Numerically exploring the 1D-2D dimensional crossover on spin dynamics in the doped Hubbard model
Kung, Y. F.; Bazin, C.; Wohlfeld, K.; ...
2017-11-02
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kung, Y. F.; Bazin, C.; Wohlfeld, K.
Using determinant quantum Monte Carlo (DQMC) simulations, we systematically study the doping dependence of the crossover from one to two dimensions and its impact on the magnetic properties of the Hubbard model. A square lattice of chains is used, in which the dimensionality can be tuned by varying the interchain coupling t ⊥. The dynamical spin structure factor and static quantities, such as the static spin susceptibility and nearest-neighbor spin correlation function, are characterized in the one- and two-dimensional limits as a benchmark. When the dimensionality is tuned between these limits, the magnetic properties, while evolving smoothly from one tomore » two dimensions, drastically change regardless of the doping level. This suggests that the spin excitations in the two-dimensional Hubbard model, even in the heavily doped case, cannot be explained using the spinon picture known from one dimension. In conclusion, the DQMC calculations are complemented by cluster perturbation theory studies to form a more complete picture of how the crossover occurs as a function of doping and how doped holes impact magnetic order.« less
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4
Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...
2017-09-13
Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less
Teleportation between distant qudits via scattering of mobile qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarello, Francesco; Zarcone, Michelangelo; Bose, Sougato
2010-04-15
We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. No action over the internal quantum state of both the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely scattering.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
NASA Astrophysics Data System (ADS)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.
2017-12-01
We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...
2017-12-15
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Model of chiral spin liquids with Abelian and non-Abelian topological phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
NASA Astrophysics Data System (ADS)
Yang, Li; Pu, Han
2016-09-01
We show that the wave function in one spatial sector x1
Quenched dynamics and spin-charge separation in an interacting topological lattice
NASA Astrophysics Data System (ADS)
Barbiero, L.; Santos, L.; Goldman, N.
2018-05-01
We analyze the static and dynamical properties of a one-dimensional topological lattice, the fermionic Su-Schrieffer-Heeger model, in the presence of on-site interactions. Based on a study of charge and spin correlation functions, we elucidate the nature of the topological edge modes, which, depending on the sign of the interactions, either display particles of opposite spin on opposite edges, or a pair and a holon. This study of correlation functions also highlights the strong entanglement that exists between the opposite edges of the system. This last feature has remarkable consequences upon subjecting the system to a quench, where an instantaneous edge-to-edge signal appears in the correlation functions characterizing the edge modes. Besides, other correlation functions are shown to propagate in the bulk according to the light cone imposed by the Lieb-Robinson bound. Our study reveals how one-dimensional lattices exhibiting entangled topological edge modes allow for a nontrivial correlation spreading, while providing an accessible platform to detect spin-charge separation using state-of-the-art experimental techniques.
Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering
NASA Astrophysics Data System (ADS)
Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.
2009-01-01
Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.
Spin-1/2 Heisenberg antiferromagnet on an anisotropic triangular lattice
NASA Astrophysics Data System (ADS)
Starykh, Oleg
2007-03-01
The Triangular lattice spin-1/2 Heisenberg AntiFerromagnet (TAF) is a prototypical model of frustrated quantum magnetism. While it is believed to exhibit long-range order in the isotropic limit, changes such as spatial anisotropy can alter the delicate balance amongst competing ground states. I will describe the static and dynamic properties of the spatially anisotropic TAF, with inter-chain diagonal exchange J' much weaker than the intrachain exchange J. Treating J' as a perturbation of decoupled Heisenberg spin-1/2 chains, I find that the ground state is spontaneously dimerized in a four-fold degenerate zig-zag pattern. This dimerization instability is driven by quantum fluctuations, which are dramatically enhanced here by the frustrated nature of inter-chain exchange. A magnetic field partially relieves frustration, by canting the spins along the field direction, and causes a quantum phase transition into a magnetically-ordered spin-density-wave phase. This is followed by cone and, finally, fully polarized (saturated) phases, as a function of increasing magnetic field. I show that many of these features are in fact observed in experiments on the celebrated material Cs2CuCl4 (J'/J =1/3). I will also discuss the significant modification of the phase diagram by symmetry-breaking anisotropic Dzyaloshinskii-Moriya (DM) interactions, present in this interesting magnet. In addition to static and thermodynamic properties, the proposed ``one-dimensional'' approach offers a compelling explanation of the unusual experimentally measured dynamical structure factor of Cs2CuCl4 in terms of descendants of one-dimensional spinons. Quite generally, I find characteristic features of a momentum-dependent spinon bound state and a dispersing incoherent excitation in the structure factor, in agreement with experiments.
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2018-04-01
Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziat, D.; Aczel, Adam A.; Sinclair, R.
We have performed magnetic susceptibility, heat capacity, muon spin relaxation, and neutron-scattering measurements on three members of the family Ba 3MRu 2O 9, where M=In, Y, and Lu. These systems consist of mixed-valence Ru dimers on a triangular lattice with antiferromagnetic interdimer exchange. Although previous work has argued that charge order within the dimers or intradimer double exchange plays an important role in determining the magnetic properties, our results suggest that the dimers are better described as molecular units due to significant orbital hybridization, resulting in one spin-1/2 moment distributed equally over the two Ru sites. These molecular building blocksmore » form a frustrated, quasi-two-dimensional triangular lattice. Our zero- and longitudinal-field μSR results indicate that the molecular moments develop a collective, static magnetic ground state, with oscillations of the zero-field muon spin polarization indicative of long-range magnetic order in the Lu sample. In conclusion, the static magnetism is much more disordered in the Y and In samples, but they do not appear to be conventional spin glasses.« less
Ziat, D.; Aczel, Adam A.; Sinclair, R.; ...
2017-05-22
We have performed magnetic susceptibility, heat capacity, muon spin relaxation, and neutron-scattering measurements on three members of the family Ba 3MRu 2O 9, where M=In, Y, and Lu. These systems consist of mixed-valence Ru dimers on a triangular lattice with antiferromagnetic interdimer exchange. Although previous work has argued that charge order within the dimers or intradimer double exchange plays an important role in determining the magnetic properties, our results suggest that the dimers are better described as molecular units due to significant orbital hybridization, resulting in one spin-1/2 moment distributed equally over the two Ru sites. These molecular building blocksmore » form a frustrated, quasi-two-dimensional triangular lattice. Our zero- and longitudinal-field μSR results indicate that the molecular moments develop a collective, static magnetic ground state, with oscillations of the zero-field muon spin polarization indicative of long-range magnetic order in the Lu sample. In conclusion, the static magnetism is much more disordered in the Y and In samples, but they do not appear to be conventional spin glasses.« less
Heisenberg spin-glass behaviour in Ga0.99Yb0.01FeO3
NASA Astrophysics Data System (ADS)
Neacsa, Daniela Maria; Gruener, Gisèle; Hebert, Sylvie; Soret, Jean-Claude
2017-06-01
The dynamic and static magnetic properties of Ga0.99Yb0.01FeO3 are studied in detail using ac susceptibility and dc magnetization measurements. The study shows that the compound undergoes a spin-glass freezing at Tg ≈ 213 K . The dynamic scaling analysis of ac susceptibility data reveals typical features characteristic of canonical spin-glasses, i.e., relaxation time τ∗ ∼10-14 s , critical exponent νz = 4.1 ± 0.2 , and frequency sensitivity parameter δf ∼10-3 within three frequency decades. The analysis of the critical behaviour of the static nonlinear susceptibility yields the critical exponents γ = 4.3 ± 0.1, β = 1.0 ± 0.1 , and δ = 5.5 ± 0.5 , which lie between those typical of three-dimensional (3D) weakly anisotropic Heisenberg and Ising spin glasses. The analysis of the field-cooled and zero-field-cooled magnetization data allows to define two characteristic temperatures depending on the applied magnetic field. The upper one, Tirr(H) , is the threshold temperature corresponding to the appearance of weak irreversibility, whereas the lower one, Ts(H) , marks the onset of strong irreversibility. The resulting field-temperature phase diagram turns out to be in good quantitative agreement with the mean-field predictions for 3D Heisenberg spin-glass with random magnetic anisotropy, and appears consistent with the chiral driven freezing scenario.
Ground State of Quasi-One Dimensional Competing Spin Chain Cs2Cu2Mo3O12 at zero and Finite Fields
NASA Astrophysics Data System (ADS)
Matsui, Kazuki; Goto, Takayuki; Angel, Julia; Watanabe, Isao; Sasaki, Takahiko; Hase, Masashi
The ground state of competing-spin-chain Cs2Cu2Mo3O12 with the ferromagnetic exchange interaction J1 = -93 K on nearest-neighboring spins and the antiferromagnetic one J2 = +33 K on next-nearest-neighboring spins was investigated by ZF/LF-μSR and 133Cs-NMR in the 3He temperature range. The zero-field μSR relaxation rate λ shows a significant increase below 1.85 K, suggesting the existence of magnetic order, which is consistent with the recent report on the specific heat. However, LF decoupling data at the lowest temperature 0.3 K indicate that the spins fluctuate dynamically, suggesting that the system is in a quasi-static ordered state under zero field. This idea is further supported by the fact that the broadening in NMR spectra below TN is weakened at low field below 2 T.
Causal Structure around Spinning 5-DIMENSIONAL Cosmic Strings
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2008-09-01
We present a numerical solution of a stationary 5-dimensional spinning cosmic string in the Einstein-Yang-Mills (EYM) model, where the extra bulk coordinate ψ is periodic. It turns out that when gψψ approaches zero, i.e., a closed time-like curve (CTC) would appear, the solution becomes singular. We also investigated the geometrical structure of the static 5D cosmic string. Two opposite moving 5D strings could, in contrast with the 4D case, fulfil the Gott condition for CTC formation.
Ising antiferromagnet on the Archimedean lattices.
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Ising antiferromagnet on the Archimedean lattices
NASA Astrophysics Data System (ADS)
Yu, Unjong
2015-06-01
Geometric frustration effects were studied systematically with the Ising antiferromagnet on the 11 Archimedean lattices using the Monte Carlo methods. The Wang-Landau algorithm for static properties (specific heat and residual entropy) and the Metropolis algorithm for a freezing order parameter were adopted. The exact residual entropy was also found. Based on the degree of frustration and dynamic properties, ground states of them were determined. The Shastry-Sutherland lattice and the trellis lattice are weakly frustrated and have two- and one-dimensional long-range-ordered ground states, respectively. The bounce, maple-leaf, and star lattices have the spin ice phase. The spin liquid phase appears in the triangular and kagome lattices.
Three-dimensional Computational Fluid Dynamics Investigation of a Spinning Helicopter Slung Load
NASA Technical Reports Server (NTRS)
Theorn, J. N.; Duque, E. P. N.; Cicolani, L.; Halsey, R.
2005-01-01
After performing steady-state Computational Fluid Dynamics (CFD) calculations using OVERFLOW to validate the CFD method against static wind-tunnel data of a box-shaped cargo container, the same setup was used to investigate unsteady flow with a moving body. Results were compared to flight test data previously collected in which the container is spinning.
Implementing quantum gates through scattering between a static and a flying qubit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordourier-Maruri, G.; Coss, R. de; Ciccarello, F.
2010-11-15
We investigate whether a two-qubit quantum gate can be implemented in a scattering process involving a flying and a static qubit. To this end, we focus on a paradigmatic setup made out of a mobile particle and a quantum impurity, whose respective spin degrees of freedom couple to each other during a one-dimensional scattering process. Once a condition for the occurrence of quantum gates is derived in terms of spin-dependent transmission coefficients, we show that this can be actually fulfilled through the insertion of an additional narrow potential barrier. An interesting observation is that under resonance conditions this procedure enablesmore » a gate only for isotropic Heisenberg (exchange) interactions and fails for an XY interaction. We show the existence of parameter regimes for which gates able to establish a maximum amount of entanglement can be implemented. The gates are found to be robust to variations of the optimal parameters.« less
NASA Astrophysics Data System (ADS)
Pini, Maria Gloria; Rettori, Angelo
1993-08-01
The thermodynamical properties of an alternating spin (S,s) one-dimensional (1D) Ising model with competing nearest- and next-nearest-neighbor interactions are exactly calculated using a transfer-matrix technique. In contrast to the case S=s=1/2, previously investigated by Harada, the alternation of different spins (S≠s) along the chain is found to give rise to two-peaked static structure factors, signaling the coexistence of different short-range-order configurations. The relevance of our calculations with regard to recent experimental data by Gatteschi et al. in quasi-1D molecular magnetic materials, R (hfac)3 NITEt (R=Gd, Tb, Dy, Ho, Er, . . .), is discussed; hfac is hexafluoro-acetylacetonate and NlTEt is 2-Ethyl-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide.
Spin-dependent analysis of two-dimensional electron liquids
NASA Astrophysics Data System (ADS)
Bulutay, C.; Tanatar, B.
2002-05-01
Two-dimensional electron liquid (2D EL) at full Fermi degeneracy is revisited, giving special attention to the spin-polarization effects. First, we extend the recently proposed classical-map hypernetted-chain (CHNC) technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation of CHNC is given utilizing Lado's quadrature expressions for the isotropic Fourier transforms. Our results indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even though the energy separation with the ferromagnetic and other partially polarized states become minute. We analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are computed; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of the 2D EL.
Spatial reorientation experiments for NMR of solids and partially oriented liquids.
Martin, Rachel W; Kelly, John E; Collier, Kelsey A
2015-11-01
Motional reorientation experiments are extensions of Magic Angle Spinning (MAS) where the rotor axis is changed in order to average out, reintroduce, or scale anisotropic interactions (e.g. dipolar couplings, quadrupolar interactions or chemical shift anisotropies). This review focuses on Variable Angle Spinning (VAS), Switched Angle Spinning (SAS), and Dynamic Angle Spinning (DAS), all of which involve spinning at two or more different angles sequentially, either in successive experiments or during a multidimensional experiment. In all of these experiments, anisotropic terms in the Hamiltonian are scaled by changing the orientation of the spinning sample relative to the static magnetic field. These experiments vary in experimental complexity and instrumentation requirements. In VAS, many one-dimensional spectra are collected as a function of spinning angle. In SAS, dipolar couplings and/or chemical shift anisotropies are reintroduced by switching the sample between two different angles, often 0° or 90° and the magic angle, yielding a two-dimensional isotropic-anisotropic correlation spectrum. Dynamic Angle Spinning (DAS) is a related experiment that is used to simultaneously average out the first- and second-order quadrupolar interactions, which cannot be accomplished by spinning at any unique rotor angle in physical space. Although motional reorientation experiments generally require specialized instrumentation and data analysis schemes, some are accessible with only minor modification of standard MAS probes. In this review, the mechanics of each type of experiment are described, with representative examples. Current and historical probe and coil designs are discussed from the standpoint of how each one accomplishes the particular objectives of the experiment(s) it was designed to perform. Finally, applications to inorganic materials and liquid crystals, which present very different experimental challenges, are discussed. The review concludes with perspectives on how motional reorientation experiments can be applied to current problems in chemistry, molecular biology, and materials science, given the many advances in high-field NMR magnets, fast spinning, and sample preparation realized in recent years. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of temperature on static correlational properties in a spin-polarized electron gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Priya; Moudgil, R. K., E-mail: rkmoudgil@kuk.ac.in; Kumar, Krishan
We have studied the effect of temperature on the static correlational properties of a spin-polarized three-dimensional electron gas (3DEG) over a wide coupling and temperature regime. This problem has been very recently studied by Brown et al. using the restricted path-integral Monte Carlo (RPIMC) technique in the warm-dense regime. To this endeavor, we have used the finite temperature version of the dynamical mean-field theory of Singwi et al, the so-called quantum STLS (qSTLS) approach. The static density structure factor and the static pair-correlation function are calculated, and compared with the RPIMC simulation data. We find an excellent agreement with themore » simulation at high temperature over a wide coupling range. However, the agreement is seen to somewhat deteriorate with decreasing temperature. The pair-correlation function is found to become small negative for small electron separation. This may be attributed to the inadequacy of the mean-field theory in dealing with the like spin electron correlations in the strong-coupling domain. A nice agreement with RPIMC data at high temperature seems to arise due to weakening of both the exchange and coulomb correlations with rising temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Ahren
2015-04-14
The appropriateness of treating crossing seams of electronic states of different spins as nonadiabatic transition states in statistical calculations of spin-forbidden reaction rates is considered. We show that the spin-forbidden reaction coordinate, the nuclear coordinate perpendicular to the crossing seam, is coupled to the remaining nuclear degrees of freedom. We found that this coupling gives rise to multidimensional effects that are not typically included in statistical treatments of spin-forbidden kinetics. Three qualitative categories of multidimensional effects may be identified: static multidimensional effects due to the geometry-dependence of the local shape of the crossing seam and of the spin–orbit coupling, dynamicalmore » multidimensional effects due to energy exchange with the reaction coordinate during the seam crossing, and nonlocal(history-dependent) multidimensional effects due to interference of the electronic variables at second, third, and later seam crossings. Nonlocal multidimensional effects are intimately related to electronic decoherence, where electronic dephasing acts to erase the history of the system. A semiclassical model based on short-time full-dimensional trajectories that includes all three multidimensional effects as well as a model for electronic decoherence is presented. The results of this multidimensional nonadiabatic statistical theory (MNST) for the 3O + CO → CO 2 reaction are compared with the results of statistical theories employing one-dimensional (Landau–Zener and weak coupling) models for the transition probability and with those calculated previously using multistate trajectories. The MNST method is shown to accurately reproduce the multistate decay-of-mixing trajectory results, so long as consistent thresholds are used. Furthermore, the MNST approach has several advantages over multistate trajectory approaches and is more suitable in chemical kinetics calculations at low temperatures and for complex systems. The error in statistical calculations that neglect multidimensional effects is shown to be as large as a factor of 2 for this system, with static multidimensional effects identified as the largest source of error.« less
Thermodynamics of higher spin black holes in AdS3
NASA Astrophysics Data System (ADS)
de Boer, Jan; Jottar, Juan I.
2014-01-01
We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL( N, ) × SL( N, ) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with WN symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.
Liu, Guangkun; Kaushal, Nitin; Liu, Shaozhi; ...
2016-06-24
A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases with exotic spin arrangements such as spin block states [J. Rincón et al., Phys. Rev. Lett. 112, 106405 (2014)]. In this paper we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC studies in systems with more challenging geometries, such as ladders and planes. The success of this approach relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. In addition, we study a simplified version of themore » model where the pair-hopping term is neglected and the Hund coupling is restricted to its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with the latter displaying only mild fermion sign problems. Lastly, we conclude that these methods are able to capture quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field approximations.« less
Observation of spinon spin currents in one-dimensional spin liquid
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.
Roughness exponent in two-dimensional percolation, Potts model, and clock model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redinz, Jose Arnaldo; Martins, Marcelo Lobato
We present a numerical study of the self-affine profiles obtained from configurations of the q-state Potts (with q=2,3, and 7) and p=10 clock models as well as from the occupation states for site percolation on the square lattice. The first and second order static phase transitions of the Potts model are located by a sharp change in the value of the roughness exponent {alpha} characterizing those profiles. The low temperature phase of the Potts model corresponds to flat ({alpha}{approx_equal}1) profiles, whereas its high temperature phase is associated with rough ({alpha}{approx_equal}0.5) ones. For the p=10 clock model, in addition to themore » flat (ferromagnetic) and rough (paramagnetic) profiles, an intermediate rough (0.5{lt}{alpha}{lt}1) phase{emdash}associated with a soft spin-wave one{emdash}is observed. Our results for the transition temperatures in the Potts and clock models are in agreement with the static values, showing that this approach is able to detect the phase transitions in these models directly from the spin configurations, without any reference to thermodynamical potentials, order parameters, or response functions. Finally, we show that the roughness exponent {alpha} is insensitive to geometric critical phenomena.« less
Net shape fabrication of Alpha Silicon Carbide turbine components
NASA Technical Reports Server (NTRS)
Storm, R. S.
1982-01-01
Development of Alpha Silicon Carbide components by net shape fabrication techniques has continued in conjunction with several turbine engine programs. Progress in injection molding of simple parts has been extended to much larger components. Turbine rotors fabricated by a one piece molding have been successfully spin tested above design speeds. Static components weighing up to 4.5 kg and 33 cc in diameter have also been produced using this technique. Use of sintering fixtures significantly improves dimensional control. A new Si-SiC composite material has also been developed with average strengths up to 1000 MPa (150 ksi) at 1200 C.
Topological Phase Transitions in the Photonic Spin Hall Effect
Kort-Kamp, Wilton Junior de Melo
2017-10-04
The recent synthesis of two-dimensional staggered materials opens up burgeoning opportunities to study optical spin-orbit interactions in semiconducting Dirac-like systems. In this work, we unveil topological phase transitions in the photonic spin Hall effect in the graphene family materials. It is shown that an external static electric field and a high frequency circularly polarized laser allow for active on-demand manipulation of electromagnetic beam shifts. The spin Hall effect of light presents a rich dependence with radiation degrees of freedom, and material properties, and features nontrivial topological properties. Finally, we discover that photonic Hall shifts are sensitive to spin and valleymore » properties of the charge carriers, providing an unprecedented pathway to investigate spintronics and valleytronics in staggered 2D semiconductors.« less
One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice
NASA Astrophysics Data System (ADS)
Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.
2017-11-01
We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.
Spintronics: spin accumulation in mesoscopic systems.
Johnson, Mark
2002-04-25
In spintronics, in which use is made of the spin degree of freedom of the electron, issues concerning electrical spin injection and detection of electron spin diffusion are fundamentally important. Jedema et al. describe a magneto-resistance study in which they claim to have observed spin accumulation in a mesoscopic copper wire, but their one-dimensional model ignores two-dimensional spin-diffusion effects, which casts doubt on their analysis. A two-dimensional vector formalism of spin transport is called for to model spin-injection experiments, and the identification of spurious background resistance effects is crucial.
NASA Astrophysics Data System (ADS)
Lima, L. S.
2018-05-01
We study the effect of the uniform Dzyaloshinskii-Moriya interaction (symmetric exchange anisotropy) and arbitrary oriented external magnetic fields on spin conductivity in the spin-1/2 one-dimensional Heisenberg antiferromagnet. The spin conductivity is calculated employing abelian bosonization and the Kubo formalism of transport. We investigate the influence of three competing phases at zero-temperature, (Néel phase, dimerized phase and gapless Luttinger liquid phase) on the AC spin conductivity.
Configuration memory in patchwork dynamics for low-dimensional spin glasses
NASA Astrophysics Data System (ADS)
Yang, Jie; Middleton, A. Alan
2017-12-01
A patchwork method is used to study the dynamics of loss and recovery of an initial configuration in spin glass models in dimensions d =1 and d =2 . The patchwork heuristic is used to accelerate the dynamics to investigate how models might reproduce the remarkable memory effects seen in experiment. Starting from a ground-state configuration computed for one choice of nearest-neighbor spin couplings, the sample is aged up to a given scale under new random couplings, leading to the partial erasure of the original ground state. The couplings are then restored to the original choice and patchwork coarsening is again applied, in order to assess the recovery of the original state. Eventual recovery of the original ground state upon coarsening is seen in two-dimensional Ising spin glasses and one-dimensional clock models, while one-dimensional Ising spin systems neither lose nor gain overlap with the ground state during the recovery stage. The recovery for the two-dimensional Ising spin glasses suggests scaling relations that lead to a recovery length scale that grows as a power of the aging length scale.
NASA Astrophysics Data System (ADS)
Ortiz, L.; Varona, S.; Viyuela, O.; Martin-Delgado, M. A.
2018-02-01
We study the localization and oscillation properties of the Majorana fermions that arise in a two-dimensional electron gas (2DEG) with spin-orbit coupling (SOC) and a Zeeman field coupled with a d -wave superconductor. Despite the angular dependence of the d -wave pairing, localization and oscillation properties are found to be similar to the ones seen in conventional s -wave superconductors. In addition, we study a microscopic lattice version of the previous system that can be characterized by a topological invariant. We derive its real space representation that involves nearest and next-to-nearest-neighbors pairing. Finally, we show that the emerging chiral Majorana fermions are indeed robust against static disorder. This analysis has potential applications to quantum simulations and experiments in high-Tc superconductors.
Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants
NASA Astrophysics Data System (ADS)
Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.
Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Nikita; ITEP, Moscow; Shatashvili, Samson
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence ismore » the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.« less
Directional interlayer spin-valley transfer in two-dimensional heterostructures
Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...
2016-12-14
Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less
NMR in Pulsed Magnetic Fields on the Orthogonal Shastry-Sutherland spin system SrCu2 (BO3)2
NASA Astrophysics Data System (ADS)
Stern, Raivo; Kohlrautz, Jonas; Kühne, Hannes; Greene, Liz; Wosnitza, Jochen; Haase, Jügen
2015-03-01
SrCu2(BO3)2 is a quasi-two-dimensional spin system consisting of Cu2+ ions which form orthogonal spin singlet dimers, also known as the Shastry-Sutherland lattice, in the ground state. Though this system has been studied extensively using a variety of techniques to probe the spin triplet excitations, including recent magnetization measurements over 100 T, microscopic techniques, such as nuclear magnetic resonance (NMR), could provide further insight into the spin excitations and spin-coupling mechanisms. We demonstrate the feasibility of performing NMR on real physics system in pulsed magnets. We present 11B NMR spectra measured in pulsed magnetic fields up to 53 T, and compare those with prior results obtained in static magnetic fields. Herewith we prove the efficacy of this technique and then extend to higher fields to fully explore the spin structure of the 1/3 plateau. Support by EMFL, DFG, ETAg (EML+ & PUT210).
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
NASA Astrophysics Data System (ADS)
Casola, Francesco; van der Sar, Toeno; Yacoby, Amir
2018-01-01
The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.
Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.
2014-07-01
We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less
NASA Astrophysics Data System (ADS)
Bernot, K.; Luzon, J.; Caneschi, A.; Gatteschi, D.; Sessoli, R.; Bogani, L.; Vindigni, A.; Rettori, A.; Pini, M. G.
2009-04-01
We investigate theoretically and experimentally the static magnetic properties of single crystals of the molecular-based single-chain magnet of formula [Dy(hfac)3NIT(C6H4OPh)]∞ comprising alternating Dy3+ and organic radicals. The magnetic molar susceptibility χM displays a strong angular variation for sample rotations around two directions perpendicular to the chain axis. A peculiar inversion between maxima and minima in the angular dependence of χM occurs on increasing temperature. Using information regarding the monomeric building block as well as an ab initio estimation of the magnetic anisotropy of the Dy3+ ion, this “anisotropy-inversion” phenomenon can be assigned to weak one-dimensional ferromagnetism along the chain axis. This indicates that antiferromagnetic next-nearest-neighbor interactions between Dy3+ ions dominate, despite the large Dy-Dy separation, over the nearest-neighbor interactions between the radicals and the Dy3+ ions. Measurements of the field dependence of the magnetization, both along and perpendicularly to the chain, and of the angular dependence of χM in a strong magnetic field confirm such an interpretation. Transfer-matrix simulations of the experimental measurements are performed using a classical one-dimensional spin model with antiferromagnetic Heisenberg exchange interaction and noncollinear uniaxial single-ion anisotropies favoring a canted antiferromagnetic spin arrangement, with a net magnetic moment along the chain axis. The fine agreement obtained with experimental data provides estimates of the Hamiltonian parameters, essential for further study of the dynamics of rare-earth-based molecular chains.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
NASA Astrophysics Data System (ADS)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-01
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.
Bifurcation analysis and phase diagram of a spin-string model with buckled states.
Ruiz-Garcia, M; Bonilla, L L; Prados, A
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Bifurcation analysis and phase diagram of a spin-string model with buckled states
NASA Astrophysics Data System (ADS)
Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.
2017-12-01
We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.
Requirements for Initiation and Sustained Propagation of Fuel-Air Explosives
1983-06-01
of single-head spin gives the limiting composition for stable propagation of a detonation wave. I. INTRODUCTION which the effects of blockage ratio...Ihu. Dateanle;otd) equivalent chemical times derived from it) provide a much more useful parameter as input to the required theories and empirical...dimensional steady state equilibrium theory (hence static). Experience shows that the dynamic parameters reflect more intimately the detonation properties
Vacuum energy density near static distorted black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, V.P.; Sanchez, N.
1986-03-15
We investigate the contribution of massless fields of spins 0, 1/2, and 1 to the vacuum polarization near the event horizon of static Ricci-flat space-times. We do not assume any particular spatial symmetry. Within the Page-Brown ''ansatz'' we calculate /sup ren/ and /sup ren/ near static distorted black holes, for both the Hartle-Hawking (Vertical Bar>/sub H/) and Boulware (Vertical Bar>/sub B/) vacua. Using Israel's description of static space-times, we express these quantities in an invariant geometric way. We obtain that /sub H//sup ren/ and /sub H//sup ren/ near the horizon depend only on the two-dimensional geometry of the horizon surface.more » We find /sub H//sup ren/ = (1/48..pi../sup 2/ )K/sub 0/, /sub H//sup ren/ = (7..cap alpha..+12..beta.. )K/sub 0/ /sup 2/-..cap alpha../sup(/sup 2/)..delta..K/sub 0/. $K sub 0: is the Gaussian curvature of the horizon, and ..cap alpha.. and ..beta.. are numerical coefficients depending on the spin of a field. The term in /sup(/sup 2/)..delta..K/sub 0/ is characteristic of the distortion of the black hole. When the event horizon is not distorted, K/sub 0/ is a constant and this term disappears.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-10
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Generation of spin currents from one-dimensional quantum spin liquid
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Kawamata, Takayuki; Oyanagi, Koichi; Koike, Yoji; Saitoh, Eiji
2018-03-01
Spin-Seebeck effects (SSEs) in a one-dimensional quantum spin liquid (QSL) system have been investigated in a Sr2CuO3/Pt hybrid structure. Sr2CuO3 contains one-dimensional spin- /1 2 chains in which typical spinons in QSL have been confirmed. Heat-induced voltage measured in a clean Pt/Sr2CuO3 exhibits anomalous sign reversal with decreasing temperature, the negative component of which can be attributed to the spinon-induced SSE. However, the SSE was found to be critically decreased upon the exposure of Sr2CuO3 to air, which can be associated with the chemical degradation of the interface of Sr2CuO3. Despite the drastic change in the SSE signals, properties of the one-dimensional QSL are little changed in the spin susceptibility as well as the thermal conductivity of Sr2CuO3. The SSE signal is also sensitive to the purity of Sr2CuO3; it is suppressed with a decrease in the purity of the primary compounds of the Sr2CuO3. The result indicates that the spinon-induced SSE in Sr2CuO3 is sensitive to the bulk condition due to the one-dimensional atomic channel for spin transport in Sr2CuO3. In a carefully prepared Sr2CuO3/Pt sample, we found that the spinon-induced SSE signal is tolerant to magnetic fields; it increases linearly with the field even up to 9 T. In contrast, SSEs are suppressed under such a high field in ferrimagnetic insulators Y3Fe5O12 or paramagnetic insulators Gd3Ga5O12, which is caused by the Zeeman gap in the spin-wave or paramagnetic spin excitations. The robustness of the spinon-induced SSE is consistent with the Tomonaga-Luttinger liquid theories.
Ma, Jie; Kamiya, Yoshitomo; Hong, Tao; ...
2016-02-24
We present single-crystal neutron scattering measurements of the spin-1/2 equilateral triangular-lattice antiferromagnet Ba 3CoSb 2O 9. Besides confirming that the Co 2+ magnetic moments lie in the ab plane for zero magnetic field and then determining all the exchange parameters of the minimal quasi-2D spin Hamiltonian, we provide conclusive experimental evidence of magnon decay through observation of intrinsic line broadening. Through detailed comparisons with the linear and nonlinear spin-wave theories, we also point out that the large-S approximation, which is conventionally employed to predict magnon decay in noncollinear magnets, is inadequate to explain our experimental observation. Hence, our results callmore » for a new theoretical framework for describing excitation spectra in low-dimensional frustrated magnets under strong quantum effects.« less
Lattice spin models for non-Abelian chiral spin liquids
Lecheminant, P.; Tsvelik, A. M.
2017-04-26
Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.
Magnetic structure and excitation spectrum of the hyperhoneycomb Kitaev magnet β -Li2IrO3
NASA Astrophysics Data System (ADS)
Ducatman, Samuel; Rousochatzakis, Ioannis; Perkins, Natalia B.
2018-03-01
We present a theoretical study of the static and dynamical properties of the three-dimensional, hyperhoneycomb Kitaev magnet β -Li2IrO3 . We argue that the observed incommensurate order can be understood in terms of a long-wavelength twisting of a nearby commensurate period-3 state, with the same key qualitatively features. The period-3 state shows very different structure when either the Kitaev interaction K or the off-diagonal exchange anisotropy Γ is dominant. A comparison of the associated static spin structure factors with reported scattering experiments in zero and finite fields gives strong evidence that β -Li2IrO3 lies in the regime of dominant Kitaev coupling, and that the Heisenberg exchange J is much weaker than both K and Γ . Our predictions for the magnon excitation spectra, the dynamical spin structure factors, and their polarization dependence provide additional distinctive fingerprints that can be checked experimentally.
Long-distance Lienard-Wiechert potentials and qq-bar spin dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, R.W.
1987-12-15
The long-range spin dependence of the qq interaction is considered in a model in which the confining potential is required to be the static limit of retarded scalar and vector potentials analogous to the Lienard-Wiechert potentials of classical electrodynamics. A generalization of Darwin's method is used to obtain the corresponding Hamiltonian. The long-distance spin-dependent interaction is found to be determined completely by only two potentials: namely, the static scalar and vector potentials. This is to be compared with the four potentials required in Eichten and Feinberg's general formulation. Two different solutions are allowed by Gromes's theorem. In one, the scalarmore » potential can be linear; in the other, it must be logarithmic.« less
NASA Astrophysics Data System (ADS)
Zeisner, J.; Brockmann, M.; Zimmermann, S.; Weiße, A.; Thede, M.; Ressouche, E.; Povarov, K. Yu.; Zheludev, A.; Klümper, A.; Büchner, B.; Kataev, V.; Göhmann, F.
2017-07-01
We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu (py) 2Br2 (CPB). Our measurements were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure, and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature dependence of static susceptibilities, we extract the strength of the exchange coupling (J /kB=52.0 K ) and the anisotropy parameter (δ ≈-0.02 ) of the model Hamiltonian. An independent compatible value of δ is obtained by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data recorded at 4 K . The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic component J δ from the isotropic exchange J in these systems.
NASA Astrophysics Data System (ADS)
Jakubczyk, Dorota; Jakubczyk, Paweł
2018-02-01
We propose combinatorial approach to the representation of Schur-Weyl duality in physical systems on the example of one-dimensional spin chains. Exploiting the Robinson-Schensted-Knuth algorithm, we perform decomposition of the dual group representations into irreducible representations in a fully combinatorial way. As representation space, we choose the Hilbert space of the spin chains, but this approach can be easily generalized to an arbitrary physical system where the Schur-Weyl duality works.
Okuma, Nobuyuki
2017-09-08
We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z-axis spin rotational symmetry, which can be explained in the context of a singular band point or a U(1) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q=-2, while the typical one observed in topological insulator surface states is characterized by Q=+1. A magnonic analogue of the surface states, the Dirac magnon with Q=+1, is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.
NASA Astrophysics Data System (ADS)
Okuma, Nobuyuki
2017-09-01
We generalize the concept of the spin-momentum locking to magnonic systems and derive the formula to calculate the spin expectation value for one-magnon states of general two-body spin Hamiltonians. We give no-go conditions for magnon spin to be independent of momentum. As examples of the magnon spin-momentum locking, we analyze a one-dimensional antiferromagnet with the Néel order and two-dimensional kagome lattice antiferromagnets with the 120° structure. We find that the magnon spin depends on its momentum even when the Hamiltonian has the z -axis spin rotational symmetry, which can be explained in the context of a singular band point or a U (1 ) symmetry breaking. A spin vortex in momentum space generated in a kagome lattice antiferromagnet has the winding number Q =-2 , while the typical one observed in topological insulator surface states is characterized by Q =+1 . A magnonic analogue of the surface states, the Dirac magnon with Q =+1 , is found in another kagome lattice antiferromagnet. We also derive the sum rule for Q by using the Poincaré-Hopf index theorem.
Comparing the Impact of Dynamic and Static Media on Students' Learning of One-Dimensional Kinematics
ERIC Educational Resources Information Center
Mešic, Vanes; Dervic, Dževdeta; Gazibegovic-Busuladžic, Azra; Salibašic, Džana; Erceg, Nataša
2015-01-01
In our study, we aimed to compare the impact of simulations, sequences of printed simulation frames and conventional static diagrams on the understanding of students with regard to the one-dimensional kinematics. Our student sample consisted of three classes of middle years students (N = 63; mostly 15 year-olds). These three classes served as…
NASA Astrophysics Data System (ADS)
Ke, Congming; Wu, Yaping; Guo, Guang-Yu; Lin, Wei; Wu, Zhiming; Zhou, Changjie; Kang, Junyong
2018-04-01
Inspired by two-dimensional material with their unique physical properties and innovative device applications, here we report a design framework on monolayer GaSe, an important member of the two-dimensional material family, in an effort to tune the electronic, optical, and magnetic properties through a vertical electric field. A transition from indirect to direct band gap in monolayer GaSe is found with an electric field of 0.09 V /Å . The giant Stark effect results in a reduction of the band gap with a Stark coefficient of 3.54 Å. Optical and dielectric properties of monolayer GaSe are dependent on the vertical electric field. A large regulation range for polarization E ∥c ^ is found for the static dielectric constant. The optical anisotropy with the dipole transition from E ∥c ^ to E ⊥c ^ is achieved. Induced by the spin-orbit coupling, spin-splitting energy at the valence band maximum increases linearly with the electric field. The effective mass of holes is highly susceptible to the vertical electric field. Switchable spin-polarization features in spin texture of monolayer GaSe are predicted. The tunable electronic, optical, and magnetic properties of monolayer GaSe hold great promise for applications in both the optoelectronic and spintronic devices.
NASA Astrophysics Data System (ADS)
Kurzydłowski, D.; Grochala, W.
2017-10-01
Hybrid density functional calculations are performed for a variety of systems containing d9 ions (C u2 + and A g2 + ) and exhibiting quasi-one-dimensional magnetic properties. In particular, we study fluorides containing these ions in a rarely encountered compressed octahedral coordination that forces the unpaired electron into the local d (z2) orbital. We predict that such systems should exhibit exchange anisotropies surpassing that of S r2Cu O3 , one of the best realizations of a one-dimensional system known to date. In particular, we predict that the interchain coupling in the A g2 + -containing [AgF ] [B F4 ] system should be nearly four orders of magnitude smaller than the intrachain interaction. Our results indicate that quasi-one-dimensional spin-1/2 systems containing chains with spin sites in the d (z2)1 local ground state could constitute a versatile model for testing modern theories of quantum many-body physics in the solid state.
