spiller, Timothy P.; Miyadera, Takayuki
2016-09-01
Anderson localisation is an important phenomenon arising in many areas of physics, and here we explore it in the context of quantum information devices. Finite dimensional spin chains have been demonstrated to be important devices for quantum information transport, and in particular can be engineered to allow for "perfect state transfer" (PST). Here we present extensive investigations of disordered PST spin chains, demonstrating spatial localisation and transport retardation effects, and relate these effects to conventional Anderson localisation. We provide thresholds for Anderson localisation in these finite quantum information systems for both the spatial and the transport domains. Finally, we consider the effect of disorder on the eigenstates and energy spectrum of our Hamiltonian, where results support our conclusions on the presence of Anderson localisation.
Computational complexity of nonequilibrium steady states of quantum spin chains
NASA Astrophysics Data System (ADS)
Marzolino, Ugo; Prosen, Tomaž
2016-03-01
We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.
Integrable spin chain in superconformal Chern-Simons theory
NASA Astrophysics Data System (ADS)
Bak, Dongsu; Rey, Soo-Jong
2008-10-01
Script N = 6 superconformal Chern-Simons theory was proposed as gauge theory dual to Type IIA string theory on AdS4 Bbb CBbb P3. We study integrability of the theory from conformal dimension spectrum of single trace operators at planar limit. At strong `t Hooft coupling, the spectrum is obtained from excitation energy of free superstring on OSp(6|4 Bbb R)/SO(3, 1) × SU(3) × U(1) supercoset. We recall that the worldsheet theory is integrable classically by utilizing well-known results concerning sigma model on symmetric space. With R-symmetry group SU(4), we also solve relevant Yang-Baxter equation for a spin chain system associated with the single trace operators. From the solution, we construct alternating spin chain Hamiltonian involving three-site interactions between 4 and bar 4. At weak `t Hooft coupling, we study gauge theory perturbatively, and calculate action of dilatation operator to single trace operators up to two loops. To ensure consistency, we computed all relevant Feynman diagrams contributing to the dilatation opeator. We find that resulting spin chain Hamiltonian matches with the Hamiltonian derived from Yang-Baxter equation. We further study new issues arising from the shortest gauge invariant operators TrYIY†J = (15, 1). We observe that `wrapping interactions' are present, compute the true spectrum and find that the spectrum agrees with prediction from supersymmetry. We also find that scaling dimension computed naively from alternating spin chain Hamiltonian coincides with the true spectrum. We solve Bethe ansatz equations for small number of excitations, and find indications of correlation between excitations of 4's and bar 4's and of nonexistence of mesonic (4bar 4) bound-state.
Entanglement entropy in quantum spin chains with broken reflection symmetry
Kadar, Zoltan; Zimboras, Zoltan
2010-09-15
We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.
Symmetry-protected topological order in magnetization plateau states of quantum spin chains
NASA Astrophysics Data System (ADS)
Takayoshi, Shintaro; Totsuka, Keisuke; Tanaka, Akihiro
2015-04-01
A symmetry-protected topologically ordered phase is a short-range entangled state, for which some imposed symmetry prohibits the adiabatic deformation into a trivial state which lacks entanglement. In this paper we argue that magnetization plateau states of one-dimensional antiferromagnets which satisfy the conditions S -m ∈ odd integer, where S is the spin quantum number and m the magnetization per site, can be identified as symmetry-protected topological states if an inversion symmetry about the link center is present. This assertion is reached by mapping the antiferromagnet into a nonlinear sigma model type effective field theory containing a novel Berry phase term (a total derivative term) with a coefficient proportional to the quantity S -m , and then analyzing the topological structure of the ground state wave functional which is inherited from the latter term. A boson-vortex duality transformation is employed to examine the topological stability of the ground state in the absence/presence of a perturbation violating link-center inversion symmetry. Our prediction based on field theories is verified by means of a numerical study of the entanglement spectra of actual spin chains, which we find to exhibit twofold degeneracies when the aforementioned condition is met. We complete this study with a rigorous analysis using matrix product states.
Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4
NASA Astrophysics Data System (ADS)
Kremer, Reinhard K.; Law, J. M.; Reuvekamp, P.; Glaum, R.; Lee, C.; Kang, J.; Whangbo, M.-H.
2012-02-01
The bulk magnetic properties of the new quasi-one-dimensional Heisenberg antiferromagnet, CuCrO4, were characterized by magnetic susceptibility, heat capacity, optical spectroscopy, EPR and dielectric capacitance measurements and density functional evaluations of the intra- and interchain spin exchange interactions. We found type-II multiferroicity below the N'eel temperature of 8.2(5) K, arising from competing antiferromagnetic nearest-neighbor (Jnn) and next-nearest-neighbor (Jnnn) intra-chain spin exchange interactions. Experimental and theoretical results indicate that the ratio Jnn/Jnnn is close to 2, putting CuCrO4 in the vicinity of the Majumdar-Ghosh point. First low-temperature neutron powder diffraction data are consistent with a canted magnetic structure below ˜8 K.
Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains.
Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun
2016-05-18
A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor [Formula: see text], which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field [Formula: see text] and the dislocation [Formula: see text], or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates. PMID:27092428
Nonreciprocal spin wave elementary excitation in dislocated dimerized Heisenberg chains
NASA Astrophysics Data System (ADS)
Liu, Wanguo; Shen, Yang; Fang, Guisheng; Jin, Chongjun
2016-05-01
A mechanism for realizing nonreciprocal elementary excitation of spin wave (SW) is proposed. We study a reference model which describes a magnonic crystal (MC) formed by two Heisenberg chains with a lateral displacement (dislocation) and a longitudinal spacer, and derive a criterion to judge whether the elementary excitation spectra are reciprocal in this ferromagnetic lattice. An analytical method based on the spin precession equation is used to solve the elementary excitation spectra. The solution is related to a key factor, the spatio-temporal structure factor {θk}≤ft(Δ x,B\\right) , which can be directly calculated through the structural parameters. When it keeps invariant under the reversions of the external magnetic field B and the dislocation Δ x , or one of them, the spectra are reciprocal. Otherwise, the SW possesses nonreciprocal spectra with direction-dependent band edges and exhibits a directional magnetoresistance effect. This criterion can be regarded as a necessary and sufficient condition for the (non)reciprocity in the spin lattice. Besides, this novel lattice provides a prototype for spin diodes and spin logic gates.
Proton NMR study of spin dynamics in the magnetic organic chains M (hfac)3 NITEt (M =Eu3 +,Gd3 + )
NASA Astrophysics Data System (ADS)
Mariani, M.; Lascialfari, A.; Caneschi, A.; Ammannato, L.; Gatteschi, D.; Rettori, A.; Pini, M. G.; Cucci, C.; Borsa, F.
2016-04-01
In this work, we present a nuclear magnetic resonance (NMR) study of the spin dynamics in the rare-earth-based low-dimensional molecular magnetic chains Eu (hfac) 3NITEt and Gd (hfac) 3NITEt (in short, Eu-Et and Gd-Et). Although both samples are based on the same chemical building block, [(hfac) 3NITEt ] , their magnetic properties change dramatically when the Eu3 + ion, which is nonmagnetic at low temperatures, is substituted by the magnetic Gd3 + ion. The present proton NMR investigation shows that, down to the lowest investigated temperature (T =1.5 K for Gd-Et and T =3 K for Eu-Et), the Eu-Et chain behaves as a one-dimensional Heisenberg model with antiferromagnetic exchange coupling (J =-20 K) between s =1 /2 organic radicals, and has a T -independent exchange frequency (ωe=2.6 ×1012 rad/s). In the Gd-Et chain, in contrast, a competition arises between nearest-neighbor ferromagnetic coupling and next-nearest-neighbor antiferromagnetic coupling; moreover, two phase transitions have previously been found, in agreement with Villain's conjecture: a first transition, at T0=2.2 K, from a high temperature paramagnetic phase to a chiral spin liquid phase, and a second transition, at TN=1.9 K, to a three-dimensional helical spin solid phase. Contrary to the Eu-Et chain (whose three-dimensional ordering temperature is estimated to insurge at very low, TN≈0.3 K), critical spin dynamics effects have been measured in the Gd-Et chain on approaching TN=1.9 K: namely, a divergence of the proton nuclear spin-lattice relaxation rate 1 /T1 , which in turn produces a sudden wipe-out of the NMR signal in a very narrow (Δ T ˜0.04 K) temperature range above TN. Below TN, an inhomogeneous broadening of the NMR line indicates a complete spin freezing. At T0=2.2 K, instead, such critical effects are not observed because NMR measurements probe the two-spin correlation function, while the chiral spin liquid phase transition is associated with a divergence of the four-spin
Bloch oscillations in a one-dimensional spinor gas.
Gangardt, D M; Kamenev, A
2009-02-20
A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations of the particle's position and velocity. The existence of Bloch oscillations crucially depends on the viscous friction force exerted by the rest of the gas on the spin excitation. We evaluate the friction in terms of the quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as an SU(2) symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction is very weak, opening the possibility to observe Bloch oscillations.
Global multipartite nonlocality and Bell-type inequalities in infinite-size quantum spin chains
NASA Astrophysics Data System (ADS)
Sun, Zhao-Yu; Guo, Bin; Huang, Hai-Lin
2015-08-01
In this paper, we characterize the global multipartite nonlocality in one-dimensional infinite-size spin-1/2 chains. For this purpose, we calculate the multipartite nonlocality of n -site subchains, and take the large-n limit. As n increases from 2 to 100, we find that the average revenue and the marginal revenue of nonlocality converge gradually, thus they can be used to characterize the global multipartite nonlocality in infinite-size chains. Furthermore, in the vicinity of the quantum phase transition (QPT) points of the transverse-field Ising model and the XXZ model, in the large-n limit, multipartite nonlocality becomes extremely sensitive to external perturbation, that is, arbitrarily small perturbation away from the QPT points would lead to a drastic change in the global nonlocality. This signal of QPTs is easily distinguishable, and can be used to detect QPTs. We also draw a vivid physical picture of multipartite correlations and QPTs by analogy with magnetic domains in ferromagnets.
One-Dimensional Czedli-Type Islands
ERIC Educational Resources Information Center
Horvath, Eszter K.; Mader, Attila; Tepavcevic, Andreja
2011-01-01
The notion of an island has surfaced in recent algebra and coding theory research. Discrete versions provide interesting combinatorial problems. This paper presents the one-dimensional case with finitely many heights, a topic convenient for student research.
Symmetry-protected intermediate trivial phases in quantum spin chains
NASA Astrophysics Data System (ADS)
Kshetrimayum, Augustine; Tu, Hong-Hao; Orús, Román
2016-06-01
Symmetry-protected trivial (SPt) phases of matter are the product-state analog of symmetry-protected topological (SPT) phases. This means, SPt phases can be adiabatically connected to a product state by some path that preserves the protecting symmetry. Moreover, SPt and SPT phases can be adiabatically connected to each other when interaction terms that break the symmetries protecting the SPT order are added in the Hamiltonian. It is also known that spin-1 SPT phases in quantum spin chains can emerge as effective intermediate phases of spin-2 Hamiltonians. In this paper we show that a similar scenario is also valid for SPt phases. More precisely, we show that for a given spin-2 quantum chain, effective intermediate spin-1 SPt phases emerge in some regions of the phase diagram, these also being adiabatically connected to nontrivial intermediate SPT phases. We characterize the phase diagram of our model by studying quantities such as the entanglement entropy, symmetry-related order parameters, and 1-site fidelities. Our numerical analysis uses matrix product states and the infinite time evolving block decimation method to approximate ground states of the system in the thermodynamic limit. Moreover, we provide a field theory description of the possible quantum phase transitions between the SPt phases. Together with the numerical results, such a description shows that the transitions may be described by conformal field theories with central charge c =1 . Our results are in agreement with, and further generalize, those of Y. Fuji, F. Pollmann, and M. Oshikawa [Phys. Rev. Lett. 114, 177204 (2015), 10.1103/PhysRevLett.114.177204].
Papp, E.; Micu, C.; Racolta, D.
2013-11-13
In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumber k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis.
Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins
NASA Astrophysics Data System (ADS)
Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain
2015-03-01
We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).
Condensation of bosons and fermions in spin chains and ladders
NASA Astrophysics Data System (ADS)
Tchernyshyov, Oleg; Fouet, Jean-Baptiste; Mila, Frederic; Fendley, Paul
2005-03-01
The closing of the Haldane gap in spin chains in a strong magnetic field can be viewed as Bose condensation of magnons [1]. This analogy helps to obtain the universal properties of spin chains near a quantum critical point separating an integer (in the sense of Oshikawa et al. [2]) magnetization plateau from an incommensurate phase [3]. We find a different universal behavior at the quantum phase transitions out of a half-integer magnetization plateau. That transition can be described as condensation of spinons---domain walls carrying spin sz= ±1/2 and best viewed as fermions. The difference between the two types of condensation is most pronounced in the presence of a staggered transverse magnetic field that is often induced in real materials by the staggering of the g-tensor or by the Dzyaloshinskii-Moriya interaction. [1] I. Affleck, Phys. Rev. B 43, 3215 (1991). [2] M. Oshikawa, M. Yamanaka, and I. Affleck, Phys. Rev. Lett. 78, 1984 (1997). [3] J.-B. Fouet, O. Tchernyshyov, and F. Mila, Phys. Rev. B 70, 174427 (2004).
Dynamical quantum phase transitions in random spin chains
NASA Astrophysics Data System (ADS)
Vosk, Ronen; Altman, Ehud
2014-03-01
Quantum systems can exhibit a great deal of universality at low temperature due to the structure of ground states and the critical points separating distinct states. On the other hand, quantum time evolution of the same systems involves all energies and it is therefore thought to be much harder, if at all possible, to have sharp transitions in the dynamics. In this paper we show that phase transitions characterized by universal singularities do occur in the time evolution of random spin chains. The sharpness of the transitions and integrity of the phases owes to many-body localization, which prevents thermalization in these systems. Using a renormalization group approach, we solve the time evolution of random Ising spin chains with generic interactions starting from initial states of arbitrary energy. As a function of the Hamiltonian parameters, the system is tuned through a dynamical transition, similar to the ground state critical point, at which the local spin correlations establish true long range temporal order. As in ground state quantum phase transitions, the dynamical transition has unique signatures in the entanglemenent properties of the system.
Dimerizations in spin- S antiferromagnetic chains with three-spin interaction
NASA Astrophysics Data System (ADS)
Wang, Zheng-Yuan; Furuya, Shunsuke C.; Nakamura, Masaaki; Komakura, Ryo
2014-03-01
We discuss spin- S antiferromagnetic Heisenberg chains with three-spin interactions, next-nearest interactions, and bond alternation. First, we prove rigorouslly that there exist parameter regions of the exact dimerized ground state in this system. This is a generalization of the Majumdar-Ghosh model to arbitral S. Next, we discuss the ground state phase diagram of the models by introducing several effective field theories and universality classes of the transitions are described by the level- 2 S SU(2) Wess-Zumino-Witten model and the Gaussian model. Finally, we determine the phase diagrams of S = 1 and S = 3 / 2 systems by using exact diagonalization and level spectroscopy method.
Ghost spins and quantum critical behavior in a spin chain with local bond deformation
NASA Astrophysics Data System (ADS)
Dai, Jianhui; Wang, Yupeng; Eckern, U.
1999-09-01
We study the impurity-induced critical behavior in an integrable SU(2)-invariant model consisting of an open spin chain of arbitrary spin S (Takhatajian-Babujian model) interacting with an impurity of spin S-->' located at one of the boundaries. For S=1/2 or S'=1/2, the impurity interaction takes a very simple form JS-->1.S-->' that describes the deformed boundary bond between the impurity S-->' and the first bulk spin S-->1 with an arbitrary coupling strength J. For a weak coupling 0=J0/[(S+S')2-1/4], the impurity spin is split into two ghost spins. Their cooperative effect leads to a variety of new critical behaviors with different values of \\|S'-S\\|.
Thermal stability in exchange-spring chains of spins
NASA Astrophysics Data System (ADS)
Pellicelli, Raffaele; Solzi, Massimo
2016-02-01
Thermal stability and switching behaviour have been compared in pure-hard and soft-hard Heisenberg linear spin chains of the same total length and equal magnetic parameters (except for magnetic anisotropy) with the anisotropy axis and external magnetic field parallel to the chain direction. The zero-temperature energy barriers and finite-temperature transition rates between remanent equilibrium states have been calculated by utilizing the string method and the forward flux sampling (FFS) method, respectively. Depending on the assumed interfaces, the FFS method could in fact fail to correctly sample the characteristic transition paths at interfaces at which these paths have probabilities much lower than those associated with other non-characteristic transition paths. This can especially occur in the case of the asymmetric energy landscapes and multiple asymmetric minimum energy paths (MEPs) of soft-hard systems. Therefore, a proper interface definition is needed in order to deduce the correct transition rates. In particular, we show that the thermal switching of soft-hard chains starting in the soft or in the hard part turns out to occur with an equal rate provided that the interfaces of the FFS method are defined on the basis of the corresponding zero-temperature MEPs. The thermal stability of a soft-hard chain in the remanent equilibrium state could be to some extent lower with respect to that of a pure-hard chain, due to the shorter hard-part length crossed by the domain wall formed in the chain and also to the related slightly smaller energy barrier. However, its switching field at zero temperature is verified to be widely lower than that of the pure-hard chain. Analytical expressions of switching fields and energy barriers have been deduced in various cases.
Drude Weight in Non Solvable Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Benfatto, G.; Mastropietro, V.
2011-04-01
For a quantum spin chain or 1D fermionic system, we prove that the Drude weight D verifies the universal Luttinger liquid relation vs2=D/kappa, where κ is the susceptibility and v s is the Fermi velocity. This result is proved by rigorous Renormalization Group methods and is true for any weakly interacting system, regardless its integrability. This paper, combined with Benfatto and Mastropietro (in J. Stat. Phys. 138, 1084-1108, 2010), completes the proof of the Luttinger liquid conjecture for such systems.
How periodic driving heats a disordered quantum spin chain
NASA Astrophysics Data System (ADS)
Rehn, Jorge; Lazarides, Achilleas; Pollmann, Frank; Moessner, Roderich
2016-07-01
We study the energy absorption in real time of a disordered quantum spin chain subjected to coherent monochromatic periodic driving. We determine characteristic fingerprints of the well-known ergodic (Floquet-Eigenstate thermalization hypothesis for slow driving/weak disorder) and many-body localized (Floquet-many-body localization for fast driving/strong disorder) phases. In addition, we identify an intermediate regime, where the energy density of the system—unlike the entanglement entropy a local and bounded observable—grows logarithmically slowly over a very large time window.
Defects in a nonlinear pseudo one-dimensional solid
NASA Astrophysics Data System (ADS)
Blanchet, Graciela B.; Fincher, C. R., Jr.
1985-03-01
These infrared studies of acetanilide together with the existence of two equivalent structures for the hydrogen-bonded chain suggest the possibility of a topological defect state rather than a Davydov soliton as suggested previously. Acetanilide is an example of a class of one-dimensional materials where solitons are a consequence of a twofold degenerate structure and the nonlinear dynamics of the hydrogen-bonded network.
Energy dynamics in the Heisenberg-Kitaev spin chain
NASA Astrophysics Data System (ADS)
Steinigeweg, Robin; Brenig, Wolfram
2016-06-01
We study the Heisenberg-Kitaev spin chain in order to uncover the interplay between two qualitatively different integrable points in the physics of heat transport in one dimension. Focusing on high temperatures and using analytical as well as numerical approaches within linear response theory, we explore several directions in parameter space including exchange-coupling ratios, anisotropies, and external magnetic fields. We show the emergence of purely ballistic energy transport at all integrable points, manifest in pronounced Drude weights and low-frequency suppression of regular-conductivity contributions. Moreover, off integrability, we find extended quantum chaotic regions with vanishing Drude weights and well-defined dc conductivities. In the vicinity of the Kitaev point, we observe clear signatures of the topological gap in the response function. This gap coexists with a nonzero Drude weight in the Kitaev chain.
Qubit teleportation and transfer across antiferromagnetic spin chains.
