Effective action for stochastic partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen
Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less
Low-energy effective action in two-dimensional SQED: a two-loop analysis
NASA Astrophysics Data System (ADS)
Samsonov, I. B.
2017-07-01
We study two-loop quantum corrections to the low-energy effective actions in N=(2,2) and N=(4,4) SQED on the Coulomb branch. In the latter model, the low-energy effective action is described by a generalized Kähler potential which depends on both chiral and twisted chiral superfields. We demonstrate that this generalized Kähler potential is one-loop exact and corresponds to the N=(4,4) sigma-model with torsion presented by Roček, Schoutens and Sevrin [1]. In the N=(2,2) SQED, the effective Kähler potential is not protected against higher-loop quantum corrections. The two-loop quantum corrections to this potential and the corresponding sigma-model metric are explicitly found.
Higgs boson self-coupling from two-loop analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alhendi, H. A.; National Center for Mathematics and Physics, KACST P. O. Box 6086, Riyadh 11442; Barakat, T.
2010-09-01
The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-groupmore » function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.« less
The 1-loop effective potential for the Standard Model in curved spacetime
NASA Astrophysics Data System (ADS)
Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen
2018-06-01
The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.
Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions
NASA Astrophysics Data System (ADS)
Netz, R. R.; Orland, H.
2000-02-01
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level.
One-loop Pfaffians and large-field inflation in string theory
NASA Astrophysics Data System (ADS)
Ruehle, Fabian; Wieck, Clemens
2017-06-01
We study the consistency of large-field inflation in low-energy effective field theories of string theory. In particular, we focus on the stability of Kähler moduli in the particularly interesting case where the non-perturbative superpotential of the Kähler sector explicitly depends on the inflaton field. This situation arises generically due to one-loop corrections to the instanton action. The field dependence of the modulus potential feeds back into the inflationary dynamics, potentially impairing slow roll. We distinguish between world-sheet instantons from Euclidean D-branes, which typically yield polynomial one-loop Pfaffians, and gaugino condensates, which can yield exponential or periodic corrections. In all scenarios successful slow-roll inflation imposes bounds on the magnitude of the one-loop correction, corresponding to constraints on possible compactifications. While we put a certain emphasis on Type IIB constructions with mobile D7-branes, our results seem to apply more generally.
One-loop pseudo-Goldstone masses in the minimal S O (10 ) Higgs model
NASA Astrophysics Data System (ADS)
Gráf, Lukáš; Malinský, Michal; Mede, Timon; Susič, Vasja
2017-04-01
We calculate the prominent perturbative contributions shaping the one-loop scalar spectrum of the minimal renormalizable nonsupersymmetric S O (10 ) Higgs model whose unified gauge symmetry is spontaneously broken by an adjoint scalar. Focusing on its potentially realistic 45 ⊕126 variant in which the rank is reduced by a vacuum expectation value of the 5-index antisymmetric self-dual tensor, we provide a thorough analysis of the corresponding Coleman-Weinberg one-loop effective potential, paying particular attention to the masses of the potentially tachyonic pseudo-Goldstone bosons transforming as (1, 3, 0) and (8, 1, 0) under the standard model (SM) gauge group. The results confirm the assumed existence of extended regions in the parameter space supporting a locally stable SM-like quantum vacuum inaccessible at the tree level. The effective potential tedium is compared to that encountered in the previously studied 45 ⊕16 S O (10 ) Higgs model where the polynomial corrections to the relevant pseudo-Goldstone masses turn out to be easily calculable within a very simplified purely diagrammatic approach.
One loop back reaction on power law inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramo, L.R.; Woodard, R.P.
1999-08-01
We consider quantum-mechanical corrections to a homogeneous, isotropic, and spatially flat geometry whose scale factor expands classically as a general power of the comoving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger [J. Math. Phys. {bold 2}, 407 (1961); {ital Particles, Sources and Fields} (Addison, Wesley, Reading, MA, 1970)] with the Feynman rules recently developed by Iliopoulos {ital et al.} [Nucl. Phys. B {bold 534}, 419 (1998)]. We find no significant effect, in marked contrast to the result obtained by Mukhanov and co-workers [Phys. Rev. Lett.more » {bold 78}, 1624 (1998); Phys. Rev. D {bold 56}, 3248 (1997)] for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov and co-workers to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back reaction. {copyright} {ital 1999} {ital The American Physical Society}« less
Cosmological footprints of loop quantum gravity.
Grain, J; Barrau, A
2009-02-27
The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.
Gauge-invariant effective potential: Equilibrium and nonequilibrium aspects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyanovsky, D.; Brahm, D.; Holman, R.
1996-07-01
We propose a gauge-invariant formulation of the effective potential in terms of a gauge-invariant order parameter, for the Abelian Higgs model. The one-loop contribution at zero and finite temperature is computed explicitly, and the leading terms in the high temperature expansion are obtained. The result is contrasted with the effective potential obtained in several covariant gauge-fixing schemes, and the gauge-invariant quantities that can be reliably extracted from these are identified. It is pointed out that the gauge-invariant effective potential in the one-loop approximation is complex for {ital all} {ital values} of the order parameter between the maximum and the minimummore » of the tree level potential, both at zero and nonzero temperatures. The imaginary part is related to long-wavelength instabilities towards phase separation. We study the real-time dynamics of initial states in the spinodal region, and relate the imaginary part of the effective potential to the growth rate of equal-time gauge-invariant correlation functions in these states. We conjecture that the spinodal instabilities may play a role in nonequilibrium processes {ital inside} the nucleating bubbles if the transition is first order. {copyright} {ital 1996 The American Physical Society.}« less
Loop corrections in double field theory: non-trivial dilaton potentials
NASA Astrophysics Data System (ADS)
Lv, Songlin; Wu, Houwen; Yang, Haitang
2014-10-01
It is believed that the invariance of the generalised diffeomorphisms prevents any non-trivial dilaton potential from double field theory. It is therefore difficult to include loop corrections in the formalism. We show that by redefining a non-local dilaton field, under strong constraint which is necessary to preserve the gauge invariance of double field theory, the theory does permit non-constant dilaton potentials and loop corrections. If the fields have dependence on only one single coordinate, the non-local dilaton is identical to the ordinary one with an additive constant.
Charged string loops in Reissner-Nordström black hole background
NASA Astrophysics Data System (ADS)
Oteev, Tursinbay; Kološ, Martin; Stuchlík, Zdeněk
2018-03-01
We study the motion of current carrying charged string loops in the Reissner-Nordström black hole background combining the gravitational and electromagnetic field. Introducing new electromagnetic interaction between central charge and charged string loop makes the string loop equations of motion to be non-integrable even in the flat spacetime limit, but it can be governed by an effective potential even in the black hole background. We classify different types of the string loop trajectories using effective potential approach, and we compare the innermost stable string loop positions with loci of the charged particle innermost stable orbits. We examine string loop small oscillations around minima of the string loop effective potential, and we plot radial profiles of the string loop oscillation frequencies for both the radial and vertical modes. We construct charged string loop quasi-periodic oscillations model and we compare it with observed data from microquasars GRO 1655-40, XTE 1550-564, and GRS 1915+105. We also study the acceleration of current carrying string loops along the vertical axis and the string loop ejection from RN black hole neighbourhood, taking also into account the electromagnetic interaction.
Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops
NASA Astrophysics Data System (ADS)
Struck, Curtis
2018-05-01
Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.
On-off closed-loop control of vagus nerve stimulation for the adaptation of heart rate.
Ugalde, Hector Romero; Le Rolle, Virginie; Bel, Alain; Bonnet, Jean-Luc; Andreu, David; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I
2014-01-01
Vagus nerve stimulation (VNS) is a potential therapeutic approach in a number of clinical applications. Although VNS is commonly delivered in an open-loop approach, it is now recognized that closed-loop approaches may be necessary to optimize the therapy and minimize side effects of neuro-stimulation devices. In this paper, we describe a prototype system for real-time control of the instantaneous heart rate, working synchronously with the heart period. As a first step, an on-off control method has been integrated. The system is evaluated on one sheep with induced heart failure, showing the interest of the proposed approach.
Automated High-Temperature Hall-Effect Apparatus
NASA Technical Reports Server (NTRS)
Parker, James B.; Zoltan, Leslie D.
1992-01-01
Automated apparatus takes Hall-effect measurements of specimens of thermoelectric materials at temperatures from ambient to 1,200 K using computer control to obtain better resolution of data and more data points about three times as fast as before. Four-probe electrical-resistance measurements taken in 12 electrical and 2 magnetic orientations to characterize specimens at each temperature. Computer acquires data, and controls apparatus via three feedback loops: one for temperature, one for magnetic field, and one for electrical-potential data.
Gaussian effective potential: Quantum mechanics
NASA Astrophysics Data System (ADS)
Stevenson, P. M.
1984-10-01
We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.
Bounce inflation cosmology with Standard Model Higgs boson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Youping; Huang, Fa Peng; Zhang, Xinmin
It is of great interest to connect cosmology in the early universe to the Standard Model of particle physics. In this paper, we try to construct a bounce inflation model with the standard model Higgs boson, where the one loop correction is taken into account in the effective potential of Higgs field. In this model, a Galileon term has been introduced to eliminate the ghost mode when bounce happens. Moreover, due to the fact that the Fermion loop correction can make part of the Higgs potential negative, one naturally obtains a large equation of state(EoS) parameter in the contracting phase,more » which can eliminate the anisotropy problem. After the bounce, the model can drive the universe into the standard higgs inflation phase, which can generate nearly scale-invariant power spectrum.« less
Tritium β decay in chiral effective field theory
Baroni, A.; Girlanda, L.; Kievsky, A.; ...
2016-08-18
We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritiummore » $$\\beta$$-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory ($$\\chi$$ EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schroedinger equation with two- and three-nucleon potentials corresponding to either $$\\chi$$ EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. Furthermore, we also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.« less
Effective field theory of integrating out sfermions in the MSSM: Complete one-loop analysis
NASA Astrophysics Data System (ADS)
Huo, Ran
2018-04-01
We apply the covariant derivative expansion of the Coleman-Weinberg potential to the sfermion sector in the minimal supersymmetric standard model, matching it to the relevant dimension-6 operators in the standard model effective field theory at one-loop level. Emphasis is paid to nondegenerate large soft supersymmetry breaking mass squares, and the most general analytical Wilson coefficients are obtained for all pure bosonic dimension-6 operators. In addition to the non-logarithmic contributions, they generally have another logarithmic contributions. Various numerical results are shown, in particular the constraints in the large Xt branch reproducing the 125 GeV Higgs mass can be pushed to high values to almost completely probe the low stop mass region at the future FCC-ee experiment, even given the Higgs mass calculation uncertainty.
NASA Technical Reports Server (NTRS)
Gary, G. A.; Moore, R. L.; Porter, J. G.; Falconer, D. A.
1999-01-01
We report further results on the magnetic origins of coronal heating found from registering coronal images with photospheric vector magnetograms. For two complementary active regions, we use computed potential field lines to examine the global non-potentiality of bright extended coronal loops and the three-dimensional structure of the magnetic field at their feet, and assess the role of these magnetic conditions in the strong coronal heating in these loops. The two active regions are complementary, in that one is globally potential and the other is globally nonpotential, while each is predominantly bipolar, and each has an island of included polarity in its trailing polarity domain. We find the following: (1) The brightest main-arch loops of the globally potential active region are brighter than the brightest main- arch loops of the globally strongly nonpotential active region. (2) In each active region, only a few of the mainarch magnetic loops are strongly heated, and these are all rooted near the island. (3) The end of each main-arch bright loop apparently bifurcates above the island, so that it embraces the island and the magnetic null above the island. (4) At any one time, there are other main-arch magnetic loops that embrace the island in the same manner as do the bright loops but that are not selected for strong coronal heating. (5) There is continual microflaring in sheared core fields around the island, but the main-arch bright loops show little response to these microflares. From these observational and modeling results we draw the following conclusions: (1) The heating of the main-arch bright loops arises mainly from conditions at the island end of these loops and not from their global non-potentiality. (2) There is, at most, only a loose coupling between the coronal heating in the bright loops of the main arch and the coronal heating in the sheared core fields at their feet, although in both the heating is driven by conditions/events in and around the island. (3) The main-arch bright loops are likely to be heated via reconnection driven at the magnetic null over the island. The details of how and where (along the null line) the reconnection is driven determine which of the split-end loops are selected for strong heating. (4) The null does not appear to be directly involved in the heating of the sheared core fields or in the heating of an extended loop rooted in the island. Rather, these all appear to be heated by microflares in the sheared core field.
One-loop effects of a heavy Higgs boson: A functional approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittmaier, S.; Grosse-Knetter, C.
1995-11-01
We integrate out the Higgs boson in the electroweak standard model at one loop, assuming that it is very heavy. We construct a low-energy effective Lagrangian, which parametrizes the one-loop effect of the heavy Higgs boson at {O}({ital M}{sup O}{sup -}{sub {ital H}}). Instead of applying conventional diagrammatical techniques, we integrate out the Higgs boson directly in the path integral. {copyright} 1995 American Institute of Physics
Dual-circuit, multiple-effect refrigeration system and method
DeVault, Robert C.
1995-01-01
A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.
Invariant measure of the one-loop quantum gravitational backreaction on inflation
NASA Astrophysics Data System (ADS)
Miao, S. P.; Tsamis, N. C.; Woodard, R. P.
2017-06-01
We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.
Phase structure of the Polyakov-quark-meson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.
2007-10-01
The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N{sub f}-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect ofmore » the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.« less
Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice
NASA Astrophysics Data System (ADS)
Guan, Ji-Huan; Zhang, Yan-Yang; Lu, Wei-Er; Xia, Yang; Li, Shu-Shen
2018-05-01
We theoretically investigate the barrier tunneling in the 3D model of the hyperhoneycomb lattice, which is a nodal-line semimetal with a Dirac loop at zero energy. In the presence of a rectangular potential, the scattering amplitudes for different injecting states around the nodal loop are calculated, by using analytical treatments of the effective model, as well as numerical simulations of the tight binding model. In the low energy regime, states with remarkable transmissions are only concentrated in a small range around the loop plane. When the momentum of the injecting electron is coplanar with the nodal loop, nearly perfect transmissions can occur for a large range of injecting azimuthal angles if the potential is not high. For higher potential energies, the transmission shows a resonant oscillation with the potential, but still with peaks being perfect transmissions that do not decay with the potential width. These strikingly robust transports of the loop-nodal semimetal can be approximately explained by a momentum dependent Dirac Hamiltonian.
NASA Astrophysics Data System (ADS)
Cooper, Fred; Dawson, John F.
2016-02-01
We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields ϕi(x , t) in the presence of external noise ηi(x , t) , namely (∂t - ν∇2) ϕ - F [ ϕ ] = η, as well as chemical reaction annihilation processes obtained by applying the many-body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies.
Towards cosmological dynamics from loop quantum gravity
NASA Astrophysics Data System (ADS)
Li, Bao-Fei; Singh, Parampreet; Wang, Anzhong
2018-04-01
We present a systematic study of the cosmological dynamics resulting from an effective Hamiltonian, recently derived in loop quantum gravity using Thiemann's regularization and earlier obtained in loop quantum cosmology (LQC) by keeping the Lorentzian term explicit in the Hamiltonian constraint. We show that quantum geometric effects result in higher than quadratic corrections in energy density in comparison to LQC, causing a nonsingular bounce. Dynamics can be described by the Hamilton or Friedmann-Raychaudhuri equations, but the map between the two descriptions is not one to one. A careful analysis resolves the tension on symmetric versus asymmetric bounce in this model, showing that the bounce must be asymmetric and symmetric bounce is physically inconsistent, in contrast to the standard LQC. In addition, the current observations only allow a scenario where the prebounce branch is asymptotically de Sitter, similar to a quantization of the Schwarzschild interior in LQC, and the postbounce branch yields the classical general relativity. For a quadratic potential, we find that a slow-roll inflation generically happens after the bounce, which is quite similar to what happens in LQC.
Coil Migration, Malposition, Stretching and Retrieval
Abe, T.; Hirohata, M.; Tanaka, N.; Uchiyama, Y.; Morimitsu, H.; Kojima, K.; Hayabuchi, N.
2000-01-01
Summary In this educational program for complicated coil placements, we report several cases of coil malposition, migration, and retrieval. We emphasize that a decrease in the expected one-to-one motion of the coil is the earliest sign of a possible imminent complication, and the over the core wire technique with a fixed-loop snare (Gooseneck microsnare) is a very effective potential solution for elongated coil retrieval. PMID:20667237
One-loop renormalization of a gravity-scalar system
NASA Astrophysics Data System (ADS)
Park, I. Y.
2017-05-01
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröb, Markus B.; Verdaguer, Enric, E-mail: mfroeb@itp.uni-leipzig.de, E-mail: enric.verdaguer@ub.edu
We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients b and b' appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds tomore » a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.« less
Extending the Universal One-Loop Effective Action: heavy-light coefficients
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...
2017-08-16
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
Extending the Universal One-Loop Effective Action: heavy-light coefficients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong
The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less
NASA Astrophysics Data System (ADS)
Ohta, N.; Percacci, R.; Pereira, A. D.
2018-05-01
We compute the one-loop divergences in a theory of gravity with a Lagrangian of the general form f (R ,Rμ νRμ ν), on an Einstein background. We also establish that the one-loop effective action is invariant under a duality that consists of changing certain parameters in the relation between the metric and the quantum fluctuation field. Finally, we discuss the unimodular version of such a theory and establish its equivalence at one-loop order with the general case.
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.
Li, Yaohang; Rata, Ionel; Chiu, See-wing; Jakobsson, Eric
2010-07-20
Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of approximately 20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set.
Improving predicted protein loop structure ranking using a Pareto-optimality consensus method
2010-01-01
Background Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction. Results We have developed a Pareto Optimal Consensus (POC) method, which is a consensus model ranking approach to integrate multiple knowledge- or physics-based scoring functions. The procedure of identifying the models of best quality in a model set includes: 1) identifying the models at the Pareto optimal front with respect to a set of scoring functions, and 2) ranking them based on the fuzzy dominance relationship to the rest of the models. We apply the POC method to a large number of decoy sets for loops of 4- to 12-residue in length using a functional space composed of several carefully-selected scoring functions: Rosetta, DOPE, DDFIRE, OPLS-AA, and a triplet backbone dihedral potential developed in our lab. Our computational results show that the sets of Pareto-optimal decoys, which are typically composed of ~20% or less of the overall decoys in a set, have a good coverage of the best or near-best decoys in more than 99% of the loop targets. Compared to the individual scoring function yielding best selection accuracy in the decoy sets, the POC method yields 23%, 37%, and 64% less false positives in distinguishing the native conformation, indentifying a near-native model (RMSD < 0.5A from the native) as top-ranked, and selecting at least one near-native model in the top-5-ranked models, respectively. Similar effectiveness of the POC method is also found in the decoy sets from membrane protein loops. Furthermore, the POC method outperforms the other popularly-used consensus strategies in model ranking, such as rank-by-number, rank-by-rank, rank-by-vote, and regression-based methods. Conclusions By integrating multiple knowledge- and physics-based scoring functions based on Pareto optimality and fuzzy dominance, the POC method is effective in distinguishing the best loop models from the other ones within a loop model set. PMID:20642859
Higgs boson mass in the standard model at two-loop order and beyond
Martin, Stephen P.; Robertson, David G.
2014-10-01
We calculate the mass of the Higgs boson in the standard model in terms of the underlying Lagrangian parameters at complete 2-loop order with leading 3-loop corrections. A computer program implementing the results is provided. The program also computes and minimizes the standard model effective potential in Landau gauge at 2-loop order with leading 3-loop corrections.
Design and analysis of control system for VCSEL of atomic interference magnetometer
NASA Astrophysics Data System (ADS)
Zhang, Xiao-nan; Sun, Xiao-jie; Kou, Jun; Yang, Feng; Li, Jie; Ren, Zhang; Wei, Zong-kang
2016-11-01
Magnetic field detection is an important means of deep space environment exploration. Benefit from simple structure and low power consumption, atomic interference magnetometer become one of the most potential detector payloads. Vertical Cavity Surface Emitting Laser (VCSEL) is usually used as a light source in atomic interference magnetometer and its frequency stability directly affects the stability and sensitivity of magnetometer. In this paper, closed-loop control strategy of VCSEL was designed and analysis, the controller parameters were selected and the feedback error algorithm was optimized as well. According to the results of experiments that were performed on the hardware-in-the-loop simulation platform, the designed closed-loop control system is reasonable and it is able to effectively improve the laser frequency stability during the actual work of the magnetometer.
Probing the smearing effect by a pointlike graviton in the plane-wave matrix model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Bum-Hoon; Nam, Siyoung; Shin, Hyeonjoon
2010-08-15
We investigate the interaction between a flat membrane and pointlike graviton in the plane-wave matrix model. The one-loop effective potential in the large-distance limit is computed and is shown to be of r{sup -3} type where r is the distance between two objects. This type of interaction has been interpreted as the one incorporating the smearing effect due to the configuration of a flat membrane in a plane-wave background. Our results support this interpretation and provide more evidence about it.
Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study
Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.
2007-01-01
The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979
Refined counting of necklaces in one-loop N=4 SYM
NASA Astrophysics Data System (ADS)
Suzuki, Ryo
2017-06-01
We compute the grand partition function of N=4 SYM at one-loop in the SU(2) sector with general chemical potentials, extending the results of Pólya's theorem. We make use of finite group theory, applicable to all orders of perturbative 1 /N c expansion. We show that only the planar terms contribute to the grand partition function, which is therefore equal to the grand partition function of an ensemble of {XXX}_{1/2} spin chains. We discuss how Hagedorn temperature changes on the complex plane of chemical potentials.
Polymer diffusion in quenched disorder: A renormalization group approach
NASA Astrophysics Data System (ADS)
Ebert, Ute
1996-01-01
We study the diffusion of polymers through quenched short-range correlated random media by renormalization group (RG) methods, which allow us to derive universal predictions in the limit of long chains and weak disorder. We take local quenched random potentials with second moment v and the excluded-volume interaction u of the chain segments into account. We show that our model contains the relevant features of polymer diffusion in random media in the RG sense if we focus on the local entropic effects rather than on the topological constraints of a quenched random medium. The dynamic generating functional and the general structure of its perturbation expansion in u and v are derived. The distribution functions for the center-of-mass motion and the internal modes of one chain and for the correlation of the center of mass motions of two chains are calculated to one-loop order. The results allow for sufficient cross-checks to have trust in the one-loop renormalizability of the model. The general structure as well as the one-loop results of the integrated RG flow of the parameters are discussed. Universal results can be found for the effective static interaction w≔u-v≥0 and for small effective disorder couplingbar v(l) on the intermediate length scale l. As a first physical prediction from our analysis, we determine the general nonlinear scaling form of the chain diffusion constant and evaluate it explicitly as[Figure not available: see fulltext.] forbar v(l) ≪ 1.
Tweaking one-loop determinants in AdS3
NASA Astrophysics Data System (ADS)
Castro, Alejandra; Keeler, Cynthia; Szepietowski, Phillip
2017-10-01
We revisit the subject of one-loop determinants in AdS3 gravity via the quasi-normal mode method. Our goal is to evaluate a one-loop determinant with chiral boundary conditions for the metric field; chirality is achieved by imposing Dirichlet boundary conditions on certain components while others satisfy Neumann. Along the way, we give a generalization of the quasinormal mode method for stationary (non-static) thermal backgrounds, and propose a treatment for Neumann boundary conditions in this framework. We evaluate the graviton one-loop determinant on the Euclidean BTZ background with parity-violating boundary conditions (CSS), and find excellent agreement with the dual warped CFT. We also discuss a more general falloff in AdS3 that is related to two dimensional quantum gravity in lightcone gauge. The behavior of the ghost fields under both sets of boundary conditions is novel and we discuss potential interpretations.
Loop corrections to primordial fluctuations from inflationary phase transitions
NASA Astrophysics Data System (ADS)
Wu, Yi-Peng; Yokoyama, Jun'ichi
2018-05-01
We investigate loop corrections to the primordial fluctuations in the single-field inflationary paradigm from spectator fields that experience a smooth transition of their vacuum expectation values. We show that when the phase transition involves a classical evolution effectively driven by a negative mass term from the potential, important corrections to the curvature perturbation can be generated by field perturbations that are frozen outside the horizon by the time of the phase transition, yet the correction to tensor perturbation is naturally suppressed by the spatial derivative couplings between spectator fields and graviton. At one-loop level, the dominant channel for the production of primordial fluctuations comes from a pair-scattering of free spectator fields that decay into the curvature perturbations, and this decay process is only sensitive to field masses comparable to the Hubble scale of inflation.
Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei
2018-04-01
We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.
String loops in the field of braneworld spherically symmetric black holes and naked singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchlík, Z.; Kološ, M., E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: martin.kolos@fpf.slu.cz
We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops canmore » be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor γ ∼ 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.« less
Loop corrections to primordial non-Gaussianity
NASA Astrophysics Data System (ADS)
Boran, Sibel; Kahya, E. O.
2018-02-01
We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.
Mixed heavy–light matching in the Universal One-Loop Effective Action
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...
2016-11-10
Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. In this study we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure ofmore » the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.« less
Hardware-in-the-Loop Co-simulation of Distribution Grid for Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotger-Griful, Sergi; Chatzivasileiadis, Spyros; Jacobsen, Rune H.
2016-06-20
In modern power systems, co-simulation is proposed as an enabler for analyzing the interactions between disparate systems. This paper introduces the co-simulation platform Virtual Grid Integration Laboratory (VirGIL) including Hardware-in-the-Loop testing, and demonstrates its potential to assess demand response strategies. VirGIL is based on a modular architecture using the Functional Mock-up Interface industrial standard to integrate new simulators. VirGIL combines state-of-the-art simulators in power systems, communications, buildings, and control. In this work, VirGIL is extended with a Hardware-in-the-Loop component to control the ventilation system of a real 12-story building in Denmark. VirGIL capabilities are illustrated in three scenarios: load following,more » primary reserves and load following aggregation. Experimental results show that the system can track one minute changing signals and it can provide primary reserves for up-regulation. Furthermore, the potential of aggregating several ventilation systems is evaluated considering the impact at distribution grid level and the communications protocol effect.« less
Wong, Pak Kin; Yu, Fuqu; Shahangian, Arash; Cheng, Genhong; Sun, Ren; Ho, Chih-Ming
2008-01-01
A mixture of drugs is often more effective than using a single effector. However, it is extremely challenging to identify potent drug combinations by trial and error because of the large number of possible combinations and the inherent complexity of the underlying biological network. With a closed-loop optimization modality, we experimentally demonstrate effective searching for potent drug combinations for controlling cellular functions through a large parametric space. Only tens of iterations out of one hundred thousand possible trials were needed to determine a potent combination of drugs for inhibiting vesicular stomatitis virus infection of NIH 3T3 fibroblasts. In addition, the drug combination reduced the required dosage by ≈10-fold compared with individual drugs. In another example, a potent mixture was identified in thirty iterations out of a possible million combinations of six cytokines that regulate the activity of nuclear factor kappa B in 293T cells. The closed-loop optimization approach possesses the potential of being an effective approach for manipulating a wide class of biological systems. PMID:18356295
Kasnakoğlu, Coşku
2016-01-01
Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds.
Kasnakoğlu, Coşku
2016-01-01
Some level of uncertainty is unavoidable in acquiring the mass, geometry parameters and stability derivatives of an aerial vehicle. In certain instances tiny perturbations of these could potentially cause considerable variations in flight characteristics. This research considers the impact of varying these parameters altogether. This is a generalization of examining the effects of particular parameters on selected modes present in existing literature. Conventional autopilot designs commonly assume that each flight channel is independent and develop single-input single-output (SISO) controllers for every one, that are utilized in parallel for actual flight. It is demonstrated that an attitude controller built like this can function flawlessly on separate nominal cases, but can become unstable with a perturbation no more than 2%. Two robust multi-input multi-output (MIMO) design strategies, specifically loop-shaping and μ-synthesis are outlined as potential substitutes and are observed to handle large parametric changes of 30% while preserving decent performance. Duplicating the loop-shaping procedure for the outer loop, a complete flight control system is formed. It is confirmed through software-in-the-loop (SIL) verifications utilizing blade element theory (BET) that the autopilot is capable of navigation and landing exposed to high parametric variations and powerful winds. PMID:27783706
Universality hypothesis breakdown at one-loop order
NASA Astrophysics Data System (ADS)
Carvalho, P. R. S.
2018-05-01
We probe the universality hypothesis by analytically computing the at least two-loop corrections to the critical exponents for q -deformed O (N ) self-interacting λ ϕ4 scalar field theories through six distinct and independent field-theoretic renormalization group methods and ɛ -expansion techniques. We show that the effect of q deformation on the one-loop corrections to the q -deformed critical exponents is null, so the universality hypothesis is broken down at this loop order. Such an effect emerges only at the two-loop and higher levels, and the validity of the universality hypothesis is restored. The q -deformed critical exponents obtained through the six methods are the same and, furthermore, reduce to their nondeformed values in the appropriated limit.
Lustig, B; Lin, N H; Smith, S M; Jernigan, R L; Jeang, K T
1995-01-01
A prototypic hammerhead ribozyme has three helices that surround an asymmetrical central core loop. We have mutagenized a hammerhead type ribozyme. In agreement with previous studies, progressive removal of stem-loop II from a three stemmed ribozyme showed that this region is not absolutely critical for catalysis. However, complete elimination of stem II and its loop did reduce, but did not eliminate, function. In a stem-loop II-deleted ribozyme, activity was best preserved when a purine, preferably a G, was present at position 10.1. This G contributed to catalysis irregardless of its role as either one part of a canonical pair with a C residue at 11.1 or a lone nucleotide with C (11.1) deleted. Computational methods using lattices generated 87 million three-dimensional chain forms for a stem-loop II-deleted RNA complex that preserved one potential G.C base pair at positions 10.1 and 11.1. This exhaustive set of chain forms included one major class of structures with G(10.1) being spatially proximal to the GUCX cleavage site of the substrate strand. Strong correlations were observed between colinear arrangement of stems I and III, constraints of base-pairing in the central core loop, and one particular placement of G(10.1) relative to the cleavage site. Our calculations of a stem-loop II-deleted ribozyme indicate that without needing to invoke any other constraints, the inherent asymmetry in the lengths of the two loop strands (3 nt in one and 7 nt in the other) that compose the core and flank G10.1-C11.1 stipulated strongly this particular G placement. This suggests that the hammerhead ribozyme maintains an asymmetry in its internal loop for a necessary structure/function reason. Images PMID:7567466
Unexpected Extra-renal Effects of Loop Diuretics in the Preterm Neonate
Cotton, Robert; Suarez, Sandra; Reese, Jeff
2012-01-01
The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, due to its actions on the ubiquitous NKCC1 co-transporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus, and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through the inhibitory neurotransmitter, GABA. Conclusion The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents since the range of their effects may be broader than the single action sought by the prescribing physician. PMID:22536874
THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmelz, J. T.; Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu
We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated frommore » the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.« less
Running with rugby balls: bulk renormalization of codimension-2 branes
NASA Astrophysics Data System (ADS)
Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.
2013-01-01
We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
A new insight into the phase transition in the early Universe with two Higgs doublets
NASA Astrophysics Data System (ADS)
Bernon, Jérémy; Bian, Ligong; Jiang, Yun
2018-05-01
We study the electroweak phase transition in the alignment limit of the CP-conserving two-Higgs-doublet model (2HDM) of Type I and Type II. The effective potential is evaluated at one-loop, where the thermal potential includes Daisy corrections and is reliably approximated by means of a sum of Bessel functions. Both 1-stage and 2-stage electroweak phase transitions are shown to be possible, depending on the pattern of the vacuum development as the Universe cools down. For the 1-stage case focused on in this paper, we analyze the properties of phase transition and discover that the field value of the electroweak symmetry breaking vacuum at the critical temperature at which the first order phase transition occurs is largely correlated with the vacuum depth of the 1-loop potential at zero temperature. We demonstrate that a strong first order electroweak phase transition (SFOEWPT) in the 2HDM is achievable and establish benchmark scenarios leading to different testable signatures at colliders. In addition, we verify that an enhanced triple Higgs coupling (including loop corrections) is a typical feature of the SFOPT driven by the additional doublet. As a result, SFOEWPT might be able to be probed at the LHC and future lepton colliders through Higgs pair production.