Emergent reduced dimensionality by vertex frustration in artificial spin ice
NASA Astrophysics Data System (ADS)
Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; O'Brien, Liam; Watts, Justin D.; Manno, Michael; Leighton, Chris; Scholl, Andreas; Nisoli, Cristiano; Schiffer, Peter
2016-02-01
Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments. The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.
Emergent reduced dimensionality by vertex frustration in artificial spin ice
Gilbert, Ian; Lao, Yuyang; Carrasquillo, Isaac; ...
2015-10-26
Reducing the dimensionality of a physical system can have a profound effect on its properties, as in the ordering of low-dimensional magnetic materials, phonon dispersion in mercury chain salts, sliding phases, and the electronic states of graphene. Here we explore the emergence of quasi-one-dimensional behaviour in two-dimensional artificial spin ice, a class of lithographically fabricated nanomagnet arrays used to study geometrical frustration. We extend the implementation of artificial spin ice by fabricating a new array geometry, the so-called tetris lattice. We demonstrate that the ground state of the tetris lattice consists of alternating ordered and disordered bands of nanomagnetic moments.more » The disordered bands can be mapped onto an emergent thermal one-dimensional Ising model. Furthermore, we show that the level of degeneracy associated with these bands dictates the susceptibility of island moments to thermally induced reversals, thus establishing that vertex frustration can reduce the relevant dimensionality of physical behaviour in a magnetic system.« less
Guguchia, Z.; Roessli, B.; Khasanov, R.; ...
2017-08-22
Here, we report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T so decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO 2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent onmore » intertwining with superconducting correlations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guguchia, Z.; Roessli, B.; Khasanov, R.
Here, we report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T so decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO 2 plane. Moreover, Tso is suppressed by Zn in the same manner as the superconducting transition temperature Tc for samples near optimal hole doping. This surprisingly similar sensitivity suggests that the spin-stripe order is dependent onmore » intertwining with superconducting correlations.« less
Phase control of spin waves based on a magnetic defect in a one-dimensional magnonic crystal
NASA Astrophysics Data System (ADS)
Baumgaertl, Korbinian; Watanabe, Sho; Grundler, Dirk
2018-04-01
Magnonic crystals are interesting for spin-wave based data processing. We investigate one-dimensional magnonic crystals (1D MCs) consisting of bistable Co 20 Fe 60 B 20 nanostripes separated by 75 nm wide air gaps. By adjusting the magnetic history, we program a single stripe of opposed magnetization in an otherwise saturated 1D MC. Its influence on propagating spin waves is studied via broadband microwave spectroscopy. Depending on an in-plane bias magnetic field, we observe spin wave phase shifts of up to almost π and field-controlled attenuation attributed to the reversed nanostripe. Our findings are of importance for magnetologics, where the control of spin wave phases is essential.
NASA Astrophysics Data System (ADS)
Liu, N.; Liu, J. B.; Yao, K. L.
2017-12-01
We present first-principle spin-dependent quantum transport calculations in a molecular device constructed by one single-molecule magnet Mn(dmit)2 and two graphene nanoribbon electrodes. Our results show that the device could generate perfect spin-filtering performance in a certain bias range both in the parallel configuration (PC) and the antiparallel configuration (APC). At the same time, a magnetoresistance effect, up to a high value of 103%, can be realized. Moreover, visible negative differential resistance phenomenon is obtained for the spin-up current of the PC. These results suggest that our one-dimensional molecular device is a promising candidate for multi-functional spintronics devices.
Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.
Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.
Dynamic and static fluctuations in polymer gels studied by neutron spin-echo
NASA Astrophysics Data System (ADS)
Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeba, Y.
2006-11-01
We report neutron spin-echo measurements on three types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, the second is PVA gel in an aqueous borax solution and the third is chemically cross-linked PVA gel. The observed normalized intermediate scattering functions I( Q, t)/ I( Q,0) were very different among them. The I( Q, t)/ I( Q,0) of the first and third gels showed a non-decaying component in addition to a decaying component, but the second one did not have the non-decaying one. This clearly indicates that the fluctuations in the first and third PVA gels consist of static and dynamic fluctuations whereas the second PVA gel does include only the dynamic fluctuations. The dynamic and static fluctuations of the PVA gels were analyzed in terms of a restricted motion in the gel network and the Zimm motion, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert
2011-10-15
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less
Electron localisation in static and time-dependent one-dimensional model systems
NASA Astrophysics Data System (ADS)
Durrant, T. R.; Hodgson, M. J. P.; Ramsden, J. D.; Godby, R. W.
2018-02-01
The most direct signature of electron localisation is the tendency of an electron in a many-body system to exclude other same-spin electrons from its vicinity. By applying this concept directly to the exact many-body wavefunction, we find that localisation can vary considerably between different ground-state systems, and can also be strongly disrupted, as a function of time, when a system is driven by an applied electric field. We use this measure to assess the well-known electron localisation function (ELF), both in its approximate single-particle form (often applied within density-functional theory) and its full many-particle form. The full ELF always gives an excellent description of localisation, but the approximate ELF fails in time-dependent situations, even when the exact Kohn-Sham orbitals are employed.
Spin Dynamics in the electron-doped high-Tc superconductors Pr0.88LaCe0.12CuO4-δ
NASA Astrophysics Data System (ADS)
Dai, Pengcheng
2007-03-01
We briefly review results of recent neutron scattering experiments designed to probe the evolution of antiferromagnetic (AF) order and spin dynamics in the electron- doped Pr0.88LaCe0.12CuO4-δ (PLCCO) as the system is tuned from its as-grown non-superconducting AF state into an optimally doped superconductor (Tc = 27.5 K) without static AF order [1-3]. For under doped materials, a quasi-two- dimensional spin-density wave was found to coexist with three- dimensional AF order and superconductivity. In addition, the low-energy spin excitations follow Bose statistics. In the case of optimally doped material, we have discovered a magnetic resonance intimately related to superconductivity analogous to the resonance in hole-doped materials. On the other hand, the low energy spin excitations have very weak temperature dependence and do not follow Bose statistics, in sharp contrast to the as-grown nonsuperconducting materials. 1 Stephen D. Wilson, Pengcheng Dai, Shiliang Li, Songxue Chi, H. J. Kang, and J. W. Lynn, Nature (London) 442, 59 (2006). 2 Stephen D. Wilson, Shiliang Li, Hyungje Woo, Pengcheng Dai, H. A. Mook, C. D. Frost, S. Komiya, and Y. Ando, Phys. Rev. Lett. 96, 157001 (2006). 3. Stephen D. Wilson, Shiliang Li, Pengcheng Dai, Wei Bao, J. H. Chung, H. J. Kang, S.-H. Lee, S. Komiya, and Y. Ando, Phys. Rev. B 74, 144514 (2006).
Strongly Interacting Fermi Gases In Two Dimensions
2012-01-03
Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting...atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice . Decreasing the dimensionality leads to the...opening of a gap in radiofrequency spectra, even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the measured binding energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
NASA Astrophysics Data System (ADS)
Wen, Lin; Zhang, Xiao-Fei; Hu, Ai-Yuan; Zhou, Jing; Yu, Peng; Xia, Lei; Sun, Qing; Ji, An-Chun
2018-03-01
We investigate the dynamics of bright-bright solitons in one-dimensional two-component Bose-Einstein condensates with Raman-induced spin-orbit coupling, via the variational approximation and the numerical simulation of Gross-Pitaevskii equations. For the uniform system without trapping potential, we obtain two population balanced stationary solitons. By performing the linear stability analysis, we find a Goldstone eigenmode and an oscillation eigenmode around these stationary solitons. Moreover, we derive a general dynamical solution to describe the center-of-mass motion and spin evolution of the solitons under the action of spin-orbit coupling. The effects of a harmonic trap have also been discussed.
Magnetic Spin Correlations in the One-dimensional Frustrated Spin-chain System Ca3Co2O6
NASA Astrophysics Data System (ADS)
Månsson, M.; Sugiyama, J.; Roessli, B.; Hitti, B.; Ikedo, Y.; Zivkovic, I.; Nozaki, H.; Harada, M.; Sassa, Y.; Andreica, D.; Goko, T.; Amato, A.; Ofer, O.; Ansaldo, E. J.; Brewer, J. H.; Chow, K. H.; Yi, H. T.; Cheong, S.-W.; Prsa, K.
In this work we present a combination of zero-field and high transverse-field muon spin rotation/relaxation (μ+SR) measurements. The current μ+SR Knight-shift measurements clearly shows that Ca3Co2O6 display strong spin correlations even at room-temperature. Further, several anomalies in the temperature dependent data are proposed to be connected to the onset of a quasi-one-dimensional (Q1D) ferrimagnetic order. Further, we suggest that in the low-temperature regime, the Q1D ferrimagnetic order co-exist within a long-range antiferromagnetic phase, which has been confirmed by our recent neutron scattering studies.
A new spin on electron liquids: Phenomena in systems with spin-orbit coupling
NASA Astrophysics Data System (ADS)
Bernevig, B. Andrei
Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.
Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
2017-05-31
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
Stern-Gerlach dynamics with quantum propagators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Bailey C.; Berrondo, Manuel; Van Huele, Jean-Francois S.
2011-01-15
We study the quantum dynamics of a nonrelativistic neutral particle with spin in inhomogeneous external magnetic fields. We first consider fields with one-dimensional inhomogeneities, both unphysical and physical, and construct the corresponding analytic propagators. We then consider fields with two-dimensional inhomogeneities and develop an appropriate numerical propagation method. We propagate initial states exhibiting different degrees of space localization and various initial spin configurations, including both pure and mixed spin states. We study the evolution of their spin densities and identify characteristic features of spin density dynamics, such as the spatial separation of spin components, and spin localization or accumulation. Wemore » compare our approach and our results with the coverage of the Stern-Gerlach effect in the literature, and we focus on nonstandard Stern-Gerlach outcomes, such as radial separation, spin focusing, spin oscillation, and spin flipping.« less
NASA Astrophysics Data System (ADS)
Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto
2017-06-01
The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.
Quantum Monte Carlo study of spin correlations in the one-dimensional Hubbard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandvik, A.W.; Scalapino, D.J.; Singh, C.
1993-07-15
The one-dimensional Hubbard model is studied at and close to half-filling using a generalization of Handscomb's quantum Monte Carlo method. Results for spin-correlation functions and susceptibilities are presented for systems of up to 128 sites. The spin-correlation function at low temperature is well described by a recently introduced formula relating the correlation function of a finite periodic system to the corresponding [ital T]=0 correlation function of the infinite system. For the [ital T][r arrow]0 divergence of the [ital q]=2[ital k][sub [ital F
Towards a formal definition of static and dynamic electronic correlations.
Benavides-Riveros, Carlos L; Lathiotakis, Nektarios N; Marques, Miguel A L
2017-05-24
Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress in the N-representability problem of the one-body density matrix for pure states, we propose a method to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.
Kumar, Krishan; Moudgil, R K
2012-10-17
We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.
Electric field controlled spin interference in a system with Rashba spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciftja, Orion, E-mail: ogciftja@pvamu.edu
There have been intense research efforts over the last years focused on understanding the Rashba spin-orbit coupling effect from the perspective of possible spintronics applications. An important component of this line of research is aimed at control and manipulation of electron’s spin degrees of freedom in semiconductor quantum dot devices. A promising way to achieve this goal is to make use of the tunable Rashba effect that relies on the spin-orbit interaction in a two-dimensional electron system embedded in a host semiconducting material that lacks inversion-symmetry. This way, the Rashba spin-orbit coupling effect may potentially lead to fabrication of amore » new generation of spintronic devices where control of spin, thus magnetic properties, is achieved via an electric field and not a magnetic field. In this work we investigate theoretically the electron’s spin interference and accumulation process in a Rashba spin-orbit coupled system consisting of a pair of two-dimensional semiconductor quantum dots connected to each other via two conducting semi-circular channels. The strength of the confinement energy on the quantum dots is tuned by gate potentials that allow “leakage” of electrons from one dot to another. While going through the conducting channels, the electrons are spin-orbit coupled to a microscopically generated electric field applied perpendicular to the two-dimensional system. We show that interference of spin wave functions of electrons travelling through the two channels gives rise to interference/conductance patterns that lead to the observation of the geometric Berry’s phase. Achieving a predictable and measurable observation of Berry’s phase allows one to control the spin dynamics of the electrons. It is demonstrated that this system allows use of a microscopically generated electric field to control Berry’s phase, thus, enables one to tune the spin-dependent interference pattern and spintronic properties with no need for injection of spin-polarized electrons.« less
Spratford, Wayne; Whiteside, David; Elliott, Bruce; Portus, Marc; Brown, Nicholas; Alderson, Jacqueline
2018-03-01
Spin bowling plays a fundamental role within the game of cricket yet little is known about the initial ball kinematics in elite and pathway spin bowlers or their relationship to performance. Therefore, the purpose of this study was to record three-dimensional ball kinematics in a large and truly high level cohort of elite and pathway finger-spin (FS) and wrist-spin (WS) bowlers, identifying potential performance measures that can be subsequently used in future research. A 22-camera Vicon motion analysis system captured retro-reflective markers placed on the seam (static) and ball (dynamic) to quantify ball kinematics in 36 FS (12 elite and 24 pathway) and 20 WS (eight elite and 12 pathway) bowlers. Results indicated that FS bowlers delivered the ball with an increased axis of rotation elevation, while wrist-spin bowlers placed greater amounts of revolutions on the ball. It also highlighted that ball release (BR) velocity, revolutions and velocity/revolution index scores for both groups and seam stability for FS bowlers, and seam azimuth angle and spin axis elevation angle for WS bowlers, were discriminators of playing level. As such these variables could be used as indicators of performance (i.e. performance measures) in future research.
Conductance of two-dimensional waveguide in presence of the Rashba spin-orbit interaction
NASA Astrophysics Data System (ADS)
Liu, Duan-Yang; Xia, Jian-Bai
2018-04-01
By using the transfer matrix method, we investigated spin transport in some straight structures in presence of the Rashba spin-orbit interaction. It is proved that the interference of two spin states is the same as that in one-dimensional Datta-Das spin field-effect transistor. The conductance of these structures has been calculated. Conductance quantization is common in these waveguides when we change the Fermi energy and the width of the waveguide. Using a periodic system of quadrate stubs and changing the Fermi energy, a nearly square-wave conductance can be obtained in some regions of the Fermi energy.
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2011-10-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.
2014-07-14
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less
Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron
Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco
2016-01-01
The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598
NASA Astrophysics Data System (ADS)
Kuklin, Artem V.; Kuzubov, Alexander A.; Kovaleva, Evgenia A.; Lee, Hyosun; Sorokin, Pavel B.; Sakai, Seiji; Entani, Shiro; Naramoto, Hiroshi; Avramov, Paul
2017-10-01
Induced spin polarization of π-conjugated carbon and h-BN low dimensional fragments at the interfaces formed by deposition of pentacene molecule and narrow zigzag graphene and h-BN nanoribbons on MnO2-terminated LSMO(001) thin film was studied using GGA PBE+U PAW D3-corrected approach. Induced spin polarization of π-conjugated low-dimensional fragments is caused by direct exchange with Mn ions of LSMO(001) MnO-derived surface. Due to direct exchange, the pentacene molecule changes its diamagnetic narrow-band gap semiconducting nature to the ferromagnetic semiconducting state with 0.15 eV energy shift between spin-up and spin-down valence bands and total magnetic moment of 0.11 μB. Direct exchange converts graphene nanoribbon to 100% spin-polarized half-metal with large amplitude of spin-up electronic density at the Fermi level. The direct exchange narrows the h-BN nanoribbon band gap from 4.04 to 1.72 eV in spin-up channel and converts the h-BN ribbon semiconducting diamagnetic nature to a semiconducting magnetic one. The electronic structure calculations demonstrate a possibility to control the spin properties of low-dimensional π-conjugated carbon and h-BN fragments by direct exchange with MnO-derived LSMO(001) surface for spin-related applications.
Electronic properties of one-dimensional nanostructures of the Bi2Se3 topological insulator
NASA Astrophysics Data System (ADS)
Virk, Naunidh; Autès, Gabriel; Yazyev, Oleg V.
2018-04-01
We theoretically study the electronic structure and spin properties of one-dimensional nanostructures of the prototypical bulk topological insulator Bi2Se3 . Realistic models of experimentally observed Bi2Se3 nanowires and nanoribbons are considered using the tight-binding method. At low energies, the band structures are composed of a series of evenly spaced degenerate subbands resulting from circumferential confinement of the topological surface states. The direct band gaps due to the nontrivial π Berry phase show a clear dependence on the circumference. The spin-momentum locking of the topological surface states results in a pronounced 2 π spin rotation around the circumference with the degree of spin polarization dependent on the momentum along the nanostructure. Overall, the band structures and spin textures are more complicated for nanoribbons, which expose two distinct facets. The effects of reduced dimensionality are rationalized with the help of a simple model that considers circumferential quantization of the topological surface states. Furthermore, the surface spin density induced by an electric current along the nanostructure shows a pronounced oscillatory dependence on the charge-carrier energy, which can be exploited in spintronics applications.
Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder
NASA Astrophysics Data System (ADS)
Peschke, Matthias; Rausch, Roman; Potthoff, Michael
2018-03-01
The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.
Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains
NASA Astrophysics Data System (ADS)
Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian
2017-11-01
We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.
Papaemmanouil, Christina; Tsiafoulis, Constantinos G; Alivertis, Dimitrios; Tzamaloukas, Ouranios; Miltiadou, Despoina; Tzakos, Andreas G; Gerothanassis, Ioannis P
2015-06-10
We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.
On the dynamics of the Ising model of cooperative phenomena
Montroll, Elliott W.
1981-01-01
A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955
Middle School Students' Reasoning about 3-Dimensional Objects: A Case Study
ERIC Educational Resources Information Center
Okumus, Samet
2016-01-01
According to the National Council of Teacher of Mathematics (NCTM) (2000), K-12 students should be given an opportunity to develop their spatial reasoning abilities. One of the topics that may allow students to develop their spatial skills is forming 3-dimensional objects using spinning and extrusion methods. Also, extrusion and spinning methods…
Magnetic Correlations in the Triangular Antiferromagnet TbInO3
NASA Astrophysics Data System (ADS)
Sala, Gabriele; Clark, Lucy; Maharaj, Dalini; Stone, Matthew B.; Knight, Kevin S.; Cheong, Sang-Wook; Gaulin, Bruce D.
TbInO3 crystallizes with a hexagonal P63 cm structure in which layers of edge-sharing triangles of magnetic Tb3+ ions are separated by non-magnetic [InO5]7- units. TbInO3, therefore, realizes an excellent opportunity to explore the behavior of a two-dimensional magnetic triangular lattice, a canonical model of geometric frustration. Here we present our study of a polycrystalline sample of TbInO3. Our high resolution powder neutron diffraction data (HRPD, ISIS) of TbInO3 confirm that the triangular layers of Tb3+ remain undistorted to at least 0 . 46 K. Magnetic susceptibility data follow Curie-Weiss behavior over a wide range of T with θ = - 17 . 19 (3) K indicating the dominance of antiferromagnetic correlations. The susceptibility data also show an absence of conventional long-range spin order down to at least 0 . 55 K, reflecting the frustrated nature of TbInO3. Elastic magnetic diffuse neutron scattering (SEQUOIA, SNS) is observed below ~ 15 K, due to the presence of static two-dimensional spin correlations. The spectrum of crystal field excitations in TbInO3 appears to have an exotic form due to the existence of two crystallographically distinct Tb3+ sites and leads to a strong Ising anisotropy of the spin symmetry.
Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111).
Matetskiy, A V; Ichinokura, S; Bondarenko, L V; Tupchaya, A Y; Gruznev, D V; Zotov, A V; Saranin, A A; Hobara, R; Takayama, A; Hasegawa, S
2015-10-02
A one-atom-layer compound made of one monolayer of Tl and one-third monolayer of Pb on a Si(111) surface having √3×√3 periodicity was found to exhibit a giant Rashba-type spin splitting of metallic surface-state bands together with two-dimensional superconducting transport properties. Temperature-dependent angle-resolved photoelectron spectroscopy revealed an enhanced electron-phonon coupling for one of the spin-split bands. In situ micro-four-point-probe conductivity measurements with and without magnetic field demonstrated that the (Tl, Pb)/Si(111) system transformed into the superconducting state at 2.25 K, followed by the Berezinskii-Kosterlitz-Thouless mechanism. The 2D Tl-Pb compound on Si(111) is believed to be the prototypical object for prospective studies of intriguing properties of the superconducting 2D system with lifted spin degeneracy, bearing in mind that its composition, atomic and electron band structures, and spin texture are already well established.
One-dimensional Ising model with multispin interactions
NASA Astrophysics Data System (ADS)
Turban, Loïc
2016-09-01
We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.
Solution to the sign problem in a frustrated quantum impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh
2017-01-15
In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less
Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material
NASA Astrophysics Data System (ADS)
Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.
2018-04-01
Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.
2d affine XY-spin model/4d gauge theory duality and deconfinement
NASA Astrophysics Data System (ADS)
Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat
2012-04-01
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.
Exploratory tests of two strut fuel injectors for supersonic combustion
NASA Technical Reports Server (NTRS)
Anderson, G. Y.; Gooderum, P. B.
1974-01-01
Results of supersonic mixing and combustion tests performed with two simple strut injector configurations, one with parallel injectors and one with perpendicular injectors, are presented and analyzed. Good agreement is obtained between static pressure measured on the duct wall downstream of the strut injectors and distributions obtained from one-dimensional calculations. Measured duct heat load agrees with results of the one-dimensional calculations for moderate amounts of reaction, but is underestimated when large separated regions occur near the injection location. For the parallel injection strut, good agreement is obtained between the shape of the injected fuel distribution inferred from gas sample measurements at the duct exit and the distribution calculated with a multiple-jet mixing theory. The overall fraction of injected fuel reacted in the multiple-jet calculation closely matches the amount of fuel reaction necessary to match static pressure with the one-dimensional calculation. Gas sample measurements with the perpendicular injection strut also give results consistent with the amount of fuel reaction in the one-dimensional calculation.
Spin selective filtering of polariton condensate flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, T.; Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete; Antón, C.
2015-07-06
Spin-selective spatial filtering of propagating polariton condensates, using a controllable spin-dependent gating barrier, in a one-dimensional semiconductor microcavity ridge waveguide is reported. A nonresonant laser beam provides the source of propagating polaritons, while a second circularly polarized weak beam imprints a spin dependent potential barrier, which gates the polariton flow and generates polariton spin currents. A complete spin-based control over the blocked and transmitted polaritons is obtained by varying the gate polarization.
NASA Astrophysics Data System (ADS)
Choi, Hwan Bin; Lee, Ji-Woo
2017-09-01
We study quantum phase transitions of a XXZ spin model with spin S = 1/2 and 1 in one dimension. The XXZ spin chain is one of basic models in understanding various one-dimensional magnetic materials. To study this model, we construct infinite-lattice matrix product state (iMPS), which is a tensor product form for a one-dimensional many-body quantum wave function. By using timeevolution- block-decimation method (TEBD) on iMPS, we obtain the ground states of the XXZ model at zero temperature. This method is very delicate in calculating ground states so that we developed a reliable method of finding the ground state with the dimension of entanglement coefficients up to 300, which is beyond the previous works. By analyzing ground-state energies, half-chain entanglement entropies, and entanglement spectrum, we found the signatures of quantum phase transitions between ferromagnetic phase, XY phase, Haldane phase, and antiferromagnetic phase.
Charge and spin in low-dimensional cuprates
NASA Astrophysics Data System (ADS)
Maekawa, Sadamichi; Tohyama, Takami
2001-03-01
One of the central issues in the study of high-temperature superconducting cuprates which are composed of two-dimensional (2D) CuO2 planes is whether the 2D systems with strong electron correlation behave as a Fermi liquid or a non-Fermi-liquid-like one-dimensional (1D) system with electron correlation. In this article, we start with the detailed examination of the electronic structure in cuprates and study theoretically the spin and charge dynamics in 1D and 2D cuprates. The theoretical background of spin-charge separation in the 1D model systems including the Hubbard and t-J models is presented. The first direct observation of collective modes of spin and charge excitations in a 1D cuprate, which are called spinons and holons respectively, in angle-resolved photoemission spectroscopy (ARPES) experiments is reviewed in the light of the theoretical results based on the numerically exact-diagonalization method. The charge and spin dynamics in 1D insulating cuprates is also discussed in connection with the spin-charge separation. The arguments are extended to the 2D cuprates, and the unique aspects of the electronic properties of high-temperature superconductors are discussed. Special emphasis is placed on the d-wave-like excitations in insulating 2D cuprates observed in ARPES experiments. We explain how the excitations are caused by the spin-charge separation. The charge stripes observed in the underdoped cuprates are examined in connection with spin-charge separation in real space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawrie, Alestin; Ghosh, Tarun Kanti
We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strengthmore » of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.« less
NASA Astrophysics Data System (ADS)
Sapkota, A.; Ueland, B. G.; Anand, V. K.; Sangeetha, N. S.; Abernathy, D. L.; Stone, M. B.; Niedziela, J. L.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.
2017-10-01
Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo2 -yAs2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J1-J2 Heisenberg model on a square lattice with ferromagnetic J1 and hence indicate that the extensive previous experimental and theoretical study of the J1-J2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.
Sapkota, A; Ueland, B G; Anand, V K; Sangeetha, N S; Abernathy, D L; Stone, M B; Niedziela, J L; Johnston, D C; Kreyssig, A; Goldman, A I; McQueeney, R J
2017-10-06
Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo_{2-y}As_{2} at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. These results are shown to arise from near-perfect bond frustration within the J_{1}-J_{2} Heisenberg model on a square lattice with ferromagnetic J_{1} and hence indicate that the extensive previous experimental and theoretical study of the J_{1}-J_{2} Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.
Sapkota, A.; Ueland, B. G.; Anand, V. K.; ...
2017-10-02
Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo 2–yAs 2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. Here, these results are shown to arise from near-perfect bond frustration within the J 1–J 2 Heisenberg model on a square lattice with ferromagnetic J 1 and hence indicate that the extensive previous experimental and theoretical study of the J 1–J 2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, A.; Ueland, B. G.; Anand, V. K.
Inelastic neutron scattering measurements on the itinerant antiferromagnet CaCo 2–yAs 2 at a temperature of 8 K reveal two orthogonal planes of scattering perpendicular to the Co square lattice in reciprocal space, demonstrating the presence of effective one-dimensional spin interactions. Here, these results are shown to arise from near-perfect bond frustration within the J 1–J 2 Heisenberg model on a square lattice with ferromagnetic J 1 and hence indicate that the extensive previous experimental and theoretical study of the J 1–J 2 Heisenberg model on local-moment square spin lattices should be expanded to include itinerant spin systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Bhallamudi, Vidya P.
2015-10-05
Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.
Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.
NASA Astrophysics Data System (ADS)
Agapov, Vladimir
2018-03-01
The necessity of new approaches to the modeling of rods in the analysis of high-rise constructions is justified. The possibility of the application of the three-dimensional superelements of rods with rectangular cross section for the static and dynamic calculation of the bar and combined structures is considered. The results of the eighteen-story spatial frame free vibrations analysis using both one-dimensional and three-dimensional models of rods are presented. A comparative analysis of the obtained results is carried out and the conclusions on the possibility of three-dimensional superelements application in static and dynamic analysis of high-rise constructions are given on its basis.
Moderate MAS enhances local (1)H spin exchange and spin diffusion.
Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter
2015-11-01
Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (<10 kHz) spinning rates as compared to static conditions. Spin diffusion under static conditions can thus be slower than the often referred value of 0.8 nm(2)/ms, which was determined using slow MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinckmann, Jan; Woelfle, Peter
2004-11-01
The nearest-neighbor quantum antiferromagnetic (AF) Heisenberg model for spin-1/2 on a two-dimensional square lattice is studied in the auxiliary-fermion representation. Expressing spin operators by canonical fermionic particles requires a constraint on the fermion charge Q{sub i}=1 on each lattice site i, which is imposed approximately through the thermal average. The resulting interacting fermion system is first treated in mean-field theory (MFT), which yields an AF ordered ground state and spin waves in quantitative agreement with conventional spin-wave theory. At finite temperature a self-consistent approximation beyond mean field is required in order to fulfill the Mermin-Wagner theorem. We first discuss amore » fully self-consistent approximation, where fermions are renormalized due to fluctuations of their spin density, in close analogy to FLEX. While static properties like the correlation length, {xi}(T){proportional_to}exp(aJ/T), come out correctly, the dynamical response lacks the magnon-like peaks which would reflect the appearance of short-range order at low T. This drawback, which is caused by overdamping, is overcome in a 'minimal self-consistent approximation' (MSCA), which we derive from the equations of motion. The MSCA features dynamical scaling at small energy and temperature and is qualitatively correct both in the regime of order-parameter relaxation at long wavelengths {lambda}>{xi} and in the short-range-order regime at {lambda}<{xi}. We also discuss the impact of vertex corrections and the problem of pseudo-gap formation in the single-particle density of states due to long-range fluctuations. Finally we show that the (short-range) magnetic order in MFT and MSCA helps to fulfill the constraint on the local fermion occupancy.« less
Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2012-02-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.
Microscopic observation of magnon bound states and their dynamics.
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-10-03
The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
Electronic spin polarization in the Majorana bound state in one-dimensional wires
NASA Astrophysics Data System (ADS)
Val'kov, V. V.; Aksenov, S. V.
2017-10-01
We have studied the effect of magnetic field and disorder on the electronic z-spin polarization at the ends of the one-dimensional wire with strong Rashba spin-orbit coupling deposited on an s-wave superconductor. It was shown that in the topologically nontrivial phase the polarization as well as the energy of the Majorana bound state oscillate as a function of the magnetic field. Despite being substantially nonzero in the low transversal and longitudinal fields the polarization at one of the wire's ends is significantly suppressed at a certain range of the magnitudes and angles of the canted magnetic field. Thus, in this case the polarization cannot be regarded as a local order parameter. However, the sum of the absolute values of the polarization at both ends remains significantly nonzero. It was demonstrated that Anderson disorder does not seriously affect observed properties but leads to the appearance of the additional areas with weak spin polarization at the high magnetic fields.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Malomed, Boris A.
2017-10-01
We analyze the possibility of macroscopic quantum effects in the form of coupled structural oscillations and shuttle motion of bright two-component spin-orbit-coupled striped (one-dimensional, 1D) and semivortex (two-dimensional, 2D) matter-wave solitons, under the action of linear mixing (Rabi coupling) between the components. In 1D, the intrinsic oscillations manifest themselves as flippings between spatially even and odd components of striped solitons, while in 2D the system features periodic transitions between zero-vorticity and vortical components of semivortex solitons. The consideration is performed by means of a combination of analytical and numerical methods.
One-dimensional magnetic fluctuations in the spin-2 triangular lattice alpha-NaMnO2.
Stock, C; Chapon, L C; Adamopoulos, O; Lappas, A; Giot, M; Taylor, J W; Green, M A; Brown, C M; Radaelli, P G
2009-08-14
The S=2 anisotropic triangular lattice alpha-NaMnO2 is studied by neutron inelastic scattering. Antiferromagnetic order occurs at T< or =45 K with opening of a spin gap. The spectral weight of the magnetic dynamics above the gap (Delta approximately equal to 7.5 meV) has been analyzed by the single-mode approximation. Excellent agreement with the experiment is achieved when a dominant exchange interaction (|J|/k(B) approximately 73 K), along the monoclinic b axis and a sizable easy-axis magnetic anisotropy (|D|/k(B) approximately 3 K) are considered. Despite earlier suggestions for two-dimensional spin interactions, the dynamics illustrate strongly coupled antiferromagnetic S=2 chains and cancellation of the interchain exchange due to the lattice topology. alpha-NaMnO2 therefore represents a model system where the geometric frustration is resolved through the lowering of the dimensionality of the spin interactions.
NASA Astrophysics Data System (ADS)
Sepehrinia, Reza; Niry, M. D.; Bozorg, B.; Tabar, M. Reza Rahimi; Sahimi, Muhammad
2008-03-01
A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes at T=0 of the Heisenberg-Mattis model of one-dimensional (1D) spin glasses and the (discretized) random wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent (LE) of the magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In addition, through numerical simulations, the differences between the LE and the density of states of the wave equation in a discrete 1D model of randomly disordered media (those with a finite correlation length) and that of continuous media (with a zero correlation length) are demonstrated and emphasized.
Gauge invariant gluon spin operator for spinless nonlinear wave solutions
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.
2017-04-01
We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.
Quantum transport in d-dimensional lattices
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-04-28
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour ofmore » uniform spin lattices is a consequence of the interaction between different excitations.« less
Anomalous quantum critical spin dynamics in YFe2Al10
NASA Astrophysics Data System (ADS)
Huang, K.; Tan, C.; Zhang, J.; Ding, Z.; MacLaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Baines, C.; Wu, L. S.; Aronson, M. C.; Shu, L.
2018-04-01
We report results of a muon spin relaxation (μ SR ) study of YFe2Al10 , a quasi-two-dimensional (2D) nearly ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2 + magnetism, with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the electronic spin dynamics directly. We attribute this to the proportionality of λ (ωμ,T ) to the dynamic structure factor S (ωμ,T ) , where ωμ≈105-107s-1 is the muon Zeeman frequency. These results suggest critical divergences of S (ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield forms for S (ω ,T ) that agree with neutron scattering data (ω ≈1012s-1 ). Extrapolation to μ SR frequencies agrees semiquantitatively with the observed temperature dependence of λ (ωμ,T ) , but predicts frequency independence for ωμ≪T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of YFe2Al10 is not well understood at low frequencies.
Rb-NMR study of the quasi-one-dimensional competing spin-chain compound R b2C u2M o3O12
NASA Astrophysics Data System (ADS)
Matsui, Kazuki; Yagi, Ayato; Hoshino, Yukihiro; Atarashi, Sochiro; Hase, Masashi; Sasaki, Takahiko; Goto, Takayuki
2017-12-01
A Rb-NMR study has been performed on the quasi-one-dimensional competing spin chain R b2C u2M o3O12 with ferromagnetic and antiferromagnetic exchange interactions on nearest-neighboring and next-nearest neighboring spins, respectively. The system changes from a gapped ground state at zero field to a gapless state at HC≃2 T , where the existence of magnetic order below 1 K was demonstrated by a broadening of the NMR spectrum, associated with a critical divergence of 1 /T1 . In the higher-temperature region, T1-1 showed a power-law-type temperature dependence, from which the field dependence of the Luttinger parameter K was obtained and compared with theoretical calculations based on the spin nematic Tomonaga-Luttinger liquid (TLL) state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajardo, E. A.; Zülicke, U.; Winkler, R.
We discuss the universal spin dynamics in quasi-one-dimensional systems including the real spin in narrow-gap semiconductors like InAs and InSb, the valley pseudospin in staggered single-layer graphene, and the combination of real spin and valley pseudospin characterizing single-layer transition metal dichalcogenides (TMDCs) such as MoS2, WS2, MoS2, and WSe2. All these systems can be described by the same Dirac-like Hamiltonian. Spin-dependent observable effects in one of these systems thus have counterparts in each of the other systems. Effects discussed in more detail include equilibrium spin currents, current-induced spin polarization (Edelstein effect), and spin currents generated via adiabatic spin pumping. Ourmore » work also suggests that a long-debated spin-dependent correction to the position operator in single-band models should be absent.« less
Two-dimensional NMR spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, T.C.
1987-06-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.
Spin eigen-states of Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shownmore » that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.« less
Effects of structural spin-orbit coupling in two dimensional electron and hole liquids
NASA Astrophysics Data System (ADS)
Chesi, Stefano
The recent interest in spin-dependent phenomena in semiconductor heterostructures motivates our detailed study of the structural spin-orbit coupling present in clean two-dimensional electron and hole liquids. Interesting polarization effects are produced in a system out of equilibrium, as when a finite current flows in the sample. In particular, the consequences of a lateral confinement creating a quasi one-dimensional wire are studied in detail, partially motivated by a recent experimental investigation of the point-contact transmission for two-dimensional holes. We also address the role of the electron-electron interaction in the presence of spin-orbit coupling, which has received little attention in the literature. We discuss the formulation of the Hartree-Fock approximation in the particular case of linear Rashba spin-orbit. We establish the form of the mean-field phase diagram in the homogeneous case, which shows a complex interplay between paramagnetic and ferromagnetic states. The latter can be polarized in the plane or in a transverse direction, and are characterized by a complex spin structure and nontrivial occupation. The generality of the Hartree-Fock method allows a simple treatment of the Pauli spin susceptibility, and the application to different forms of spin-orbit coupling. Correlation corrections can be obtained in an analytic form for particular asymptotic regimes. For linear Rashba spin-orbit we identified the relevance of the large spin-orbit limit, dominated by many-body effects, and explicitly treated the high density limit, in which the system is asymptotically noninteracting. As a special case, we derive a new exact formula for the polarization dependence of the ring-diagram correlation energy.
Antiresonance induced spin-polarized current generation
NASA Astrophysics Data System (ADS)
Yin, Sun; Min, Wen-Jing; Gao, Kun; Xie, Shi-Jie; Liu, De-Sheng
2011-12-01
According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.
Floquet spin states in graphene under ac-driven spin-orbit interaction
NASA Astrophysics Data System (ADS)
López, A.; Sun, Z. Z.; Schliemann, J.
2012-05-01
We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.
Solution of the Lindblad equation for spin helix states.
Popkov, V; Schütz, G M
2017-04-01
Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries. We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current which is independent of system size, even when the quantum spin system is not integrable. These results are derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations, which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.
Correlated lateral phase separations in stacks of lipid membranes
NASA Astrophysics Data System (ADS)
Hoshino, Takuma; Komura, Shigeyuki; Andelman, David
2015-12-01
Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.
Room temperature ferromagnetism in Fe-doped semiconductor ZrS2 single crystals
NASA Astrophysics Data System (ADS)
Muhammad, Zahir; Lv, Haifeng; Wu, Chuanqiang; Habib, Muhammad; Rehman, Zia ur; Khan, Rashid; Chen, Shuangming; Wu, Xiaojun; Song, Li
2018-04-01
Two dimensional (2D) layered magnetic materials have obtained much attention due to their intriguing properties with a potential application in the field of spintronics. Herein, room-temperature ferromagnetism with 0.2 emu g‑1 magnetic moment is realized in Fe-doped ZrS2 single crystals of millimeter size, in comparison with diamagnetic behaviour in ZrS2. The electron paramagnetic resonance spectroscopy reveals that 5.2wt% Fe-doping ZrS2 crystal exhibit high spin value of g-factor about 3.57 at room temperature also confirmed this evidence, due to the unpaired electrons created by doped Fe atoms. First principle static electronic and magnetic calculations further confirm the increased stability of long range ferromagnetic ordering and enhanced magnetic moment in Fe-doped ZrS2, originating from the Fe spin polarized electron near the Fermi level.