Campos Venuti, L; Degli Esposti Boschi, C; Roncaglia, M
2007-08-10
We explore the capability of spin-1/2 chains to act as quantum channels for both teleportation and transfer of qubits. Exploiting the emergence of long-distance entanglement in low-dimensional systems [Phys. Rev. Lett. 96, 247206 (2006)10.1103/Phys.Rev.Lett.96, 247206(2006)], here we show how to obtain high communication fidelities between distant parties. An investigation of protocols of teleportation and state transfer is presented, in the realistic situation where temperature is included. Basing our setup on antiferromagnetic rotationally invariant systems, both protocols are represented by pure depolarizing channels. We propose a scheme where channel fidelity close to 1 can be achieved on very long chains at moderately small temperature.
Smeared spin-flop transition in random antiferromagnetic Ising chain
Timonin, P. N.
2012-12-15
At T = 0 and in a sufficiently large field, the nearest-neighbor antiferromagnetic Ising chain undergoes a first-order spin-flop transition into the ferromagnetic phase. We consider its smearing under the random-bond disorder such that all independent random bonds are antiferromagnetic (AF). It is shown that the ground-state thermodynamics of this random AF chain can be described exactly for an arbitrary distribution P(J) of AF bonds. Moreover, the site magnetizations of finite chains can be found analytically in this model. We consider a continuous P(J) that is zero above some -J{sub 1} and behaves near it as (-J{sub 1}-J){sup {lambda}}, {lambda} > -1. In this case, the ferromagnetic phase emerges continuously in a field H > H{sub c} = 2J{sub 1}. At 0 > {lambda} > -1, it has the usual second-order anomalies near H{sub c} with the critical indices obeying the scaling relation and depending on {lambda}. At {lambda} > 0, higher-order transitions occur (third, fourth, etc.), marked by a divergence of the corresponding nonlinear susceptibilities. In the chains with an even number of spins, the intermediate 'bow-tie' phase with linearly modulated AF order exists between the AF and ferromagnetic phases at J{sub 1} < H < H{sub c}. Its origin can be traced to the infinite correlation length of the degenerate AF phase from which it emerges. This implies the existence of similar inhomogeneous phases with size- and form-dependent order in a number of other systems with infinite correlation length. The possibility to observe the signs of the 'bow-tie' phase in low-T neutron diffraction experiments is discussed.
Stationary one-dimensional dispersive shock waves.
Kartashov, Yaroslav V; Kamchatnov, Anatoly M
2012-02-01
We address shock waves generated upon the interaction of tilted plane waves with negative refractive index defects in defocusing media with linear gain and two-photon absorption. We found that, in contrast to conservative media where one-dimensional dispersive shock waves usually exist only as nonstationary objects expanding away from a defect or generating beam, the competition between gain and two-photon absorption in a dissipative medium results in the formation of localized stationary dispersive shock waves, whose transverse extent may considerably exceed that of the refractive index defect. One-dimensional dispersive shock waves are stable if the defect strength does not exceed a certain critical value.
All exactly solvable U(1)-invariant quantum spin 1 chains from Hecke algebra
Alcarez, F.C. ); Koberle, R. ); Lima-Santos, A. )
1992-12-10
In this paper, the authors obtain all exactly integrable spin 1 quantum chains, which are U(1) invariant and satisfy the Hecke algebra. The authors present various generalizations for arbitrary spin S and discuss their solution via Bethe ansatz methods.
Magnons in one-dimensional k-component Fibonacci structures
Costa, C. H.; Vasconcelos, M. S.
2014-05-07
We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has a rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.
NASA Astrophysics Data System (ADS)
English, Leonard Patrick; Braun, Hans-Benjamin; Kulda, Jiri
2015-03-01
Quantum spin chains serve as a paradigm for exploring truly quantum phenomena, with spinons being the elementary excitations. Motivated by compounds such as CsCoBr3 and CsCoCl3, we focus on the Ising-like antiferromagnetic Heisenberg XXZ model (spin-1/2). Here we present theoretical results for the total inelastic scattering cross section of spin-polarized neutrons in the presence of an external magnetic field, which is applied transverse to the Ising direction. In particular, we identify the spin current associated with spinons and their corresponding signatures in the neutron scattering cross section. The presence of a transverse magnetic field no longer allows for reliance on Stotz as a conserved quantity, which has traditionally been assumed in this context. As a striking consequence, we find that the spinons carry a non-vanishing spin current, even in the limit of infinitesimal fields. Our results are shown to be in good agreement with experimental neutron scattering data on CsCoBr3.
Dynamical Quantum Phase Transitions in Random Spin Chains
NASA Astrophysics Data System (ADS)
Vosk, Ronen; Altman, Ehud
2014-05-01
Using a renormalization group approach, we solve the time evolution of random Ising spin chains with generic interactions starting from initial states of arbitrary energy. As a function of the Hamiltonian parameters, the system is tuned through a dynamical transition, similar to the ground-state critical point, at which the local spin correlations establish true long-range temporal order. In the state with a dominant transverse field, a spin that starts in an up state loses its orientation with time, while in the "ordered" state it never does. As in ground-state quantum phase transitions, the dynamical transition has unique signatures in the entanglement properties of the system. When the system is initialized in a product state, the entanglement entropy grows as log(t) in the two "phases," while at the critical point it grows as logα(t), with α a universal number. This universal entanglement growth requires generic ("integrability breaking") interactions to be added to the pure transverse field Ising model.
One-Dimensional Wavefront Sensor Analysis
1996-04-25
This software analyzes one-dimensional wavefront sensor data acquired with any of several data acquisition systems. It analyzes the data to determine centroids, wavefront slopes and overall wavefront error. The data can be displayed in many formats, with plots of various parameters vs time and position, including computer generated movies. Data can also be exported for use by other programs.
One-Dimensional Oscillator in a Box
ERIC Educational Resources Information Center
Amore, Paolo; Fernandez, Francisco M.
2010-01-01
We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…
Characterization of the Spin-1/2 Linear-Spin-Chain Ferromagnet CuAs2O4
NASA Astrophysics Data System (ADS)
Caslin, Kevin; Kremer, Reinhard; Razavi, Fereidoon; Schulz, Armin; Munoz, Alfonso; Pertlik, Franz; Liu, Jia; Whangbo, Mike; Law, Joseph
2014-03-01
We are investigating Cu2+ (S = 1/2) linear-spin-chains systems exhibiting low-dimensional magnetism. Linear-spin-chains are formed when CuX6 (X =O,Cl,Br,...) Jahn-Teller distorted octahedra link together via their trans-edges. Most often, these spin-chains support ferromagnetic (FM) nearest-neighbor (NN) and antiferromagnetic (AFM) next-nearest-neighbor (NNN) spin-exchange interactions, sometimes leading to an incommensurate spin-spiral structures with multiferroic behavior. There exists a magnetic phase diagram which can predict the intra-chain behavior using a ratio of spin-exchange constants, α = Jnn/Jnnn. A quantum critical point exists on a boundary at α = - 4, small spin exchange perturbations on a system with an α ratio in the vicinity of this point may induce a pronounced response of the system. In this study, we report on CuAs2O4 mineral name trippkeite, featuring CuO2 ribbon chains. Trippkeite is an exceptional spin-chain system because it shows long-range FM ordering and has an α ratio close to -4. Measurements of magnetic susceptibility, heat capacity, Raman spectroscopy, and electron paramagnetic resonance were performed. DFT calculations and TMRG simulations were also carried out.
Mendoza-Arenas, J J; Clark, S R; Jaksch, D
2015-04-01
In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss the local properties of the steady state induced by thermal boundary driving in a XXZ spin chain with staggered magnetic field. By means of efficient large-scale matrix product simulations of the equation of motion of the system, we calculate its steady state in the long-time limit. We start by discussing the energy transport supported by the system, finding it to be ballistic in the integrable limit and diffusive when the staggered field is finite. Subsequently, we examine the reduced density operators of neighboring sites and find that for large systems they are well approximated by local thermal states of the underlying Hamiltonian in the nonintegrable regime, even for weak staggered fields. In the integrable limit, on the other hand, this behavior is lost, and the identification of local temperatures is no longer possible. Our results agree with the intuitive connection between energy diffusion and thermalization.
Mendoza-Arenas, J J; Clark, S R; Jaksch, D
2015-04-01
In this work we analyze the simultaneous emergence of diffusive energy transport and local thermalization in a nonequilibrium one-dimensional quantum system, as a result of integrability breaking. Specifically, we discuss the local properties of the steady state induced by thermal boundary driving in a XXZ spin chain with staggered magnetic field. By means of efficient large-scale matrix product simulations of the equation of motion of the system, we calculate its steady state in the long-time limit. We start by discussing the energy transport supported by the system, finding it to be ballistic in the integrable limit and diffusive when the staggered field is finite. Subsequently, we examine the reduced density operators of neighboring sites and find that for large systems they are well approximated by local thermal states of the underlying Hamiltonian in the nonintegrable regime, even for weak staggered fields. In the integrable limit, on the other hand, this behavior is lost, and the identification of local temperatures is no longer possible. Our results agree with the intuitive connection between energy diffusion and thermalization. PMID:25974460
NASA Astrophysics Data System (ADS)
Dumm, M.; Loidl, A.; Fravel, B. W.; Starkey, K. P.; Montgomery, L. K.; Dressel, M.
2000-01-01
We have conducted comprehensive electron spin resonance (ESR) investigations on single crystals of the one-dimensional organic compounds (TMTTF)2PF6, (TMTTF)2ClO4, (TMTTF)2Br, (TMTSF)2PF6, and (TMTSF)2AsF6 in the temperature range from 4 to 500 K and additionally, (TMTSF)2ReO4 and (TMTSF)2ClO4 at room temperature. In contrast to the selenium analogs TMTSF which are one-dimensional metals, the sulfur salts are semiconductors with localized spins on the TMTTF dimers. Taking into account the thermal expansion of the crystals at high temperature (T>20 K) the ESR intensity of all sulfur compounds can be described as a spin-1/2 antiferromagnetic Heisenberg chain with exchange constants 420<=J<=500 K. Although the TMTSF compounds are one-dimensional organic metals down to 10 K, the temperature dependence of the spin susceptibility can also be described within the framework of the Hubbard model in the limit of strong Coulomb repulsion with J~1400 K. By modeling (TMTTF)2ClO4 as an alternating spin chain, the change of the alternation parameter at the first-order phase transition (TAO=72.5 K) indicates a tetramerization of the chain. (TMTTF)2PF6 undergoes a spin-Peierls transition at TSP=19 K which can be well described by Bulaevskii's model with a singlet-triplet gap Δσ(0)=32.3 K. We find evidence of antiferromagnetic fluctuations at temperatures well above the magnetic ordering in (TMTTF)2Br, (TMTSF)2PF6, and (TMTSF)2AsF6 which follow the critical behavior expected for three-dimensional ordering. (TMTTF)2PF6 and (TMTTF)2Br show one-dimensional lattice fluctuations.
NASA Astrophysics Data System (ADS)
Taddia, Luca; Ortolani, Fabio; Pálmai, Tamás
2016-09-01
We discuss the Renyi entanglement entropies of descendant states in critical one-dimensional systems with boundaries, that map to boundary conformal field theories in the scaling limit. We unify the previous conformal-field-theory approaches to describe primary and descendant states in systems with both open and closed boundaries. We provide universal expressions for the first two descendants in the identity family. We apply our technique to critical systems belonging to different universality classes with non-trivial boundary conditions that preserve conformal invariance, and find excellent agreement with numerical results obtained for finite spin chains. We also demonstrate that entanglement entropies are a powerful tool to resolve degeneracy of higher excited states in critical lattice models.
Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory
Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M.; Devereaux, T. P.
2015-02-01
Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstancesmore » be regarded as more complex than the physics of a spin-orbital chain.« less
Spin Chain in Magnetic Field: Limitations of the Large-N Mean-Field Theory
Wohlfeld, K.; Chen, Cheng-Chien; van Veenendaal, M. ; Devereaux, T. P.
2015-02-01
Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation [Phys. Rev. B 91, 165102 (2015)], we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to N=2 in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstances be regarded as more complex than the physics of a spin-orbital chain.
One-dimensional quantum magnetism in the anhydrous alum KTi(SO4)2
NASA Astrophysics Data System (ADS)
Nilsen, GJ; Raja, A.; Tsirlin, AA; Mutka, H.; Kasinathan, D.; Ritter, C.; Rønnow, HM
2015-11-01
The anhydrous alum KTi(SO4)2, where the Ti3+ (d1, S = 1/2) ions form an anisotropic triangular lattice, has been prepared by a new hydrothermal route and characterized by magnetic susceptibility and neutron scattering measurements. Contrary to expectations, fits to the magnetic susceptibility indicate that the spins are isotropic (i.e. Heisenberg) and that the frustrating couplings are weak; indeed, the system is well modelled by nearly isolated chains. The inelastic neutron scattering data furthermore shows excellent agreement with an exact theoretical calculation for the one-dimensional spinon continuum. The unexpected magnetic properties of KTi(SO4)2 are explained in the light of density functional calculations, which reveal an unusual orbital ground state for the Ti3 + ion.
On the application of the Non-linear sigma model to spin chains and spin ladders
NASA Astrophysics Data System (ADS)
Sierra, Germán
We review the non-linear sigma model approach (NLSM) to spin chains and spin ladders, presenting new results. The generalization of the Haldane's map to ladders in the Hamiltonian approach, give rise to different values of the θ parameter depending on the spin S, the number of legs ne and the choice of blocks needed to built up the NLSM fields. For rectangular blocks we obtain θ=0 or 2πS depending on wether ne, is even or odd, while for diagonal blocks we obtain θ=2πSne. Both results agree modulo 2π, and yield the same prediction, namely that even (resp. odd) ladders are gapped (resp. gapless). For even leeged ladders we show that the spin gap collapses exponentially with ne and we propose a finite size correction to the gap formula recently derived by Charkravarty using the 2+1 NSLM, which gives a good fit of numerical results. We show the existence of a Haldane phase in the two legged ladder using diagonal blocks and finally we consider the phase diagram of dimerized ladders.
Transient One-dimensional Pipe Flow Analyzer
1986-04-08
TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less
Transient One-dimensional Pipe Flow Analyzer
1986-04-08
TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and various form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.
One-dimensional nano-interconnection formation.
Ji, Jianlong; Zhou, Zhaoying; Yang, Xing; Zhang, Wendong; Sang, Shengbo; Li, Pengwei
2013-09-23
Interconnection of one-dimensional nanomaterials such as nanowires and carbon nanotubes with other parts or components is crucial for nanodevices to realize electrical contacts and mechanical fixings. Interconnection has been being gradually paid great attention since it is as significant as nanomaterials properties, and determines nanodevices performance in some cases. This paper provides an overview of recent progress on techniques that are commonly used for one-dimensional interconnection formation. In this review, these techniques could be categorized into two different types: two-step and one-step methods according to their established process. The two-step method is constituted by assembly and pinning processes, while the one-step method is a direct formation process of nano-interconnections. In both methods, the electrodeposition approach is illustrated in detail, and its potential mechanism is emphasized.
Ou, Guang-Chuan; Jiang, Long; Feng, Xiao-Long; Lu, Tong-Bu
2008-04-01
The reactions of a racemic four-coordinated nickel(II) complex [Ni(alpha-rac-L)](ClO4)2 (containing equal amount of SS and RR enantiomers) with l- and d-phenylalanine in acetonitrile/water gave two less-soluble six-coordinated enantiomers of {[Ni( f-SS-L)(l-Phe)](ClO4)}n (Delta-1) and {[Ni(f- RR-L)(d-Phe)](ClO4)}n (Lambda-1), respectively. Evaporation the remaining solutions gave two six-coordinated diastereomers of {[Ni 3(f- RR-L)3(l-Phe)2(H 2O)](ClO4)4}n (a-2) and {[Ni3(f- SS-L)3(d-Phe)2(H2O)](ClO4)4}n (b-2), respectively (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, Phe(-) = phenylalanine anion). The reaction of [Ni(alpha-rac-L)](ClO4)2 with dl-Phe(-) gave a conglomerate of c-1; in which, the SS and RR enantiomers preferentially coordinate to l- and d-Phe(-) respectively to give a racemic mixture of Delta-1 and Lambda-1, and the spontaneous resolution occurs during the reaction, in which each crystal crystallizes to become enantiopure. Removing Phe(-) from Delta-1 and Lambda-1 using perchloric acid gave two enantiomers of [Ni(alpha-SS-L)](ClO4)2 (S-3) and [Ni(alpha-RR-L)](ClO4)2 (R-3). Dissolving S-3 and R-3 in acetonitrile gave two six-coordinated enantiomers of [Ni( f-SS-L)(CH3CN)2](ClO4)2 (S-4) and [Ni( f- RR-L)(CH3CN)2](ClO4)2 (R-4), while dissolving [Ni(alpha-rac-L)](ClO4)2 in acetonitrile gave a racemic twining complex [Ni(f-rac-L)(CH3CN)2](ClO4)2 (rac-4). Delta-1 and Lambda-1 belong to supramolecular stereoisomers, which are constructed via hydrogen bond linking of [Ni( f-SS-L)(l-Phe)](+) and [Ni(f-RR-L)(d-Phe)](+) monomers to form 1D homochiral right-handed and left-handed helical chains, respectively. The reaction of S-3 with d-Phe(-) gave {[Ni(f-SS-L)(d-Phe)](ClO4)}n (5), which shows a motif of a 1D hydrogen bonded zigzag chain instead of a 1D helical chain. Compound a-2/ b-2 contains dimers of [{Ni(f-RR-L)}2(l-Phe)(H2O)](3+)/[{Ni( f- SS-L)}2(d-Phe)(H2O)](3+) and 1D zigzag chains of {[Ni(f-RR-L)(l-Phe)](+)}n /{[Ni
Eigenstate thermalization within isolated spin-chain systems.
Steinigeweg, R; Herbrych, J; Prelovšek, P
2013-01-01
The thermalization phenomenon and many-body quantum statistical properties are studied on the example of several observables in isolated spin-chain systems, both integrable and generic nonintegrable. While diagonal matrix elements for nonintegrable models comply with the eigenstate thermalization hypothesis, the integrable systems show evident deviations and similarity to properties of noninteracting many-fermion models. The finite-size scaling reveals that the crossover between the two regimes is given by a scale closely related to the scattering length. Low-frequency off-diagonal matrix elements related to dc transport quantities also follow in a generic system a behavior analogous to the eigenstate thermalization hypothesis, however, unrelated to one of the diagonal matrix elements.
Random matrix theory and critical phenomena in quantum spin chains.
Hutchinson, J; Keating, J P; Mezzadri, F
2015-09-01
We compute critical properties of a general class of quantum spin chains which are quadratic in the Fermi operators and can be solved exactly under certain symmetry constraints related to the classical compact groups U(N),O(N), and Sp(2N). In particular we calculate critical exponents s,ν, and z, corresponding to the energy gap, correlation length, and dynamic exponent, respectively. We also compute the ground state correlators 〈σ_{i}^{x}σ_{i+n}^{x}〉_{g},〈σ_{i}^{y}σ_{i+n}^{y}〉_{g}, and 〈∏_{i=1}^{n}σ_{i}^{z}〉_{g}, all of which display quasi-long-range order with a critical exponent dependent upon system parameters. Our approach establishes universality of the exponents for the class of systems in question.
Veneziano amplitudes, spin chains and Abelian reduction of QCD
NASA Astrophysics Data System (ADS)
Kholodenko, Arkady
2009-05-01
Although QCD can be treated perturbatively in the high energy limit, lower energies require uses of nonperturbative methods such as ADS/CFT and/or Abelian reduction. These methods are not equivalent. While the first is restricted to supersymmetric Yang-Mills model with number of colors going to infinity, the second is not restricted by requirements of supersymmetry and is designed to work in the physically realistic limit of a finite number of colors. In this paper we provide arguments in favor of the Abelian reduction methods. This is achieved by further developing results of our recent works re-analyzing Veneziano and Veneziano-like amplitudes and the models associated with these amplitudes. It is shown, that the obtained new partition function for these amplitudes can be mapped exactly into that for the Polychronakos-Frahm (P-F) spin chain model recoverable from the Richardon-Gaudin (R-G) XXX spin chain model originally designed for treatments of the BCS-type superconductivity. Because of this, it is demonstrated that the obtained mapping is compatible with the method of Abelian reduction. The R-G model is recovered from the asymptotic (WKB-type) solutions of the rational Knizhnik-Zamolodchikov (K-Z) equation. Linear independence of these solutions is controlled by determinants whose explicit form (up to a constant) coincides with Veneziano (or Veneziano-like) amplitudes. In the simplest case, the determinantal conditions coincide with those discovered by Kummer in the 19th century. Kummer's results admit physical interpretation by relating determinantal formula(s) to Veneziano-like amplitudes. Furthermore, these amplitudes can be interpreted as Poisson-Dirichlet distributions playing a central role in the stochastic theory of random coagulation-fragmentation processes. Such an interpretation is complementary to that known for the Lund model widely used for the description of coagulation-fragmentation processes in QCD.