NASA Astrophysics Data System (ADS)
Maelger, J.; Reinosa, U.; Serreau, J.
2018-04-01
We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.
RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability.
Chang, Emily Yun-Chia; Novoa, Carolina A; Aristizabal, Maria J; Coulombe, Yan; Segovia, Romulo; Chaturvedi, Richa; Shen, Yaoqing; Keong, Christelle; Tam, Annie S; Jones, Steven J M; Masson, Jean-Yves; Kobor, Michael S; Stirling, Peter C
2017-12-04
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1 Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability. © 2017 Chang et al.
The AdS/CFT Correspondence: Classical, Quantum, and Thermodynamical Aspects
NASA Astrophysics Data System (ADS)
Young, Donovan
2007-06-01
Certain aspects of the AdS/CFT correspondence are studied in detail. We investigate the one-loop mass shift to certain two-impurity string states in light-cone string field theory on a plane wave background. We find that there exist logarithmic divergences in the sums over intermediate mode numbers which cancel between the cubic Hamiltonian and quartic "contact term". We argue that generically, every order in intermediate state impurities contributes to the mass shift at leading perturbative order. The same mass shift is also computed using an improved 3-string vertex proposed by Dobashi and Yoneya. The result is found to agree with gauge theory at leading order and is close but not quite in agreement at subleading order. We extend the analysis to include discrete light-cone quantization, considering states with up to three units of p+. We study the (apparently) first-order phase transition in the weakly coupled plane-wave matrix model at finite temperature. We analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator to three loop order. We show that the phase transition is indeed of first order. We also compute the 2-loop correction to the Hagedorn temperature. Finally, correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N=4 super Yang-Mills theory by summing planar ladder diagrams. The correlation functions are also computed in the strong-coupling limit using string theory; the result is found to agree with the extrapolation of the planar ladders. The result is related to similar correlators of 1/2 BPS loops by a simple re-scaling of the coupling constant, discovered by Drukker for the case of the 1/4 BPS loop VEV.
Evaluating Mathematics Achievement of Middle School Students in a Looping Environment
ERIC Educational Resources Information Center
Franz, Dana Pomykal; Thompson, Nicole L.; Fuller, Bob; Hare, R. Dwight; Miller, Nicole C.; Walker, Jacob
2010-01-01
Looping, a school structure where students remain with one group of teachers for two or more school years, is used by middle schools to meet the diverse needs of young adolescents. However, little research exists on how looping effects the academic performance of students. This study was designed to determine if looping influenced middle school…
CP violation at one loop in the polarization-independent chargino production in e+e- collisions
NASA Astrophysics Data System (ADS)
Rolbiecki, K.; Kalinowski, J.
2007-12-01
Recently Osland and Vereshagin noticed, based on sample calculations of some box diagrams, that in unpolarized e+e- collisions CP-odd effects in the nondiagonal chargino-pair production process are generated at one loop. Here we perform a full one-loop analysis of these effects and point out that in some cases the neglected vertex and self-energy contributions may play a dominant role. We also show that CP asymmetries in chargino production are sensitive not only to the phase of μ parameter in the chargino sector but also to the phase of stop trilinear coupling At.
1D Cole-Cole inversion of TEM transients influenced by induced polarization
NASA Astrophysics Data System (ADS)
Seidel, Marc; Tezkan, Bülent
2017-03-01
Effects of induced polarization (IP) can have an impact on time-domain electromagnetic measurements (TEM) and may lead to sign reversals in the recorded transients. To study these IP effects on TEM data, a new 1D inversion algorithm was developed for both, the central-loop and the separate-loop TEM configurations using the Cole-Cole relaxation model. 1D forward calculations for a homogeneous half-space were conducted with the aim of analyzing the impacts of the Cole-Cole parameters on TEM transients with respect to possible sign reversals. The forward modelings showed that the variation of different parameters have comparable effects on the TEM transients. This leads to an increasing number of equivalent models as a result of inversion calculations. Subsequently, 1D inversions of synthetic data were performed to study the potentials and limitations of the algorithm regarding the resolution of the Cole-Cole parameters. In order to achieve optimal inversion results, it was essential to error-weight the data points in the direct vicinity of sign reversals. The obtained findings were eventually adopted on the inversion of real field data which contained considerable IP signatures such as sign reversals. One field data set was recorded at the Nakyn kimberlite field in Western Yakutiya, Russia, in the central-loop configuration. Another field data set originates from a waste site in Cologne, Germany, and was measured utilizing the separate-loop configuration.
Tappura, K
2001-08-15
An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.
Dimensional Transmutation by Monopole Condensation in QCD
NASA Astrophysics Data System (ADS)
Cho, Y. M.
2015-01-01
The dimensional transmutation by the monopole condensation in QCD is reviewed. Using Abelian projection of the gauge potential which projects out the monopole potential gauge independently, we we show that there are two types of gluons: the color neutral binding gluons which plays the role of the confining agent and the colored valence gluons which become confined prisoners. With this we calculate the one-loop QCD effective potential and show the monopole condensation becomes the true vacuum of QCD. We propose to test the existence of two types of gluons experimentally by re-analyzing the existing gluon jets data.
One-loop matching and running with covariant derivative expansion
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2018-01-24
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-knownmore » matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.« less
One-loop matching and running with covariant derivative expansion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these “mixed” one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-knownmore » matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of “integrating out” heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.« less
One-loop matching and running with covariant derivative expansion
NASA Astrophysics Data System (ADS)
Henning, Brian; Lu, Xiaochuan; Murayama, Hitoshi
2018-01-01
We develop tools for performing effective field theory (EFT) calculations in a manifestly gauge-covariant fashion. We clarify how functional methods account for one-loop diagrams resulting from the exchange of both heavy and light fields, as some confusion has recently arisen in the literature. To efficiently evaluate functional traces containing these "mixed" one-loop terms, we develop a new covariant derivative expansion (CDE) technique that is capable of evaluating a much wider class of traces than previous methods. The technique is detailed in an appendix, so that it can be read independently from the rest of this work. We review the well-known matching procedure to one-loop order with functional methods. What we add to this story is showing how to isolate one-loop terms coming from diagrams involving only heavy propagators from diagrams with mixed heavy and light propagators. This is done using a non-local effective action, which physically connects to the notion of "integrating out" heavy fields. Lastly, we show how to use a CDE to do running analyses in EFTs, i.e. to obtain the anomalous dimension matrix. We demonstrate the methodologies by several explicit example calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de
2016-01-01
The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there ismore » an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.« less
Confronting effective models for deconfinement in dense quark matter with lattice data
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Brauner, Tomáš; Naylor, William R.
2015-12-01
Ab initio numerical simulations of the thermodynamics of dense quark matter remain a challenge. Apart from the infamous sign problem, lattice methods have to deal with finite volume and discretization effects as well as with the necessity to introduce sources for symmetry-breaking order parameters. We study these artifacts in the Polyakov-loop-extended Nambu-Jona-Lasinio (PNJL) model and compare its predictions to existing lattice data for cold and dense two-color matter with two flavors of Wilson quarks. To achieve even qualitative agreement with lattice data requires the introduction of two novel elements in the model: (i) explicit chiral symmetry breaking in the effective contact four-fermion interaction, referred to as the chiral twist, and (ii) renormalization of the Polyakov loop. The feedback of the dense medium to the gauge sector is modeled by a chemical-potential-dependent scale in the Polyakov-loop potential. In contrast to previously used analytical Ansätze, we determine its dependence on the chemical potential from lattice data for the expectation value of the Polyakov loop. Finally, we propose adding a two-derivative operator to our effective model. This term acts as an additional source of explicit chiral symmetry breaking, mimicking an analogous term in the lattice Wilson action.
One-loop perturbative coupling of A and A⊙ through the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi
2017-06-01
We study the one-loop effective action defined by the chiral overlap operator in the four-dimensional lattice formulation of chiral gauge theories by Grabowska and Kaplan. In the tree-level continuum limit, the left-handed component of the fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to A_\\star, which is given by the gradient flow of A with infinite flow time. In this paper, we show that the continuum limit of the one-loop effective action contains local interaction terms between A and A_\\star, which do not generally vanish even if the gauge representation of the fermion is anomaly free. We argue that the presence of such interaction terms can be regarded as undesired gauge symmetry-breaking effects in the formulation.
Abi-Ghanem, Josephine; Rabin, Clémence; Porrini, Massimiliano; Dausse, Eric; Toulmé, Jean-Jacques; Gabelica, Valérie
2017-10-06
In the RNA realm, non-Watson-Crick base pairs are abundant and can affect both the RNA 3D structure and its function. Here, we investigated the formation of RNA kissing complexes in which the loop-loop interaction is modulated by non-Watson-Crick pairs. Mass spectrometry, surface plasmon resonance, and UV-melting experiments show that the G⋅U wobble base pair favors kissing complex formation only when placed at specific positions. We tried to rationalize this effect by molecular modeling, including molecular mechanics Poisson-Boltzmann surface area (MMPBSA) thermodynamics calculations and PBSA calculations of the electrostatic potential surfaces. Modeling reveals that the G⋅U stabilization is due to a specific electrostatic environment defined by the base pairs of the entire loop-loop region. The loop is not symmetric, and therefore the identity and position of each base pair matters. Predicting and visualizing the electrostatic environment created by a given sequence can help to design specific kissing complexes with high affinity, for potential therapeutic, nanotechnology or analytical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Topological insulating phases from two-dimensional nodal loop semimetals
NASA Astrophysics Data System (ADS)
Li, Linhu; Araújo, Miguel A. N.
2016-10-01
Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass gap terms. The resulting Dirac loop anomalous Hall insulator's Chern number is the phase-winding number of the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and quantum spin Hall insulators to a magnetic field's vector potential are also studied both in weak- and strong-field regimes, as well as the edge states in a ribbon geometry.
Unexpected extra-renal effects of loop diuretics in the preterm neonate.
Cotton, Robert; Suarez, Sandra; Reese, Jeff
2012-08-01
The loop diuretics furosemide and bumetanide are commonly used in neonatal intensive care units (NICUs). Furosemide, because of its actions on the ubiquitous Na(+) -K(+) -2Cl(-) isoform cotransporter and its promotion of prostanoid production and release, also has non-diuretic effects on vascular smooth muscle, airways, the ductus arteriosus and theoretically the gastrointestinal tract. Loop diuretics also affect the central nervous system through modulation of the GABA-A chloride channel. The loop diuretics have a variety of biological effects that are potentially harmful as well as beneficial. Care should be taken with the use of these agents because the range of their effects may be broader than the single action sought by the prescribing physician. © 2012 The Author(s)/Acta Paediatrica © 2012 Foundation Acta Paediatrica.
The strainrange conversion principle for treating cumulative fatigue damage in the creep range
NASA Technical Reports Server (NTRS)
Manson, S. S.
1983-01-01
A formula is derived for combining effects of successive hysteresis loops in the creep range of materials when one loop has excess tensile creep, while the other contains excess compressive creep. The resultant effect resembles single loops involving balanced tensile and compressive creep. The attempt to use the Interaction Damage Rule as a tool in combining loops of non-equal size and complex strainrange content has led to important new concepts useful in future studies of creep-fatigue. It turns out that the Interaction Damage Rule is basically an expression of how a set of hysteresis loops involving only single generic strains can combine to produce the same micromechanistic damage as the loop containing the combined strainranges which it analyzes. Making use of the underlying concept of Strainrange Partitioning that only the strainrange content of a hysteresis loop governs fatigue life, not order of introducing strainranges, a rational derivation of the Interaction Damage Rule is provided, showing also how it can effectively be used to synthesize independent loops and determine both damaging and healing effects.
Gas Foil Bearing Misalignment and Unbalance Effects
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2008-01-01
The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground-based microturbines have demonstrated histories of successful long-term operation using GFBs (Heshmat et al., 2000). Small aircraft propulsion engines, helicopter gas turbines, and high-speed electric motors are potential future applications.
Closed-Loop Neuromorphic Benchmarks
Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris
2015-01-01
Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820
Two formalisms, one renormalized stress-energy tensor
NASA Astrophysics Data System (ADS)
Barceló, C.; Carballo, R.; Garay, L. J.
2012-04-01
We explicitly compare the structure of the renormalized stress-energy tensor of a massless scalar field in a (1+1) curved spacetime as obtained by two different strategies: normal-mode construction of the field operator and one-loop effective action. We pay special attention to where and how the information related to the choice of vacuum state in both formalisms is encoded. By establishing a clear translation map between both procedures, we show that these two potentially different renormalized stress-energy tensors are actually equal, when using vacuum-state choices related by this map. One specific aim of the analysis is to facilitate the comparison of results regarding semiclassical effects in gravitational collapse as obtained within these different formalisms.
Minimally doubled fermions at one loop
NASA Astrophysics Data System (ADS)
Capitani, Stefano; Weber, Johannes; Wittig, Hartmut
2009-10-01
Minimally doubled fermions have been proposed as a cost-effective realization of chiral symmetry at non-zero lattice spacing. Using lattice perturbation theory at one loop, we study their renormalization properties. Specifically, we investigate the consequences of the breaking of hyper-cubic symmetry, which is a typical feature of this class of fermionic discretizations. Our results for the quark self-energy indicate that the four-momentum undergoes a renormalization which is linearly divergent. We also compute renormalization factors for quark bilinears, construct the conserved vector and axial-vector currents and verify that at one loop the renormalization factors of the latter are equal to one.
Grzetic, Douglas J; Delaney, Kris T; Fredrickson, Glenn H
2018-05-28
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ̃) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor Sk and the dielectric function ϵ^(k) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters B AA , B AB , and B BB , which then determine χ̃. The one-loop theory not only enables the quantitative prediction of χ̃ but also provides useful insight into the dependence of χ̃ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ϵ^(k) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ̃N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
NASA Astrophysics Data System (ADS)
Grzetic, Douglas J.; Delaney, Kris T.; Fredrickson, Glenn H.
2018-05-01
We derive the effective Flory-Huggins parameter in polarizable polymeric systems, within a recently introduced polarizable field theory framework. The incorporation of bead polarizabilities in the model self-consistently embeds dielectric response, as well as van der Waals interactions. The latter generate a χ parameter (denoted χ ˜ ) between any two species with polarizability contrast. Using one-loop perturbation theory, we compute corrections to the structure factor S (k ) and the dielectric function ɛ ^ (k ) for a polarizable binary homopolymer blend in the one-phase region of the phase diagram. The electrostatic corrections to S(k) can be entirely accounted for by a renormalization of the excluded volume parameter B into three van der Waals-corrected parameters BAA, BAB, and BBB, which then determine χ ˜ . The one-loop theory not only enables the quantitative prediction of χ ˜ but also provides useful insight into the dependence of χ ˜ on the electrostatic environment (for example, its sensitivity to electrostatic screening). The unapproximated polarizable field theory is amenable to direct simulation via complex Langevin sampling, which we employ here to test the validity of the one-loop results. From simulations of S(k) and ɛ ^ (k ) for a system of polarizable homopolymers, we find that the one-loop theory is best suited to high concentrations, where it performs very well. Finally, we measure χ ˜ N in simulations of a polarizable diblock copolymer melt and obtain excellent agreement with the one-loop theory. These constitute the first fully fluctuating simulations conducted within the polarizable field theory framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ning; Shen, Tielong; Kurtz, Richard
The properties of nano-scale interstitial dislocation loops under the coupling effect of stress and temperature are studied using atomistic simulation methods and experiments. The decomposition of a loop by the emission of smaller loops is identified as one of the major mechanisms to release the localized stress induced by the coupling effect, which is validated by the TEM observations. The classical conservation law of Burgers vector cannot be applied during such decomposition process. The dislocation network is formed from the decomposed loops, which may initiate the irradiation creep much earlier than expected through the mechanism of climb-controlled glide of dislocations.
Single-scale renormalisation group improvement of multi-scale effective potentials
NASA Astrophysics Data System (ADS)
Chataignier, Leonardo; Prokopec, Tomislav; Schmidt, Michael G.; Świeżewska, Bogumiła
2018-03-01
We present a new method for renormalisation group improvement of the effective potential of a quantum field theory with an arbitrary number of scalar fields. The method amounts to solving the renormalisation group equation for the effective potential with the boundary conditions chosen on the hypersurface where quantum corrections vanish. This hypersurface is defined through a suitable choice of a field-dependent value for the renormalisation scale. The method can be applied to any order in perturbation theory and it is a generalisation of the standard procedure valid for the one-field case. In our method, however, the choice of the renormalisation scale does not eliminate individual logarithmic terms but rather the entire loop corrections to the effective potential. It allows us to evaluate the improved effective potential for arbitrary values of the scalar fields using the tree-level potential with running coupling constants as long as they remain perturbative. This opens the possibility of studying various applications which require an analysis of multi-field effective potentials across different energy scales. In particular, the issue of stability of the scalar potential can be easily studied beyond tree level.
On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure
Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo
2018-02-01
The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less
On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo
The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less
NASA Astrophysics Data System (ADS)
Elizaga Navascués, Beatriz; Martín de Blas, Daniel; Mena Marugán, Guillermo A.
2018-02-01
Loop quantum cosmology has recently been applied in order to extend the analysis of primordial perturbations to the Planck era and discuss the possible effects of quantum geometry on the cosmic microwave background. Two approaches to loop quantum cosmology with admissible ultraviolet behavior leading to predictions that are compatible with observations are the so-called hybrid and dressed metric approaches. In spite of their similarities and relations, we show in this work that the effective equations that they provide for the evolution of the tensor and scalar perturbations are somewhat different. When backreaction is neglected, the discrepancy appears only in the time-dependent mass term of the corresponding field equations. We explain the origin of this difference, arising from the distinct quantization procedures. Besides, given the privileged role that the big bounce plays in loop quantum cosmology, e.g. as a natural instant of time to set initial conditions for the perturbations, we also analyze the positivity of the time-dependent mass when this bounce occurs. We prove that the mass of the tensor perturbations is positive in the hybrid approach when the kinetic contribution to the energy density of the inflaton dominates over its potential, as well as for a considerably large sector of backgrounds around that situation, while this mass is always nonpositive in the dressed metric approach. Similar results are demonstrated for the scalar perturbations in a sector of background solutions that includes the kinetically dominated ones; namely, the mass then is positive for the hybrid approach, whereas it typically becomes negative in the dressed metric case. More precisely, this last statement is strictly valid when the potential is quadratic for values of the inflaton mass that are phenomenologically favored.
One-loop quantum gravity repulsion in the early Universe.
Broda, Bogusław
2011-03-11
Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.
Adams, Scott D; Kouzani, Abbas Z; Tye, Susannah J; Bennet, Kevin E; Berk, Michael
2018-02-13
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
NASA Astrophysics Data System (ADS)
Cohen, Timothy; Craig, Nathaniel; Giudice, Gian F.; McCullough, Matthew
2018-05-01
We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.
Logan, Gordon D; Crump, Matthew J C
2009-10-01
Everyone knows that attention to the details disrupts skilled performance, but little empirical evidence documents this fact. We show that attention to the hands disrupts skilled typewriting. We had skilled typists type words preceded by cues that told them to type only the letters assigned to one hand or to type all of the letters. Cuing the hands disrupted performance markedly, slowing typing and increasing the error rate (Experiment 1); these deleterious effects were observed even when no keystrokes were actually inhibited (Experiment 3). However, cuing the same letters with colors was not disruptive (Experiment 2). We account for the disruption with a hierarchical control model, in which an inner loop controls the hands and an outer loop controls what is typed. Typing letters using only one hand requires the outer loop to monitor the inner loop's output; the outer loop slows inner-loop cycle time to increase the likelihood of inhibiting responses with the unwanted hand. This produces the disruption.
Joosten, Simon A; Landry, Shane A; Sands, Scott A; Terrill, Philip I; Mann, Dwayne; Andara, Christopher; Skuza, Elizabeth; Turton, Anthony; Berger, Philip; Hamilton, Garun S; Edwards, Bradley A
2017-11-01
Obstructive sleep apnoea (OSA) is typically worse in the supine versus lateral sleeping position. One potential factor driving this observation is a decrease in lung volume in the supine position which is expected by theory to increase a key OSA pathogenic factor: dynamic ventilatory control instability (i.e. loop gain). We aimed to quantify dynamic loop gain in OSA patients in the lateral and supine positions, and to explore the relationship between change in dynamic loop gain and change in lung volume with position. Data from 20 patients enrolled in previous studies on the effect of body position on OSA pathogenesis were retrospectively analysed. Dynamic loop gain was calculated from routinely collected polysomnographic signals using a previously validated mathematical model. Lung volumes were measured in the awake state with a nitrogen washout technique. Dynamic loop gain was significantly higher in the supine than in the lateral position (0.77 ± 0.15 vs 0.68 ± 0.14, P = 0.012). Supine functional residual capacity (FRC) was significantly lower than lateral FRC (81.0 ± 15.4% vs 87.3 ± 18.4% of the seated FRC, P = 0.021). The reduced FRC we observed on moving to the supine position was predicted by theory to increase loop gain by 10.2 (0.6, 17.1)%, a value similar to the observed increase of 8.4 (-1.5, 31.0)%. Dynamic loop gain increased by a small but statistically significant amount when moving from the lateral to supine position and this may, in part, contribute to the worsening of OSA in the supine sleeping position. © 2017 Asian Pacific Society of Respirology.
Diederichsen, Søren Zöga; Haugan, Ketil Jørgen; Køber, Lars; Højberg, Søren; Brandes, Axel; Kronborg, Christian; Graff, Claus; Holst, Anders Gaarsdal; Nielsen, Jonas Bille; Krieger, Derk; Svendsen, Jesper Hastrup
2017-05-01
Atrial fibrillation (AF) increases the rate of stroke 5-fold, and AF-related strokes have a poorer prognosis compared with non-AF-related strokes. Atrial fibrillation and stroke constitute an intensifying challenge, and health care organizations are calling for awareness on the topic. Previous studies have demonstrated that AF is often asymptomatic and consequently undiagnosed. The implantable loop recorder (ILR) allows for continuous, long-term electrocardiographic monitoring with daily transmission of arrhythmia information, potentially leading to improvement in AF detection and stroke prevention. The LOOP study is an investigator-initiated, randomized controlled trial with 6,000 participants randomized 3:1 to a control group or to receive an ILR with continuous electrocardiographic monitoring. Participants are identified from Danish registries and are eligible for inclusion if 70years or older and previously diagnosed as having at least one of the following conditions: hypertension, diabetes mellitus, heart failure, or previous stroke. Exclusion criteria include history of AF and current oral anticoagulation treatment. When an AF episode lasting ≥6minutes is detected, oral anticoagulation will be initiated according to guidelines. Expected follow-up is 4years. The primary end point is time to stroke or systemic embolism, whereas secondary end points include time to AF diagnosis and death. The LOOP study will evaluate health benefits and cost-effectiveness of ILR as a screening tool for AF to prevent stroke in patients at risk. Secondary objectives include identification of risk factors for the development of AF and characterization of arrhythmias in the population. The trial holds the potential to influence the future of stroke prevention. Copyright © 2017 Elsevier Inc. All rights reserved.
Loop Diuretics in the Treatment of Hypertension.
Malha, Line; Mann, Samuel J
2016-04-01
Loop diuretics are not recommended in current hypertension guidelines largely due to the lack of outcome data. Nevertheless, they have been shown to lower blood pressure and to offer potential advantages over thiazide-type diuretics. Torsemide offers advantages of longer duration of action and once daily dosing (vs. furosemide and bumetanide) and more reliable bioavailability (vs. furosemide). Studies show that the previously employed high doses of thiazide-type diuretics lower BP more than furosemide. Loop diuretics appear to have a preferable side effect profile (less hyponatremia, hypokalemia, and possibly less glucose intolerance). Studies comparing efficacy and side effect profiles of loop diuretics with the lower, currently widely prescribed, thiazide doses are needed. Research is needed to fill gaps in knowledge and common misconceptions about loop diuretic use in hypertension and to determine their rightful place in the antihypertensive arsenal.
Loop-corrected Virasoro symmetry of 4D quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, T.; Kapec, D.; Raclariu, A.
Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .
Loop-corrected Virasoro symmetry of 4D quantum gravity
He, T.; Kapec, D.; Raclariu, A.; ...
2017-08-16
Recently a boundary energy-momentum tensor T zz has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an “anomaly” which is one-loop exact, T zz generates a Virasoro action on the 2D celestial sphere at null infinity. Here we show by explicit construction that the effects of the IR divergent part of the anomaly can be eliminated by a one-loop renormalization that shifts T zz .
On the Occurrence of Thermal Nonequilibrium in Coronal Loops
NASA Astrophysics Data System (ADS)
Froment, C.; Auchère, F.; Mikić, Z.; Aulanier, G.; Bocchialini, K.; Buchlin, E.; Solomon, J.; Soubrié, E.
2018-03-01
Long-period EUV pulsations, recently discovered to be common in active regions, are understood to be the coronal manifestation of thermal nonequilibrium (TNE). The active regions previously studied with EIT/Solar and Heliospheric Observatory and AIA/SDO indicated that long-period intensity pulsations are localized in only one or two loop bundles. The basic idea of this study is to understand why. For this purpose, we tested the response of different loop systems, using different magnetic configurations, to different stratifications and strengths of the heating. We present an extensive parameter-space study using 1D hydrodynamic simulations (1020 in total) and conclude that the occurrence of TNE requires specific combinations of parameters. Our study shows that the TNE cycles are confined to specific ranges in parameter space. This naturally explains why only some loops undergo constant periodic pulsations over several days: since the loop geometry and the heating properties generally vary from one loop to another in an active region, only the ones in which these parameters are compatible exhibit TNE cycles. Furthermore, these parameters (heating and geometry) are likely to vary significantly over the duration of a cycle, which potentially limits the possibilities of periodic behavior. This study also confirms that long-period intensity pulsations and coronal rain are two aspects of the same phenomenon: both phenomena can occur for similar heating conditions and can appear simultaneously in the simulations.
The complete two-loop integrated jet thrust distribution in soft-collinear effective theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Manteuffel, Andreas; Schabinger, Robert M.; Zhu, Hua Xing
2014-03-01
In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e+e- annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, themore » sum of all global terms can be expressed in terms of classical polylogarithms. Our explicit two-loop calculation enables us to clarify the small r picture discussed in earlier work. In particular, we show that the resummation of the logarithms of r that appear in the previously uncomputed part of the two-loop integrated jet thrust distribution is inextricably linked to the resummation of the non-global logarithms. Furthermore, we find that the logarithms of r which cannot be absorbed into the non-global logarithms in the way advocated in earlier work have coefficients fixed by the two-loop cusp anomalous dimension. We also show that in many cases one can straightforwardly predict potentially large logarithmic contributions to the integrated jet thrust distribution at L loops by making use of analogous contributions to the simpler integrated hemisphere soft function.« less
Some new results for the one-loop mass correction to the compactified λϕ4 theory
NASA Astrophysics Data System (ADS)
Fucci, Guglielmo; Kirsten, Klaus
2018-03-01
In this work, we consider the one-loop effective action of a self-interacting λϕ4 field propagating in a D dimensional Euclidean space endowed with d ≤ D compact dimensions. The main purpose of this paper is to compute the corrections to the mass of the field due to the presence of the compactified dimensions. Although the results of the one-loop correction to the mass of a λϕ4 field are very well known for compactified toroidal spaces, where the field obeys periodic boundary conditions, similar results do not appear to be readily available for cases in which the scalar field is subject to Dirichlet and Neumann boundary conditions. We apply the results of the one-loop mass correction to the study of the critical temperature in Ginzburg-Landau models.
Nuclear chiral axial currents and applications to few-nucleon systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroni, Alessandro
This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A completemore » set of contact terms for the axial charge up to the relevant order in the power counting is constructed. The third part of this Thesis discusses two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used to constrain the single low-energy constant entering the axial current; (ii) the calculation of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed previous predictions obtained in phenomenological approaches. These latter studies have played an important role in the analysis and interpretation of experiments at the Sudbury Neutrino Observatory.« less
Kinetics of interior loop formation in semiflexible chains.
Hyeon, Changbong; Thirumalai, D
2006-03-14
Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.
Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads
NASA Technical Reports Server (NTRS)
Kottapalli, Sesi B. R.
2010-01-01
Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.
Effective field theory dimensional regularization
NASA Astrophysics Data System (ADS)
Lehmann, Dirk; Prézeau, Gary
2002-01-01
A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagating heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is discussed.
Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review
Wang, Ping; Means, Nicholas; Shekhawat, Dushyant; ...
2015-09-24
Chemical-looping technology is one of the promising CO 2 capture technologies. It generates a CO 2 enriched flue gas, which will greatly benefit CO 2 capture, utilization or sequestration. Both chemical-looping combustion (CLC) and chemical-looping gasification (CLG) have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter) and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coalmore » may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA) has been widely used for the development of oxygen carriers (e.g., oxide reactivity). Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU). The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.« less
Thermal phase transition with full 2-loop effective potential
NASA Astrophysics Data System (ADS)
Laine, M.; Meyer, M.; Nardini, G.
2017-07-01
Theories with extended Higgs sectors constructed in view of cosmological ramifications (gravitational wave signal, baryogenesis, dark matter) are often faced with conflicting requirements for their couplings; in particular those influencing the strength of a phase transition may be large. Large couplings compromise perturbative studies, as well as the high-temperature expansion that is invoked in dimensionally reduced lattice investigations. With the example of the inert doublet extension of the Standard Model (IDM), we show how a resummed 2-loop effective potential can be computed without a high-T expansion, and use the result to scrutinize its accuracy. With the exception of Tc, which is sensitive to contributions from heavy modes, the high-T expansion is found to perform well. 2-loop corrections weaken the transition in IDM, but they are moderate, whereby a strong transition remains an option.
Kähler-driven tribrid inflation
NASA Astrophysics Data System (ADS)
Antusch, Stefan; Nolde, David
2012-11-01
We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.
OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn
With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and movemore » toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.« less
Higgs effective potential in a perturbed Robertson-Walker background
NASA Astrophysics Data System (ADS)
Maroto, Antonio L.; Prada, Francisco
2014-12-01
We calculate the one-loop effective potential of a scalar field in a Robertson-Walker background with scalar metric perturbations. A complete set of orthonormal solutions of the perturbed equations is obtained by using the adiabatic approximation for comoving observers. After analyzing the problem of renormalization in inhomogeneous backgrounds, we get the explicit contribution of metric perturbations to the effective potential. We apply these results to the Standard Model Higgs field and evaluate the effects of metric perturbations on the Higgs mass and on its vacuum expectation value. Space-time variations are found, which are proportional to the gravitational slip parameter, with a typical amplitude of the order of Δ ϕ /ϕ ≃10-11 on cosmological scales. We also discuss possible astrophysical signatures in the Solar System and in the Milky Way that could open new possibilities to explore the symmetry breaking sector of the electroweak interactions.
Quantum properties of affine-metric gravity with the cosmological term
NASA Astrophysics Data System (ADS)
Baurov, A. Yu; Pronin, P. I.; Stepanyantz, K. V.
2018-04-01
The paper contains analysis of the one-loop effective action for affine-metric gravity of the Hilbert–Einstein type with the cosmological term. We discuss different approaches to the calculation of the effective action, which depends on two independent variables, namely, the metric tensor and the affine connection. In the one-loop approximation we explain how the effective action can be obtained, if, at the first step of the calculation, the metric tensor is integrated out. It is demonstrated that the result is the same as in the case when one starts by integrating out the connection.
Design and verification of large-moment transmitter loops for geophysical applications
NASA Astrophysics Data System (ADS)
Sternberg, Ben K.; Dvorak, Steven L.; Feng, Wanjie
2017-01-01
In this paper we discuss the modeling, design and verification of large-moment transmitter (TX) loops for geophysical applications. We first develop two equivalent circuit models for TX loops. We show that the equivalent inductance can be predicted using one of two empirical formulas. The stray capacitance of the loop is then calculated using the measured self-resonant frequency and the loop inductance. We model the losses associated with both the skin effect and the dissipation factor in both of these equivalent circuits. We find that the two equivalent circuit models produce the same results provided that the dissipation factor is small. Next we compare the measured input impedances for three TX loops that were constructed with different wire configurations with the equivalent circuit model. We found excellent agreement between the measured and simulated results after adjusting the dissipation factor. Since the skin effect and dissipation factor yield good agreement with measurements, the proximity effect is negligible in the three TX loops that we tested. We found that the effects of the dissipation factor dominated those of the skin effect when the wires were relatively close together. When the wires were widely separated, then the skin effect was the dominant loss mechanism. We also found that loops with wider wire separations exhibited higher self-resonant frequencies and better high-frequency performance.