Exact results in 3d N = 2 Spin(7) gauge theories with vector and spinor matters
NASA Astrophysics Data System (ADS)
Nii, Keita
2018-05-01
We study three-dimensional N = 2 Spin(7) gauge theories with N S spinorial matters and with N f vectorial matters. The quantum Coulomb branch on the moduli space of vacua is one- or two-dimensional depending on the matter contents. For particular values of ( N f , N S ), we find s-confinement phases and derive exact superpotentials. The 3d dynamics of Spin(7) is connected to the 4d dynamics via KK-monopoles. Along the Higgs branch of the Spin(7) theories, we obtain 3d N = 2 G 2 or SU(4) theories and some of them lead to new s-confinement phases. As a check of our analysis we compute superconformal indices for these theories.
Design for a spin-Seebeck diode based on two-dimensional materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Hua-Hua; Wu, Dan-Dan; Gu, Lei
2015-07-01
Studies of the spin-Seebeck effect (SSE) are very important for the development of fundamental science and novel low-power-consumption technologies. The spin-Seebeck diode (SSD), in which the spin current can be driven by a forward temperature gradient but not by a reverse temperature gradient, is a key unit in spin caloritronic devices. Here, we propose a SSD design using two-dimensional (2D) materials such as silicene and phosphorene nanoribbons as the source and drain. Due to their unique band structures and magnetic states, thermally driven spin-up and spin-down currents flow in opposite directions. This mechanism is different from that of the previousmore » one, which uses two permalloy circular disks [Phys. Rev. Lett. 112, 047203 (2014)], and the SSD in our design can be easily integrated with gate voltage control. Since the concept of this design is rather general and applicable to many 2D materials, it is promising for the realization and exploitation of SSDs in nanodevices.« less
Static holes in the geometrically frustrated bow-tie ladder
NASA Astrophysics Data System (ADS)
Martins, George B.; Brenig, Wolfram
2008-10-01
We investigate the doping of a geometrically frustrated spin ladder with static holes by a complementary approach using exact diagonalization and quantum dimers. Results for thermodynamic properties, the singlet density of states, the hole-binding energy and the spin correlations will be presented. For the undoped systems the ground state is non-degenerate, with translationally invariant nearest-neighbor spin correlations. For the doped case, we find that static holes polarize their vicinity through a localization of singlets, reducing the frustration. This polarization induces short range repulsive forces between two holes and an oscillatory behavior of the long range two-hole energy. For most quantities investigated, we find very good agreement between the quantum dimer approach and the results from exact diagonalization.
Energy as a witness of multipartite entanglement in chains of arbitrary spins
NASA Astrophysics Data System (ADS)
Troiani, F.; Siloi, I.
2012-09-01
We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary spins s, and we report numerical results for spin values s≤5/2 (with N≤8). The minima provide a set of threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins has a nondegenerate N-partite entangled ground state, and it can thus witness such correlations in all finite spin chains.
Magnetic End States in a Strongly Interacting One-Dimensional Topological Kondo Insulator
Lobos, Alejandro M.; Dobry, Ariel O.; Galitski, Victor
2015-05-22
Topological Kondo insulators are strongly correlated materials where itinerant electrons hybridize with localized spins, giving rise to a topologically nontrivial band structure. Here, we use nonperturbative bosonization and renormalization-group techniques to study theoretically a one-dimensional topological Kondo insulator, described as a Kondo-Heisenberg model, where the Heisenberg spin-1/2 chain is coupled to a Hubbard chain through a Kondo exchange interaction in the p-wave channel (i.e., a strongly correlated version of the prototypical Tamm-Schockley model).We derive and solve renormalization-group equations at two-loop order in the Kondo parameter, and find that, at half filling, the charge degrees of freedom in the Hubbard chainmore » acquire a Mott gap, even in the case of a noninteracting conduction band (Hubbard parameter U = 0). Furthermore, at low enough temperatures, the system maps onto a spin-1/2 ladder with local ferromagnetic interactions along the rungs, effectively locking the spin degrees of freedom into a spin-1 chain with frozen charge degrees of freedom. This structure behaves as a spin-1 Haldane chain, a prototypical interacting topological spin model, and features two magnetic spin-1/2 end states for chains with open boundary conditions. In conclusion, our analysis allows us to derive an insightful connection between topological Kondo insulators in one spatial dimension and the well-known physics of the Haldane chain, showing that the ground state of the former is qualitatively different from the predictions of the naive mean-field theory.« less
Role of the d -d interaction in the antiferromagnetic phase of λ -(BEDT-STF ) 2FeCl4
NASA Astrophysics Data System (ADS)
Minamidate, Takaaki; Shindo, Hironori; Ihara, Yoshihiko; Kawamoto, Atsushi; Matsunaga, Noriaki; Nomura, Kazushige
2018-03-01
Magnetic susceptibility and proton nuclear magnetic resonance (1H-NMR ) measurements were performed for the quasi-two-dimensional π -d interacting system λ -(BEDT-STF ) 2FeCl4 at ambient pressure. Magnetic susceptibility arising from the 3 d spins of the FeCl4 anion show an anisotropy at low temperature and its temperature dependence for the external field parallel to the c axis is described as a broad peak structure at 8 K. A sharp peak in the temperature dependence of T1-1 associated with the antiferromagnetic (AF) transition is observed at TAF=16 K, together with the drastic splitting of the NMR spectrum below TAF. The relation between the static susceptibility and the splitting of the NMR shift suggests the existence of the relatively strong d -d AF interaction. These results can be explained by the model considering the AF-coupled d -spin system in the AF long-range-ordered π -spin system. We find that the AF phases in λ -type salts can be universally explained by this model.
Baity-Jesi, Marco; Calore, Enrico; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvión, José Miguel; Gordillo-Guerrero, Antonio; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ricci-Tersenghi, Federico; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Tarancón, Alfonso; Tripiccione, Raffaele; Yllanes, David
2017-01-01
We have performed a very accurate computation of the nonequilibrium fluctuation–dissipation ratio for the 3D Edwards–Anderson Ising spin glass, by means of large-scale simulations on the special-purpose computers Janus and Janus II. This ratio (computed for finite times on very large, effectively infinite, systems) is compared with the equilibrium probability distribution of the spin overlap for finite sizes. Our main result is a quantitative statics-dynamics dictionary, which could allow the experimental exploration of important features of the spin-glass phase without requiring uncontrollable extrapolations to infinite times or system sizes. PMID:28174274
Charge-spin Transport in Surface-disordered Three-dimensional Topological Insulators
NASA Astrophysics Data System (ADS)
Peng, Xingyue
As one of the most promising candidates for the building block of the novel spintronic circuit, the topological insulator (TI) has attracted world-wide interest of study. Robust topological order protected by time-reversal symmetry (TRS) makes charge transport and spin generation in TIs significantly different from traditional three-dimensional (3D) or two-dimensional (2D) electronic systems. However, to date, charge transport and spin generation in 3D TIs are still primarily modeled as single-surface phenomena, happening independently on top and bottom surfaces. In this dissertation, I will demonstrate via both experimental findings and theoretical modeling that this "single surface'' theory neither correctly describes a realistic 3D TI-based device nor reveals the amazingly distinct physical picture of spin transport dynamics in 3D TIs. Instead, I present a new viewpoint of the spin transport dynamics where the role of the insulating yet topologically non-trivial bulk of a 3D TI becomes explicit. Within this new theory, many mysterious transport and magneto-transport anomalies can be naturally explained. The 3D TI system turns out to be more similar to its low dimensional sibling--2D TI rather than some other systems sharing the Dirac dispersion, such as graphene. This work not only provides valuable fundamental physical insights on charge-spin transport in 3D TIs, but also offers important guidance to the design of 3D TI-based spintronic devices.
NASA Technical Reports Server (NTRS)
Ballin, M. G.
1982-01-01
The feasibility of using static wind tunnel tests to obtain information about spin damping characteristics of an isolated general aviation aircraft tail was investigated. A representative tail section was oriented to the tunnel free streamline at angles simulating an equilibrium spin. A full range of normally encountered spin conditions was employed. Results of parametric studies performed to determine the effect of spin damping on several tail design parameters show satisfactory agreement with NASA rotary balance tests. Wing and body interference effects are present in the NASA studies at steep spin attitudes, but agreement improves with increasing pitch angle and spin rate, suggesting that rotational flow effects are minimal. Vertical position of the horizontal stabilizer is found to be a primary parameter affecting yaw damping, and horizontal tail chordwise position induces a substantial effect on pitching moment.
Prethermal time crystals in a one-dimensional periodically driven Floquet system
NASA Astrophysics Data System (ADS)
Zeng, Tian-Sheng; Sheng, D. N.
2017-09-01
Motivated by experimental observations of time-symmetry breaking behavior in a periodically driven (Floquet) system, we study a one-dimensional spin model to explore the stability of such Floquet discrete time crystals (DTCs) under the interplay between interaction and the microwave driving. For intermediate interactions and high drivings, from the time evolution of both stroboscopic spin polarization and mutual information between two ends, we show that Floquet DTCs can exist in a prethermal time regime without the tuning of strong disorder. For much weak interactions the system is a symmetry-unbroken phase, while for strong interactions it gives its way to a thermal phase. Through analyzing the entanglement dynamics, we show that large driving fields protect the prethermal DTCs from many-body localization and thermalization. Our results suggest that by increasing the spin interaction, one can drive the experimental system into optimal regime for observing a robust prethermal DTC phase.
Research of spin-orbit interaction in organic conjugated polymers
NASA Astrophysics Data System (ADS)
Li, H.; Zhou, M. Y.; Wu, S. Y.; Liang, X. R.
2017-06-01
The effect of spin-orbit interaction on the one-dimensional organic polymer was investigated theoretically. Spin-orbital interaction led to the spatial separation of energy band but did not eliminate spin degeneration, which was different from energy level splitting in the Zeeman Effect. Spin-orbit interaction had little effect on the energy band structure, charge density, and lattice position, etc.; Spin precession was obtained when a polaron was transported along the polymer chain, which theoretically proved that it was feasible to control the spin precession of polaron in organic polymers by the use of external electric field.
Acharyya, Muktish
2017-07-01
The spin wave interference is studied in two dimensional Ising ferromagnet driven by two coherent spherical magnetic field waves by Monte Carlo simulation. The spin waves are found to propagate and interfere according to the classic rule of interference pattern generated by two point sources. The interference pattern of spin wave is observed in one boundary of the lattice. The interference pattern is detected and studied by spin flip statistics at high and low temperatures. The destructive interference is manifested as the large number of spin flips and vice versa.
Finite-size scaling and integer-spin Heisenberg chains
NASA Astrophysics Data System (ADS)
Bonner, Jill C.; Müller, Gerhard
1984-03-01
Finite-size scaling (phenomenological renormalization) techniques are trusted and widely applied in low-dimensional magnetism and, particularly, in lattice gauge field theory. Recently, investigations have begun which subject the theoretical basis to systematic and intensive scrutiny to determine the validity of finite-size scaling in a variety of situations. The 2D ANNNI model is an example of a situation where finite-size scaling methods encounter difficulty, related to the occurrence of a disorder line (one-dimensional line). A second example concerns the behavior of the spin-1/2 antiferromagnetic XXZ model where the T=0 critical behavior is exactly known and features an essential singularity at the isotropic Heisenberg point. Standard finite-size scaling techniques do not convincingly reproduce the exact phase behavior and this is attributable to the essential singularity. The point is relevant in connection with a finite-size scaling analysis of a spin-one antiferromagnetic XXZ model, which claims to support a conjecture by Haldane that the T=0 phase behavior of integer-spin Heisenberg chains is significantly different from that of half-integer-spin Heisenberg chains.
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, C.; Casentini, J.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vano-Vinuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügmann, B.; Campanelli, M.; Chu, T.; Clark, M.; Haas, R.; Hemberger, D.; Hinder, I.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Pan, Y.; Röver, C.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration
2016-10-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35-3+5 M⊙ and 3 0-4+3 M⊙ (where errors correspond to 90% symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate <0.65 and a secondary spin estimate <0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
Quantum criticality among entangled spin chains
Blanc, N.; Trinh, J.; Dong, L.; ...
2017-12-11
Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less
Quantum criticality among entangled spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, N.; Trinh, J.; Dong, L.
Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less
Quantum criticality among entangled spin chains
NASA Astrophysics Data System (ADS)
Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.
2018-03-01
An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.
Vibration Measurement Method of a String in Transversal Motion by Using a PSD.
Yang, Che-Hua; Wu, Tai-Chieh
2017-07-17
A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string's natural frequency, increase while the speed of motion increases.
Spin-polarized current in Zeeman-split d-wave superconductor/quantum wire junctions
NASA Astrophysics Data System (ADS)
Emamipour, Hamidreza
2016-06-01
We study a thin-film quantum wire/unconventional superconductor junction in the presence of an intrinsic exchange field for a d-wave symmetry of the superconducting order parameter. A strongly spin-polarized current is generated due to an interplay between Zeeman splitting of bands and the nodal structure of the superconducting order parameter. We show that strongly spin-polarized current is achievable for both metallic and tunnel junctions. This is because of the presence of a quantum wire (one-dimensional metal) in our junction. While in two-dimensional junctions with both conventional [F. Giazotto, F. Taddei, Phys. Rev. B 77 (2008) 132501] and unconventional [J. Linder, T. Yokoyama, Y. Tanaka, A. Sudbo, Phys. Rev. B 78 (2008) 014516] pairing states, highly spin polarized current takes place just for a tunnel junction. Also, the obtained spin-polarized current is tunable in sign and magnitude in terms of exchange field and applied bias voltage.
Spin transport study in a Rashba spin-orbit coupling system
Mei, Fuhong; Zhang, Shan; Tang, Ning; Duan, Junxi; Xu, Fujun; Chen, Yonghai; Ge, Weikun; Shen, Bo
2014-01-01
One of the most important topics in spintronics is spin transport. In this work, spin transport properties of two-dimensional electron gas in AlxGa1-xN/GaN heterostructure were studied by helicity-dependent photocurrent measurements at room temperature. Spin-related photocurrent was detected under normal incidence of a circularly polarized laser with a Gaussian distribution. On one hand, spin polarized electrons excited by the laser generate a diffusive spin polarization current, which leads to a vortex charge current as a result of anomalous circular photogalvanic effect. On the other hand, photo-induced spin polarized electrons driven by a longitudinal electric field give rise to a transverse current via anomalous Hall Effect. Both of these effects originated from the Rashba spin-orbit coupling. By analyzing spin-related photocurrent varied with laser position, the contributions of the two effects were differentiated and the ratio of the spin diffusion coefficient to photo-induced anomalous spin Hall mobility Ds/μs = 0.08 V was extracted at room temperature. PMID:24504193
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.
In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less
Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.
2017-10-24
In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less
Partition functions with spin in AdS2 via quasinormal mode methods
Keeler, Cynthia; Lisbão, Pedro; Ng, Gim Seng
2016-10-12
We extend the results of [1], computing one loop partition functions for massive fields with spin half in AdS 2 using the quasinormal mode method proposed by Denef, Hartnoll, and Sachdev [2]. We find the finite representations of SO(2,1) for spin zero and spin half, consisting of a highest weight state |hi and descendants with non-unitary values of h. These finite representations capture the poles and zeroes of the one loop determinants. Together with the asymptotic behavior of the partition functions (which can be easily computed using a large mass heat kernel expansion), these are sufficient to determine the fullmore » answer for the one loop determinants. We also discuss extensions to higher dimensional AdS 2n and higher spins.« less
Spin injection and transport in semiconductor and metal nanostructures
NASA Astrophysics Data System (ADS)
Zhu, Lei
In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes directly to the realization of spin valve and spin transistor devices based on III-V semiconductors, and offers new opportunities to engineer the behavior of spintronic devices at the nanoscale.
Crystal growth of the quasi-one dimensional spin-magnet LiCuVO 4
NASA Astrophysics Data System (ADS)
Prokofiev, A. V.; Wichert, D.; Assmus, W.
2000-12-01
The phase relationships in the Li-Cu-V-O and Li-Cu-V-O-Cl systems were investigated and the phase diagrams determined. Based on these diagrams single crystals of the low-dimensional spin compound LiCuVO 4 with maximal dimensions up to 12×3×3 mm 3 were grown from a solution of LiCuVO 4 in a LiVO 3 or a LiVO 3-LiCl melt. The stoichiometry of the grown crystals is discussed.
Spin interferometry in anisotropic spin-orbit fields
NASA Astrophysics Data System (ADS)
Saarikoski, Henri; Reynoso, Andres A.; Baltanás, José Pablo; Frustaglia, Diego; Nitta, Junsaku
2018-03-01
Electron spins in a two-dimensional electron gas can be manipulated by spin-orbit (SO) fields originating from either Rashba or Dresselhaus interactions with independent isotropic characteristics. Together, though, they produce anisotropic SO fields with consequences on quantum transport through spin interference. Here we study the transport properties of modeled mesoscopic rings subject to Rashba and Dresselhaus [001] SO couplings in the presence of an additional in-plane Zeeman field acting as a probe. By means of one- and two-dimensional quantum transport simulations we show that this setting presents anisotropies in the quantum resistance as a function of the Zeeman field direction. Moreover, the anisotropic resistance can be tuned by the Rashba strength up to the point to invert its response to the Zeeman field. We also find that a topological transition in the field texture that is associated with a geometric phase switching is imprinted in the anisotropy pattern. We conclude that resistance anisotropy measurements can reveal signatures of SO textures and geometric phases in spin carriers.
Static Holes in Geometrically Frustrated Bow Tie Ladder
NASA Astrophysics Data System (ADS)
Martins, George; Brenig, Wolfram
2007-03-01
Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).
Disordered dimer state in electron-doped Sr 3 Ir 2 O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Tom; Dally, Rebecca; Upton, Mary
2016-09-06
Spin excitations are explored in the electron-doped spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7. As this bilayer square lattice system is doped into the metallic regime, long-range antiferromagnetism vanishes, yet a spectrum of gapped spin excitation remains. Excitation lifetimes are strongly damped with increasing carrier concentration, and the energy-integrated spectral weight becomes nearly momentum independent as static spin order is suppressed. Local magnetic moments, absent in the parent system, grow in metallic samples and approach values consistent with one J=12 impurity per electron doped. Our combined data suggest that the magnetic spectra of metallic (Sr 1-xLa x) 3Irmore » 2O 7 are best described by excitations out of a disordered dimer state.« less
NASA Astrophysics Data System (ADS)
Cho, Weejee; Platt, Christian; McKenzie, Ross H.; Raghu, Srinivas
2015-10-01
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin-triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has more sign changes than required by the point-group symmetry.
NASA Astrophysics Data System (ADS)
Platt, Christian; Cho, Weejee; McKenzie, Ross H.; Raghu, Sri
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four Molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.
Determination of adsorption parameters in numerical simulation for polymer flooding
NASA Astrophysics Data System (ADS)
Bao, Pengyu; Li, Aifen; Luo, Shuai; Dang, Xu
2018-02-01
A study on the determination of adsorption parameters for polymer flooding simulation was carried out. The study mainly includes polymer static adsorption and dynamic adsorption. The law of adsorption amount changing with polymer concentration and core permeability was presented, and the one-dimensional numerical model of CMG was established under the support of a large number of experimental data. The adsorption laws of adsorption experiments were applied to the one-dimensional numerical model to compare the influence of two adsorption laws on the historical matching results. The results show that the static adsorption and dynamic adsorption abide by different rules, and differ greatly in adsorption. If the static adsorption results were directly applied to the numerical model, the difficulty of the historical matching will increase. Therefore, dynamic adsorption tests in the porous medium are necessary before the process of parameter adjustment in order to achieve the ideal history matching result.
NASA Astrophysics Data System (ADS)
Smirnov, A. I.; Soldatov, T. A.; Petrenko, O. A.; Takata, A.; Kida, T.; Hagiwara, M.; Zhitomirsky, M. E.; Shapiro, A. Ya
2018-03-01
Magnetisation measurements and electron spin resonance (ESR) spectra of a doped quasi two dimensional (2D) antiferromagnet on a triangular lattice Rb1 ‑ x K x Fe(MoO4)2 reveal a crucial change of the ground state spin configuration and a disappearance of a characteristic 1/3-magnetisation plateau at x = 0.15. According to theory for triangular antiferromagnets with a weak random modulation of the exchange bonds, this is a result of the competition between the structural and dynamic disorders. The dynamic zero-point or thermal fluctuations are known to lift the degeneracy of the mean field ground state of a triangular antiferromagnet and cause the spin configuration to be the most collinear, while the static disorder provides another selection of the ground state, with the least collinear structure. Low-level doping (x ≤ 0.15) was found to decrease the Néel temperature and saturation field by only few percent, while the magnetisation plateau disappears completely and the spin configuration is drastically changed. ESR spectra confirm an impurity-induced change of the so-called Y-type structure to an inverted Y-structure for x = 0.15. For x = 0.075 the intermediate regime with the decrease of width and weakening of flattening of 1/3-plateau was found.
Quasi-one-dimensional Bose-Einstein condensation in the spin-1/2 ferromagnetic-leg ladder 3-I-V
NASA Astrophysics Data System (ADS)
Kono, Y.; Kittaka, S.; Yamaguchi, H.; Hosokoshi, Y.; Sakakibara, T.
2018-03-01
Quantum criticality of the spin-1/2 ferromagnetic-leg ladder 3-I-V [=3-(3-iodophenyl)-1,5-diphenylverdazyl] has been examined with respect to the antiferromagnetic to paramagnetic phase transition near the saturation field Hc. The phase boundary Tc(H ) follows the power-law Tc(H ) ∝Hc-H for a wide temperature range. This characteristic behavior is discussed as a quasi-one-dimensional (quasi-1D) Bose-Einstein condensation, which is predicted theoretically for weakly coupled quasi-1D ferromagnets. Thus, 3-I-V provides the first promising candidate for this attractive prediction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Xiangguo; Chen Shu; Guan Xiwen
2011-07-15
We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.
Nonperturbative parton distributions and the proton spin problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonov, Yu. A., E-mail: simonov@itep.ru
2016-05-15
The Lorentz contracted form of the static wave functions is used to calculate the valence parton distributions for mesons and baryons, boosting the rest frame solutions of the path integral Hamiltonian. It is argued that nonperturbative parton densities are due to excitedmultigluon baryon states. A simplemodel is proposed for these states ensuring realistic behavior of valence and sea quarks and gluon parton densities at Q{sup 2} = 10 (GeV/c){sup 2}. Applying the same model to the proton spin problem one obtains Σ{sub 3} = 0.18 for the same Q{sup 2}.
Fermi-Edge Singularity of Spin-Polarized Electrons
NASA Astrophysics Data System (ADS)
Plochocka-Polack, P.; Groshaus, J. G.; Rappaport, M.; Umansky, V.; Gallais, Y.; Pinczuk, A.; Bar-Joseph, I.
2007-05-01
We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.
Two-dimensional dispersion of magnetostatic volume spin waves
NASA Astrophysics Data System (ADS)
Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.
2018-06-01
Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.
Spin and Valley Noise in Two-Dimensional Dirac Materials
NASA Astrophysics Data System (ADS)
Tse, Wang-Kong; Saxena, A.; Smith, D. L.; Sinitsyn, N. A.
2014-07-01
We develop a theory for optical Faraday rotation noise in two-dimensional Dirac materials. In contrast to spin noise in conventional semiconductors, we find that the Faraday rotation fluctuations are influenced not only by spins but also the valley degrees of freedom attributed to intervalley scattering processes. We illustrate our theory with two-dimensional transition-metal dichalcogenides and discuss signatures of spin and valley noise in the Faraday noise power spectrum. We propose optical Faraday noise spectroscopy as a technique for probing both spin and valley relaxation dynamics in two-dimensional Dirac materials.
NASA Astrophysics Data System (ADS)
Lima, L. S.
2018-06-01
We study the effect of Dzyaloshisnkii-Moriya interaction on spin transport in the two and three-dimensional Heisenberg antiferromagnetic models in the square lattice and cubic lattice respectively. For the three-dimensional model, we obtain a large peak for the spin conductivity and therefore a finite AC conductivity. For the two-dimensional model, we have gotten the AC spin conductivity tending to the infinity at ω → 0 limit and a suave decreasing in the spin conductivity with increase of ω. We obtain a small influence of the Dzyaloshinskii-Moriya interaction on the spin conductivity in all cases analyzed.
Crystal growth and magnetic anisotropy in the spin-chain ruthenate Na2RuO4
NASA Astrophysics Data System (ADS)
Balodhi, Ashiwini; Singh, Yogesh
2018-02-01
We report single-crystal growth, electrical resistivity ρ , anisotropic magnetic susceptibility χ , and heat capacity Cp measurements on the one-dimensional spin-chain ruthenate Na2RuO4 . We observe variable range hopping (VRH) behavior in ρ (T ) . The magnetic susceptibility with magnetic field perpendicular (χ⊥) and parallel (χ∥) to the spin chains is reported. The magnetic properties are anisotropic with χ⊥>χ∥ in the temperature range of measurements T ≈2 -305 K with χ⊥/χ∥≈1.4 at 305 K. From an analysis of the χ (T ) data we attempt to estimate the anisotropy in the g factor and Van Vleck paramagnetic contribution. An anomaly in χ (T ) and a corresponding step-like anomaly in Cp at TN=37 K confirms long-range antiferromagnetic ordering. This temperature is an order of magnitude smaller than the Weiss temperature θ ≈-250 K and points to suppression of long-range magnetic order due to low dimensionality. A fit of the experimental χ (T ) by a one-dimensional spin-chain model gave an estimate of the intrachain exchange interaction 2 J ≈-85 K and the magnitude of the interchain coupling |2 J⊥|≈3 K.
Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.;
2016-01-01
This paper presents updated estimates of source parameters for GW150914, a binary black-hole coalescence event detected by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 [Abbott et al. Phys. Rev. Lett. 116, 061102 (2016).]. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] presented parameter estimation of the source using a 13-dimensional, phenomenological precessing-spin model (precessing IMRPhenom) and an 11-dimensional nonprecessing effective-one-body (EOB) model calibrated to numerical-relativity simulations, which forces spin alignment (nonprecessing EOBNR). Here, we present new results that include a 15-dimensional precessing-spin waveform model (precessing EOBNR) developed within the EOB formalism. We find good agreement with the parameters estimated previously [Abbott et al. Phys. Rev. Lett. 116, 241102 (2016).], and we quote updated component masses of 35(+5)(-3) solar M; and 30(+3)(-4) solar M; (where errors correspond to 90 symmetric credible intervals). We also present slightly tighter constraints on the dimensionless spin magnitudes of the two black holes, with a primary spin estimate is less than 0.65 and a secondary spin estimate is less than 0.75 at 90% probability. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016).] estimated the systematic parameter-extraction errors due to waveform-model uncertainty by combining the posterior probability densities of precessing IMRPhenom and nonprecessing EOBNR. Here, we find that the two precessing-spin models are in closer agreement, suggesting that these systematic errors are smaller than previously quoted.
ERIC Educational Resources Information Center
Singh, Satya Pal
2014-01-01
This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…
Quantum field between moving mirrors: A three dimensional example
NASA Technical Reports Server (NTRS)
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas
NASA Astrophysics Data System (ADS)
Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.
2018-02-01
We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.
Domain walls in single-chain magnets
NASA Astrophysics Data System (ADS)
Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude
2017-12-01
The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.
Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments.
Charbonneau, Patrick; Li, Yue Cathy; Pfister, Henry D; Yaida, Sho
2017-09-01
Lyapunov exponents characterize the chaotic nature of dynamical systems by quantifying the growth rate of uncertainty associated with the imperfect measurement of initial conditions. Finite-time estimates of the exponent, however, experience fluctuations due to both the initial condition and the stochastic nature of the dynamical path. The scale of these fluctuations is governed by the Lyapunov susceptibility, the finiteness of which typically provides a sufficient condition for the law of large numbers to apply. Here, we obtain a formally exact expression for this susceptibility in terms of the Ruelle dynamical ζ function for one-dimensional systems. We further show that, for systems governed by sequences of random matrices, the cycle expansion of the ζ function enables systematic computations of the Lyapunov susceptibility and of its higher-moment generalizations. The method is here applied to a class of dynamical models that maps to static disordered spin chains with interactions stretching over a varying distance and is tested against Monte Carlo simulations.
Superconductivity with extremely large upper critical fields in Nb2Pd0.81S5
Zhang, Q.; Li, G.; Rhodes, D.; Kiswandhi, A.; Besara, T.; Zeng, B.; Sun, J.; Siegrist, T.; Johannes, M. D.; Balicas, L.
2013-01-01
Here, we report the discovery of superconductivity in a new transition metal-chalcogenide compound, i.e. Nb2Pd0.81S5, with a transition temperature Tc ≅ 6.6 K. Despite its relatively low Tc, it displays remarkably high and anisotropic superconducting upper critical fields, e.g. μ0Hc2 (T → 0 K) > 37 T for fields applied along the crystallographic b-axis. For a field applied perpendicularly to the b-axis, μ0Hc2 shows a linear dependence in temperature which coupled to a temperature-dependent anisotropy of the upper critical fields, suggests that Nb2Pd0.81S5 is a multi-band superconductor. This is consistent with band structure calculations which reveal nearly cylindrical and quasi-one-dimensional Fermi surface sheets having hole and electron character, respectively. The static spin susceptibility as calculated through the random phase approximation, reveals strong peaks suggesting proximity to a magnetic state and therefore the possibility of unconventional superconductivity. PMID:23486091
Shape control of slack space reflectors using modulated solar pressure.
Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R
2015-07-08
The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.
Effective spin physics in two-dimensional cavity QED arrays
NASA Astrophysics Data System (ADS)
Minář, Jiří; Güneş Söyler, Şebnem; Rotondo, Pietro; Lesanovsky, Igor
2017-06-01
We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis-Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the effective spin models. We discuss the phase diagram and the parameter regime which gives rise to frustrated interactions between the spins. We provide a quantitative description of the phase transitions and correlation properties featured by the system and we discuss graph-theoretical properties of the ground states in terms of graph colourings using Pólya’s enumeration theorem.
NASA Astrophysics Data System (ADS)
Nocera, A.; Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.; Alvarez, G.
2016-11-01
We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small as U /t ˜2 -3 , although ratios of peak intensities at different momenta continue evolving with increasing U /t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U /t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.
NASA Astrophysics Data System (ADS)
Cayao, Jorge; Black-Schaffer, Annica M.
2017-10-01
We investigate the emergence and consequences of odd-frequency spin-triplet s -wave pairing in superconducting hybrid junctions at the edge of a two-dimensional topological insulator without any magnetism. More specifically, we consider several different normal-superconductor hybrid systems at the topological insulator edge, where spin-singlet s -wave superconducting pairing is proximity induced from an external conventional superconductor. We perform fully analytical calculations and show that odd-frequency mixed spin-triplet s -wave pairing arises due to the unique spin-momentum locking in the topological insulator edge state and the naturally nonconstant pairing potential profile in hybrid systems. Importantly, we establish a one-to-one correspondence between the local density of states (LDOS) at low energies and the odd-frequency spin-triplet pairing in NS, NSN, and SNS junctions along the topological insulator edge; at interfaces the enhancement in the LDOS can directly be attributed to the contribution of odd-frequency pairing. Furthermore, in SNS junctions we show that the emergence of the zero-energy LDOS peak at the superconducting phase ϕ =π is associated purely with odd-frequency pairing in the middle of the junction.
SU(N ) fermions in a one-dimensional harmonic trap
NASA Astrophysics Data System (ADS)
Laird, E. K.; Shi, Z.-Y.; Parish, M. M.; Levinsen, J.
2017-09-01
We conduct a theoretical study of SU (N ) fermions confined by a one-dimensional harmonic potential. First, we introduce a numerical approach for solving the trapped interacting few-body problem, by which one may obtain accurate energy spectra across the full range of interaction strengths. In the strong-coupling limit, we map the SU (N ) Hamiltonian to a spin-chain model. We then show that an existing, extremely accurate ansatz—derived for a Heisenberg SU(2) spin chain—is extendable to these N -component systems. Lastly, we consider balanced SU (N ) Fermi gases that have an equal number of particles in each spin state for N =2 ,3 ,4 . In the weak- and strong-coupling regimes, we find that the ground-state energies rapidly converge to their expected values in the thermodynamic limit with increasing atom number. This suggests that the many-body energetics of N -component fermions may be accurately inferred from the corresponding few-body systems of N distinguishable particles.
Magnons in one-dimensional k-component Fibonacci structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, C. H., E-mail: carloshocosta@hotmail.com; Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN; Vasconcelos, M. S.
2014-05-07
We have studied the magnon transmission through of one-dimensional magnonic k-component Fibonacci structures, where k different materials are arranged in accordance with the following substitution rule: S{sub n}{sup (k)}=S{sub n−1}{sup (k)}S{sub n−k}{sup (k)} (n≥k=0,1,2,…), where S{sub n}{sup (k)} is the nth stage of the sequence. The calculations were carried out in exchange dominated regime within the framework of the Heisenberg model and taking into account the RPA approximation. We have considered multilayers composed of simple cubic spin-S Heisenberg ferromagnets, and, by using the powerful transfer-matrix method, the spin wave transmission is obtained. It is demonstrated that the transmission coefficient has amore » rich and interesting magnonic pass- and stop-bands structures, which depends on the frequency of magnons and the k values.« less
Magnetism and High-magnetic Field Magnetization in Alkali Superoxide CsO2
NASA Astrophysics Data System (ADS)
Miyajima, Mizuki; Astuti, Fahmi; Kakuto, Takeshi; Matsuo, Akira; Puspita Sari, Dita; Asih, Retno; Okunishi, Kouichi; Nakano, Takehito; Nozue, Yasuo; Kindo, Koichi; Watanabe, Isao; Kambe, Takashi
2018-06-01
Alkali superoxide CsO2 is one of the candidates for the spin-1/2 one-dimensional (1D) antiferromagnet, which may be sequentially formed by an ordering of the π-orbital of O2 - molecule below TS ˜ 70 K. Here, we report the magnetism and the high-magnetic field magnetization in pulsed-magnetic fields up to 60 T in powder CsO2. We obtained the low temperature phase diagram around the antiferromagnetic ordering temperature TN = 9.6 K under the magnetic field. At T = 1.3 K, we observed a remarkable up-turn curvature in the magnetization around a saturation field of ˜60 T, which indicates the low-dimensional nature of the spin system. The saturated magnetization is also estimated to be ˜1μB, which corresponds to spin-1/2. In this study we compare it with the theoretical calculation.
Physical realization of a quantum spin liquid based on a complex frustration mechanism
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Balz, Christian; Lake, Bella
Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.
2015-08-01
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Lukzen, Nikita N.; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression formore » the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.« less
Spin waves and magnetic exchange interactions in the spin-ladder compound RbFe 2 Se 3
Wang, Meng; Yi, Ming; Jin, Shangjian; ...
2016-07-20
In this paper, we report an inelastic neutron scattering study of the spin waves of the one-dimensional antiferromagnetic spin ladder compound RbFe 2Se 3. The results reveal that the products, SJ's, of the spin S and the magnetic exchange interaction J along the antiferromagnetic (leg) direction and the ferromagnetic (rung) direction are comparable with those for the stripe ordered phase of the parent compounds of the iron-based superconductors. Also, the universality of the SJ's implies nearly universal spin wave dynamics and the irrelevance of the fermiology for the existence of the stripe antiferromagnetic order among various Fe-based materials.
Proton spin-lattice relaxation in low-dimensional ferromagnetic copper halides (abstract)
NASA Astrophysics Data System (ADS)
Marzke, R. F.; Haines, D. N.; Raffaelle, D. P.; Chamberlin, R. V.; Ramakrishna, B. L.
1991-04-01
1H spin-lattice relaxation times have been measured as functions of temperature and frequency in powder samples of the two-dimensional ferromagnetic compound (CH3NH3)2CuCl4 and in single crystals of the one-dimensional ferromagnets (C6H11NH3)CuB3 (CHAB), (C6H11NH3)CuCl3 (CHAC), and (C4H12N)CuCl3 (TMCuC). Sample temperatures were varied between 4.2 and 298 K, and NMR frequencies ranging from 12.6 to 54.0 MHz were used. Widths and shapes of the lines, typically several hundred Gauss broad at low temperatures, were recorded. The dependence of T1 upon magnetic field orientation was measured for the one-dimensional (1D) single crystal samples. Each compound showed basically two temperature regimes of different spin-lattice relaxation behavior, separated by a narrow transition temperature region. From 4.2 K, T1 in the compounds decreased strongly as the temperature was raised, a behavior expected for second-order Raman processes [K. M. Kopinga, A. M. C. Tinus, W. J. M. de Jonge, and G. C. de Vries, Phys. Rev. B 36, 5398 (1987)]. At the transition temperature region the decrease of T1 ceased, and T1 began to increase weakly and quasilinearly to 300 K. In the three 1D compounds, the transition regions occurred well below temperatures corresponding to 1D exchange interaction strengths in CHAC (˜70 K), CHAB (˜55 K), and TMCuC (˜30 K), and also above the compounds' 3D ordering temperatures (˜1.5 K and below). We noted a correlation between the T1 transition temperatures and temperatures at which spin dimensionality ``crossovers'' are observed in magnetic susceptibilities, going from Heisenberg to non-Heisenberg behavior as the temperature is decreased. The latter occur at approximately 10 K in CHAC. TMCuC, which has the most isotropic J tensor of these compounds and also the lowest weak-strong T1 transition, does not show a spin dimensionality crossover in susceptibility down to 2 K, but based on our NMR results one would be expected at or below this temperature. Further theoretical work appears to be necessary in order to elucidate the role of magnons and solitons in the transition behavior of the temperature dependence of T1.
Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer
2015-01-01
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration. PMID:28793519
Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer
2015-08-24
In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration.
Nanoscale orbital excitations and the infrared spectrum of a molecular Mott insulator: A15-Cs3C60.