Inverse participation ratios in the XXZ spin chain
NASA Astrophysics Data System (ADS)
Misguich, Grégoire; Pasquier, Vincent; Luck, Jean-Marc
2016-10-01
We investigate numerically the inverse participation ratios in a spin-1/2 XXZ chain, computed in the "Ising" basis (i.e., eigenstates of σiz). We consider in particular a quantity T , defined by summing the inverse participation ratios of all the eigenstates in the zero-magnetization sector of a finite chain of length N , with open boundary conditions. From a dynamical point of view, T is proportional to the stationary return probability to an initial basis state, averaged over all the basis states (initial conditions). We find that T exhibits an exponential growth, T ˜exp(a N ) , in the gapped phase of the model and a linear scaling, T ˜N , in the gapless phase. These two different behaviors are analyzed in terms of the distribution of the participation ratios of individual eigenstates. We also investigate the effect of next-nearest-neighbor interactions, which break the integrability of the model. Although the massive phase of the nonintegrable model also has T ˜exp(a N ) , in the gapless phase T appears to saturate to a constant value.
Partition functions of classical Heisenberg spin chains with arbitrary and different exchange
NASA Astrophysics Data System (ADS)
Cregg, P. J.; García-Palacios, J. L.; Svedlindh, P.
2008-10-01
The classical Heisenberg model has been effective in modelling exchange interactions in molecular magnets. In this model, the partition function is important as it allows the calculation of the magnetization and susceptibility. For an ensemble of N-spin sites, this typically involves integrals in 2N dimensions. Here, for two-, three- and four-spin nearest neighbour open linear Heisenberg chains these integrals are reduced to sums of known functions, using a result due to Gegenbauer. For the case of the three- and four-spin chains, the sums are equivalent in form to the results of Joyce. The general result for an N-spin chain is also obtained.
Experimental demonstration of a stimulated polarization wave in a chain of nuclear spins
NASA Astrophysics Data System (ADS)
Lee, Jae-Seung; Adams, Travis; Khitrin, A. K.
2007-04-01
A stimulated wave of polarization, which implements a simple mechanism of quantum amplification, is experimentally demonstrated in a chain of four J-coupled nuclear spins, irradiated by a weak radio-frequency transverse field. The 'quantum domino' dynamics, a wave of flipped spins triggered by a flip of the first spin, has been observed in fully 13C-labelled sodium butyrate.
Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy
1989-01-01
A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.
Adiabatic freezing of long-range quantum correlations in spin chains
NASA Astrophysics Data System (ADS)
Shekhar Dhar, Himadri; Rakshit, Debraj; Sen(De, Aditi; Sen, Ujjwal
2016-06-01
We consider a process to create quasi-long-range quantum discord between the non-interacting end spins of a quantum spin chain, with the end spins weakly coupled to the bulk of the chain. The process is not only capable of creating long-range quantum correlation but the latter remains frozen, when certain weak end-couplings are adiabatically varied below certain thresholds. We term this phenomenon as adiabatic freezing of quantum correlation. We observe that the freezing is robust to moderate thermal fluctuations and is intrinsically related to the cooperative properties of the quantum spin chain. In particular, we find that the energy gap of the system remains frozen for these adiabatic variations, and moreover, considering the end spins as probes, we show that the interval of freezing can detect the anisotropy transition in quantum XY spin chains. Importantly, the adiabatic freezing of long-range quantum correlations can be simulated with contemporary experimental techniques.
One-dimensional hypersonic phononic crystals.
Gomopoulos, N; Maschke, D; Koh, C Y; Thomas, E L; Tremel, W; Butt, H-J; Fytas, G
2010-03-10
We report experimental observation of a normal incidence phononic band gap in one-dimensional periodic (SiO(2)/poly(methyl methacrylate)) multilayer film at gigahertz frequencies using Brillouin spectroscopy. The band gap to midgap ratio of 0.30 occurs for elastic wave propagation along the periodicity direction, whereas for inplane propagation the system displays an effective medium behavior. The phononic properties are well captured by numerical simulations. The porosity in the silica layers presents a structural scaffold for the introduction of secondary active media for potential coupling between phonons and other excitations, such as photons and electrons.
Enhancing one dimensional sensitivity with plasmonic coupling.
O'Mullane, Samuel; Peterson, Brennan; Race, Joseph; Keller, Nick; Diebold, Alain C
2014-10-20
In this paper, we propose a cross-grating structure to enhance the critical dimension sensitivity of one dimensional nanometer scale metal gratings. Making use of the interaction between slight changes in refractive index and localized plasmons, we demonstrate sub-angstrom scale sensitivity in this structure. Compared to unaltered infinite metal gratings and truncated finite gratings, this cross-grating structure shows robust spectra dependent mostly on the dimension of the smaller line width and pitch. While typical scatterometry simulations show angstrom resolution at best, this structure has demonstrated picometer resolution. Due to the wide range of acceptable specifications, we expect experimental confirmation of such structures to soon follow. PMID:25401657
Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains
NASA Astrophysics Data System (ADS)
Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.
2016-10-01
We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.
Spin-stripe phase in a frustrated zigzag spin-1/2 chain.
Pregelj, M; Zorko, A; Zaharko, O; Nojiri, H; Berger, H; Chapon, L C; Arčon, D
2015-01-01
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems, such behaviour has typically been associated with competition between short- and long-range interactions, for example, between exchange and dipole-dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole-dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat and neutron diffraction measurements unveils β-TeVO4 as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Notably, a narrow spin-stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions, possibly assisted by the symmetry-allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding of other widespread, yet still elusive, stripe-related phenomena. PMID:26068618
Spin-stripe phase in a frustrated zigzag spin-1/2 chain
NASA Astrophysics Data System (ADS)
Pregelj, M.; Zorko, A.; Zaharko, O.; Nojiri, H.; Berger, H.; Chapon, L. C.; Arčon, D.
2015-06-01
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems, such behaviour has typically been associated with competition between short- and long-range interactions, for example, between exchange and dipole-dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole-dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat and neutron diffraction measurements unveils β-TeVO4 as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Notably, a narrow spin-stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions, possibly assisted by the symmetry-allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding of other widespread, yet still elusive, stripe-related phenomena.
Spin-stripe phase in a frustrated zigzag spin-1/2 chain
Pregelj, M.; Zorko, A.; Zaharko, O.; Nojiri, H.; Berger, H.; Chapon, L. C.; Arčon, D.
2015-01-01
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems, such behaviour has typically been associated with competition between short- and long-range interactions, for example, between exchange and dipole–dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole–dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat and neutron diffraction measurements unveils β-TeVO4 as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Notably, a narrow spin-stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions, possibly assisted by the symmetry-allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding of other widespread, yet still elusive, stripe-related phenomena. PMID:26068618
NASA Astrophysics Data System (ADS)
Torrico, J.; Rojas, M.; Pereira, M. S. S.; Strečka, J.; Lyra, M. L.
2016-01-01
The strongly correlated spin-electron system on a diamond chain containing localized Ising spins on its nodal lattice sites and mobile electrons on its interstitial sites is exactly solved in a magnetic field using the transfer-matrix method. We have investigated in detail all available ground states, the magnetization processes, the spin-spin correlation functions around an elementary plaquette, fermionic quantum concurrence, and spin frustration. It is shown that the fermionic entanglement between mobile electrons hopping on interstitial sites and the kinetically induced spin frustration are closely related yet independent phenomena. In the ground state, quantum entanglement only appears within a frustrated unsaturated paramagnetic phase, while thermal fluctuations can promote some degree of quantum entanglement above the nonfrustrated ground states with saturated paramagnetic or classical ferrimagnetic spin arrangements.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t–J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi
2016-07-01
Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.
The one-dimensional hydrogen atom revisited
NASA Astrophysics Data System (ADS)
Palma, G.; Raff, U.
2006-09-01
The one-dimensional Schrodinger hydrogen atom is an interesting mathematical and physical problem for the study of bound states, eigenfunctions, and quantum-degeneracy issues. This one-dimensional physical system has given rise to some intriguing controversy for more than four decades. Presently, still no definite consensus seems to have been reached. We reanalyzed this apparently controversial problem, approaching it from a Fourier-transform representation method combined with some fundamental (basic) ideas found in self-adjoint extensions of symmetric operators. In disagreement with some previous claims, we found that the complete Balmer energy spectrum is obtained together with an odd-parity set of eigenfunctions. Closed-form solutions in both coordinate and momentum spaces were obtained. No twofold degeneracy was observed as predicted by the degeneracy theorem in one dimension, though it does not necessarily have to hold for potentials with singularities. No ground state with infinite energy exists since the corresponding eigenfunction does not satisfy the Schrodinger equation at the origin.
NASA Astrophysics Data System (ADS)
Furukawa, Shunsuke; Sato, Masahiro; Onoda, Shigeki; Furusaki, Akira
2012-09-01
The ground-state phase diagram of a spin-(1)/(2) XXZ chain with competing ferromagnetic nearest-neighbor (J1<0) and antiferromagnetic second-neighbor (J2>0) exchange couplings is studied by means of the infinite time evolving block decimation algorithm and effective field theories. For the SU(2)-symmetric (Heisenberg) case, we show that the nonmagnetic phase in the range -4
Collective dynamics of solid-state spin chains and ensembles in quantum information processing
NASA Astrophysics Data System (ADS)
Ping, Yuting
This thesis is concerned with the collective dynamics in different spin chains and spin ensembles in solid-state materials. The focus is on the manipulation of electron spins, through spin-spin and spin-photon couplings controlled by voltage potentials or electromagnetic fields. A brief review of various systems is provided to describe the possible physical implementation of the ideas, and also outlines the basis of the adopted effective interaction models. The first two ideas presented explore the collective behaviour of non-interacting spin chains with external couplings. One focuses on mapping the identical state of spin-singlet pairs in two currents onto two distant, static spins downstream, creating distributed entanglement that may be accessed. The other studies a quantum memory consisting of an array of non-interacting, static spins, which may encode and decode multiple flying spins. Both chains could effectively `enhance' weak couplings in a cumulative fashion, and neither scheme requires active quantum control. Moreover, the distributed entanglement generated can offer larger separation between the qubits than more conventional protocols that only exploit the tunnelling effects between quantum dots. The quantum memory can also `smooth' the statistical fluctuations in the effects of local errors when the stored information is spread. Next, an interacting chain of static spins with nearest-neighbour interactions is introduced to connect distant end spins. Previously, it has been shown that this approach provides a cubic speed-up when compared with the direct coupling between the target spins. The practicality of this scheme is investigated by analysing realistic error effects via numerical simulations, and from that perspective relaxation of the nearest-neighbour assumption is proposed. Finally, a non-interacting electron spin ensemble is reviewed as a quantum memory to store single photons from an on-chip stripline cavity. It is then promoted to a full
Singular eigenstates in the even(odd) length Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Ranjan Giri, Pulak; Deguchi, Tetsuo
2015-05-01
We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.
Three one-dimensional structural heating programs
NASA Technical Reports Server (NTRS)
Wing, L. D.
1978-01-01
Two computer programs for calculating profiles in a ten-element structure consisting of up to ten materials are presented, along with a third program for calculating the mean temperature for a payload container placed in an orbiting vehicle cargo bay. The three programs are related by the sharing of a common analytical technique; the energy balance is based upon one-dimensional heat transfer. The first program, NQLDW112, assumes a non-ablating surface. NQLDW117 is very similar but allows the outermost element to ablate. NQLDW040 calculates an average temperature profile through an idealized model of the real payload cannister and contents in the cargo bay of an orbiting vehicle.
Electron transport in one-dimensional plasmas
Wienke, B.R.
1983-11-01
A one-dimensional, multigroup, discrete ordinates technique for computing electron energy deposition in plasmas is detailed. The Fokker-Planck collision operator is employed in the continuous approximation and electric fields (considered external) are included in the equation. Bremsstrahlung processes are not treated. Comparisons with analytic and Monte Carlo results are given. Fits to deposition profiles and energy scaling are proposed and discussed for monoenergetic and Maxwellian sources in the range, 0 to 150 keV, with and without uniform fields. The techniques employed to track electrons are generally useful in situations where the background plasma temperature is an order of magnitude smaller than the electron energy and collective plasma effects are negligible. We have used the approach successfully in laser pellet implosion applications.
Parafermion braid statistics in quasi-one-dimensional networks
NASA Astrophysics Data System (ADS)
Clarke, David; Alicea, Jason; Shtengel, Kirill
2012-02-01
One dimensional systems with Majorana zero modes at phase boundaries may be thought of as physical realizations of a discrete quantum wire model first put forth by Kitaev [1]. Proposed methods for braiding such Majorana fermions in one-dimensional wire networks [2] have greatly expanded the set of plausible avenues toward topological quantum computation. Recently, a generalization of the Kitaev model to parafermion modes has been developed.[3] Here, we describe the transport of such parafermion modes along the chain by the adiabatic transformation of the Hamiltonian, analogous to the transport of Majorana fermion modes. We determine the (braid) transformations of the ground state sector allowed by the adiabatic exchange of the parafermion modes in wire networks. We show that, as with Majorana fermions, none of the parafermion braid sets are universal for quantum computation. Certain parafermion chain models, unlike Majorana fermion systems, become universal with the addition of measurement operations. We discuss possible physical realizations of the parafermion models. [4pt] [1] J Alicea et al., Nature Physics 7, 412-417 (2011) [0pt] [2] A. Kitaev, arXiv:cond-mat/0010440v2 [0pt] [3] P. Fendley, unpublished
The quench action approach in finite integrable spin chains
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Calabrese, Pasquale
2016-04-01
We consider the problem of constructing the stationary state following a quantum quench, using the exact overlaps for finite size integrable models. We focus on the isotropic Heisenberg spin chain with initial state Néel or Majumdar-Ghosh (dimer), although the proposed approach is valid for an arbitrary integrable model. We consider only eigenstates which do not contain zero-momentum strings because the latter are affected by fictitious singularities that are very difficult to take into account. We show that the fraction of eigenstates that do not contain zero-momentum strings is vanishing in the thermodynamic limit. Consequently, restricting to this part of the Hilbert space leads to vanishing expectation values of local observables. However, it is possible to reconstruct the asymptotic values by properly reweighting the expectations in the considered subspace, at the price of introducing finite-size corrections. We also develop a Monte Carlo sampling of the Hilbert space which allows us to study larger systems. We accurately reconstruct the expectation values of the conserved charges and the root distributions in the stationary state, which turn out to match the exact thermodynamic results. The proposed method can be implemented even in cases in which an analytic thermodynamic solution is not obtainable.
Nonequilibrium steady states in the quantum XXZ spin chain
NASA Astrophysics Data System (ADS)
Sabetta, Thiago; Misguich, Grégoire
2013-12-01
We investigate the real-time dynamics of a critical spin-1/2 chain (XXZ model) prepared in an inhomogeneous initial state with different magnetizations on the left and right halves. Using the time-evolving block decimation method, we follow the front propagation by measuring the magnetization and entanglement entropy profiles. At long times, as in the free fermion case [Antal , Phys. Rev. E1063-651X10.1103/PhysRevE.59.4912 59, 4912 (1999)], a large central region develops where correlations become time independent and translation invariant. The shape and speed of the fronts is studied numerically and we evaluate the stationary current as a function of initial magnetic field and as a function of the anisotropy Δ. We compare the results with the conductance of a Tomonaga-Luttinger liquid, and with the exact free-fermion solution at Δ=0. We also investigate the two-point correlations in the stationary region and find a good agreement with the “twisted” form obtained by Lancaster and Mitra [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.061134 81, 061134 (2010)] using bosonization. Some deviations are nevertheless observed for strong currents.
Pseudo-one-dimensional nucleation in dilute polymer solutions
NASA Astrophysics Data System (ADS)
Zhang, Lingyun; Schmit, Jeremy D.
2016-06-01
Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration.
Pseudo-one-dimensional nucleation in dilute polymer solutions.
Zhang, Lingyun; Schmit, Jeremy D
2016-06-01
Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration. PMID:27415194
Unitary equivalent classes of one-dimensional quantum walks
NASA Astrophysics Data System (ADS)
Ohno, Hiromichi
2016-09-01
This study investigates unitary equivalent classes of one-dimensional quantum walks. We prove that one-dimensional quantum walks are unitary equivalent to quantum walks of Ambainis type and that translation-invariant one-dimensional quantum walks are Szegedy walks. We also present a necessary and sufficient condition for a one-dimensional quantum walk to be a Szegedy walk.
The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.
An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun
2016-07-28
Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied. PMID:27475355
The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.
An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun
2016-07-28
Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.
The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains
NASA Astrophysics Data System (ADS)
An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun
2016-07-01
Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.
Robust and reliable transfer of a qubit state through an XY spin chain
NASA Astrophysics Data System (ADS)
Wang, Zhao-Ming; Allen Bishop, C.; Byrd, Mark S.; Shao, Bin; Zou, Jian
2009-08-01
We present several protocols for reliable quantum state transfer through an XY spin chain. Among these is a simple two-spin encoding that achieves a remarkably high-fidelity transfer for an arbitrary quantum state. The fidelity of the transfer also decreases slowly with increasing chain length. Furthermore, the reliability can be increased by taking advantage of a local memory and/or confirming transfer using a second spin chain. The simplicity and high fidelity of the encoding makes this a candidate for near-future experiments including a test of the quantum speed limit.
A quaternionic map for the steady states of the Heisenberg spin-chain
NASA Astrophysics Data System (ADS)
Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu
2014-01-01
We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.
One-dimensional Co(II)/Ni(II) complexes of 2-hydroxyisophthalate: Structures and magnetic properties
Wang, Kai; Zou, Hua-Hong; Chen, Zi-Lu; Zhang, Zhong; Sun, Wei-Yin; Liang, Fu-Pei
2015-03-15
The solvothermal reactions of 2-hydroxyisophthalic acid (H{sub 3}ipO) with M(NO{sub 3}){sub 2}∙6H{sub 2}O (M=Co, Ni) afforded two complexes [Co{sub 2}(HipO){sub 2}(Py){sub 2}(H{sub 2}O){sub 2}] (1) and [Ni(HipO)(Py)H{sub 2}O] (2) (Py=pyridine). They exhibit similar zig-zag chain structures with the adjacent two metal centers connected by a anti-syn bridging carboxylate group from the HipO{sup 2−} ligand. The magnetic measurements reveal the dominant antiferromagnetic interactions and spin-canting in 1 while ferromagnetic interactions in 2. Both of them exhibit magnetocaloric effect (MCE) with the resulting entropy changes (−ΔS{sub m}) of 12.51 J kg{sup −1} K{sup −1} when ΔH=50 kOe at 3 K for 1 and 11.01 J kg{sup −1} K{sup −1} when ΔH=50 kOe at 3 K for 2, representing the rare examples of one-dimensional complexes with MCE. - Graphical abstract: Synopsis: Two Co(II)/Ni(II) complexes with zig-zag chain structures have been reported. 1-Co shows cant-antiferromagnetism while 2-Ni shows ferromagnetism. Magnetocaloric effect is also found in both of them. - Highlights: • Two one-dimensional Co(II)/Ni(II) complexes were solvothermally synthesized. • The Co-complex exhibits canted antiferromagnetism. • The Ni-complex exhibits ferromagnetism. • Both of the complexes display magnetocaloric effect.
NASA Astrophysics Data System (ADS)
Souletie, Jean; Drillon, Marc; Rabu, Pierre; Pati, Swapan K.
2004-08-01
The phenomenological expression χT/(Ng2μB2/k)=C1nexp(-W1n/T)+C2nexp(-W2n/T) describes very accurately the temperature dependence of the magnetic susceptibility computed for antiferromagnetic rings of Heisenberg spins S=1 , whose size n is even and ranges from 6 to 20. This expression has been obtained through a strategy justified by scaling considerations together with finite size numerical calculations. For n large, the coefficients of the expression converge towards C1=0.125 , W1=0.451J , C2=0.564 , W2=1.793J ( J is the exchange constant), which are appropriate for describing the susceptibility of the spin-1 Haldane chain. The Curie constant, the paramagnetic Curie-Weiss temperature, the correlation length at T=0 and the Haldane gap are found to be closely related to these coefficients. With this expression, a very good description of the magnetic behavior of Y2BaNiO5 and of Ni(C2H8N2)2NO2ClO4 (NENP), the archetype of the Haldane gap systems, is achieved over the whole temperature range.