Genericness of inflation in isotropic loop quantum cosmology.
Date, Ghanashyam; Hossain, Golam Mortuza
2005-01-14
Nonperturbative corrections from loop quantum cosmology (LQC) to the scalar matter sector are already known to imply inflation. We prove that the LQC modified scalar field generates exponential inflation in the small scale factor regime, for all positive definite potentials, independent of initial conditions and independent of ambiguity parameters. For positive semidefinite potentials it is always possible to choose, without fine-tuning, a value of one of the ambiguity parameters such that exponential inflation results, provided zeros of the potential are approached at most as a power law in the scale factor. In conjunction with the generic occurrence of bounce at small volumes, particle horizon is absent, thus eliminating the horizon problem of the standard big bang model.
Singularities in loop quantum cosmology.
Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David
2008-12-19
We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.
The January 2015 Repressurization of ISS ATCS Loop B - Analysis Limitations and Concerns
NASA Technical Reports Server (NTRS)
Ungar, Eugene; Rankin, J. Gary; Schaff, Mary; Figueroa, Marcelino
2015-01-01
In January 2013 a false ammonia leak alarm resulted in the shutdown and partial depressurization of one of the two International Space Station (ISS) External Active Thermal Control System (EATCS) loops. The depressurization resulted in a vapor bubble of 18 liters in warm parts of the stagnant loop. To repressurize the loop and regain system operation, liquid would have to be moved from the Ammonia Tank Assembly (ATA) into the loop. This resulted in the possibility of moving cold (as low as -30 C) ammonia into the water-filled Internal Active Thermal Control System (IATCS) interface heat exchangers. Before moving forward, the freezing potential of the repressurization was evaluated through analysis - using both a Thermal Desktop SINDA/FLUINT model and hand calculations. The models yielded very different results, but both models indicated that heat exchanger freezing was not an issue. Therefore, the repressurization proceeded. The presentation describes the physical situation of the EATCS prior to repressurization and discusses the potential limits and pitfalls of the repressurization. The pre-repressurization analytical models and their results are discussed. The successful repressurization is describled and the results of a post-event model assessment is detailed.
Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory
NASA Astrophysics Data System (ADS)
Chen, Guang-Hong; Wu, Yong-Shi
2002-02-01
A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents νm and βk, whose values are determined to be 1/4 and 1/2, respectively, at mean-field level.
Equation of state of the one- and three-dimensional Bose-Bose gases
NASA Astrophysics Data System (ADS)
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
Detection of no-model input-output pairs in closed-loop systems.
Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio
2017-11-01
The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
String-inspired supergravity model at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillard, M.K.; Papadopoulos, A.; Pierce, D.M.
1992-03-15
We study a prototype supergravity model from superstrings, with three generations of matter fields in the untwisted sector, nonperturbatively induced supersymmetry breaking and including threshold corrections in conformity with modular invariance. The scale degeneracy of the vacuum is lifted at the one-loop level, allowing a determination of the fundamental parameters of the effective low-energy theory.
Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair
2014-06-01
Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Mileant, A.; Simon, M.
1986-01-01
When a digital phase-locked loop with a long loop update time tracks a signal with high Doppler, the demodualtion losses due to frequency mismatch can become very significant. One way of reducing these Doppler-related losses is to compensate for the Doppler effect using some kind of frequency-rate estimator. The performance of the fixed-window least-squares estimator and the Kalman filter is investigated; several Doppler compensating techniques are proposed. It is shown that the variance of the frequency estimator can be made as small as desired, and with this, the Doppler effect can be effectively compensated. The remaining demodulation losses due to phase jitter in the loop can be less than 0.1 dB.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
A minimal approach to the scattering of physical massless bosons
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Luo, Hui
2018-05-01
Tree and loop level scattering amplitudes which involve physical massless bosons are derived directly from physical constraints such as locality, symmetry and unitarity, bypassing path integral constructions. Amplitudes can be projected onto a minimal basis of kinematic factors through linear algebra, by employing four dimensional spinor helicity methods or at its most general using projection techniques. The linear algebra analysis is closely related to amplitude relations, especially the Bern-Carrasco-Johansson relations for gluon amplitudes and the Kawai-Lewellen-Tye relations between gluons and graviton amplitudes. Projection techniques are known to reduce the computation of loop amplitudes with spinning particles to scalar integrals. Unitarity, locality and integration-by-parts identities can then be used to fix complete tree and loop amplitudes efficiently. The loop amplitudes follow algorithmically from the trees. A number of proof-of-concept examples are presented. These include the planar four point two-loop amplitude in pure Yang-Mills theory as well as a range of one loop amplitudes with internal and external scalars, gluons and gravitons. Several interesting features of the results are highlighted, such as the vanishing of certain basis coefficients for gluon and graviton amplitudes. Effective field theories are naturally and efficiently included into the framework. Dimensional regularisation is employed throughout; different regularisation schemes are worked out explicitly. The presented methods appear most powerful in non-supersymmetric theories in cases with relatively few legs, but with potentially many loops. For instance, in the introduced approach iterated unitarity cuts of four point amplitudes for non-supersymmetric gauge and gravity theories can be computed by matrix multiplication, generalising the so-called rung-rule of maximally supersymmetric theories. The philosophy of the approach to kinematics also leads to a technique to control colour quantum numbers of scattering amplitudes with matter, especially efficient in the adjoint and fundamental representations.
Probing deconfinement in a chiral effective model with Polyakov loop at imaginary chemical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Kenji; Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502; Skokov, Vladimir
2011-10-01
The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-deconfinement transition. We point out that the confined phase is characterized by a cos3{mu}{sub I}/T dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase this dependence is given by cos{mu}{sub I}/T and accompanied by a cusp structure induced by the Z(3) transition. We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop potential U. Furthermore, we find that by changing themore » four fermion coupling constant G{sub s}, the location of the critical end point of the deconfinement transition can be moved into the real chemical potential region. We propose a new parameter characterizing the confinement-deconfinement transition.« less
Loop quantum corrected Einstein Yang-Mills black holes
NASA Astrophysics Data System (ADS)
Protter, Mason; DeBenedictis, Andrew
2018-05-01
In this paper, we study the homogeneous interiors of black holes possessing SU(2) Yang-Mills fields subject to corrections inspired by loop quantum gravity. The systems studied possess both magnetic and induced electric Yang-Mills fields. We consider the system of equations both with and without Wilson loop corrections to the Yang-Mills potential. The structure of the Yang-Mills Hamiltonian, along with the restriction to homogeneity, allows for an anomaly-free effective quantization. In particular, we study the bounce which replaces the classical singularity and the behavior of the Yang-Mills fields in the quantum corrected interior, which possesses topology R ×S2 . Beyond the bounce, the magnitude of the Yang-Mills electric field asymptotically grows monotonically. This results in an ever-expanding R sector even though the two-sphere volume is asymptotically constant. The results are similar with and without Wilson loop corrections on the Yang-Mills potential.
Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO
NASA Astrophysics Data System (ADS)
Aschwanden, M. J.
2013-12-01
One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.
NASA Technical Reports Server (NTRS)
Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This
Debellemaniere, Eden; Chambon, Stanislas; Pinaud, Clemence; Thorey, Valentin; Dehaene, David; Léger, Damien; Chennaoui, Mounir; Arnal, Pierrick J.; Galtier, Mathieu N.
2018-01-01
Recent research has shown that auditory closed-loop stimulation can enhance sleep slow oscillations (SO) to improve N3 sleep quality and cognition. Previous studies have been conducted in lab environments. The present study aimed to validate and assess the performance of a novel ambulatory wireless dry-EEG device (WDD), for auditory closed-loop stimulation of SO during N3 sleep at home. The performance of the WDD to detect N3 sleep automatically and to send auditory closed-loop stimulation on SO were tested on 20 young healthy subjects who slept with both the WDD and a miniaturized polysomnography (part 1) in both stimulated and sham nights within a double blind, randomized and crossover design. The effects of auditory closed-loop stimulation on delta power increase were assessed after one and 10 nights of stimulation on an observational pilot study in the home environment including 90 middle-aged subjects (part 2).The first part, aimed at assessing the quality of the WDD as compared to a polysomnograph, showed that the sensitivity and specificity to automatically detect N3 sleep in real-time were 0.70 and 0.90, respectively. The stimulation accuracy of the SO ascending-phase targeting was 45 ± 52°. The second part of the study, conducted in the home environment, showed that the stimulation protocol induced an increase of 43.9% of delta power in the 4 s window following the first stimulation (including evoked potentials and SO entrainment effect). The increase of SO response to auditory stimulation remained at the same level after 10 consecutive nights. The WDD shows good performances to automatically detect in real-time N3 sleep and to send auditory closed-loop stimulation on SO accurately. These stimulation increased the SO amplitude during N3 sleep without any adaptation effect after 10 consecutive nights. This tool provides new perspectives to figure out novel sleep EEG biomarkers in longitudinal studies and can be interesting to conduct broad studies on the effects of auditory stimulation during sleep. PMID:29568267
Pion decay constant and the {rho}-meson mass at finite temperature in hidden local symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harada, M.; Shibata, A.
1997-06-01
We study the temperature dependence of the pion decay constant and {rho}-meson mass in the hidden local symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of the {rho} meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay constant and the {rho}-meson contribution slightly decreases the critical temperature. The {rho}-meson pole mass increases as T{sup 4}/m{sub {rho}}{sup 2} at low temperature, dominated by the pion-loop effect. At high temperature, although the pion-loop effect decreases the {rho}-meson mass, the {rho}-loop contribution overcomesmore » the pion-loop contribution and the {rho}-meson mass increases with temperature. We also show that the conventional parameter a is stable as the temperature increases. {copyright} {ital 1997} {ital The American Physical Society}« less
Competition and quality in health care markets: a differential-game approach.
Brekke, Kurt R; Cellini, Roberto; Siciliani, Luigi; Straume, Odd Rune
2010-07-01
We investigate the effect of competition on quality in health care markets with regulated prices taking a differential game approach, in which quality is a stock variable. Using a Hotelling framework, we derive the open-loop solution (health care providers set the optimal investment plan at the initial period) and the feedback closed-loop solution (providers move investments in response to the dynamics of the states). Under the closed-loop solution competition is more intense in the sense that providers observe quality in each period and base their investment on this information. If the marginal provision cost is constant, the open-loop and closed-loop solutions coincide, and the results are similar to the ones obtained by static models. If the marginal provision cost is increasing, investment and quality are lower in the closed-loop solution (when competition is more intense). In this case, static models tend to exaggerate the positive effect of competition on quality.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-04-21
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-01-01
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892
Effect of orientation of prismatic dislocation loops on interaction with free surfaces in BCC iron
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-12-01
The prismatic loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, shape, size, orientation and depth of the loop in the foil, they can escape to the free surface creating denuded loop-free zones and thus invalidating TEM observations. In our previous studies we described a simple general method to determine the critical depth and the critical stress to move prismatic dislocation loops. The critical depths can be further used to correct measurements of the loop density by TEM. Here, we use this procedure to compare 〈100〉 loops and 1/2 〈111〉 loops in body-centered cubic (BCC) iron. The influences of the interatomic potential and the loop orientation are studied in detail. The difference between interstitial and vacancy type loop is also investigated.
Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cale, James; Johnson, Brian; Dall'Anese, Emiliano
Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.
Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments
Cale, James; Johnson, Brian; Dall'Anese, Emiliano; ...
2018-03-30
Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.
Active site loop dynamics of a class IIa fructose 1,6-bisphosphate aldolase from M. tuberculosis
Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D
2014-01-01
Class II fructose 1,6-bisphosphate aldolases (FBA; E.C. 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff-base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs has been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies on class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation/deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI/DHAP bound form of the enzyme and determined the X-ray structure of MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information plus site-directed mutagenesis and kinetic studies conducted on a series of residues within the active-site loop revealed that E169 facilitates a water mediated deprotonation/protonation step of the MtFBA reaction mechanism. Also, secondary isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form. PMID:23298222
Pegan, Scott D; Rukseree, Kamolchanok; Capodagli, Glenn C; Baker, Erica A; Krasnykh, Olga; Franzblau, Scott G; Mesecar, Andrew D
2013-02-05
Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation-deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation-protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegan, Scott D.; Rukseree, Kamolchanok; Capodagli, Glenn C.
The class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprises one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported,more » the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Furthermore, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.« less
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2012-09-01
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)], 10.1140/epje/i2002-10159-0. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρb ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρb ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ _s^*=√{2ρ _b/(π ℓ _B)}, where ℓB = 7 Å is the Bjerrum length. In the case of weak surface charges σ _s≪ σ _s^* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ _s^*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ _s>σ _s^*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ _s≫ σ _s^*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.
Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
Buyukdagli, Sahin; Achim, C V; Ala-Nissila, T
2012-09-14
Electrostatic correlation effects in inhomogeneous symmetric electrolytes are investigated within a previously developed electrostatic self-consistent theory [R. R. Netz and H. Orland, Eur. Phys. J. E 11, 301 (2003)]. To this aim, we introduce two computational approaches that allow to solve the self-consistent equations beyond the loop expansion. The first method is based on a perturbative Green's function technique, and the second one is an extension of a previously introduced semiclassical approximation for single dielectric interfaces to the case of slit nanopores. Both approaches can handle the case of dielectrically discontinuous boundaries where the one-loop theory is known to fail. By comparing the theoretical results obtained from these schemes with the results of the Monte Carlo simulations that we ran for ions at neutral single dielectric interfaces, we first show that the weak coupling Debye-Huckel theory remains quantitatively accurate up to the bulk ion density ρ(b) ≃ 0.01 M, whereas the self-consistent theory exhibits a good quantitative accuracy up to ρ(b) ≃ 0.2 M, thus improving the accuracy of the Debye-Huckel theory by one order of magnitude in ionic strength. Furthermore, we compare the predictions of the self-consistent theory with previous Monte Carlo simulation data for charged dielectric interfaces and show that the proposed approaches can also accurately handle the correlation effects induced by the surface charge in a parameter regime where the mean-field result significantly deviates from the Monte Carlo data. Then, we derive from the perturbative self-consistent scheme the one-loop theory of asymmetrically partitioned salt systems around a dielectrically homogeneous charged surface. It is shown that correlation effects originate in these systems from a competition between the salt screening loss at the interface driving the ions to the bulk region, and the interfacial counterion screening excess attracting them towards the surface. This competition can be quantified in terms of the characteristic surface charge σ(s)*=√(2ρ(b)/(πl(B)), where l(B) = 7 Å is the Bjerrum length. In the case of weak surface charges σ(s)≪σ(s)* where counterions form a diffuse layer, the interfacial salt screening loss is the dominant effect. As a result, correlation effects decrease the mean-field density of both coions and counterions. With an increase of the surface charge towards σ(s)*, the surface-attractive counterion screening excess starts to dominate, and correlation effects amplify in this regime the mean-field density of both type of ions. However, in the regime σ(s)>σ(s)*, the same counterion screening excess also results in a significant decrease of the electrostatic mean-field potential. This reduces in turn the mean-field counterion density far from the charged surface. We also show that for σ(s)≫σ(s)*, electrostatic correlations result in a charge inversion effect. However, the electrostatic coupling regime where this phenomenon takes place should be verified with Monte Carlo simulations since this parameter regime is located beyond the validity range of the one-loop theory.
NASA Technical Reports Server (NTRS)
Abdelnour, Z.; Mildrun, H.; Strant, K.
1981-01-01
The development of Mn-Al-C permanent magnets is reviewed. The general properties of the material are discussed and put into perspective relative to alnicos and ferrites. The traction motor designer's demands of a permanent magnet for potential use in electric vehicle drives are reviewed. Tests determined magnetic design data and mechanical strength properties. Easy axis hysteresis and demagnetization curves, recoil loops and other minor loop fields were measured over a temperature range from -50 to 150 C. Hysteresis loops were also measured for three orthogonal directions (the one easy and two hard axes of magnetization). Extruded rods of three different diameters were tested. The nonuniformity of properties over the cross section of the 31 mm diameter rod was studied. Mechanical compressive and bending strength at room temperature was determined on individual samples from the 31 mm rod.
Bojowald, Martin
2008-01-01
Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.
Power impact of loop buffer schemes for biomedical wireless sensor nodes.
Artes, Antonio; Ayala, Jose L; Catthoor, Francky
2012-11-06
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong
Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. In this study we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure ofmore » the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.« less
Three site Higgsless model at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chivukula, R. Sekhar; Simmons, Elizabeth H.; Matsuzaki, Shinya
2007-04-01
In this paper we compute the one loop chiral-logarithmic corrections to all O(p{sup 4}) counterterms in the three site Higgsless model. The calculation is performed using the background field method for both the chiral and gauge fields, and using Landau gauge for the quantum fluctuations of the gauge fields. The results agree with our previous calculations of the chiral-logarithmic corrections to the S and T parameters in 't Hooft-Feynman gauge. The work reported here includes a complete evaluation of all one loop divergences in an SU(2)xU(1) nonlinear sigma model, corresponding to an electroweak effective Lagrangian in the absence of custodialmore » symmetry.« less
A RECONNECTION-DRIVEN MODEL OF THE HARD X-RAY LOOP-TOP SOURCE FROM FLARE 2004 FEBRUARY 26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longcope, Dana; Qiu, Jiong; Brewer, Jasmine
A compact X-class flare on 2004 February 26 showed a concentrated source of hard X-rays at the tops of the flare’s loops. This was analyzed in previous work and interpreted as plasma heated and compressed by slow magnetosonic shocks (SMSs) generated during post-reconnection retraction of the flux. That work used analytic expressions from a thin flux tube (TFT) model, which neglected many potentially important factors such as thermal conduction and chromospheric evaporation. Here we use a numerical solution of the TFT equations to produce a more comprehensive and accurate model of the same flare, including those effects previously omitted. Thesemore » simulations corroborate the prior hypothesis that slow-mode shocks persist well after the retraction has ended, thus producing a compact, loop-top source instead of an elongated jet, as steady reconnection models predict. Thermal conduction leads to densities higher than analytic estimates had predicted, and evaporation enhances the density still higher, but at lower temperatures. X-ray light curves and spectra are synthesized by convolving the results from a single TFT simulation with the rate at which flux is reconnected, as measured through motion of flare ribbons, for example. These agree well with light curves observed by RHESSI and GOES and spectra from RHESSI . An image created from a superposition of TFT model runs resembles one produced from RHESSI observations. This suggests that the HXR loop-top source, at least the one observed in this flare, could be the result of SMSs produced in fast reconnection models like Petschek’s.« less
Covariant diagrams for one-loop matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengkang
Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less
Covariant diagrams for one-loop matching
Zhang, Zhengkang
2017-05-30
Here, we present a diagrammatic formulation of recently-revived covariant functional approaches to one-loop matching from an ultraviolet (UV) theory to a low-energy effective field theory. Various terms following from a covariant derivative expansion (CDE) are represented by diagrams which, unlike conventional Feynman diagrams, involve gauge-covariant quantities and are thus dubbed "covariant diagrams." The use of covariant diagrams helps organize and simplify one-loop matching calculations, which we illustrate with examples. Of particular interest is the derivation of UV model-independent universal results, which reduce matching calculations of specific UV models to applications of master formulas. We also show how such derivation canmore » be done in a more concise manner than the previous literature, and discuss how additional structures that are not directly captured by existing universal results, including mixed heavy-light loops, open covariant derivatives, and mixed statistics, can be easily accounted for.« less
ERIC Educational Resources Information Center
Spurgeon, Jessica; Ward, Geoff; Matthews, William J.
2014-01-01
We examined the contribution of the phonological loop to immediate free recall (IFR) and immediate serial recall (ISR) of lists of between one and 15 words. Following Baddeley (1986, 2000, 2007, 2012), we assumed that visual words could be recoded into the phonological store when presented silently but that recoding would be prevented by…
Innovative hybrid pile oscillator technique in the Minerve reactor: open loop vs. closed loop
NASA Astrophysics Data System (ADS)
Geslot, Benoit; Gruel, Adrien; Bréaud, Stéphane; Leconte, Pierre; Blaise, Patrick
2018-01-01
Pile oscillator techniques are powerful methods to measure small reactivity worth of isotopes of interest for nuclear data improvement. This kind of experiments has long been implemented in the Mineve experimental reactor, operated by CEA Cadarache. A hybrid technique, mixing reactivity worth estimation and measurement of small changes around test samples is presented here. It was made possible after the development of high sensitivity miniature fission chambers introduced next to the irradiation channel. A test campaign, called MAESTRO-SL, took place in 2015. Its objective was to assess the feasibility of the hybrid method and investigate the possibility to separate mixed neutron effects, such as fission/capture or scattering/capture. Experimental results are presented and discussed in this paper, which focus on comparing two measurements setups, one using a power control system (closed loop) and another one where the power is free to drift (open loop). First, it is demonstrated that open loop is equivalent to closed loop. Uncertainty management and methods reproducibility are discussed. Second, results show that measuring the flux depression around oscillated samples provides valuable information regarding partial neutron cross sections. The technique is found to be very sensitive to the capture cross section at the expense of scattering, making it very useful to measure small capture effects of highly scattering samples.
ERIC Educational Resources Information Center
Farvardin, Mohammad Taghi; Afghari, Akbar; Koosha, Mansour
2014-01-01
One of the most influential models of working memory (WM) is the one developed by Baddeley (1986, 2000, 2003) which views WM comprising several components--a central executive, an episodic buffer, the visuo-spatial sketchpad, and the phonological loop. The phonological loop or phonological memory (PM) deals with the temporary storage of verbal and…
Hu, Lanying; Lim, Kah Wai; Bouaziz, Serge; Phan, Anh Tuân
2009-11-25
Recently, it has been shown that in K(+) solution the human telomeric sequence d[TAGGG(TTAGGG)(3)] forms a (3 + 1) intramolecular G-quadruplex, while the Bombyx mori telomeric sequence d[TAGG(TTAGG)(3)], which differs from the human counterpart only by one G deletion in each repeat, forms a chair-type intramolecular G-quadruplex, indicating an effect of G-tract length on the folding topology of G-quadruplexes. To explore the effect of loop length and sequence on the folding topology of G-quadruplexes, here we examine the structure of the four-repeat Giardia telomeric sequence d[TAGGG(TAGGG)(3)], which differs from the human counterpart only by one T deletion within the non-G linker in each repeat. We show by NMR that this sequence forms two different intramolecular G-quadruplexes in K(+) solution. The first one is a novel basket-type antiparallel-stranded G-quadruplex containing two G-tetrads, a G x (A-G) triad, and two A x T base pairs; the three loops are consecutively edgewise-diagonal-edgewise. The second one is a propeller-type parallel-stranded G-quadruplex involving three G-tetrads; the three loops are all double-chain-reversal. Recurrence of several structural elements in the observed structures suggests a "cut and paste" principle for the design and prediction of G-quadruplex topologies, for which different elements could be extracted from one G-quadruplex and inserted into another.
NASA Astrophysics Data System (ADS)
Rück, Marlon; Reuther, Johannes
2018-04-01
We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.
Free energy and phase transition of the matrix model on a plane wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.
2005-03-15
It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less
Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry
NASA Astrophysics Data System (ADS)
Dhuria, Mansi; Misra, Aalok
2014-10-01
Within the framework of N =1 gauged supergravity, using a phenomenological model that can be obtained locally as a Swiss-cheese Calabi-Yau string-theoretic compactification with a mobile D 3 -brane localized on a nearly special Lagrangian three cycle in the Calabi-Yau and fluxed stacks of wrapped D 7 -branes, and which provides a natural realization of μ -split supersymmetry (SUSY), we show that in addition to getting a significant value of an [electron/neutron (e/n)] electron dipole moment (EDM) at two-loop level, one can obtain a sizable contribution of (e/n) EDM even at one-loop level due to the presence of heavy supersymmetric fermions nearly isospectral with heavy sfermions. Unlike traditional split SUSY models in which the one-loop diagrams do not give significant contribution to the EDM of the electron/neutron because of very heavy sfermions existing as propagators in the loop, we show that one obtains a "healthy" value of the EDM in our model because of the presence of a heavy Higgsino, neutralino/chargino, and gaugino as fermionic propagators in the loops. The independent C P -violating phases are generated from nontrivial distinct phase factors associated with four Wilson line moduli [identified with first-generation leptons and quarks and their S U (2 )L -singlet cousins] as well as the D 3 -brane position moduli (identified with two Higgses), and the same are sufficient to produce overall distinct phase factors corresponding to all possible effective Yukawas as well as effective gauge couplings that we discuss in the context of N =1 gauged supergravity action. However, the complex phases responsible to generate a nonzero EDM at one-loop level mainly appear from an off-diagonal contribution of sfermion as well as Higgs mass matrices at the electroweak scale (EW). In our analysis, we obtain a dominant contribution of the electron/neutron EDM around de/e ≡O (1 0-29) cm from two-loop diagrams involving heavy sfermions and a light Higgs, and de/e ≡O (1 0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.
Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines
NASA Technical Reports Server (NTRS)
Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.
2007-01-01
Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.
La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks.
Sun, Guodong; Shang, Xinna; Zuo, Yan
2018-02-02
In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user's burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency.
Top-quark loop corrections in Z+jet and Z + 2 jet production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John M.; Keith Ellis, R.
2017-01-01
The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less
A modular, closed-loop platform for intracranial stimulation in people with neurological disorders.
Sarma, Anish A; Crocker, Britni; Cash, Sydney S; Truccolo, Wilson
2016-08-01
Neuromodulation systems based on electrical stimulation can be used to investigate, probe, and potentially treat a range of neurological disorders. The effects of ongoing neural state and dynamics on stimulation response, and of stimulation parameters on neural state, have broad implications for the development of closed-loop neuro-modulation approaches. We describe the development of a modular, low-latency platform for pre-clinical, closed-loop neuromodulation studies with human participants. We illustrate the uses of the platform in a stimulation case study with a person with epilepsy undergoing neuro-monitoring prior to resective surgery. We demonstrate the efficacy of the system by tracking interictal epileptiform discharges in the local field potential to trigger intracranial electrical stimulation, and show that the response to stimulation depends on the neural state.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2013-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2011-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry V.
2012-01-01
This software implements digital control of a WGM (whispering-gallerymode) resonator temperature based on the dual-mode approach. It comprises one acquisition (dual-channel) and three control modules. The interaction of the proportional-integral loops is designed in the original way, preventing the loops from fighting. The data processing is organized in parallel with the acquisition, which allows the computational overhead time to be suppressed or often completely avoided. WGM resonators potentially provide excellent optical references for metrology, clocks, spectroscopy, and other applications. However, extremely accurate (below micro-Kelvin) temperature stabilization is required. This software allows one specifically advantageous method of such stabilization to be implemented, which is immune to a variety of effects that mask the temperature variation. WGM Temperature Tracker 2.3 (see figure) is a LabVIEW code developed for dual-mode temperature stabilization of WGM resonators. It has allowed for the temperature stabilization at the level of 200 nK with one-second integration time, and 6 nK with 10,000-second integration time, with the above room-temperature set point. This software, in conjunction with the appropriate hardware, can be used as a noncryogenic temperature sensor/ controller with sub-micro-Kelvin sensitivity, which at the time of this reporting considerably outperforms the state of the art.
Power Impact of Loop Buffer Schemes for Biomedical Wireless Sensor Nodes
Artes, Antonio; Ayala, Jose L.; Catthoor, Francky
2012-01-01
Instruction memory organisations are pointed out as one of the major sources of energy consumption in embedded systems. As these systems are characterised by restrictive resources and a low-energy budget, any enhancement in this component allows not only to decrease the energy consumption but also to have a better distribution of the energy budget throughout the system. Loop buffering is an effective scheme to reduce energy consumption in instruction memory organisations. In this paper, the loop buffer concept is applied in real-life embedded applications that are widely used in biomedical Wireless Sensor Nodes, to show which scheme of loop buffer is more suitable for applications with certain behaviour. Post-layout simulations demonstrate that a trade-off exists between the complexity of the loop buffer architecture and the energy savings of utilising it. Therefore, the use of loop buffer architectures in order to optimise the instruction memory organisation from the energy efficiency point of view should be evaluated carefully, taking into account two factors: (1) the percentage of the execution time of the application that is related to the execution of the loops, and (2) the distribution of the execution time percentage over each one of the loops that form the application. PMID:23202202
Placebo Effects and Informed Consent.
Alfano, Mark
2015-01-01
The concepts of placebos and placebo effects refer to extremely diverse phenomena. I recommend dissolving the concepts of placebos and placebo effects into loosely related groups of specific mechanisms, including (potentially among others) expectation-fulfillment, classical conditioning, and attentional-somatic feedback loops. If this approach is on the right track, it has three main implications for the ethics of informed consent. First, because of the expectation-fulfillment mechanism, the process of informing cannot be considered independently from the potential effects of treatment. Obtaining informed consent influences the effects of treatment. This provides support for the authorized concealment and authorized deception paradigms, and perhaps even for outright deceptive placebo use. Second, doctors may easily fail to consider the potential benefits of conditioning, leading them to misjudge the trade-off between beneficence and autonomy. Third, how attentional-somatic feedback loops play out depends not only on the content of the informing process but also on its framing. This suggests a role for libertarian paternalism in clinical practice.
Polyakov loop fluctuations in the presence of external fields
NASA Astrophysics Data System (ADS)
Lo, Pok Man; Szymański, Michał; Redlich, Krzysztof; Sasaki, Chihiro
2018-06-01
We study the implications of the spontaneous and explicit Z(3) center symmetry breaking for the Polyakov loop susceptibilities. To this end, ratios of the susceptibilities of the real and imaginary parts, as well as of the modulus of the Polyakov loop are computed within an effective model using a color group integration scheme. We show that the essential features of the lattice QCD results of these ratios can be successfully captured by the effective approach. Furthermore we discuss a novel scaling relation in one of these ratios involving the explicit breaking field, volume, and temperature.
Two-loop virtual top-quark effect on Higgs-boson decay to bottom quarks.
Butenschön, Mathias; Fugel, Frank; Kniehl, Bernd A
2007-02-16
In most of the mass range encompassed by the limits from the direct search and the electroweak precision tests, the Higgs boson of the standard model preferably decays to bottom quarks. We present, in analytic form, the dominant two-loop electroweak correction, of O(GF2mt4), to the partial width of this decay. It amplifies the familiar enhancement due to the O(GFmt2) one-loop correction by about +16% and thus more than compensates the screening by about -8% through strong-interaction effects of order O(alphasGFmt2).
A radiative neutrino mass model in light of DAMPE excess with hidden gauged U(1) symmetry
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi; Wu, Peiwen
2018-05-01
We propose a one-loop induced neutrino mass model with hidden U(1) gauge symmetry, in which we successfully involve a bosonic dark matter (DM) candidate propagating inside a loop diagram in neutrino mass generation to explain the e+e‑ excess recently reported by the DArk Matter Particle Explorer (DAMPE) experiment. In our scenario dark matter annihilates into four leptons through Z' boson as DM DM → Z' Z' (Z' → l+ l‑) and Z' decays into leptons via one-loop effect. We then investigate branching ratios of Z' taking into account lepton flavor violations and neutrino oscillation data.
Resummation of Goldstone infrared divergences: A proof to all orders
NASA Astrophysics Data System (ADS)
Espinosa, J. R.; Konstandin, T.
2018-03-01
The perturbative effective potential calculated in Landau gauge suffers from infrared problems due to Goldstone boson loops. These divergences are spurious and can be removed by a resummation procedure that amounts to a shift of the mass of soft Goldstones. We prove this to all loops using an effective theory approach, providing a compact recipe for the shift of the Goldstone mass that relies on the use of the method of regions to split soft and hard Goldstone contributions.
Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes
NASA Astrophysics Data System (ADS)
Saini, Sahil; Singh, Parampreet
2018-03-01
We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.
Chromatin loops as allosteric modulators of enhancer-promoter interactions.
Doyle, Boryana; Fudenberg, Geoffrey; Imakaev, Maxim; Mirny, Leonid A
2014-10-01
The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.
Phase of the Wilson line at high temperature in the standard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korthals Altes, C.P.; Lee, K.; Pisarski, R.D.
1994-09-26
We compute the effective potential for the phase of the Wilson line at high temperature in the standard model to one-loop order. Besides the trivial vacua, there are metastable states in the direction of U(1) hypercharge. Assuming that the Universe starts out in such a metastable state at the Planck scale, it easily persists to the time of the electroweak phase transition, which then proceeds by an unusual mechanism. All remnants of the metastable state evaporate about the time of the QCD phase transition.
Divergences and boundary modes in $$ \\mathcal{N}=8 $$ supergravity
Larsen, Finn; Lisbao, Pedro
2016-01-07
We reconsider the one loop divergence ofmore » $$ \\mathcal{N}=8 $$ supergravity in four dimensions. We compute the finite effective potential of $$ \\mathcal{N}=8 $$ anti-deSitter supergravity and interpret it as logarithmic running of the cosmological constant. We show that quantum inequivalence between fields that are classically dual is due to boundary modes in AdS 4. In conclusion, the boundary modes are important in global AdS 4 but not in thermal AdS 4 since these geometries have different Euler characteristic.« less
Quantum implications of a scale invariant regularization
NASA Astrophysics Data System (ADS)
Ghilencea, D. M.
2018-04-01
We study scale invariance at the quantum level in a perturbative approach. For a scale-invariant classical theory, the scalar potential is computed at a three-loop level while keeping manifest this symmetry. Spontaneous scale symmetry breaking is transmitted at a quantum level to the visible sector (of ϕ ) by the associated Goldstone mode (dilaton σ ), which enables a scale-invariant regularization and whose vacuum expectation value ⟨σ ⟩ generates the subtraction scale (μ ). While the hidden (σ ) and visible sector (ϕ ) are classically decoupled in d =4 due to an enhanced Poincaré symmetry, they interact through (a series of) evanescent couplings ∝ɛ , dictated by the scale invariance of the action in d =4 -2 ɛ . At the quantum level, these couplings generate new corrections to the potential, as scale-invariant nonpolynomial effective operators ϕ2 n +4/σ2 n. These are comparable in size to "standard" loop corrections and are important for values of ϕ close to ⟨σ ⟩. For n =1 , 2, the beta functions of their coefficient are computed at three loops. In the IR limit, dilaton fluctuations decouple, the effective operators are suppressed by large ⟨σ ⟩, and the effective potential becomes that of a renormalizable theory with explicit scale symmetry breaking by the DR scheme (of μ =constant).
Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-02-01
The prismatic dislocation loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, size and depth of the loop in the foil, they can escape to the free surface, thus invalidating TEM observations and conclusions. In this article small prismatic hexagonal and circular dislocation loops in tungsten with the Burgers vectors 1/2 〈 1 1 1 〉 and 〈 1 0 0 〉 are studied by molecular statics simulations using three embedded atom method (EAM) potentials. The calculated image forces are compared to known elastic solutions. A particular attention is paid to the critical stress to move edge dislocations. The escape of the loop to the free surface is quantified by a combination of atomistic simulations and elastic calculations. For example, for the 1/2 〈 1 1 1 〉 loop with diameter 7.4 nm in a 55 nm thick foil we calculated that about one half of the loops will escape to the free surface. This implies that TEM observations detect only approx. 50% of the loops that were originally present in the foil.
Molecular basis for zinc potentiation at strychnine-sensitive glycine receptors.
Miller, Paul S; Da Silva, Helena M A; Smart, Trevor G
2005-11-11
The divalent cation Zn(2+) is a potent potentiator at the strychnine-sensitive glycine receptor (GlyR). This occurs at nanomolar concentrations, which are the predicted endogenous levels of extracellular neuronal Zn(2+). Using structural modeling and functional mutagenesis, we have identified the molecular basis for the elusive Zn(2+) potentiation site on GlyRs and account for the differential sensitivity of GlyR alpha(1) and GlyR alpha(2) to Zn(2+) potentiation. In addition, juxtaposed to this Zn(2+) site, which is located externally on the N-terminal domain of the alpha subunit, another residue was identified in the nearby Cys loop, a region that is critical for receptor gating in all Cys loop ligand-gated ion channels. This residue acted as a key control element in the allosteric transduction pathway for Zn(2+) potentiation, enabling either potentiation or overt inhibition of receptor activation depending upon the moiety resident at this location. Overall, we propose that Zn(2+) binds to a site on the extracellular outer face of the GlyR alpha subunit and exerts its positive allosteric effect via an interaction with the Cys loop to increase the efficacy of glycine receptor gating.
A Parametric Computational Model of the Action Potential of Pacemaker Cells.
Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L
2018-01-01
A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+
NASA Astrophysics Data System (ADS)
Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.
2017-12-01
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
Oil well flow assurance through static electric potential: An experimental investigation
NASA Astrophysics Data System (ADS)
Hashmi, Muhammad Ihtsham Asmat
Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.
Distributed flow sensing for closed-loop speed control of a flexible fish robot.
Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A
2015-10-23
Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution
NASA Astrophysics Data System (ADS)
Migliore, Christina; Winter, Henry; Murphy, Nicholas
2018-01-01
The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.
Thermal stability of static coronal loops: Part 1: Effects of boundary conditions
NASA Technical Reports Server (NTRS)
Antiochos, S. K.; Shoub, E. C.; An, C. H.; Emslie, A. G.
1985-01-01
The linear stability of static coronal-loop models undergoing thermal perturbations was investigated. The effect of conditions at the loop base on the stability properties of the models was considered in detail. The question of appropriate boundary conditions at the loop base was considered and it was concluded that the most physical assumptions are that the temperature and density (or pressure) perturbations vanish there. However, if the base is taken to be sufficiently deep in the chromosphere, either several chromospheric scale heights or several coronal loop lengths in depth, then the effect of the boundary conditions on loop stability becomes negligible so that all physically acceptable conditions are equally appropriate. For example, one could as well assume that the velocity vanishes at the base. The growth rates and eigenmodes of static models in which gravity is neglected and in which the coronal heating is a relatively simple function, either constant per-unit mass or per-unit volume were calculated. It was found that all such models are unstable with a growth rate of the order of the coronal cooling time. The physical implications of these results for the solar corona and transition region are discussed.
NASA Technical Reports Server (NTRS)
Choudhary, Debi Prasad; Gary, Allen G.
1998-01-01
The high-resolution H(sub alpha) images observed during the decay phase of a long duration flare on 23 March 1991 are used to study the three-dimensional magnetic field configuration of the active region NOAA 6555. Whereas, all the large flares in NOAA 6555 occurred at the location of high magnetic shear and flux emergence, this long duration flare was observed in the region of low magnetic shear at the photosphere. The H(sub alpha) loop activity started soon after the maximum phase of the flare. There were few long loop at the initial phase of the activity. Some of these were sheared in the chromosphere at an angle of about 45 deg with the east-west axis. Gradually, increasing number of shorter loops, oriented along the east-west axis, started appearing. The chromospheric Dopplergrams show blue-shifts at the end points of the loops. By using different magnetic field models, we have extrapolated the photospheric magnetograms to the chromospheric heights. The magnetic field lines computed by using the potential field model correspond to most of the observed H(sub alpha) loops. The height of the H(sub alpha) loops were derived by comparing them with the computed field lines. From the temporal evolution of the H(sub alpha) loop activity, we derive the negative rate of appearance of H(sub alpha) features as a function of height. It is found that the field lines oriented along one of the neutral lines was sheared and low lying. The higher field lines were mostly potential. The paper also outlines a possible scenario for describing the post-flare stage of the observed long duration flare.
NASA Astrophysics Data System (ADS)
Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.
2015-10-01
The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.
Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin
2016-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and to verify its ability to cool large areas or components in the 3 degrees Kelvin temperature range. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by simply applying power to both the capillary pump and the evaporator plate without pre-conditioning. It could adapt to a rapid heat load change and quickly reach a new steady state. Heat removal between 10 megawatts and 140 megawatts was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
A proposal of a local modified QCD
NASA Astrophysics Data System (ADS)
Cabo Montes de Oca, A.
2012-06-01
A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.
Flatness-based control in successive loops for stabilization of heart's electrical activity
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos; Melkikh, Alexey
2016-12-01
The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.
Stability of flat spacetime in quantum gravity
NASA Astrophysics Data System (ADS)
Jordan, R. D.
1987-12-01
In a previous paper, a modified effective-action formalism was developed which produces equations satisfied by the expectation value of the field, rather than the usual in-out average. Here this formalism is applied to a quantized scalar field in a background which is a small perturbation from Minkowski spacetime. The one-loop effective field equation describes the back reaction of created particles on the gravitational field, and is calculated in this paper to linear order in the perturbation. In this way we rederive an equation first found by Horowitz using completely different methods. This equation possesses exponentially growing solutions, so we confirm Horowitz's conclusion that flat spacetime is unstable in this approximation to the theory. The new derivation shows that the field equation is just as useful as the one-loop approximation to the in-out equation, contrary to earlier arguments. However, the instability suggests that the one-loop approximation cannot be trusted for gravity. These results are compared with the corresponding situation in QED and QCD.
NASA Astrophysics Data System (ADS)
Ben Achour, Jibril; Brahma, Suddhasattwa
2018-06-01
When applying the techniques of loop quantum gravity (LQG) to symmetry-reduced gravitational systems, one first regularizes the scalar constraint using holonomy corrections, prior to quantization. In inhomogeneous system, where a residual spatial diffeomorphism symmetry survives, such modification of the gauge generator generating time reparametrization can potentially lead to deformations or anomalies in the modified algebra of first-class constraints. When working with self-dual variables, it has already been shown that, for spherically symmetric geometry coupled to a scalar field, the holonomy-modified constraints do not generate any modifications to general covariance, as one faces in the real variables formulation, and can thus accommodate local degrees of freedom in such inhomogeneous models. In this paper, we extend this result to Gowdy cosmologies in the self-dual Ashtekar formulation. Furthermore, we show that the introduction of a μ ¯-scheme in midisuperspace models, as is required in the "improved dynamics" of LQG, is possible in the self-dual formalism while being out of reach in the current effective models using real-valued Ashtekar-Barbero variables. Our results indicate the advantages of using the self-dual variables to obtain a covariant loop regularization prior to quantization in inhomogeneous symmetry-reduced polymer models, additionally implementing the crucial μ ¯-scheme, and thus a consistent semiclassical limit.
Takata, Miki; Fukushima, Kazuyo; Kino-Kimata, Noriko; Nagao, Norio; Niwa, Chiaki; Toda, Tatsuki
2012-08-15
In Japan, a revised Food Recycling Law went into effect in 2007 to promote a "recycling loop" that requires food industries to purchase farm products that are grown using food waste-derived compost/animal feed. To realize and expand food recycling, it is necessary to evaluate how the recycling facilities work in the recycling loop. The purpose of this study is to assess the environmental and economic efficiency of the food recycling facilities that are involved in the recycling loop, which are also known as looped facilities. The global warming potential and running cost of five looped facilities were evaluated by LCA (life cycle assessment) and LCC (life cycle cost) approaches: machine integrated compost, windrow compost, liquid feed, dry feed, and bio-gasification. The LCA results showed low total GHG (greenhouse gas) emissions of -126 and -49 kg-CO(2)/t-waste, respectively, for dry feed and bio-gasification facilities, due to a high substitution effect. The LCC study showed a low running cost for composting facilities of -15,648 and -18,955 yen/t-waste, respectively, due to high revenue from the food waste collection. It was found that the mandatory reporting of food waste emitters to the government increased collection fees; however, the collection fee in animal feed facilities was relatively low because food waste was collected at a low price or nutritious food waste was purchased to produce quality feed. In the characterisation survey of various treatment methods, the composting facilities showed a relatively low environmental impact and a high economic efficiency. Animal feed facilities had a wide distribution of the total GHG emissions, depending on both the energy usage during the drying process and the substitution effect, which were related to the water content of the food waste and the number of recycled products. In comparison with incineration, the majority of the food recycling facilities showed low GHG emissions and economic effectiveness. This paper also reported on the effects of recycling loops by comparing looped and non-looped animal feed facilities, and confirmed that the looped facilities were economically effective, due to an increased amount of food waste collection. Copyright © 2012 Elsevier B.V. All rights reserved.
La-CTP: Loop-Aware Routing for Energy-Harvesting Wireless Sensor Networks
Sun, Guodong; Shang, Xinna; Zuo, Yan
2018-01-01
In emerging energy-harvesting wireless sensor networks (EH-WSN), the sensor nodes can harvest environmental energy to drive their operation, releasing the user’s burden in terms of frequent battery replacement, and even enabling perpetual sensing systems. In EH-WSN applications, usually, the node in energy-harvesting or recharging state has to stop working until it completes the energy replenishment. However, such temporary departures of recharging nodes severely impact the packet routing, and one immediate result is the routing loop problem. Controlling loops in connectivity-intermittent EH-WSN in an efficient way is a big challenge in practice, and so far, users still lack of effective and practicable routing protocols with loop handling. Based on the Collection Tree Protocol (CTP) widely used in traditional wireless sensor networks, this paper proposes a loop-aware routing protocol for real-world EH-WSNs, called La-CTP, which involves a new parent updating metric and a proactive, adaptive beaconing scheme to effectively suppress the occurrence of loops and unlock unavoidable loops, respectively. We constructed a 100-node testbed to evaluate La-CTP, and the experimental results showed its efficacy and efficiency. PMID:29393876
Universal dual amplitudes and asymptotic expansions for gg→ H and H→ γ γ in four dimensions
NASA Astrophysics Data System (ADS)
Driencourt-Mangin, Félix; Rodrigo, Germán; Sborlini, Germán F. R.
2018-03-01
Though the one-loop amplitudes of the Higgs boson to massless gauge bosons are finite because there is no direct interaction at tree level in the Standard Model, a well-defined regularization scheme is still required for their correct evaluation. We reanalyze these amplitudes in the framework of the four-dimensional unsubtraction and the loop-tree duality (FDU/LTD), and show how a local renormalization solves potential regularization ambiguities. The Higgs boson interactions are also used to illustrate new additional advantages of this formalism. We show that LTD naturally leads to very compact integrand expressions in four space-time dimensions of the one-loop amplitude with virtual electroweak gauge bosons. They exhibit the same functional form as the amplitudes with top quarks and charged scalars, thus opening further possibilities for simplifications in higher-order computations. Another outstanding application is the straightforward implementation of asymptotic expansions by using dual amplitudes. One of the main benefits of the LTD representation is that it is supported in a Euclidean space. This characteristic feature naturally leads to simpler asymptotic expansions.
The effects of magnetic structure on the conduction cooling of flare loops
NASA Technical Reports Server (NTRS)
Van Hoven, G.
1979-01-01
A model of the sheared magnetic field in a coronal loop is used to evaluate the average cross-field suppression of axial thermal conduction. If the energy source is uniform in radius, this can lead to heat-flux reduction by a factor greater than three. When the source is annular, in a region of radius where the current density and shear are peaked, the effect can be significantly larger. In one extreme case, however, in which magnetic tearing provides the heating in a very narrow layer, the spatial resonance of the source excitation in a long loop leads to approximately axial conduction.
Dark matter stability and one-loop neutrino mass generation based on Peccei-Quinn symmetry
NASA Astrophysics Data System (ADS)
Suematsu, Daijiro
2018-01-01
We propose a model which is a simple extension of the KSVZ invisible axion model with an inert doublet scalar. Peccei-Quinn symmetry forbids tree-level neutrino mass generation and its remnant Z_2 symmetry guarantees dark matter stability. The neutrino masses are generated by one-loop effects as a result of the breaking of Peccei-Quinn symmetry through a nonrenormalizable interaction. Although the low energy effective model coincides with an original scotogenic model which contains right-handed neutrinos with large masses, it is free from the strong CP problem.
Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Nakariakov, Valery
We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.
NASA Astrophysics Data System (ADS)
Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi
2018-01-01
Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Tlalpa, A.; Novales-Sanchez, H.; Toscano, J. J.
The one-loop contribution of the excited Kaluza-Klein (KK) modes of the SU{sub L}(2) gauge group on the off-shell W{sup -}W{sup +}{gamma} and W{sup -}W{sup +}Z vertices is calculated in the context of a pure Yang-Mills theory in five dimensions and its phenomenological implications discussed. The use of a gauge-fixing procedure for the excited KK modes that is covariant under the standard gauge transformations of the SU{sub L}(2) group is stressed. A gauge-fixing term and the Faddeev-Popov ghost sector for the KK gauge modes that are separately invariant under the standard gauge transformations of SU{sub L}(2) are presented. It is shownmore » that the one-loop contributions of the KK modes to the off-shell W{sup -}W{sup +}{gamma} and W{sup -}W{sup +}Z vertices are free of ultraviolet divergences and well-behaved at high energies. It is found that for a size of the fifth dimension of R{sup -1{approx}}1 TeV, the one-loop contribution of the KK modes to these vertices is about 1 order of magnitude lower than the corresponding standard model radiative correction. This contribution is similar to the one estimated for new gauge bosons contributions in other contexts. Tree-level effects on these vertices induced by operators of higher canonical dimension are also investigated. It is found that these effects are lower than those generated at the one-loop order by the KK gauge modes.« less
Simulations of fully deformed oscillating flux tubes
NASA Astrophysics Data System (ADS)
Karampelas, K.; Van Doorsselaere, T.
2018-02-01
Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org
Tucker, Eric; D' Archangel, Jeffrey; Raschke, Markus B; Boreman, Glenn
2015-05-04
Mid-infrared scattering scanning near-field optical microscopy, in combination with far-field infrared spectroscopy, and simulations, was employed to investigate the effect of mutual-element coupling towards the edge of arrays of loop elements acting as frequency selective surfaces (FSSs). Two different square loop arrays on ZnS over a ground plane, resonant at 10.3 µm, were investigated. One array had elements that were closely spaced while the other array had elements with greater inter-element spacing. In addition to the dipolar resonance, we observed a new emergent resonance associated with the edge of the closely-spaced array as a finite size effect, due to the broken translational invariance.
Freed, K S; Paulson, E K; Frederick, M G; Keogan, M T; Pappas, T N
1997-06-01
To evaluate the postoperative computed tomographic (CT) appearance, complications, and potential pitfalls after a Puestow procedure (lateral side-to-side pancreaticojejunostomy). Forty CT examinations were performed after the Puestow procedure in 20 patients. Images were retrospectively reviewed by three radiologists. The pancreaticojejunal anastomosis was identified at 30 examinations and was immediately anterior to the pancreatic body or tail. The anastomosis contained fluid or gas on 11 scans and oral contrast material on four scans. On 15 scans, the anastomosis appeared as collapsed bowel without gas, fluid, or oral contrast material. The Roux-en-Y loop was identified on 28 (70%) scans and contained fluid or gas on 16 scans and oral contrast material on six scans. The Roux-en-Y loop appeared as collapsed bowel on six scans. When the anastomosis or Roux-en-Y loop contained fluid and gas, the appearance mimicked that of a pancreatic or parapancreatic abscess. Peripancreatic stranding was present on 28 scans and was due to either ongoing pancreatitis or postoperative change. Complications included 15 transient fluid collections, three abscesses, four pseudocysts, one hematoma, and one small-bowel and Roux-en-Y obstruction. Knowledge of the anatomy after a Puestow procedure is essential for accurate interpretation of CT scans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinzierl, Stefan
2011-10-01
This article discusses the occurrence of one-loop amplitudes within a next-to-next-to-leading-order calculation. In a next-to-next-to-leading-order calculation, the one-loop amplitude enters squared and one would therefore naively expect that the O({epsilon})- and O({epsilon}{sup 2})-terms of the one-loop amplitudes are required. I show that the calculation of these terms can be avoided if a method is known, which computes the O({epsilon}{sup 0})-terms of the finite remainder function of the two-loop amplitude.
RECQ-like helicases Sgs1 and BLM regulate R-loop–associated genome instability
Chang, Emily Yun-Chia; Novoa, Carolina A.; Aristizabal, Maria J.; Coulombe, Yan; Segovia, Romulo; Shen, Yaoqing; Keong, Christelle; Tam, Annie S.; Jones, Steven J.M.; Masson, Jean-Yves; Kobor, Michael S.
2017-01-01
Sgs1, the orthologue of human Bloom’s syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription–replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop–forming potential. Analysis of BLM in Bloom’s syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop–associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop–mediated genome instability. PMID:29042409
Casimir effect in rugby-ball type flux compactifications
NASA Astrophysics Data System (ADS)
Elizalde, Emilio; Minamitsuji, Masato; Naylor, Wade
2007-03-01
As a continuation of the work by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079], we discuss the Casimir effect for a massless bulk scalar field in a 4D toy model of a 6D warped flux compactification model, to stabilize the volume modulus. The one-loop effective potential for the volume modulus has a form similar to the Coleman-Weinberg potential. The stability of the volume modulus against quantum corrections is related to an appropriate heat kernel coefficient. However, to make any physical predictions after volume stabilization, knowledge of the derivative of the zeta function, ζ'(0) (in a conformally related spacetime) is also required. By adding up the exact mass spectrum using zeta-function regularization, we present a revised analysis of the effective potential. Finally, we discuss some physical implications, especially concerning the degree of the hierarchy between the fundamental energy scales on the branes. For a larger degree of warping our new results are very similar to the ones given by Minamitsuji, Naylor, and Sasaki [J. High Energy Phys.JHEPFG1029-8479 12 (2006) 07910.1088/1126-6708/2006/12/079] and imply a larger hierarchy. In the nonwarped (rugby ball) limit the ratio tends to converge to the same value, independently of the bulk dilaton coupling.
Sequence Effect on the Formation of DNA Minidumbbells.
Liu, Yuan; Lam, Sik Lok
2017-11-16
The DNA minidumbbell (MDB) is a recently identified non-B structure. The reported MDBs contain two TTTA, CCTG, or CTTG type II loops. At present, the knowledge and understanding of the sequence criteria for MDB formation are still limited. In this study, we performed a systematic high-resolution nuclear magnetic resonance (NMR) and native gel study to investigate the effect of sequence variations in tandem repeats on the formation of MDBs. Our NMR results reveal the importance of hydrogen bonds, base-base stacking, and hydrophobic interactions from each of the participating residues. We conclude that in the MDBs formed by tandem repeats, C-G loop-closing base pairs are more stabilizing than T-A loop-closing base pairs, and thymine residues in both the second and third loop positions are more stabilizing than cytosine residues. The results from this study enrich our knowledge on the sequence criteria for the formation of MDBs, paving a path for better exploring their potential roles in biological systems and DNA nanotechnology.
Nonequilibrium Chromosome Looping via Molecular Slip Links
NASA Astrophysics Data System (ADS)
Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.
2017-09-01
We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.
Fast de novo discovery of low-energy protein loop conformations.
Wong, Samuel W K; Liu, Jun S; Kou, S C
2017-08-01
In the prediction of protein structure from amino acid sequence, loops are challenging regions for computational methods. Since loops are often located on the protein surface, they can have significant roles in determining protein functions and binding properties. Loop prediction without the aid of a structural template requires extensive conformational sampling and energy minimization, which are computationally difficult. In this article we present a new de novo loop sampling method, the Parallely filtered Energy Targeted All-atom Loop Sampler (PETALS) to rapidly locate low energy conformations. PETALS explores both backbone and side-chain positions of the loop region simultaneously according to the energy function selected by the user, and constructs a nonredundant ensemble of low energy loop conformations using filtering criteria. The method is illustrated with the DFIRE potential and DiSGro energy function for loops, and shown to be highly effective at discovering conformations with near-native (or better) energy. Using the same energy function as the DiSGro algorithm, PETALS samples conformations with both lower RMSDs and lower energies. PETALS is also useful for assessing the accuracy of different energy functions. PETALS runs rapidly, requiring an average time cost of 10 minutes for a length 12 loop on a single 3.2 GHz processor core, comparable to the fastest existing de novo methods for generating an ensemble of conformations. Proteins 2017; 85:1402-1412. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Moving heavy quarkonium entropy, effective string tension, and the QCD phase diagram
NASA Astrophysics Data System (ADS)
Chen, Xun; Feng, Sheng-Qin; Shi, Ya-Fei; Zhong, Yang
2018-03-01
The entropy and effective string tension of the moving heavy quark-antiquark pair in the strongly coupled plasmas are calculated by using a deformed an anti-de Sitter/Reissner-Nordström black hole metric. A sharp peak of the heavy-quarkonium entropy around the deconfinement transition can be realized in our model, which is consistent with the lattice QCD result. The effective string tension of the heavy quark-antiquark pair is related to the deconfinement phase transition. Thus, we investigate the deconfinement phase transition by analyzing the characteristics of the effective string tension with different temperatures, chemical potentials, and rapidities. It is found that the results of phase diagram calculated through effective string tension are in agreement with results calculated through a Polyakov loop. We argue that a moving system will reach the phase transition point at a lower temperature and chemical potential than a stationary system. It means that the lifetime of the moving quark-gluon plasma become longer than the static one.
Ca-asp bound X-ray structure and inhibition of Bacillus anthracis dihydroorotase (DHOase).
Rice, Amy J; Lei, Hao; Santarsiero, Bernard D; Lee, Hyun; Johnson, Michael E
2016-10-01
Dihydroorotase (DHOase) is the third enzyme in the de novo pyrimidine synthesis pathway and is responsible for the reversible cyclization of carbamyl-aspartate (Ca-asp) to dihydroorotate (DHO). DHOase is further divided into two classes based on several structural characteristics, one of which is the length of the flexible catalytic loop that interacts with the substrate, Ca-asp, regulating the enzyme activity. Here, we present the crystal structure of Class I Bacillus anthracis DHOase with Ca-asp in the active site, which shows the peptide backbone of glycine in the shorter loop forming the necessary hydrogen bonds with the substrate, in place of the two threonines found in Class II DHOases. Despite the differences in the catalytic loop, the structure confirms that the key interactions between the substrate and active site residues are similar between Class I and Class II DHOase enzymes, which we further validated by mutagenesis studies. B. anthracis DHOase is also a potential antibacterial drug target. In order to identify prospective inhibitors, we performed high-throughput screening against several libraries using a colorimetric enzymatic assay and an orthogonal fluorescence thermal binding assay. Surface plasmon resonance was used for determining binding affinity (KD) and competition analysis with Ca-asp. Our results highlight that the primary difference between Class I and Class II DHOase is the catalytic loop. We also identify several compounds that can potentially be further optimized as potential B. anthracis inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories
NASA Astrophysics Data System (ADS)
Nohle, Joshua David
In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry. As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional regularization, the subleading behavior is anomalous and modified by loop effects. We argue that there are no new types of corrections to the first subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To facilitate our investigation, we introduce a new momentum-conservation prescription for defining the subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes before turning to gravity amplitudes. In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low's proof of universality of the first subleading behavior of photons. In contrast to photons coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on how such corrections arise from this perspective. We also show that loop corrections in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case is particularly transparent because it is not entangled with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through the first subleading order. Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss- Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).
Cooling system for a nuclear reactor
Amtmann, Hans H.
1982-01-01
A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.
Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys
NASA Astrophysics Data System (ADS)
Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing
2018-04-01
Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.
Parikh, Punam P; Tashiro, Jun; Wagenaar, Amy E; Curbelo, Miosotys; Perez, Eduardo A; Neville, Holly L; Hogan, Anthony R; Sola, Juan E
2018-04-01
Appendiceal ligation during pediatric laparoscopic appendectomy (LA) may be performed using looped suture versus stapler. Controversy regarding the utility of either method exists. Clinical outcomes and cost analysis of LA with both methods were compared. All pediatric LA were performed from fiscal years 2013 and 2014 by two pediatric surgeons. While one surgeon used looped suture, the other used stapler exclusively. chi-Square tests were performed to analyze associations. Two hundred thirty-eight cases were analyzed where looped suture versus stapler LA was performed in 46% and 54% of patients, respectively. Operating room costs were $317.10 and $707.12/person for looped suture and stapler LA, respectively (P<0.0001). Difference in cost of $390.02/person was attributed solely to ligation type. On bivariate analysis, rate of in-hospital complications, length of stay, return-to-ER and readmission within 30 days did not significantly differ between groups. A comparative analysis of looped suture versus stapler device during LA for pediatric appendicitis revealed that postoperative complications, length of stay, ER visits and readmissions were not significantly different. Looped suture LA was significantly more cost efficient than stapler LA. In pediatric appendicitis, appendiceal ligation during LA may be performed safely and cost effectively with looped suture versus stapler. Cost effectiveness LEVEL OF EVIDENCE: III. Copyright © 2017 Elsevier Inc. All rights reserved.
Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin
2016-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin Lee
2015-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Senatore, Leonardo, E-mail: matthew.lewandowski@ipht.fr, E-mail: senatore@stanford.edu
Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. We then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N -body simulation.« less
IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewandowski, Matthew; Senatore, Leonardo
Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less
IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence
Lewandowski, Matthew; Senatore, Leonardo
2017-08-31
Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultravioletmore » (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. In conclusion, we then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.« less
Understanding the Hysteresis Loop Conundrum in Pharmacokinetic / Pharmacodynamic Relationships
Louizos, Christopher; Yáñez, Jaime A.; Forrest, Laird; Davies, Neal M.
2015-01-01
Hysteresis loops are phenomena that sometimes are encountered in the analysis of pharmacokinetic and pharmacodynamic relationships spanning from pre-clinical to clinical studies. When hysteresis occurs it provides insight into the complexity of drug action and disposition that can be encountered. Hysteresis loops suggest that the relationship between drug concentration and the effect being measured is not a simple direct relationship, but may have an inherent time delay and disequilibrium, which may be the result of metabolites, the consequence of changes in pharmacodynamics or the use of a non-specific assay or may involve an indirect relationship. Counter-clockwise hysteresis has been generally defined as the process in which effect can increase with time for a given drug concentration, while in the case of clockwise hysteresis the measured effect decreases with time for a given drug concentration. Hysteresis loops can occur as a consequence of a number of different pharmacokinetic and pharmacodynamic mechanisms including tolerance, distributional delay, feedback regulation, input and output rate changes, agonistic or antagonistic active metabolites, uptake into active site, slow receptor kinetics, delayed or modified activity, time-dependent protein binding and the use of racemic drugs among other factors. In this review, each of these various causes of hysteresis loops are discussed, with incorporation of relevant examples of drugs demonstrating these relationships for illustrative purposes. Furthermore, the effect that pharmaceutical formulation has on the occurrence and potential change in direction of the hysteresis loop, and the major pharmacokinetic / pharmacodynamic modeling approaches utilized to collapse and model hysteresis are detailed. PMID:24735761
Slow-roll approximation in loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luc, Joanna; Mielczarek, Jakub, E-mail: joanna.luc@uj.edu.pl, E-mail: jakub.mielczarek@uj.edu.pl
The slow-roll approximation is an analytical approach to study dynamical properties of the inflationary universe. In this article, systematic construction of the slow-roll expansion for effective loop quantum cosmology is presented. The analysis is performed up to the fourth order in both slow-roll parameters and the parameter controlling the strength of deviation from the classical case. The expansion is performed for three types of the slow-roll parameters: Hubble slow-roll parameters, Hubble flow parameters and potential slow-roll parameters. An accuracy of the approximation is verified by comparison with the numerical phase space trajectories for the case with a massive potential term.more » The results obtained in this article may be helpful in the search for the subtle quantum gravitational effects with use of the cosmological data.« less
Super energy saver heat pump with dynamic hybrid phase change material
Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN
2010-07-20
A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.
One-loop perturbative coupling of A and A? through the chiral overlap operator
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi
2018-03-01
Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.