Naghavi, S S; Fabrizio, M; Qin, T; Tosatti, E
2016-10-14
The quantum physics of ions and electrons behind low-energy spectra of strongly correlated molecular conductors, superconductors and Mott insulators is poorly known, yet fascinating especially in orbitally degenerate cases. The fulleride insulator Cs 3 C 60 (A15), one such system, exhibits infrared (IR) spectra with low temperature peak features and splittings suggestive of static Jahn-Teller distortions with a breakdown of orbital symmetry in the molecular site. That is puzzling, since there is no detectable static distortion, and because the features and splittings disappear upon modest heating, which they should not. Taking advantage of the Mott-induced collapse of electronic wavefunctions from lattice-extended to nanoscale localized inside a caged molecular site, we show that the unbroken spin and orbital symmetry of the ion multiplets explains the IR spectrum without adjustable parameters. This demonstrates the importance of a fully quantum treatment of nuclear positions and orbital momenta in the Mott insulator sites, dynamically but not statically distorted. The observed demise of these features with temperature is explained by the thermal population of a multiplet term whose nuclear positions are essentially undistorted, but whose energy is very low-lying. That term is in fact a scaled-down orbital excitation analogous to that of other Mott insulators, with the same spin 1/2 as the ground state, but with a larger orbital momentum of two instead of one.
"Metamagnetoelectric" effect in multiferroics
NASA Astrophysics Data System (ADS)
Fouokeng, G. C.; Fodouop, F. Kuate; Tchoffo, M.; Fai, L. C.; Randrianantoandro, N.
2018-05-01
We present a theoretical calculation of magnetoelectric properties in a quasi-two dimensional spin chain externally controlled by a static electric field in y-direction and magnetic field in z-direction. Given the diversity of properties in functional materials and their applications in physics, the multiferroic model is investigated. By using the Fermi-Dirac statistics of quantum gases and the Landau theory, we assess the effects of the Dzyaloshinskii-Moriya interaction and the electric polarization on the magnetoelectric coupling that induces at low temperature the "metamagnetoelectric" effet, and likewise affects the ferroelectricity induced through symmetry mechanisms and magnetic properties of the multiferroic system. In fact, the variation of the induced polarisation due to spin arrangement through the Dzyaloshinskii-Moriya interaction gives rise to a multistep interdependent metamagnetic and metaelectric transitions which are settled up by the corresponding Dzyaloshinskii-Moriya parameter and the system then exhibits a spin gap that results from an electric and a magnetic demagnetization field range. This metamagnetoelectric effect observed in these multiferroic materials model is seem to be highly tunable via the external electric and magnetic fields and thus can be crucial in the design of new mechanisms for the processing and storage of data and other spintronic applications.
Vibration Measurement Method of a String in Transversal Motion by Using a PSD
Yang, Che-Hua; Wu, Tai-Chieh
2017-01-01
A position sensitive detector (PSD) is frequently used for the measurement of a one-dimensional position along a line or a two-dimensional position on a plane, but is more often used for measuring static or quasi-static positions. Along with its quick response when measuring short time-spans in the micro-second realm, a PSD is also capable of detecting the dynamic positions of moving objects. In this paper, theoretical modeling and experiments are conducted to explore the frequency characteristics of a vibrating string while moving transversely across a one-dimensional PSD. The theoretical predictions are supported by the experiments. When the string vibrates at its natural frequency while moving transversely, the PSD will detect two frequencies near this natural frequency; one frequency is higher than the natural frequency and the other is lower. Deviations in these two frequencies, which differ from the string’s natural frequency, increase while the speed of motion increases. PMID:28714915
NASA Astrophysics Data System (ADS)
Jiang, Feng-Jian; Ye, Jian-Feng; Jiao, Zheng; Jiang, Jun; Ma, Kun; Yan, Xin-Hu; Lv, Hai-Jiang
2018-05-01
We perform a proof-of-principle experiment that uses a single negatively charged nitrogen–vacancy (NV) color center with a nearest neighbor 13C nuclear spin in diamond to detect the strength and direction (including both polar and azimuth angles) of a static vector magnetic field by optical detection magnetic resonance (ODMR) technique. With the known hyperfine coupling tensor between an NV center and a nearest neighbor 13C nuclear spin, we show that the information of static vector magnetic field could be extracted by observing the pulsed continuous wave (CW) spectrum. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305074, 11135002, and 11275083), the Key Program of the Education Department Outstanding Youth Foundation of Anhui Province, China (Grant No. gxyqZD2017080), and the Education Department Natural Science Foundation of Anhui Province, China (Grant No. KJHS2015B09).
Wierzbicki, Michał; Barnaś, Józef; Swirkowicz, Renata
2015-12-09
The effects of electron-electron and spin-orbit interactions on the ground-state magnetic configuration and on the corresponding thermoelectric and spin thermoelectric properties in zigzag nanoribbons of two-dimensional hexagonal crystals are analysed theoretically. The thermoelectric properties of quasi-stable magnetic states are also considered. Of particular interest is the influence of Coulomb and spin-orbit interactions on the topological edge states and on the transition between the topological insulator and conventional gap insulator states. It is shown that the interplay of both interactions also has a significant impact on the transport and thermoelectric characteristics of the nanoribbons. The spin-orbit interaction also determines the in-plane magnetic easy axis. The thermoelectric properties of nanoribbons with in-plane magnetic moments are compared to those of nanoribbons with edge magnetic moments oriented perpendicularly to their plane. Nanoribbons with ferromagnetic alignment of the edge moments are shown to reveal spin thermoelectricity in addition to the conventional one.
Dynamics of cosmic strings with higher-dimensional windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Lake, Matthew J.; Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400
2015-06-11
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less
Dynamics of cosmic strings with higher-dimensional windings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, Daisuke; Lake, Matthew J., E-mail: yamauchi@resceu.s.u-tokyo.ac.jp, E-mail: matthewj@nu.ac.th
2015-06-01
We consider F-strings with arbitrary configurations in the Minkowski directions of a higher-dimensional spacetime, which also wrap and spin around S{sup 1} subcycles of constant radius in an arbitrary internal manifold, and determine the relation between the higher-dimensional and the effective four-dimensional quantities that govern the string dynamics. We show that, for any such configuration, the motion of the windings in the compact space may render the string effectively tensionless from a four-dimensional perspective, so that it remains static with respect to the large dimensions. Such a critical configuration occurs when (locally) exactly half the square of the string lengthmore » lies in the large dimensions and half lies in the compact space. The critical solution is then seen to arise as a special case, in which the wavelength of the windings is equal to their circumference. As examples, long straight strings and circular loops are considered in detail, and the solutions to the equations of motion that satisfy the tensionless condition are presented. These solutions are then generalized to planar loops and arbitrary three-dimensional configurations. Under the process of dimensional reduction, in which higher-dimensional motion is equivalent to an effective worldsheet current (giving rise to a conserved charge), this phenomenon may be seen as the analogue of the tensionless condition which arises for superconducting and chiral-current carrying cosmic strings.« less
Homonuclear long-range correlation spectra from HMBC experiments by covariance processing.
Schoefberger, Wolfgang; Smrecki, Vilko; Vikić-Topić, Drazen; Müller, Norbert
2007-07-01
We present a new application of covariance nuclear magnetic resonance processing based on 1H--13C-HMBC experiments which provides an effective way for establishing indirect 1H--1H and 13C--13C nuclear spin connectivity at natural isotope abundance. The method, which identifies correlated spin networks in terms of covariance between one-dimensional traces from a single decoupled HMBC experiment, derives 13C--13C as well as 1H--1H spin connectivity maps from the two-dimensional frequency domain heteronuclear long-range correlation data matrix. The potential and limitations of this novel covariance NMR application are demonstrated on two compounds: eugenyl-beta-D-glucopyranoside and an emodin-derivative. Copyright (c) 2007 John Wiley & Sons, Ltd.
Magnetic anisotropy and spin-flop transition of NiWO4 single crystals
NASA Astrophysics Data System (ADS)
Liu, C. B.; He, Z. Z.; Liu, Y. J.; Chen, R.; Shi, M. M.; Zhu, H. P.; Dong, C.; Wang, J. F.
2017-12-01
NiWO4 exhibits a spin chain structure built by magnetic Ni2+ ions, which may be considered as a one dimensional S = 1 system. In this work, large-sized single crystals of NiWO4 were successfully synthesized by a flux method and the crystal quality was confirmed by X-ray diffraction. Magnetic properties of obtained single crystals were studied by means of magnetic susceptibility and high field magnetization along crystallographic axes. The results demonstrate that NiWO4 is highly magnetic anisotropic and possesses a three-dimensional long range ordering below 60 K, where a spin flop transition can be observed at 17.5 T in applied magnetic fields along the magnetic easy axis (c-axis).
Spin filter for arbitrary spins by substrate engineering
NASA Astrophysics Data System (ADS)
Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava
2016-08-01
We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.
A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas
NASA Astrophysics Data System (ADS)
López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand
2010-03-01
A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.
A perfect spin filtering device through Mach-Zehnder interferometry in a GaAs/AlGaAs electron gas.
López, Alexander; Medina, Ernesto; Bolívar, Nelson; Berche, Bertrand
2010-03-24
A spin filtering device based on quantum spin interference is addressed, for use with a two-dimensional GaAs/AlGaAs electron gas that has both Rashba and Dresselhaus spin-orbit (SO) couplings and an applied external magnetic field. We propose an experimentally feasible electronic Mach-Zehnder interferometer and derive a map, in parameter space, that determines perfect spin filtering conditions. We find two broad spin filtering regimes: one where filtering is achieved in the original incoming quantization basis, that takes advantage of the purely non-Abelian nature of the spin rotations; and another where one needs a tilted preferential axis in order to observe the polarized output spinor. Both solutions apply for arbitrary incoming electron polarization and energy, and are only limited in output amplitude by the randomness of the incoming spinor state. Including a full account of the beam splitter and mirror effects on spin yields solutions only for the tilted basis, but encompasses a broad range of filtering conditions.
Dissipationless transport of spin-polarized electrons and Cooper pairs in an electron waveguide
NASA Astrophysics Data System (ADS)
Levy, J.; Annadi, A.; Lu, S.; Cheng, G.; Tylan-Tyler, A.; Briggeman, M.; Tomczyk, M.; Huang, M.; Pekker, D.; Irvin, P.; Lee, H.; Lee, J.-W.; Eom, C.-B.
Electron systems undergo profound changes in their behavior when constrained to move along a single axis. To date, clean one-dimensional (1D) electron transport has only been observed in carbon-based nanotubes and nanoribbons, and compound semiconductor nanowires. Complex-oxide heterostructures can possess conductive two-dimensional (2D) interfaces with much richer chemistries and properties, e.g., superconductivity, but with mobilities that appear to preclude ballistic transport in 1D. Here we show that nearly ideal 1D electron waveguides exhibiting ballistic transport of electrons and non-superconducting Cooper pairs can be formed at the interface between the two band insulators LaAlO3 and SrTiO3. The electron waveguides possess gate and magnetic-field selectable spin and charge degrees of freedom, and can be tuned to the one-dimensional limit of a single spin-polarized quantum channel. The strong attractive electron-electron interactions enable a new mode of dissipationless transport of electron pairs that is not superconducting. The selectable spin and subband quantum numbers of these electron waveguides may be useful for quantum simulation, quantum informatio We gratefully acknowledge financial support from ONR N00014-15-1-2847 (JL), AFOSR (FA9550-15-1-0334 (CBE) and FA9550-12-1-0057 (JL, CBE)), AOARD FA2386-15-1-4046 (CBE) and NSF (DMR-1104191 (JL), DMR-1124131 (CBE, JL) and DMR-1234096 (CBE)).
Quantum anomalous Hall phase in a one-dimensional optical lattice
NASA Astrophysics Data System (ADS)
Liu, Sheng; Shao, L. B.; Hou, Qi-Zhe; Xue, Zheng-Yuan
2018-03-01
We propose to simulate and detect quantum anomalous Hall phase with ultracold atoms in a one-dimensional optical lattice, with the other synthetic dimension being realized by modulating spin-orbit coupling. We show that the system manifests a topologically nontrivial phase with two chiral edge states which can be readily detected in this synthetic two-dimensional system. Moreover, it is interesting that at the phase transition point there is a flat energy band and this system can also be in a topologically nontrivial phase with two Fermi zero modes existing at the boundaries by considering the synthetic dimension as a modulated parameter. We also show how to measure these topological phases experimentally in ultracold atoms. Another model with a random Rashba and Dresselhaus spin-orbit coupling strength is also found to exhibit topological nontrivial phase, and the impact of the disorder to the system is revealed.
NASA Astrophysics Data System (ADS)
Benítez, L. Antonio; Sierra, Juan F.; Savero Torres, Williams; Arrighi, Aloïs; Bonell, Frédéric; Costache, Marius V.; Valenzuela, Sergio O.
2018-03-01
A large enhancement in the spin-orbit coupling of graphene has been predicted when interfacing it with semiconducting transition metal dichalcogenides. Signatures of such an enhancement have been reported, but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and tungsten or molybdenum disulphide (WS2, MoS2). We observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, being largest when the spins point out of the graphene plane. This indicates that the strong spin-valley coupling in the transition metal dichalcogenide is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin-valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials.
Spinon dynamics in quantum integrable antiferromagnets
NASA Astrophysics Data System (ADS)
Vlijm, R.; Caux, J.-S.
2016-05-01
The excitations of the Heisenberg antiferromagnetic spin chain in zero field are known as spinons. As pairwise-created fractionalized excitations, spinons are important in the understanding of inelastic neutron scattering experiments in (quasi-)one-dimensional materials. In the present paper, we consider the real space-time dynamics of spinons originating from a local spin flip on the antiferromagnetic ground state of the (an)isotropic Heisenberg spin-1/2 model and the Babujan-Takhtajan spin-1 model. By utilizing algebraic Bethe ansatz methods at finite system size to compute the expectation value of the local magnetization and spin-spin correlations, spinons are visualized as propagating domain walls in the antiferromagnetic spin ordering with anisotropy dependent behavior. The spin-spin correlation after the spin flip displays a light cone, satisfying the Lieb-Robinson bound for the propagation of correlations at the spinon velocity.
The possible equilibrium shapes of static pendant drops
NASA Astrophysics Data System (ADS)
Sumesh, P. T.; Govindarajan, Rama
2010-10-01
Analytical and numerical studies are carried out on the shapes of two-dimensional and axisymmetric pendant drops hanging under gravity from a solid surface. Drop shapes with both pinned and equilibrium contact angles are obtained naturally from a single boundary condition in the analytical energy optimization procedure. The numerical procedure also yields optimum energy shapes, satisfying Young's equation without the explicit imposition of a boundary condition at the plate. It is shown analytically that a static pendant two-dimensional drop can never be longer than 3.42 times the capillary length. A related finding is that a range of existing solutions for long two-dimensional drops correspond to unphysical drop shapes. Therefore, two-dimensional drops of small volume display only one static solution. In contrast, it is known that axisymmetric drops can display multiple solutions for a given volume. We demonstrate numerically that there is no limit to the height of multiple-lobed Kelvin drops, but the total volume is finite, with the volume of successive lobes forming a convergent series. The stability of such drops is in question, though. Drops of small volume can attain large heights. A bifurcation is found within the one-parameter space of Laplacian shapes, with a range of longer drops displaying a minimum in energy in the investigated space. Axisymmetric Kelvin drops exhibit an infinite number of bifurcations.
Phase structure of higher spin black hole
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Wang, Yi-Nan
2013-03-01
In this paper, we investigate the phase structure of the black holes with one single higher spin hair, focusing specifically on the spin 3 and spin widetilde{4} black holes. Based on dimensional analysis and the requirement of thermodynamic consistency, we derive a universal formula relating the entropy with the conserved charges for arbitrary AdS 3 higher spin black holes. Then we use it to study the phase structure of the higher spin black holes. We find that there are six branches of solutions in the spin 3 gravity, eight branches of solutions in the spin widetilde{4} gravity and twelve branches of solutions in the G 2 gravity. In each case, all the branches are related by a simple angle shift in the entropy functions. In the spin 3 case, we reproduce all the results found before. In the spin widetilde{4} case, we find that at low temperature it lies in the BTZ branch while at high temperature it undergoes a phase transition to one of the two other branches, depending on the signature of the chemical potential, a reflection of charge conjugate asymmetry found before.
[Three-dimensional reconstruction of functional brain images].
Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I
1999-08-01
We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.
Cubic Interactions of Massless Bosonic Fields in Three Dimensions
NASA Astrophysics Data System (ADS)
Mkrtchyan, Karapet
2018-06-01
In this Letter, we take the first step towards construction of nontrivial Lagrangian theories of higher-spin gravity in a metriclike formulation in three dimensions. The crucial feature of a metriclike formulation is that it is known how to incorporate matter interactions into the description. We derive a complete classification of cubic interactions for arbitrary triples s1 , s2 , s3 of massless fields, which are the building blocks of any interacting theory with massless higher spins. We find that there is, at most, one vertex for any given triple of spins in 3D (with one exception, s1=s2=s3=1 , which allows for two vertices). Remarkably, there are no vertices for spin values that do not respect strict triangle inequalities and contain at least two spins greater than one. This translates into selection rules for three-point functions of higher-spin conserved currents in two dimensional conformal field theory. Furthermore, universal coupling to gravity for any spin is derived. Last, we argue that this classification persists in arbitrary Einstein backgrounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, Banasri; Bandyopadhyay, Pratul; Majumdar, Priyadarshi
We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point. This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor is associated with the probability of the formation of defects. In this framework, we have estimated the density of defects produced in several one-dimensional spin chains. At themore » critical region, the entanglement entropy of a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the scaling behavior of the entanglement entropy follows a universal behavior in all these systems.« less
Transverse spin correlation function of the one-dimensional spin- {1}/{2} XY model
NASA Astrophysics Data System (ADS)
Tonegawa, Takashi
1981-12-01
The transverse spin pair correlation function pxn=< SxmSxm+ n>=< SxmSxm+ n> is calculated exactly in the thermodynamic limit of the system described by the one-dimensional, isotropic, spin- {1}/{2}, XY Hamiltonian H=-2J limit∑l=1N(S xlS xl+1+S ylS yl+1) . It is found that at absolute zero temperature ( T = 0), the correlation function ρ xn for n ≥ 0 is given by ρ x2p= {1}/{4}{2}/{π}2plimitΠj=1p-1{4j 2}/{4j 2-1 }2p-2jif n=2p , ρ x2p+1=± {1}/{4}{2}/{π}2p+1limitΠj=1p{4j 2}/{4j 2-1 }2p+2jif n=2p+1 , where the plus sign applies when J is positive and the minus sign applies when J is negative. From these the asymptotic behavior as n → ∞ of |ϱ xn| at T = 0 is derived to be |ρ xn| ˜ {a}/{n} with a = 0.147088⋯. For finite temperatures, ρ xn is calculated numerically. By using the results for ϱ xn, the transverse inverse correlation length and the wavenumber dependent transverse spin pair correlation function are also calculated exactly.
Rigorous decoupling between edge states in frustrated spin chains and ladders
NASA Astrophysics Data System (ADS)
Chepiga, Natalia; Mila, Frédéric
2018-05-01
We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).
Geometric representation of spin correlations and applications to ultracold systems
NASA Astrophysics Data System (ADS)
Mukherjee, Rick; Mirasola, Anthony E.; Hollingsworth, Jacob; White, Ian G.; Hazzard, Kaden R. A.
2018-04-01
We provide a one-to-one map between the spin correlations and certain three-dimensional shapes, analogous to the map between single spins and Bloch vectors, and demonstrate its utility. Much as one can reason geometrically about dynamics using a Bloch vector—e.g., a magnetic field causes it to precess and dissipation causes it to shrink—one can reason similarly about the shapes we use to visualize correlations. This visualization demonstrates its usefulness by unveiling the hidden structure in the correlations. For example, seemingly complex correlation dynamics can be described as simple motions of the shapes. We demonstrate the simplicity of the dynamics, which is obscured in conventional analyses, by analyzing several physical systems of relevance to cold atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanaya, T.; Takahashi, N.; Nishida, K.
2005-01-01
We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does includemore » only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.« less
Local characterization of one-dimensional topologically ordered states
NASA Astrophysics Data System (ADS)
Cui, Jian; Amico, Luigi; Fan, Heng; Gu, Mile; Hamma, Alioscia; Vedral, Vlatko
2013-09-01
We consider one-dimensional Hamiltonian systems whose ground states display symmetry-protected topological order. We show that ground states within the topological phase cannot be connected with each other through local operations and classical communication between a bipartition of the system. Our claim is demonstrated by analyzing the entanglement spectrum and Rényi entropies of different physical systems that provide examples for symmetry-protected topological phases. Specifically, we consider the spin-1/2 cluster-Ising model and a class of spin-1 models undergoing quantum phase transitions to the Haldane phase. Our results provide a probe for symmetry-protected topological order. Since the picture holds even at the system's local scale, our analysis can serve as a local experimental test for topological order.
Wiecki, P.; Nandi, M.; Bohmer, Anna; ...
2017-11-13
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiecki, P.; Nandi, M.; Bohmer, Anna
Here, we present 77Se -NMR measurements on single-crystalline FeSe under pressures up to 2 GPa. Based on the observation of the splitting and broadening of the NMR spectrum due to structural twin domains, we discovered that static, local nematic ordering exists well above the bulk nematic ordering temperature, T s. The static, local nematic order and the low-energy stripe-type antiferromagnetic spin fluctuations, as revealed by NMR spin-lattice relaxation rate measurements, are both insensitive to pressure application. Our NMR results provide clear evidence for the microscopic cooperation between magnetism and local nematicity in FeSe.
Variational model for one-dimensional quantum magnets
NASA Astrophysics Data System (ADS)
Kudasov, Yu. B.; Kozabaranov, R. V.
2018-04-01
A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-03-01
Many-body localization in a disordered system of interacting spins coupled by the long-range interaction 1 /Rα is investigated combining analytical theory considering resonant interactions and a finite-size scaling of exact numerical solutions with number of spins N . The numerical results for a one-dimensional system are consistent with the general expectations of analytical theory for a d -dimensional system including the absence of localization in the infinite system at α <2 d and a universal scaling of a critical energy disordering Wc∝N2/d -α d .
Nocera, Alberto; Patel, Niravkumar D.; Fernandez-Baca, Jaime A.; ...
2016-11-28
In this paper, we study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small asmore » U/t ~ 2–3, although ratios of peak intensities at different momenta continue evolving with increasing U/t converging only slowly to the Heisenberg limit. Finally, we discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U/t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nocera, Alberto; Patel, Niravkumar D.; Fernandez-Baca, Jaime A.
In this paper, we study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum—with low-energy peaks resembling spinonic excitations—already at intermediate on-site repulsion as small asmore » U/t ~ 2–3, although ratios of peak intensities at different momenta continue evolving with increasing U/t converging only slowly to the Heisenberg limit. Finally, we discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U/t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information.« less
Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension
NASA Astrophysics Data System (ADS)
Paredes, Belén
2012-05-01
I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.
Realizing three-dimensional artificial spin ice by stacking planar nano-arrays
NASA Astrophysics Data System (ADS)
Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano
2014-01-01
Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.
Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio
2013-01-01
One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed. Copyright © 2013 Elsevier Inc. All rights reserved.
1 / f α noise and generalized diffusion in random Heisenberg spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Kartiek; Demler, Eugene; Martin, Ivar
2015-11-01
We study the “flux-noise” spectrum of random-bond quantum Heisenberg spin systems using a real-space renormalization group (RSRG) procedure that accounts for both the renormalization of the system Hamiltonian and of a generic probe that measures the noise. For spin chains, we find that the dynamical structure factor Sq (f ), at finite wave vector q, exhibits a power-law behavior both at high and low frequencies f , with exponents that are connected to one another and to an anomalous dynamical exponent through relations that differ at T = 0 and T =∞. The low-frequency power-law behavior of the structure factormore » is inherited by any generic probe with a finite bandwidth and is of the form 1/f α with 0.5 < α < 1. An analytical calculation of the structure factor, assuming a limiting distribution of the RG flow parameters (spin size, length, bond strength) confirms numerical findings.More generally, we demonstrate that this form of the structure factor, at high temperatures, is a manifestation of anomalous diffusionwhich directly follows from a generalized spin-diffusion propagator.We also argue that 1/f -noise is intimately connected to many-body-localization at finite temperatures. In two dimensions, the RG procedure is less reliable; however, it becomes convergent for quasi-one-dimensional geometries where we find that one-dimensional 1/f α behavior is recovered at low frequencies; the latter configurations are likely representative of paramagnetic spin networks that produce 1/f α noise in SQUIDs.« less
Antiferromagnetic S=1/2 spin chain driven by p-orbital ordering in CsO2.
Riyadi, Syarif; Zhang, Baomin; de Groot, Robert A; Caretta, Antonio; van Loosdrecht, Paul H M; Palstra, Thomas T M; Blake, Graeme R
2012-05-25
We demonstrate, using a combination of experiment and density functional theory, that orbital ordering drives the formation of a one-dimensional (1D) S=1/2 antiferromagnetic spin chain in the 3D rocksalt structure of cesium superoxide (CsO2). The magnetic superoxide anion (O2(-)) exhibits degeneracy of its 2p-derived molecular orbitals, which is lifted by a structural distortion on cooling. A spin chain is then formed by zigzag ordering of the half-filled superoxide orbitals, promoting a superexchange pathway mediated by the p(z) orbitals of Cs(+) along only one crystal direction. This scenario is analogous to the 3d-orbital-driven spin chain found in the perovskite KCuF3 and is the first example of an inorganic quantum spin system with unpaired p electrons.
Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
NASA Astrophysics Data System (ADS)
Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros
2017-09-01
Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.
NASA Astrophysics Data System (ADS)
Nazarov, Vladimir U.
2018-05-01
While it has been recently demonstrated that, for quasi-two-dimensional electron gas (Q2DEG) with one filled subband, the dynamic exchange f x and Hartree f H kernels cancel each other in the low-density regime r s → ∞ (by half and completely, for the spin-neutral and fully spin-polarized cases, respectively), here we analytically show that the same happens at arbitrary densities at short distances. This motivates us to study the confinement dependence of the excitations in Q2DEG. Our calculations unambiguously confirm that, at strong confinements, the time-dependent exact exchange excitation energies approach the single-particle Kohn-Sham ones for the spin-polarized case, while the same, but less pronounced, tendency is observed for spin-neutral Q2DEG.
No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2018-03-01
We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.
NASA Astrophysics Data System (ADS)
Haines, Donald Noble
1987-09-01
This study is an experimental investigation of the differential magnetic susceptibility of the spin one -half, one-dimensional, Ising-Heisenberg ferromagnet (S = 1over 2,1d,HIF). Recent theoretical work predicts the existence of magnon bound states in this model system, and that these bound spin wave states dominate its thermodynamic properties. Further, the theories indicate that classical linearized spin wave theory fails completely in such systems, and may also be intrinsically incorrect in certain higher dimensional systems. The purpose of this research is to confirm the existence of bound magnons in the S = 1over 2,1d,HIF for the nearly Heisenberg case, and demonstrate the dominance of the bound states over the spin wave states in determining thermodynamic behavior. A preliminary numerical study was performed to determine the ranges of magnetic field and temperature at which bound magnons might be expected to make a significant contribution to the magnetic susceptibility and specific heat of the S = 1over 2,1d,HIF. It was found that bound magnons dominate at low and high fields, and spin waves dominate at intermediate fields. For anisotropies less than 2% bound magnons dominate the low temperature regime for all fields. To test the theoretical predictions cyclohexylammonium trichlorocuprate(II) (CHAC) was chosen as a model S = 1over 2,1d,HIF compound for experimental study. The differential susceptibility of a powder sample of CHAC was measured as a function of temperature in fields of 0, 1, 2, and 3T. The temperature range for these studies was 4.2K to 40K. Susceptibility measurements were performed using an ac mutual inductance bridge which employs a SQUID (Superconducting Quantum Interference Device) as a null detector. The design, calibration, and operation of this instrument are described. Data from the experiments compare favorably with the theoretical predictions, confirming the existence of bound magnons in the nearly Heisenberg S = 1over 2,1d,HIF. Further, the experimental results clearly show that bound magnons are the dominant excitation determining the susceptibility for all fields and temperatures studied. Spin wave theory cannot describe the data for any values of the adjustable parameters.
NASA Astrophysics Data System (ADS)
Chan, GuoXuan; Wang, Xin
2018-04-01
We consider two typical approximations that are used in the microscopic calculations of double-quantum dot spin qubits, namely, the Heitler-London (HL) and the Hund-Mulliken (HM) approximations, which use linear combinations of Fock-Darwin states to approximate the two-electron states under the double-well confinement potential. We compared these results to a case in which the solution to a one-dimensional Schr¨odinger equation was exactly known and found that typical microscopic calculations based on Fock-Darwin states substantially underestimate the value of the exchange interaction, which is the key parameter that controls the quantum dot spin qubits. This underestimation originates from the lack of tunneling of Fock-Darwin states, which is accurate only in the case with a single potential well. Our results suggest that the accuracies of the current two-dimensional molecular- orbit-theoretical calculations based on Fock-Darwin states should be revisited since underestimation could only deteriorate in dimensions that are higher than one.
NASA Astrophysics Data System (ADS)
Liu, Weizhe Edward; Chesi, Stefano; Webb, David; Zülicke, U.; Winkler, R.; Joynt, Robert; Culcer, Dimitrie
2017-12-01
Spin-orbit coupling is a single-particle phenomenon known to generate topological order, and electron-electron interactions cause ordered many-body phases to exist. The rich interplay of these two mechanisms is present in a broad range of materials and has been the subject of considerable ongoing research and controversy. Here we demonstrate that interacting two-dimensional electron systems with strong spin-orbit coupling exhibit a variety of time reversal symmetry breaking phases with unconventional spin alignment. We first prove that a Stoner-type criterion can be formulated for the spin polarization response to an electric field, which predicts that the spin polarization susceptibility diverges at a certain value of the electron-electron interaction strength. The divergence indicates the possibility of unconventional ferromagnetic phases even in the absence of any applied electric or magnetic field. This leads us, in the second part of this work, to study interacting Rashba spin-orbit coupled semiconductors in equilibrium in the Hartree-Fock approximation as a generic minimal model. Using classical Monte Carlo simulations, we construct the complete phase diagram of the system as a function of density and spin-orbit coupling strength. It includes both an out-of-plane spin-polarized phase and in-plane spin-polarized phases with shifted Fermi surfaces and rich spin textures, reminiscent of the Pomeranchuk instability, as well as two different Fermi-liquid phases having one and two Fermi surfaces, respectively, which are separated by a Lifshitz transition. We discuss possibilities for experimental observation and useful application of these novel phases, especially in the context of electric-field-controlled macroscopic spin polarizations.
NASA Astrophysics Data System (ADS)
Zivieri, R.; Giordano, A.; Verba, R.; Azzerboni, B.; Carpentieri, M.; Slavin, A. N.; Finocchio, G.
2018-04-01
A two-dimensional analytical model for the description of the excitation of nonreciprocal spin waves by spin current in spin Hall oscillators in the presence of the interfacial Dzyaloshinskii-Moriya interaction (i -DMI) is developed. The theory allows one to calculate the threshold current for the excitation of spin waves, as well as the frequencies and spatial profiles of the excited spin-wave modes. It is found that the frequency of the excited spin waves exhibits a quadratic redshift with the i -DMI strength. At the same time, in the range of small and moderate values of the i -DMI constant, the averaged wave number of the excited spin waves is almost independent of the i -DMI, which results in a rather weak dependence on the i -DMI of the threshold current of the spin-wave excitation. The obtained analytical results are confirmed by the results of micromagnetic simulations.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
Quantum spin transistor with a Heisenberg spin chain.
Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T
2016-10-10
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Goli, V M L Durga Prasad; Sahoo, Shaon; Ramasesha, S; Sen, Diptiman
2013-03-27
We study here different regions in phase diagrams of the spin-1/2, spin-1 and spin-3/2 one-dimensional antiferromagnetic Heisenberg systems with frustration (next-nearest-neighbor interaction J2) and dimerization (δ). In particular, we analyze the behaviors of the bipartite entanglement entropy and fidelity at the gapless to gapped phase transitions and across the lines separating different phases in the J2-δ plane. All the calculations in this work are based on numerical exact diagonalizations of finite systems.
Larmor precession and barrier tunneling time of a neutral spinning particle
NASA Astrophysics Data System (ADS)
Li, Zhi-Jian; Liang, J. Q.; Kobe, D. H.
2001-10-01
The Larmor precession of a neutral spinning particle in a magnetic field confined to the region of a one-dimensional rectangular barrier is investigated for both a nonrelativistic and a relativistic incoming particle. The spin precession serves as a clock to measure the time spent by a quantum particle traversing a potential barrier. With the help of a general spin coherent state it is explicitly shown that the precession time is equal to the dwell time in both the nonrelativistic and relativistic cases. We also present a numerical estimation of the precession time showing an apparent superluminal tunneling.
Rainbow valley of colored (anti) de Sitter gravity in three dimensions
NASA Astrophysics Data System (ADS)
Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong
2016-04-01
We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.
Aspects of neutrino oscillation in alternative gravity theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sumanta, E-mail: sumantac.physics@gmail.com
2015-10-01
Neutrino spin and flavour oscillation in curved spacetime have been studied for the most general static spherically symmetric configuration. Having exploited the spherical symmetry we have confined ourselves to the equatorial plane in order to determine the spin and flavour oscillation frequency in this general set-up. Using the symmetry properties we have derived spin oscillation frequency for neutrino moving along a geodesic or in a circular orbit. Starting from the expression of neutrino spin oscillation frequency we have shown that even in this general context, in high energy limit the spin oscillation frequency for neutrino moving along circular orbit vanishes.more » We have verified previous results along this line by transforming to Schwarzschild coordinates under appropriate limit. This finally lends itself to the probability of neutrino helicity flip which turns out to be non-zero. While for neutrino flavour oscillation we have derived general results for oscillation phase, which subsequently have been applied to three different gravity theories. One, of them appears as low-energy approximation to string theory, where we have an additional field, namely, dilaton field coupled to Maxwell field tensor. This yields a realization of Reissner-Nordström solution in string theory at low-energy. Next one corresponds to generalization of Schwarzschild solution by introduction of quadratic curvature terms of all possible form to the Einstein-Hilbert action. Finally, we have also discussed regular black hole solutions. In all these cases the flavour oscillation probabilities can be determined for solar neutrinos and thus can be used to put bounds on the parameters of these gravity theories. While for spin oscillation probability, we have considered two cases, Gauss-Bonnet term added to the Einstein-Hilbert action and the f(R) gravity theory. In both these cases we could impose bounds on the parameters which are consistent with previous considerations. In a nutshell, in this work we have presented both spin and flavour oscillation frequency of neutrino in most general static spherically symmetric spacetime, encompassing a vast class of solutions, which when applied to three such instances in alternative theories for flavour oscillation and two alternative theories for spin oscillation put bounds on the parameters of these theories. Implications are also discussed.« less
NASA Astrophysics Data System (ADS)
Piotrowski, J.
2010-07-01
This paper presents two extensions of Kalker's algorithm Fastsim of the simplified theory of rolling contact. The first extension is for solving tangential contact problems with the coefficient of friction depending on slip velocity. Two friction laws have been considered: with and without recuperation of the static friction. According to the tribological hypothesis for metallic bodies shear failure, the friction law without recuperation of static friction is more suitable for wheel and rail than the other one. Sample results present local quantities inside the contact area (division to slip and adhesion, traction) as well as global ones (creep forces as functions of creepages and rolling velocity). For the coefficient of friction diminishing with slip, the creep forces decay after reaching the maximum and they depend on the rolling velocity. The second extension is for solving tangential contact problems with friction anisotropy characterised by a convex set of the permissible tangential tractions. The effect of the anisotropy has been shown on examples of rolling without spin and in the presence of pure spin for the elliptical set. The friction anisotropy influences tangential tractions and creep forces. Sample results present local and global quantities. Both extensions have been described with the same language of formulation and they may be merged into one, joint algorithm.
Jiang, Dongyue; Park, Sung-Yong
2016-05-21
Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.
Magnetic vortex nucleation modes in static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanatka, Marek; Urbanek, Michal; Jira, Roman
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
Magnetic vortex nucleation modes in static magnetic fields
Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...
2017-10-03
The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Yuji; Roy, Beas; Ran, Sheng
2014-03-20
The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magneticmore » susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.« less
Stationary and moving solitons in spin-orbit-coupled spin-1 Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Li, Yu-E.; Xue, Ju-Kui
2018-04-01
We investigate the matter-wave solitons in a spin-orbit-coupled spin-1 Bose-Einstein condensate using a multiscale perturbation method. Beginning with the one-dimensional spin-orbit-coupled threecomponent Gross-Pitaevskii equations, we derive a single nonlinear Schrödinger equation, which allows determination of the analytical soliton solutions of the system. Stationary and moving solitons in the system are derived. In particular, a parameter space for different existing soliton types is provided. It is shown that there exist only dark or bright solitons when the spin-orbit coupling is weak, with the solitons depending on the atomic interactions. However, when the spin-orbit coupling is strong, both dark and bright solitons exist, being determined by the Raman coupling. Our analytical solutions are confirmed by direct numerical simulations.
Pseudo-One-Dimensional Magnonic Crystals for High-Frequency Nanoscale Devices
NASA Astrophysics Data System (ADS)
Banerjee, Chandrima; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan
2017-07-01
The synthetic magnonic crystals (i.e., periodic composites consisting of different magnetic materials) form one fascinating class of emerging research field, which aims to command the process and flow of information by means of spin waves, such as in magnonic waveguides. One of the intriguing features of magnonic crystals is the presence and tunability of band gaps in the spin-wave spectrum, where the high attenuation of the frequency bands can be utilized for frequency-dependent control on the spin waves. However, to find a feasible way of band tuning in terms of a realistic integrated device is still a challenge. Here, we introduce an array of asymmetric saw-tooth-shaped width-modulated nanoscale ferromagnetic waveguides forming a pseudo-one-dimensional magnonic crystal. The frequency dispersion of collective modes measured by the Brillouin light-scattering technique is compared with the band diagram obtained by numerically solving the eigenvalue problem derived from the linearized Landau-Lifshitz magnetic torque equation. We find that the magnonic band-gap width, position, and the slope of dispersion curves are controllable by changing the angle between the spin-wave propagation channel and the magnetic field. The calculated profiles of the dynamic magnetization reveal that the corrugation at the lateral boundary of the waveguide effectively engineers the edge modes, which forms the basis of the interactive control in magnonic circuits. The results represent a prospective direction towards managing the internal field distribution as well as the dispersion properties, which find potential applications in dynamic spin-wave filters and magnonic waveguides in the gigahertz frequency range.