Topological phase in one-dimensional Rashba wire
NASA Astrophysics Data System (ADS)
Sa-Ke, Wang; Jun, Wang; Jun-Feng, Liu
2016-07-01
We study the possible topological phase in a one-dimensional (1D) quantum wire with an oscillating Rashba spin-orbital coupling in real space. It is shown that there are a pair of particle-hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin-orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap. Project supported by the National Natural Science Foundation of China (Grant Nos. 115074045 and 11204187) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284).
Magnetism and spin transport of carbon chain between armchair graphene nanoribbon electrodes
NASA Astrophysics Data System (ADS)
Farghadan, R.; Yoosefi, M.
2016-09-01
The magnetic and spin transport properties of a carbon chain between two armchair graphene nanoribbon (AGNR) electrodes were studied using tight-binding Hamiltonian, mean-field Hubbard model and Landauer-Butikker formalism. The results showed that only odd-numbered carbon chains show intrinsic magnetic moments in chain-graphene junctions. It was also found that the electronic, magnetic and spin transport properties of carbon chain-graphene junctions strongly depend on the position and the length of the carbon chains between AGNR electrodes. Interestingly, we found a fully spin-polarized transmission near the Fermi energy in all odd-numbered carbon chain-graphene junctions, regardless of their lengths and without any magnetic field and magnetic electrodes.
Topological phase transition in quasi-one dimensional organic conductors.
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-01-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane's model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317
Atom-Molecule Coherence in a One-Dimensional System
NASA Astrophysics Data System (ADS)
Citro, R.; Orignac, E.
2005-09-01
We study a model of one-dimensional fermionic atoms with a narrow Feshbach resonance that allows them to bind in pairs to form bosonic molecules. We show that at low energy, a coherence develops between the molecule and fermion Luttinger liquids. At the same time, a gap opens in the spin excitation spectrum. The coherence implies that the order parameters for the molecular Bose-Einstein condensation and the atomic BCS pairing become identical. Moreover, both bosonic and fermionic charge density wave correlations decay exponentially, in contrast with a usual Luttinger liquid. We exhibit a Luther-Emery point where the systems can be described in terms of noninteracting pseudofermions. At this point we discuss the threshold behavior of density-density response functions.
Topological phase transition in quasi-one dimensional organic conductors
NASA Astrophysics Data System (ADS)
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-11-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices.
NASA Astrophysics Data System (ADS)
Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.
2016-05-01
The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks-Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.
Topological phase transition in quasi-one dimensional organic conductors
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-01-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317
Asymmetrically doped one-dimensional trans-polymers
NASA Astrophysics Data System (ADS)
Caldas, Heron
2009-10-01
More than 30 years ago [H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc. Chem. Comm. 578 (1977); S. Etemad, A.J. Heeger, Ann. Rev. Phys. Chem. 33 (1982) 443] it was discovered that doped trans-polyacetylene (CH)x, a one-dimensional (1D) conjugated polymer, exhibits electrical conductivity. In this work we show that an asymmetrically doped 1D trans-polymer has non-conventional properties, as compared to symmetrically doped systems. Depending on the level of asymmetry between the chemical potentials of the two involved fermionic species, the polymer can be in a partially or fully spin polarized state. Some possible experimental consequences of doped 1D trans-polymers used as 1D organic polarized conductors are discussed.
Diffusion and ballistic transport in one-dimensional quantum systems.
Sirker, J; Pereira, R G; Affleck, I
2009-11-20
It has been conjectured that transport in integrable one-dimensional systems is necessarily ballistic. The large diffusive response seen experimentally in nearly ideal realizations of the S=1/2 1D Heisenberg model is therefore puzzling and has not been explained so far. Here, we show that, contrary to common belief, diffusion is universally present in interacting 1D systems subject to a periodic lattice potential. We present a parameter-free formula for the spin-lattice relaxation rate which is in excellent agreement with experiment. Furthermore, we calculate the current decay directly in the thermodynamic limit using a time-dependent density matrix renormalization group algorithm and show that an anomalously large time scale exists even at high temperatures. PMID:20366058
One-dimensional pair hopping and attractive Hubbard models: A comparative study
van den Bossche, M.; Caffarel, M.
1996-12-01
The low-energy physics of the one-dimensional pair hopping (PH) and attractive Hubbard models are expected to be similar. Based on numerical calculations on small chains, several authors have recently challenged this idea and predicted the existence of a phase transition at half filling and finite positive coupling for the pair-hopping model. We reexamine the controversy by making systematic comparisons between numerical results obtained for the PH and attractive Hubbard models. To do so, we have calculated the Luttinger parameters (spin and charge velocities, stiffnesses, etc.) of the two models using both the density matrix renormalization-group method for large systems and Lancz{acute o}s calculations with twisted boundary conditions for smaller systems. Although most of our results confirm that both models are very similar we have found some important differences in the spin properties for the small sizes considered by previous numerical studies (6{endash}12 sites). However, we show that these differences disappear at larger sizes (14{endash}42 sites) when sufficiently accurate eigenstates are considered. Accordingly, our results strongly suggest that the ground-state phase transition previously found for small systems is a finite size artifact. Interpreting our results within the framework of the Luttinger liquid theory, we discuss the origin of the apparent contradiction between the predictions of the perturbative renormalization-group approach and numerical calculations at small sizes. {copyright} {ital 1996 The American Physical Society.}
One-dimensional model of inertial pumping.
Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D
2013-02-01
A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location. PMID:23496615
A one dimensional model of population growth
NASA Astrophysics Data System (ADS)
Ribeiro, Fabiano L.; Ribeiro, Kayo N.
2015-09-01
In this work, a one dimensional population growth model is proposed. The model, based on the cooperative and competitive individual-individual distance-dependent interaction, allows us to get a full analytical solution. With this analytical approach, it was possible to investigate the dynamics of the population according to some parameters, as intrinsic growth rate, strength of the interaction between individuals, and the distance-dependent interaction. As a consequence of the individuals' interaction, a rich phase diagram to which the population has access was observed. The phases observed are: convergence to carrying capacity, exponential growth, divergence at finite time, and extinction. Moreover, it was also observed that some phases are strictly dependent on the initial condition. For instance, in the cooperative regime with negative intrinsic growth rate, the population can diverge or become extinct according to the initial population size. The phases accessible to the population can be seen as a macroscopic behavior which emerges from the interaction among the individuals (the microscopic level).
Transport in a one-dimensional hyperconductor
NASA Astrophysics Data System (ADS)
Plamadeala, Eugeniu; Mulligan, Michael; Nayak, Chetan
2016-03-01
We define a "hyperconductor" to be a material whose electrical and thermal dc conductivities are infinite at zero temperature and finite at any nonzero temperature. The low-temperature behavior of a hyperconductor is controlled by a quantum critical phase of interacting electrons that is stable to all potentially gap-generating interactions and potentially localizing disorder. In this paper, we compute the low-temperature dc and ac electrical and thermal conductivities in a one-dimensional hyperconductor, studied previously by the present authors, in the presence of both disorder and umklapp scattering. We identify the conditions under which the transport coefficients are finite, which allows us to exhibit examples of violations of the Wiedemann-Franz law. The temperature dependence of the electrical conductivity, which is characterized by the parameter ΔX, is a power law, σ ∝1 /T1 -2 (2 -ΔX) when ΔX≥2 , down to zero temperature when the Fermi surface is commensurate with the lattice. There is a surface in parameter space along which ΔX=2 and ΔX≈2 for small deviations from this surface. In the generic (incommensurate) case with weak disorder, such scaling is seen at high temperatures, followed by an exponential increase of the conductivity lnσ ˜1 /T at intermediate temperatures and, finally, σ ∝1 /T2 -2 (2 -ΔX) at the lowest temperatures. In both cases, the thermal conductivity diverges at low temperatures.
One-dimensional model of inertial pumping.
Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D
2013-02-01
A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.
The open XXZ spin chain model and the topological basis realization
NASA Astrophysics Data System (ADS)
Wang, Qingyong; Du, Yangyang; Wu, Chunfeng; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2016-07-01
In this paper, it is shown that the Hamiltonian of the open spin-1 XXZ chain model can be constructed from the generators of the Birman-Murakami-Wenzl (B-M-W) algebra. Without the topological parameter d (describing the unknotted loop ◯ in topology) reducing to a fixed value, the topological basis states can be connected with the open XXZ spin chain. Then some particular properties of the topological basis states in this system have been investigated. We find that the topological basis states are the three eigenstates of a four-spin-1 XXZ chain model without boundary term. Specifically, all the spin single states of the system fall on the topological basis subspace. And the number of the spin single states of the system is equal to that of the topological basis states.
NMR evidence for spin-rotation effects observed on entangled polymer chain solutions
NASA Astrophysics Data System (ADS)
Cohen-Addad, J. P.; Guillermo, A.
It is known that slow diffusion of long polyisobutylene chains through entanglements induces a partial motional narrowing process which results in a nonzero time average of tensorial nuclear spin interactions. The purpose of the present paper is to use specific pulse sequences and effects of steady magnetic field variations to show that spin-rotation couplings are involved in the observed residual tensorial interactions. This nonzero time average of spin-rotation interactions directly reflects rotational isomerization of successive monomer units along entangled chains; accordingly, it is sensitive to the chain flexibility. Residual dipolar couplings and spin-rotation couplings have about the same strength: 5 × 10 2 Hz at a concentration corresponding to one monomer unit per CS 2 solvent molecule (the chain molecular weight is 10 6).
Chen Zhixin; Zhou Zhengwei; Zhou Xingxiang; Zhou Xiangga; Guo Guangcan
2010-02-15
We propose a scheme to simulate one-dimensional XXZ-type Heisenberg spin models with competing interactions between nearest neighbors (NNs) and next NNs in photon-coupled microcavities. Our scheme exploits the rich resources and flexible controls available in such a system to realize arbitrarily adjustable ratios between the effective NN and next-NN coupling strengths. Such a powerful capability allows us to simulate frustration phenomena and disorder behaviors in one-dimensional systems arising from next-NN interactions, a large class of problems of great importance in condensed-matter physics. Our scheme is robust due to the lack of atomic excitations, which suppresses spontaneous emission and cavity decay strongly.
An introduction to the spectrum, symmetries, and dynamics of spin-1/2 Heisenberg chains
NASA Astrophysics Data System (ADS)
Joel, Kira; Kollmar, Davida; Santos, Lea F.
2013-06-01
Quantum spin chains are prototype quantum many-body systems that are employed in the description of various complex physical phenomena. We provide an introduction to this subject by focusing on the time evolution of a Heisenberg spin-1/2 chain and interpreting the results based on the analysis of the eigenvalues, eigenstates, and symmetries of the system. We make available online all computer codes used to obtain our data.
Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model
NASA Astrophysics Data System (ADS)
Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang
2015-04-01
In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.
The solution of an open XXZ chain with arbitrary spin revisited
NASA Astrophysics Data System (ADS)
Murgan, Rajan; Silverthorn, Chris
2015-02-01
The Bethe ansatz solutions for an open XXZ spin chain with arbitrary spin with N sites and nondiagonal boundary terms are revisited. The anisotropy parameter, for cases considered here, has values η = iπ \\frac{r}{q} , where r and q are positive integers with q restricted to odd integers. Numerical results are presented to support the solutions.
Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1 /2 Chain
NASA Astrophysics Data System (ADS)
Ilievski, Enej; Medenjak, Marko; Prosen, Tomaž
2015-09-01
Composing higher auxiliary-spin transfer matrices and their derivatives, we construct a family of quasilocal conserved operators of isotropic Heisenberg spin-1 /2 chain and rigorously establish their linear independence from the well-known set of local conserved charges.
Atomically precise self-assembly of one-dimensional structures on silicon
NASA Astrophysics Data System (ADS)
Barke, I.; Rügheimer, T. K.; Zheng, Fan; Himpsel, F. J.
2007-10-01
This work has three main themes: (1) fabricate atomically precise nanostructures at surfaces, particularly nanowires consisting of atom chains; (2) explore the behavior of one-dimensional electrons in atomic chains; (3) find the fundamental limits of data storage using an atomic scale memory. Semiconductor surfaces lend themselves towards self-assembly, because the broken covalent bonds create elaborate reconstruction patterns to minimize the surface energy. An example is the large 7 × 7 unit cell on Si(1 1 1), which can be used as building block. On semiconductors, the surface electrons completely de-couple from the substrate, as long as their energy lies in the band gap. Angle-resolved photoemission reveals surprising features, such as a fractional band filling and a spin-splitting at a non-magnetic surface. An interesting by-product is a memory structure with self-assembled tracks that are five atom rows wide and store a bit by the presence or absence of a single silicon atom. This toy memory is used to test the fundamental limits of data storage and to see how storage on silicon compares to storage in DNA.
Efficient algorithm for approximating one-dimensional ground states
Aharonov, Dorit; Arad, Itai; Irani, Sandy
2010-07-15
The density-matrix renormalization-group method is very effective at finding ground states of one-dimensional (1D) quantum systems in practice, but it is a heuristic method, and there is no known proof for when it works. In this article we describe an efficient classical algorithm which provably finds a good approximation of the ground state of 1D systems under well-defined conditions. More precisely, our algorithm finds a matrix product state of bond dimension D whose energy approximates the minimal energy such states can achieve. The running time is exponential in D, and so the algorithm can be considered tractable even for D, which is logarithmic in the size of the chain. The result also implies trivially that the ground state of any local commuting Hamiltonian in 1D can be approximated efficiently; we improve this to an exact algorithm.
Silverstein, Harlyn J.; Smith, Alison E.; Mauws, Cole; Abernathy, Douglas L.; Zhou, Haidong; Dun, Zhiling; van Lierop, Johan; Wiebe, Christopher R.
2014-10-13
True inorganic Spin-Peierls materials are extremely rare, but NaTiSi_{2}O_{6} was at one time considered an ideal candidate due to it having well separated chains of edge-sharing TiO_{6} octahedra. At low temperatures, this material undergoes a phase transition from C2/c to P$\\bar{1}$ symmetry, where Ti^{3+}-Ti^{3+} dimers begin to form within the chains. However, it was quickly realized with magnetic susceptibility that simple spin fluctuations do not progress to the point of enabling such a transition. Since then, considerable experimental and theoretical endeavours have been taken to find the true ground state of this system and explain how it manifests. Here, we employ the use of x-ray diffraction, neutron spectroscopy, and magnetic susceptibility to directly and simultaneously measure the symmetry loss, spin singlet-triplet gap, and phonon modes. Lastly, we observed a gap of 53(3) meV, fit to the magnetic susceptibility, and compared to previous theoretical models to unambiguously assign NaTiSi_{2}O_{6} as having an orbital-assisted Peierls ground state.
One-norm geometric quantum discord and critical point estimation in the XY spin chain
NASA Astrophysics Data System (ADS)
Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang
2016-11-01
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain.
NASA Astrophysics Data System (ADS)
Ohanyan, Vadim; Rojas, Onofre; Strečka, Jozef; Bellucci, Stefano
2015-12-01
We examine the general features of the noncommutativity of the magnetization operator and Hamiltonian for small quantum spin clusters. The source of this noncommutativity can be a difference in the Landé g factors for different spins in the cluster, X Y anisotropy in the exchange interaction, and the presence of the Dzyaloshinskii-Moriya term in a direction different from the direction of the magnetic field. As a result, zero-temperature magnetization curves for small spin clusters mimic those for the macroscopic systems with the band(s) of magnetic excitations, i.e., for the given eigenstate of the spin cluster the corresponding magnetic moment can be an explicit function of the external magnetic field yielding the nonconstant (nonplateau) form of the magnetization curve within the given eigenstate. In addition, the X Y anisotropy makes the saturated magnetization (the eigenstate when all spins in cluster are aligned along the magnetic field) inaccessible for finite magnetic field magnitude (asymptotical saturation). We demonstrate all these features on three examples: a spin-1/2 dimer, mixed spin-(1/2,1) dimer, and a spin-1/2 ring trimer. We consider also the simplest Ising-Heisenberg chain, the Ising-X Y Z diamond chain, with four different g factors. In the chain model the magnetization curve has a more complicated and nontrivial structure than that for clusters.
Exactly solved mixed spin-(1,1/2) Ising-Heisenberg distorted diamond chain
NASA Astrophysics Data System (ADS)
Lisnyi, Bohdan; Strečka, Jozef
2016-11-01
The mixed spin-(1,1/2) Ising-Heisenberg model on a distorted diamond chain with the spin-1 nodal atoms and the spin-1/2 interstitial atoms is exactly solved by the transfer-matrix method. An influence of the geometric spin frustration and the parallelogram distortion on the ground state, magnetization, susceptibility and specific heat of the mixed-spin Ising-Heisenberg distorted diamond chain are investigated in detail. It is demonstrated that the zero-temperature magnetization curve may involve intermediate plateaus just at zero and one-half of the saturation magnetization. The temperature dependence of the specific heat may have up to three distinct peaks at zero magnetic field and up to four distinct peaks at a non-zero magnetic field. The origin of multipeak thermal behavior of the specific heat is comprehensively studied.
Self-similar spectral structures and edge-locking hierarchy in open-boundary spin chains
Haque, Masudul
2010-07-15
For an anisotropic Heisenberg (XXZ) spin chain, we show that an open boundary induces a series of approximately self-similar features at different energy scales, high up in the eigenvalue spectrum. We present a nonequilibrium phenomenon related to this fractal structure, involving states in which a connected block near the edge is polarized oppositely to the rest of the chain. We show that such oppositely polarized blocks can be 'locked' to the edge of the spin chain and that there is a hierarchy of edge-locking effects at various orders of the anisotropy. The phenomenon enables dramatic control of quantum-state transmission and magnetization control.
Remarks towards the spectrum of the Heisenberg spin chain type models
NASA Astrophysics Data System (ADS)
Burdík, Č.; Fuksa, J.; Isaev, A. P.; Krivonos, S. O.; Navrátil, O.
2015-05-01
The integrable close and open chain models can be formulated in terms of generators of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for the XXX and the XXZ integrable close chain models. We find the Bethe vectors for two-component and inhomogeneous models. We also find the Bethe vectors for the fermionic realization of the integrable XXX and XXZ close chain models by means of the algebraic and coordinate Bethe ansatz. Special modification of the XXZ closed spin chain model ("small polaron model") is considered. Finally, we discuss some questions relating to the general open Hecke chain models.
Second cluster integral from the spectrum of an infinite XXZ spin chain
NASA Astrophysics Data System (ADS)
Bibikov, P. N.
2015-03-01
First and second terms of the low-temperature cluster expansion for the free energy density of a magnetically polarized XXZ spin chain is obtained within the propagator approach suggested by E.W. Montroll and J.C. Ward. All the calculations employ only one- and two-magnon infinite-chain spectrums. In the XXX-point the result reproduces the well known S. Katsura's formula obtained 50 years ago by finite-chain calculations.
NASA Astrophysics Data System (ADS)
Adelnia, Fatemeh; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio; Lascialfari, Alessandro; Borsa, Ferdinando
2015-05-01
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac)3NITEt and the magnetically frustrated Gd(hfac)3NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr8 closed ring and in Cr7Cd and Cr8Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.
Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando
2015-05-07
We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.
Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain
Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi
2015-12-29
In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for dmore » electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.« less
Antisymmetric Spin-Orbit Coupling in a d-p Model on a Zigzag Chain
Sugita, Yusuke; Hayami, Satoru; Motome, Yukitoshi
2015-12-29
In this paper, we theoretically investigate how an antisymmetric spin-orbit coupling emerges in electrons moving on lattice structures which are centrosymmetric but break the spatial inversion symme- try at atomic positions. We construct an effective d-p model on the simplest lattice structure, a zigzag chain of edge-sharing octahedra, with taking into account the crystalline electric field, the spin-orbit coupling, and on-site and inter-site d-p hybridizations. We show that an effective antisymmetric spin-orbit coupling arises in the sublattice-dependent form, which results in a hidden spin polarization in the band structure. Finally, we explicitly derive the effective antisymmetric spin-orbit coupling for d electrons, which not only explains the hidden spin polarization but also indicates how to enhance it.
Nonequilibrium current-carrying steady states in the anisotropic XY spin chain.