Nagai, Satoshi; Itakura, Shigeru
2012-09-01
In this study, we succeeded in developing a loop-mediated isothermal amplification (LAMP) method that enables sensitive and specific detection of the toxic marine dinoflagellates Alexandrium tamarense and Alexandrium catenella from single cells of both laboratory cultures and naturally blooming cells within 25 min, by monitoring the turbidimeter from the start of the LAMP reaction. The fluorescence intensity was strong enough to allow discrimination between positive and negative results by naked eye under a UV lamp, even in amplified samples from a single cell, by using the LAMP method. Unambiguous detection by naked eye was possible even in half the volume of LAMP cocktail recommended by the manufacturer, suggesting the potential to significantly reduce the cost of Alexandrium monitoring. Therefore, we can conclude that this method is one of the most convenient, sensitive, and cost-effective molecular tools for Alexandrium monitoring. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of closed-loop supply chain network in terms of corporate social responsibility.
Pedram, Ali; Pedram, Payam; Yusoff, Nukman Bin; Sorooshian, Shahryar
2017-01-01
Due to the rise in awareness of environmental issues and the depletion of virgin resources, many firms have attempted to increase the sustainability of their activities. One efficient way to elevate sustainability is the consideration of corporate social responsibility (CSR) by designing a closed loop supply chain (CLSC). This paper has developed a mathematical model to increase corporate social responsibility in terms of job creation. Moreover the model, in addition to increasing total CLSC profit, provides a range of strategic decision solutions for decision makers to select a best action plan for a CLSC. A proposed multi-objective mixed-integer linear programming (MILP) model was solved with non-dominated sorting genetic algorithm II (NSGA-II). Fuzzy set theory was employed to select the best compromise solution from the Pareto-optimal solutions. A numerical example was used to validate the potential application of the proposed model. The results highlight the effect of CSR in the design of CLSC.
Development of closed–loop supply chain network in terms of corporate social responsibility
Pedram, Payam; Yusoff, Nukman Bin; Sorooshian, Shahryar
2017-01-01
Due to the rise in awareness of environmental issues and the depletion of virgin resources, many firms have attempted to increase the sustainability of their activities. One efficient way to elevate sustainability is the consideration of corporate social responsibility (CSR) by designing a closed loop supply chain (CLSC). This paper has developed a mathematical model to increase corporate social responsibility in terms of job creation. Moreover the model, in addition to increasing total CLSC profit, provides a range of strategic decision solutions for decision makers to select a best action plan for a CLSC. A proposed multi-objective mixed-integer linear programming (MILP) model was solved with non-dominated sorting genetic algorithm II (NSGA-II). Fuzzy set theory was employed to select the best compromise solution from the Pareto-optimal solutions. A numerical example was used to validate the potential application of the proposed model. The results highlight the effect of CSR in the design of CLSC. PMID:28384250
Loop-Extended Symbolic Execution on Binary Programs
2009-03-02
1434. Based on its speci- fication [35], one valid message format contains 2 fields: a header byte of value 4, followed by a string giving a database ...potentially become expensive. For instance the polyhedron technique [16] requires costly conversion operations on a multi-dimensional abstract representation
NASA Astrophysics Data System (ADS)
Bodendorfer, N.; Schäfer, A.; Schliemann, J.
2018-04-01
Chamseddine and Mukhanov recently proposed a modified version of general relativity that implements the idea of a limiting curvature. In the spatially flat, homogeneous, and isotropic sector, their theory turns out to agree with the effective dynamics of the simplest version of loop quantum gravity if one identifies their limiting curvature with a multiple of the Planck curvature. At the same time, it extends to full general relativity without any symmetry assumptions and thus provides an ideal toy model for full loop quantum gravity in the form of a generally covariant effective action known to all orders. In this paper, we study the canonical structure of this theory and point out some interesting lessons for loop quantum gravity. We also highlight in detail how the two theories are connected in the spatially flat, homogeneous, and isotropic sector.
Golebiowski, Jérôme; Antonczak, Serge; Di-Giorgio, Audrey; Condom, Roger; Cabrol-Bass, Daniel
2004-02-01
The dynamic behavior of the HCV IRES IIId domain is analyzed by means of a 2.6-ns molecular dynamics simulation, starting from an NMR structure. The simulation is carried out in explicit water with Na+ counterions, and particle-mesh Ewald summation is used for the electrostatic interactions. In this work, we analyze selected patterns of the helix that are crucial for IRES activity and that could be considered as targets for the intervention of inhibitors, such as the hexanucleotide terminal loop (more particularly its three consecutive guanines) and the loop-E motif. The simulation has allowed us to analyze the dynamics of the loop substructure and has revealed a behavior among the guanine bases that might explain the different role of the third guanine of the GGG triplet upon molecular recognition. The accessibility of the loop-E motif and the loop major and minor groove is also examined, as well as the effect of Na+ or Mg2+ counterion within the simulation. The electrostatic analysis reveals several ion pockets, not discussed in the experimental structure. The positions of these ions are useful for locating specific electrostatic recognition sites for potential inhibitor binding.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2014-06-24
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2015-02-17
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1997-01-01
ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.
High-LET Patterns of DSBs in DNA Loops, the HPRT Gene and Phosphorylation Foci
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
We present new results obtained with our model based on the track structure and chromatin geometry that predicts the DSB spatial and genomic distributions in a cell nucleus with the full genome represented. The model generates stochastic patterns of DSBs in the physical space of the nucleus filled with the realistic configuration of human chromosomes. The model was re-used to find the distribution of DSBs in a physical volume corresponding to a visible phosphorylation focus believed to be associated with a DSB. The data shows whether there must more than one DSB per foci due to finite size of the visible focus, even if a single DSB is radiochemically responsible for the phosphorylation of DNA in its vicinity. The same model can predict patterns of closely located DSBs in a given gene, or in a DNA loop, one of the large-scale chromatin structures. We demonstrated for the example of the HPRT gene, how different sorts of radiation lead to proximity effect in DSB locations, which is important for modeling gene deletions. The spectrum of intron deletions and total gene deletions was simulated for the HPRT gene. The same proximity effect of DSBs in a loop can hinder DSB restitutions, as parts of the loop between DSBs is deleted with a higher likelihood. The distributions of DSBs and deletions of DNA in a loop are presented.
Amprazi, Maria; Kotsifaki, Dina; Providaki, Mary; Kapetaniou, Evangelia G.; Fellas, Georgios; Kyriazidis, Ioannis; Pérez, Javier; Kokkinidis, Michael
2014-01-01
The dimeric Repressor of Primer (Rop) protein, a widely used model system for the study of coiled-coil 4-α-helical bundles, is characterized by a remarkable structural plasticity. Loop region mutations lead to a wide range of topologies, folding states, and altered physicochemical properties. A protein-folding study of Rop and several loop variants has identified specific residues and sequences that are linked to the observed structural plasticity. Apart from the native state, native-like and molten-globule states have been identified; these states are sensitive to reducing agents due to the formation of nonnative disulfide bridges. Pro residues in the loop are critical for the establishment of new topologies and molten globule states; their effects, however, can be in part compensated by Gly residues. The extreme plasticity in the assembly of 4-α-helical bundles reflects the capacity of the Rop sequence to combine a specific set of hydrophobic residues into strikingly different hydrophobic cores. These cores include highly hydrated ones that are consistent with the formation of interchain, nonnative disulfide bridges and the establishment of molten globules. Potential applications of this structural plasticity are among others in the engineering of bio-inspired materials. PMID:25024213
NASA Astrophysics Data System (ADS)
Salmon, Daniel; Nerem, M. Perry; Aubin, Seth; Delos, John
Monodromy means ``once around a path,'' therefore systems that have non-trivial monodromy are systems such that, when taken around a closed circuit in some space, the system has changed state in some way. Classical systems that exhibit non-trivial Hamiltonian monodromy have action and angle variables that are multivalued functions. A family, or loop, of trajectories of this system has a topological change upon traversing a monodromy circuit. We present an experimental apparatus for observing this topological change. A family of particles moving in a cylindrically symmetric champagne-bottle potential exhibits non-trivial Hamiltonian monodromy. At the center of this system is a classically forbidden region. By following a monodromy circuit, a loop of initial conditions on one side of the forbidden region can be made to evolve continuously into a loop that surrounds the forbidden region. We realize this system using a spherical pendulum, having at its end a permanent magnet. Magnetic fields generated by coils can then be used to create the champagne-bottle potential, as well as drive the pendulum through the monodromy circuit.
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian
2017-01-01
Abstract Motivation: Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results: We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation: Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Contact: deane@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28453681
Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction.
Marks, Claire; Nowak, Jaroslaw; Klostermann, Stefan; Georges, Guy; Dunbar, James; Shi, Jiye; Kelm, Sebastian; Deane, Charlotte M
2017-05-01
Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
The effective hyper-Kähler potential in the N = 2 supersymmetric QCD
NASA Astrophysics Data System (ADS)
Ketov, Sergei V.
1997-02-01
The effective low-energy hyper-Kähler potential for a massive N = 2 matter in N = 2 super-QCD is investigated. TheN = 2 extended supersymmetry severely restricts the N = 2 matter self-couplings so that their exact form can be fixed by a few parameters, which is apparent in the N = 2 harmonic superspace. In the N = 2 QED with a single matter hypermultiplet, the one-loop perturbative calculations lead to the Taub-NUT hyper-Kähler metric in the massive case, and a free metric in the massless case. It is remarkable that the naive non-renormalization `theorem' does not apply. There exists a manifestly N = 2 supersymmetric duality transformation converting the low-energy effective action for the N = 2 QED hypermultiplet into a sum of the quadratic and the improved (non-polynomial) actions for an N = 2 tensor multiplet. The duality transformation also gives a simple connection between the low-energy effective action in the N = 2 harmonic superspace and the component results.
Improved dual-loop detection system for collecting real-time truck data
DOT National Transportation Integrated Search
2005-02-01
The WSDOTs dual-loop detectors capability of measuring vehicle lengths makes the dual-loop detection system a potential real-time truck data source for freight movement study. However, a previous study found the WSDOT dual-loop detection system...
Simple way to calculate a UV-finite one-loop quantum energy in the Randall-Sundrum model
NASA Astrophysics Data System (ADS)
Altshuler, Boris L.
2017-04-01
The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calculation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of "regular" and "irregular" one-loop energies in the one-brane Randall-Sundrum model. The approach developed in the paper also allows us to get "in one line" the one-loop quantum energies in the two-brane Randall-Sundrum model. The relationship between "one-loop" expressions corresponding to the mixed Robin and to double-trace asymptotic boundary conditions is traced.
NASA Astrophysics Data System (ADS)
Pascoe, D. J.; Anfinogentov, S.; Nisticò, G.; Goddard, C. R.; Nakariakov, V. M.
2017-04-01
Context. The strong damping of kink oscillations of coronal loops can be explained by mode coupling. The damping envelope depends on the transverse density profile of the loop. Observational measurements of the damping envelope have been used to determine the transverse loop structure which is important for understanding other physical processes such as heating. Aims: The general damping envelope describing the mode coupling of kink waves consists of a Gaussian damping regime followed by an exponential damping regime. Recent observational detection of these damping regimes has been employed as a seismological tool. We extend the description of the damping behaviour to account for additional physical effects, namely a time-dependent period of oscillation, the presence of additional longitudinal harmonics, and the decayless regime of standing kink oscillations. Methods: We examine four examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We use forward modelling of the loop position and investigate the dependence on the model parameters using Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Results: Our improvements to the physical model combined with the use of Bayesian inference and MCMC produce improved estimates of model parameters and their uncertainties. Calculation of the Bayes factor also allows us to compare the suitability of different physical models. We also use a new method based on spline interpolation of the zeroes of the oscillation to accurately describe the background trend of the oscillating loop. Conclusions: This powerful and robust method allows for accurate seismology of coronal loops, in particular the transverse density profile, and potentially reveals additional physical effects.
Dridi, Kaouthar; Amara, Sawsan; Bezzine, Sofiane; Rodriguez, Jorge A; Carrière, Frédéric; Gaussier, Hélène
2013-07-01
Structural studies on pancreatic lipase have revealed a complex architecture of surface loops surrounding the enzyme active site and potentially involved in interactions with lipids. Two of them, the lid and beta loop, expose a large hydrophobic surface and are considered as acyl chain binding sites based on their interaction with an alkyl phosphonate inhibitor. While the role of the lid in substrate recognition and selectivity has been extensively studied, the implication of beta9 loop in acyl chain stabilization remained hypothetical. The characterization of an enzyme with a natural deletion of the lid, guinea pig pancreatic lipase-related protein 2 (GPLRP2), suggests however an essential contribution of the beta9 loop in the stabilization of the acyl enzyme intermediate formed during the lipolysis reaction. A GPLRP2 mutant with a seven-residue deletion of beta9 loop (GPLRP2-deltabeta9) was produced and its enzyme activity was measured using various substrates (triglycerides, monoglycerides, galactolipids, phospholipids, vinyl esters) with short, medium and long acyl chains. Whatever the substrate tested, GPLRP2-deltabeta9 activity is drastically reduced compared to that of wild-type GPLRP2 and this effect is more pronounced as the length of substrate acyl chain increases. Changes in relative substrate selectivity and stereoselectivity remained however weak. The deletion within beta9 loop has also a negative effect on the rate of enzyme inhibition by alkyl phosphonates. All these findings indicate that the reduced enzyme turnover observed with GPLRP2-deltabeta9 results from a weaker stabilization of the acyl enzyme intermediate due to a loss of hydrophobic interactions.
Excitation of flare-induced waves in coronal loops and the effects of radiative cooling
NASA Astrophysics Data System (ADS)
Provornikova, Elena; Ofman, Leon; Wang, Tongjiang
2018-01-01
EUV imaging observations from several space missions (SOHO/EIT, TRACE, and SDO/AIA) have revealed a presence of propagating intensity disturbances in solar coronal loops. These disturbances are typically interpreted as slow magnetoacoustic waves. However, recent spectroscopic observations with Hinode/EIS of active region loops revealed that the propagating intensity disturbances are associated with intermittent plasma upflows (or jets) at the footpoints which are presumably generated by magnetic reconnection. For this reason, whether these disturbances are waves or periodic flows is still being studied. This study is aimed at understanding the physical properties of observed disturbances by investigating the excitation of waves by hot plasma injections from below and the evolution of flows and wave propagation along the loop. We expand our previous studies based on isothermal 3D MHD models of an active region to a more realistic model that includes full energy equation accounting for the effects of radiative losses. Computations are initialized with an equilibrium state of a model active region using potential (dipole) magnetic field, gravitationally stratified density and temperature obtained from the polytropic equation of state. We model an impulsive injection of hot plasma into the steady plasma outflow along the loops of different temperatures, warm (∼1 MK) and hot (∼6 MK). The simulations show that hot jets launched at the coronal base excite slow magnetoacoustic waves that propagate to high altitudes along the loops, while the injected hot flows decelerate rapidly with heights. Our results support that propagating disturbances observed in EUV are mainly the wave features. We also find that the effect of radiative cooling on the damping of slow-mode waves in 1-6 MK coronal loops is small, in agreement with the previous conclusion based on 1D MHD models.
Burtscher, Laura; Hajdu, Dorottya; Muñoz, Alberto; Gáspári, Zoltán; Read, Nick D.; Batta, Gyula; Marx, Florentine
2017-01-01
The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five β-strands of PAF form a compact β-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF. PMID:28072824
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y.; Frank, J.R.; St. Martin, E.J.
Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. The authors have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of themore » trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean-square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y. J.
Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trendmore » of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less
Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haro, Jaume de, E-mail: jaime.haro@upc.edu
It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less
Decay Heat Removal from a GFR Core by Natural Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.
2004-07-01
One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a meansmore » for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)« less
Christman, Stephen D; Weaver, Ryan
2008-05-01
The nature of temporal variability during speeded finger tapping was examined using linear (standard deviation) and non-linear (Lyapunov exponent) measures. Experiment 1 found that right hand tapping was characterised by lower amounts of both linear and non-linear measures of variability than left hand tapping, and that linear and non-linear measures of variability were often negatively correlated with one another. Experiment 2 found that increased non-linear variability was associated with relatively enhanced performance on a closed-loop motor task (mirror tracing) and relatively impaired performance on an open-loop motor task (pointing in a dark room), especially for left hand performance. The potential uses and significance of measures of non-linear variability are discussed.
Seeburger, Joerg; Noack, Thilo; Winkfein, Michael; Ender, Joerg; Mohr, Friedrich Wilhelm
2010-01-01
The loop technique facilitates mitral valve repair for leaflet prolapse by implantation of Gore-Tex neo-chordae. The key feature of the technique is a premade bundle of four loops made out of one suture. The loops are available in different lengths ranging from 10 to 26 mm. After assessment of the ideal length of neo-chordae with a caliper the loops are then secured to the body of the papillary muscle over an additional felt pledget. In the following step, the free ends of the loops are distributed along the free margin of the prolapsing segment using one additional suture for each loop.
One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations
NASA Astrophysics Data System (ADS)
Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro
2017-10-01
In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.
Development Specification for the Portable Life Support System (PLSS) Thermal Loop Pump
NASA Technical Reports Server (NTRS)
Anchondo, Ian; Campbell, Colin
2017-01-01
The AEMU Thermal Loop Pump Development Specification establishes the requirements for design, performance, and testing of the Water Pump as part of the Thermal System of the Advanced Portable Life Support System (PLSS). It is envisioned that the Thermal Loop Pump is a positive displacement pump that provides a repeatable volume of flow against a given range of back-pressures provided by the various applications. The intention is to operate the pump at a fixed speed for the given application. The primary system is made up of two identical and redundant pumps of which only one is in operation at given time. The Auxiliary Loop Pump is an identical pump design to the primary pumps but is operated at half the flow rate. Inlet positive pressure to the pumps is provided by the upstream Flexible Supply Assembly (FSA-431 and FSA-531) which are physically located inside the suit volume and pressurized by suit pressure. An integrated relief valve, placed in parallel to the pump's inlet and outlet protects the pump and loop from over-pressurization. An integrated course filter is placed upstream of the pump's inlet to provide filtration and prevent potential debris from damaging the pump.
Wilson loop from a Dyson equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, M.; Reinhardt, H.
2009-12-15
The Dyson equation proposed for planar temporal Wilson loops in the context of supersymmetric gauge theories is critically analyzed thereby exhibiting its ingredients and approximations involved. We reveal its limitations and identify its range of applicability in nonsupersymmetric gauge theories. In particular, we show that this equation is applicable only to strongly asymmetric planar Wilson loops (consisting of a long and a short pair of loop segments) and as a consequence the Wilsonian potential can be extracted only up to intermediate distances. By this equation the Wilson loop is exclusively determined by the gluon propagator. We solve the Dyson equationmore » in Coulomb gauge for the temporal Wilson loop with the instantaneous part of the gluon propagator and for the spatial Wilson loop with the static gluon propagator obtained in the Hamiltonian approach to continuum Yang-Mills theory and on the lattice. In both cases we find a linearly rising color potential.« less
The baryon vector current in the combined chiral and 1/Nc expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Mendieta, Ruben; Goity, Jose L
2014-12-01
The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions aremore » in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.« less
Rockx, Marie Antoinette; Hoch, Jeffrey S; Klein, George J; Yee, Raymond; Skanes, Allan C; Gula, Lorne J; Krahn, Andrew D
2005-11-01
Out patient ambulatory monitoring is often performed in patients with syncope that present in the primary care setting to include or exclude an arrhythmia. The cost-effectiveness of 2 monitoring strategies was assessed in a prospective randomized trial. One hundred patients referred for ambulatory monitoring with syncope or presyncope were randomized to a 1-month external loop recorder (n = 49) or 48-hour Holter monitor (n = 51). Patients were offered crossover if there was failed activation or no symptom recurrence. The primary end point was symptom-rhythm correlation during monitoring. Direct costs were calculated based on the 2003 Ontario Health Insurance Plan fee schedule, combined with calculation of labor, materials, service, and overhead for diagnostic testing and related equipment. Before enrollment, the cost of all previous health care resource use was USD 472 +/- USD 397 (range USD 21-USD 1965). In the loop recorder group, 63% of patients had symptom recurrence and successful activation, compared with 24% in the Holter group (P < .0001). The cost per Holter was USD 177.64, and per loop recorder, USD 533.56, with a similar cost per diagnosis with the 2 techniques. The incremental cost-effectiveness ratio of the loop recorder was USD 901.74 per extra successful diagnosis. A strategy of Holter followed by offered loop recorder trended toward lower cost than initial loop recorder followed by Holter (USD 481 +/- USD 267 vs USD 551 +/- USD 83, P = .08), but was associated with a lower overall diagnostic yield (49% vs 63%) and a resultant higher cost per diagnosis (USD 982 vs USD 871, P = .08). Bootstrapping suggested that 90% of incremental cost-effectiveness ratios were less than USD 1250. Despite the increased upfront cost of external loop recorders, the marked improvement in diagnostic yield offsets the cost. External loop recorders are an economically attractive alternative. First-line use of external loop recorders in patients with "community-acquired" syncope and presyncope should be considered to optimize diagnostic yield given its value.
Strongly first-order electroweak phase transition and classical scale invariance
NASA Astrophysics Data System (ADS)
Farzinnia, Arsham; Ren, Jing
2014-10-01
In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space. Many of these predictions lie within the reach of the next LHC run.
AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, A. W.; Cargill, P. J.; Tam, K. V.
For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread andmore » this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.« less
A Looping-Based Model for Quenching Repression
Pollak, Yaroslav; Goldberg, Sarah; Amit, Roee
2017-01-01
We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain’s termini reduces the probability of looping, even for chains much longer than the protrusion–chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns. PMID:28085884
Optical phase-locked loop (OPLL) for free-space laser communications with heterodyne detection
NASA Technical Reports Server (NTRS)
Win, Moe Z.; Chen, Chien-Chung; Scholtz, Robert A.
1991-01-01
Several advantages of coherent free-space optical communications are outlined. Theoretical analysis is formulated for an OPLL disturbed by shot noise, modulation noise, and frequency noise consisting of a white component, a 1/f component, and a 1/f-squared component. Each of the noise components is characterized by its associated power spectral density. It is shown that the effect of modulation depends only on the ratio of loop bandwidth and data rate, and is negligible for an OPLL with loop bandwidth smaller than one fourth the data rate. Total phase error variance as a function of loop bandwidth is displayed for several values of carrier signal to noise ratio. Optimal loop bandwidth is also calculated as a function of carrier signal to noise ratio. An OPLL experiment is performed, where it is shown that the measured phase error variance closely matches the theoretical predictions.
Numerical simulations of loops heated to solar flare temperatures. III - Asymmetrical heating
NASA Technical Reports Server (NTRS)
Cheng, C.-C.; Doschek, G. A.; Karpen, J. T.
1984-01-01
A numerical model is defined for asymmetric full solar flare loop heating and comparisons are made with observational data. The Dynamic Flux Tube Model is used to describe the heating process in terms of one-dimensional, two fluid conservation equations of mass, energy and momentum. An adaptive grid allows for the downward movement of the transition region caused by an advancing conduction front. A loop 20,000 km long is considered, along with a flare heating system and the hydrodynamic evolution of the loop. The model was applied to generating line profiles and spatial X-ray and UV line distributions, which were compared with SMM, P78-1 and Hintori data for Fe, Ca and Mg spectra. Little agreement was obtained, and it is suggested that flares be treated as multi-loop phenomena. Finally, it is concluded that chromospheric evaporation is not an effective mechanism for generating the soft X-ray bursts associated with flares.
Nonlinear model predictive control for chemical looping process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Reduction of Phase Ambiguity in an Offset-QPSK Receiver
NASA Technical Reports Server (NTRS)
Berner, Jeff; Kinman, Peter
2004-01-01
Proposed modifications of an offset-quadri-phase-shift keying (offset-QPSK) transmitter and receiver would reduce the amount of signal processing that must be done in the receiver to resolve the QPSK fourfold phase ambiguity. Resolution of the phase ambiguity is necessary in order to synchronize, with the received carrier signal, the signal generated by a local oscillator in a carrier-tracking loop in the receiver. Without resolution of the fourfold phase ambiguity, the loop could lock to any of four possible phase points, only one of which has the proper phase relationship with the carrier. The proposal applies, more specifically, to an offset-QPSK receiver that contains a carrier-tracking loop like that shown in Figure 1. This carrier-tracking loop does not resolve or reduce the phase ambiguity. A carrier-tracking loop of a different design optimized for the reception of offset QPSK could reduce the phase ambiguity from fourfold to twofold, but would be more complex. Alternatively, one could resolve the fourfold phase ambiguity by use of differential coding in the transmitter, at a cost of reduced power efficiency. The proposed modifications would make it possible to reduce the fourfold phase ambiguity to twofold, with no loss in power efficiency and only relatively simple additional signal-processing steps in the transmitter and receiver. The twofold phase ambiguity would then be resolved by use of a unique synchronization word, as is commonly done in binary phase-shift keying (BPSK). Although the mathematical and signal-processing principles underlying the modifications are too complex to explain in detail here, the modifications themselves would be relatively simple and are best described with the help of simple block diagrams (see Figure 2). In the transmitter, one would add a unit that would periodically invert bits going into the QPSK modulator; in the receiver, one would add a unit that would effect different but corresponding inversions of bits coming out of the QPSK demodulator. The net effect of all the inversions would be that depending on which lock point the carrier-tracking loop had selected, all the output bits would be either inverted or non-inverted together; hence, the ambiguity would be reduced from fourfold to twofold, as desired.
Vitale, Elena; Ungar, Andrea; Maggi, Roberto; Francese, Maura; Lunati, Maurizio; Colaceci, Roberto; Del Rosso, Attilio; Castro, Antonio; Santini, Massimo; Giuli, Silvia; Belgini, Lara; Casagranda, Ivo; Brignole, Michele
2010-01-01
Aim An implantable loop recorder (ILR) is indicated in patients with unexplained syncope after complete conventional work-up. Data from the literature imply that, in clinical practice, the ILR is underused. The aim of the study was to verify if there is any discrepancy between the use of ILRs in clinical practice and the potential indications based on the most potentially appropriate guideline indications. Method and results We compared the prevalence of ILRs actually implanted in patients with unexplained syncope in the Syncope Unit Project (SUP) study and the potential one using the standard given by the guidelines. In the SUP study, 28 (18%) out of 159 patients with unexplained syncope received an ILR. Appropriate criteria for implantation of ILRs according to guidelines were present in 110 (69%) patients. Moreover, 7 (25%) of ILRs actually implanted did not satisfy the guideline standards. During the follow-up, 32% of patients who had received an ILR had a diagnosis compared with 5% of those who did not (P= 0.001). Conclusions The estimated indications were four times higher than those observed. Moreover, in about one quarter of the cases, the use of ILRs proved to be potentially inappropriate according to guideline indications. Two-thirds of patients with unexplained syncope had indications potentially appropriate for ILRs. PMID:20876604
Maccarini, Alessandro; Wetter, Michael; Afshari, Alireza; ...
2016-10-31
This paper analyzes the performance of a novel two-pipe system that operates one water loop to simultaneously provide space heating and cooling with a water supply temperature of around 22 °C. To analyze the energy performance of the system, a simulation-based research was conducted. The two-pipe system was modelled using the equation-based Modelica modeling language in Dymola. A typical office building model was considered as the case study. Simulations were run for two construction sets of the building envelope and two conditions related to inter-zone air flows. To calculate energy savings, a conventional four-pipe system was modelled and used formore » comparison. The conventional system presented two separated water loops for heating and cooling with supply temperatures of 45 °C and 14 °C, respectively. Simulation results showed that the two-pipe system was able to use less energy than the four-pipe system thanks to three effects: useful heat transfer from warm to cold zones, higher free cooling potential and higher efficiency of the heat pump. In particular, the two-pipe system used approximately between 12% and 18% less total annual primary energy than the four-pipe system, depending on the simulation case considered.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maccarini, Alessandro; Wetter, Michael; Afshari, Alireza
This paper analyzes the performance of a novel two-pipe system that operates one water loop to simultaneously provide space heating and cooling with a water supply temperature of around 22 °C. To analyze the energy performance of the system, a simulation-based research was conducted. The two-pipe system was modelled using the equation-based Modelica modeling language in Dymola. A typical office building model was considered as the case study. Simulations were run for two construction sets of the building envelope and two conditions related to inter-zone air flows. To calculate energy savings, a conventional four-pipe system was modelled and used formore » comparison. The conventional system presented two separated water loops for heating and cooling with supply temperatures of 45 °C and 14 °C, respectively. Simulation results showed that the two-pipe system was able to use less energy than the four-pipe system thanks to three effects: useful heat transfer from warm to cold zones, higher free cooling potential and higher efficiency of the heat pump. In particular, the two-pipe system used approximately between 12% and 18% less total annual primary energy than the four-pipe system, depending on the simulation case considered.« less
Parush, Avi; Kramer, Chelsea; Foster-Hunt, Tara; Momtahan, Kathryn; Hunter, Aren; Sohmer, Benjamin
2011-06-01
Team Situation Awareness (TSA) is one of the critical factors in effective Operating Room (OR) teamwork and can impact patient safety and quality of care. While previous research showed a relationship between situation awareness, as measured by communication events, and team performance, the implications for developing technology to augment and facilitate TSA were not examined. This research aims to further study situation-related communications in the cardiac OR in order to uncover potential degradation in TSA which may lead to adverse events. The communication loop construct-the full cycle of information flow between the participants in the sequence-was used to assess susceptibility to breakdown. Previous research and the findings here suggest that communication loops that are open, non-directed, or with delayed closure, can be susceptible to information loss. These were quantitatively related to communication indicators of TSA such as questions, replies, and announcements. Taken together, both qualitative and quantitative analyses suggest that a high proportion of TSA-related communication (63%) can be characterized as susceptible to information loss. The findings were then used to derive requirements and design a TSA augmentative display. The design principles and potential benefits of such a display are outlined and discussed. Copyright © 2010 Elsevier Inc. All rights reserved.
New BCJ representations for one-loop amplitudes in gauge theories and gravity
NASA Astrophysics Data System (ADS)
He, Song; Schlotterer, Oliver; Zhang, Yong
2018-05-01
We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.
NASA Technical Reports Server (NTRS)
Fujimoto, H.
1972-01-01
Minimization of common mode effects in differential amplifier arrangement which processes signals from two high impedance photosensors is achieved by connecting one photosensor in feedback loop of amplifier and using field effect transistors in the input circuit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Brian; Nayak, Dhananjaya; Ray, Ananya
RNA polymerase inhibitors like the CBR class that target the enzyme’s complex catalytic center are attractive leads for new antimicrobials. The catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg 2+ ions from a preinsertion state to a reactive configuration. CBR inhibitors target a crevice between the N-terminal portion of the bridge helix and a surrounding cap region within which the bridge helix is thought to rearrange during the nucleotide addition cycle. Here, we report crystal structures of CBR inhibitor/Escherichia coli RNA polymerasemore » complexes as well as biochemical tests that establish two distinct effects of the inhibitors on the RNA polymerase catalytic site. One effect involves inhibition of trigger-loop folding via the F loop in the cap, which affects both nucleotide addition and hydrolysis of 3'-terminal dinucleotides in certain backtracked complexes. The second effect is trigger-loop independent, affects only nucleotide addition and pyrophosphorolysis, and may involve inhibition of bridge-helix movements that facilitate reactive triphosphate alignment.« less
The matter power spectrum in redshift space using effective field theory
NASA Astrophysics Data System (ADS)
Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun
2017-11-01
The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.
Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation
Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.
2017-01-01
High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176
Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.
Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping
2018-01-01
In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable predictions on an accumulated and preferred mutation spectrum in normal tissue. The validation of predicted cancer state mutation patterns demonstrates the usefulness and potential of a causal dynamical framework to understand and predict genetic mutations in cancer. We also obtained the following implication related to HCC therapy, (1) specific positive feedback loops are responsible for the maintenance of normal liver and HCC; (2) inhibiting proliferation and inflammation-related positive feedback loops, and simultaneously inducing liver-specific positive feedback loop is predicated as the potential strategy to cure or relieve HCC; (3) the genesis and regression of HCC is asymmetric. In light of the characteristic property of the nonlinear dynamical system, we demonstrate that positive feedback loops must be existed as a simple and general molecular basis for the maintenance of phenotypes such as normal liver and HCC, and regulating the positive feedback loops directly or indirectly provides potential strategies to cure or relieve HCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shi; Bei, Hongbin; Robertson, Ian M.