NASA Astrophysics Data System (ADS)
Otsuka, Hiromi
1998-06-01
We investigate two kinds of quantum phase transitions observed in the one-dimensional half-filled Peierls-Hubbard model with the next-nearest-neighbor hopping integral in the strong-coupling region U>>t, t' [t (t'), nearest- (next-nearest-) neighbor hopping; U, on-site Coulomb repulsion]. In the uniform case, with the help of the conformal field theory prediction, we numerically determine a phase boundary t'c(U/t) between the spin-fluid and the dimer states, where a bare coupling of the marginal operator vanishes and the low-energy and long-distance behaviors of the spin part are described by a free-boson model. To exhibit the conformal invariance of the systems on the phase boundary, a multiplet structure of the excitation spectrum of finite-size systems and a value of the central charge are also examined. The critical phenomenological aspect of the spin-Peierls transitions accompanied by the lattice dimerization is then argued for the systems on the phase boundary; the existence of logarithmic corrections to the power-law behaviors of the energy gain and the spin gap (i.e., the Cross-Fisher scaling law) are discussed.
Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Sun, Ning
2018-04-01
Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.
Majumdar, Kingshuk
2011-03-23
The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.
Realizing three-dimensional artificial spin ice by stacking planar nano-arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano
2014-01-06
Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in amore » pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.« less
Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, W.; Cheng, Chingyun; Arakelyan, I.; Thomas, J. E.
2015-03-01
We measure the density profiles for a Fermi gas of
HQET form factors for Bs → Klv decays beyond leading order
NASA Astrophysics Data System (ADS)
Banerjee, Debasish; Koren, Mateusz; Simma, Hubert; Sommer, Rainer
2018-03-01
We compute semi-leptonic Bs decay form factors using Heavy Quark Effective Theory on the lattice. To obtain good control of the 1 /mb expansion, one has to take into account not only the leading static order but also the terms arising at O (1/mb): kinetic, spin and current insertions. We show results for these terms calculated through the ratio method, using our prior results for the static order. After combining them with non-perturbative HQET parameters they can be continuum-extrapolated to give the QCD form factor correct up to O (1/mb2) corrections and without O (αs(mb)n) corrections.
Simple universal models capture all classical spin physics.
De las Cuevas, Gemma; Cubitt, Toby S
2016-03-11
Spin models are used in many studies of complex systems because they exhibit rich macroscopic behavior despite their microscopic simplicity. Here, we prove that all the physics of every classical spin model is reproduced in the low-energy sector of certain "universal models," with at most polynomial overhead. This holds for classical models with discrete or continuous degrees of freedom. We prove necessary and sufficient conditions for a spin model to be universal and show that one of the simplest and most widely studied spin models, the two-dimensional Ising model with fields, is universal. Our results may facilitate physical simulations of Hamiltonians with complex interactions. Copyright © 2016, American Association for the Advancement of Science.
Electrical control of spin dynamics in finite one-dimensional systems
NASA Astrophysics Data System (ADS)
Pertsova, A.; Stamenova, M.; Sanvito, S.
2011-10-01
We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias Vg on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of Vg. We identify regions of Vg giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.
Relativistic particle in a box: Klein-Gordon versus Dirac equations
NASA Astrophysics Data System (ADS)
Alberto, Pedro; Das, Saurya; Vagenas, Elias C.
2018-03-01
The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.
Plaquette order in a dimerized frustrated spin ladder
NASA Astrophysics Data System (ADS)
Shlagman, Ofer; Shimshoni, Efrat
2014-11-01
We study the effect of dimerization (due to, e.g., spin-Peierls instability) on the phase diagram of a frustrated antiferromagnetic spin-1/2 ladder, with weak transverse and diagonal rung coupling. Our analysis focuses on a one-dimensional version of the model (i.e., a single two-leg ladder) where we consider two forms of dimerization on the legs: columnar dimers (CDs) and staggered dimers (SDs). We examine in particular the regime of parameters (corresponding to an intermediate X X Z anisotropy) in which the leg dimerization and the rung coupling terms are equally relevant. In both the CD and SD cases, we find that the effective field theory describing the system is a self-dual sine-Gordon model, which favors ordering and the opening of a gap to excitations. The order parameter, which reflects the interplay between the leg and rung dimerization interactions, represents a crystal of 4-spin plaquettes on which longitudinal and transverse dimers are in a coherent superposition. Depending on the leg dimerization mode, these plaquettes are closed or open, however both types spontaneously break reflection symmetry across the ladder. The closed plaquettes are stable, while the open plaquette order is relatively fragile and the corresponding gap may be tuned to zero under extreme conditions. We further find that a first-order transition occurs from the plaquette order to a valence bond crystal (VBC) of dimers on the legs. This suggests that in a higher-dimensional version of this system, this variety of distinct VBC states with comparable energies leads to the formation of domains. Effectively one-dimensional gapless spinon modes on domain boundaries may account for the experimental observation of spin-liquid behavior in a physical realization of the model.
Biomolecular solid state NMR with magic-angle spinning at 25K.
Thurber, Kent R; Tycko, Robert
2008-12-01
A magic-angle spinning (MAS) probe has been constructed which allows the sample to be cooled with helium, while the MAS bearing and drive gases are nitrogen. The sample can be cooled to 25K using roughly 3 L/h of liquid helium, while the 4-mm diameter rotor spins at 6.7 kHz with good stability (+/-5 Hz) for many hours. Proton decoupling fields up to at least 130 kHz can be applied. This helium-cooled MAS probe enables a variety of one-dimensional and two-dimensional NMR experiments on biomolecular solids and other materials at low temperatures, with signal-to-noise proportional to 1/T. We show examples of low-temperature (13)C NMR data for two biomolecular samples, namely the peptide Abeta(14-23) in the form of amyloid fibrils and the protein HP35 in frozen glycerol/water solution. Issues related to temperature calibration, spin-lattice relaxation at low temperatures, paramagnetic doping of frozen solutions, and (13)C MAS NMR linewidths are discussed.
Quantum ratchet in two-dimensional semiconductors with Rashba spin-orbit interaction
Ang, Yee Sin; Ma, Zhongshui; Zhang, Chao
2015-01-01
Ratchet is a device that produces direct current of particles when driven by an unbiased force. We demonstrate a simple scattering quantum ratchet based on an asymmetrical quantum tunneling effect in two-dimensional electron gas with Rashba spin-orbit interaction (R2DEG). We consider the tunneling of electrons across a square potential barrier sandwiched by interface scattering potentials of unequal strengths on its either sides. It is found that while the intra-spin tunneling probabilities remain unchanged, the inter-spin-subband tunneling probabilities of electrons crossing the barrier in one direction is unequal to that of the opposite direction. Hence, when the system is driven by an unbiased periodic force, a directional flow of electron current is generated. The scattering quantum ratchet in R2DEG is conceptually simple and is capable of converting a.c. driving force into a rectified current without the need of additional symmetry breaking mechanism or external magnetic field. PMID:25598490
Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime
NASA Astrophysics Data System (ADS)
Övgün, A.; Sakalli, I.
2018-02-01
In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
Fujinami, Takeshi; Koike, Masataka; Matsumoto, Naohide; Sunatsuki, Yukinari; Okazawa, Atsushi; Kojima, Norimichi
2014-02-17
The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.
NASA Technical Reports Server (NTRS)
Batterson, Sidney A.
1959-01-01
An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.
NASA Astrophysics Data System (ADS)
Praetorius, Simon; Voigt, Axel; Wittkowski, Raphael; Löwen, Hartmut
2018-05-01
Two-dimensional crystals on curved manifolds exhibit nontrivial defect structures. Here we consider "active crystals" on a sphere, which are composed of self-propelled colloidal particles. Our work is based on a phase-field-crystal-type model that involves a density and a polarization field on the sphere. Depending on the strength of the self-propulsion, three different types of crystals are found: a static crystal, a self-spinning "vortex-vortex" crystal containing two vortical poles of the local velocity, and a self-translating "source-sink" crystal with a source pole where crystallization occurs and a sink pole where the active crystal melts. These different crystalline states as well as their defects are studied theoretically here and can in principle be confirmed in experiments.
Fermionic Schwinger effect and induced current in de Sitter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashinaka, Takahiro; Department of Physics, Graduate School of Science, The University of Tokyo,Bunkyo-ku, Tokyo, 113-0033; Fujita, Tomohiro
We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 demore » Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.« less
One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn 2O 4
Disseler, S. M.; Chen, Y.; Yeo, S.; ...
2015-12-08
In this paper we report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn 2O 4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions aroundmore » Mn 3+ ions on the spinel lattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrilenko, V. I.; Krishtopenko, S. S., E-mail: ds_a-teens@mail.ru; Goiran, M.
2011-01-15
The effect of electron-electron interaction on the spectrum of two-dimensional electron states in InAs/AlSb (001) heterostructures with a GaSb cap layer with one filled size-quantization subband. The energy spectrum of two-dimensional electrons is calculated in the Hartree and Hartree-Fock approximations. It is shown that the exchange interaction decreasing the electron energy in subbands increases the energy gap between subbands and the spin-orbit splitting of the spectrum in the entire region of electron concentrations, at which only the lower size-quantization band is filled. The nonlinear dependence of the Rashba splitting constant at the Fermi wave vector on the concentration of two-dimensionalmore » electrons is demonstrated.« less
3D Animations for Exploring Nucleon Structure
NASA Astrophysics Data System (ADS)
Gorman, Waverly; Burkardt, Matthias
2016-09-01
Over the last few years many intuitive pictures have been developed for the interpretation of electron hadron scattering experiments, such as a mechanism for transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering experiments. While Dr. Burkardt's pictures have been helpful for many researchers in the field, they are still difficult to visualize for broader audiences since they rely mostly on 2-dimensional static images. In order to make more accessible for a broader audience what can be learned from Jefferson Lab experiments, we have started to work on developing 3-dimensional animations for these processes. The goal is to enable the viewer to repeatedly look at the same microscopic mechanism for a specific reaction, with the viewpoint of the observer changing. This should help an audience that is not so familiar with these reactions to better understand what can be learned from various experiments at Jefferson Lab aimed at exploring the nucleon structure. Jefferson Lab Minority/Female Undergraduate Research Assistantship.
Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction
NASA Astrophysics Data System (ADS)
Kumar, Punit; Singh, Shiv; Ahmad, Nafees
2018-05-01
Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.
Shape control of slack space reflectors using modulated solar pressure
Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.
2015-01-01
The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes. PMID:26345083
Dynamics of isolated quantum systems: many-body localization and thermalization
NASA Astrophysics Data System (ADS)
Torres-Herrera, E. Jonathan; Tavora, Marco; Santos, Lea F.
2016-05-01
We show that the transition to a many-body localized phase and the onset of thermalization can be inferred from the analysis of the dynamics of isolated quantum systems taken out of equilibrium abruptly. The systems considered are described by one-dimensional spin-1/2 models with static random magnetic fields and by power-law band random matrices. We find that the short-time decay of the survival probability of the initial state is faster than exponential for sufficiently strong perturbations. This initial evolution does not depend on whether the system is integrable or chaotic, disordered or clean. At long-times, the dynamics necessarily slows down and shows a power-law behavior. The value of the power-law exponent indicates whether the system will reach thermal equilibrium or not. We present how the properties of the spectrum, structure of the initial state, and number of particles that interact simultaneously affect the value of the power-law exponent. We also compare the results for the survival probability with those for few-body observables. EJTH aknowledges financial support from PRODEP-SEP and VIEP-BUAP, Mexico.
Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry
NASA Astrophysics Data System (ADS)
Huang, Chunli; Milletarı, Mirco; Cazalilla, Miguel A.
2017-11-01
We study the spin-charge conversion mechanisms in a two-dimensional gas of electrons moving in a smooth disorder potential by accounting for both Rashba-type and Mott's skew scattering contributions. We find that the quantum interference effects between spin-flip and skew scattering give rise to anisotropic spin precession scattering (ASP), a direct spin-charge conversion mechanism that was discovered in an earlier study of graphene decorated with adatoms [Huang et al., Phys. Rev. B 94, 085414 (2016), 10.1103/PhysRevB.94.085414]. Our findings suggest that, together with other spin-charge conversion mechanisms such as the inverse galvanic effect, ASP is a fairly universal phenomenon that should be present in disordered two-dimensional systems lacking inversion symmetry.
Topological Z2 resonating-valence-bond spin liquid on the square lattice
NASA Astrophysics Data System (ADS)
Chen, Ji-Yao; Poilblanc, Didier
2018-04-01
A one-parameter family of long-range resonating-valence-bond (RVB) state on the square lattice was previously proposed to describe a critical spin liquid (SL) phase of the spin-1/2 frustrated Heisenberg model. We provide evidence that this RVB state in fact also realizes a topological (long-range entangled) Z2 SL, limited by two transitions to critical SL phases. The topological phase is naturally connected to the Z2 gauge symmetry of the local tensor. This Rapid Communication shows that, on one hand, spin-1/2 topological SL with C4 v point-group symmetry and S U (2 ) spin rotation symmetry exists on the square lattice and, on the other hand, criticality and nonbipartiteness are compatible. We also point out that strong similarities between our phase diagram and the ones of classical interacting dimer models suggest both can be described by similar Kosterlitz-Thouless transitions. This scenario is further supported by the analysis of the one-dimensional boundary state. Forms of parent Hamiltonians hosting the Z2 SL are suggested.
Chaotic dynamics of Heisenberg ferromagnetic spin chain with bilinear and biquadratic interactions
NASA Astrophysics Data System (ADS)
Blessy, B. S. Gnana; Latha, M. M.
2017-10-01
We investigate the chaotic dynamics of one dimensional Heisenberg ferromagnetic spin chain by constructing the Hamiltonian equations of motion. We present the trajectory and phase plots of the system with bilinear and also biquadratic interactions. The stability of the system is analysed in both cases by constructing the Jacobian matrix and by measuring the Lyapunov exponents. The results are illustrated graphically.
Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models
NASA Astrophysics Data System (ADS)
de Alfaro, V.; Filippov, A. T.
2010-01-01
We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.
La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal
Arsenault, A.; Takahashi, S. K.; Imai, T.; ...
2018-02-14
139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin excitations in the low-temperature regime below Tneutron spin (≃ Tc) depends strongly on the magnitude and orientation of the applied magnetic field.« less
La 139 NMR investigation of the charge and spin order in a La 1.885 Sr 0.115 CuO 4 single crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenault, A.; Takahashi, S. K.; Imai, T.
139La NMR is suited for investigations into magnetic properties of La 2CuO 4 -based cuprates in the vicinity of their magnetic instabilities, owing to the modest hyperfine interactions between 139La nuclear spins and Cu electron spins. We report comprehensive 139La NMR measurements on a single-crystal sample of high-T c superconductor La 1.885 Sr 0.115 CuO 4 in a broad temperature range across the charge and spin order transitions (T charge ≃ 80 K, T neutron spin ≃ T c = 30 K). From the high-precision measurements of the linewidth for the nuclear spin I z = + 1 / 2 to -1/2 central transition, we show that paramagnetic line broadening sets in precisely at T charge due to enhanced spin correlations within the CuO 2 planes. Additional paramagnetic line broadening ensues below ~35 K, signaling that Cu spins in some segments of CuO 2 planes are on the verge of three-dimensional magnetic order. A static hyperfine magnetic field arising from ordered Cu moments along the ab plane, however, begins to develop only below Tmore » $$μSR\\atop{spin}$$ = 15 – 20 K, where earlier muon spin rotation measurements detected Larmor precession for a small volume fraction (~20 % ) of the sample. Based on the measurement of 139 La nuclear-spin-lattice relaxation rate 1/T 1, we also show that charge order triggers enhancement of low-frequency Cu spin fluctuations inhomogeneously; a growing fraction of 139 La sites is affected by enhanced low-frequency spin fluctuations toward the eventual magnetic order, whereas a diminishing fraction continues to exhibit a behavior analogous to the optimally superconducting phase even below T charge. In conclusion, these 139La NMR results corroborate our recent 63Cu NMR observation that a very broad, anomalous winglike signal gradually emerges below T charge, whereas the normally behaving, narrower main peak is gradually wiped out [T. Imai et al., Phys. Rev. B 96, 224508 (2017)]. Furthermore, we show that the enhancement of low-energy spin excitations in the low-temperature regime below Tneutron spin (≃ Tc) depends strongly on the magnitude and orientation of the applied magnetic field.« less
Topological spinon bands and vison excitations in spin-orbit coupled quantum spin liquids
NASA Astrophysics Data System (ADS)
Sonnenschein, Jonas; Reuther, Johannes
2017-12-01
Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparticle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, additionally, topology enters via nontrivial band structures of the spinons. We revisit the Z2 spin-liquid phases that have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation symmetry is maximally lifted [J. Reuther et al., Phys. Rev. B 90, 174417 (2014), 10.1103/PhysRevB.90.174417]. We find that in the case of nearest-neighbor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second-neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang model for topological insulators. Assuming that the emergent gauge fields are static, we investigate vison excitations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin phases and topological p +i p superconductors with vortices. We propose experimental probes to detect such states in real materials.
NASA Astrophysics Data System (ADS)
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin
2018-05-01
We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.
Spin-dependent Otto quantum heat engine based on a molecular substance
NASA Astrophysics Data System (ADS)
Hübner, W.; Lefkidis, G.; Dong, C. D.; Chaudhuri, D.; Chotorlishvili, L.; Berakdar, J.
2014-07-01
We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the Ni2 dimer in the presence of a static magnetic field: (a) a quantum Otto engine and (b) a modified quantum Otto engine for which optical excitations induced by a laser pulse substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the molecular electronic structure including spin-orbital effects. We analyze the efficiency of the engines in dependence of the electronic level scheme and the entanglement and find a significant possible enhancement connected to the quantum nature and the heat capacity of the dimer, as well as to the zero-field triplet states splitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorkyan, A. S., E-mail: g-ashot@sci.am; Sahakyan, V. V.
We study the classical 1D Heisenberg spin glasses in the framework of nearest-neighboring model. Based on the Hamilton equations we obtained the system of recurrence equations which allows to perform node-by-node calculations of a spin-chain. It is shown that calculations from the first principles of classical mechanics lead to ℕℙ hard problem, that however in the limit of the statistical equilibrium can be calculated by ℙ algorithm. For the partition function of the ensemble a new representation is offered in the form of one-dimensional integral of spin-chains’ energy distribution.
Critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model
NASA Astrophysics Data System (ADS)
Sousa, J. Ricardo de
A two-step renormalization group approach - a decimation followed by an effective field renormalization group (EFRG) - is proposed in this work to study the critical behavior of the quantum spin- {1}/{2} anisotropic Heisenberg model. The new method is illustrated by employing approximations in which clusters with one, two and three spins are used. The values of the critical parameter and critical exponent, in two- and three-dimensional lattices, for the Ising and isotropic Heisenberg limits are calculated and compared with other renormalization group approaches and exact (or series) results.
BOOK REVIEW: Quantum Physics in One Dimension
NASA Astrophysics Data System (ADS)
Logan, David
2004-05-01
To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted pecularities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic---spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assumimg little theoretical background on the part of the reader (well just a little), Giamarchi writes in a refreshingly relaxed style with infectious enthusiasm for his subject, and readily combines formal instruction with physical insight. The result is a serious, pedagogical yet comprehensive guide to the fascinating and important field of one-dimensional quantum systems, for which many a graduate student (and not a few oldies) will be grateful. The first half of the book, chapters 1--5, is devoted to a coherent presentation of the essential concepts and theoretical methods of the field. After a basic introduction to the unique behaviour of interacting electrons in one dimension, and to early fermionic approaches to the problem, Giamarchi turns to the technique of bosonization, introducing chapter 3 with a Marxist quote: `A child of five would understand this. Send for a child of five.' This most powerful technique is presented in a step by step fashion, and serious perusal of the chapter will benefit all ages since bosonization is used extensively throughout the rest of the book. The same is true of chapter 3 where a phenomenological and physically insightful introduction is given to the Luttinger liquid---the key concept in the low-energy physics of one-dimensional systems, analogous to the Fermi liquid in higher dimensions. Chapter 4 deals with what the author calls `refinements', or complications of the sort theorists in particular welcome; such as how the Luttinger liquid description is modified by the presence of long-ranged interactions, the Mott transition (`we forgot the lattice Gromit'), and the effects of breaking spin rotational invariance on application of a magnetic field. Finally chapter 5 describes various microscopic methods for one dimension, including a brief discussion of numerical techniques but focussing primarily on the Bethe ansatz---the famous one-dimensional technique others seek to emulate but whose well known complexity necessitates a relatively brief discussion, confined in practice to the spin-1/2 Heisenberg model. In the second half of the book, chapters 6--11, a range of different physical realizations of one-dimensional quantum physics are discussed. According to taste and interest, these chapters can be read in essentially any order. Spin systems are considered in chapter 6, beginning with spin chains---Jordan--Wigner, the bosonization solution---before moving to frustration, the spin-Peierls transition, and spin ladders; and including experimental examples of both spin chain and ladder materials. Chapters 7 and 8 deal with interacting lattice fermions, the former with single chain problems, notably the Hubbard, t-J and related models; and the latter with coupled fermionic chains, from finite to infinite, including a fulsome discussion of Bechgaard salts (organic conductors) as exemplars of Luttinger liquid behaviour. The effect of disorder in fermionic systems is taken up in chapter 9, and here the reader may react: interacting systems are tough enough, why make life harder? But disorder is always present to some degree in real systems---quantum wires, for example, discussed briefly in the chapter---and its effects particularly acute in one dimension. It simply cannot be avoided, even if the problem of interacting, disordered one-dimensional systems is still a long way off being solved. The penultimate chapter deals with the topical issues of boundaries, isolated impurities and constrictions, with a primary focus on mesoscopic examples of Luttinger liquids, notably carbon nanotubes and edge states in the quantum Hall effect. Finally `significant other' examples of Luttinger liquids, namely interacting one-dimensional bosons, are considered in chapter 11; which concludes with a discussion of bosonization techniques in the context of quantum impurities in Fermi liquids---the x-ray, Kondo and multichannel Kondo problems. The quality of the product attests to the fact that writing this impressive tome was a labour of love for the author. Anyone with a serious interest in getting to grips with one-dimensional quantum systems simply needs the book on their shelves---and will have great fun reading it too.
Investigation of a driven fermionic system and detecting chiral edge modes in an optical lattice
NASA Astrophysics Data System (ADS)
Görg, Frederik; Messer, Michael; Jotzu, Gregor; Sandholzer, Kilian; Desbuquois, Rémi; Goldman, Nathan; Esslinger, Tilman
2017-04-01
Periodically driven systems of ultracold fermions in optical lattices allow to implement a large variety of effective Hamiltonians through Floquet engineering. An important question is whether this method can be extended to interacting systems. We investigate driven two-body systems in an array of double wells and measure the double occupancy and the spin-spin correlator in the large frequency limit and when driving resonantly to an energy scale of the underlying static Hamiltonian. We analyze whether the emerging states of the driven system can be adiabatically connected to states in the unshaken lattice. In addition, we measure the amplitude of the micromotion which describes the short time dynamics of the system and compare it directly to theory. In another context we propose a method to create topological interfaces and detect chiral edge modes in a two dimensional optical lattice. We illustrate this through an optical lattice realization of the Haldane model for cold atoms, where an additional spatially-varying lattice potential induces distinct topological phases in separated regions of space.
Magnetic polarons in antiferromagnetic CaMnO3-x (x<0.01) probed by O17 NMR
NASA Astrophysics Data System (ADS)
Trokiner, A.; Verkhovskii, S.; Yakubovskii, A.; Gerashenko, A.; Monod, P.; Kumagai, K.; Mikhalev, K.; Buzlukov, A.; Litvinova, Z.; Gorbenko, O.; Kaul, A.; Kartavtzeva, M.
2009-06-01
We study with O17 NMR and bulk magnetization a lightly electron doped CaMnO3-x (x<0.01) polycrystalline sample in the G -type antiferromagnetic state. The O17 NMR spectra show two lines with very different intensities corresponding to oxygen sites with very different local magnetic environments. The more intense unshifted line is due to the antiferromagnetic (AF) matrix. The thermal dependence of the magnetic moment of the AF sublattice deduced from the O17 linewidth is typical of insulating three-dimensional Heisenberg antiferromagnets. The less intense, strongly shifted line directly evidences the existence of ferromagnetic (FM) domains embedded in the AF spin lattice. The extremely narrow line in zero magnetic field indicates a nearly perfect alignment of the manganese spins in the FM domains which also display an unusually weak temperature dependence of their magnetic moment. We show that these FM entities start to move above 40 K in a slow-diffusion regime. These static and dynamic properties bear a strong similarity with those of a small size self-trapped magnetic polaron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, E.; Micu, C.; Racolta, D.
In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumbermore » k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis.« less
Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion
NASA Astrophysics Data System (ADS)
Scheuer, Jochen; Stark, Alexander; Kost, Matthias; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor
2015-12-01
Two dimensional nuclear magnetic resonance (NMR) spectroscopy is one of the major tools for analysing the chemical structure of organic molecules and proteins. Despite its power, this technique requires long measurement times, which, particularly in the recently emerging diamond based single molecule NMR, limits its application to stable samples. Here we demonstrate a method which allows to obtain the spectrum by collecting only a small fraction of the experimental data. Our method is based on matrix completion which can recover the full spectral information from randomly sampled data points. We confirm experimentally the applicability of this technique by performing two dimensional electron spin echo envelope modulation (ESEEM) experiments on a two spin system consisting of a single nitrogen vacancy (NV) centre in diamond coupled to a single 13C nuclear spin. The signal to noise ratio of the recovered 2D spectrum is compared to the Fourier transform of randomly subsampled data, where we observe a strong suppression of the noise when the matrix completion algorithm is applied. We show that the peaks in the spectrum can be obtained with only 10% of the total number of the data points. We believe that our results reported here can find an application in all types of two dimensional spectroscopy, as long as the measured matrices have a low rank.
Effect of the magnetic dipole interaction on a spin-1 system
NASA Astrophysics Data System (ADS)
Hu, Fangqi; Jia, Wei; Zhao, Qing
2018-05-01
We consider a hybrid system composed of a spin-1 triplet coupled to a nuclear spin. We study the effect of the axisymmetric and the quadrupole term of the magnetic dipole interaction between the two electrons forming the triplet on the energy spectrum in a static magnetic field. The energy spectrum obtained by directly diagonalizing the Hamiltonian of the system shows that these two terms not only remove the special crossings that appear in the absence of the magnetic dipole interaction, but also produce new (avoided) crossings by lifting the relevant levels. Specially, the gaps between the avoided crossing levels increase with the strength of the quadrupole term. In order to accurately illustrate these effects, we present the results for the discriminant and von Neumann entropy of one electron interacting with the rest of the whole system. Finally, by numerically solving the time-dependent Schrödinger equations of the system, we discover that the polarization oscillation of electron and nuclear spin is in-phase and the total average longitudinal spin is not conserved at location of avoided crossing, but the two results are opposite beyond that.
Carrasco, José A; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A
2017-01-01
We study the critical behavior and the ground-state entanglement of a large class of su(1|1) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1+1)-dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1+1)-dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.
NASA Astrophysics Data System (ADS)
Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.
2017-01-01
We study the critical behavior and the ground-state entanglement of a large class of su (1 |1 ) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1 +1 ) -dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1 +1 ) -dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.
Spin texture of the surface state of three-dimensional Dirac material Ca3PbO
NASA Astrophysics Data System (ADS)
Kariyado, Toshikaze
2015-04-01
The bulk and surface electronic structures of a candidate three-dimensional Dirac material Ca3PbO and its family are discussed especially focusing on the spin texture on the surface states. We first explain the basic features of the bulk band structure of Ca3PbO, such as emergence of Dirac fermions near the Fermi energy, and compare it with the other known three-dimensional Dirac semimetals. Then, the surface bands and spin-texture on them are investigated in detail. It is shown that the surface bands exhibit strong momentum-spin locking, which may be useful in some application for spin manipulation, induced by a combination of the inversion symmetry breaking at the surface and the strong spin-orbit coupling of Pb atoms. The surface band structure and the spin-textures are sensitive to the surface types.
Neutron polarization analysis study of the frustrated magnetic ground state of β-Mn1-xAlx
NASA Astrophysics Data System (ADS)
Stewart, J. R.; Andersen, K. H.; Cywinski, R.
2008-07-01
We have performed a neutron polarization analysis study of the short-range nuclear and magnetic correlations present in the dilute alloy, β-Mn1-xAlx with 0.03≤x≤0.16 , in order to study the evolution of the magnetic ground state of this system as it achieves static spin-glass order at concentrations x>0.09 . To this end we have developed a reverse-Monte Carlo algorithm which has enabled us to extract Warren-Cowley nuclear short-range order parameters and magnetic spin correlations. Using conventional neutron powder diffraction, we show that the nonmagnetic Al substituents preferentially occupy the magnetic site II Wyckoff positions in the β-Mn structure—resulting in a reduction of the magnetic topological frustration of the Mn atoms. These Al impurities are found to display strong anticlustering behavior. The magnetic spin correlations are predominantly antiferromagnetic, persisting over a short range which is similar for all the samples studied—above and below the spin-liquid-spin-glass boundary—while the observed static (disordered) moment is shown to increase with increasing Al concentration.
NASA Astrophysics Data System (ADS)
Wu, Ning
2018-01-01
For the one-dimensional spin-1/2 XX model with either periodic or open boundary conditions, it is shown by using a fermionic approach that the matrix element of the spin operator Sj- (Sj-Sj'+ ) between two eigenstates with numbers of excitations n and n +1 (n and n ) can be expressed as the determinant of an appropriate (n +1 )×(n +1 ) matrix whose entries involve the coefficients of the canonical transformations diagonalizing the model. In the special case of a homogeneous periodic XX chain, the matrix element of Sj- reduces to a variant of the Cauchy determinant that can be evaluated analytically to yield a factorized expression. The obtained compact representations of these matrix elements are then applied to two physical scenarios: (i) Nonlinear optical response of molecular aggregates, for which the determinant representation of the transition dipole matrix elements between eigenstates provides a convenient way to calculate the third-order nonlinear responses for aggregates from small to large sizes compared with the optical wavelength; and (ii) real-time dynamics of an interacting Dicke model consisting of a single bosonic mode coupled to a one-dimensional XX spin bath. In this setup, full quantum calculation up to N ≤16 spins for vanishing intrabath coupling shows that the decay of the reduced bosonic occupation number approaches a finite plateau value (in the long-time limit) that depends on the ratio between the number of excitations and the total number of spins. Our results can find useful applications in various "system-bath" systems, with the system part inhomogeneously coupled to an interacting XX chain.
Confined states in photonic-magnonic crystals with complex unit cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadoenkova, Yu. S.; Novgorod State University, 173003 Veliky Novgorod; Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk
2016-08-21
We have investigated multifunctional periodic structures in which electromagnetic waves and spin waves can be confined in the same areas. Such simultaneous localization of both sorts of excitations can potentially enhance the interaction between electromagnetic waves and spin waves. The system we considered has a form of one dimensional photonic-magnonic crystal with two types of magnetic layers (thicker and thinner ones) separated by sections of the dielectric photonic crystals. We focused on the electromagnetic defect modes localized in the magnetic layers (areas where spin waves can be excited) and decaying in the sections of conventional (nonmagnetic) photonic crystals. We showedmore » how the change of relative thickness of two types of the magnetic layers can influence on the spectrum of spin waves and electromagnetic defect modes, both localized in magnetic parts of the system.« less
Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents
Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin
2015-01-01
We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme. PMID:26420544
Resonant tunneling of spin-wave packets via quantized states in potential wells.
Hansen, Ulf-Hendrik; Gatzen, Marius; Demidov, Vladislav E; Demokritov, Sergej O
2007-09-21
We have studied the tunneling of spin-wave pulses through a system of two closely situated potential barriers. The barriers represent two areas of inhomogeneity of the static magnetic field, where the existence of spin waves is forbidden. We show that for certain values of the spin-wave frequency corresponding to the quantized spin-wave states existing in the well formed between the barriers, the tunneling has a resonant character. As a result, transmission of spin-wave packets through the double-barrier structure is much more efficient than the sequent tunneling through two single barriers.
Shadows of rotating five-dimensional charged EMCS black holes
NASA Astrophysics Data System (ADS)
Amir, Muhammed; Singh, Balendra Pratap; Ghosh, Sushant G.
2018-05-01
Higher-dimensional theories admit astrophysical objects like supermassive black holes, which are rather different from standard ones, and their gravitational lensing features deviate from general relativity. It is well known that a black hole shadow is a dark region due to the falling geodesics of photons into the black hole and, if detected, a black hole shadow could be used to determine which theory of gravity is consistent with observations. Measurements of the shadow sizes around the black holes can help to evaluate various parameters of the black hole metric. We study the shapes of the shadow cast by the rotating five-dimensional charged Einstein-Maxwell-Chern-Simons (EMCS) black holes, which is characterized by four parameters, i.e., mass, two spins, and charge, in which the spin parameters are set equal. We integrate the null geodesic equations and derive an analytical formula for the shadow of the five-dimensional EMCS black hole, in turn, to show that size of black hole shadow is affected due to charge as well as spin. The shadow is a dark zone covered by a deformed circle, and the size of the shadow decreases with an increase in the charge q when compared with the five-dimensional Myers-Perry black hole. Interestingly, the distortion increases with charge q. The effect of these parameters on the shape and size of the naked singularity shadow of the five-dimensional EMCS black hole is also discussed.
NASA Astrophysics Data System (ADS)
Wang, Pei; Yi, Wei; Xianlong, Gao
2015-01-01
We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.
Optical manifestation of the Stoner ferromagnetic transition in two-dimensional electron systems
NASA Astrophysics Data System (ADS)
Van'kov, A. B.; Kaysin, B. D.; Kukushkin, I. V.
2017-12-01
We perform a magneto-optical study of a two-dimensional electron systems in the regime of the Stoner ferromagnetic instability for even quantum Hall filling factors on MgxZn1 -xO /ZnO heterostructures. Under conditions of Landau-level crossing, caused by enhanced spin susceptibility in combination with the tilting of the magnetic field, the transition between two rivaling phases, paramagnetic and ferromagnetic, is traced in terms of optical spectra reconstruction. Synchronous sharp transformations are observed both in the photoluminescence structure and parameters of collective excitations upon transition from paramagnetic to ferromagnetic ordering. Based on these measurements, a phase diagram is constructed in terms of the two-dimensional electron density and tilt angle of the magnetic field. Apart from stable paramagnetic and ferromagnetic phases, an instability region is found at intermediate parameters with the Stoner transition occurring at ν ≈2 . The spin configuration in all cases is unambiguously determined by means of inelastic light scattering by spin-sensitive collective excitations. One indicator of the spin ordering is the intra-Landau-level spin exciton, which acquires a large spectral weight in the ferromagnetic phases. The other is an abrupt energy shift of the intersubband charge density excitation due to reconstruction of the many-particle energy contribution. From our analysis of photoluminescence and light scattering data, we estimate the ratio of surface areas occupied by the domains of the two phases in the vicinity of a transition point. In addition, the thermal smearing of a phase transition is characterized.
Static axisymmetric Einstein equations in vacuum: Symmetry, new solutions, and Ricci solitons
NASA Astrophysics Data System (ADS)
Akbar, M. M.; MacCallum, M. A. H.
2015-09-01
An explicit one-parameter Lie point symmetry of the four-dimensional vacuum Einstein equations with two commuting hypersurface-orthogonal Killing vector fields is presented. The parameter takes values over all of the real line and the action of the group can be effected algebraically on any solution of the system. This enables one to construct particular one-parameter extended families of axisymmetric static solutions and cylindrical gravitational wave solutions from old ones, in a simpler way than most solution-generation techniques, including the prescription given by Ernst for this system. As examples, we obtain the families that generalize the Schwarzschild solution and the C -metric. These in effect superpose a Levi-Civita cylindrical solution on the seeds. Exploiting a correspondence between static solutions of Einstein's equations and Ricci solitons (self-similar solutions of the Ricci flow), this also enables us to construct new steady Ricci solitons.
Spin Bose-metal phase in a spin- (1)/(2) model with ring exchange on a two-leg triangular strip
NASA Astrophysics Data System (ADS)
Sheng, D. N.; Motrunich, Olexei I.; Fisher, Matthew P. A.
2009-05-01
Recent experiments on triangular lattice organic Mott insulators have found evidence for a two-dimensional (2D) spin liquid in close proximity to the metal-insulator transition. A Gutzwiller wave function study of the triangular lattice Heisenberg model with a four-spin ring exchange term appropriate in this regime has found that the projected spinon Fermi sea state has a low variational energy. This wave function, together with a slave particle-gauge theory analysis, suggests that this putative spin liquid possesses spin correlations that are singular along surfaces in momentum space, i.e., “Bose surfaces.” Signatures of this state, which we will refer to as a “spin Bose metal” (SBM), are expected to manifest in quasi-one-dimensional (quasi-1D) ladder systems: the discrete transverse momenta cut through the 2D Bose surface leading to a distinct pattern of 1D gapless modes. Here, we search for a quasi-1D descendant of the triangular lattice SBM state by exploring the Heisenberg plus ring model on a two-leg triangular strip (zigzag chain). Using density matrix renormalization group (DMRG) supplemented by variational wave functions and a bosonization analysis, we map out the full phase diagram. In the absence of ring exchange the model is equivalent to the J1-J2 Heisenberg chain, and we find the expected Bethe-chain and dimerized phases. Remarkably, moderate ring exchange reveals a new gapless phase over a large swath of the phase diagram. Spin and dimer correlations possess singular wave vectors at particular “Bose points” (remnants of the 2D Bose surface) and allow us to identify this phase as the hoped for quasi-1D descendant of the triangular lattice SBM state. We use bosonization to derive a low-energy effective theory for the zigzag spin Bose metal and find three gapless modes and one Luttinger parameter controlling all power law correlations. Potential instabilities out of the zigzag SBM give rise to other interesting phases such as a period-3 valence bond solid or a period-4 chirality order, which we discover in the DMRG. Another interesting instability is into a spin Bose-metal phase with partial ferromagnetism (spin polarization of one spinon band), which we also find numerically using the DMRG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun
Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less
Manipulating Topological Edge Spins in One-Dimensional Optical Lattice
NASA Astrophysics Data System (ADS)
Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng
2013-03-01
We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.
Current-based detection of nonlocal spin transport in graphene for spin-based logic applications
NASA Astrophysics Data System (ADS)
Wen, Hua; Zhu, Tiancong; Luo, Yunqiu Kelly; Amamou, Walid; Kawakami, Roland K.
2014-05-01
Graphene has been proposed for novel spintronic devices due to its robust and efficient spin transport properties at room temperature. Some of the most promising proposals require current-based readout for integration purposes, but the current-based detection of spin accumulation has not yet been developed. In this work, we demonstrate current-based detection of spin transport in graphene using a modified nonlocal geometry. By adding a variable shunt resistor in parallel to the nonlocal voltmeter, we are able to systematically cross over from the conventional voltage-based detection to current-based detection. As the shunt resistor is reduced, the output current from the spin accumulation increases as the shunt resistance drops below a characteristic value R*. We analyze this behavior using a one-dimensional drift-diffusion model, which accounts well for the observed behavior. These results provide the experimental and theoretical foundation for current-based detection of nonlocal spin transport.
Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft
NASA Technical Reports Server (NTRS)
Denham, Casey; Owens, D. Bruce
2016-01-01
Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikhtiar,; Mitani, S.; Hono, K., E-mail: kazuhiro.hono@nims.go.jp
Heusler alloy-based lateral spin valves with ohmic contacts are prepared for the Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/Cu system by means of the top-down microfabrication process. The magneto-transport and microstructure are characterized to investigate the influence of the microfabrication route on the spin dependent transport of lateral spin valves systematically. A large non-local spin signal (△R{sub S}) of 17.3 mΩ is observed at room temperature, which is attributed to the highly spin-polarized Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) ferromagnet and the clean Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/Cu interfaces confirmed by transmission electron microscopy. Based on the general expression of one-dimensional spin diffusion model, we discuss themore » importance of interfacial spin polarization in Heusler alloy-based lateral spin valves.« less
Nature of magnetization and lateral spin-orbit interaction in gated semiconductor nanowires.
Karlsson, H; Yakimenko, I I; Berggren, K-F
2018-05-31
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin-orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree-Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Tunable Intrinsic Spin Hall Conductivities in Bi2(Se,Te)3 Topological Insulators
NASA Astrophysics Data System (ADS)
Şahin, Cüneyt; Flatté, Michael E.
2015-03-01
It has been recently shown by spin-transfer torque measurements that Bi2Se3 exhibits a very large spin Hall conductivity (SHC). It is expected that Bi2Te3, a topological insulator with similar crystal and band structures as well as large spin-orbit coupling, would also exhibit a giant SHC. In this study we have calculated intrinsic spin Hall conductivities of Bi2Se3andBi2Te3 topological insulators from a tight-binding Hamiltonian including two nearest-neighbor interactions. We have calculated the Berry curvature, used the Kubo formula in the static, clean limit and shown that both materials exhibit giant spin Hall conductivities, consistent with the results of Ref. 1 and larger than previously reported Bi1-xSbx alloys. The density of Berry curvature has also been computed from the full Brillouin zone in order to compute the dependence of the SHC in these materials on the Fermi energy. Finally we report the intrinsic SHC for Bi2(Se,Te)3 topological insulators, which changes dramatically with doping or gate voltage. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
1995-01-01
An analytical/numerical method has been developed to predict the static thrust performance of non-axisymmetric, two-dimensional convergent-divergent exhaust nozzles. Thermodynamic nozzle performance effects due to over- and underexpansion are modeled using one-dimensional compressible flow theory. Boundary layer development and skin friction losses are calculated using an approximate integral momentum method based on the classic karman-Polhausen solution. Angularity effects are included with these two models in a computational Nozzle Performance Analysis Code, NPAC. In four different case studies, results from NPAC are compared to experimental data obtained from subscale nozzle testing to demonstrate the capabilities and limitations of the NPAC method. In several cases, the NPAC prediction matched experimental gross thrust efficiency data to within 0.1 percent at a design NPR, and to within 0.5 percent at off-design conditions.
Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee
2018-06-12
This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.
Shimon, Daphna; Feintuch, Akiva; Goldfarb, Daniella; Vega, Shimon
2014-04-14
To study the solid state (1)H-DNP mechanism of the biradical TOTAPOL under static conditions the frequency swept DNP enhancement spectra of samples containing 20 mM and 5 mM TOTAPOL were measured as a function of MW irradiation time and temperature. We observed that under static DNP conditions the biradical TOTAPOL behaves similar to the monoradical TEMPOL, in contrast to MAS DNP where TOTAPOL is considerably more effective. As previously done for TEMPOL, the TOTAPOL DNP spectra were analyzed taking a superposition of a basic SE-DNP lineshape and a basic CE-DNP lineshape with different amplitudes. The analysis of the steady state DNP spectra showed that the SE was dominant in the 6-10 K range and the CE was dominant above 10 K. DNP spectra obtained as a function of MW irradiation time allowed resolving the individual SE and CE buildup times. At low temperatures the SE buildup time was faster than the CE buildup time and at all temperatures the CE buildup time was close to the nuclear spin-lattice relaxation time, T1n. Polarization calculations involving nuclear spin-diffusion for a model system of one electron and many nuclei suggested that the shortening of the T1n for increasing temperatures is the reason why the SE contribution to the overall enhancement was reduced.
Chiral Spin Order in Kondo-Heisenberg Systems
NASA Astrophysics Data System (ADS)
Tsvelik, A. M.; Yevtushenko, O. M.
2017-12-01
We demonstrate that low dimensional Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel-Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates, the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our finding paves the way towards pioneering experimental realizations of the chiral spin liquid in systems with spontaneously broken time-reversal symmetry.
Double line groups: structure, irreducible representations and spin splitting of the bands
NASA Astrophysics Data System (ADS)
Lazić, N.; Milivojević, M.; Vuković, T.; Damnjanović, M.
2018-06-01
Double line groups are derived, structurally examined and classified within 13 infinite families. Their irreducible representations, found and tabulated, single out the complete set of conserved quantum numbers in fermionic quasi-one-dimensional systems possessing either translational periodicity or incommensurate helical symmetry. Spin–orbit interaction is analyzed: the induced orbital band splitting and the consequent removal of the spin degeneracy are completely explained. Being incompatible with vertical mirror symmetry, as well as with simultaneous invariance under time-reversal and horizontal (roto)reflections, spin splitting and spin polarized currents may occur only in the systems with the first and the fifth family double line group symmetry. The effects are illustrated on carbon nanotubes.
The Bach equations in spin-coefficient form
NASA Astrophysics Data System (ADS)
Forbes, Hamish
2018-06-01
Conformal gravity theories are defined by field equations that determine only the conformal structure of the spacetime manifold. The Bach equations represent an early example of such a theory, we present them here in component form in terms of spin- and boost-weighted spin-coefficients using the compacted spin-coefficient formalism. These equations can be used as an efficient alternative to the standard tensor form. As a simple application we solve the Bach equations for pp-wave and static spherically symmetric spacetimes.
Probing the antiferromagnetic long-range order with Glauber spin states
NASA Technical Reports Server (NTRS)
Cabrera, Guillermo G.
1994-01-01
It is well known that the ground state of low-dimensional antiferromagnets deviates from Neel states due to strong quantum fluctuations. Even in the presence of long-range order, those fluctuations produce a substantial reduction of the magnetic moment from its saturation value. Numerical simulations in anisotropic antiferromagnetic chains suggest that quantum fluctuations over Neel order appear in the form of localized reversal of pairs of neighboring spins. In this paper, we propose a coherent state representation for the ground state to describe the above situation. In the one-dimensional case, our wave function corresponds to a two-mode Glauber state, when the Neel state is used as a reference, while the boson fields are associated to coherent flip of spin pairs. The coherence manifests itself through the antiferromagnetic long-range order that survives the action of quantum fluctuations. The present representation is different from the standard zero-point spin wave state, and is asymptotically exact in the limit of strong anisotropy. The fermionic version of the theory, obtained through the Jordan-Wigner transformation, is also investigated.
General solution of the Dirac equation for quasi-two-dimensional electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that themore » general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.« less
Gilbert, Ian; Nisoli, Cristiano; Schiffer, Peter
2016-07-01
Geometrical frustration is a condition that occurs when a material’s lattice geometry precludes minimizing the energy of all the interactions among pairs of neighbors simultaneously. Moreover, the simplest example is three antiferromagnetically coupled Ising spins, pointing up or down, on the corners of an equilateral triangle: It is also impossible to arrange the spins so that each pair is antiparallel. In more complex magnetic lattices, the frustrated state can arise from the combination of lattice geometry and the strength and sign of the interactions among the magnetic dipole moments.1 (See the article by Roderich Moessner and Art Ramirez, Physics Today,more » February 2006, page 24.) A wide variety of exotic and collective phenomena sometimes arises from the competing interactions. One prime example is spin liquids, materials in which the local atomic moments fluctuate down to the lowest accessible temperatures and never settle into a static ground-state configuration.« less
NASA Astrophysics Data System (ADS)
Turkin, Yaroslav V.; Kuptsov, Pavel V.
2018-04-01
A quantum model of spin dynamics of spin-orbit coupled two-dimensional electron gas in the presence of strong high- frequency electromagnetic field is suggested. Interaction of electrons with optical phonons is taken into account in the second order of perturbation theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.
Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).
Hidden Order and Symmetry Protected Topological States in Quantum Link Ladders
NASA Astrophysics Data System (ADS)
Cardarelli, L.; Greschner, S.; Santos, L.
2017-11-01
We show that, whereas spin-1 /2 one-dimensional U(1) quantum-link models (QLMs) are topologically trivial, when implemented in ladderlike lattices these models may present an intriguing ground-state phase diagram, which includes a symmetry protected topological (SPT) phase that may be readily revealed by analyzing long-range string spin correlations along the ladder legs. We propose a simple scheme for the realization of spin-1 /2 U(1) QLMs based on single-component fermions loaded in an optical lattice with s and p bands, showing that the SPT phase may be experimentally realized by adiabatic preparation.
Simulations to study the static polarization limit for RHIC lattice
NASA Astrophysics Data System (ADS)
Duan, Zhe; Qin, Qing
2016-01-01
A study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC) is reported, exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice. It is shown that the behavior of the static polarization limit is dominantly affected by the vertical motion, while the effect of beam-beam interaction is small. In addition, the “nonresonant beam polarization” observed and studied in the lattice-independent model is also observed in this lattice-dependent model. Therefore, this simulation study gives insights of polarization evolution at fixed beam energies, that are not available in simple spin tracking. Supported by the U.S. Department of Energy (DE-AC02-98CH10886), Hundred-Talent Program (Chinese Academy of Sciences), and National Natural Science Foundation of China (11105164)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
Poroelastic metamaterials with negative effective static compressibility
NASA Astrophysics Data System (ADS)
Qu, Jingyuan; Kadic, Muamer; Wegener, Martin
2017-04-01
We suggest a three-dimensional metamaterial structure exhibiting an isotropic expansion in response to an increased hydrostatic pressure imposed by a surrounding gas or liquid. We show that this behavior corresponds to a negative absolute (rather than only differential) effective compressibility under truly static and stable conditions. The poroelastic metamaterial is composed of only a single ordinary constituent solid. By detailed numerical parameter studies, we find that a pressure increase of merely one bar can lead to a relative increase in the effective volume exceeding one percent for geometrical structure parameters that should be accessible to fabrication by 3D printing.
NASA Astrophysics Data System (ADS)
John, Sajeev; Golubentsev, Andrey
1995-01-01
It is suggested that an interacting many-electron system in a two-dimensional lattice may condense into a topological magnetic state distinct from any discussed previously. This condensate exhibits local spin-1/2 magnetic moments on the lattice sites but is composed of a Slater determinant of single-electron wave functions which exist in an orthogonal sector of the electronic Hilbert space from the sector describing traditional spin-density-wave or spiral magnetic states. These one-electron spinor wave functions have the distinguishing property that they are antiperiodic along a closed path encircling any elementary plaquette of the lattice. This corresponds to a 2π rotation of the internal coordinate frame of the electron as it encircles the plaquette. The possibility of spinor wave functions with spatial antiperiodicity is a direct consequence of the two-valuedness of the internal electronic wave function defined on the space of Euler angles describing its spin. This internal space is the topologically, doubly-connected, group manifold of SO(3). Formally, these antiperiodic wave functions may be described by passing a flux which couples to spin (rather than charge) through each of the elementary plaquettes of the lattice. When applied to the two-dimensional Hubbard model with one electron per site, this new topological magnetic state exhibits a relativistic spectrum for charged, quasiparticle excitations with a suppressed one-electron density of states at the Fermi level. For a topological antiferromagnet on a square lattice, with the standard Hartree-Fock, spin-density-wave decoupling of the on-site Hubbard interaction, there is an exact mapping of the low-energy one-electron excitation spectrum to a relativistic Dirac continuum field theory. In this field theory, the Dirac mass gap is precisely the Mott-Hubbard charge gap and the continuum field variable is an eight-component Dirac spinor describing the components of physical electron-spin amplitude on each of the four sites of the elementary plaquette in the original Hubbard model. Within this continuum model we derive explicitly the existence of hedgehog Skyrmion textures as local minima of the classical magnetic energy. These magnetic solitons carry a topological winding number μ associated with the vortex rotation of the background magnetic moment field by a phase angle 2πμ along a path encircling the soliton. Such solitons also carry a spin flux of μπ through the plaquette on which they are centered. The μ=1 hedgehog Skyrmion describes a local transition from the topological (antiperiodic) sector of the one-electron Hilbert space to the nontopological sector. We derive from first principles the existence of deep level localized electronic states within the Mott-Hubbard charge gap for the μ=1 and 2 solitons. The spectrum of localized states is symmetric about E=0 and each subgap electronic level can be occupied by a pair of electrons in which one electron resides primarily on one sublattice and the second electron on the other sublattice. It is suggested that flux-carrying solitons and the subgap electronic structure which they induce are important in understanding the physical behavior of doped Mott insulators.
Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb
L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...
2016-06-03
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less
Boosted one dimensional fermionic superfluids on a lattice
NASA Astrophysics Data System (ADS)
Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.
2017-09-01
We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.
Classical aspects of higher spin topologically massive gravity
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Zhang, Jian-Dong
2012-10-01
We study the classical solutions of three-dimensional topologically massive gravity (TMG) and its higher spin generalization, in the first-order formulation. The action of higher spin TMG has been proposed by Chen and Long (2011 J. High Energy Phys. JHEP12(2011)114) to be of a Chern-Simons-like form. The equations of motion are more complicated than the ones in pure higher spin AdS3 gravity, but are still tractable. As all the solutions in higher spin gravity are automatically the solutions of higher spin TMG, we focus on other solutions. We manage to find the AdS pp-wave solutions with higher spin hair and find that the non-vanishing higher spin fields may or may not modify the pp-wave geometry. In order to discuss the warped spacetime, we introduce the notion of a special Killing vector, which is defined to be the symmetry on the frame-like fields. We reproduce various warped spacetimes of TMG in our framework, with the help of special Killing vectors.
NASA Technical Reports Server (NTRS)
Malvestuto, Frank S.; Gale, Lawrence J.; Wood, John H.
1947-01-01
A compilation of free-spinning-airplane model data on the spin and recovery characteristics of 111 airplanes is presented. These data were previously published in separate memorandum reports and were obtained from free-spinning tests in the Langley 15-foot and the Langley 20-foot free-spinning tunnels. The model test data presented include the steady-spin and recovery characteristics of each model for various combinations of aileron and elevator deflections and for various loadings and dimensional configurations. Dimensional data, mass data, and a three-view drawing of the corresponding free-spinning tunnel model are also presented for each airplane. The data presented should be of value to designers and should facilitate the design of airplanes incorporating satisfactory spin-recovery characteristics.
Rybicki, F J; Hrovat, M I; Patz, S
2000-09-01
We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.
The classical and quantum dynamics of molecular spins on graphene.
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
The classical and quantum dynamics of molecular spins on graphene
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
Interaction quantum quenches in the one-dimensional Fermi-Hubbard model
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano
2016-05-01
We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.
Spectra of turbulent static pressure fluctuations in jet mixing layers
NASA Technical Reports Server (NTRS)
Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.
1977-01-01
Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.
Thermal Entanglement in XXZ Heisenberg Model for Coupled Spin-Half and Spin-One Triangular Cell
NASA Astrophysics Data System (ADS)
Najarbashi, Ghader; Balazadeh, Leila; Tavana, Ali
2018-01-01
In this paper, we investigate the thermal entanglement of two-spin subsystems in an ensemble of coupled spin-half and spin-one triangular cells, (1/2, 1/2, 1/2), (1/2, 1, 1/2), (1, 1/2, 1) and (1, 1, 1) with the XXZ anisotropic Heisenberg model subjected to an external homogeneous magnetic field. We adopt the generalized concurrence as the measure of entanglement which is a good indicator of the thermal entanglement and the critical points in the mixed higher dimensional spin systems. We observe that in the near vicinity of the absolute zero, the concurrence measure is symmetric with respect to zero magnetic field and changes abruptly from a non-null to null value for a critical magnetic field that can be signature of a quantum phase transition at finite temperature. The analysis of concurrence versus temperature shows that there exists a critical temperature, that depends on the type of the interaction, i.e. ferromagnetic or antiferromagnetic, the anisotropy parameter and the strength of the magnetic field. Results show that the pairwise thermal entanglement depends on the third spin which affects the maximum value of the concurrence at absolute zero and at quantum critical points.
Aspects of Higher Spin Symmetry and its Breaking
NASA Astrophysics Data System (ADS)
Zhiboedov, Alexander
This thesis explores different aspects of higher spin symmetry and its breaking in the context of Quantum Field Theory, AdS/CFT and String Theory. In chapter 2, we study the constraints imposed by the existence of a single higher spin conserved current on a three-dimensional conformal field theory (CFT). A single higher spin conserved current implies the existence of an infinite number of higher spin conserved currents. The correlation functions of the stress tensor and the conserved currents are then shown to be equal to those of a free field theory. Namely a theory of N free bosons or free fermions. This is an extension of the Coleman-Mandula theorem to CFT's, which do not have a conventional S-matrix. In chapter 3, we consider three-dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single-trace and multi-trace and obey the usual large N factorization properties. We assume that the only single trace operators are the higher spin currents plus an additional scalar. Using the slightly broken higher spin symmetry we constrain the three-point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O( N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. In chapter 4, we consider several aspects of unitary higher-dimensional conformal field theories. We investigate the dimensions of spinning operators via the crossing equations in the light-cone limit. We find that, in a sense, CFTs become free at large spin and 1/s is a weak coupling parameter. The spectrum of CFTs enjoys additivity: if two twists tau 1, tau2 appear in the spectrum, there are operators whose twists are arbitrarily close to tau1 + tau2. We characterize how tau1 + tau2 is approached at large spin by solving the crossing equations analytically. Applications include the 3d Ising model, theories with a gravity dual, SCFTs, and patterns of higher spin symmetry breaking. In chapter 5, we consider higher derivative corrections to the graviton three-point coupling within a weakly coupled theory of gravity. We devise a thought experiment involving a high energy scattering process which leads to causality violation if the graviton three-point vertex contains the additional structures. This violation cannot be fixed by adding conventional particles with spins J ≤ 2. But, it can be fixed by adding an infinite tower of extra massive particles with higher spins, J > 2. In AdS theories this implies a constraint on the conformal anomaly coefficients (a-c)/c lesssim 1/Delta gap2 in terms of Deltagap, the dimension of the lightest single particle operator with spin J > 2. For inflation, or de Sitter-like solutions, it indicates the existence of massive higher spin particles if the gravity wave non-gaussianity deviates significantly from the one computed in the Einstein theory.
Herzog, W; Binding, P
1993-11-01
It has been stated in the literature that static, nonlinear optimization approaches cannot predict coactivation of pairs of antagonistic muscles; however, numerical solutions of such approaches have predicted coactivation of pairs of one-joint and multijoint antagonists. Analytical support for either finding is not available in the literature for systems containing more than one degree of freedom. The purpose of this study was to investigate analytically the possibility of cocontraction of pairs of antagonistic muscles using a static nonlinear optimization approach for a multidegree-of-freedom, two-dimensional system. Analytical solutions were found using the Karush-Kuhn-Tucker conditions, which were necessary and sufficient for optimality in this problem. The results show that cocontraction of pairs of one-joint antagonistic muscles is not possible, whereas cocontraction of pairs of multijoint antagonists is. These findings suggest that cocontraction of pairs of antagonistic muscles may be an "efficient" way to accomplish many movement tasks.
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikhtiar,; Mitani, S.; Hono, K.
2016-02-08
The non-local spin signals of Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5})/Cu lateral spin valves with sub-micron size dimensions were measured with varying temperatures. The non-local spin signal reaches 54 mΩ at 4 K, while it degrades down to 13 mΩ at room temperature. Analysis based on the one-dimensional spin diffusion model clarifies the dominant source for degrading of the spin signal is suppression of the spin diffusion length in Cu, not the spin polarization, indicating Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) keeps half-metallic nature even at room temperature. The temperature dependence of non-local spin signal was found to exhibit a downturn at 36 K. The presence of magneticmore » impurities, detrimental effect of which becomes more pronounced for diffusive transport in long Cu wires, is suggested to cause the observed downturn in non-local spin signals.« less
Heat capacity reveals the physics of a frustrated spin tube.
Ivanov, Nedko B; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki
2010-07-16
We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl(2)tachH(3)Cl]Cl(2) (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.
Heat Capacity Reveals the Physics of a Frustrated Spin Tube
NASA Astrophysics Data System (ADS)
Ivanov, Nedko B.; Schnack, Jürgen; Schnalle, Roman; Richter, Johannes; Kögerler, Paul; Newton, Graham N.; Cronin, Leroy; Oshima, Yugo; Nojiri, Hiroyuki
2010-07-01
We report on theoretical and experimental results concerning the low-temperature specific heat of the frustrated spin-tube material [(CuCl2tachH)3Cl]Cl2 (tach denotes 1,3,5-triaminocyclohexane). This substance turns out to be an unusually perfect spin-tube system which allows to study the physics of quasi-one-dimensional antiferromagnetic structures in rather general terms. An analysis of the specific-heat data demonstrates that at low enough temperatures the system exhibits a Tomonaga-Luttinger liquid behavior corresponding to an effective spin-3/2 antiferromagnetic Heisenberg chain with short-range exchange interactions. On the other hand, around 2 K the composite spin structure of the chain is revealed through a Schottky-type peak in the specific heat. We argue that the dominating contribution to the peak originates from gapped magnon-type excitations related to the internal degrees of freedom of the rung spins.
Pairing tendencies in a two-orbital Hubbard model in one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Niravkumar D.; Nocera, Adriana; Alvarez, Gonzalo
The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate Hubbard U repulsion and robust Hund coupling JH / U = 0.25. Binding does not occur either in weak coupling or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as the chargemore » and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor sites, and employ different orbitals for each hole. As a result, the Hund coupling strength, presence of robust magnetic moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.« less
NASA Astrophysics Data System (ADS)
Nazari, Esmaeil; Löbbe, Christian; Gallus, Stefan; Izadyar, S. Ahmad; Tekkaya, A. Erman
2018-05-01
The incremental tube forming (ITF) is a process combination of the kinematic tube bending and spinning to shape high strength and tailored tubes with variable diameters and thicknesses. In contrast to conventional bending methods, the compressive stress superposition by the spinning process facilitates low bending stresses, so that geometrical errors are avoided and the shape accuracy is improved. The study reveals the interaction of plastic strains of the rolling and bending process through an explicit FEM investigation. For this purpose, the three-dimensional machine set-up is discretized and modeled in terms of the fully disclosed spinning process during the gradual deflection of the tube end for bending. The analysis shows that, depending on the forming tool shape, the stress superposition is accompanied by high plastic strains. Furthermore, this phenomenon is explained by the three dimensional normal and shear strains during the incremental spinning. Analyzing the strains history also shows a nonlinearity between the strains by bending and spinning. It is also shown that process parameters like rotational velocity of the spinning rolls have a huge influence on the deformation pattern. Finally, the method is used for the manufacturing of an example product, which reveals the high process flexibility. In one clamp a component with a graded wall thickness and outside diameter along the longitudinal axis is produced.
Fracton topological order from nearest-neighbor two-spin interactions and dualities
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Kim, Yong Baek
2017-10-01
Fracton topological order describes a remarkable phase of matter, which can be characterized by fracton excitations with constrained dynamics and a ground-state degeneracy that increases exponentially with the length of the system on a three-dimensional torus. However, previous models exhibiting this order require many-spin interactions, which may be very difficult to realize in a real material or cold atom system. In this work, we present a more physically realistic model which has the so-called X-cube fracton topological order [Vijay, Haah, and Fu, Phys. Rev. B 94, 235157 (2016), 10.1103/PhysRevB.94.235157] but only requires nearest-neighbor two-spin interactions. The model lives on a three-dimensional honeycomb-based lattice with one to two spin-1/2 degrees of freedom on each site and a unit cell of six sites. The model is constructed from two orthogonal stacks of Z2 topologically ordered Kitaev honeycomb layers [Kitaev, Ann. Phys. 321, 2 (2006), 10.1016/j.aop.2005.10.005], which are coupled together by a two-spin interaction. It is also shown that a four-spin interaction can be included to instead stabilize 3+1D Z2 topological order. We also find dual descriptions of four quantum phase transitions in our model, all of which appear to be discontinuous first-order transitions.
Wang, Yi-Ting; Kim, Gil-Ho; Huang, C F; Lo, Shun-Tsung; Chen, Wei-Jen; Nicholls, J T; Lin, Li-Hung; Ritchie, D A; Chang, Y H; Liang, C-T; Dolan, B P
2012-10-10
We study the temperature flow of conductivities in a gated GaAs two-dimensional electron gas (2DEG) containing self-assembled InAs dots and compare the results with recent theoretical predictions. By changing the gate voltage, we are able to tune the 2DEG density and thus vary disorder and spin-splitting. Data for both the spin-resolved and spin-degenerate phase transitions are presented, the former collapsing to the latter with decreasing gate voltage and/or decreasing spin-splitting. The experimental results support a recent theory, based on modular symmetry, which predicts how the critical Hall conductivity varies with spin-splitting.
SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.
2000-12-01
A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.
SIMPSON: A general simulation program for solid-state NMR spectroscopy
NASA Astrophysics Data System (ADS)
Bak, Mads; Rasmussen, Jimmy T.; Nielsen, Niels Chr.
2011-12-01
A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tel scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basicly, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple ID experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.
Ashbrook, Sharon E; Wimperis, Stephen
2009-11-21
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and (27)Al.
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
Excitations in a spin-polarized two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kreil, Dominik; Hobbiger, Raphael; Drachta, Jürgen T.; Böhm, Helga M.
2015-11-01
A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409 (2014), 10.1103/PhysRevB.90.155409] are based on the random phase approximation. Here, we show how to account for spin-dependent correlations from known ground-state pair correlation functions and study the consequences on the various spin-dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system. Most notably, we find a "magnetic antiresonance," where the imaginary part of both, the spin-spin as well as the density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting experimental confirmation.
Quantifying matrix product state
NASA Astrophysics Data System (ADS)
Bhatia, Amandeep Singh; Kumar, Ajay
2018-03-01
Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.
Ferromagnetic Peierls insulator state in A Mg4Mn6O15(A =K ,Rb ,Cs )
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Sugimoto, K.; Ohta, Y.; Tanaka, Y.; Sato, H.
2018-04-01
Using the density-functional-theory-based electronic structure calculations, we study the electronic state of recently discovered mixed-valent manganese oxides A Mg4Mn6O15(A =K ,Rb ,Cs ) , which are fully spin-polarized ferromagnetic insulators with a cubic crystal structure. We show that the system may be described as a three-dimensional arrangement of the one-dimensional chains of a 2 p orbital of O and a 3 d orbital of Mn running along the three axes of the cubic lattice. We thereby argue that in the ground state the chains are fully spin polarized due to the double-exchange mechanism and are distorted by the Peierls mechanism to make the system insulating.
NASA Astrophysics Data System (ADS)
Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.
2017-10-01
In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.
Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators
NASA Astrophysics Data System (ADS)
Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian
2017-08-01
Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.
Chiral Spin Order in Kondo-Heisenberg systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvelik, A. M.; Yevtushenko, O. M.
We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less
Quantum phases of spinful Fermi gases in optical cavities
NASA Astrophysics Data System (ADS)
Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.
2018-04-01
We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g <0 . Due to the long-range nature of interactions, to infer these results we combine mean-field and exact-diagonalization methods supported by bosonization analysis.
Chiral Spin Order in Kondo-Heisenberg systems
Tsvelik, A. M.; Yevtushenko, O. M.
2017-12-15
We demonstrate that Kondo-Heisenberg systems, consisting of itinerant electrons and localized magnetic moments (Kondo impurities), can be used as a principally new platform to realize scalar chiral spin order. The underlying physics is governed by a competition of the Ruderman-Kittel- Kosuya-Yosida (RKKY) indirect exchange interaction between the local moments with the direct Heisenberg one. When the direct exchange is weak and RKKY dominates the isotropic system is in the disordered phase. A moderately large direct exchange leads to an Ising-type phase transition to the phase with chiral spin order. Our nding paves the way towards pioneering experimental realizations of themore » chiral spin liquid in low dimensional systems with spontaneously broken time reversal symmetry.« less
On the geometry of the space-time and motion of the spinning bodies
NASA Astrophysics Data System (ADS)
Trenčevski, Kostadin
2013-03-01
In this paper an alternative theory about space-time is given. First some preliminaries about 3-dimensional time and the reasons for its introduction are presented. Alongside the 3-dimensional space (S) the 3-dimensional space of spatial rotations (SR) is considered independently from the 3-dimensional space. Then it is given a model of the universe, based on the Lie groups of real and complex orthogonal 3 × 3 matrices in this 3+3+3-dimensional space. Special attention is dedicated for introduction and study of the space S × SR, which appears to be isomorphic to SO(3,ℝ) × SO(3,ℝ) or S 3 × S 3. The influence of the gravitational acceleration to the spinning bodies is considered. Some important applications of these results about spinning bodies are given, which naturally lead to violation of Newton's third law in its classical formulation. The precession of the spinning axis is also considered.
Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.
Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin
2014-01-21
A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.
NASA Astrophysics Data System (ADS)
Alomar, M. I.; Serra, Llorenç; Sánchez, David
2016-08-01
We investigate the transmission properties of a spin transistor coupled to two quantum point contacts acting as a spin injector and detector. In the Fabry-Pérot regime, transport is mediated by quasibound states formed between tunnel barriers. Interestingly, the spin-orbit interaction of the Rashba type can be tuned in such a way that nonuniform spin-orbit fields can point along distinct directions at different points of the sample. We discuss both spin-conserving and spin-flipping transitions as the spin-orbit angle of orientation increases from parallel to antiparallel configurations. Spin precession oscillations are clearly seen as a function of the length of the central channel. Remarkably, we find that these oscillations combine with the Fabry-Pérot motion, giving rise to quasiperiodic transmissions in the purely one-dimensional case. Furthermore, we consider the more realistic case of a finite width in the transverse direction and find that the coherent oscillations become deteriorated for moderate values of the spin-orbit strength. Our results then determine the precise role of the spin-orbit intersubband coupling potential in the Fabry-Pérot-Datta-Das intermixed oscillations.
Asymptotic correlation functions and FFLO signature for the one-dimensional attractive Hubbard model
NASA Astrophysics Data System (ADS)
Cheng, Song; Jiang, Yuzhu; Yu, Yi-Cong; Batchelor, Murray T.; Guan, Xi-Wen
2018-04-01
We study the long-distance asymptotic behavior of various correlation functions for the one-dimensional (1D) attractive Hubbard model in a partially polarized phase through the Bethe ansatz and conformal field theory approaches. We particularly find the oscillating behavior of these correlation functions with spatial power-law decay, of which the pair (spin) correlation function oscillates with a frequency ΔkF (2 ΔkF). Here ΔkF = π (n↑ -n↓) is the mismatch in the Fermi surfaces of spin-up and spin-down particles. Consequently, the pair correlation function in momentum space has peaks at the mismatch k = ΔkF, which has been observed in recent numerical work on this model. These singular peaks in momentum space together with the spatial oscillation suggest an analog of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in the 1D Hubbard model. The parameter β representing the lattice effect becomes prominent in critical exponents which determine the power-law decay of all correlation functions. We point out that the backscattering of unpaired fermions and bound pairs within their own Fermi points gives a microscopic origin of the FFLO pairing in 1D.
Robust integer and fractional helical modes in the quantum Hall effect
NASA Astrophysics Data System (ADS)
Ronen, Yuval; Cohen, Yonatan; Banitt, Daniel; Heiblum, Moty; Umansky, Vladimir
2018-04-01
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.
Pulsed field gradients in simulations of one- and two-dimensional NMR spectra.
Meresi, G H; Cuperlovic, M; Palke, W E; Gerig, J T
1999-03-01
A method for the inclusion of the effects of z-axis pulsed field gradients in computer simulations of an arbitrary pulsed NMR experiment with spin (1/2) nuclei is described. Recognizing that the phase acquired by a coherence following the application of a z-axis pulsed field gradient bears a fixed relation to its order and the spatial position of the spins in the sample tube, the sample is regarded as a collection of volume elements, each phase-encoded by a characteristic, spatially dependent precession frequency. The evolution of the sample's density matrix is thus obtained by computing the evolution of the density matrix for each volume element. Following the last gradient pulse, these density matrices are combined to form a composite density matrix which evolves through the rest of the experiment to yield the observable signal. This approach is implemented in a program which includes capabilities for rigorous inclusion of spin relaxation by dipole-dipole, chemical shift anisotropy, and random field mechanisms, plus the effects of arbitrary RF fields. Mathematical procedures for accelerating these calculations are described. The approach is illustrated by simulations of representative one- and two-dimensional NMR experiments. Copyright 1999 Academic Press.
Unusual negative permeability of single magnetic nanowire excited by the spin transfer torque effect
NASA Astrophysics Data System (ADS)
Han, Mangui; Zhou, Wu
2018-07-01
Due to the effect of spin transfer torque, negative imaginary parts of permeability (μ″ < 0) are reported in a ferromagnetic nanowire. It is found that negative μ″ values are resulted from the interaction of spin polarized conduction electrons with the spatially non-uniform distributed magnetic moments at both ends of nanowires. The results are well explained from the effect of spin transfer torque on the precession of magnetization under the excitation of both the pulsed magnetic field and static electric field.
A three-dimensional spin-diffusion model for micromagnetics
Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Hrkac, Gino; Praetorius, Dirk; Suess, Dieter
2015-01-01
We solve a time-dependent three-dimensional spin-diffusion model coupled to the Landau-Lifshitz-Gilbert equation numerically. The presented model is validated by comparison to two established spin-torque models: The model of Slonzewski that describes spin-torque in multi-layer structures in the presence of a fixed layer and the model of Zhang and Li that describes current driven domain-wall motion. It is shown that both models are incorporated by the spin-diffusion description, i.e., the nonlocal effects of the Slonzewski model are captured as well as the spin-accumulation due to magnetization gradients as described by the model of Zhang and Li. Moreover, the presented method is able to resolve the time dependency of the spin-accumulation. PMID:26442796
Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.
Tiemann, L; Wegscheider, W; Hauser, M
2015-05-01
Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.
Intrinsic two-dimensional states on the pristine surface of tellurium
NASA Astrophysics Data System (ADS)
Li, Pengke; Appelbaum, Ian
2018-05-01
Atomic chains configured in a helical geometry have fascinating properties, including phases hosting localized bound states in their electronic structure. We show how the zero-dimensional state—bound to the edge of a single one-dimensional helical chain of tellurium atoms—evolves into two-dimensional bands on the c -axis surface of the three-dimensional trigonal bulk. We give an effective Hamiltonian description of its dispersion in k space by exploiting confinement to a virtual bilayer, and elaborate on the diminished role of spin-orbit coupling. These intrinsic gap-penetrating surface bands were neglected in the interpretation of seminal experiments, where two-dimensional transport was otherwise attributed to extrinsic accumulation layers.
Critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field.
Dias, D A; Xavier, J C; Plascak, J A
2017-01-01
The phase diagram and the critical behavior of the spin-1 and the spin-3/2 two-dimensional Baxter-Wu model in a crystal field are studied by conventional finite-size scaling and conformal invariance theory. The phase diagram of this model, for the spin-1 case, is qualitatively the same as those of the diluted 4-states Potts model and the spin-1 Blume-Capel model. However, for the present case, instead of a tricritical point one has a pentacritical point for a finite value of the crystal field, in disagreement with previous work based on finite-size calculations. On the other hand, for the spin-3/2 case, the phase diagram is much richer and can present, besides a pentacritical point, an additional multicritical end point. Our results also support that the universality class of the critical behavior of the spin-1 and spin-3/2 Baxter-Wu model in a crystal field is the same as the pure Baxter-Wu model, even at the multicritical points.
NASA Astrophysics Data System (ADS)
Chiu, YenTing
This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further experimentally prove the importance of interface roughness on intersubband scattering by measuring the electron transit time of different quantum cascade lasers and comparing them to the calculated upper laser level lifetimes with and without taking into account interface roughness induced intersubband scattering. A significantly better correlation is found between the experimental results and the calculation when the interface roughness scattering is included. Lastly, we study the effect of growth asymmetry on scattering mechanisms in mid-infrared Quantum Cascade lasers. Due to the dopant migration of around 10 nm along the growth direction of InGaAs/InAlAs Quantum Cascade laser structures, ionized impurity scattering is found to have a non-negligible influence on the lifetime of the upper laser level when the laser is biased in the polarity that electrons flow along the growth direction, in sharp contrast to the situation for the opposite polarity.
Control of the spin geometric phase in semiconductor quantum rings.
Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku
2013-01-01
Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.
Entanglement in the Anisotropic Kondo Necklace Model
NASA Astrophysics Data System (ADS)
Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.
We study the entanglement in the one-dimensional Kondo necklace model with exact diagonalization, calculating the concurrence as a function of the Kondo coupling J and an anisotropy η in the interaction between conduction spins, and we review some results previously obtained in the limiting cases η = 0 and 1. We observe that as J increases, localized and conduction spins get more entangled, while neighboring conduction spins diminish their concurrence; localized spins require a minimum concurrence between conduction spins to be entangled. The anisotropy η diminishes the entanglement for neighboring spins when it increases, driving the system to the Ising limit η = 1 where conduction spins are not entangled. We observe that the concurrence does not give information about the quantum phase transition in the anisotropic Kondo necklace model (between a Kondo singlet and an antiferromagnetic state), but calculating the von Neumann block entropy with the density matrix renormalization group in a chain of 100 sites for the Ising limit indicates that this quantity is useful for locating the quantum critical point.
Orphan Spins in the S=5/2 Antiferromagnet CaFe_{2}O_{4}.
Stock, C; Rodriguez, E E; Lee, N; Demmel, F; Fouquet, P; Laver, M; Niedermayer, Ch; Su, Y; Nemkovski, K; Green, M A; Rodriguez-Rivera, J A; Kim, J W; Zhang, L; Cheong, S-W
2017-12-22
CaFe_{2}O_{4} is an anisotropic S=5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe_{2}O_{4}.
Orphan Spins in the S =5/2 Antiferromagnet CaFe2O4
NASA Astrophysics Data System (ADS)
Stock, C.; Rodriguez, E. E.; Lee, N.; Demmel, F.; Fouquet, P.; Laver, M.; Niedermayer, Ch.; Su, Y.; Nemkovski, K.; Green, M. A.; Rodriguez-Rivera, J. A.; Kim, J. W.; Zhang, L.; Cheong, S.-W.