Lancaster, Jarrett L
2016-05-01
Out-of-equilibrium behavior is explored in the one-dimensional anisotropic XY model. Initially preparing the system in the isotropic XX model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is generated by rapidly changing the exchange interaction anisotropy and external magnetic field. Relaxation to a nonequilibrium steady state is studied analytically at the critical transverse Ising point, where correlation functions may be computed in closed form. For arbitrary values of anisotropy and external field, an effective generalized Gibbs' ensemble is shown to accurately describe observables in the long-time limit. Additionally, we find spatial oscillations in the exponentially decaying, transverse spin-spin correlation functions with wavelength set by the magnetization jump across the initial domain wall. This wavelength depends only weakly on anisotropy and magnetic field in contrast to the current, which is highly dependent on these parameters.
Solitary Wave in One-dimensional Buckyball System at Nanoscale
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
A disorder-enhanced quasi-one-dimensional superconductor
Petrović, A. P.; Ansermet, D.; Chernyshov, D.; Hoesch, M.; Salloum, D.; Gougeon, P.; Potel, M.; Boeri, L.; Panagopoulos, C.
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2−δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209
A disorder-enhanced quasi-one-dimensional superconductor.
Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials. PMID:27448209
A disorder-enhanced quasi-one-dimensional superconductor.
Petrović, A P; Ansermet, D; Chernyshov, D; Hoesch, M; Salloum, D; Gougeon, P; Potel, M; Boeri, L; Panagopoulos, C
2016-01-01
A powerful approach to analysing quantum systems with dimensionality d>1 involves adding a weak coupling to an array of one-dimensional (1D) chains. The resultant quasi-1D (q1D) systems can exhibit long-range order at low temperature, but are heavily influenced by interactions and disorder due to their large anisotropies. Real q1D materials are therefore ideal candidates not only to provoke, test and refine theories of strongly correlated matter, but also to search for unusual emergent electronic phases. Here we report the unprecedented enhancement of a superconducting instability by disorder in single crystals of Na2-δMo6Se6, a q1D superconductor comprising MoSe chains weakly coupled by Na atoms. We argue that disorder-enhanced Coulomb pair-breaking (which usually destroys superconductivity) may be averted due to a screened long-range Coulomb repulsion intrinsic to disordered q1D materials. Our results illustrate the capability of disorder to tune and induce new correlated electron physics in low-dimensional materials.
Solitary Wave in One-dimensional Buckyball System at Nanoscale.
Xu, Jun; Zheng, Bowen; Liu, Yilun
2016-01-01
We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale. PMID:26891624
Relaxation after quantum quenches in the spin-1/2 Heisenberg XXZ chain
NASA Astrophysics Data System (ADS)
Fagotti, Maurizio; Collura, Mario; Essler, Fabian H. L.; Calabrese, Pasquale
2014-03-01
We consider the time evolution after quantum quenches in the spin-1/2 Heisenberg XXZ quantum spin chain with Ising-type anisotropy. The time evolution of short-distance spin-spin correlation functions is studied by numerical tensor network techniques for a variety of initial states, including Néel and Majumdar-Ghosh states and the ground state of the XXZ chain at large values of the anisotropy. The various correlators appear to approach stationary values, which are found to be in good agreement with the results of exact calculations of stationary expectation values in appropriate generalized Gibbs ensembles. In particular, our analysis shows how symmetries of the post-quench Hamiltonian that are broken by particular initial states are restored at late times.
Topological phase in one-dimensional Rashba wire
NASA Astrophysics Data System (ADS)
Sa-Ke, Wang; Jun, Wang; Jun-Feng, Liu
2016-07-01
We study the possible topological phase in a one-dimensional (1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap. Project supported by the National Natural Science Foundation of China (Grant Nos. 115074045 and 11204187) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20131284).
Conversion method of powder inelastic scattering data for one-dimensional systems
Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.
2009-01-01
Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.
Hovhannisyan, V V; Strečka, J; Ananikian, N S
2016-03-01
The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure. PMID:26836749
NASA Astrophysics Data System (ADS)
Hovhannisyan, V. V.; Strečka, J.; Ananikian, N. S.
2016-03-01
The spin-1 Ising-Heisenberg diamond chain with the second-neighbor interaction between nodal spins is rigorously solved using the transfer-matrix method. In particular, exact results for the ground state, magnetization process and specific heat are presented and discussed. It is shown that further-neighbor interaction between nodal spins gives rise to three novel ground states with a translationally broken symmetry, but at the same time, does not increases the total number of intermediate plateaus in a zero-temperature magnetization curve compared with the simplified model without this interaction term. The zero-field specific heat displays interesting thermal dependencies with a single- or double-peak structure.
Bean, A C; Ruf, M; Albrecht-Schmitt, T E
2001-07-30
The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.
Spectrum, symmetries, and dynamics of Heisenberg spin-1/2 chains
NASA Astrophysics Data System (ADS)
Joel, Kira; Kollmar, Davida; Santos, Lea
2013-03-01
Quantum spin chains are prototype quantum many-body systems. They are employed in the description of various complex physical phenomena. Here we provide an introduction to the subject by focusing on the time evolution of Heisenberg spin-1/2 chains with couplings between nearest-neighbor sites only. We study how the anisotropy parameter and the symmetries of the model affect its time evolution. Our predictions are based on the analysis of the eigenvalues and eigenstates of the system and then confirmed with actual numerical results.
Eigenvectors and scalar products for long range interacting spin chains II: the finite size effects
NASA Astrophysics Data System (ADS)
Serban, Didina
2013-08-01
In this note, we study the eigenvectors and the scalar products the integrable long-range deformation of the XXX spin chain defined in [1]. The model is solved exactly by algebraic Bethe ansatz, and it coincides in the bulk with the Inozemtsev spin chain. At the closing point it contains a defect which effectively removes the wrapping interactions. Here we concentrate on determining the defect term for the first non-trivial order in perturbation in the deformation parameter and how it affects the Bethe ansatz equations. Our study is motivated by the relation with the dilatation operator of the = 4 gauge theory in the su(2) sector.
Order Parameter to Characterize Valence-Bond-Solid States in Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Nakamura, Masaaki; Todo, Synge
2003-03-01
We propose an order parameter to characterize valence-bond-solid (VBS) states in quantum spin chains, given by the ground-state expectation value of a unitary operator appearing in the Lieb-Schultz-Mattis argument. We show that the order parameter changes the sign according to the number of valence bonds (broken valence bonds) at the boundary for periodic (open) systems. This allows us to determine the phase transition point in between different VBS states. We demonstrate this theory in the successive dimerization transitions of the bond-alternating Heisenberg chains and spin ladders using the quantum Monte Carlo method.
Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport.
Prosen, Tomaž
2011-05-27
An explicit matrix product ansatz is presented, in the first two orders in the (weak) coupling parameter, for the nonequilibrium steady state of the homogeneous, nearest neighbor Heisenberg XXZ spin 1/2 chain driven by Lindblad operators which act only at the edges of the chain. The first order of the density operator becomes, in the thermodynamic limit, an exact pseudolocal conservation law and yields-via the Mazur inequality-a rigorous lower bound on the high-temperature spin Drude weight. Such a Mazur bound is a nonvanishing fractal function of the anisotropy parameter Δ for |Δ|<1. PMID:21699339
Investigations on thermodynamic properties of the three sub-lattice spin frustrated chain
NASA Astrophysics Data System (ADS)
Wang, Jue; Zhou, Hong-Fei; Li, Qian-Chun; Dong, Hui-Ning
2015-08-01
The spin frustration related to the high-Tc superconductivity has received much attention. In this paper, based on the Jordan-Wigner transformation and Green’s function method, we study the magnetic and thermodynamic properties of the three sub-lattice spin frustrated chains. It is found that there are three branches for the spin-wave excitation spectra at zero temperature. Among them, two belong to nature excitation patterns with antiferromagnetic interaction and the third one is band gap excitation spectrum with ferromagnetic nature. The specific heat capacity of sub-lattice spin system presents complex characteristics with the change of temperature due to the intense competition between the ferromagnetic and antiferromagnetic interactions. It is also shown that the increase of the ferromagnetic action is helpful to the value of net spin.
Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain
NASA Astrophysics Data System (ADS)
Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong
2010-07-01
This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.
Exactly conserved quasilocal operators for the XXZ spin chain
NASA Astrophysics Data System (ADS)
Pereira, R. G.; Pasquier, V.; Sirker, J.; Affleck, I.
2014-09-01
We extend T Prosen's construction of quasilocal conserved quantities for the XXZ model (2011 Phys. Rev. Lett. 106 217206) to the case of periodic boundary conditions. These quasilocal operators stem from a two-parameter transfer matrix which employs a highest-weight representation of the quantum group algebra inherent in the Yang-Baxter algebra. In contrast with the open chain, where the conservation law is weakly violated by boundary terms, the quasilocal operators in the periodic chain exactly commute with the Hamiltonian and other local conserved quantities.
Chain Conformation and Dynamics in Spin-Assisted Weak Polyelectrolyte Multilayers
Zhuk, Aliaksandr; Selin, Victor; Zhuk, Iryna; Belov, Benjamin; Ankner, John F.; Sukhishvili, Svetlana A.
2015-03-13
In this paper, we report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes. As demonstrated by fluorescence recovery after photobleaching (FRAP), strong binding between spin-deposited polyelectrolytes results in a significant slowdown of chain diffusion in salt solutions as compared to dip-deposited films. Moreover, salt-induced chain intermixing in the direction perpendicular to the substrate is largely inhibited in spin-deposited films, resulting in only subdiffusional (<2 Å) chain displacements even after 200 h exposure to 1 M NaCl solutions. Finally, this persistence of polyelectrolyte layering has important ramifications for multistage drug delivery and optical applications of LbL assemblies.
Chain Conformation and Dynamics in Spin-Assisted Weak Polyelectrolyte Multilayers
Zhuk, Aliaksandr; Selin, Victor; Zhuk, Iryna; Belov, Benjamin; Ankner, John F.; Sukhishvili, Svetlana A.
2015-03-13
In this paper, we report on the effect of the deposition technique on film layering, stability, and chain mobility in weak polyelectrolyte layer-by-layer (LbL) films. Ellipsometry and neutron reflectometry (NR) showed that shear forces arising during spin-assisted assembly lead to smaller amounts of adsorbed polyelectrolytes within LbL films, result in a higher degree of internal film order, and dramatically improve stability of assemblies in salt solutions as compared to dip-assisted LbL assemblies. The underlying flattening of polyelectrolyte chains in spin-assisted LbL films was also revealed as an increase in ionization degree of the assembled weak polyelectrolytes. As demonstrated by fluorescencemore » recovery after photobleaching (FRAP), strong binding between spin-deposited polyelectrolytes results in a significant slowdown of chain diffusion in salt solutions as compared to dip-deposited films. Moreover, salt-induced chain intermixing in the direction perpendicular to the substrate is largely inhibited in spin-deposited films, resulting in only subdiffusional (<2 Å) chain displacements even after 200 h exposure to 1 M NaCl solutions. Finally, this persistence of polyelectrolyte layering has important ramifications for multistage drug delivery and optical applications of LbL assemblies.« less
NASA Astrophysics Data System (ADS)
Rajak, Atanu; Divakaran, Uma
2016-04-01
We study the effect of two simultaneous local quenches on the evolution of the Loschmidt echo (LE) and entanglement entropy (EE) of a one dimensional transverse Ising model. In this work, one of the local quenches involves the connection of two spin-1/2 chains at a certain time and the other corresponds to a sudden change in the magnitude of the transverse field at a given site in one of the spin chains. We numerically calculate the dynamics associated with the LE and the EE as a result of such double quenches, and discuss the various timescales involved in this problem using the picture of quasiparticles (QPs) generated as a result of such quenches. We perform a detailed analysis of the probability of QPs produced at the two sites and the nature of the QPs in various phases, and obtain interesting results. More specifically, we find partial reflection of these QPs at the defect center or the site of h-quench, resulting in new timescales which have never been reported before.
All possible coupling schemes in XY spin chains for perfect state transfer
Wang Yaoxiong; Shuang Feng; Rabitz, Herschel
2011-07-15
We investigate quantum state transfer in XY spin chains and propose a recursive procedure to construct the nonuniform couplings within these chains of arbitrary length in order to achieve perfect state transfer. We show that this method is capable of finding all possible coupling schemes for perfect state transfer. These schemes, without external control fields, involve analytically identified engineered couplings without the need for dynamical control. The analytical solutions provide all information for coupling design.
NASA Astrophysics Data System (ADS)
Paul, Susobhan; Ghosh, Asim Kumar
2014-08-01
The ground state energy and the spin gap of a spin-12 Heisenberg antiferromagnetic XXZ chain in the presence of longitudinal staggered field (hz) have been estimated by using Jordan-Wigner representation, exact diagonalization and perturbative analysis. All those quantities have been obtained for a region of anisotropic parameter (Δ) defined by 0≤Δ≤1. For Δ=0, the exact value of ground state energy is found for finite values of hz. The spin gap is found to develop as soon as the staggered field is switched on. The magnitude of spin gap is compared with the field induced gap measured in magnetic compounds CuBenzoate and Yb4As3 when Δ=1. The dependence of spin gap on both Δ and hz has been found which gives rise to scaling laws associated with hz. Scaling exponents obtained in two different cases show excellent agreements with the previously determined values. The variation of scaling exponents with Δ can be fitted with a regular function.
Finite-temperature behavior of an impurity in the spin-1/2 XXZ chain
NASA Astrophysics Data System (ADS)
Yahagi, Ryoko; Sato, Jun; Deguchi, Tetsuo
2014-11-01
We study the zero- and the finite-temperature behavior of the integrable spin-1/2 XXZ periodic chain with an impurity by the algebraic and thermal Bethe ansatz methods. We evaluate the local magnetization on the impurity site at zero temperature analytically and derive the impurity susceptibility exactly from it. In the graphs of the impurity specific heat versus temperature, we show how the impurity spin becomes more liberated from the bulk many-body effect as the exchange coupling between the impurity spin and other spins decreases and that at low temperature it couples strongly to them such as in the Kondo effect. Thus, we observe not only the crossover behavior from the high- to the low-temperature regime, but another from the N-site chain to the (N - 1)-site chain with a free impurity spin. We also show that the estimate of the Wilson ratio at a given low temperature is independent of the impurity parameter if its absolute value is small enough with respect to the temperature and the universality class is described by the XXZ anisotropy in terms of the dressed charge.
Algebraic Bethe ansatz for the Temperley-Lieb spin-1 chain
NASA Astrophysics Data System (ADS)
Nepomechie, Rafael I.; Pimenta, Rodrigo A.
2016-09-01
We use the algebraic Bethe ansatz to obtain the eigenvalues and eigenvectors of the spin-1 Temperley-Lieb open quantum chain with "free" boundary conditions. We exploit the associated reflection algebra in order to prove the off-shell equation satisfied by the Bethe vectors.
Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions
NASA Astrophysics Data System (ADS)
Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-10-01
Employing the off-diagonal Bethe ansatz method proposed recently by the present authors, we exactly diagonalize the XXX spin chain with arbitrary boundary fields. By constructing a functional relation between the eigenvalues of the transfer matrix and the quantum determinant, the associated T-Q relation and the Bethe ansatz equations are derived.
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
Man, Zhong-Xiao; An, Nguyen Ba; Xia, Yun-Jie; Kim, Jaewan
2014-12-15
In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies. As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.
A representation basis for the quantum integrable spin chain associated with the su(3) algebra
NASA Astrophysics Data System (ADS)
Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-05-01
An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrable models. It is found that all the monodromy-matrix elements acting on a basis vector take simple forms. With the help of the basis, we construct eigenstates of the su(3) inhomogeneous spin torus (the trigonometric su(3) spin chain with antiperiodic boundary condition) from its spectrum obtained via the off-diagonal Bethe Ansatz (ODBA). Based on small sites (i.e. N = 2) check, it is conjectured that the homogeneous limit of the eigenstates exists, which gives rise to the corresponding eigenstates of the homogenous model.
Critical excitation spectrum of a quantum chain with a local three-spin coupling
McCabe, John F.; Wydro, Tomasz
2011-09-15
Using the phenomenological renormalization group (PRG), we evaluate the low-energy excitation spectrum along the critical line of a quantum spin chain having a local interaction between three Ising spins and longitudinal and transverse magnetic fields, i.e., a Turban model. The low-energy excitation spectrum found with the PRG agrees with the spectrum predicted for the (D{sub 4},A{sub 4}) conformal minimal model under a nontrivial correspondence between translations at the critical line and discrete lattice translations. Under this correspondence, the measurements confirm a prediction that the critical line of this quantum spin chain and the critical point of the two-dimensional three-state Potts model are in the same universality class.
Numerical Simulation of the Proton Spin-Lattice Relaxation in Bimetallic Chain Compounds
NASA Astrophysics Data System (ADS)
Yamamoto, S.
In response to recent proton spin relaxation-time measurements on a bimetallic chain compound NiCu(C7H6N2O6) (H2O)3\\cdot2H2O, we simulate the Raman relaxation process in Heisenberg alternating-spin chains on the assumption of predominantly dipolar hyperfine interactions between protons and magnetic ions. The relaxation time T1 is formulated within the spin-wave theory and is estimated as a function of temperature and an applied field H by a quantum Monte Carlo method. The low-temperature behavior of the relaxation rate T1-1 qualitatively varies with (S,s), while T1-1 is almost proportional to H-1/2 due to the characteristic dispersion relations.
Quantum chaos: An introduction via chains of interacting spins 1/2
NASA Astrophysics Data System (ADS)
Gubin, Aviva; F. Santos, Lea
2012-03-01
We introduce aspects of quantum chaos by analyzing the eigenvalues and the eigenstates of quantum many-body systems. The properties of quantum systems whose classical counterparts are chaotic differ from those whose classical counterparts are not chaotic. The spectrum of the first exhibits repulsion of the energy levels, which is one of the main signatures of quantum chaos. We show how level repulsion develops in one-dimensional systems of interacting spins 1/2 which are devoid of random elements and involve only two-body interactions. In addition to the statistics of the eigenvalues, we analyze how the structure of the eigenstates may indicate chaos. The programs used to obtain the data are available online.
Two dimensionality in quasi-one-dimensional cobalt oxides
NASA Astrophysics Data System (ADS)
Sugiyama, J.; Nozaki, H.; Brewer, J. H.; Ansaldo, E. J.; Morris, G. D.; Takami, T.; Ikuta, H.; Mizutani, U.
2006-03-01
Magnetism of quasi-one-dimensional (1D) cobalt oxides ACoO ( A=Ca, Sr and Ba, n=1-5 and ∞) was investigated by μ+SR using polycrystalline samples, at temperatures from 300 K down to 1.8 K. The wTF- μ+SR experiments showed the existence of a magnetic transition in all six samples investigated. The onset temperature of the transition (Tcon) was found to decrease with n; that is, 100±25, 90±10, 85±10, 65±10 50±10, and 15±1 K for n=1-5, and ∞, respectively. In particular, for the samples with n=2-5, Tcon was detected only by the present μ+SR measurements. A muon spin oscillation was clearly observed in both Ca 3Co 2O 6(n=1) and BaCoO 3(n=∞), whereas only a fast relaxation is apparent even at 1.8 K in the other four samples ( n=2-5). Taking together with the fact that the paramagnetic Curie temperature ranges from -150 to -200 K for the compound with n=2 and 3, the μ+SR result indicates that a two-dimensional (2D) short-range antiferromagnetic (AF) order, which has been thought to be unlikely to exist at high T due to a relatively strong 1D F interaction, appears below Tcon for all compounds with n=1-5; but quasi-static long-range AF order formed only in Ca 3Co 2O 6, below 25 K. For BaCoO 3(n=∞), as T decreased from 300 K, 1D F order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.
Disordered XYZ spin chain simulations using the spectrum bifurcation renormalization group
NASA Astrophysics Data System (ADS)
Slagle, Kevin; You, Yi-Zhuang; Xu, Cenke
2016-07-01
We study the disordered XYZ spin chain using the recently developed spectrum bifurcation renormalization group [Y.-Z. You et al., Phys. Rev. B 93, 104205 (2016), 10.1103/PhysRevB.93.104205] numerical method. With strong disorder, the phase diagram consists of three many-body localized (MBL) spin-glass phases. We argue that, with sufficiently strong disorder, these spin-glass phases are separated by marginally MBL critical lines. We examine the critical lines of this model by measuring the entanglement entropy and Edwards-Anderson spin-glass order parameter, and find that the critical lines are characterized by an effective central charge c'=ln2 . Our data also suggest continuously varying critical exponents along the critical lines. We also demonstrate how long-range mutual information [introduced in C.-M. Jian et al., arXiv:1508.07006] can distinguish these phases.