2017-06-08
One-dimensional glide of loops during ion irradiation at 773 K in a series of Ni-containing concentrated solid solution alloys has been observed directly during experiments conducted inside a transmission electron microscope. It was found that the frequency of the oscillatory motion of the loop, the loop glide velocity as well as the loop jump distance were dependent on the composition of the alloy and the size of the loop. Loop glide was most common for small loops and occurred more frequently in the less complex alloys, being highest in Ni, then NiCo, NiFe and NiCoFeCr. As a result, no measurablemore » loop glide occurred in the NiCoCr, NiCoFeCrMn and NiCoFeCrPd alloys.« less
Yan, Yi-Yong; Tan, Jia-Heng; Lu, Yu-Jing; Yan, Siu-Cheong; Wong, Kwok-Yin; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu
2013-10-01
G-Quadruplex is a highly polymorphic structure, and its behavior in acidic condition has not been well studied. Circular dichroism (CD) spectra were used to study the conformational change of G-quadruplex. The thermal stabilities of the G-quadruplex were measured with CD melting. Interconversion kinetics profiles were investigated by using CD kinetics. The fluorescence of the inserted 2-Aminopurine (Ap) was monitored during pH change and acrylamide quenching, indicating the status of the loop. Proton NMR was adopted to help illustrate the change of the conformation. G-Quadruplex of specific loop was found to be able to transform upon pH variation. The transformation was resulted from the loop rearrangement. After screening of a library of diverse G-quadruplex, a sequence exhibiting the best transformation property was found. A pH-driven nanoswitch with three gears was obtained based on this transition cycle. Certain G-quadruplex was found to go through conformational change at low pH. Loop was the decisive factor controlling the interconversion upon pH variation. G-Quadruplex with TT central loop could be converted in a much milder condition than the one with TTA loop. It can be used to design pH-driven nanodevices such as a nanoswitch. These results provide more insights into G-quadruplex polymorphism, and also contribute to the design of DNA-based nanomachines and logic gates. © 2013.
Critical end point in the presence of a chiral chemical potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Z. -F.; Cloët, I. C.; Lu, Y.
A class of Polyakov-loop-modified Nambu-Jona-Lasinio models has been used to support a conjecture that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide information about the existence and location of a critical end point in the QCD phase diagram drawn in the plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts between the model results and analyses of the same problem using simulations of lattice-regularized QCD (lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved in favor of the lQCD and DSE predictions when both a physicallymore » motivated regularization is employed to suppress the contribution of high-momentum quark modes in the definition of the effective potential connected with the Polyakov-loop-modified Nambu-Jona-Lasinio models and the four-fermion coupling in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations of lQCD with mu(5) > 0 can shed any light on a critical end point in the regular QCD phase diagram.« less
Unimodular gravity and the lepton anomalous magnetic moment at one-loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín, Carmelo P., E-mail: carmelop@fis.ucm.es
We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.
THE LITTLEST HIGGS MODEL AND ONE-LOOP ELECTROWEAK PRECISION CONSTRAINTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHEN, M.C.; DAWSON,S.
2004-06-16
We present in this talk the one-loop electroweak precision constraints in the Littlest Higgs model, including the logarithmically enhanced contributions from both fermion and scalar loops. We find the one-loop contributions are comparable to the tree level corrections in some regions of parameter space. A low cutoff scale is allowed for a non-zero triplet VEV. Constraints on various other parameters in the model are also discussed. The role of triplet scalars in constructing a consistent renormalization scheme is emphasized.
Landau singularities and symbology: One- and two-loop MHV amplitudes in SYM theory
Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia
2016-03-14
We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.
Scale-invariant instantons and the complete lifetime of the standard model
NASA Astrophysics Data System (ADS)
Andreassen, Anders; Frost, William; Schwartz, Matthew D.
2018-03-01
In a classically scale-invariant quantum field theory, tunneling rates are infrared divergent due to the existence of instantons of any size. While one expects such divergences to be resolved by quantum effects, it has been unclear how higher-loop corrections can resolve a problem appearing already at one loop. With a careful power counting, we uncover a series of loop contributions that dominate over the one-loop result and sum all the necessary terms. We also clarify previously incomplete treatments of related issues pertaining to global symmetries, gauge fixing, and finite mass effects. In addition, we produce exact closed-form solutions for the functional determinants over scalars, fermions, and vector bosons around the scale-invariant bounce, demonstrating manifest gauge invariance in the vector case. With these problems solved, we produce the first complete calculation of the lifetime of our Universe: 1 0139 years . With 95% confidence, we expect our Universe to last more than 1 058 years . The uncertainty is part experimental uncertainty on the top quark mass and on αs and part theory uncertainty from electroweak threshold corrections. Using our complete result, we provide phase diagrams in the mt/mh and the mt/αs planes, with uncertainty bands. To rule out absolute stability to 3 σ confidence, the uncertainty on the top quark pole mass would have to be pushed below 250 MeV or the uncertainty on αs(mZ) pushed below 0.00025.
Low-energy effective field theory below the electroweak scale: operators and matching
NASA Astrophysics Data System (ADS)
Jenkins, Elizabeth E.; Manohar, Aneesh V.; Stoffer, Peter
2018-03-01
The gauge-invariant operators up to dimension six in the low-energy effective field theory below the electroweak scale are classified. There are 70 Hermitian dimension-five and 3631 Hermitian dimension-six operators that conserve baryon and lepton number, as well as Δ B = ±Δ L = ±1, Δ L = ±2, and Δ L = ±4 operators. The matching onto these operators from the Standard Model Effective Field Theory (SMEFT) up to order 1 /Λ2 is computed at tree level. SMEFT imposes constraints on the coefficients of the low-energy effective theory, which can be checked experimentally to determine whether the electroweak gauge symmetry is broken by a single fundamental scalar doublet as in SMEFT. Our results, when combined with the one-loop anomalous dimensions of the low-energy theory and the one-loop anomalous dimensions of SMEFT, allow one to compute the low-energy implications of new physics to leading-log accuracy, and combine them consistently with high-energy LHC constraints.
NASA Technical Reports Server (NTRS)
Patel, Vipul P.; Winton, Dale; Ibarra, Thomas H.
2004-01-01
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001. The dual loop system of the ITCS is comprised of a lowtemperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a threeway mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, pump bypass assembly (PBA) and a heat exchanger. In addition, the MTL has an additional TWMV, a payload regeneration heat exchanger (P/RHE) and a manual flow control valve (MFCV). The LTL has a service performance and checkout unit (SPCU) heat exchanger. The two loops are linked via one loop crossover assembly (LCA) providing cross loop capabilities and a single PPA, two-loop functionality. One important parameter monitored by the ground stations and on-orbit is the amount of fluid leakage from the ITCS. ISS fluid leakage is of importance since ITCS fluid is costly to re-supply, may be difficult to clean up in zero-g, and if uncontained could lead to equipment failures and potential hazards. This paper examines the nominal leakage observed over period of a year of on-orbit operation and compares this with analysis predictions. This paper also addresses the off-nominal leakage and a fluid transfer event causing significant changes in accumulator quantity.
Interquark potential with finite quark mass from lattice QCD.
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1 GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society
Self-diffusion in a system of interacting Langevin particles
NASA Astrophysics Data System (ADS)
Dean, D. S.; Lefèvre, A.
2004-06-01
The behavior of the self-diffusion constant of Langevin particles interacting via a pairwise interaction is considered. The diffusion constant is calculated approximately within a perturbation theory in the potential strength about the bare diffusion constant. It is shown how this expansion leads to a systematic double expansion in the inverse temperature β and the particle density ρ . The one-loop diagrams in this expansion can be summed exactly and we show that this result is exact in the limit of small β and ρβ constants. The one-loop result can also be resummed using a semiphenomenological renormalization group method which has proved useful in the study of diffusion in random media. In certain cases the renormalization group calculation predicts the existence of a diverging relaxation time signaled by the vanishing of the diffusion constant, possible forms of divergence coming from this approximation are discussed. Finally, at a more quantitative level, the results are compared with numerical simulations, in two dimensions, of particles interacting via a soft potential recently used to model the interaction between coiled polymers.
Experimental Apparatus to Observe Dynamical Manifestations of Hamiltonian Monodromy
NASA Astrophysics Data System (ADS)
Nerem, M. Perry; Salmon, Danial; Delos, John; Aubin, Seth
An experiment to observe a topological change in a classical system with nontrivial monodromy is presented. Monodromy is the study of the topological behavior of a system as it evolves along a closed path. If the system does not return to the initial topological state at the end of the circuit, that system exhibits nontrivial monodromy. Such a topological change has been predicted in certain mechanical systems, but has not yet been observed experimentally. One such system is a family of paths in a cylindrically symmetric champagne-bottle potential, with a classically forbidden region centered at the origin. We constructed this system with a long spherically symmetric pendulum and a permanent magnet attached at the end. Magnetic fields from coils are used to create the potential barrier and the external forces to drive the pendulum about a monodromy circuit. A loop of initial conditions, that is initially on one side of the forbidden region, is driven smoothly about this circuit such that it continuously evolves into a loop that surrounds the forbidden region. We will display this phenomena through numerical simulations and hopefully experimental measurement.
Grant, Peadar F; Lowery, Madeleine M
2013-07-01
A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.
Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames
NASA Astrophysics Data System (ADS)
Ohta, Nobuyoshi
2018-03-01
The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.
Derivative expansion of one-loop effective energy of stiff membranes with tension
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.
1999-03-01
With help of a derivative expansion, the one-loop corrections to the energy functional of a nearly flat, stiff membrane with tension due to thermal fluctuations are calculated in the Monge parametrization. Contrary to previous studies, an arbitrary tilt of the surface is allowed to exhibit the nontrivial relations between the different, highly nonlinear terms accompanying the ultraviolet divergences. These terms are shown to have precisely the same form as those in the original energy functional, as necessary for renormalizability. Also infrared divergences arise. These, however, are shown to cancel in a nontrivial way.
QCD Resummation for Single Spin Asymmetries
NASA Astrophysics Data System (ADS)
Kang, Zhong-Bo; Xiao, Bo-Wen; Yuan, Feng
2011-10-01
We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.
QCD Resummation for Single Spin Asymmetries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang Z.; Xiao, Bo-Wen; Yuan, Feng
We study the transverse momentum dependent factorization for single spin asymmetries in Drell-Yan and semi-inclusive deep inelastic scattering processes at one-loop order. The next-to-leading order hard factors are calculated in the Ji-Ma-Yuan factorization scheme. We further derive the QCD resummation formalisms for these observables following the Collins-Soper-Sterman method. The results are expressed in terms of the collinear correlation functions from initial and/or final state hadrons coupled with the Sudakov form factor containing all order soft-gluon resummation effects. The scheme-independent coefficients are calculated up to one-loop order.
Device for removing foreign objects from anatomic organs
NASA Technical Reports Server (NTRS)
Angulo, Earl D. (Inventor)
1992-01-01
A device is disclosed for removing foreign objects from anatomic organs such as the ear canal or throat. It has a housing shaped like a flashlight, an electrical power source such as a battery or AC power from a wall socket, and a tip extending from the housing. The tip has at least one wire loop made from a shape-memory-effect alloy, such as Nitinol, switchably connected to the electrical power source such that when electric current flows through the wire loop the wire loop heats up and returns to a previously programmed shape such as a curet or tweezers so as to facilitate removal of the foreign object.
LOOPREF: A Fluid Code for the Simulation of Coronal Loops
NASA Technical Reports Server (NTRS)
deFainchtein, Rosalinda; Antiochos, Spiro; Spicer, Daniel
1998-01-01
This report documents the code LOOPREF. LOOPREF is a semi-one dimensional finite element code that is especially well suited to simulate coronal-loop phenomena. It has a full implementation of adaptive mesh refinement (AMR), which is crucial for this type of simulation. The AMR routines are an improved version of AMR1D. LOOPREF's versatility makes is suitable to simulate a wide variety of problems. In addition to efficiently providing very high resolution in rapidly changing regions of the domain, it is equipped to treat loops of variable cross section, any non-linear form of heat conduction, shocks, gravitational effects, and radiative loss.
Computing black hole partition functions from quasinormal modes
Arnold, Peter; Szepietowski, Phillip; Vaman, Diana
2016-07-07
We propose a method of computing one-loop determinants in black hole space-times (with emphasis on asymptotically anti-de Sitter black holes) that may be used for numerics when completely-analytic results are unattainable. The method utilizes the expression for one-loop determinants in terms of quasinormal frequencies determined by Denef, Hartnoll and Sachdev in [1]. A numerical evaluation must face the fact that the sum over the quasinormal modes, indexed by momentum and overtone numbers, is divergent. A necessary ingredient is then a regularization scheme to handle the divergent contributions of individual fixed-momentum sectors to the partition function. To this end, we formulatemore » an effective two-dimensional problem in which a natural refinement of standard heat kernel techniques can be used to account for contributions to the partition function at fixed momentum. We test our method in a concrete case by reproducing the scalar one-loop determinant in the BTZ black hole background. Furthermore, we then discuss the application of such techniques to more complicated spacetimes.« less
Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya; Ku, Jentung; Kaya, Tarik
1998-01-01
This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.
Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals
NASA Astrophysics Data System (ADS)
Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.
2018-04-01
We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.
Broken Chains and Reneging: A Review of 1748 Kidney Paired Donation Transplants.
Cowan, N; Gritsch, H A; Nassiri, N; Sinacore, J; Veale, J
2017-09-01
Concerns regarding the potential for broken chains and "reneges" within kidney paired donation (KPD) and its effect on chain length have been raised previously. Although these concerns have been tested in simulation studies, real-world data have yet to be evaluated. The purpose of this study was to evaluate the actual rate and causes of broken chains within a large KPD program. All patients undergoing renal transplantation through the National Kidney Registry from 2008 through May 2016 were included for analysis. Broken chains and loops were identified. A total of 344 chains and 78 loops were completed during the study period, yielding a total of 1748 transplants. Twenty broken chains and one broken loop were identified. The mean chain length (number of transplants) within broken chains was 4.8 compared with 4.6 of completed chains (p = 0.78). The most common causes of a broken chain were donor medical issues incurred while acting as a bridge donor (n = 8), donors electing not to proceed (n = 6), and kidneys being declined by the recipient surgeon (n = 4). All recipients involved in a broken chain subsequently received a transplant. Based on the results, broken chains are infrequent, are rarely due to lack of donor motivation, and have no significant impact on chain length. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian
NASA Astrophysics Data System (ADS)
Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.
2018-03-01
Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.
Atomistic study of the hardening of ferritic iron by Ni-Cr decorated dislocation loops
NASA Astrophysics Data System (ADS)
Bonny, G.; Bakaev, A.; Terentyev, D.; Zhurkin, E.; Posselt, M.
2018-01-01
The exact nature of the radiation defects causing hardening in reactor structural steels consists of several components that are not yet clearly determined. While generally, the hardening is attributed to dislocation loops, voids and secondary phases (radiation-induced precipitates), recent advanced experimental and computational studies point to the importance of solute-rich clusters (SRCs). Depending on the exact composition of the steel, SRCs may contain Mn, Ni and Cu (e.g. in reactor pressure vessel steels) or Ni, Cr, Si, Mn (e.g. in high-chromium steels for generation IV and fusion applications). One of the hypotheses currently implied to explain their formation is the process of radiation-induced diffusion and segregation of these elements to small dislocation loops (heterogeneous nucleation), so that the distinction between SRCs and loops becomes somewhat blurred. In this work, we perform an atomistic study to investigate the enrichment of loops by Ni and Cr solutes and their interaction with an edge dislocation. The dislocation loops decorated with Ni and Cr solutes are obtained by Monte Carlo simulations, while the effect of solute segregation on the loop's strength and interaction mechanism is then addressed by large scale molecular dynamics simulations. The synergy of the Cr-Ni interaction and their competition to occupy positions in the dislocation loop core are specifically clarified.
Gastric bypass: why Roux-en-Y? A review of experimental data.
Collins, Brendan J; Miyashita, Tomoharu; Schweitzer, Michael; Magnuson, Thomas; Harmon, John W
2007-10-01
To highlight the clinical and experimental rationales that support why the Roux-en-Y limb is an important surgical principle for bariatric gastric bypass. We reviewed PubMed citations for open Roux-en-Y gastric bypass (RYGBP), laparoscopic RYGBP, loop gastric bypass, chronic alkaline reflux gastritis, and duodenoesophageal reflux. We reviewed clinical and experimental articles. Clinical articles included prospective, retrospective, and case series of patients undergoing RYGBP, laparoscopic RYGBP, or loop gastric bypass. Experimental articles that were reviewed included in vivo and in vitro models of chronic duodenoesophageal reflux and its effect on carcinogenesis. No formal data extraction was performed. We reviewed published operative times, lengths of stay, and anastomotic leak rates for laparoscopic RYGBP and loop gastric bypass. For in vivo and in vitro experimental models of duodenoesophageal reflux, we reviewed the kinetics and potential molecular mechanisms of carcinogenesis. Recent data suggest that laparoscopic loop gastric bypass, performed without the creation of a Roux-en-Y gastroenterostomy, is a faster surgical technique that confers similarly robust weight loss compared with RYGBP or laparoscopic RYGBP. In the absence of a Roux limb, the long-term effects of chronic alkaline reflux are unknown. Animal models and in vitro analyses of chronic alkaline reflux suggest a carcinogenic effect.
A displacement pump procedure to load extracts for automated gel permeation chromatography.
Daft, J; Hopper, M; Hensley, D; Sisk, R
1990-01-01
Automated gel permeation chromatography (GPC) effectively separates lipids from pesticides in sample extracts that contain fat. Using a large syringe to load sample extracts manually onto GPC models having 5 mL holding loops is awkward, slow, and potentially hazardous. Loading with a small-volume displacement pump, however, is convenient and fast (ca 1 loop every 20 s). And more importantly, the analyst is not exposed to toxic organic vapors because the loading pump and its connecting lines do not leak in the way that a syringe does.
ABJM Wilson loops in arbitrary representations
NASA Astrophysics Data System (ADS)
Hatsuda, Yasuyuki; Honda, Masazumi; Moriyama, Sanefumi; Okuyama, Kazumi
2013-10-01
We study vacuum expectation values (VEVs) of circular half BPS Wilson loops in arbitrary representations in ABJM theory. We find that those in hook representations are reduced to elementary integrations thanks to the Fermi gas formalism, which are accessible from the numerical studies similar to the partition function in the previous studies. For non-hook representations, we show that the VEVs in the grand canonical formalism can be exactly expressed as determinants of those in the hook representations. Using these facts, we can study the instanton effects of the VEVs in various representations. Our results are consistent with the worldsheet instanton effects studied from the topological string and a prescription to include the membrane instanton effects by shifting the chemical potential, which has been successful for the partition function.
Two-loop renormalization of the quark propagator in the light-cone gauge
NASA Astrophysics Data System (ADS)
Williams, James Daniel
The divergent parts of the five two-loop quark self- energy diagrams of quantum chromodynamics are evaluated in the noncovariant light-cone gauge. Most of the Feynman integrals are computed by means of the powerful matrix integration method, originally developed for the author's Master's thesis. From the results of the integrations, it is shown how to renormalize the quark mass and wave function in such a way that the effective quark propagator is rendered finite at two-loop order. The required counterterms turn out to be local functions of the quark momentum, due to cancellation of the nonlocal divergent parts of the two-loop integrals with equal and opposite contributions from one-loop counterterm subtraction diagrams. The final form of the counterterms is seen to be consistent with the renormalization framework proposed by Bassetto, Dalbosco, and Soldati, in which all noncovariant divergences are absorbed into the wave function normalizations. It also turns out that the mass renormalization d m is the same in the light-cone gauge as it is in a general covariant gauge, at least up to two-loop order.
Effect of supercoiling on formation of protein-mediated DNA loops
NASA Astrophysics Data System (ADS)
Purohit, P. K.; Nelson, P. C.
2006-12-01
DNA loop formation is one of several mechanisms used by organisms to regulate genes. The free energy of forming a loop is an important factor in determining whether the associated gene is switched on or off. In this paper we use an elastic rod model of DNA to determine the free energy of forming short (50-100 basepair), protein mediated DNA loops. Superhelical stress in the DNA of living cells is a critical factor determining the energetics of loop formation, and we explicitly account for it in our calculations. The repressor protein itself is regarded as a rigid coupler; its geometry enters the problem through the boundary conditions it applies on the DNA. We show that a theory with these ingredients is sufficient to explain certain features observed in modulation of in vivo gene activity as a function of the distance between operator sites for the lac repressor. We also use our theory to make quantitative predictions for the dependence of looping on superhelical stress, which may be testable both in vivo and in single-molecule experiments such as the tethered particle assay and the magnetic bead assay.
Lattice corrections to the quark quasidistribution at one loop
Carlson, Carl E.; Freid, Michael
2017-05-12
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Lattice corrections to the quark quasidistribution at one loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.; Freid, Michael
Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less
Pang, Bo; Ding, Xiong; Wang, Guoping; Zhao, Chao; Xu, Yanan; Fu, Kaiyue; Sun, Jingjing; Song, Xiuling; Wu, Wenshuai; Liu, Yushen; Song, Qi; Hu, Jiumei; Li, Juan; Mu, Ying
2017-12-27
Vibrio parahemolyticus (VP) mostly isolated from aquatic products is one of the major causes of bacterial food-poisoning events worldwide, which could be reduced using a promising on-site detection method. Herein, a rapid and quantitative method for VP detection was developed by applying a mixed-dye-loaded loop-mediated isothermal amplification (LAMP) assay on a self-priming compartmentalization (SPC) microfluidic chip, termed on-chip mixed-dye-based LAMP (CMD-LAMP). In comparison to conventional approaches, CMD-LAMP was advantageous on the limit of detection, which reached down to 1 × 10 3 CFU/mL in food-contaminated samples without the pre-enrichment of bacteria. Additionally, as a result of the use of a mixed dye and SPC chip, the quantitative result could be easily acquired, avoiding the requirement of sophisticated instruments and tedious operation. Also, CMD-LAMP was rapid and cost-effective. Conclusively, CMD-LAMP has great potential in realizing the on-site quantitative analysis of VP for food safety.
Gunther-Harrington, Catherine T; Michel, Adam O; Stern, Joshua A
2015-12-01
Placement of an endocardial VDD pacing lead in small dogs (<12 kg) may necessitate a redundant lead remaining looped in the right atrium for appropriate sensing and pacing. This report documented acquired tricuspid valve stenosis in two small dogs between 8 months and 4 years after VDD pacemaker placement for third-degree atrioventricular block. Echocardiography and Doppler echocardiography identified elevated transtricuspid flow velocities, prolonged pressure half-times, decreased valve leaflet excursions, and tricuspid regurgitation in both cases. Both cases were euthanized secondary to this pacing complication. Necropsy was performed in one case and confirmed adherence between the redundant lead loop, atrial and valve tissue. While VDD pacing in dogs has proven hemodynamic benefits, these benefits have not been demonstrated in terms of survival benefit or clinical signs. The requirement of redundant lead placement in small dogs for appropriate VDD lead function creates potential deleterious effects that should be weighed against the possible clinical value of VDD pacing in these patients. Copyright © 2015 Elsevier B.V. All rights reserved.
All-digital GPS receiver mechanization
NASA Astrophysics Data System (ADS)
Ould, P. C.; van Wechel, R. J.
The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.
Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy.
Ramgopal, Sriram; Thome-Souza, Sigride; Jackson, Michele; Kadish, Navah Ester; Sánchez Fernández, Iván; Klehm, Jacquelyn; Bosl, William; Reinsberger, Claus; Schachter, Steven; Loddenkemper, Tobias
2014-08-01
Nearly one-third of patients with epilepsy continue to have seizures despite optimal medication management. Systems employed to detect seizures may have the potential to improve outcomes in these patients by allowing more tailored therapies and might, additionally, have a role in accident and SUDEP prevention. Automated seizure detection and prediction require algorithms which employ feature computation and subsequent classification. Over the last few decades, methods have been developed to detect seizures utilizing scalp and intracranial EEG, electrocardiography, accelerometry and motion sensors, electrodermal activity, and audio/video captures. To date, it is unclear which combination of detection technologies yields the best results, and approaches may ultimately need to be individualized. This review presents an overview of seizure detection and related prediction methods and discusses their potential uses in closed-loop warning systems in epilepsy. Copyright © 2014. Published by Elsevier Inc.
Presenting simulation results in a nested loop plot.
Rücker, Gerta; Schwarzer, Guido
2014-12-12
Statisticians investigate new methods in simulations to evaluate their properties for future real data applications. Results are often presented in a number of figures, e.g., Trellis plots. We had conducted a simulation study on six statistical methods for estimating the treatment effect in binary outcome meta-analyses, where selection bias (e.g., publication bias) was suspected because of apparent funnel plot asymmetry. We varied five simulation parameters: true treatment effect, extent of selection, event proportion in control group, heterogeneity parameter, and number of studies in meta-analysis. In combination, this yielded a total number of 768 scenarios. To present all results using Trellis plots, 12 figures were needed. Choosing bias as criterion of interest, we present a 'nested loop plot', a diagram type that aims to have all simulation results in one plot. The idea was to bring all scenarios into a lexicographical order and arrange them consecutively on the horizontal axis of a plot, whereas the treatment effect estimate is presented on the vertical axis. The plot illustrates how parameters simultaneously influenced the estimate. It can be combined with a Trellis plot in a so-called hybrid plot. Nested loop plots may also be applied to other criteria such as the variance of estimation. The nested loop plot, similar to a time series graph, summarizes all information about the results of a simulation study with respect to a chosen criterion in one picture and provides a suitable alternative or an addition to Trellis plots.
Identification of processed Chinese medicinal materials using DNA mini-barcoding.
Song, Ming; Dong, Gang-Qiang; Zhang, Ya-Qin; Liu, Xia; Sun, Wei
2017-07-01
Most of Chinese medicinal herbs are subjected to traditional processing procedures, including stir-frying, charring, steaming, boiling, and calcining before they are released into dispensaries. The marketing and identification of processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA mini-barcoding, based on the sequencing of a short-standardized region, has received considerable attention as a new potential means to identify processed medicinal materials. In the present study, six DNA barcode loci including ITS2, psbA-trnH, rbcL, matK, trnL (UAA) intron and its P6 loop, were employed for the authentication of 45 processed samples belonging to 15 species. We evaluated the amplification efficiency of each locus. We also examined the identification accuracy of the potential mini-barcode locus, of trnL (UAA) intron P6 loop. Our results showed that the five primary barcode loci were successfully amplified in only 8.89%-20% of the processed samples, while the amplification rates of the trnL (UAA) intron P6 loop were higher, at 75.56% successful amplification. We compared the mini-barcode sequences with Genbank using the Blast program. The analysis showed that 45.23% samples could be identified to genus level, while only one sample could be identified to the species level. We conclude that trnL (UAA) p6 loop is a candidate mini-barcode that has shown its potential and may become a universal mini-barcode as complementary barcode for authenticity testing and will play an important role in medicinal materials control. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Rigó, István Zoltán; Røkkum, Magne
2013-12-01
We compared the results of two methods for reinsertion of flexor digitorum profundus tendons retrospectively. In 35 fingers of 29 patients pull-out suture and in 13 fingers of 11 patients transverse intraosseous loop technique was performed with a mean follow-up of 8 and 6 months, respectively. Eleven and nine fingers achieved "excellent" or "good" function according to Strickland and Glogovac at 8 weeks; 20 and ten at the last control in the pull-out and transverse intraosseous loop groups, respectively. The difference at 8 weeks was statistically significant in favour of the transverse intraosseous loop group. Ten patients underwent 12 complications in the pull-out group (four superficial infections; one rerupture, one PIP and one DIP joint contracture, one adhesion, two granulomas, one nail deformity and one carpal tunnel syndrome) and four of them were reoperated (one carpal tunnel release, one teno-arthrolysis and two resections of granuloma). There was no complication and no reoperation in the transverse intraosseous loop group, the difference being statistically significant for the former. In our study the transverse intraosseous loop technique seemed to be a safe alternative with possibly better functional results compared to the pull-out suture.
Grzywacz, Piotr; Qin, Jian; Morse, David C
2007-12-01
Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, i.e., by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor S(-1)(k) predicted by a "one-loop" approximation similar to that used in several previous studies. We consider both miscible homopolymer blends and disordered diblock copolymer melts. We show, in both cases, that all UV divergent contributions can be absorbed into a renormalization of the values of the phenomenological parameters of a generalized self-consistent field theory (SCFT). This observation allows the construction of an UV convergent theory of corrections to SCFT phenomenology. The UV-divergent one-loop contribution to S(-1)(k) is shown to be the sum of (i) a k -independent contribution that arises from a renormalization of the effective chi parameter, (ii) a k-dependent contribution that arises from a renormalization of monomer statistical segment lengths, (iii) a contribution proportional to k(2) that arises from a square-gradient contribution to the one-loop fluctuation free energy, and (iv) a k-dependent contribution that is inversely proportional to the degree of polymerization, which arises from local perturbations in fluid structure near chain ends and near junctions between blocks in block copolymers.
The singular behavior of one-loop massive QCD amplitudes with one external soft gluon
NASA Astrophysics Data System (ADS)
Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander
2012-03-01
We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.
Kuryavyi, V; Majumdar, A; Shallop, A; Chernichenko, N; Skripkin, E; Jones, R; Patel, D J
2001-06-29
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples. Copyright 2001 Academic Press.
A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor
Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G
2015-01-01
Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584
Afriat-Jurnou, Livnat; Jackson, Colin J; Tawfik, Dan S
2012-08-07
Only decades after the introduction of organophosphate pesticides, bacterial phosphotriesterases (PTEs) have evolved to catalyze their degradation with remarkable efficiency. Their closest known relatives, lactonases, with promiscuous phosphotriasterase activity, dubbed PTE-like lactonases (PLLs), share only 30% sequence identity and also differ in the configuration of their active-site loops. PTE was therefore presumed to have evolved from a yet unknown PLL whose primary activity was the hydrolysis of quorum sensing homoserine lactones (HSLs) (Afriat et al. (2006) Biochemistry 45, 13677-13686). However, how PTEs diverged from this presumed PLL remains a mystery. In this study we investigated loop remodeling as a means of reconstructing a homoserine lactonase ancestor that relates to PTE by few mutational steps. Although, in nature, loop remodeling is a common mechanism of divergence of enzymatic functions, reproducing this process in the laboratory is a challenge. Structural and phylogenetic analyses enabled us to remodel one of PTE's active-site loops into a PLL-like configuration. A deletion in loop 7, combined with an adjacent, highly epistatic, point mutation led to the emergence of an HSLase activity that is undetectable in PTE (k(cat)/K(M) values of up to 2 × 10(4)). The appearance of the HSLase activity was accompanied by only a minor decrease in PTE's paraoxonase activity. This specificity change demonstrates the potential role of bifunctional intermediates in the divergence of new enzymatic functions and highlights the critical contribution of loop remodeling to the rapid divergence of new enzyme functions.
Foreign exchange market as a lattice gauge theory
NASA Astrophysics Data System (ADS)
Young, K.
1999-10-01
A simple model of the foreign exchange market is exactly a lattice gauge theory. Exchange rates are the exponentials of gauge potentials defined on spatial links while interest rates are related to gauge potentials on temporal links. Arbitrage opportunities are given by nonzero values of the gauge-invariant field tensor or curvature defined on closed loops. Arbitrage opportunities involving cross-rates at one time are "magnetic fields," while arbitrage opportunities involving future contracts are "electric fields."
Flux-periodicity crossover from h/2e to h/e in aluminium nano-loops
NASA Astrophysics Data System (ADS)
Espy, C.; Sharon, O. J.; Braun, J.; Garreis, R.; Strigl, F.; Shaulov, A.; Leiderer, P.; Scheer, E.; Yeshurun, Y.
2018-03-01
We study the magnetoresistance of aluminium ‘double-networks’ formed by connecting the vertexes of nano-loops with relatively long wires, creating two interlaced subnetworks of small and large loops (SL and LL, respectively). Far below the critical temperature, Aharonov-Bohm like quantum interference effects are observed for both the LL and the SL subnetworks. When approaching T c, both exhibit the usual Little-Parks oscillations, with periodicity of the superconducting flux quantum Φ 0 =h/2e. For one sample, with a relatively large coherence length, ξ, at temperatures very close to T c, the Φ 0 periodicity of the SL disappears, and the waveform of the first period is consistent with that predicted recently for loops with a size a < ξ, indicating a crossover to 2Φ 0 periodicity.