2017-12-01
CaFe2O4 is an anisotropic S =5/2 antiferromagnet with two competing A (↑↑↓↓) and B (↑↓↑↓) magnetic order parameters separated by static antiphase boundaries at low temperatures. Neutron diffraction and bulk susceptibility measurements, show that the spins near these boundaries are weakly correlated and a carry an uncompensated ferromagnetic moment that can be tuned with a magnetic field. Spectroscopic measurements find these spins are bound with excitation energies less than the bulk magnetic spin waves and resemble the spectra from isolated spin clusters. Localized bound orphaned spins separate the two competing magnetic order parameters in CaFe2 O4 .
Nonlinear resonance of the rotating circular plate under static loads in magnetic field
NASA Astrophysics Data System (ADS)
Hu, Yuda; Wang, Tong
2015-11-01
The rotating circular plate is widely used in mechanical engineering, meanwhile the plates are often in the electromagnetic field in modern industry with complex loads. In order to study the resonance of a rotating circular plate under static loads in magnetic field, the nonlinear vibration equation about the spinning circular plate is derived according to Hamilton principle. The algebraic expression of the initial deflection and the magneto elastic forced disturbance differential equation are obtained through the application of Galerkin integral method. By mean of modified Multiple scale method, the strongly nonlinear amplitude-frequency response equation in steady state is established. The amplitude frequency characteristic curve and the relationship curve of amplitude changing with the static loads and the excitation force of the plate are obtained according to the numerical calculation. The influence of magnetic induction intensity, the speed of rotation and the static loads on the amplitude and the nonlinear characteristics of the spinning plate are analyzed. The proposed research provides the theory reference for the research of nonlinear resonance of rotating plates in engineering.
A d-dimensional stress tensor for Minkd+2 gravity
NASA Astrophysics Data System (ADS)
Kapec, Daniel; Mitra, Prahar
2018-05-01
We consider the tree-level scattering of massless particles in ( d+2)-dimensional asymptotically flat spacetimes. The S -matrix elements are recast as correlation functions of local operators living on a space-like cut ℳ d of the null momentum cone. The Lorentz group SO( d + 1 , 1) is nonlinearly realized as the Euclidean conformal group on ℳ d . Operators of non-trivial spin arise from massless particles transforming in non-trivial representations of the little group SO( d), and distinguished operators arise from the soft-insertions of gauge bosons and gravitons. The leading soft-photon operator is the shadow transform of a conserved spin-one primary operator J a , and the subleading soft-graviton operator is the shadow transform of a conserved spin-two symmetric traceless primary operator T ab . The universal form of the soft-limits ensures that J a and T ab obey the Ward identities expected of a conserved current and energy momentum tensor in a Euclidean CFT d , respectively.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; Xu, Su-Yang; Zheng, Hao; Neupert, Titus; Chiu, Ching-Kai; Huang, Shin-Ming; Chang, Guoqing; Belopolski, Ilya; Sanchez, Daniel S.; Neupane, Madhab; Alidoust, Nasser; Liu, Chang; Wang, BaoKai; Lee, Chi-Cheng; Jeng, Horng-Tay; Zhang, Chenglong; Yuan, Zhujun; Jia, Shuang; Bansil, Arun; Chou, Fangcheng; Lin, Hsin; Hasan, M. Zahid
2016-01-01
Topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe2 are not only protected by the reflection symmetry but also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems. PMID:26829889
Nature of superconductor-insulator transition at LaAlO{sub 3}/SrTiO{sub 3} interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanta, N., E-mail: nmohanta@phy.iitkgp.ernet.in; Taraphder, A.; Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, W. B. 721302
2015-05-15
The two-dimensional electron liquid, at the interface between two band insulators LaAlO{sub 3} and SrTiO{sub 3}, exhibits novel, unconventional superconductivity below 200 mK. One of the remarkable properties of the two-dimensional superconductor is its fantastic tunability by external parameters such as gate-voltage or magnetic field. We study the superconductor to insulator transition induced by gate-voltage by employing a self-consistent, mean-field Bogoliubov-de Gennes treatment based on an effective model. We show that the non-monotonic behaviour of the superconductivity with respect to gate-voltage is intrinsically due to the Rashba spin-orbit coupling. With increasing gate-voltage both the electron concentration and Rashba spin-orbit splittingmore » increases. Elevated electron filling boosts superconductivity whereas enhanced spin-orbit splitting annihilates electron-pairing. The non-monotonicity is a result of this competition. The device application of the superconductor-insulator transition in this interface is discussed.« less
Control of electron spin and orbital resonances in quantum dots through spin-orbit interactions
NASA Astrophysics Data System (ADS)
Stano, Peter; Fabian, Jaroslav
2008-01-01
The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from electric field disturbances accompanying on-chip manipulations.
Theoretical Studies of Magnetic Systems. Final Report, August 1, 1994 - November 30, 1997
DOE R&D Accomplishments Database
Gor`kov, L. P.; Novotny, M. A.; Schrieffer, J. R.
1997-01-01
During the grant period the authors have studied five areas of research: (1) low dimensional ferrimagnets; (2) lattice effects in the mixed valence problem; (3) spin compensation in the one dimensional Kondo lattice; (4) the interaction of quasi particles in short coherence length superconductors; and (5) novel effects in angle resolved photoemission spectra from nearly antiferromagnetic materials. Progress in each area is summarized.
Quantum critical spin-2 chain with emergent SU(3) symmetry.
Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K
2015-04-10
We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.
Cavity master equation for the continuous time dynamics of discrete-spin models.
Aurell, E; Del Ferraro, G; Domínguez, E; Mulet, R
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Cavity master equation for the continuous time dynamics of discrete-spin models
NASA Astrophysics Data System (ADS)
Aurell, E.; Del Ferraro, G.; Domínguez, E.; Mulet, R.
2017-05-01
We present an alternate method to close the master equation representing the continuous time dynamics of interacting Ising spins. The method makes use of the theory of random point processes to derive a master equation for local conditional probabilities. We analytically test our solution studying two known cases, the dynamics of the mean-field ferromagnet and the dynamics of the one-dimensional Ising system. We present numerical results comparing our predictions with Monte Carlo simulations in three different models on random graphs with finite connectivity: the Ising ferromagnet, the random field Ising model, and the Viana-Bray spin-glass model.
Capacity of a quantum memory channel correlated by matrix product states
NASA Astrophysics Data System (ADS)
Mulherkar, Jaideep; Sunitha, V.
2018-04-01
We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.
27Al MQMAS of the δ-Al 13-Keggin
Pilgrim, C. D.; Callahan, J. R.; Colla, C. A.; ...
2017-01-20
Here, one-dimensional 27Al, 23Na Magic-Angle-Spinning (MAS) NMR and 27Al Multiple-Quantum Magic-Angle-Spinning NMR (MQMAS) measurements are reported for the δ-isomer of the Al 13 Keggin structure at high spinning speed and 14.1 T field. Values for the CQ and η parameters are on the same scale as those seen in other isomers of the Al 13 structure. Density functional theory (DFT) calculations are performed for comparison to the experimental fits using the B3PW91/6-31+G* and PBE0/6-31+G* levels of theory, with the Polarizable Continuum Model (PCM).
Bound States and Field-Polarized Haldane Modes in a Quantum Spin Ladder.
Ward, S; Mena, M; Bouillot, P; Kollath, C; Giamarchi, T; Schmidt, K P; Normand, B; Krämer, K W; Biner, D; Bewley, R; Guidi, T; Boehm, M; McMorrow, D F; Rüegg, Ch
2017-04-28
The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin-ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modeling of the dynamical response demonstrates our complete quantitative understanding of these states.
Spin and charge currents and current rectification in Luttinger liquids
NASA Astrophysics Data System (ADS)
Braunecker, B.; Feldman, D. E.; Marston, J. B.
2006-03-01
Asymmetries in spin and charge transport properties are of great interest for spintronic and electronic applications. We show that externally-driven spin and charge currents in a Luttinger liquid model of a one-dimensional quantum wire are strongly modified by the presence of a localized magnetic or nonmagnetic scatterer. A diode effect appears at low voltages when this scatterer is spatially asymmetric, and a non-monotonous dependence of the current on the voltage is possible. D.E. Feldman, S. Scheidl, and V. M. Vinokur, Phys. Rev. Lett. 94, 186809 (2005); B. Braunecker, D. E. Feldman, and J. B. Marston, Phys. Rev. B 72, 125311 (2005)
Differences between the insulating limit quasiparticles of one-band and three-band cuprate models
NASA Astrophysics Data System (ADS)
Ebrahimnejad, H.; Sawatzky, G. A.; Berciu, M.
2016-03-01
We study the charge dynamics of the quasiparticle that forms when a single hole is doped in a two-dimensional antiferromagnet as described by the one-band t-{{t}\\prime} -{{t}\\prime \\prime} -J model, using a variational approximation that includes spin fluctuations in the vicinity of the hole. We explain why the spin fluctuations and the longer range hopping have complementary contributions to the quasiparticle dynamics, and thus why both are essential to obtain a dispersion in agreement with that measured experimentally. This is very different from the three-band Emery model in the strongly-correlated limit, where the same variational approximation shows that spin fluctuations have a minor effect on the quasiparticle dynamics. This difference proves that these one-band and three-band models describe qualitatively different quasiparticles in the insulating limit, and therefore that they cannot both be suitable to describe the physics of very underdoped cuprates.
NASA Astrophysics Data System (ADS)
Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Maurel, Clara; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Benner, Lance A. M.; Naidu, Shantanu P.; Li, Junfeng
2017-09-01
As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without requiring cohesion.
Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions
NASA Astrophysics Data System (ADS)
Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael
2017-04-01
Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.
Stability of the Einstein static universe in Einstein-Cartan theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir
The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.
NASA Astrophysics Data System (ADS)
Rainone, Corrado; Ferrari, Ulisse; Paoluzzi, Matteo; Leuzzi, Luca
2015-12-01
The short- and long-time dynamics of model systems undergoing a glass transition with apparent inversion of Kauzmann and dynamical arrest glass transition lines is investigated. These models belong to the class of the spherical mean-field approximation of a spin-1 model with p -body quenched disordered interaction, with p >2 , termed spherical Blume-Emery-Griffiths models. Depending on temperature and chemical potential the system is found in a paramagnetic or in a glassy phase and the transition between these phases can be of a different nature. In specific regions of the phase diagram coexistence of low-density and high-density paramagnets can occur, as well as the coexistence of spin-glass and paramagnetic phases. The exact static solution for the glassy phase is known to be obtained by the one-step replica symmetry breaking ansatz. Different scenarios arise for both the dynamic and the thermodynamic transitions. These include: (i) the usual random first-order transition (Kauzmann-like) for mean-field glasses preceded by a dynamic transition, (ii) a thermodynamic first-order transition with phase coexistence and latent heat, and (iii) a regime of apparent inversion of static transition line and dynamic transition lines, the latter defined as a nonzero complexity line. The latter inversion, though, turns out to be preceded by a dynamical arrest line at higher temperature. Crossover between different regimes is analyzed by solving mode-coupling-theory equations near the boundaries of paramagnetic solutions and the relationship with the underlying statics is discussed.
Observation of NMR noise from solid samples.
Schlagnitweit, Judith; Dumez, Jean-Nicolas; Nausner, Martin; Jerschow, Alexej; Elena-Herrmann, Bénédicte; Müller, Norbert
2010-11-01
We demonstrate that proton NMR noise signals, i.e. NMR spectra without excitation by radio frequency, can be obtained from solid samples. Experimental results are shown for static and magic-angle spinning conditions. In addition, a tuning procedure based on the probes' NMR noise characteristics and similar to the one described previously for liquids probes can also be used to optimize signal-to-noise ratios in ¹H-MAS experiments. Copyright © 2010 Elsevier Inc. All rights reserved.
Wide-range ideal 2D Rashba electron gas with large spin splitting in Bi2Se3/MoTe2 heterostructure
NASA Astrophysics Data System (ADS)
Wang, Te-Hsien; Jeng, Horng-Tay
2017-02-01
An application-expected ideal two-dimensional Rashba electron gas, i.e., nearly all the conduction electrons occupy the Rashba bands, is crucial for semiconductor spintronic applications. We demonstrate that such an ideal two-dimensional Rashba electron gas with a large Rashba splitting can be realized in a topological insulator Bi2Se3 ultrathin film grown on a transition metal dichalcogenides MoTe2 substrate through first-principle calculations. Our results show the Rashba bands exclusively over a very large energy interval of about 0.6 eV around the Fermi level within the MoTe2 semiconducting gap. Such a wide-range ideal two-dimensional Rashba electron gas with a large spin splitting, which is desirable for real devices utilizing the Rashba effect, has never been found before. Due to the strong spin-orbit coupling, the strength of the Rashba splitting is comparable with that of the heavy-metal surfaces such as Au and Bi surfaces, giving rise to a spin precession length as small as 10 nm. The maximum in-plane spin polarization of the inner (outer) Rashba band near the Γ point is about 70% (60%). The room-temperature coherence length is at least several times longer than the spin precession length, providing good coherency through the spin processing devices. The wide energy window for ideal Rashba bands, small spin precession length, as well as long spin coherence length in this two-dimensional topological insulator/transition metal dichalcogenides heterostructure pave the way for realizing an ultrathin nano-scale spintronic device such as the Datta-Das spin transistor at room-temperature.
Higher-dimensional Wannier functions of multiparameter Hamiltonians
NASA Astrophysics Data System (ADS)
Hanke, Jan-Philipp; Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy
2015-05-01
When using Wannier functions to study the electronic structure of multiparameter Hamiltonians H(k ,λ ) carrying a dependence on crystal momentum k and an additional periodic parameter λ , one usually constructs several sets of Wannier functions for a set of values of λ . We present the concept of higher-dimensional Wannier functions (HDWFs), which provide a minimal and accurate description of the electronic structure of multiparameter Hamiltonians based on a single set of HDWFs. The obstacle of nonorthogonality of Bloch functions at different λ is overcome by introducing an auxiliary real space, which is reciprocal to the parameter λ . We derive a generalized interpolation scheme and emphasize the essential conceptual and computational simplifications in using the formalism, for instance, in the evaluation of linear response coefficients. We further implement the necessary machinery to construct HDWFs from ab initio within the full potential linearized augmented plane-wave method (FLAPW). We apply our implementation to accurately interpolate the Hamiltonian of a one-dimensional magnetic chain of Mn atoms in two important cases of λ : (i) the spin-spiral vector q and (ii) the direction of the ferromagnetic magnetization m ̂. Using the generalized interpolation of the energy, we extract the corresponding values of magnetocrystalline anisotropy energy, Heisenberg exchange constants, and spin stiffness, which compare very well with the values obtained from direct first principles calculations. For toy models we demonstrate that the method of HDWFs can also be used in applications such as the virtual crystal approximation, ferroelectric polarization, and spin torques.
Effective mass and spin susceptibility of dilute two-dimensional holes ion GaAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Y-T.; Padmanabhan, M.; Gokmen, T.
2011-10-31
We report effective hole mass (m*) measurements through analyzing the temperature dependence of Shubnikov-de Haas oscillations in dilute (density p {approx} 7 x 10{sup 10} cm{sup -2}, r{sub s} {approx} 6) two-dimensional (2D) hole systems confined to a 20-nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly degenerate spin subbands whose m* we measure to be {approx}0.2 (in units of the free electron mass). Despite the relatively large r{sub s} in our 2D system, the measured m* is in reasonably good agreement with the results of our energy band calculations, which do not take interactions intomore » account. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and measure m* for the populated subband. We find that this latter m* is close to the m* we measure in the absence of the parallel field. We also deduce the spin susceptibility of the 2D hole system from the depopulation field, and we conclude that the susceptibility is enhanced by about 50% relative to the value expected from the band calculations.« less
Modeling job sites in real time to improve safety during equipment operation
NASA Astrophysics Data System (ADS)
Caldas, Carlos H.; Haas, Carl T.; Liapi, Katherine A.; Teizer, Jochen
2006-03-01
Real-time three-dimensional (3D) modeling of work zones has received an increasing interest to perform equipment operation faster, safer and more precisely. In addition, hazardous job site environment like they exist on construction sites ask for new devices which can rapidly and actively model static and dynamic objects. Flash LADAR (Laser Detection and Ranging) cameras are one of the recent technology developments which allow rapid spatial data acquisition of scenes. Algorithms that can process and interpret the output of such enabling technologies into threedimensional models have the potential to significantly improve work processes. One particular important application is modeling the location and path of objects in the trajectory of heavy construction equipment navigation. Detecting and mapping people, materials and equipment into a three-dimensional computer model allows analyzing the location, path, and can limit or restrict access to hazardous areas. This paper presents experiments and results of a real-time three-dimensional modeling technique to detect static and moving objects within the field of view of a high-frame update rate laser range scanning device. Applications related to heavy equipment operations on transportation and construction job sites are specified.
Quantum quench in an atomic one-dimensional Ising chain.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C
2013-08-02
We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.
S=2 quasi-one-dimensional spin waves in CrCl2
NASA Astrophysics Data System (ADS)
Stone, M. B.; Ehlers, G.; Granroth, G. E.
2013-09-01
We examine the magnetic excitation spectrum in the S=2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc/Jb=9.1±2.2. However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase.
Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
Lu, T. M.; Tracy, L. A.; Laroche, D.; ...
2017-06-01
We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less
Density-controlled quantum Hall ferromagnetic transition in a two-dimensional hole system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, T. M.; Tracy, L. A.; Laroche, D.
We typically achieve Quantum Hall ferromagnetic transitions by increasing the Zeeman energy through in-situ sample rotation, while transitions in systems with pseudo-spin indices can be induced by gate control. We report here a gate-controlled quantum Hall ferromagnetic transition between two real spin states in a conventional two-dimensional system without any in-plane magnetic field. We also show that the ratio of the Zeeman splitting to the cyclotron gap in a Ge two-dimensional hole system increases with decreasing density owing to inter-carrier interactions. Below a critical density of ~2.4 × 10 10 cm -2, this ratio grows greater than 1, resulting inmore » a ferromagnetic ground state at filling factor ν = 2. At the critical density, a resistance peak due to the formation of microscopic domains of opposite spin orientations is observed. For such gate-controlled spin-polarizations in the quantum Hall regime the door opens in order to realize Majorana modes using two-dimensional systems in conventional, low-spin-orbit-coupling semiconductors.« less
Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether
NASA Astrophysics Data System (ADS)
Ismail, N. A.; Cartmell, M. P.
2016-03-01
This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.
GMI Instrument Spin Balance Method, Optimization, Calibration, and Test
NASA Technical Reports Server (NTRS)
Ayari, Laoucet; Kubitschek, Michael; Ashton, Gunnar; Johnston, Steve; Debevec, Dave; Newell, David; Pellicciotti, Joseph
2014-01-01
The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for the 3 year mission life. Therefore, GMI must be very precisely balanced about the spin axis and CG to maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and attitude control on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) spacecraft and is used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be brought into simultaneous static and dynamic spin balance after the entire instrument was already assembled and before environmental tests began. The focus of this contribution is on the analytical and test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy and precision is presented together with the prediction of the optimal balance masses and their locations.
GMI Instrument Spin Balance Method, Optimization, Calibration and Test
NASA Technical Reports Server (NTRS)
Ayari, Laoucet; Kubitschek, Michael; Ashton, Gunnar; Johnston, Steve; Debevec, Dave; Newell, David; Pellicciotti, Joseph
2014-01-01
The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for the 3-year mission life. Therefore, GMI must be very precisely balanced about the spin axis and center of gravity (CG) to maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and attitude control on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) spacecraft and is used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be brought into simultaneous static and dynamic spin balance after the entire instrument was already assembled and before environmental tests began. The focus of this contribution is on the analytical and test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy and precision is presented together with the prediction of the optimal balance masses and their locations.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1972-01-01
A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.
Phase transition and monopole densities in a nearest neighbor two-dimensional spin ice model
NASA Astrophysics Data System (ADS)
Morais, C. W.; de Freitas, D. N.; Mota, A. L.; Bastone, E. C.
2017-12-01
In this work, we show that, due to the alternating orientation of the spins in the ground state of the artificial square spin ice, the influence of a set of spins at a certain distance of a reference spin decreases faster than the expected result for the long range dipolar interaction, justifying the use of the nearest neighbor two-dimensional square spin ice model as an effective model. Using an extension of the model presented in Y. L. Xie et al., Sci. Rep. 5, 15875 (2015), considering the influence of the eight nearest neighbors of each spin on the lattice, we analyze the thermodynamics of the model and study the dependence of monopoles and string densities as a function of the temperature.
Spin supercurrent and effect of quantum phase transition in the two-dimensional XY model
NASA Astrophysics Data System (ADS)
Lima, L. S.
2018-04-01
We have verified the influence of quantum phase transition on spin transport in the spin-1 two-dimensional XY model on the square lattice, with easy plane, single ion and exchange anisotropy. We analyze the effect of the phase transition from the Néel phase to the paramagnetic phase on the AC spin conductivity. Our results show a bit influence of the quantum phase transition on the conductivity. We also obtain a conventional spin transport for ω > 0 and an ideal spin transport in the limit of DC conductivity and therefore, a superfluid spin transport for the DC current in this limit. We have made the diagrammatic expansion for the Green-function with objective to include the effect exciton-exciton scattering on the results.
Dimensional crossover and cold-atom realization of topological Mott insulators
Scheurer, Mathias S.; Rachel, Stephan; Orth, Peter P.
2015-01-01
Interacting cold-atomic gases in optical lattices offer an experimental approach to outstanding problems of many body physics. One important example is the interplay of interaction and topology which promises to generate a variety of exotic phases such as the fractionalized Chern insulator or the topological Mott insulator. Both theoretically understanding these states of matter and finding suitable systems that host them have proven to be challenging problems. Here we propose a cold-atom setup where Hubbard on-site interactions give rise to spin liquid-like phases: weak and strong topological Mott insulators. They represent the celebrated paradigm of an interacting and topological quantum state with fractionalized spinon excitations that inherit the topology of the non-interacting system. Our proposal shall help to pave the way for a controlled experimental investigation of this exotic state of matter in optical lattices. Furthermore, it allows for the investigation of a dimensional crossover from a two-dimensional quantum spin Hall insulating phase to a three-dimensional strong topological insulator by tuning the hopping between the layers. PMID:25669431
Three Dimensional Vibration Characteristics of the Permanent Magnet-HTSC Magnetic Bearing
NASA Astrophysics Data System (ADS)
Ohashi, Shunsuke
The three dimensional vibration of the rotor in a HTSC-permanent magnet bearing system is studied. We have developed the magnetic bearing system which can revolve up to 12,000rpm, and three dimensional vibration of the rotor is measured with laser displacement sensors. To consider the rotor vibration under the mechanical resonance state, static lateral and vertical pinning force of the magnetic bearing is measured. From the results, resonance frequency is given. There are two factors of mechanical resonance caused by the magnetic bearing. One is lateral equivalent spring and the other is vertical one. Influence of the resonance caused by the lateral spring is large, and that by the vertical one is small. Three dimensional vibration of the rotor position around the mechanical resonance frequency is measured. Because revolution of the rotor increases lateral force to the center, resonance frequency given from the free revolution experiment becomes larger than that from pinning force measurement.
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2015-01-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Quasi-two-dimensional spin and phonon excitations in La 1.965Ba 0.035CuO 4
Wagman, J. J.; Parshall, D.; Stone, Matthew B.; ...
2015-06-03
Here, we present time-of-fight inelastic neutron scattering measurements of La 1.965Ba 0.035CuO 4 (LBCO), a lightly doped member of the high temperature superconducting La-based cuprate family. By using time-of-flight neutron instrumentation coupled with single crystal sample rotation we obtain a four-dimensional data set (three Q and one energy) that is both comprehensive and spans a large region of reciprocal space. Our measurements identify rich structure in the energy dependence of the highly dispersive spin excitations, which are centered at equivalent (1/2, 1/2, L) wave-vectors. These structures correlate strongly with several crossings of the spin excitations with the lightly dispersive phononsmore » found in this system. These eects are signicant and account for on the order of 25% of the total inelastic scattering for energies between ≈5 and 40meV at low |Q|. Interestingly, this scattering also presents little or no L-dependence. As the phonons and dispersive spin excitations centred at equivalent (1/2, 1/2, L) wave-vectors are common to all members of La-based 214 copper oxides, we conclude such strong quasi-two dimensional scattering enhancements are likely to occur in all such 214 families of materials, including those concentrations corresponding to superconducting ground states. Such a phenomenon appears to be a fundamental characteristic of these materials and is potentially related to superconducting pairing.« less
Strongly Interacting Fermi Gases: Non-Equilibrium Dynamics and Dimensional Crossover
NASA Astrophysics Data System (ADS)
Sommer, Ariel
2015-05-01
Strongly interacting atomic Fermi gases near Feshbach resonances give access to a rich variety of phenomena in many-fermion physics and superfluidity. This flexible and microscopically well-characterized system provides a pristine platform in which to benchmark many-body theories. I will describe three experiments on gases of fermionic 6Li atoms. In the first experiment, we study spin transport in the return to equilibrium after a spin excitation. From the dynamics near equilibrium, we obtain spin transport coefficients over a range of temperatures and interaction strengths, and observe quantum-limited spin diffusion at unitarity. In separate experiments, we study the effect of dimensionality on the binding of pairs of fermions. We tune the system from three to two dimensions by adjusting the strength of a one-dimensional optical lattice, and measure the binding energy of fermion pairs using radio-frequency spectroscopy. In a third set of experiments, we study nonlinear excitations of a fermionic superfluid. Imprinting a phase jump on the superfluid order parameter causes a long-lived, localized density depletion that oscillates through the cloud. We measure the oscillation period and find that it corresponds to an emergent particle with an effective mass of up to several hundred times the bare mass. This excitation has been identified as a solitonic vortex that results from the decay of a planar soliton. This work was performed at the Massachusetts Institute of Technology under the supervision of Prof. Martin Zwierlein.
NASA Astrophysics Data System (ADS)
McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.
2016-06-01
We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
Spin Josephson effect in topological superconductor-ferromagnet junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, C. D.; Wang, J., E-mail: jwang@seu.edu.cn
2014-03-21
The composite topological superconductor (TS), made of one-dimensional spin-orbit coupled nanowire with proximity-induced s-wave superconductivity, is not a pure p-wave superconductor but still has a suppressed s-wave pairing. We propose to probe the spin texture of the p-wave pairing in this composite TS by examining possible spin supercurrents in an unbiased TS/ferromagnet junction. It is found that both the exchange-coupling induced and spin-flip reflection induced spin currents exist in the setup and survive even in the topological phase. We showed that besides the nontrivial p-wave pairing state accounting for Majorana Fermions, there shall be a trivial p-wave pairing state thatmore » contributes to spin supercurrent. The trivial p-wave pairing state is diagnosed from the mixing effect between the suppressed s-wave pairing and the topologically nontrivial p-wave pairing. The d vector of the TS is proved not to be rigorously perpendicular to the spin projection of p-wave pairings. Our findings are also confirmed by the Kitaev's p-wave model with a nonzero s-wave pairing.« less
Spin Imbalanced Quasi-Two-Dimensional Fermi Gases
NASA Astrophysics Data System (ADS)
Ong, Willie C.
Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarisation.
Quantum speed limit time in a magnetic resonance
NASA Astrophysics Data System (ADS)
Ivanchenko, E. A.
2017-12-01
A visualization for dynamics of a qudit spin vector in a time-dependent magnetic field is realized by means of mapping a solution for a spin vector on the three-dimensional spherical curve (vector hodograph). The obtained results obviously display the quantum interference of precessional and nutational effects on the spin vector in the magnetic resonance. For any spin the bottom bounds of the quantum speed limit time (QSL) are found. It is shown that the bottom bound goes down when using multilevel spin systems. Under certain conditions the non-nil minimal time, which is necessary to achieve the orthogonal state from the initial one, is attained at spin S = 2. An estimation of the product of two and three standard deviations of the spin components are presented. We discuss the dynamics of the mutual uncertainty, conditional uncertainty and conditional variance in terms of spin standard deviations. The study can find practical applications in the magnetic resonance, 3D visualization of computational data and in designing of optimized information processing devices for quantum computation and communication.
Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.
Vahedi, J; Ashouri, A; Mahdavifar, S
2016-10-01
Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.
Topological Material-Based Spin Devices
NASA Astrophysics Data System (ADS)
Zhang, Minhao; Wang, Xuefeng
Three-dimensional topological insulators have insulating bulk and gapless helical surface states. One of the most fascinating properties of the metallic surface states is the spin-momentum helical locking. The giant current-driven torques on the magnetic layer have been discovered in TI/ferromagnet bilayers originating from the spin-momentum helical locking, enabling the efficient magnetization switching with a low current density. We demonstrated the current-direction dependent on-off state in TIs-based spin valve devices for memory and logic applications. Further, we demonstrated the Bi2Se3 system will go from a topologically nontrivial state to a topologically trivial state when Bi atoms are replaced by lighter In atoms. Here, topologically trivial metal (BixIny)2 Se3 with high mobility also facilitates the realization of its application in multifunctional spintronic devices.
Bounds on the entanglement entropy of droplet states in the XXZ spin chain
NASA Astrophysics Data System (ADS)
Beaud, V.; Warzel, S.
2018-01-01
We consider a class of one-dimensional quantum spin systems on the finite lattice Λ ⊂Z , related to the XXZ spin chain in its Ising phase. It includes in particular the so-called droplet Hamiltonian. The entanglement entropy of energetically low-lying states over a bipartition Λ = B ∪ Bc is investigated and proven to satisfy a logarithmic bound in terms of min{n, |B|, |Bc|}, where n denotes the maximal number of down spins in the considered state. Upon addition of any (positive) random potential, the bound becomes uniformly constant on average, thereby establishing an area law. The proof is based on spectral methods: a deterministic bound on the local (many-body integrated) density of states is derived from an energetically motivated Combes-Thomas estimate.
The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar
2015-12-28
The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum ismore » associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.« less
Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R
2016-07-22
Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.
Thermodynamic glass transition in a spin glass without time-reversal symmetry
Baños, Raquel Alvarez; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvion, Jose Miguel; Gordillo-Guerrero, Antonio; Guidetti, Marco; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Seoane, Beatriz; Tarancon, Alfonso; Tellez, Pedro; Tripiccione, Raffaele; Yllanes, David
2012-01-01
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method. PMID:22493229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotundu, Costel R.; Wen, Jiajia; He, Wei
The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. Here, we performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ~ 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotundu, Costel R.; Wen, Jiajia; He, Wei
The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less
NASA Astrophysics Data System (ADS)
Rotundu, Costel R.; Wen, Jiajia; He, Wei; Choi, Yongseong; Haskel, Daniel; Lee, Young S.
2018-02-01
The application of pressure reveals a rich phase diagram for the quantum S =1 /2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T =4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ˜6 GPa up to 215 K but possibly extends in temperature to above T =300 K, indicating the possibility of a quantum singlet state at room temperature. Near the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.
Rotundu, Costel R.; Wen, Jiajia; He, Wei; ...
2018-02-15
The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. Here, we performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at ~ 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less
Rotundu, Costel R.; Wen, Jiajia; He, Wei; ...
2018-02-15
The application of pressure reveals a rich phase diagram for the quantum S = 1/2 spin chain material TiOCl. We performed x-ray diffraction on single-crystal samples in a diamond-anvil cell down to T = 4 K and pressures up to 14.5 GPa. Remarkably, the magnetic interaction scale increases dramatically with increasing pressure, as indicated by the high onset temperature of the spin-Peierls phase. The spin-Peierls phase was probed at similar to 6 GPa up to 215 K but possibly extends in temperature to above T = 300 K, indicating the possibility of a quantum singlet state at room temperature. Nearmore » the critical pressure for the transition to the more metallic phase, coexisting phases are exemplified by incommensurate order in two directions. Finally, further comparisons are made with the phase diagrams of related spin-Peierls systems that display metallicity and superconductivity under pressure.« less
NASA Astrophysics Data System (ADS)
Yao, K. L.; Li, Y. C.; Sun, X. Z.; Liu, Q. M.; Qin, Y.; Fu, H. H.; Gao, G. Y.
2005-10-01
By using the density matrix renormalization group (DMRG) method for the one-dimensional (1D) Hubbard model, we have studied the von Neumann entropy of a quantum system, which describes the entanglement of the system block and the rest of the chain. It is found that there is a close relation between the entanglement entropy and properties of the system. The hole-doping can alter the charge charge and spin spin interactions, resulting in charge polarization along the chain. By comparing the results before and after the doping, we find that doping favors increase of the von Neumann entropy and thus also favors the exchange of information along the chain. Furthermore, we calculated the spin and entropy distribution in external magnetic filed. It is confirmed that both the charge charge and the spin spin interactions affect the exchange of information along the chain, making the entanglement entropy redistribute.
Absence of magnetic order in low-dimensional (RKKY) systems
NASA Astrophysics Data System (ADS)
Pedrocchi, Fabio; Leggett, Anthony; Loss, Daniel
2012-02-01
We extend the Mermin-Wagner theorem to a system of lattice spins which are spin-coupled to itinerant and interacting charge carriers. We use the Bogoliubov inequality to rigorously prove that neither (anti-) ferromagnetic nor helical long-range order is possible in one and two dimensions at any finite temperature. Our proof applies to a wide class of models including any form of electron-electron and single-electron interactions that are independent of spin. In the presence of Rashba or Dresselhaus spin-orbit interactions (SOI) magnetic order is not excluded and intimately connected to equilibrium spin currents. However, in the special case when Rashba and Dresselhaus SOIs are tuned to be equal, magnetic order is excluded again. This opens up a new possibility to control magnetism electrically. [4pt] References: D. Loss, F. L. Pedrocchi, and A. J. Leggett, Phys. Rev. Lett. 107, 107201 (2011).
Transport of spin qubits with donor chains under realistic experimental conditions
NASA Astrophysics Data System (ADS)
Mohiyaddin, Fahd A.; Kalra, Rachpon; Laucht, Arne; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea
2016-07-01
The ability to transport quantum information across some distance can facilitate the design and operation of a quantum processor. One-dimensional spin chains provide a compact platform to realize scalable spin transport for a solid-state quantum computer. Here, we model odd-sized donor chains in silicon under a range of experimental nonidealities, including variability of donor position within the chain. We show that the tolerance against donor placement inaccuracies is greatly improved by operating the spin chain in a mode where the electrons are confined at the Si-SiO2 interface. We then estimate the required time scales and exchange couplings, and the level of noise that can be tolerated to achieve high-fidelity transport. We also propose a protocol to calibrate and initialize the chain, thereby providing a complete guideline for realizing a functional donor chain and utilizing it for spin transport.
Transport of spin qubits with donor chains under realistic experimental conditions
Mohiyaddin, Fahd A.; Kalra, Rachpon; Laucht, Arne; ...
2016-07-25
The ability to transport quantum information across some distance can facilitate the design and operation of a quantum processor. One-dimensional spin chains provide a compact platform to realize scalable spin transport for a solid-state quantum computer. Here, we model odd-sized donor chains in silicon under a range of experimental nonidealities, including variability of donor position within the chain. We show that the tolerance against donor placement inaccuracies is greatly improved by operating the spin chain in a mode where the electrons are confined at the Si-SiO 2 interface. We then estimate the required time scales and exchange couplings, and themore » level of noise that can be tolerated to achieve high-fidelity transport. As a result, we also propose a protocol to calibrate and initialize the chain, thereby providing a complete guideline for realizing a functional donor chain and utilizing it for spin transport.« less
Nuclear magnetic relaxation by the dipolar EMOR mechanism: Three-spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Zhiwei; Halle, Bertil, E-mail: bertil.halle@bpc.lu.se
2016-07-21
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. Starting from the stochastic Liouville equation, we have developed a non-perturbative theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole couplings, and Larmor frequencies. Here, we implement the general dipolar EMOR theory for a macromolecule-bound three-spin system, where one, two, or all three spins exchange with the bulk solution phase. In contrast to the previously studied two-spin system with amore » single dipole coupling, there are now three dipole couplings, so relaxation is affected by distinct correlations as well as by self-correlations. Moreover, relaxation can now couple the magnetizations with three-spin modes and, in the presence of a static dipole coupling, with two-spin modes. As a result of this complexity, three secondary dispersion steps with different physical origins can appear in the longitudinal relaxation dispersion profile, in addition to the primary dispersion step at the Larmor frequency matching the exchange rate. Furthermore, and in contrast to the two-spin system, longitudinal relaxation can be significantly affected by chemical shifts and by the odd-valued (“imaginary”) part of the spectral density function. We anticipate that the detailed studies of two-spin and three-spin systems that have now been completed will provide the foundation for developing an approximate multi-spin dipolar EMOR theory sufficiently accurate and computationally efficient to allow quantitative molecular-level interpretation of frequency-dependent water-proton longitudinal relaxation data from biophysical model systems and soft biological tissue.« less
A status report on NASA general aviation stall/spin flight testing
NASA Technical Reports Server (NTRS)
Patton, J. M., Jr.
1980-01-01
The NASA Langley Research Center has undertaken a comprehensive program involving spin tunnel, static and rotary balance wind tunnel, full-scale wind tunnel, free flight radio control model, flight simulation, and full-scale testing. Work underway includes aerodynamic definition of various configurations at high angles of attack, testing of stall and spin prevention concepts, definition of spin and spin recovery characteristics, and development of test techniques and emergency spin recovery systems. This paper presents some interesting results to date for the first aircraft (low-wing, single-engine) in the program, in the areas of tail design, wing leading edge design, mass distribution, center of gravity location, and small airframe changes, with associated pilot observations. The design philosophy of the spin recovery parachute system is discussed in addition to test techniques.
All-electric spin modulator based on a two-dimensional topological insulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Xianbo; Ai, Guoping; Liu, Ying
2016-01-18
We propose and investigate a spin modulator device consisting of two ferromagnetic leads connected by a two-dimensional topological insulator as the channel material. It exploits the unique features of the topological spin-helical edge states, such that the injected carriers with a non-collinear spin-polarization direction would travel through both edges and show interference effect. The conductance of the device can be controlled in a simple and all-electric manner by a side-gate voltage, which effectively rotates the spin-polarization of the carrier. At low voltages, the rotation angle is linear in the gate voltage, and the device can function as a good spin-polarizationmore » rotator by replacing the drain electrode with a non-magnetic material.« less
Local nature of impurity induced spin-orbit torques
NASA Astrophysics Data System (ADS)
Nikolaev, Sergey; Kalitsov, Alan; Chshiev, Mairbec; Mryasov, Oleg
Spin-orbit torques are of a great interest due to their potential applications for spin electronics. Generally, it originates from strong spin orbit coupling of heavy 4d/5d elements and its mechanism is usually attributed either to the Spin Hall effect or Rashba spin-orbit coupling. We have developed a quantum-mechanical approach based on the non-equilibrium Green's function formalism and tight binding Hamiltonian model to study spin-orbit torques and extended our theory for the case of extrinsic spin-orbit coupling induced by impurities. For the sake of simplicity, we consider a magnetic material on a two dimensional lattice with a single non-magnetic impurity. However, our model can be easily extended for three dimensional layered heterostructures. Based on our calculations, we present the detailed analysis of the origin of local spin-orbit torques and persistent charge currents around the impurity, that give rise to spin-orbit torques even in equilibrium and explain the existence of anisotropy.