Fermionic Representation of a Spin S chain Using subalgebra of SU(2S+1)
NASA Astrophysics Data System (ADS)
Duki, Solomon F.; Yu, Yi-Kuo
2014-03-01
Quantum mechanical spins behave neither as pure bosonic nor as pure fermionic operators. Over the years many different kinds of important mappings have been introduced that transform spins systems in to either multi-bosonic or multi-fermionic systems. These mappings have often successfully transformed some of the most difficult many body problems into simpler ones. Moreover, because symmetries that are hidden in one representation can be manifested in other representations, such mappings are also helpful in uncovering hidden symmetries in physical problems. Examples of such transformations include the Holstein-Primakoff, the Schwinger bosons, the Matsubara-Matsuda, and the Jordan-Wigner transformations. Despite their success for low dimensional systems and at smaller values of spins, these transformations become ineffective in reducing the degree of difficulty of correlated systems when the system dimension increase or when the underlying system has a higher spin values. In the context of a spin chain, we introduce a new spin fermion transformation for arbitrary spin S using the subalgebra of the bigger su(2S+1) algebra and discuss its potential applications in physical problems. This research was supported by the Intramural Research Program of the NIH, National Library of Medicine.
Sahoo, Shaon; Durga Prasad Goli, V M L; Sen, Diptiman; Ramasesha, S
2014-07-01
We study Heisenberg spin-1/2 and spin-1 chains with alternating ferromagnetic (J(F)(1)) and antiferromagnetic (J(A)(1)) nearest-neighbor interactions and a ferromagnetic next-nearest-neighbor interaction (J(F)(2)). In this model frustration is present due to the non-zero J(F)(2). The model with site spin s behaves like a Haldane spin chain, with site spin 2s in the limit of vanishing J(F)(2)and large J(F)(1)/J(A)(1). We show that the exact ground state of the model can be found along a line in the parameter space. For fixed J(F)(1), the phase diagram in the space of J(A)(1)-J(F)(2) is determined using numerical techniques complemented by analytical calculations. A number of quantities, including the structure factor, energy gap, entanglement entropy and zero temperature magnetization, are studied to understand the complete phase diagram. An interesting and potentially important feature of this model is that it can exhibit a macroscopic magnetization jump in the presence of a magnetic field; we study this using an effective Hamiltonian. PMID:24935169
Universal Bethe ansatz solution for the Temperley-Lieb spin chain
NASA Astrophysics Data System (ADS)
Nepomechie, Rafael I.; Pimenta, Rodrigo A.
2016-09-01
We consider the Temperley-Lieb (TL) open quantum spin chain with "free" boundary conditions associated with the spin-s representation of quantum-deformed sl (2). We construct the transfer matrix, and determine its eigenvalues and the corresponding Bethe equations using analytical Bethe ansatz. We show that the transfer matrix has quantum group symmetry, and we propose explicit formulas for the number of solutions of the Bethe equations and the degeneracies of the transfer-matrix eigenvalues. We propose an algebraic Bethe ansatz construction of the off-shell Bethe states, and we conjecture that the on-shell Bethe states are highest-weight states of the quantum group. We also propose a determinant formula for the scalar product between an off-shell Bethe state and its on-shell dual, as well as for the square of the norm. We find that all of these results, except for the degeneracies and a constant factor in the scalar product, are universal in the sense that they do not depend on the value of the spin. In an appendix, we briefly consider the closed TL spin chain with periodic boundary conditions, and show how a previously-proposed solution can be improved so as to obtain the complete (albeit non-universal) spectrum.
NASA Astrophysics Data System (ADS)
Du, Fei; Zhou, Zhifa; Miao, Xijia; Mao, Xi-an
2000-03-01
When a heteronuclear multiple quantum coherence (HMQC) NMR experiment is performed in one-dimensional mode, due to the wide range in chemical shift of the indirectly detected spin and the limited strength of the radio-frequency field, the off-resonance effect on the intensity of the observed signal can be serious. In this paper, the effect is studied using the spin-density-matrix formalism and simulations of the experimental results are presented. The bilinear rotation-decoupling sequence (BIRD), which is usually used in HMQC experiments, is also discussed. It is shown that the BIRD sequence has a negative effect by virtue of narrowing the excitation band.
Topological edge state with zero Hall conductivity in quasi-one dimensional system
NASA Astrophysics Data System (ADS)
Ye, Xiao-Shan
2016-09-01
We explore the structure of the energy spectra of quasi-one dimensional (Q1D) system subjected to spin-density-wave SDW states. The structure of the energy spectra opens energy gaps with Zeeman field. Theses gaps result in plateaus for the Quantum Hall conductivity which is associated with edge states. Different from the SSH Hofstadter model, here we show that there are a doublet of edge states contribution to zero Hall conductivity. These edge states are allowed for magnetic control of spin currents. The topological effects predicted here could be tested directly in organic conductors system.
A new perspective on the integrability of Inozemtsev’s elliptic spin chain
Finkel, Federico; González-López, Artemio
2014-12-15
The aim of this paper is studying from an alternative point of view the integrability of the spin chain with long-range elliptic interactions introduced by Inozemtsev. Our analysis relies on some well-established conjectures characterizing the chaotic vs. integrable behavior of a quantum system, formulated in terms of statistical properties of its spectrum. More precisely, we study the distribution of consecutive levels of the (unfolded) spectrum, the power spectrum of the spectral fluctuations, the average degeneracy, and the equivalence to a classical vertex model. Our results are consistent with the general consensus that this model is integrable, and that it is closer in this respect to the Heisenberg chain than to its trigonometric limit (the Haldane–Shastry chain). On the other hand, we present some numerical and analytical evidence showing that the level density of Inozemtsev’s chain is asymptotically Gaussian as the number of spins tends to infinity, as is the case with the Haldane–Shastry chain. We are also able to compute analytically the mean and the standard deviation of the spectrum, showing that their asymptotic behavior coincides with that of the Haldane–Shastry chain. - Highlights: • Construction of Inozemtsev’s elliptic spin chain using Polychronakos’s freezing trick. • Numerical evidence of the Gaussian character of the level density. • Exact computation and asymptotics of the mean and standard deviation of the spectrum. • Evidence of the chain’s integrability from key statistical properties of its spectrum. • Exact evaluation of finite sums of powers of Weierstrass’s elliptic function.
One-dimensional reacting gas nonequilibrium performance program
NASA Technical Reports Server (NTRS)
Frey, H. M.; Kliegel, J. R.
1968-01-01
Computer program calculates the inviscid one-dimensional equilibrium, frozen, and nonequilibrium nozzle expansion of gaseous propellant exhaust mixtures containing the elements - carbon, hydrogen, oxygen, nitrogen, fluorine and chlorine. The program performs calculations for conical nozzles only.
Extending the Analysis of One-Dimensional Motion.
ERIC Educational Resources Information Center
Canderle, Luis H.
1999-01-01
Proposes that introductory physics courses extend the analysis of one-dimensional motion to a more sophisticated level. Gives four experimental setups and graphical analysis of the distance, velocity, and acceleration in the vertical and horizontal directions. (WRM)
Asymptotic formula for eigenvalues of one dimensional Dirac system
NASA Astrophysics Data System (ADS)
Ulusoy, Ismail; Penahlı, Etibar
2016-06-01
In this paper, we study the spectral problem for one dimensional Dirac system with Dirichlet boundary conditions. By using Counting lemma, we give an asymptotic formulas of eigenvalues of Dirac system.
Exact asymptotic behavior of correlation functions for disordered spin-1/2 XXZ chains
NASA Astrophysics Data System (ADS)
Ristivojevic, Zoran; Petković, Aleksandra; Giamarchi, Thierry
2012-11-01
We consider an XXZ spin-1/2 chain in the presence of several types of disorder that do not break the XY symmetry of the system. We calculate the complete asymptotic form of the spin-correlation functions at zero temperature at the transition between liquid and disordered phase that occurs for a special value of anisotropy in the limit of small disorder. Apart from a universal power law decay of correlations, we find additional logarithmic corrections due to marginally irrelevant operator of disorder.
NASA Astrophysics Data System (ADS)
Caslin, K.; Kremer, R. K.; Razavi, F. S.; Hanfland, M.; Syassen, K.; Gordon, E. E.; Whangbo, M.-H.
2016-01-01
CuAs2O4 is a S =1 /2 quasi-one-dimensional ribbon chain compound which orders ferromagnetically at 7.4 K under ambient conditions. CuAs2O4 features nearest- and next-nearest-neighbor spin-exchange interactions along the spin chains with a ratio α =Jnn /Jnnn in close proximity to the quantum critical point at α =-4 . We apply hydrostatic pressure up to ˜11.5 GPa and examine the structural and magnetic properties using Raman spectroscopy, single-crystal synchrotron x-ray diffraction, and magnetic susceptibility measurements. External pressure severely reduces the axial Jahn-Teller elongations of the oxygen octahedra surrounding the Cu2 + cations and stabilizes the ferromagnetic ground state. At 9.2(2) GPa, we detect a structural phase transition leading to an increased twisting of the CuO2 ribbon chains and a large drop of the magnetic ordering temperature. Ab initio density functional theory calculations of the spin-exchange parameters, using the structural parameters as a function of pressure, support the experimental findings.
Hidden one-dimensional order in a three-dimensional metal
NASA Astrophysics Data System (ADS)
Feng, Yejun; Wang, Jiyang; Palmer, A.; Mihaila, B.; Yan, J.-Q.; Littlewood, P. B.; Rosenbaum, T. F.
2014-03-01
The rare-earth intermetallic GdSi has a spin-density-wave ground state originating from a cooperative interaction between nested itinerant spins and RKKY exchange-ordered local moments. We probe directly the stability of the SDW under pressure, using non-resonant x-ray magnetic diffraction. The incommensurate antiferromagnetic state remains unchanged up to 16.4 GPa, even though the lattice contracts by 5%! Band structure calculations show that the stability can be attributed to a persistently nested portion of the Fermi surface that grows increasingly one-dimensional under pressure. This cooperatively ordered itinerant and local spin ensemble is expected to provide a stable antiferromagnetic state in thin films, even with large lattice strain and lattice mismatch, and could be suitable for spin-valve and giant magnetoresistance device applications.
Order Parameter to Characterize Valence-Bond-Solid States in Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Nakamura, Masaaki; Todo, Synge
2002-07-01
We propose an order parameter to characterize valence-bond-solid (VBS) states in quantum spin chains, given by the ground-state expectation value of a unitary operator appearing in the Lieb-Schultz-Mattis argument. We show that the order parameter changes the sign according to the number of valence bonds (broken valence bonds) at the boundary for periodic (open) systems. This allows us to determine the phase transition point in between different VBS states. We demonstrate this theory in the successive dimerization transitions of the bond-alternating Heisenberg chains, using the quantum Monte Carlo method.
Realization of higher Wess-Zumino-Witten models in spin chains
NASA Astrophysics Data System (ADS)
Michaud, Frédéric; Manmana, Salvatore R.; Mila, Frédéric
2013-04-01
Building on the generalization of the exactly dimerized Majumdar-Ghosh ground state to arbitrary spin S for the Heisenberg chain with a three-site term (Si-1·Si)(Si·Si+1)+H.c., we use density-matrix renormalization group simulations and exact diagonalizations to determine the nature of the dimerization transition for S=1, 3/2, and 2. The resulting central charge and critical exponent are in good agreement with the SU(2)k=2S Wess-Zumino-Witten values c=3k/(2+k) and η=3/(2+k). Since the three-site term that induces dimerization appears naturally if exchange interactions are calculated beyond second order, these results suggest that SU(2)k>1 Wess-Zumino-Witten models might finally be realized in actual spin chains.
The Master T-Operator for Inhomogeneous XXX Spin Chain and mKP Hierarchy
NASA Astrophysics Data System (ADS)
Zabrodin, Anton
2014-01-01
Following the approach of [Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., J. High Energy Phys. 2013 (2013), no. 9, 064, 65 pages, arXiv:1112.3310], we show how to construct the master T-operator for the quantum inhomogeneous GL(N) XXX spin chain with twisted boundary conditions. It satisfies the bilinear identity and Hirota equations for the classical mKP hierarchy. We also characterize the class of solutions to the mKP hierarchy that correspond to eigenvalues of the master T-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum spin chain and the classical Ruijsenaars-Schneider system of particles.
NASA Astrophysics Data System (ADS)
Dou, Jian; Hernandez, Sarah C.; Yu, Chengtao; Pechan, Michael J.; Folks, Liesl; Katine, Jordan A.; Carey, Matthew J.
2010-05-01
Spin wave spectra in exchange-coupled nanoscale dot chain arrays were studied using ferromagnetic resonance. The dot chain arrays, with dot diameters of 300 nm and thicknesses of 40 nm, coupled via Permalloy bridges of width ranging from 0 (no bridge) to 60 nm, were fabricated using e-beam lithography. In the perpendicularly magnetized isolated dots, multiple sharp ferromagnetic resonant peaks were observed, which are associated with the quantized in-plane wave vector due to the finite dot radius. These spectrum lines shift to higher fields for samples with wider bridges due to the increasing effective demagnetizing factor. For coupled dots, additional satellite peaks were observed at both sides of higher order spin wave modes and at the lower field side of the uniform mode. We show that these satellite peaks can be attributed to the excitation in each bridged dot and the interdot exchange coupling, respectively.
Integrable open spin-chains in AdS3 /CFT2 correspondences
NASA Astrophysics Data System (ADS)
Prinsloo, Andrea; Regelskis, Vidas; Torrielli, Alessandro
2015-11-01
We study integrable open boundary conditions for d (2 ,1 ;α )2 and p s u (1 ,1 |2 )2 spin-chains. Magnon excitations of these open spin-chains are mapped to massive excitations of type-IIB open superstrings ending on D-branes in the AdS3×S3×S3×S1 and AdS3×S3×T4 supergravity geometries with pure R-R flux. We derive reflection matrix solutions of the boundary Yang-Baxter equation which intertwine representations of a variety of boundary coideal subalgebras of the bulk Hopf superalgebra. Many of these integrable boundaries are matched to D1- and D5-brane maximal giant gravitons.
Quantum and classical thermal correlations in the XY spin-(1/2) chain
Maziero, J.; Guzman, H. C.; Celeri, L. C.; Serra, R. M.; Sarandy, M. S.
2010-07-15
We investigate pairwise quantum correlation as measured by the quantum discord as well as its classical counterpart in the thermodynamic limit of anisotropic XY spin-1/2 chains in a transverse magnetic field for both zero and finite temperatures. Analytical expressions for both classical and quantum correlations are obtained for spin pairs at any distance. In the case of zero temperature, it is shown that the quantum discord for spin pairs farther than second neighbors is able to characterize a quantum phase transition, even though pairwise entanglement is absent for such distances. For finite temperatures, we show that quantum correlations can be increased with temperature in the presence of a magnetic field. Moreover, in the XX limit, thermal quantum discord is found to be dominant over classical correlation while the opposite scenario takes place for the transverse field Ising model limit.
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
Boll, Martin; Hilker, Timon A; Salomon, Guillaume; Omran, Ahmed; Nespolo, Jacopo; Pollet, Lode; Bloch, Immanuel; Gross, Christian
2016-09-16
The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly correlated electrons and is believed to capture essential aspects of high-temperature superconductivity. Ultracold fermions in optical lattices allow for the simulation of the Hubbard Hamiltonian with control over kinetic energy, interactions, and doping. A great challenge is to reach the required low entropy and to observe antiferromagnetic spin correlations beyond nearest neighbors, for which quantum gas microscopes are ideal. Here, we report on the direct, single-site resolved detection of antiferromagnetic correlations extending up to three sites in spin-1/2 Hubbard chains, which requires entropies per particle well below s* = ln(2). The simultaneous detection of spin and density opens the route toward the study of the interplay between magnetic ordering and doping in various dimensions.
Singular solutions, repeated roots and completeness for higher-spin chains
NASA Astrophysics Data System (ADS)
Hao, Wenrui; Nepomechie, Rafael I.; Sommese, Andrew J.
2014-03-01
We investigate the completeness of the solutions of the Bethe equations for the integrable spin-s isotropic (XXX) spin chain with periodic boundary conditions. Solutions containing the exact string is, i(s - 1), …, -i(s - 1), -is are singular. For s > 1/2, there exist also ‘strange’ solutions with repeated roots, which nevertheless are physical (i.e., correspond to eigenstates of the Hamiltonian). We derive conditions for the singular solutions and the solutions with repeated roots to be physical. We formulate a conjecture for the number of solutions with pairwise distinct roots in terms of the numbers of singular and strange solutions. Using homotopy continuation, we solve the Bethe equations numerically for s = 1 and s = 3/2 up to eight sites, and find some support for the conjecture. We also present several examples of strange solutions.
Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains.
Boll, Martin; Hilker, Timon A; Salomon, Guillaume; Omran, Ahmed; Nespolo, Jacopo; Pollet, Lode; Bloch, Immanuel; Gross, Christian
2016-09-16
The repulsive Hubbard Hamiltonian is one of the foundational models describing strongly correlated electrons and is believed to capture essential aspects of high-temperature superconductivity. Ultracold fermions in optical lattices allow for the simulation of the Hubbard Hamiltonian with control over kinetic energy, interactions, and doping. A great challenge is to reach the required low entropy and to observe antiferromagnetic spin correlations beyond nearest neighbors, for which quantum gas microscopes are ideal. Here, we report on the direct, single-site resolved detection of antiferromagnetic correlations extending up to three sites in spin-1/2 Hubbard chains, which requires entropies per particle well below s* = ln(2). The simultaneous detection of spin and density opens the route toward the study of the interplay between magnetic ordering and doping in various dimensions. PMID:27634528
Work statistics, irreversible heat and correlations build-up in joining two spin chains
NASA Astrophysics Data System (ADS)
Apollaro, T. J. G.; Francica, Gianluca; Paternostro, Mauro; Campisi, Michele
2015-10-01
We investigate the influences of quantum many-body effects, such as criticality and the existence of factorization fields, in the thermodynamic cost of establishing a bonding link between two independent quantum spin chains. We provide a physical interpretation of the behavior of irreversible work spent in such a process by linking the phenomenology of such quantities to the properties of the spectrum of the system.
Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain
NASA Astrophysics Data System (ADS)
Imbrie, John Z.
2016-07-01
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a Kolmogorov-Arnold-Moser-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor-product basis into a complete set of exact many-body eigenfunctions.
Spin Chains with Non-Diagonal Boundaries and Trigonometric SOS Model with Reflecting End
NASA Astrophysics Data System (ADS)
Filali, Ghali; Kitanine, Nikolai
2011-01-01
In this paper we consider two a priori very different problems: construction of the eigenstates of the spin chains with non parallel boundary magnetic fields and computation of the partition function for the trigonometric solid-on-solid (SOS) model with one reflecting end and domain wall boundary conditions. We show that these two problems are related through a gauge transformation (so-called vertex-face transformation) and can be solved using the same dynamical reflection algebras.
Kaleidoscope of quantum phases in a long-range interacting spin-1 chain
NASA Astrophysics Data System (ADS)
Gong, Z.-X.; Maghrebi, M. Â. F.; Hu, A.; Foss-Feig, M.; Richerme, P.; Monroe, C.; Gorshkov, A. Â. V.
2016-05-01
Motivated directly by recent trapped-ion quantum simulation experiments, we carry out a comprehensive study of the phase diagram of a spin-1 chain with XXZ-type interactions that decay as 1 /rα , using a combination of finite and infinite-size DMRG calculations, spin-wave analysis, and field theory. In the absence of long-range interactions, varying the spin-coupling anisotropy leads to four distinct and well-studied phases: a ferromagnetic Ising phase, a disordered XY phase, a topological Haldane phase, and an antiferromagnetic Ising phase. If long-range interactions are antiferromagnetic and thus frustrated, we find primarily a quantitative change of the phase boundaries. On the other hand, ferromagnetic (nonfrustrated) long-range interactions qualitatively impact the entire phase diagram. Importantly, for α ≲3 , long-range interactions destroy the Haldane phase, break the conformal symmetry of the XY phase, give rise to a new phase that spontaneously breaks a U (1 ) continuous symmetry, and introduce a possibly exotic tricritical point with no direct parallel in short-range interacting spin chains. Importantly, we show that the main signatures of all five phases found could be observed experimentally in the near future.
NASA Astrophysics Data System (ADS)
Dou, Jian; Hernandez, Sarah C.; Yu, Chengtao; Pechan, Michael J.; Folks, Liesl; Katine, Jordan A.; Carey, Matthew J.