Rapid totally diverting loop sigmoid colostomy with noncontaminating rectal irrigation.
Sachatello, C R; Maull, K I
1977-08-01
Loop sigmoid colostomy employing a stapling device and catheter irrigation of the distal segment is less time-consuming and has lest potential for contamination than the standard double-barrel colostomy. Unlike the standard loop colostomy, it is totally diverting.
NASA Astrophysics Data System (ADS)
Sulyok, G.
2017-07-01
Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.
Conformal anomaly of generalized form factors and finite loop integrals
NASA Astrophysics Data System (ADS)
Chicherin, Dmitry; Sokatchev, Emery
2018-04-01
We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurations of the momenta. This conformal anomaly is different from the holomorphic anomaly of amplitudes. We present a number of examples in four and six dimensions. We find an application of the new conformal anomaly to finite loop momentum integrals with one or more massless legs. The collinear region around a massless leg creates a contact anomaly, made visible by the loop integration. The anomalous conformal Ward identity for an ℓ-loop integral is a 2nd-order differential equation whose right-hand side is an (ℓ - 1)-loop integral. It could serve as a new useful tool to find/test analytic expressions for conformal integrals. We illustrate this point with several examples of known integrals. We propose a new differential equation for the four-dimensional scalar double box.
Pinch technique and the Batalin-Vilkovisky formalism
NASA Astrophysics Data System (ADS)
Binosi, Daniele; Papavassiliou, Joannis
2002-07-01
In this paper we take the first step towards a nondiagrammatic formulation of the pinch technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the pinch technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful nonlinear identities, which express the background field method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic antifield; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.
NASA Astrophysics Data System (ADS)
Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann
2015-02-01
A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.
Role of an extracellular loop in determining the stoichiometry of Na+–HCO3− cotransporters
Chen, Li-Ming; Liu, Ying; Boron, Walter F
2011-01-01
The Na+–HCO3− cotransporters (NBCs) of the solute carrier 4 family (SLC4) are critical for regulating pH in cells as well as in fluids such as blood and cerebrospinal fluid. Moreover, mutations and gene disruptions in NBC are linked to a wide range of pathologies. NBCe1 (SLC4A4) is electrogenic because it has an apparent Na+:HCO3− stoichiometry of 1:2 or 1:3, whereas NBCn1 (SLC4A7) is electroneutral because it has an apparent stoichiometry of 1:1. Because stoichiometry influences the effect of transport on membrane potential and vice versa, a central question is what structural features underlie electrogenicity versus electroneutrality. A previous study on rat NBCe1/n1 chimeras demonstrated that the structural elements determining the electrogenicity of NBCe1-A are located within the transmembrane domain, excluding the large third extracellular loop. In the present study we generated a series of chimeras of human NBCe1-A and human NBCn1-A. We found that replacing merely the predicted fourth extracellular loop (EL4) – containing 32 amino acid residues that include 7 prolines – of human NBCe1-A with EL4 of NBCn1-A creates an electroneutral NBC. The opposite switch converts an electroneutral construct to one with electrogenic properties. The introduction of an N-glycosylation site into EL4 confirms that at least a part of it is exposed to the extracellular fluid. We hypothesize that putative EL4 either contributes to the substrate-binding vestibule or indirectly influences substrate binding by interacting with one or more transmembrane segments, thereby controlling the nature of transport. PMID:21224233
Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants
NASA Astrophysics Data System (ADS)
Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert
2017-06-01
Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further investigations of new control strategies or for optimizations of the currently implemented ones.
Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids
NASA Technical Reports Server (NTRS)
Cutbirth, J. Michael
2012-01-01
A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.
Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals
Schmittfull, Marcel; Vlah, Zvonimir
2016-11-28
Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Here, trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals thatmore » are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions.« less
Luo, Xiaosheng; Xu, Liufang; Han, Bo; Wang, Jin
2017-09-01
Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. These two landscapes can be quantified through the decomposition of the dynamics into the detailed balance preserving part and detailed balance breaking non-equilibrium part. While the funneled potential landscape is often crucial for the stability of the single attractor networks, we have uncovered that the funneled flux landscape is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This provides a new interpretation of the origin for the limit cycle oscillations: There are many cycles and loops existed flowing through the state space and forming the flux landscapes, each cycle with a probability flux going through the loop. The limit cycle emerges when a loop stands out and carries significantly more probability flux than other loops. We explore how robustness ratio (RR) as the gap or steepness versus averaged variations or roughness of the landscape, quantifying the degrees of the funneling of the underlying potential and flux landscapes. We state that these two landscapes complement each other with one crucial for stabilities of states on the cycle and the other crucial for the stability of the flow along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing strategy of cancer.
2017-01-01
Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. These two landscapes can be quantified through the decomposition of the dynamics into the detailed balance preserving part and detailed balance breaking non-equilibrium part. While the funneled potential landscape is often crucial for the stability of the single attractor networks, we have uncovered that the funneled flux landscape is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This provides a new interpretation of the origin for the limit cycle oscillations: There are many cycles and loops existed flowing through the state space and forming the flux landscapes, each cycle with a probability flux going through the loop. The limit cycle emerges when a loop stands out and carries significantly more probability flux than other loops. We explore how robustness ratio (RR) as the gap or steepness versus averaged variations or roughness of the landscape, quantifying the degrees of the funneling of the underlying potential and flux landscapes. We state that these two landscapes complement each other with one crucial for stabilities of states on the cycle and the other crucial for the stability of the flow along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing strategy of cancer. PMID:28892489
The inheritance of fingerprint patterns.
Slatis, H M; Katznelson, M B; Bonné-Tamir, B
1976-05-01
Analysis of the fingerprints of 571 members of the Habbanite isolate suggest inherited patterns and pattern sequences. A genetic theory has been developed; it assumes that the basic fingerprint pattern sequence is all ulnar loops and that a variety of genes cause deviations from this pattern sequence. Genes that have been proposed include: (1) a semidominant gene for whorls on the thumbs (one homozygote has whorls on both thumbs, the other has ulnar loops on both thumbs and the heterozygote usually has two ulnar loops or one ulnar loop and one whorl); (2) a semidominant gene for whorls on the ring fingers which acts like the gene for whorls on the thumbs; (3) a dominant gene for arches on the thumbs and often on other fingers; (4) one or more dominant genes for arches on the fingers; (5) a dominant gene for whorls on all fingers except for an ulnar loop on the middle finger; (6) a dominant gene for radial loops on the index fingers, frequently associated with an arch on the middle fingers; and (7) a recessive gene for radial loops on the ring and little fingers. These genes may act independently or may show epistasis.
The inheritance of fingerprint patterns.
Slatis, H M; Katznelson, M B; Bonné-Tamir, B
1976-01-01
Analysis of the fingerprints of 571 members of the Habbanite isolate suggest inherited patterns and pattern sequences. A genetic theory has been developed; it assumes that the basic fingerprint pattern sequence is all ulnar loops and that a variety of genes cause deviations from this pattern sequence. Genes that have been proposed include: (1) a semidominant gene for whorls on the thumbs (one homozygote has whorls on both thumbs, the other has ulnar loops on both thumbs and the heterozygote usually has two ulnar loops or one ulnar loop and one whorl); (2) a semidominant gene for whorls on the ring fingers which acts like the gene for whorls on the thumbs; (3) a dominant gene for arches on the thumbs and often on other fingers; (4) one or more dominant genes for arches on the fingers; (5) a dominant gene for whorls on all fingers except for an ulnar loop on the middle finger; (6) a dominant gene for radial loops on the index fingers, frequently associated with an arch on the middle fingers; and (7) a recessive gene for radial loops on the ring and little fingers. These genes may act independently or may show epistasis. PMID:1266855
Effective model approach to the dense state of QCD matter
NASA Astrophysics Data System (ADS)
Fukushima, Kenji
2011-12-01
The first-principle approach to the dense state of QCD matter, i.e. the lattice-QCD simulation at finite baryon density, is not under theoretical control for the moment. The effective model study based on QCD symmetries is a practical alternative. However the model parameters that are fixed by hadronic properties in the vacuum may have unknown dependence on the baryon chemical potential. We propose a new prescription to constrain the effective model parameters by the matching condition with the thermal Statistical Model. In the transitional region where thermal quantities blow up in the Statistical Model, deconfined quarks and gluons should smoothly take over the relevant degrees of freedom from hadrons and resonances. We use the Polyakov-loop coupled Nambu-Jona-Lasinio (PNJL) model as an effective description in the quark side and show how the matching condition is satisfied by a simple ansäatz on the Polyakov loop potential. Our results favor a phase diagram with the chiral phase transition located at slightly higher temperature than deconfinement which stays close to the chemical freeze-out points.
Reducing full one-loop amplitudes to scalar integrals at the integrand level
NASA Astrophysics Data System (ADS)
Ossola, Giovanni; Papadopoulos, Costas G.; Pittau, Roberto
2007-02-01
We show how to extract the coefficients of the 4-, 3-, 2- and 1-point one-loop scalar integrals from the full one-loop amplitude of arbitrary scattering processes. In a similar fashion, also the rational terms can be derived. Basically no information on the analytical structure of the amplitude is required, making our method appealing for an efficient numerical implementation.
Heating by transverse waves in simulated coronal loops
NASA Astrophysics Data System (ADS)
Karampelas, K.; Van Doorsselaere, T.; Antolin, P.
2017-08-01
Context. Recent numerical studies of oscillating flux tubes have established the significance of resonant absorption in the damping of propagating transverse oscillations in coronal loops. The nonlinear nature of the mechanism has been examined alongside the Kelvin-Helmholtz instability, which is expected to manifest in the resonant layers at the edges of the flux tubes. While these two processes have been hypothesized to heat coronal loops through the dissipation of wave energy into smaller scales, the occurring mixing with the hotter surroundings can potentially hide this effect. Aims: We aim to study the effects of wave heating from driven and standing kink waves in a coronal loop. Methods: Using the MPI-AMRVAC code, we perform ideal, three dimensional magnetohydrodynamic (MHD) simulations of both (a) footpoint driven and (b) free standing oscillations in a straight coronal flux tube, in the presence of numerical resistivity. Results: We have observed the development of Kelvin-Helmholtz eddies at the loop boundary layer of all three models considered here, as well as an increase of the volume averaged temperature inside the loop. The main heating mechanism in our setups was Ohmic dissipation, as indicated by the higher values for the temperatures and current densities located near the footpoints. The introduction of a temperature gradient between the inner tube and the surrounding plasma, suggests that the mixing of the two regions, in the case of hotter environment, greatly increases the temperature of the tube at the site of the strongest turbulence, beyond the contribution of the aforementioned wave heating mechanism. Three movies associated to Fig. 1 are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Haque, Najmul; Mustafa, Munshi G.; Strickland, Michael
2016-03-01
In a previous paper [N. Haque et al., J. High Energy Phys. 05 (2014) 27], we calculated the three-loop thermodynamic potential of QCD at finite temperature T and quark chemical potentials μq using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and finite baryon, strangeness, and isospin chemical potentials μB, μS, and μI. We calculate the pressure at nonzero μB and μI with μS=0 , and the energy density, the entropy density, the trace anomaly, and the speed of sound at nonzero μI with μB=μS=0 . The second- and fourth-order isospin susceptibilities are calculated at μB=μS=μI=0 . Our results can be directly compared to lattice QCD without Taylor expansions around μq=0 since QCD has no sign problem at μB=μS=0 and finite isospin chemical potential μI.
Capodagli, Glenn C; Lee, Stephen A; Boehm, Kyle J; Brady, Kristin M; Pegan, Scott D
2014-12-09
Staphylococcus aureus is one of the most common nosocomial sources of soft-tissue and skin infections and has more recently become prevalent in the community setting as well. Since the use of penicillins to combat S. aureus infections in the 1940s, the bacterium has been notorious for developing resistances to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). With the persistence of MRSA as well as many other drug resistant bacteria and parasites, there is a growing need to focus on new pharmacological targets. Recently, class II fructose 1,6-bisphosphate aldolases (FBAs) have garnered attention to fill this role. Regrettably, scarce biochemical data and no structural data are currently available for the class II FBA found in MRSA (SaFBA). With the recent finding of a flexible active site zinc-binding loop (Z-Loop) in class IIa FBAs and its potential for broad spectrum class II FBA inhibition, the lack of information regarding this feature of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop inhibitor development. Therefore, we elucidated the crystal structure of SaFBA to 2.1 Å allowing for a more direct structural analysis of SaFBA. Furthermore, we determined the KM for one of SaFBA's substrates, fructose 1,6-bisphosphate, as well as performed mode of inhibition studies for an inhibitor that takes advantage of the Z-loop's flexibility. Together the data offers insight into a class IIb FBA from a pervasively drug resistant bacterium and a comparison of Z-loops and other features between the different subtypes of class II FBAs.
Closed-Loop Control of Humidification for Artifact Reduction in Capacitive ECG Measurements.
Leicht, Lennart; Eilebrecht, Benjamin; Weyer, Soren; Leonhardt, Steffen; Teichmann, Daniel
2017-04-01
Recording biosignals without the need for direct skin contact offers new opportunities for ubiquitous health monitoring. Electrodes with capacitive coupling have been shown to be suitable for the monitoring of electrical potentials on the body surface, in particular ECG. However, due to triboelectric charge generation and motion artifacts, signal and thus diagnostic quality is inferior to galvanic coupling. Active closed-loop humidification of capacitive electrodes is proposed in this work as a new concept to improve signal quality. A capacitive ECG recording system integrated into a common car seat is presented. It can regulate the micro climate at the interface of electrode and patient by actively dispensing water vapour and monitoring humidity in a closed-loop approach. As a regenerative water reservoir, silica gel is used. The system was evaluated with respect to subjective and objective ECG signal quality. Active humidification was found to have a significant positive effect in case of previously poor quality. Also, it had no diminishing effect in case of already good signal quality.
Man-in-the-control-loop simulation of manipulators
NASA Technical Reports Server (NTRS)
Chang, J. L.; Lin, Tsung-Chieh; Yae, K. Harold
1989-01-01
A method to achieve man-in-the-control-loop simulation is presented. Emerging real-time dynamics simulation suggests a potential for creating an interactive design workstation with a human operator in the control loop. The recursive formulation for multibody dynamics simulation is studied to determine requirements for man-in-the-control-loop simulation. High speed computer graphics techniques provides realistic visual cues for the simulator. Backhoe and robot arm simulations are implemented to demonstrate the capability of man-in-the-control-loop simulation.
Stepwise Loop Insertion Strategy for Active Site Remodeling to Generate Novel Enzyme Functions.
Hoque, Md Anarul; Zhang, Yong; Chen, Liuqing; Yang, Guangyu; Khatun, Mst Afroza; Chen, Haifeng; Hao, Liu; Feng, Yan
2017-05-19
The remodeling of active sites to generate novel biocatalysts is an attractive and challenging task. We developed a stepwise loop insertion strategy (StLois), in which randomized residue pairs are inserted into active site loops. The phosphotriesterase-like lactonase from Geobacillus kaustophilus (GkaP-PLL) was used to investigate StLois's potential for changing enzyme function. By inserting six residues into active site loop 7, the best variant ML7-B6 demonstrated a 16-fold further increase in catalytic efficiency toward ethyl-paraoxon compared with its initial template, that is a 609-fold higher, >10 7 fold substrate specificity shift relative to that of wild-type lactonase. The remodeled variants displayed 760-fold greater organophosphate hydrolysis activity toward the organophosphates parathion, diazinon, and chlorpyrifos. Structure and docking computations support the source of notably inverted enzyme specificity. Considering the fundamental importance of active site loops, the strategy has potential for the rapid generation of novel enzyme functions by loop remodeling.
From pilot's associate to satellite controller's associate
NASA Technical Reports Server (NTRS)
Neyland, David L.; Lizza, Carl; Merkel, Philip A.
1992-01-01
Associate technology is an emerging engineering discipline wherein intelligent automation can significantly augment the performance of man-machine systems. An associate system is one that monitors operator activity and adapts its operational behavior accordingly. Associate technology is most effectively applied when mapped into management of the human-machine interface and display-control loop in typical manned systems. This paper addresses the potential for application of associate technology into the arena of intelligent command and control of satellite systems, from diagnosis of onboard and onground of satellite systems fault conditions, to execution of nominal satellite control functions. Rather than specifying a specific solution, this paper draws parallels between the Pilot's Associate concept and the domain of satellite control.
NASA Technical Reports Server (NTRS)
Lozito, Sandy; Mackintosh, Margaret-Anne; DiMeo, Karen; Kopardekar, Parimal
2002-01-01
A simulation was conducted to examine the effect of shared air/ground authority when each is equipped with enhanced traffic- and conflict-alerting systems. The potential benefits of an advanced air traffic management (ATM) concept referred to as "free flight" include improved safety through enhanced conflict detection and resolution capabilities, increased flight-operations management, and better decision-making tools for air traffic controllers and flight crews. One element of the free-flight concept suggests shifting aircraft separation responsibility from air traffic controllers to flight crews, thereby creating an environment with "shared-separation" authority. During FY00. NASA, the Federal Aviation Administration (FAA), and the Volpe National Transportation Systems Center completed the first integrated, high-fidelity, real-time, human-in-the-loop simulation.
Non-planar one-loop Parke-Taylor factors in the CHY approach for quadratic propagators
NASA Astrophysics Data System (ADS)
Ahmadiniaz, Naser; Gomez, Humberto; Lopez-Arcos, Cristhiam
2018-05-01
In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them to the bi-adjoint Φ3 theory. As a byproduct, we found a new type of graphs that we called the non-planar CHY-graphs. These graphs encode all the information for the subleading order at one-loop, and there is not an equivalent of these in the Feynman formalism.
Russo, Marc; Cousins, Michael J; Brooker, Charles; Taylor, Nathan; Boesel, Tillman; Sullivan, Richard; Poree, Lawrence; Shariati, Nastaran Hesam; Hanson, Erin; Parker, John
2018-01-01
Conventional spinal cord stimulation (SCS) delivers a fixed-input of energy into the dorsal column. Physiologic effects such as heartbeat, respiration, spinal cord movement, and history of stimulation can cause both the perceived intensity and recruitment of stimulation to increase or decrease, with clinical consequences. A new SCS system controls stimulation dose by measuring the recruitment of fibers in the dorsal column and by using the amplitude of the evoked compound action potentials (ECAPs) to maintain stimulation within an individualized therapeutic range. Safety and efficacy of this closed-loop system was evaluated through six-month postimplantation. Chronic pain subjects with back and/or leg pain who were successfully trialed received a permanent system (Evoke; Saluda Medical, Sydney, Australia). Ratings of pain (100-mm visual analogue scale [VAS] and Brief Pain Instrument [BPI]), quality of life (EuroQol instrument [EQ-5D-5L]), function (Oswestry Disability Index [ODI]), and sleep (Pittsburgh Sleep Quality Index [PSQI]) were collected at baseline and repeated three and six months after implantation. Fifty-one subjects underwent a trial procedure; permanent implants were placed in 36 subjects. The proportion of subjects with ≥50% relief was 92.6% (back) and 91.3% (leg) at three months, and 85.7% (back) and 82.6% (leg) at six months. The proportion with ≥80% pain relief was 70.4% (back) and 56.5% (leg) at three months, and 64.3% (back) and 60.9% (leg) at six months. Statistically significant improvements in mean BPI, EQ-5D-5L, ODI, and PSQI were also observed at both time points. The majority of subjects experienced profound pain relief at three and six months, providing preliminary evidence for the effectiveness of the closed-loop SCS system. The exact mechanism of action for these outcomes is still being explored, although one likely hypothesis holds that ECAP feedback control may minimize recruitment of Aβ nociceptors and Aδ fibers during daily use of SCS. © 2017 International Neuromodulation Society.
A complex approach to the blue-loop problem
NASA Astrophysics Data System (ADS)
Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga
2015-08-01
The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.
AdS/CFT in Fractional Dimension and Higher-Spins at One Loop
NASA Astrophysics Data System (ADS)
Skvortsov, Evgeny; Tran, Tung
2017-08-01
Large-$N$, $\\epsilon$-expansion or the conformal bootstrap allow one to make sense of some of conformal field theories in non-integer dimension, which suggests that AdS/CFT may also extend to fractional dimensions. It was shown recently that the sphere free energy and the $a$-anomaly coefficient of the free scalar field can be reproduced as a one-loop effect in the dual higher-spin theory in a number of integer dimensions. We extend this result to all integer and also to fractional dimensions. Upon changing the boundary conditions in the higher-spin theory the sphere free energy of the large-$N$ Wilson-Fisher CFT can also be reproduced from the higher-spin side.
One-loop light-cone QCD, effective action for reggeized gluons and QCD RFT calculus
NASA Astrophysics Data System (ADS)
Bondarenko, S.; Lipatov, L.; Pozdnyakov, S.; Prygarin, A.
2017-09-01
The effective action for reggeized gluons is based on the gluodynamic Yang-Mills Lagrangian with external current for longitudinal gluons added, see Lipatov (Nucl Phys B 452:369, 1995; Phys Rep 286:131, 1997; Subnucl Ser 49:131, 2013; Int J Mod Phys Conf Ser 39:1560082, 2015; Int J Mod Phys A 31(28/29):1645011, 2016; EPJ Web Conf 125:01010, 2016). On the base of classical solutions, obtained in Bondarenko et al. (Eur Phys J C 77(8):527, 2017), the one-loop corrections to this effective action in light-cone gauge are calculated. The RFT calculus for reggeized gluons similarly to the RFT introduced in Gribov (Sov Phys JETP 26:414, 1968) is proposed and discussed. The correctness of the results is verified by calculation of the propagators of A+ and A- reggeized gluons fields and application of the obtained results is discussed as well.
Loop Integrands for Scattering Amplitudes from the Riemann Sphere
NASA Astrophysics Data System (ADS)
Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr
2015-09-01
The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.
DNA condensation and size effects of DNA condensation agent
NASA Astrophysics Data System (ADS)
Liu, Yan-Hui; Jiang, Chong-Ming; Guo, Xin-Miao; Tang, Yan-Lin; Hu, Lin
2013-08-01
Based on the model of the strong correlation of counterions condensed on DNA molecule, by tailoring interaction potential, interduplex spacing and correlation spacing between condensed counterions on DNA molecule and interduplex spacing fluctuation strength, toroidal configuration, rod-like configuration and two-hole configurations are possible. The size effects of counterion structure on the toroidal structure can be detected by this model. The autocorrelation function of the tangent vectors is found as an effective way to detect the structure of toroidal conformations and the generic pathway of the process of DNA condensation. The generic pathway of all of the configurations involves an initial nucleation loop, and the next part of the DNA chain is folded on the top of the initial nucleation loop with different manners, in agreement with the recent experimental results.
Stabilizing windings for tilting and shifting modes
Jardin, Stephen C.; Christensen, Uffe R.
1984-01-01
This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.
Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops
NASA Astrophysics Data System (ADS)
Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey
2017-06-01
The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
Influence of codon usage bias on FGLamide-allatostatin mRNA secondary structure.
Martínez-Pérez, Francisco; Bendena, William G; Chang, Belinda S W; Tobe, Stephen S
2011-03-01
The FGLamide allatostatins (ASTs) are invertebrate neuropeptides which inhibit juvenile hormone biosynthesis in Dictyoptera and related orders. They also show myomodulatory activity. FGLamide AST nucleotide frequencies and codon bias were investigated with respect to possible effects on mRNA secondary structure. 367 putative FGLamide ASTs and their potential endoproteolytic cleavage sites were identified from 40 species of crustaceans, chelicerates and insects. Among these, 55% comprised only 11 amino acids. An FGLamide AST consensus was identified to be (X)(1→16)Y(S/A/N/G)FGLGKR, with a strong bias for the codons UUU encoding for Phe and AAA for Lys, which can form strong Watson-Crick pairing in all peptides analyzed. The physical distance between these codons favor a loop structure from Ser/Ala-Phe to Lys-Arg. Other loop and hairpin loops were also inferred from the codon frequencies in the N-terminal motif, and the first amino acids from the C-terminal motif, or the dibasic potential endoproteolytic cleavage site. Our results indicate that nucleotide frequencies and codon usage bias in FGLamide ASTs tend to favor mRNA folds in the codon sequence in the C-terminal active peptide core and at the dibasic potential endoproteolytic cleavage site. Copyright © 2010 Elsevier Inc. All rights reserved.
Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H
2014-08-01
In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection.
Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H.
2014-01-01
In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection. PMID:25084331
A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G
2015-02-01
Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.
Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized. PMID:24688696
Conformational sampling in template-free protein loop structure modeling: an overview.
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.
Islam, Barira; Stadlbauer, Petr; Gil-Ley, Alejandro; Pérez-Hernández, Guillermo; Haider, Shozeb; Neidle, Stephen; Bussi, Giovanni; Banas, Pavel; Otyepka, Michal; Sponer, Jiri
2017-06-13
We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory.
2017-01-01
We have carried out a series of extended unbiased molecular dynamics (MD) simulations (up to 10 μs long, ∼162 μs in total) complemented by replica-exchange with the collective variable tempering (RECT) approach for several human telomeric DNA G-quadruplex (GQ) topologies with TTA propeller loops. We used different AMBER DNA force-field variants and also processed simulations by Markov State Model (MSM) analysis. The slow conformational transitions in the propeller loops took place on a scale of a few μs, emphasizing the need for long simulations in studies of GQ dynamics. The propeller loops sampled similar ensembles for all GQ topologies and for all force-field dihedral-potential variants. The outcomes of standard and RECT simulations were consistent and captured similar spectrum of loop conformations. However, the most common crystallographic loop conformation was very unstable with all force-field versions. Although the loss of canonical γ-trans state of the first propeller loop nucleotide could be related to the indispensable bsc0 α/γ dihedral potential, even supporting this particular dihedral by a bias was insufficient to populate the experimentally dominant loop conformation. In conclusion, while our simulations were capable of providing a reasonable albeit not converged sampling of the TTA propeller loop conformational space, the force-field description still remained far from satisfactory. PMID:28475322
The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures
Angulo, Raul E.; Foreman, Simon; Schmittfull, Marcel; ...
2015-10-14
With this study, given the importance of future large scale structure surveys for delivering new cosmological information, it is crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbative scheme to compute the clustering of dark matter in the weakly nonlinear regime in an expansion in k/k NL, where k is the wavenumber of interest and k NL is the wavenumber associated to the nonlinear scale. It has been recently shown that the EFTofLSS matches to 1% level the dark matter power spectrum at redshift zero up to k ≃more » 0.3 h Mpc –1 and k ≃ 0.6 h Mpc –1 at one and two loops respectively, using only one counterterm that is fit to data. Similar results have been obtained for the momentum power spectrum at one loop. This is a remarkable improvement with respect to former analytical techniques. Here we study the prediction for the equal-time dark matter bispectrum at one loop. We find that at this order it is sufficient to consider the same counterterm that was measured in the power spectrum. Without any remaining free parameter, and in a cosmology for which kNL is smaller than in the previously considered cases (σ 8=0.9), we find that the prediction from the EFTofLSS agrees very well with N-body simulations up to k ≃ 0.25 h Mpc –1, given the accuracy of the measurements, which is of order a few percent at the highest k's of interest. While the fit is very good on average up to k ≃ 0.25 h Mpc –1, the fit performs slightly worse on equilateral configurations, in agreement with expectations that for a given maximum k, equilateral triangles are the most nonlinear.« less
Tensor integrand reduction via Laurent expansion
Hirschi, Valentin; Peraro, Tiziano
2016-06-09
We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C++ library Ninja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface Ninja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the Ninja library and interfaced it to MadLoop, which is part of the public MadGraph5_aMC@NLO framework. We performed a detailed performance study, comparing against other public reductionmore » tools, namely CutTools, Samurai, IREGI, PJFry++ and Golem95. We find that Ninja out-performs traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool Golem95 which is however more limited and slower than Ninja. Lastly, we considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that Ninja’s performance scales well with both the rank and multiplicity of the considered process.« less
Unambiguous Evidence of Coronal Implosions during Solar Eruptions and Flares
NASA Astrophysics Data System (ADS)
Wang, Juntao; Simões, P. J. A.; Fletcher, L.
2018-05-01
In the implosion conjecture, coronal loops contract as the result of magnetic energy release in solar eruptions and flares. However, after almost two decades, observations of this phenomenon are still rare and most previous reports are plagued by projection effects so that loop contraction could be either true implosion or just a change in loop inclination. In this paper, to demonstrate the reality of loop contractions in the global coronal dynamics, we present four events with the continuously contracting loops in an almost edge-on geometry from the perspective of SDO/AIA, which are free from the ambiguity caused by the projection effects, also supplemented by contemporary observations from STEREO for examination. In the wider context of observations, simulations and theories, we argue that the implosion conjecture is valid in interpreting these events. Furthermore, distinct properties of the events allow us to identify two physical categories of implosion. One type demonstrates a rapid contraction at the beginning of the flare impulsive phase, as magnetic free energy is removed rapidly by a filament eruption. The other type, which has no visible eruption, shows a continuous loop shrinkage during the entire flare impulsive phase, which we suggest shows the ongoing conversion of magnetic free energy in a coronal volume. Corresponding scenarios are described that can provide reasonable explanations for the observations. We also point out that implosions may be suppressed in cases when a heavily mass-loaded filament is involved, possibly serving as an alternative account for their observational rarity.
NASA Astrophysics Data System (ADS)
Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein
2018-05-01
The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.
NREL and Hawaiian Electric Navigate Uncharted Waters of Energy
potential grid impact of adding customer-side storage to rooftop solar systems-a scenario that could soon Systems Integration Facility's (ESIF's) power hardware-in-the-loop capability. NREL's ESIF was one of the justify activation of a specific grid support function called "volt-var control" for all new
Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.
Tourkine, Piotr; Vanhove, Pierre
2016-11-18
The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.
NASA Astrophysics Data System (ADS)
Howe, P. S.; Parkes, A. J.; West, P. C.
1985-01-01
It is shown analytically that there are no one-loop supersymmetry anomalies in N = 2 and N = 4 supersymmetric Yang-Mills theories. This implies that the two-loop β functions in these theories are in accord with supersymmetry when the one-loop finite local counter terms required by supersymmetry are correctly taken into account. Permanent address: Department of Mathematics, King's College, London, UK.
N =4 supergravity next-to-maximally-helicity-violating six-point one-loop amplitude
NASA Astrophysics Data System (ADS)
Dunbar, David C.; Perkins, Warren B.
2016-12-01
We construct the six-point, next-to-maximally-helicity-violating one-loop amplitude in N =4 supergravity using unitarity and recursion. The use of recursion requires the introduction of rational descendants of the cut-constructible pieces of the amplitude and the computation of the nonstandard factorization terms arising from the loop integrals.
Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure
NASA Astrophysics Data System (ADS)
Cusin, Giulia; Lewandowski, Matthew; Vernizzi, Filippo
2018-04-01
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Large-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper [1], focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
Transequatorial loops interconnecting McMath regions 12472 and 12474
NASA Technical Reports Server (NTRS)
Svestka, Z.; Krieger, A. S.; Chase, R. C.; Howard, R.
1977-01-01
The paper reviews the life history of one transequatorial loop in a system observed in soft X-rays for at least 1.5 days and which interconnected a newly born active region with an old region. The birth of the selected loop is discussed along with properties of the interconnected active regions, sharpening and brightening of the loop, decay of the loop system, and physical relations between the interconnected regions. It is concluded that: (1) the loop was most probably born via reconnection of magnetic-field lines extending from the two active regions toward the equator, which occurred later than 33 hr after the younger region was born; (2) the fully developed interconnection was composed of several loops, all of which appeared to be rooted in a spotless magnetic hill of preceding northern polarity but were spread over two separate spotty regions of southern polarity in the magnetically complex new region; (3) the loop electron temperature increased from 2.1 million to 3.1 million K in one to three hours when the loop system brightened; and (4) the loops became twisted during the brightening, possibly due to their rise in the corona while remaining rooted in moving magnetic features in the younger region.