Finite size induces crossover temperature in growing spin chains
NASA Astrophysics Data System (ADS)
Sienkiewicz, Julian; Suchecki, Krzysztof; Hołyst, Janusz A.
2014-01-01
We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov chain theory show that when the external field is smaller than the exchange coupling constant J there is a nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on real data we conceive the model is in part suitable for a qualitative description of online emotional discussions arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.
Finite size induces crossover temperature in growing spin chains.
Sienkiewicz, Julian; Suchecki, Krzysztof; Hołyst, Janusz A
2014-01-01
We introduce a growing one-dimensional quenched spin model that bases on asymmetrical one-side Ising interactions in the presence of external field. Numerical simulations and analytical calculations based on Markov chain theory show that when the external field is smaller than the exchange coupling constant J there is a nonmonotonous dependence of the mean magnetization on the temperature in a finite system. The crossover temperature Tc corresponding to the maximal magnetization decays with system size, approximately as the inverse of the Lambert W function. The observed phenomenon can be understood as an interplay between the thermal fluctuations and the presence of the first cluster determined by initial conditions. The effect exists also when spins are not quenched but fully thermalized after the attachment to the chain. By performing tests on real data we conceive the model is in part suitable for a qualitative description of online emotional discussions arranged in a chronological order, where a spin in every node conveys emotional valence of a subsequent post.
Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension
NASA Astrophysics Data System (ADS)
Yin, Xiao; Radzihovsky, Leo
2016-12-01
We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.
Avoided ferromagnetic quantum critical point: unusual short-range ordered state in CeFePO.
Lausberg, S; Spehling, J; Steppke, A; Jesche, A; Luetkens, H; Amato, A; Baines, C; Krellner, C; Brando, M; Geibel, C; Klauss, H-H; Steglich, F
2012-11-21
Cerium 4f electronic spin dynamics in single crystals of the heavy-fermion system CeFePO is studied by means of ac susceptibility, specific heat, and muon-spin relaxation (μSR). Short-range static magnetism occurs below the freezing temperature T(g) ≈ 0.7 K, which prevents the system from accessing a putative ferromagnetic quantum critical point. In the μSR, the sample-averaged muon asymmetry function is dominated by strongly inhomogeneous spin fluctuations below 10 K and exhibits a characteristic time-field scaling relation expected from glassy spin dynamics, strongly evidencing cooperative and critical spin fluctuations. The overall behavior can be ascribed neither to canonical spin glasses nor other disorder-driven mechanisms.
Phase modulated 2D HSQC-TOCSY for unambiguous assignment of overlapping spin systems
NASA Astrophysics Data System (ADS)
Singh, Amrinder; Dubey, Abhinav; Adiga, Satish K.; Atreya, Hanudatta S.
2018-01-01
We present a new method that allows one to unambiguously resolve overlapping spin systems often encountered in biomolecular systems such as peptides and proteins or in samples containing a mixture of different molecules such as in metabolomics. We address this problem using the recently proposed phase modulation approach. By evolving the 1H chemical shifts in a conventional two dimensional (2D) HSQC-TOCSY experiment for a fixed delay period, the phase/intensity of set of cross peaks belonging to one spin system are modulated differentially relative to those of its overlapping counterpart, resulting in their discrimination and recognition. The method thus accelerates the process of identification and resonance assignment of individual compounds in complex mixtures. This approach facilitated the assignment of molecules in the embryo culture medium used in human assisted reproductive technology.
NASA Astrophysics Data System (ADS)
Ferrari, Francesco; Parola, Alberto; Sorella, Sandro; Becca, Federico
2018-06-01
The dynamical spin structure factor is computed within a variational framework to study the one-dimensional J1-J2 Heisenberg model. Starting from Gutzwiller-projected fermionic wave functions, the low-energy spectrum is constructed from two-spinon excitations. The direct comparison with Lanczos calculations on small clusters demonstrates the excellent description of both gapless and gapped (dimerized) phases, including incommensurate structures for J2/J1>0.5 . Calculations on large clusters show how the intensity evolves when increasing the frustrating ratio and give an unprecedented accurate characterization of the dynamical properties of (nonintegrable) frustrated spin models.
Integrability of spinning particle motion in higher-dimensional rotating black hole spacetimes.
Kubizňák, David; Cariglia, Marco
2012-02-03
We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes.
Transient analysis using conical shell elements
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Goeller, J. E.; Messick, W. T.
1973-01-01
The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.
Abbas, Ahmed; Guo, Xianrong; Jing, Bing-Yi; Gao, Xin
2014-06-01
Despite significant advances in automated nuclear magnetic resonance-based protein structure determination, the high numbers of false positives and false negatives among the peaks selected by fully automated methods remain a problem. These false positives and negatives impair the performance of resonance assignment methods. One of the main reasons for this problem is that the computational research community often considers peak picking and resonance assignment to be two separate problems, whereas spectroscopists use expert knowledge to pick peaks and assign their resonances at the same time. We propose a novel framework that simultaneously conducts slice picking and spin system forming, an essential step in resonance assignment. Our framework then employs a genetic algorithm, directed by both connectivity information and amino acid typing information from the spin systems, to assign the spin systems to residues. The inputs to our framework can be as few as two commonly used spectra, i.e., CBCA(CO)NH and HNCACB. Different from the existing peak picking and resonance assignment methods that treat peaks as the units, our method is based on 'slices', which are one-dimensional vectors in three-dimensional spectra that correspond to certain ([Formula: see text]) values. Experimental results on both benchmark simulated data sets and four real protein data sets demonstrate that our method significantly outperforms the state-of-the-art methods while using a less number of spectra than those methods. Our method is freely available at http://sfb.kaust.edu.sa/Pages/Software.aspx.
Thermal solitons as revealed by the static structure factor
NASA Astrophysics Data System (ADS)
Gawryluk, Krzysztof; Brewczyk, Mirosław; Rzążewski, Kazimierz
2017-04-01
We study, within a framework of the classical fields approximation, the static structure factor of a weakly interacting Bose gas at thermal equilibrium. As in a recent experiment [R. Schley et al., Phys. Rev. Lett. 111, 055301 (2013), 10.1103/PhysRevLett.111.055301], we find that the thermal distribution of phonons in a three-dimensional Bose gas follows the Planck distribution. On the other hand we find a disagreement between the Planck and phonon (calculated just as for the bulk gas) distributions in the case of elongated quasi-one-dimensional systems. We attribute this discrepancy to the existence of spontaneous dark solitons [i.e., thermal solitons as reported in T. Karpiuk et al., Phys. Rev. Lett. 109, 205302 (2012), 10.1103/PhysRevLett.109.205302] in an elongated Bose gas at thermal equilibrium.
SIMPSON: a general simulation program for solid-state NMR spectroscopy.
Bak, M; Rasmussen, J T; Nielsen, N C
2000-12-01
A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basically, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments. Copyright 2000 Academic Press.
Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction
NASA Astrophysics Data System (ADS)
Radhakrishnan, Chandrashekar; Ermakov, Igor; Byrnes, Tim
2017-07-01
The quantum coherence of one-dimensional planar spin models with Dzyaloshinsky-Moriya interaction is investigated. The anisotropic XY model, the isotropic XX model, and the transverse field model are studied in the large N limit using two qubit reduced density matrices and two point correlation functions. From our investigations we find that the coherence as measured using Jensen-Shannon divergence can be used to detect quantum phase transitions and quantum critical points. The derivative of coherence shows nonanalytic behavior at critical points, leading to the conclusion that these transitions are of second order. Further, we show that the presence of Dzyaloshinsky-Moriya coupling suppresses the phase transition due to residual ferromagnetism, which is caused by spin canting.
Spin-one bilinear-biquadratic model on a star lattice
NASA Astrophysics Data System (ADS)
Lee, Hyun-Yong; Kawashima, Naoki
2018-05-01
We study the ground-state phase diagram of the S =1 bilinear-biquadratic model (BLBQ) on the star lattice with the state-of-art tensor network algorithms. The system has four phases: the ferromagnetic, antiferromagnetic, ferroquadrupolar, and spin-liquid phases. The phases and their phase boundaries are determined by examining various local observables, correlation functions, and transfer matrices exhaustively. The spin-liquid phase, which is the first quantum disordered phase found in the two-dimensional BLBQ model, is gapped and devoid of any conventional long-range order. It is also characterized by fixed-parity virtual bonds in the tensor network formalism, analogous to the Haldane phase, while the parity varies depending on the location of the bond.
NASA Astrophysics Data System (ADS)
Jung, Joon Hee; Jang, Gang-Won; Shin, Dongil; Kim, Yoon Young
2018-03-01
This paper presents a method to analyze thin-walled beams with quadrilateral cross sections reinforced with diaphragms using a one-dimensional higher-order beam theory. The effect of a diaphragm is reflected focusing on the increase of static stiffness. The deformations on the beam-interfacing boundary of a thin diaphragm are described by using deformation modes of the beam cross section while the deformations inside the diaphragm are approximated in the form of complete cubic polynomials. By using the principle of minimum potential energy, its stiffness that significantly affects distortional deformation of a thin-walled beam can be considered in the one-dimensional beam analysis. It is shown that the accuracy of the resulting one-dimensional analysis is comparable with that by a shell element based analysis. As a means to demonstrate the usefulness of the present approach for design, position optimization problems of diaphragms for stiffness reinforcement of an automotive side frame are solved.
Strong ferromagnetic exchange interaction under ambient pressure in BaFe 2 S 3
Wang, Meng; Jin, S. J.; Yi, Ming; ...
2017-02-03
Inelastic neutron scattering measurements have been performed to investigate the spin waves of the quasi-one-dimensional antiferromagnetic ladder compound BaFe 2 S 3 , where a superconducting transition was observed under pressure [H. Takahashi et al., Nat. Mater. 14, 1008 (2015); T. Yamauchi et al., Phys. Rev. Lett. 115, 246402 (2015)]. By fitting the spherically averaged experimental data collected on a powder sample to a Heisenberg Hamiltonian, we find that the one-dimensional antiferromagnetic ladder exhibits a strong nearest-neighbor ferromagnetic exchange interaction (SJ R = - 71 ± 4 meV) along the rung direction, an antiferromagnetic SJ L = 49 ± 3more » meV along the leg direction, and a ferromagnetic SJ 2 = - 15 ± 2 meV along the diagonal direction. Finally, our data demonstrate that the antiferromagnetic spin excitations are a common characteristic for the iron-based superconductors, while specific relative values for the exchange interactions do not appear to be unique for the parent states of the superconducting materials.« less
NASA Astrophysics Data System (ADS)
Bounoua, Dalila; Saint-Martin, Romuald; Petit, Sylvain; Bourdarot, Frédéric; Pinsard-Gaudart, Loreynne
2018-05-01
We report inelastic neutron scattering measurements of the phonons modes, in the one-dimensional half integer spin chains cuprate SrCuO2. We study the longitudinal and the transverse modes propagating in the direction of the chains, along Q (0 0 L) and Q (2 0 L), respectively. On the other hand, we investigate the effect of substitution by impurities in the corresponding doped compounds, namely, SrCu0.99M0.01O2 with M=Mg or Zn, and La0.01Sr0.99CuO2. Our results evidence a systematic strong spinon-phonon interaction leading to an important decrease of the phonon scattered intensity as well as a decrease of the group velocity of the transverse acoustic modes upon substitution, and a shift of the transverse optical B3 u mode in the La-doped SrCuO2, in terms of energy.
Quasi-one-dimensional spin-orbit- and Rabi-coupled bright dipolar Bose-Einstein-condensate solitons
NASA Astrophysics Data System (ADS)
Chiquillo, Emerson
2018-01-01
We study the formation of stable bright solitons in quasi-one-dimensional (quasi-1D) spin-orbit- (SO-) and Rabi-coupled two pseudospinor dipolar Bose-Einstein condensates (BECs) of 164Dy atoms in the presence of repulsive contact interactions. As a result of the combined attraction-repulsion effect of both interactions and the addition of SO and Rabi couplings, two kinds of ground states in the form of self-trapped bright solitons can be formed, a plane-wave soliton (PWS) and a stripe soliton (SS). These quasi-1D solitons cannot exist in a condensate with purely repulsive contact interactions and SO and Rabi couplings (no dipole). Neglecting the repulsive contact interactions, our findings also show the possibility of creating PWSs and SSs. When the strengths of the two interactions are close to each other, the SS develops an oscillatory instability indicating a possibility of a breather solution, eventually leading to its destruction. We also obtain a phase diagram showing regions where the solution is a PWS or SS.
Li, Zhong-Yi; Xu, Ya-Lan; Zhang, Xiang-Fei; Zhai, Bin; Zhang, Fu-Li; Zhang, Jian-Jun; Zhang, Chi; Li, Su-Zhi; Cao, Guang-Xiu
2017-12-21
Four isostructural lanthanide coordination polymers with a phenylacetate (PAA - ) ligand, [Ln(PAA) 3 (H 2 O)] n (Ln = Eu (1); Gd (2); Tb (3); Dy (4)), were synthesized under hydrothermal conditions. Complexes 1-4 display a one-dimensional (1D) wave chain structure bridged by the carboxylate of the PAA - ligand, which was generated via the in situ decarboxylation of phenylmalonic acid. Magnetic studies suggest the presence of ferromagnetic LnLn coupling in the 1D chain of 1-4. Meanwhile, 2 has a significant cryogenic magnetocaloric effect with the maximum -ΔS m of 26.73 at 3 K and 7 T, and 3 and 4 show interesting spin-glass behavior, which is rarely reported for Ln-containing complexes. Additionally, the solid-state photophysical properties of 1 and 3 display strong characteristic Eu 3+ and Tb 3+ photoluminescence emission in the visible region, indicating that Eu- and Tb-based luminescence are sensitized by the effective energy transfer from the ligand to the metal centers.
Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas
NASA Astrophysics Data System (ADS)
PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela
2018-06-01
We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.
1976-01-01
A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.
Engineered long-range interactions on a 2D array of trapped ions
NASA Astrophysics Data System (ADS)
Britton, Joseph W.; Sawyer, Brian C.; Bollinger, John J.; Freericks, James K.
2014-03-01
Ising interactions are one paradigm used to model quantum magnetism in condensed matter systems. At NIST Boulder we confine and Doppler laser cool hundreds of 9Be+ ions in a Penning trap. The valence electron of each ion behaves as an ideal spin-1/2 particle and, in the limit of weak radial confinement relative to axial confinement, the ions naturally form a two-dimensional triangular lattice. A variable-range anti-ferromagnetic Ising interaction is engineered with a spin-dependent optical dipole force (ODF) through spin-dependent excitation of collective modes of ion motion. We have also exploited this spin-dependent force to perform spectroscopy and thermometry of the normal modes of the trapped ion crystal. The high spin-count and long-range spin-spin couplings achievable in the NIST Penning trap brings within reach simulation of computationally intractable problems in quantum magnetism. Examples include modeling quantum magnetic phase transitions and propagation of spin correlations resulting from a quantum quench. The Penning system may also be amenable to observation of spin-liquid behavior thought to arise in systems where the underlying lattice structure can frustrate long-range ordering. Supported by DARPA OLE and NIST.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces.
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M D
2017-09-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.
Spin-orbit torques from interfacial spin-orbit coupling for various interfaces
Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.
2017-01-01
We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism. PMID:29333523
Effects of finite pulse width on two-dimensional Fourier transform electron spin resonance.
Liang, Zhichun; Crepeau, Richard H; Freed, Jack H
2005-12-01
Two-dimensional (2D) Fourier transform ESR techniques, such as 2D-ELDOR, have considerably improved the resolution of ESR in studies of molecular dynamics in complex fluids such as liquid crystals and membrane vesicles and in spin labeled polymers and peptides. A well-developed theory based on the stochastic Liouville equation (SLE) has been successfully employed to analyze these experiments. However, one fundamental assumption has been utilized to simplify the complex analysis, viz. the pulses have been treated as ideal non-selective ones, which therefore provide uniform irradiation of the whole spectrum. In actual experiments, the pulses are of finite width causing deviations from the theoretical predictions, a problem that is exacerbated by experiments performed at higher frequencies. In the present paper we provide a method to deal with the full SLE including the explicit role of the molecular dynamics, the spin Hamiltonian and the radiation field during the pulse. The computations are rendered more manageable by utilizing the Trotter formula, which is adapted to handle this SLE in what we call a "Split Super-Operator" method. Examples are given for different motional regimes, which show how 2D-ELDOR spectra are affected by the finite pulse widths. The theory shows good agreement with 2D-ELDOR experiments performed as a function of pulse width.
Electrical Spin Injection and Detection in Silicon Nanowires with Axial Doping Gradient.
Kountouriotis, Konstantinos; Barreda, Jorge L; Keiper, Timothy D; Zhang, Mei; Xiong, Peng
2018-06-19
The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nanospintronic devices with quasi-one-dimensional semiconductor channels.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michal, V. P., E-mail: vincent.michal@cea.fr
The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the muon spin rotation ({mu}SR) experiment. Based on the Ginzburg-Landau expansion for the superconductor free energy, we study the evolution with respect to the external field of the static linewidth both in the limit of independent vortices (low magnetic field) with a variational expression for the order parameter and in the near H{sub c2}{sup P}(T) regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in themore » Ginzburg-Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field are predicted as a result of the superconductor spin response around a vortex core that dominates the usual charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling vortex lattice properties recently observed in CeCoIn{sub 5}.« less
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.
NASA Astrophysics Data System (ADS)
Zschocke, Fabian; Vojta, Matthias
2015-07-01
Kitaev's compass model on the honeycomb lattice realizes a spin liquid whose emergent excitations are dispersive Majorana fermions and static Z2 gauge fluxes. We discuss the proper selection of physical states for finite-size simulations in the Majorana representation, based on a recent paper by F. L. Pedrocchi, S. Chesi, and D. Loss [Phys. Rev. B 84, 165414 (2011), 10.1103/PhysRevB.84.165414]. Certain physical observables acquire large finite-size effects, in particular if the ground state is not fermion-free, which we prove to generally apply to the system in the gapless phase and with periodic boundary conditions. To illustrate our findings, we compute the static and dynamic spin susceptibilities for finite-size systems. Specifically, we consider random-bond disorder (which preserves the solubility of the model), calculate the distribution of local flux gaps, and extract the NMR line shape. We also predict a transition to a random-flux state with increasing disorder.
NASA Astrophysics Data System (ADS)
Kopinga, K.; Delica, T.; Leschke, H.
1990-05-01
New results of a variant of the numerically exact quantum transfer matrix method have been compared with experimental data on the static properties of [C6H11NH3]CuBr3(CHAB), a ferromagnetic system with about 5% easy-plane anisotropy. Above T=3.5 K, the available data on the zero-field heat capacity, the excess heat capacity ΔC=C(B)-C(B=0), and the magnetization are described with an accuracy comparable to the experimental error. Calculations of the spin-spin correlation functions reveal that the good description of the experimental correlation length in CHAB by a classical spin model is largely accidental. The zero-field susceptibility, which can be deduced from these correlation functions, is in fair agreement with the reported experimental data between 4 and 100 K. The method also seems to yield accurate results for the chlorine isomorph, CHAC, a system with about 2% uniaxial anisotropy.
Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; ...
2017-10-06
We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less
NASA Astrophysics Data System (ADS)
Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; Winn, B. L.; Granroth, G. E.; Zhao, Yang; Gu, Genda; Zaliznyak, Igor; Tranquada, J. M.; Birgeneau, R. J.; Xu, Guangyong
2017-10-01
We report inelastic neutron scattering measurements of low-energy (ℏ ω ≲10 meV) magnetic excitations in the "11" system Fe1 +yTe1 -xSex . The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above Tc˜15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2D cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng
We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less
NASA Astrophysics Data System (ADS)
Matsumoto, Karin; Ogura, Daisuke; Kuroki, Kazuhiko
2018-01-01
We study superconductivity in the Hubbard model on various quasi-one-dimensional lattices with coexisting wide and narrow bands originating from multiple sites within a unit cell, where each site corresponds to a single orbital. The systems studied are the two-leg and three-leg ladders, the diamond chain, and the crisscross ladder. These one-dimensional lattices are weakly coupled to form two-dimensional (quasi-one-dimensional) ones, and the fluctuation exchange approximation is adopted to study spin-fluctuation-mediated superconductivity. When one of the bands is perfectly flat and the Fermi level intersecting the wide band is placed in the vicinity of, but not within, the flat band, superconductivity arising from the interband scattering processes is found to be strongly enhanced owing to the combination of the light electron mass of the wide band and the strong pairing interaction due to the large density of states of the flat band. Even when the narrow band has finite bandwidth, the pairing mechanism still works since the edge of the narrow band, due to its large density of states, plays the role of the flat band. The results indicate the wide applicability of the high-Tc pairing mechanism due to coexisting wide and "incipient" narrow bands in quasi-one-dimensional systems.
Fermions tunneling from a general static Riemann black hole
NASA Astrophysics Data System (ADS)
Chen, Ge-Rui; Huang, Yong-Chang
2015-05-01
In this paper we investigate the tunneling of fermions from a general static Riemann black hole by following Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) methods. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the Dirac equation, we obtain the standard Hawking temperature. Furthermore, Kerner and Mann (Class Quantum Gravit 25:095014, 2008a; Phys Lett B 665:277-283, 2008b) only calculated the tunneling spectrum of the Dirac particles with spin-up, and we extend the methods to investigate the tunneling of Dirac particles with arbitrary spin directions and also obtain the expected Hawking temperature. Our result provides further evidence for the universality of black hole radiation.
Integrability of Spinning Particle Motion in Higher-Dimensional Rotating Black Hole Spacetimes
NASA Astrophysics Data System (ADS)
Kubizňák, David; Cariglia, Marco
2012-02-01
We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)PRLTAO0031-900710.1103/PhysRevLett.98.061102] on complete integrability of geodesic motion in these spacetimes.
NASA Astrophysics Data System (ADS)
Galeti, H. V. A.; Galvão Gobato, Y.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.
2018-03-01
We have investigated the spin properties of a two-dimensional hole gas (2DHG) formed at the contact layer of a p-type GaAs/AlAs resonant tunneling diode (RTD). We have measured the polarized-resolved photoluminescence of the RTD as a function of bias voltage, laser intensity and external magnetic field up to 15T. By tuning the voltage and the laser intensity, we are able to change the spin-splitting from the 2DHG from almost 0 meV to 5 meV and its polarization degree from - 40% to + 50% at 15T. These results are attributed to changes of the local electric field applied to the two-dimensional gas which affects the valence band and the hole Rashba spin-orbit effect.
Fujimura, Tomomi; Suzuki, Naoto
2010-01-01
We investigated the effects of dynamic information on decoding facial expressions. A dynamic face entailed a change from a neutral to a full-blown expression, whereas a static face included only the full-blown expression. Sixty-eight participants were divided into two groups, the dynamic condition and the static condition. The facial stimuli expressed eight kinds of emotions (excited, happy, calm, sleepy, sad, angry, fearful, and surprised) according to a dimensional perspective. Participants evaluated each facial stimulus using two methods, the Affect Grid (Russell et al, 1989 Personality and Social Psychology 29 497-510) and the forced-choice task, allowing for dimensional and categorical judgment interpretations. For activation ratings in dimensional judgments, the results indicated that dynamic calm faces, low-activation expressions were rated as less activated than static faces. For categorical judgments, dynamic excited, happy, and fearful faces, which are high- and middle-activation expressions, had higher ratings than did those under the static condition. These results suggest that the beneficial effect of dynamic information depends on the emotional properties of facial expressions.
Dynamics and stability of a tethered centrifuge in low earth orbit
NASA Technical Reports Server (NTRS)
Quadrelli, B. M.; Lorenzini, E. C.
1992-01-01
The three-dimensional attitude dynamics of a spaceborne tethered centrifuge for artificial gravity experiments in low earth orbit is analyzed using two different methods. First, the tethered centrifuge is modeled as a dumbbell with a straight viscoelastic tether, point tip-masses, and sophisticated environmental models such as nonspherical gravity, thermal perturbations, and a dynamic atmospheric model. The motion of the centrifuge during spin-up, de-spin, and steady-rotation is then simulated. Second, a continuum model of the tether is developed for analyzing the stability of lateral tether oscillations. Results indicate that the maximum fluctuation about the 1-g radial acceleration level is less than 0.001 g; the time required for spin-up and de-spin is less than one orbit; and lateral oscillations are stable for any practical values of the system parameters.
Deep Neural Network Detects Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.
Nature of magnetization and lateral spin–orbit interaction in gated semiconductor nanowires
NASA Astrophysics Data System (ADS)
Karlsson, H.; Yakimenko, I. I.; Berggren, K.-F.
2018-05-01
Semiconductor nanowires are interesting candidates for realization of spintronics devices. In this paper we study electronic states and effects of lateral spin–orbit coupling (LSOC) in a one-dimensional asymmetrically biased nanowire using the Hartree–Fock method with Dirac interaction. We have shown that spin polarization can be triggered by LSOC at finite source-drain bias,as a result of numerical noise representing a random magnetic field due to wiring or a random background magnetic field by Earth magnetic field, for instance. The electrons spontaneously arrange into spin rows in the wire due to electron interactions leading to a finite spin polarization. The direction of polarization is, however, random at zero source-drain bias. We have found that LSOC has an effect on orientation of spin rows only in the case when source-drain bias is applied.
Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network
NASA Astrophysics Data System (ADS)
Takeda, Y.; Tamate, S.; Yamamoto, Y.; Takesue, H.; Inagaki, T.; Utsunomiya, S.
2018-01-01
We present an experimental scheme of implementing multiple spins in a classical XY model using a non-degenerate optical parametric oscillator (NOPO) network. We built an NOPO network to simulate a one-dimensional XY Hamiltonian with 5000 spins and externally controllable effective temperatures. The XY spin variables in our scheme are mapped onto the phases of multiple NOPO pulses in a single ring cavity and interactions between XY spins are implemented by mutual injections between NOPOs. We show the steady-state distribution of optical phases of such NOPO pulses is equivalent to the Boltzmann distribution of the corresponding XY model. Estimated effective temperatures converged to the setting values, and the estimated temperatures and the mean energy exhibited good agreement with the numerical simulations of the Langevin dynamics of NOPO phases.
Spin Andreev-like Reflection in Metal-Mott Insulator Heterostructures
Al-Hassanieh, K. A.; Rincón, Julián; Alvarez, G.; ...
2015-02-09
Here we used the time-dependent density-matrix renormalization group (tDMRG) to study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single- spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to also be present in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflectionmore » at metal- superconductor interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.« less
Termination of the spin-resolved integer quantum Hall effect
NASA Astrophysics Data System (ADS)
Wong, L. W.; Jiang, H. W.; Palm, E.; Schaff, W. J.
1997-03-01
We report a magnetotransport study of the termination of the spin-resolved integer quantum Hall effect by controlled disorder in a gated GaAs/AlxGa1-xAs heterostructure. We have found that, for a given Nth Landau level, the difference in filling factors of a pair of spin-split resistivity peaks δνN=\\|νN↑-νN↓\\| changes rapidly from one to zero near a critical density nc. Scaling analysis shows that δνN collapses onto a single curve independent of N when plotted against the parameter (n-nc)/nc for five Landau levels. The effect of increasing the Zeeman energy is also examined by tilting the direction of magnetic field relative to the plane of the two-dimensional electron gas. Our experiment suggests the termination of the spin-resolved quantum Hall effect is a phase transition.
NASA Astrophysics Data System (ADS)
Henriksen, Dan; Tifrea, Ionel
2012-02-01
We investigate the dynamic nuclear polarization as it results from the hyperfine coupling between nonequilibrium electronic spins and nuclear spins in semiconductor nanostructures. The natural confinement provided by low dimensional nanostructures is responsible for an efficient nuclear spin - electron spin hyperfine coupling [1] and for a reduced value of the nuclear spin diffusion constant [2]. In the case of optical pumping, the induced nuclear spin polarization is position dependent even in the presence of nuclear spin diffusion. This effect should be measurable via optically induced nuclear magnetic resonance or time-resolved Faraday rotation experiments. We discuss the implications of our calculations for the case of GaAs quantum well structures.[4pt] [1] I. Tifrea and M. E. Flatt'e, Phys. Rev. B 84, 155319 (2011).[0pt] [2] A. Malinowski and R. T. Harley, Solid State Commun. 114, 419 (2000).
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Lilis Elviyanti, Isnaini
2018-04-01
Analysis of relativistic energy and wave function for zero spin particles using Klein Gordon equation was influenced by separable noncentral cylindrical potential was solved by asymptotic iteration method (AIM). By using cylindrical coordinates, the Klein Gordon equation for the case of symmetry spin was reduced to three one-dimensional Schrodinger like equations that were solvable using variable separation method. The relativistic energy was calculated numerically with Matlab software, and the general unnormalized wave function was expressed in hypergeometric terms.
Magnetic Ordering under Strain and Spin-Peierls Dimerization in GeCuO3
NASA Astrophysics Data System (ADS)
Filippetti, Alessio; Fiorentini, Vincenzo
2007-05-01
Studying from first principles the competition between ferromagnetic (FM) and antiferromagnetic (AF) interactions in the charge-transfer-insulator GeCuO3, we predict that a small external pressure should switch the uniform AF ground state to FM, and estimate (using exchange parameters computed as a function of strain) the competing AF couplings and the transition temperature to the dimerized spin-Peierls state. Although idealized as a one-dimensional Heisenberg antiferromagnet, GeCuO3 is found to be influenced by nonideal geometry and side groups.
Kondo necklace model in approximants of Fibonacci chains
NASA Astrophysics Data System (ADS)
Reyes, Daniel; Tarazona, H.; Cuba-Supanta, G.; Landauro, C. V.; Espinoza, R.; Quispe-Marcatoma, J.
2017-11-01
The low energy behavior of the one dimensional Kondo necklace model with structural aperiodicity is studied using a representation for the localized and conduction electron spins, in terms of local Kondo singlet and triplet operators at zero temperature. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. We determine the dependence between the structural aperiodicity modulation and the spin gap in a Fibonacci approximant chain at zero temperature and in the paramagnetic side of the phase diagram.
Spin-split silicon states at step edges of Si(553)-Au
NASA Astrophysics Data System (ADS)
Biedermann, K.; Regensburger, S.; Fauster, Th.; Himpsel, F. J.; Erwin, S. C.
2012-06-01
The quasi-one-dimensional Si(553)-Au surface is investigated with time-resolved two-photon photoemission and laser-based photoemission. Several occupied and unoccupied states inside and outside the bulk band gap of silicon were found near the center of the surface Brillouin zone. A nondispersing unoccupied state 0.62 eV above the Fermi level with a lifetime of 125 fs matches the spin-split silicon step-edge state predicted by density functional theory calculations. Two occupied bands can be associated with the bands calculated for nonpolarized step-edge atoms.
Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors
NASA Astrophysics Data System (ADS)
Pournaghavi, Nezhat; Esmaeilzadeh, Mahdi; Abrishamifar, Adib; Ahmadi, Somaieh
2017-04-01
Regarding the spin field effect transistor (spin FET) challenges such as mismatch effect in spin injection and insufficient spin life time, we propose a silicene based device which can be a promising candidate to overcome some of those problems. Using non-equilibrium Green’s function method, we investigate the spin-dependent conductance in a zigzag silicene nanoribbon connected to two magnetized leads which are supposed to be either in parallel or anti-parallel configurations. For both configurations, a controllable spin current can be obtained when the Rashba effect is present; thus, we can have a spin filter device. In addition, for anti-parallel configuration, in the absence of Rashba effect, there is an intrinsic energy gap in the system (OFF-state); while, in the presence of Rashba effect, electrons with flipped spin can pass through the channel and make the ON-state. The current voltage (I-V) characteristics which can be tuned by changing the gate voltage or Rashba strength, are studied. More importantly, reducing the mismatch conductivity as well as energy consumption make the silicene based spin FET more efficient relative to the spin FET based on two-dimensional electron gas proposed by Datta and Das. Also, we show that, at the same conditions, the current and {{I}\\text{on}}/{{I}\\text{off}} ratio of silicene based spin FET are significantly greater than that of the graphene based one.
Search for a spin-nematic phase in the quasi-one-dimensional frustrated magnet LiCuVO4
NASA Astrophysics Data System (ADS)
Büttgen, N.; Nawa, K.; Fujita, T.; Hagiwara, M.; Kuhns, P.; Prokofiev, A.; Reyes, A. P.; Svistov, L. E.; Yoshimura, K.; Takigawa, M.
2014-10-01
We have performed nuclear magnetic resonance (NMR) experiments on the quasi-one-dimensional frustrated spin-1/2 system LiCuVO4 in magnetic fields H applied along the c axis up to field values near the saturation field Hsat. For the field range Hc2
NASA Astrophysics Data System (ADS)
Kazakov, Alexander; Simion, George; Kolkovsky, Valery; Adamus, Zbigniew; Karczewski, Grzegorz; Wojtowicz, Tomasz; Lyanda-Geller, Yuli; Rokhinson, Leonid
Development of a two-dimensional systems with reconfigurable one-dimensional topological superconductor channels became primary direction in experimental branch of Majorana physics. Such system would allow to probe non-Abelian properties of Majorana quasiparticles and realize the ultimate goal of Majorana research - topological qubit for topologically protected quantum computations. In order to create and exchange Majorana quasiparticles desired system may be spin-full, but fermion doubling should be lifted. These requirements may be fulfilled in domain walls (DW) which are formed during quantum Hall ferromagnet (QHF) transition when two Landau levels with opposite spin polarization become degenerate. We developed a system based on CdMnTe quantum well with engineered placement of Mn ions where exchange interaction and, consequently, QHF transition can be controlled by electrostatic gating. Using electrostatic control of exchange we create conductive channels of DWs which, unlike conventional edge channels, are not chiral and should contain both spin polarizations. We will present results on the formation of isolated DWs of various widths and discuss their transport properties. Department of Defence Office of Naval research Award N000141410339.
Topological nodal-line fermions in spin-orbit metal PbTaSe2
Bian, Guang; Chang, Tay-Rong; Sankar, Raman; ...
2016-02-02
Here we discuss how topological semimetals can support one-dimensional Fermi lines or zero-dimensional Weyl points in momentum space, where the valence and conduction bands touch. While the degeneracy points in Weyl semimetals are robust against any perturbation that preserves translational symmetry, nodal lines require protection by additional crystalline symmetries such as mirror reflection. Here we report, based on a systematic theoretical study and a detailed experimental characterization, the existence of topological nodal-line states in the non-centrosymmetric compound PbTaSe 2 with strong spin-orbit coupling. Remarkably, the spin-orbit nodal lines in PbTaSe 2 are not only protected by the reflection symmetry butmore » also characterized by an integer topological invariant. Our detailed angle-resolved photoemission measurements, first-principles simulations and theoretical topological analysis illustrate the physical mechanism underlying the formation of the topological nodal-line states and associated surface states for the first time, thus paving the way towards exploring the exotic properties of the topological nodal-line fermions in condensed matter systems.« less
Black hole solutions in d = 5 Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Brihaye, Yves; Radu, Eugen
2013-11-01
The five dimensional Einstein-Gauss-Bonnet gravity with a negative cosmological constant becomes, for a special value of the Gauss-Bonnet coupling constant, a Chern-Simons (CS) theory of gravity. In this work we discuss the properties of several different types of black object solutions of this model. Special attention is paid to the case of spinning black holes with equal-magnitude angular momenta which posses a regular horizon of spherical topology. Closed form solutions are obtained in the small angular momentum limit. Nonperturbative solutions are constructed by solving numerically the equations of the model. Apart from that, new exact solutions describing static squashed black holes and black strings are also discussed. The action and global charges of all configurations studied in this work are obtained by using the quasilocal formalism with boundary counterterms generalized for the case of a d = 5 CS theory.
Theory and practice of uncommon molecular electronic configurations.
Gryn'ova, Ganna; Coote, Michelle L; Corminboeuf, Clemence
2015-01-01
The electronic configuration of the molecule is the foundation of its structure and reactivity. The spin state is one of the key characteristics arising from the ordering of electrons within the molecule's set of orbitals. Organic molecules that have open-shell ground states and interesting physicochemical properties, particularly those influencing their spin alignment, are of immense interest within the up-and-coming field of molecular electronics. In this advanced review, we scrutinize various qualitative rules of orbital occupation and spin alignment, viz., the aufbau principle, Hund's multiplicity rule, and dynamic spin polarization concept, through the prism of quantum mechanics. While such rules hold in selected simple cases, in general the spin state of a system depends on a combination of electronic factors that include Coulomb and Pauli repulsion, nuclear attraction, kinetic energy, orbital relaxation, and static correlation. A number of fascinating chemical systems with spin states that fluctuate between triplet and open-shell singlet, and are responsive to irradiation, pH, and other external stimuli, are highlighted. In addition, we outline a range of organic molecules with intriguing non-aufbau orbital configurations. In such quasi-closed-shell systems, the singly occupied molecular orbital (SOMO) is energetically lower than one or more doubly occupied orbitals. As a result, the SOMO is not affected by electron attachment to or removal from the molecule, and the products of such redox processes are polyradicals. These peculiar species possess attractive conductive and magnetic properties, and a number of them that have already been developed into molecular electronics applications are highlighted in this review. WIREs Comput Mol Sci 2015, 5:440-459. doi: 10.1002/wcms.1233 For further resources related to this article, please visit the WIREs website.
Resistively detected NMR line shapes in a quasi-one-dimensional electron system
NASA Astrophysics Data System (ADS)
Fauzi, M. H.; Singha, A.; Sahdan, M. F.; Takahashi, M.; Sato, K.; Nagase, K.; Muralidharan, B.; Hirayama, Y.
2017-06-01
We observe variation in the resistively detected nuclear magnetic resonance (RDNMR) line shapes in quantum Hall breakdown. The breakdown occurs locally in a gate-defined quantum point contact (QPC) region. Of particular interest is the observation of a dispersive line shape occurring when the bulk two-dimensional electron gas (2DEG) set to νb=2 and the QPC filling factor to the vicinity of νQPC=1 , strikingly resemble the dispersive line shape observed on a 2D quantum Hall state. This previously unobserved line shape in a QPC points to a simultaneous occurrence of two hyperfine-mediated spin flip-flop processes within the QPC. Those events give rise to two different sets of nuclei polarized in the opposite direction and positioned at a separate region with different degrees of electronic spin polarization.