2009-03-01
Spin wave spectra in exchange coupled nanoscale dot chain arrays were studied using ferromagnetic resonance. The dot chain arrays, with dot diameters of 300 nm and thicknesses of 40 nm, coupled via permalloy bridges of width ranging from 0 to 60 nm, were fabricated using e-beam lithography. In the perpendicularly magnetized isolated dots, multiple sharp ferromagnetic resonant peaks were observedootnotetextG.N.Kakazei et al, Appl. Phys. Lett. 85, 443 (2004), which is associated with the quantized in-plane wave vector due to the finite dot radius. These spectrum lines shift to higher fields for samples with wider bridges due to the increasing effective demagnetizing factor. Additional higher order spin wave modes were observed as satellite peaks near the resonance peaks at both higher and lower fields, with larger separation between adjacent spin wave peaks for wider bridge samples. These extra spin wave modes, associated with the inter-dot exchange coupling,will be described in detail. This work is supported by US Dept. of Energy at MU.
A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II
NASA Astrophysics Data System (ADS)
Ogata, Yoshiko
2016-06-01
We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.
Single-file water as a one-dimensional Ising model.
Köfinger, Jürgen; Dellago, Christoph
2010-09-27
We show that single-file water in nanopores can be viewed as a one-dimensional Ising model and investigate, on this basis, the static dielectric response of a chain of hydrogen-bonded water molecules to an external field. To this end, we use a recently developed dipole lattice model which accurately captures the free energetics of nanopore water. In this model, the total energy of the system can be expressed as a sum of effective interactions of chain ends and orientational defects. Neglecting these interactions, we essentially obtain the one-dimensional Ising model which allows us to derive analytical expressions for the free energy as a function of the total dipole moment and for the dielectric susceptibility. Our expressions, which agree very well with simulation results, provide the basis for the interpretation of future dielectric spectroscopy experiments on water-filled nanopore membranes.
Transition from a Two-Dimensional Superfluid to a One-Dimensional Mott Insulator
Bergkvist, Sara; Rosengren, Anders; Saers, Robert; Lundh, Emil; Rehn, Magnus; Kastberg, Anders
2007-09-14
A two-dimensional system of atoms in an anisotropic optical lattice is studied theoretically. If the system is finite in one direction, it is shown to exhibit a transition between a two-dimensional superfluid and a one-dimensional Mott insulating chain of superfluid tubes. Monte Carlo simulations are consistent with the expectation that the phase transition is of Kosterlitz-Thouless type. The effect of the transition on experimental time-of-flight images is discussed.
One-dimensional rainbow technique using Fourier domain filtering.
Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree
2015-11-16
Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets.
Some topological states in one-dimensional cold atomic systems
Mei, Feng; Zhang, Dan-Wei; Zhu, Shi-Liang
2015-07-15
Ultracold atoms trapped in optical lattices nowadays have been widely used to mimic various models from condensed-matter physics. Recently, many great experimental progresses have been achieved for producing artificial magnetic field and spin–orbit coupling in cold atomic systems, which turn these systems into a new platform for simulating topological states. In this paper, we give a review focusing on quantum simulation of topologically protected soliton modes and topological insulators in one-dimensional cold atomic system. Firstly, the recent achievements towards quantum simulation of one-dimensional models with topological non-trivial states are reviewed, including the celebrated Jackiw–Rebbi model and Su–Schrieffer–Heeger model. Then, we will introduce a dimensional reduction method for systematically constructing high dimensional topological states in lower dimensional models and review its applications on simulating two-dimensional topological insulators in one-dimensional optical superlattices.
One-dimensional rainbow technique using Fourier domain filtering.
Wu, Yingchun; Promvongsa, Jantarat; Wu, Xuecheng; Cen, Kefa; Grehan, Gerard; Saengkaew, Sawitree
2015-11-16
Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets. PMID:26698532
Pose estimation for one-dimensional object with general motion
NASA Astrophysics Data System (ADS)
Liu, Jinbo; Song, Ge; Zhang, Xiaohu
2014-11-01
Our primary interest is in real-time one-dimensional object's pose estimation. In this paper, a method to estimate general motion one-dimensional object's pose, that is, the position and attitude parameters, using a single camera is proposed. Centroid-movement is necessarily continuous and orderly in temporal space, which means it follows at least approximately certain motion law in a short period of time. Therefore, the centroid trajectory in camera frame can be described as a combination of temporal polynomials. Two endpoints on one-dimensional object, A and B, at each time are projected on the corresponding image plane. With the relationship between A, B and centroid C, we can obtain a linear equation system related to the temporal polynomials' coefficients, in which the camera has been calibrated and the image coordinates of A and B are known. Then in the cases that object moves continuous in natural temporal space within the view of a stationary camera, the position of endpoints on the one-dimensional object can be located and also the attitude can be estimated using two end points. Moreover the position of any other point aligned on one-dimensional object can also be solved. Scene information is not needed in the proposed method. If the distance between the endpoints is not known, a scale factor between the object's real positions and the estimated results will exist. In order to improve the algorithm's performance from accuracy and robustness, we derive a pain of linear and optimal algorithms. Simulations' and experiments' results show that the method is valid and robust with respect to various Gaussian noise levels. The paper's work contributes to making self-calibration algorithms using one-dimensional objects applicable to practice. Furthermore, the method can also be used to estimate the pose and shape parameters of parallelogram, prism or cylinder objects.
Dynamic magnetism of an iron(II)-chlorido spin chain and its hexametallic segment.
Qin, Lei; Zhang, Zhong; Zheng, Zhiping; Speldrich, Manfred; Kögerler, Paul; Xue, Wei; Wang, Bao-Ying; Chen, Xiao-Ming; Zheng, Yan-Zhen
2015-01-21
An air-stable iron(ii) chain compound [Fe(phen)(Cl)2]n (, phen = 1,10-phenanthroline) was prepared and exhibits intrachain ferromagnetic interactions as well as competing interchain antiferromagnetic interactions that are mediated by π-π stacking of the phen ligands, resulting in metamagnetic behaviour. The interchain interactions can be altered by changing the external magnetic field, and disparate magnetic dynamics was thus observed from zero to the critical field of 1500 Oe. Zero-field cooled (ZFC) and field-cooled (FC) magnetization and heat capacity measurements indicate that long-range antiferromagnetic ordering occurs at lower fields, and this ordering disappears when the external field is larger than 1500 Oe. The low-frequency ac susceptibility data are consistent with the exponential increase of the temperature-dependent dc data, indicating a Glauber-type dynamics under the field of 1500 Oe. Thus, is considered as a metamagnetic single-chain magnet. For further analysis, a discrete hexametallic segment of the chain, [Fe6(phen)6(Cl)12] (), was also isolated and was shown to possess a high-spin ground state and display slow magnetic relaxations like single-molecule magnets. Magnetic analysis using CONDON suggests weak ferromagnetic interactions between the metal centres. The polymeric compound can be viewed as being constructed using the hexametallic unit which is of a low energy barrier, suggesting the significance of intrachain ferromagnetic interactions in enhancing the spin-reversal energy barrier of the short chains. PMID:25428779
Enforced one-dimensional photoconductivity in core-cladding hexabenzocoronenes.
Cohen, Yaron S; Xiao, Shengxiong; Steigerwald, Michael L; Nuckolls, Colin; Kagan, Cherie R
2006-12-01
Photoconductivity in contorted hexabenzocoronene liquid crystals is found to be exclusively one-dimensional. Spectroscopic measurements and density functional theory support the existence of two pi-systems attributed to a low-energy radialene-core and higher energy out-of-plane alkoxyphenyl rings. Persistent photocurrents, measured as a function of field, channel length, and intensity, fit a stretched exponential characteristic of intracolumnar transport, restricted through the radialene-core by the alkoxyphenyl-cladding. Bimolecular recombination is enhanced with increasing carrier concentration by the system's one-dimensionality.
Explicit solutions of one-dimensional total variation problem
NASA Astrophysics Data System (ADS)
Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly
2015-09-01
This work deals with denosing of a one-dimensional signal corrupted by additive white Gaussian noise. A common way to solve the problem is to utilize the total variation (TV) method. Basically, the TV regularization minimizes a functional consisting of the sum of fidelity and regularization terms. We derive explicit solutions of the one-dimensional TV regularization problem that help us to restore noisy signals with a direct, non-iterative algorithm. Computer simulation results are provided to illustrate the performance of the proposed algorithm for restoration of noisy signals.
Magnetic anisotropy in the frustrated spin-chain compound β -TeVO4
NASA Astrophysics Data System (ADS)
Weickert, F.; Harrison, N.; Scott, B. L.; Jaime, M.; Leitmäe, A.; Heinmaa, I.; Stern, R.; Janson, O.; Berger, H.; Rosner, H.; Tsirlin, A. A.
2016-08-01
Isotropic and anisotropic magnetic behavior of the frustrated spin-chain compound β -TeVO4 is reported. Three magnetic transitions observed in zero magnetic field are tracked in fields applied along different crystallographic directions using magnetization, heat capacity, and magnetostriction measurements. Qualitatively different temperature-field diagrams are obtained below 10 T for the field applied along a or b and along c , respectively. In contrast, a nearly isotropic high-field phase emerges above 18 T and persists up to the saturation that occurs around 22.5 T. Upon cooling in low fields, the transitions at TN 1 and TN 2 toward the spin-density-wave and stripe phases are of the second order, whereas the transition at TN 3 toward the helical state is of the first order and entails a lattice component. Our microscopic analysis identifies frustrated J1-J2 spin chains with a sizable antiferromagnetic interchain coupling in the b c plane and ferromagnetic couplings along the a direction. The competition between these ferromagnetic interchain couplings and the helical order within the chain underlies the incommensurate order along the a direction, as observed experimentally. While a helical state is triggered by the competition between J1 and J2 within the chain, the plane of the helix is not uniquely defined because of competing magnetic anisotropies. Using high-resolution synchrotron diffraction and 125Te nuclear magnetic resonance, we also demonstrate that the crystal structure of β -TeVO4 does not change down to 10 K, and the orbital state of V4 + is preserved.
Teaching Module for One-Dimensional, Transient Conduction.
ERIC Educational Resources Information Center
Ribando, Robert J.; O'Leary, Gerald W.
1998-01-01
Describes a PC-based teaching module designed to instruct engineering students in transient one-dimensional conduction heat transfer analysis. The discussion considers problem formulation, nondimensionalization, discretization, numerical stability and the time-step restriction, program operation, and program verification. (MES)
Exact Results for One Dimensional Fluids Through Functional Integration
NASA Astrophysics Data System (ADS)
Fantoni, Riccardo
2016-06-01
We review some of the exactly solvable one dimensional continuum fluid models of equilibrium classical statistical mechanics under the unified setting of functional integration in one dimension. We make some further developments and remarks concerning fluids with penetrable particles. We then apply our developments to the study of the Gaussian core model for which we are unable to find a well defined thermodynamics.
Approximate Approaches to the One-Dimensional Finite Potential Well
ERIC Educational Resources Information Center
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
Underwater striling engine design with modified one-dimensional model
NASA Astrophysics Data System (ADS)
Li, Daijin; Qin, Kan; Luo, Kai
2015-05-01
Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
Underwater striling engine design with modified one-dimensional model
NASA Astrophysics Data System (ADS)
Li, Daijin; Qin, Kan; Luo, Kai
2015-09-01
Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.
Transition density of one-dimensional diffusion with discontinuous drift
NASA Technical Reports Server (NTRS)
Zhang, Weijian
1990-01-01
The transition density of a one-dimensional diffusion process with a discontinuous drift coefficient is studied. A probabilistic representation of the transition density is given, illustrating the close connections between discontinuities of the drift and Brownian local times. In addition, some explicit results are obtained based on the trivariate density of Brownian motion, its occupation, and local times.
One-Dimensional SO2 Predictions for Duct Injection
1993-10-05
DIAN1D is a one-dimensional model that predicts SO2 absorption by slurry droplets injected into a flue gas stream with two-fluid atomizers. DIANUI is an interactive user interface for DIAN1D. It prepares the input file for DIAN1D from plant design specifications and process requirements.
The Long Decay Model of One-Dimensional Projectile Motion
ERIC Educational Resources Information Center
Lattery, Mark Joseph
2008-01-01
This article introduces a research study on student model formation and development in introductory mechanics. As a point of entry, I present a detailed analysis of the Long Decay Model of one-dimensional projectile motion. This model has been articulated by Galileo ("in De Motu") and by contemporary students. Implications for instruction are…
Sandia One-Dimensional Direct and Inverse Thermal Code
1995-02-27
SODDIT is a reliable tool for solving a wide variety of one-dimensional transient heat conduction problems. Originally developed in 1972 to predict the ablation of graphite/carbon bodies reentering the earth''s atmosphere, it has since been modified by the authors to extend its capabilities well beyond its original scope.
Anomalous heat conduction in a one-dimensional ideal gas.
Casati, Giulio; Prosen, Tomaz
2003-01-01
We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices. PMID:12636549
Impurity induced current oscillations in one-dimensional conductors
NASA Astrophysics Data System (ADS)
Artemenko, S. N.; Shapiro, D. S.; Vakhitov, R. R.; Remizov, S. V.
2009-11-01
We study theoretically electronic transport through an isolated local defect in a 1D conductor described in terms of the Luttinger liquid, and show that the well-known tunneling regime of electronic transport leading to power-law I-V curves takes place only in the limit of small voltage. At voltages exceeding a threshold value a new dynamic regime of transport starts in which the DC current bar I induces AC oscillations of frequency f = bar I/e. In gated quantum wires where interaction between electrons is short-ranged, generation linewidth is small provided the inter-electronic repulsion is strong enough, otherwise a wide-band noise is generated. In case of long-range Coulomb interaction generation is coherent at any interaction strength. The effect is related to interaction of the current with Friedel oscillations of the electronic density around the impurity. Manifestations of the effect resemble the Coulomb blockade and the Josephson effect. Oscillations of the electric current are accompanied by spin current oscillations. The results are related to semiconducting quantum wires, metallic atomic chains, carbon nanotubes, graphene nanoribbons and others.
Gapless chiral spin liquid in a kagome Heisenberg model
NASA Astrophysics Data System (ADS)
Bieri, Samuel; Messio, Laura; Bernu, Bernard; Lhuillier, Claire
2015-08-01
Motivated by recent experiments on the Heisenberg S =1 /2 quantum spin liquid candidate material kapellasite, we classify all possible chiral (time-reversal symmetry breaking) spin liquids with fermionic spinons on the kagome lattice. We obtain the phase diagram for the physically relevant extended Heisenberg model, comparing the energies of a wide range of microscopic variational wave functions. We propose that, at low temperature, kapellasite exhibits a gapless chiral spin liquid phase with spinon Fermi surfaces. This two-dimensional state inherits many properties of the nearby one-dimensional phase of decoupled antiferromagnetic spin chains, but also shows some remarkable differences. We discuss the spin structure factors and other physical properties.
Local conservation laws in spin-\\frac{1}{2} XY chains with open boundary conditions
NASA Astrophysics Data System (ADS)
Fagotti, Maurizio
2016-06-01
We revisit the conserved quantities of the spin-\\frac{1}{2} XY model with open boundary conditions. In the absence of a transverse field, we find new families of local charges and show that half of the seeming conservation laws are conserved only if the number of sites is odd. In even chains the set of noninteracting charges is abelian, like in the periodic case when the number of sites is odd. In odd chains the set is doubled and becomes non-abelian, like in even periodic chains. The dependence of the charges on the parity of the chain’s size undermines the common belief that the thermodynamic limit of diagonal ensembles exists. We consider also the transverse-field Ising chain, where the situation is more ordinary. The generalization to the XY model in a transverse field is not straightforward and we propose a general framework to carry out similar calculations. We conjecture the form of the bulk part of the local charges and discuss the emergence of quasilocal conserved quantities. We provide evidence that in a region of the parameter space there is a reduction of the number of quasilocal conservation laws invariant under chain inversion. As a by-product, we study a class of block-Toeplitz-plus-Hankel operators and identify the conditions that their symbols satisfy in order to commute with a given block-Toeplitz.
Using the J1-J2 quantum spin chain as an adiabatic quantum data bus
NASA Astrophysics Data System (ADS)
Chancellor, Nicholas; Haas, Stephan
2012-09-01
This paper investigates numerically a phenomenon which can be used to transport a single q-bit down a J1-J2 Heisenberg spin chain using a quantum adiabatic process. The motivation for investigating such processes comes from the idea that this method of transport could potentially be used as a means of sending data to various parts of a quantum computer made of artificial spins, and that this method could take advantage of the easily prepared ground state at the so-called Majumdar-Ghosh point. We examine several annealing protocols for this process and find similar results for all of them. The annealing process works well up to a critical frustration threshold. There is also a brief section examining what other models this protocol could be used for, examining its use in the XXZ and XYZ models.
Integrable spin chain for the SL(2,R)/U(1) black hole sigma model.
Ikhlef, Yacine; Jacobsen, Jesper Lykke; Saleur, Hubert
2012-02-24
We introduce a spin chain based on finite-dimensional spin-1/2 SU(2) representations but with a non-Hermitian "Hamiltonian" and show, using mostly analytical techniques, that it is described at low energies by the SL(2,R)/U(1) Euclidian black hole conformal field theory. This identification goes beyond the appearance of a noncompact spectrum; we are also able to determine the density of states, and show that it agrees with the formulas in [J. Maldacena, H. Ooguri, and J. Son, J. Math. Phys. (N.Y.) 42, 2961 (2001)] and [A. Hanany, N. Prezas, and J. Troost, J. High Energy Phys. 04 (2002) 014], hence providing a direct "physical measurement" of the associated reflection amplitude. PMID:22463514
Finite-temperature scaling of quantum coherence near criticality in a spin chain
NASA Astrophysics Data System (ADS)
Cheng, Weiwen; Zhang, Zhijun; Gong, Longyan; Zhao, Shengmei
2016-06-01
We explore quantum coherence, inherited from Wigner-Yanase skew information, to analyze quantum criticality in the anisotropic XY chain model at finite temperature. Based on the exact solutions of the Hamiltonian, the quantum coherence contained in a nearest-neighbor spin pairs reduced density matrix ρ is obtained. The first-order derivative of the quantum coherence is non-analytic around the critical point at sufficient low temperature. The finite-temperature scaling behavior and the universality are verified numerically. In particular, the quantum coherence can also detect the factorization transition in such a model at sufficient low temperature. We also show that quantum coherence contained in distant spin pairs can characterize quantum criticality and factorization phenomena at finite temperature. Our results imply that quantum coherence can serve as an efficient indicator of quantum criticality in such a model and shed considerable light on the relationships between quantum phase transitions and quantum information theory at finite temperature.
Characterizing gapped phases of a 1D spin chain with on-site and spatial symmetries
NASA Astrophysics Data System (ADS)
West, Colin; Prakash, Abhishodh; Wei, Tzu-Chieh
We investigate the phase diagram of a spin-1 chain whose Hamiltonian is invariant under translation, lattice inversion and a global A4 symmetry in the spin degrees of freedom. The classification scheme by Chen, Gu, and Wen allows us to enumerate all possible phases under the given symmetry. Then, we determine which of these phases actually occur in the two-parameter Hamiltonian. Using numerical methods proposed by Pollmann and Turner (2012) we determine the characteristic projective parameters for the Symmetry Protected Topological (SPT) phases. In addition, we present a method for determining the projective commutation parameter in these phases. The resulting phase diagram is rich and contains at least nine different SPT phases. This work was supported in part by the National Science Foundation.
Maximizing kinetic energy transfer in one-dimensional many-body collisions
NASA Astrophysics Data System (ADS)
Ricardo, Bernard; Lee, Paul
2015-03-01
The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions.
Spin-1/2 XXZ chain system Cs2CoCl4 in a transverse magnetic field.
Breunig, O; Garst, M; Sela, E; Buldmann, B; Becker, P; Bohatý, L; Müller, R; Lorenz, T
2013-11-01
Comparing high-resolution specific heat and thermal expansion measurements to exact finite-size diagonalization, we demonstrate that Cs(2)CoCl(4) for a magnetic field along the crystallographic b axis realizes the spin-1/2 XXZ chain in a transverse field. Exploiting both thermal as well as virtual excitations of higher crystal-field states, we find that the spin chain is in the XY limit with an anisotropy J(z)/J[perpindicular] ≈ 0.12, substantially smaller than previously believed. A spin-flop Ising quantum phase transition occurs at a critical field of μ(0)H(b)(cr) ≈ 2 T before around 3.5 T the description in terms of an effective spin-1/2 chain becomes inapplicable. PMID:24237555
One-dimensional lipid bilayers on carbon nanotubes: Structure and properties
NASA Astrophysics Data System (ADS)
Artyukhin, Alexander Borisovich
In this work we report design, assembly, and properties of one-dimensional lipid bilayers wrapped around polymer-coated carbon nanotubes. We propose to use this platform as a tool for interfacing nanomaterials with biological systems. We start by presenting a new general procedure for noncovalent modification of carbon nanotubes based on polyelectrolyte layer-by-layer assembly. We confirm formation of multilayer polymer structures around individual carbon nanotubes by transmission electron microscopy and confocal fluorescence microscopy, and demonstrate that sign of the outmost polymer layer controls surface properties of the multilayer assembly. We study how rigidity of a polymer chain influences its ability to adsorb onto high curvature substrates, such as carbon nanotubes. We then build the one-dimensional lipid bilayer structure by spontaneous assembly of lipid molecules in a continuous nanoshell around a template of a carbon nanotube wrapped with hydrophilic polymer cushion layers. We demonstrate that such one-dimensional lipid membranes are fluid and can heal defects, even over repeated damage-recovery cycles. Measured diffusion coefficients of lipid molecules in our polymer-supported bilayers are about 3 orders of magnitude lower than typical values for fluid lipid membranes, which we attribute to strong electrostatic polyelectrolyte-lipid interactions. To explore the potential for device integration of one-dimensional bilayers we investigate effect of polyelectrolyte multilayers on electrical properties of carbon nanotube transistors. We demonstrate that complex interaction of adsorbed species with the device substrate can produce significant and sometimes unexpected side effects on device characteristics. Finally, we fabricate transistors with suspended carbon nanotube channels and devise a method to transfer them in liquid. It allows us to assemble one-dimensional lipid membranes on carbon nanotube devices, characterize their electrical properties, and
Properties of one-dimensional molybdenum nanowires in a confined environment
Sumpter, Bobby G; Meunier, Vincent; Muramatsu, H; Hayashi, T; Kim, Y A; Shimamoto, Daisuke; Terrones Maldonado, Humberto; Dresselhaus, M; Terrones Maldonado, Mauricio; Endo, M
2009-01-01
The atomistic mechanism for the self-assembly of molybdenum into one-dimensional metallic nanowires in a confined environment such as a carbon nanotube is investigated using quantum mechanical calculations. We find that Mo does not organize into linear chains but rather prefers to form four atom per unit-cell nanowires that consist of a subunit of a Mo-BCC crystal. Our model explains the 0.3 nm separation between features measured by high-resolution transmission electron microscopy and why the nanotube diameter must be in the 0.70 - 1.0 nm range to accommodate the smallest stable one-dimensional wire. We also computed the electronic band-structure of the Mo wires inside a nanotube and found significant hybridization with the nanotube states, thereby explaining the experimentally observed quenching of fluorescence and the damping of the radial breathing modes as well as an increased resistance to oxidation.
Exact solution of the trigonometric SU(3) spin chain with generic off-diagonal boundary reflections
NASA Astrophysics Data System (ADS)
Li, Guang-Liang; Cao, Junpeng; Hao, Kun; Wen, Fakai; Yang, Wen-Li; Shi, Kangjie
2016-09-01
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the SUq (3)R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities among the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the SUq (n) algebra.
Non-Gaussian distribution of collective operators in quantum spin chains
NASA Astrophysics Data System (ADS)
Moreno-Cardoner, M.; Sherson, J. F.; De Chiara, G.
2016-10-01
We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions. Interestingly, we show that the distributions for different system sizes collapse on the same curve after scaling for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii–Kosterlitz–Thouless type. We propose and analyse the feasibility of an experimental reconstruction of the distribution using light–matter interfaces for atoms in optical lattices or in optical resonators.
Spin transport in the XXZ chain at finite temperature and momentum.
Steinigeweg, Robin; Brenig, Wolfram
2011-12-16
We investigate the role of momentum for the transport of magnetization in the spin-1/2 Heisenberg chain above the isotropic point at finite temperature and momentum. Using numerical and analytical approaches, we analyze the autocorrelations of density and current and observe a finite region of the Brillouin zone with diffusive dynamics below a cutoff momentum, and a diffusion constant independent of momentum and time, which scales inversely with anisotropy. Lowering the temperature over a wide range, starting from infinity, the diffusion constant is found to increase strongly while the cutoff momentum for diffusion decreases. Above the cutoff momentum diffusion breaks down completely.
Spectral dualities in XXZ spin chains and five dimensional gauge theories
NASA Astrophysics Data System (ADS)
Mironov, A.; Morozov, A.; Runov, B.; Zenkevich, Y.; Zotov, A.
2013-12-01
Motivated by recent progress in the study of supersymmetric gauge theories we propose a very compact formulation of spectral duality between XXZ spin chains. The action of the quantum duality is given by the Fourier transform in the spectral parameter. We investigate the duality in various limits and, in particular, prove it for q → 1, i.e. when it reduces to the XXX/Gaudin duality. We also show that the universal difference operators are given by the normal ordering of the classical spectral curves.
Global and short-range entanglement properties in excited, many-body localized spin chains
NASA Astrophysics Data System (ADS)
West, Colin; Wei, Tzu-Chieh
Many-body localization is a manifestation of the violation of the eigenstate thermalization hypothesis. As one of many characteristic features, eigenstates in a many-body localized regime have been observed to obey an area law in the scaling of the entanglement entropy. Consequently, such states can be efficiently represented by matrix product states (MPS). Here, we use the SIMPS algorithm proposed by Yu, Pekker, and Clark to numerically access these excited states in spin chains with disorder, and study them from the perspective of their global and short range entanglement properties, as well as through other local observables. We compare the behavior across excited states as the strength of disorder varies.
NASA Astrophysics Data System (ADS)
Lazaryan, Hrachya; Nalbandyan, Mikayel; Ananikian, Nerses
2016-08-01
We study physical properties of the symmetric diamond chain with delocalized interstitial spins. We derive an exact solution of the model and characterize the phases of the system at zero temperature. On the basis of this solution, we examine its magnetic and thermal properties as well. The case of nonconserved electron number is then considered. There are phases, which we term as nonclassical, for which electrons in Hubbard dimers are in quantum entangled states. We finally study quantum entanglement depending on Hamiltonian parameters and temperature.
Guo, Y. M.; Ruan, M. Y.; Cheng, J. J.; Sun, Y. C.; Ouyang, Z. W. Xia, Z. C.; Rao, G. H.
2015-06-14
High-field electron spin resonance (ESR) has been employed to study the antiferromagnetic (AFM) ordering state (T < T{sub N} = 55 K) of spin-chain multiferroic Gd{sub 2}BaNiO{sub 5}. The spin reorientation at T{sub SR} = 24 K is well characterized by the temperature-dependent ESR spectra. The magnetization data evidence a field-induced spin-flop transition at 2 K. The frequency-field relationship of the ESR data can be explained by conventional AFM resonance theory with uniaxial anisotropy, in good agreement with magnetization data. Related discussion on zero-field spin gap is presented.
Liu Benqiong; Shao Bin; Li Jungang; Zou Jian; Wu Lianao
2011-05-15
We study the effect of Dzyaloshinskii-Moriya (DM) interaction on pairwise quantum discord, entanglement, and classical correlation in the anisotropic XY spin-half chain. Analytical expressions for both quantum and classical correlations are obtained from the spin-spin correlation functions. These pairwise quantities exhibit interesting behaviors in relation to the relative strengths of the physical parameters. For the infinite chain, we show that the quantum discord can be useful to highlight the quantum phase transition, especially for the long-distance spins, where entanglement decays rapidly. We observe nonanalyticities of the derivatives of both quantum and classical correlations with respect to the magnetic intensity at the critical point; interestingly, the DM interaction weakens the critical behavior in the derivatives of these correlations. While the DM interaction suppresses the standard behaviors of the XY model, it enhances surprisingly the pairwise entanglement for the third nearest neighbor spins.
Disorder from order among anisotropic next-nearest-neighbor Ising spin chains in SrHo2O4
Wen, J. -J.; Tian, W.; Garlea, V. O.; Koohpayeh, S. M.; McQueen, T. M.; Li, H. -F.; Yan, J. -Q.; Rodriguez-Rivera, J. A.; Vaknin, D.; Broholm, C. L.
2015-02-26
In this study, we describe why Ising spin chains with competing interactions in SrHo2O4 segregate into ordered and disordered ensembles at low temperatures (T). Using elastic neutron scattering, magnetization, and specific heat measurements, the two distinct spin chains are inferred to have Néel (↑↓↑↓) and double-Néel (↑↑↓↓) ground states, respectively. Below TN = 0.68(2)K, the Néel chains develop three-dimensional long range order (LRO), which arrests further thermal equilibration of the double-Néel chains so they remain in a disordered incommensurate state for T below TS = 0.52(2)K. SrHo2O4 distills an important feature of incommensurate low dimensional magnetism: kinetically trapped topological defectsmore » in a quasi–d–dimensional spin system can preclude order in d + 1 dimensions.« less
Spatial coherence properties of one dimensional exciton-polariton condensates.
Fischer, J; Savenko, I G; Fraser, M D; Holzinger, S; Brodbeck, S; Kamp, M; Shelykh, I A; Schneider, C; Höfling, S
2014-11-14
In this work, we combine a systematic experimental investigation of the power- and temperature-dependent evolution of the spatial coherence function, g^{(1)}(r), in a one dimensional exciton-polariton channel with a modern microscopic numerical theory based on a stochastic master equation approach. The spatial coherence function g^{(1)}(r) is extracted via high-precision Michelson interferometry, which allows us to demonstrate that in the regime of nonresonant excitation, the dependence g^{(1)}(r) reaches a saturation value with a plateau, which is determined by the intensity of the pump and effective temperature of the crystal lattice. The theory, which was extended to allow for treating incoherent excitation in a stochastic frame, matches the experimental data with good qualitative and quantitative agreement. This allows us to verify the prediction that the decay of the off-diagonal long-range order can be almost fully suppressed in one dimensional condensate systems.
The one-dimensional Coulomb lattice fluid capacitor
NASA Astrophysics Data System (ADS)
Démery, Vincent; Dean, David S.; Hammant, Thomas C.; Horgan, Ronald R.; Podgornik, Rudolf
2012-08-01
The one-dimensional Coulomb lattice fluid in a capacitor configuration is studied. The model is formally exactly soluble via a transfer operator method within a field theoretic representation of the model. The only interactions present in the model are the one-dimensional Coulomb interaction between cations and anions and the steric interaction imposed by restricting the maximal occupancy at any lattice site to one particle. Despite the simplicity of the model, a wide range of intriguing physical phenomena arise, some of which are strongly reminiscent of those seen in experiments and numerical simulations of three-dimensional ionic liquid based capacitors. Notably, we find regimes where over-screening and density oscillations are seen near the capacitor plates. The capacitance is also shown to exhibit strong oscillations as a function of applied voltage. It is also shown that the corresponding mean-field theory misses most of these effects. The analytical results are confirmed by extensive numerical simulations.
Fate of classical solitons in one-dimensional quantum systems.
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Excitonic condensation in spatially separated one-dimensional systems
Abergel, D. S. L.
2015-05-25
We show theoretically that excitons can form from spatially separated one-dimensional ground state populations of electrons and holes, and that the resulting excitons can form a quasicondensate. We describe a mean-field Bardeen-Cooper-Schrieffer theory in the low carrier density regime and then focus on the core-shell nanowire giving estimates of the size of the excitonic gap for InAs/GaSb wires and as a function of all the experimentally relevant parameters. We find that optimal conditions for pairing include small overlap of the electron and hole bands, large effective mass of the carriers, and low dielectric constant of the surrounding media. Therefore, one-dimensional systems provide an attractive platform for the experimental detection of excitonic quasicondensation in zero magnetic field.
One-dimensional Hubbard-Luttinger model for carbon nanotubes
NASA Astrophysics Data System (ADS)
Ishkhanyan, H. A.; Krainov, V. P.
2015-06-01
A Hubbard-Luttinger model is developed for qualitative description of one-dimensional motion of interacting Pi-conductivity-electrons in carbon single-wall nanotubes at low temperatures. The low-lying excitations in one-dimensional electron gas are described in terms of interacting bosons. The Bogolyubov transformation allows one to describe the system as an ensemble of non-interacting quasi-bosons. Operators of Fermi excitations and Green functions of fermions are introduced. The electric current is derived as a function of potential difference on the contact between a nanotube and a normal metal. Deviations from Ohm law produced by electron-electron short-range repulsion as well as by the transverse quantization in single-wall nanotubes are discussed. The results are compared with experimental data.
Scaling properties of one-dimensional driven-dissipative condensates
NASA Astrophysics Data System (ADS)
He, Liang; Sieberer, Lukas M.; Altman, Ehud; Diehl, Sebastian
2015-10-01
We numerically investigate the scaling properties of a one-dimensional driven-dissipative condensate described by a stochastic complex Ginzburg-Landau equation (SCGLE). We directly extract the static and dynamical scaling exponents from the dynamics of the condensate's phase field, and find that both coincide with the ones of the one-dimensional Kardar-Parisi-Zhang (KPZ) equation. We furthermore calculate the spatial and the temporal two-point correlation functions of the condensate field itself. The decay of the temporal two-point correlator assumes a stretched-exponential form, providing further quantitative evidence for an effective KPZ description. Moreover, we confirm the observability of this nonequilibrium scaling for typical current experimental setups with exciton-polariton systems, if cavities with a reduced Q factor are used.
Integrable open spin chain in super Yang-Mills and the plane-wave/SYM duality
NASA Astrophysics Data System (ADS)
Chen, Bin; Wang, Xiao-Jun; Wu, Yong-Shi
2004-02-01
We investigate the integrable structures in an Script N = 2 superconformal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, Script N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic scalar operators is identified with the hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime.
Nonequilibrium statistical mechanics in one-dimensional bose gases
NASA Astrophysics Data System (ADS)
Baldovin, F.; Cappellaro, A.; Orlandini, E.; Salasnich, L.
2016-06-01
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D Landau-Vlasov equation under the condition of a strong transverse harmonic confinement. We investigate the existence of out-of-equilibrium states, obtaining stability criteria similar to those of classical plasmas.
On numerical modeling of one-dimensional geothermal histories
Haugerud, R.A.
1989-01-01
Numerical models of one-dimensional geothermal histories are one way of understanding the relations between tectonics and transient thermal structure in the crust. Such models can be powerful tools for interpreting geochronologic and thermobarometric data. A flexible program to calculate these models on a microcomputer is available and examples of its use are presented. Potential problems with this approach include the simplifying assumptions that are made, limitations of the numerical techniques, and the neglect of convective heat transfer. ?? 1989.
Cooling of a One-Dimensional Bose Gas.
Rauer, B; Grišins, P; Mazets, I E; Schweigler, T; Rohringer, W; Geiger, R; Langen, T; Schmiedmayer, J
2016-01-22
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
Beyond the Born approximation in one-dimensional profile reconstruction
NASA Astrophysics Data System (ADS)
Trantanella, Charles J.; Dudley, Donald G.; Nabulsi, Khalid A.
1995-07-01
A new method of one-dimensional profile reconstruction is presented. The method is based on an extension to the Born approximation and relates measurements of the scattered field to the Fourier transform of the slab profile. Since the Born and our new approximations are most valid at low frequency, we utilize superresolution to recover high-frequency information and then invert for the slab profile. Finally, we vary different parameters and examine the resulting reconstructions. approximation, profile reconstruction, superresolution.
Interaction of one-dimensional waves in media without dispersion
NASA Astrophysics Data System (ADS)
Vasileva, O. A.; Karabutov, A. A.; Lapshin, E. A.; Rudenko, O. V.
Numerical and analytical studies of the excitation and propagation of nondispersing waves of finite amplitude are examined; difference schemes for the calculation of generalized solutions are considered along with a third-order-accuracy scheme. Attention is given to one-dimensional regular and random perturbations: plane, cylindrical, and spherical convergent waves. A considerable amount of the material is given in the form of tables and figures, which makes it possible to use the work as a handbook.
Superlensing properties of one-dimensional dielectric photonic crystals
NASA Astrophysics Data System (ADS)
Savo, Salvatore; di Gennaro, Emiliano; Andreone, Antonello
2009-10-01
We present the experimental observation of the superlensing effect in a slab of a one-dimensional photonic crystal made of tilted dielectric elements. We show that this flat lens can achieve subwavelength resolution in different frequency bands. We also demonstrate that the introduction of a proper corrugation on the lens surface can dramatically improve both the transmission and the resolution of the imaged signal.
One-dimensional quantum pump simulated by cold atoms
NASA Astrophysics Data System (ADS)
Xiao, Yun-Chang; Zhu, Ming-Han; Liu, Zheng-Qin
2015-05-01
Quantum pump set up in one-dimensional (1D) channel was proposed by the cold atom simulation. The target pumping system is driven by the double time-dependent potentials. We investigated that the system can be achieved via the study of the cold atoms simulation. And by using the Floquet scattering method and the related transport theories in the mesoscopic systems, simulations of the pumping processes were presented in detail.
Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well
NASA Astrophysics Data System (ADS)
Huang, H. J.; Liu, B.-H.; Lin, C.-T.; Su, W. S.
2015-11-01
The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.
Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well
Huang, H. J. E-mail: hhjhuangkimo@gmail.com; Liu, B. H.; Lin, C. T.; Su, W. S.
2015-11-15
The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.
A refined one-dimensional rotordynamics model with three-dimensional capabilities
NASA Astrophysics Data System (ADS)
Carrera, E.; Filippi, M.
2016-03-01
This paper evaluates the vibration characteristics of various rotating structures. The present methodology exploits the one-dimensional Carrera Unified Formulation (1D CUF), which enables one to go beyond the kinematic assumptions of classical beam theories. According to the component-wise (CW) approach, Lagrange-like polynomial expansions (LE) are here adopted to develop the refined displacement theories. The LE elements make it possible to model each structural component of the rotor with an arbitrary degree of accuracy using either different displacement theories or localized mesh refinements. Hamilton's Principle is used to derive the governing equations, which are solved by the Finite Element Method. The CUF one-dimensional theory includes all the effects due to rotation, namely the Coriolis term, spin softening and geometrical stiffening. The numerical simulations have been performed considering a thin ring, discs and bladed-deformable shafts. The effects of the number and the position of the blades on the dynamic stability of the rotor have been evaluated. The results have been compared, when possible, with the 2D and 3D solutions that are available in the literature. CUF models appear very practical to investigate the dynamics of complex rotating structures since they provide 2D and quasi-3D results, while preserving the computational effectiveness of one-dimensional solutions.
Cryptography using multiple one-dimensional chaotic maps
NASA Astrophysics Data System (ADS)
Pareek, N. K.; Patidar, Vinod; Sud, K. K.
2005-10-01
Recently, Pareek et al. [Phys. Lett. A 309 (2003) 75] have developed a symmetric key block cipher algorithm using a one-dimensional chaotic map. In this paper, we propose a symmetric key block cipher algorithm in which multiple one-dimensional chaotic maps are used instead of a one-dimensional chaotic map. However, we also use an external secret key of variable length (maximum 128-bits) as used by Pareek et al. In the present cryptosystem, plaintext is divided into groups of variable length (i.e. number of blocks in each group is different) and these are encrypted sequentially by using randomly chosen chaotic map from a set of chaotic maps. For block-by-block encryption of variable length group, number of iterations and initial condition for the chaotic maps depend on the randomly chosen session key and encryption of previous block of plaintext, respectively. The whole process of encryption/decryption is governed by two dynamic tables, which are updated time to time during the encryption/decryption process. Simulation results show that the proposed cryptosystem requires less time to encrypt the plaintext as compared to the existing chaotic cryptosystems and further produces the ciphertext having flat distribution of same size as the plaintext.
Study of one-dimensional electron hopping and its effects on ESR line shape
Tang, Jau; Dikshit, S.N.; Norris, J.R. |
1997-08-01
Random hopping processes between discrete sites along a finite open chain or around a closed finite loop are examined. Closed form formulae are prescribed for the dependence of the ESR (electron spin resonance) line shape on the chain length and hopping rate. Significant differences between the closed loop and open chain are demonstrated. Deviation at short time from the results of diffusion in a continuum is presented.