Stability of Bose-Einstein condensates in a Kronig-Penney potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danshita, Ippei; Department of Physics, Waseda University, Okubo, Shinjuku, Tokyo 169-8555; Tsuchiya, Shunji
2007-03-15
We study the stability of Bose-Einstein condensates with superfluid currents in a one-dimensional periodic potential. By using the Kronig-Penney model, the condensate and Bogoliubov bands are analytically calculated and the stability of condensates in a periodic potential is discussed. The Landau and dynamical instabilities occur in a Kronig-Penney potential when the quasimomentum of the condensate exceeds certain critical values as in a sinusoidal potential. It is found that the onsets of the Landau and dynamical instabilities coincide with the point where the perfect transmission of low energy excitations through each potential barrier is forbidden. The Landau instability is caused bymore » the excitations with small q and the dynamical instability is caused by the excitations with q={pi}/a at their onsets, where q is the quasimomentum of excitation and a is the lattice constant. A swallow-tail energy loop appears at the edge of the first condensate band when the mean-field energy is sufficiently larger than the strength of the periodic potential. We find that the upper portion of the swallow-tail is always dynamically unstable, but the second Bogoliubov band has a phonon spectrum reflecting the positive effective mass.« less
Quantum corrections for spinning particles in de Sitter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fröb, Markus B.; Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu
We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalarmore » Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.« less
Superposition and detection of two helical beams for optical orbital angular momentum communication
NASA Astrophysics Data System (ADS)
Liu, Yi-Dong; Gao, Chunqing; Gao, Mingwei; Qi, Xiaoqing; Weber, Horst
2008-07-01
A loop-like system with a Dove prism is used to generate a collinear superposition of two helical beams with different azimuthal quantum numbers in this manuscript. After the generation of the helical beams distributed on the circle centered at the optical axis by using a binary amplitude grating, the diffractive field is separated into two polarized ones with the same distribution. Rotated by the Dove prism in the loop-like system in counter directions and combined together, the two fields will generate the collinear superposition of two helical beams in certain direction. The experiment shows consistency with the theoretical analysis. This method has potential applications in optical communication by using orbital angular momentum of laser beams (optical vortices).
Higher Rank ABJM Wilson Loops from Matrix Models
NASA Astrophysics Data System (ADS)
Cookmeyer, Jonathan; Liu, James; Zayas, Leopoldo
2017-01-01
We compute the expectation values of 1/6 supersymmetric Wilson Loops in ABJM theory in higher rank representations. Using standard matrix model techniques, we calculate the expectation value in the rank m fully symmetric and fully antisymmetric representation where m is scaled with N. To leading order, we find agreement with the classical action of D6 and D2 branes in AdS4 ×CP3 respectively. Further, we compute the first subleading order term, which, on the AdS side, makes a prediction for the one-loop effective action of the corresponding D6 and D2 branes. Supported by the National Science Foundation under Grant No. PHY 1559988 and the US Department of Energy under Grant No. DE-SC0007859.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.
We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear couplingmore » between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.« less
QED loop effects in the spacetime background of a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Emelyanov, Viacheslav A.
2017-12-01
The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.
Smith predictor-based multiple periodic disturbance compensation for long dead-time processes
NASA Astrophysics Data System (ADS)
Tan, Fang; Li, Han-Xiong; Shen, Ping
2018-05-01
Many disturbance rejection methods have been proposed for processes with dead-time, while these existing methods may not work well under multiple periodic disturbances. In this paper, a multiple periodic disturbance rejection is proposed under the Smith predictor configuration for processes with long dead-time. One feedback loop is added to compensate periodic disturbance while retaining the advantage of the Smith predictor. With information of the disturbance spectrum, the added feedback loop can remove multiple periodic disturbances effectively. The robust stability can be easily maintained through the rigorous analysis. Finally, simulation examples demonstrate the effectiveness and robustness of the proposed method for processes with long dead-time.
Nuclear axial currents in chiral effective field theory
Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...
2016-01-11
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less
A 125 GeV fat Higgs at large tan β
Menon, Arjun; Raj, Nirmal
2015-12-02
In this paper, we study the viability of regions of large tan β within the frame-work of Fat Higgs/λ-SUSY Models. We compute the one-loop effective potential to find the corrections to the Higgs boson mass due to the heavy non-standard Higgs bosons. As the tree level contribution to the Higgs boson mass is suppressed at large tan β, these one-loop corrections are crucial to raising the Higgs boson mass to the measured LHC value. By raising the Higgsino and singlino mass parameters, typical electroweak precision constraints can also be avoided. We illustrate these new regions of Fat Higgs/λ-SUSY parameter spacemore » by finding regions of large tan β that are consistent with all experimental constraints including direct dark matter detection experiments, relic density limits and the invisible decay width of the Z boson. We find that there exist regions around λ = 1.25, tan β = 50 and a uniform psuedo-scalar 4 TeV ≲ M A ≲ 8 TeV which are consistent will all present phenomenological constraints. In this region the dark matter relic abundance and direct detection limits are satisfied by a lightest neutralino that is mostly bino or singlino. As an interesting aside we also find a region of low tan β and small singlino mass parameter where a well-tempered neutralino avoids all cosmological and direct detection constraints.« less
A 125 GeV fat Higgs at large tan β
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menon, Arjun; Raj, Nirmal
In this paper, we study the viability of regions of large tan β within the frame-work of Fat Higgs/λ-SUSY Models. We compute the one-loop effective potential to find the corrections to the Higgs boson mass due to the heavy non-standard Higgs bosons. As the tree level contribution to the Higgs boson mass is suppressed at large tan β, these one-loop corrections are crucial to raising the Higgs boson mass to the measured LHC value. By raising the Higgsino and singlino mass parameters, typical electroweak precision constraints can also be avoided. We illustrate these new regions of Fat Higgs/λ-SUSY parameter spacemore » by finding regions of large tan β that are consistent with all experimental constraints including direct dark matter detection experiments, relic density limits and the invisible decay width of the Z boson. We find that there exist regions around λ = 1.25, tan β = 50 and a uniform psuedo-scalar 4 TeV ≲ M A ≲ 8 TeV which are consistent will all present phenomenological constraints. In this region the dark matter relic abundance and direct detection limits are satisfied by a lightest neutralino that is mostly bino or singlino. As an interesting aside we also find a region of low tan β and small singlino mass parameter where a well-tempered neutralino avoids all cosmological and direct detection constraints.« less
Conformation and Stability of Intramolecular Telomeric G-Quadruplexes: Sequence Effects in the Loops
Sattin, Giovanna; Artese, Anna; Nadai, Matteo; Costa, Giosuè; Parrotta, Lucia; Alcaro, Stefano; Palumbo, Manlio; Richter, Sara N.
2013-01-01
Telomeres are guanine-rich sequences that protect the ends of chromosomes. These regions can fold into G-quadruplex structures and their stabilization by G-quadruplex ligands has been employed as an anticancer strategy. Genetic analysis in human telomeres revealed extensive allelic variation restricted to loop bases, indicating that the variant telomeric sequences maintain the ability to fold into G-quadruplex. To assess the effect of mutations in loop bases on G-quadruplex folding and stability, we performed a comprehensive analysis of mutant telomeric sequences by spectroscopic techniques, molecular dynamics simulations and gel electrophoresis. We found that when the first position in the loop was mutated from T to C or A the resulting structure adopted a less stable antiparallel topology; when the second position was mutated to C or A, lower thermal stability and no evident conformational change were observed; in contrast, substitution of the third position from A to C induced a more stable and original hybrid conformation, while mutation to T did not significantly affect G-quadruplex topology and stability. Our results indicate that allelic variations generate G-quadruplex telomeric structures with variable conformation and stability. This aspect needs to be taken into account when designing new potential anticancer molecules. PMID:24367632
Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices.
Bocan, Kara N; Mickle, Marlin H; Sejdic, Ervin
2017-01-01
The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology.
Tissue Variability and Antennas for Power Transfer to Wireless Implantable Medical Devices
Bocan, Kara N.; Mickle, Marlin H.
2017-01-01
The design of effective transcutaneous systems demands the consideration of inevitable variations in tissue characteristics, which vary across body areas, among individuals, and over time. The purpose of this paper was to design and evaluate several printed antenna topologies for ultrahigh frequency (UHF) transcutaneous power transfer to implantable medical devices, and to investigate the effects of variations in tissue properties on dipole and loop topologies. Here, we show that a loop antenna topology provides the greatest achievable gain with the smallest implanted antenna, while a dipole system provides higher impedance for conjugate matching and the ability to increase gain with a larger external antenna. In comparison to the dipole system, the loop system exhibits greater sensitivity to changes in tissue structure and properties in terms of power gain, but provides higher gain when the separation is on the order of the smaller antenna dimension. The dipole system was shown to provide higher gain than the loop system at greater implant depths for the same implanted antenna area, and was less sensitive to variations in tissue properties and structure in terms of power gain at all investigated implant depths. The results show the potential of easily-fabricated, low-cost printed antenna topologies for UHF transcutaneous power, and the importance of environmental considerations in choosing the antenna topology. PMID:29018637
Salama, Tamer M Said; Hassan, Mohamed Ibrahim
2017-06-01
Omega loop gastric bypass is a successful bariatric surgery with numerous favorable circumstances as being basic, effective on weight reduction and treatment of obesity associated metabolic disorder, the short expectation to learn and adapt, and the simplicity of correction and inversion. However, there are arguments about the possibility of biliary reflux and/or the potential danger of gastroesophageal malignancy after the procedure. Fifty patients experiencing morbid obesity with body mass index >40 or >35 kg/m 2 with two related comorbidities, for example, diabetes type II, hypertension, or dyslipidemia, underwent omega loop gastric bypass with a follow-up period up to 18 months, investigating for any symptom of reflux infection by upper gastrointestinal tract endoscopy and pH metry. Reflux esophagitis (a gastroesophageal reflux disease) was detected in 3 patients (6%); 2 cases (4%) showed (Grade A) acidic reflux esophagitis at 6 and 12 months postoperatively. Just 1 case (2%) had experienced gastroesophageal biliary reflux esophagitis (Grade A) at 12 months. No metaplasia or dysplasia was detected in the endoscopic biopsies. Omega loop gastric bypass is a safe and effective bariatric procedure with low incidence of postoperative biliary reflux, metaplasia, or dysplasia at the esophagogastric junction, confirmed 18 months after the operation.
Hoekstra, Carlijn E L; Prijs, Vera F; van Zanten, Gijsbert A
2015-02-01
To assess the diagnostic yield of a routine magnetic resonance imaging (MRI) scan in patients with (unilateral) chronic tinnitus, to define the frequency of incidental findings, and to assess the clinical relevance of potentially found anterior inferior cerebellar artery (AICA) loops. Retrospective cohort study. Tertiary Tinnitus Care Group at the University Medical Center Utrecht. Three hundred twenty-one patients with chronic tinnitus. Routine diagnostic magnetic resonance imaging (MRI) and diagnostic auditory brainstem responses (ABR) when an AICA loop was found. Relationship between abnormalities on MRI and tinnitus. In 138 patients (45%), an abnormality on the MRI scan was described. In only 7 patients (2.2%), the abnormality probably related to the patient's tinnitus. Results were not significantly better in patients with unilateral tinnitus (abnormalities in 3.2%). Incidental findings, not related to the tinnitus, were found in 41% of the patients. In 70 patients (23%), an AICA loop was found in the internal auditory canal. No significant relationships were found between the presence of an AICA loop and the side of the tinnitus, abnormalities on the ABR or complaints specific to nerve compression syndrome. A routine MRI is of little or no value in patients with tinnitus with persistent complaints. Anterior inferior cerebellar artery loops are often encountered on an MRI scan but rarely relate to the tinnitus and should thus be considered incidental findings. It is advised to only perform an MRI when on clinical grounds a specific etiology with tinnitus as the symptom seems probable.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
NASA Astrophysics Data System (ADS)
Sever, Amit; Vieira, Pedro; Wang, Tianheng
2011-11-01
We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.
Pan, Qunxing; Wang, Hui; Ouyang, Wei; Wang, Xiaoli; Bi, Zhenwei; Xia, Xingxia; Wang, Yongshan; He, Kongwang
2016-01-20
Virus-like particles (VLPs) vaccines combine many of the advantages of whole-virus vaccines and recombinant subunit vaccines, integrating key features that underlay their immunogenicity, safety and protective potential. We have hypothesized here the effective insertion of the VP1 epitopes (three amino acid residues 21-40, 141-160 and 200-213 in VP1, designated VPe) of foot-and-mouth disease (FMDV) within the external loops of PPV VP2 could be carried out without altering assembly based on structural and antigenic data. To investigate the possibility, development of two recombinant adenovirus rAd-PPV:VP2-FMDV:VPe a or rAd-PPV:VP2-FMDV:VPe b were expressed in HEK-293 cells. Out of the two insertion strategies tested, one of them tolerated an insert of 57 amino acids in one of the four external loops without disrupting the VLPs assembly. Mice were inoculated with the two recombinant adenoviruses, and an immunogenicity study showed that the highest levels of FMDV-specific humoral responses and T cell proliferation could be induced by rAd-PPV:VP2-FMDV:VPe b expressing hybrid PPV:VLPs (FMDV) in the absence of an adjuvant. Then, the protective efficacy of inoculating swine with rAd-PPV:VP2-FMDV:VPe b was tested. All pigs inoculated with rAd-PPV:VP2-FMDV:VPe b were protected from viral challenge, meanwhile the neutralizing antibody titers were significantly higher than those in the group inoculated with swine FMD type O synthetic peptide vaccine. Our results clearly demonstrate the potential usefulness of adenovirus-derived PPV VLPs as a vaccine strategy in prevention of FMDV. Copyright © 2015 Elsevier Ltd. All rights reserved.
47 CFR 51.230 - Presumption of acceptability for deployment of an advanced services loop technology.
Code of Federal Regulations, 2010 CFR
2010-10-01
... an advanced services loop technology. 51.230 Section 51.230 Telecommunication FEDERAL COMMUNICATIONS... Carriers § 51.230 Presumption of acceptability for deployment of an advanced services loop technology. (a) An advanced services loop technology is presumed acceptable for deployment under any one of the...
LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER
DOE Office of Scientific and Technical Information (OSTI.GOV)
CHERTKOV, MICHAEL; CHERNYAK, VLADIMIR
Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problemmore » invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe-Free energy variational approach of [3].« less
A simplifying feature of the heterotic one loop four graviton amplitude
NASA Astrophysics Data System (ADS)
Basu, Anirban
2018-01-01
We show that the weight four modular graph functions that contribute to the integrand of the t8t8D4R4 term at one loop in heterotic string theory do not require regularization, and hence the integrand is simple. This is unlike the graphs that contribute to the integrands of the other gravitational terms at this order in the low momentum expansion, and these integrands require regularization. This property persists for an infinite number of terms in the effective action, and their integrands do not require regularization. We find non-trivial relations between weight four graphs of distinct topologies that do not require regularization by performing trivial manipulations using auxiliary diagrams.
Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes
NASA Astrophysics Data System (ADS)
Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.
2009-02-01
Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.
Possible higher order phase transition in large-N gauge theory at finite temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiromichi
2017-08-07
We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically differentmore » behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical« less
Suppression of heating of coronal loops rooted in opposite polarity sunspot umbrae
NASA Astrophysics Data System (ADS)
Tiwari, Sanjiv K.; Thalmann, Julia K.; Moore, Ronald L.; Panesar, Navdeep; Winebarger, Amy R.
2016-05-01
EUV observations of active region (AR) coronae reveal the presence of loops at different temperatures. To understand the mechanisms that result in hotter or cooler loops, we study a typical bipolar AR, near solar disk center, which has moderate overall magnetic twist and at least one fully developed sunspot of each polarity. From AIA 193 and 94 A images we identify many clearly discernible coronal loops that connect plage or a sunspot of one polarity to an opposite-polarity plage region. The AIA 94 A images show dim regions in the umbrae of the spots. To see which coronal loops are rooted in a dim umbral area, we performed a non-linear force-free field (NLFFF) modeling using photospheric vector magnetic field measurements obtained with the HMI onboard SDO. After validation of the NLFFF model by comparison of calculated model field lines and observed loops in AIA 193 and 94, we specify the photospheric roots of the model field lines. The model field then shows the coronal magnetic loops that arch from the dim umbral areas of the opposite polarity sunspots. Because these coronal loops are not visible in any of the coronal EUV and X-ray images of the AR, we conclude they are the coolest loops in the AR. This result suggests that the loops connecting opposite polarity umbrae are the least heated because the field in umbrae is so strong that the convective braiding of the field is strongly suppressed.We hypothesize that the convective freedom at the feet of a coronal loop, together with the strength of the field in the body of the loop, determines the strength of the heating. In particular, we expect the hottest coronal loops to have one foot in an umbra and the other foot in opposite-polarity penumbra or plage (coronal moss), the areas of strong field in which convection is not as strongly suppressed as in umbra. Many transient, outstandingly bright, loops in the AIA 94 movie of the AR do have this expected rooting pattern. We will also present another example of AR in which we find a similar rooting pattern of coronal loops.
Deployable radiator with flexible line loop
NASA Technical Reports Server (NTRS)
Keeler, Bryan V. (Inventor); Lehtinen, Arthur Mathias (Inventor); McGee, Billy W. (Inventor)
2003-01-01
Radiator assembly (10) for use on a spacecraft (12) is provided including at least one radiator panel assembly (26) repeatably movable between a panel stowed position (28) and a panel deployed position (36), at least two flexible lines (40) in fluid communication with the at least one radiator panel assembly (26) and repeatably movable between a stowage loop (42) and a flattened deployed loop (44).
Off-shell renormalization in Higgs effective field theories
NASA Astrophysics Data System (ADS)
Binosi, Daniele; Quadri, Andrea
2018-04-01
The off-shell one-loop renormalization of a Higgs effective field theory possessing a scalar potential ˜ {({Φ}^{\\dagger}Φ -υ^2/2)}^N with N arbitrary is presented. This is achieved by renormalizing the theory once reformulated in terms of two auxiliary fields X 1,2, which, due to the invariance under an extended Becchi-Rouet-Stora-Tyutin symmetry, are tightly constrained by functional identities. The latter allow in turn the explicit derivation of the mapping onto the original theory, through which the (divergent) multi-Higgs amplitude are generated in a purely algebraic fashion. We show that, contrary to naive expectations based on the loss of power counting renormalizability, the Higgs field undergoes a linear Standard Model like redefinition, and evaluate the renormalization of the complete set of Higgs self-coupling in the N → ∞ case.
Briseid, G; Briseid, K; Kirkevold, K
1976-01-01
The increases in the absorption of ouabain, phenolsulphonphthalein and pralidoxime caused by 17 mM sodium lauryl sulphate (SLS) from jejunal loops of anaesthetized rats were significantly reduced if sodium and chloride (Briseid et al., 1974) or chloride and bicarbonate were replaced by other ions in the loop fluid. Separate substitutions of sodium, chloride of bicarbonate did not significantly alter the SLS-caused absorption, except that the substitution of choline for sodium reduced the absorption of pralidoxime, both in the presence and in the absence of SLS. The increases in the absorption of phenolsulphonphthalein and pralidoxime caused by SLS were potentiated by theophylline (25 mM) and reduced by imidazole (25 mM). The addition of dibutyryl cyclic AMP (2.5 mM) to the loop fluid increased this absorption of the test substances. This effect was reduced by imidazole, but under the experimental conditions it was not potentiated by theophylline. Determinations of cyclic AMP in the rat intestinal mucosa showed that the level of this substance was significantly higher in the presence than in the absence of SLS. The experimental conditions were as described for the absorption experiments. It is concluded that the data obtained support the idea of an increased level of cyclic AMP as the main basis for the effect of SLS on the absorption.
On the performance of digital phase locked loops in the threshold region
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
Extended Kalman filter algorithms are used to obtain a digital phase lock loop structure for demodulation of angle modulated signals. It is shown that the error variance equations obtained directly from this structure enable one to predict threshold if one retains higher frequency terms. This is in sharp contrast to the similar analysis of the analog phase lock loop, where the higher frequency terms are filtered out because of the low pass filter in the loop. Results are compared to actual simulation results and threshold region results obtained previously.
Universality, twisted fans, and the Ising model. [Renormalization, two-loop calculations, scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dash, J.W.; Harrington, S.J.
1975-06-24
Critical exponents are evaluated for the Ising model using universality in the form of ''twisted fans'' previously introduced in Reggeon field theory. The universality is with respect to scales induced through renormalization. Exact twists are obtained at ..beta.. = 0 in one loop for D = 2,3 with ..nu.. = 0.75 and 0.60 respectively. In two loops one obtains ..nu.. approximately 1.32 and 0.68. No twists are obtained for eta, however. The results for the standard two loop calculations are also presented as functions of a scale.
Interactions driving the collapse of islet amyloid polypeptide: Implications for amyloid aggregation
NASA Astrophysics Data System (ADS)
Cope, Stephanie M.
Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37-residue intrinsically disordered hormone involved in glucose regulation and gastric emptying. The aggregation of hIAPP into amyloid fibrils is believed to play a causal role in type 2 diabetes. To date, not much is known about the monomeric state of hIAPP or how it undergoes an irreversible transformation from disordered peptide to insoluble aggregate. IAPP contains a highly conserved disulfide bond that restricts hIAPP(1-8) into a short ring-like structure: N_loop. Removal or chemical reduction of N_loop not only prevents cell response upon binding to the CGRP receptor, but also alters the mass per length distribution of hIAPP fibers and the kinetics of fibril formation. The mechanism by which N_loop affects hIAPP aggregation is not yet understood, but is important for rationalizing kinetics and developing potential inhibitors. By measuring end-to-end contact formation rates, Vaiana et al. showed that N_loop induces collapsed states in IAPP monomers, implying attractive interactions between N_loop and other regions of the disordered polypeptide chain . We show that in addition to being involved in intra-protein interactions, the N_loop is involved in inter-protein interactions, which lead to the formation of extremely long and stable beta-turn fibers. These non-amyloid fibers are present in the 10 muM concentration range, under the same solution conditions in which hIAPP forms amyloid fibers. We discuss the effect of peptide cyclization on both intra- and inter-protein interactions, and its possible implications for aggregation. Our findings indicate a potential role of N_loop-N_loop interactions in hIAPP aggregation, which has not previously been explored. Though our findings suggest that N_loop plays an important role in the pathway of amyloid formation, other naturally occurring IAPP variants that contain this structural feature are incapable of forming amyloids. For example, hIAPP readily forms amyloid fibrils in vitro, whereas the rat variant (rIAPP), differing by six amino acids, does not. In addition to being highly soluble, rIAPP is an effective inhibitor of hIAPP fibril formation . Both of these properties have been attributed to rIAPP's three proline residues: A25P, S28P and S29P. Single proline mutants of hIAPP have also been shown to kinetically inhibit hIAPP fibril formation. Because of their intrinsic dihedral angle preferences, prolines are expected to affect conformational ensembles of intrinsically disordered proteins. The specific effect of proline substitutions on IAPP structure and dynamics has not yet been explored, as the detection of such properties is experimentally challenging due to the low molecular weight, fast reconfiguration times, and very low solubility of IAPP peptides. High-resolution techniques able to measure tertiary contact formations are needed to address this issue. We employ a nanosecond laser spectroscopy technique to measure end-to-end contact formation rates in IAPP mutants. We explore the proline substitutions in IAPP and quantify their effects in terms of intrinsic chain stiffness. We find that the three proline mutations found in rIAPP increase chain stiffness. Interestingly, we also find that residue R18 plays an important role in rIAPP's unique chain stiffness and, together with the proline residues, is a determinant for its non-amyloidogenic properties. We discuss the implications of our findings on the role of prolines in IDPs.
Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang
2018-01-22
A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.
From Loops to Trees By-passing Feynman's Theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catani, Stefano; Gleisberg, Tanju; Krauss, Frank
2008-04-22
We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluationmore » of cross-sections at next-to-leading order.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.
2001-01-01
Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also formore » the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.« less
Relating quark confinement and chiral symmetry breaking in QCD
NASA Astrophysics Data System (ADS)
Suganuma, Hideo; Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro
2017-12-01
We study the relation between quark confinement and chiral symmetry breaking in QCD. Using lattice QCD formalism, we analytically express the various ‘confinement indicators’, such as the Polyakov loop, its fluctuations, the Wilson loop, the inter-quark potential and the string tension, in terms of the Dirac eigenmodes. In the Dirac spectral representation, there appears a power of the Dirac eigenvalue {λ }n such as {λ }n{Nt-1}, which behaves as a reduction factor for small {λ }n. Consequently, since this reduction factor cannot be cancelled, the low-lying Dirac eigenmodes give negligibly small contribution to the confinement quantities, while they are essential for chiral symmetry breaking. These relations indicate that there is no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD. In other words, there is some independence of quark confinement from chiral symmetry breaking, which can generally lead to different transition temperatures/densities for deconfinement and chiral restoration. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, and find similar results. The independence of quark confinement from chiral symmetry breaking seems to be natural, because confinement is realized independently of quark masses and heavy quarks are also confined even without the chiral symmetry.
Stomatal control and hydraulic conductance, with special reference to tall trees.
Franks, Peter J
2004-08-01
A better understanding of the mechanistic basis of stomatal control is necessary to understand why modes of stomatal response differ among individual trees, and to improve the theoretical foundation for predictive models and manipulative experiments. Current understanding of the mechanistic basis of stomatal control is reviewed here and discussed in relation to the plant hydraulic system. Analysis focused on: (1) the relative role of hydraulic conductance in the vicinity of the stomatal apparatus versus whole-plant hydraulic conductance; (2) the influence of guard cell inflation characteristics and the mechanical interaction between guard cells and epidermal cells; and (3) the system requirements for moderate versus dramatic reductions in stomatal conductance with increasing evaporation potential. Special consideration was given to the potential effect of changes in hydraulic properties as trees grow taller. Stomatal control of leaf gas exchange is coupled to the entire plant hydraulic system and the basis of this coupling is the interdependence of guard cell water potential and transpiration rate. This hydraulic feedback loop is always present, but its dynamic properties may be altered by growth or cavitation-induced changes in hydraulic conductance, and may vary with genetically related differences in hydraulic conductances. Mechanistic models should include this feedback loop. Plants vary in their ability to control transpiration rate sufficiently to maintain constant leaf water potential. Limited control may be achieved through the hydraulic feedback loop alone, but for tighter control, an additional element linking transpiration rate to guard cell osmotic pressure may be needed.
Taste changing in staggered quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quentin Mason et al.
2004-01-05
The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.
Nafissi, Maryam; Chau, Jeannette; Xu, Jimin
2012-01-01
Synthesis of the Fis nucleoid protein rapidly increases in response to nutrient upshifts, and Fis is one of the most abundant DNA binding proteins in Escherichia coli under nutrient-rich growth conditions. Previous work has shown that control of Fis synthesis occurs at transcription initiation of the dusB-fis operon. We show here that while translation of the dihydrouridine synthase gene dusB is low, unusual mechanisms operate to enable robust translation of fis. At least two RNA sequence elements located within the dusB coding region are responsible for high fis translation. The most important is an AU element centered 35 nucleotides (nt) upstream of the fis AUG, which may function as a binding site for ribosomal protein S1. In addition, a 44-nt segment located upstream of the AU element and predicted to form a stem-loop secondary structure plays a prominent role in enhancing fis translation. On the other hand, mutations close to the AUG, including over a potential Shine-Dalgarno sequence, have little effect on Fis protein levels. The AU element and stem-loop regions are phylogenetically conserved within dusB-fis operons of representative enteric bacteria. PMID:22389479
Mashooq, Mohmad; Kumar, Deepak; Niranjan, Ankush Kiran; Agarwal, Rajesh Kumar; Rathore, Rajesh
2016-07-01
A one step, single tube, accelerated probe based real time loop mediated isothermal amplification (RT LAMP) assay was developed for detecting the invasion gene (InvA) of Salmonella. The probe based RT LAMP is a novel method of gene amplification that amplifies nucleic acid with high specificity and rapidity under isothermal conditions with a set of six primers. The whole procedure is very simple and rapid, and amplification can be obtained in 20min. Detection of gene amplification was accomplished by amplification curve, turbidity and addition of DNA binding dye at the end of the reaction results in colour difference and can be visualized under normal day light and in UV. The sensitivity of developed assay was found 10 fold higher than taqman based qPCR. The specificity of the RT LAMP assay was validated by the absence of any cross reaction with other members of enterobacteriaceae family and other gram negative bacteria. These results indicate that the probe based RT LAMP assay is extremely rapid, cost effective, highly specific and sensitivity and has potential usefulness for rapid Salmonella surveillance. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Photon-Z mixing the Weinberg-Salam model: Effective charges and the a = -3 gauge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baulieu, L.; Coquereaux, R.
1982-04-15
We study some properties of the Weinberg-Salam model connected with the photon-Z mixing. We solve the linear Dyson-Schwinger equations between full and 1PI boson propagators. The task is made easier, by the two-point function Ward identities that we derive to all orders and in any gauge. Some aspects of the renormalization of the model are also discussed. We display the exact mass-dependent one-loop two-point functions involving the photon and Z field in any linear xi-gauge. The special gauge a = xi/sup -1/ = -3 is shown to play a peculiar role. In this gauge, the Z field is multiplicatively renormalizablemore » (at the one-loop level), and one can construct both electric and weak effective charges of the theory from the photon and Z propagators, with a very simple expression similar to that of the QED Petermann, Stueckelberg, Gell-Mann and Low charge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, T.D.
1982-12-14
A buoyancy prime mover that converts the potential energy of a gas buoyant within a liquid into rotating mechanical energy comprises a plurality of rigid or collapsible buckets joined by one or more chains with rotatable sprockets and shafts to form a continuous loop so that when the buoyant gas is trapped within the buckets, the buckets rise through the liquid and rotate the chain and sprockets to generate power.
Open-loop control of quasiperiodic thermoacoustic oscillations
NASA Astrophysics Data System (ADS)
Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.
2017-11-01
The open-loop application of periodic acoustic forcing has been shown to be a potentially effective strategy for controlling periodic thermoacoustic oscillations, but its effectiveness on aperiodic thermoacoustic oscillations is less clear. In this experimental study, we apply periodic acoustic forcing to a ducted premixed flame oscillating quasiperiodically at two incommensurate natural frequencies, f1 and f2. We find that (i) above a critical forcing amplitude, the system locks into the forcing by oscillating only at the forcing frequency ff, producing a closed periodic orbit in phase space with no evidence of the original T2 torus attractor; (ii) the critical forcing amplitude required for lock-in decreases as ff approaches either f1 or f2, resulting in characteristic ∨-shaped lock-in boundaries around the two natural modes; and (iii) for a wide range of forcing frequencies, the system's oscillation amplitude can be reduced to less than 20% of that of the unforced system. These findings show that the open-loop application of periodic acoustic forcing can be an effective strategy for controlling aperiodic thermoacoustic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Jin, Feng Jie; Takahashi, Tadashi; Machida, Masayuki; Koyama, Yasuji
2009-09-01
We previously developed two methods (loop-out and replacement-type recombination) for generating large-scale chromosomal deletions that can be applied to more effective chromosomal engineering in Aspergillus oryzae. In this study, the replacement-type method is used to systematically delete large chromosomal DNA segments to identify essential and nonessential regions in chromosome 7 (2.93 Mb), which is the smallest A. oryzae chromosome and contains a large number of nonsyntenic blocks. We constructed 12 mutants harboring deletions that spanned 16- to 150-kb segments of chromosome 7 and scored phenotypic changes in the resulting mutants. Among the deletion mutants, strains designated Delta5 and Delta7 displayed clear phenotypic changes involving growth and conidiation. In particular, the Delta5 mutant exhibited vigorous growth and conidiation, potentially beneficial characteristics for certain industrial applications. Further deletion analysis allowed identification of the AO090011000215 gene as the gene responsible for the Delta5 mutant phenotype. The AO090011000215 gene was predicted to encode a helix-loop-helix binding protein belonging to the bHLH family of transcription factors. These results illustrate the potential of the approach for identifying novel functional genes.
Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo
2017-01-01
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. PMID:28213527
DOT National Transportation Integrated Search
2014-10-01
The overarching goal of this research project was to investigate the potential for the NCDOT Central Office Signal Timing : (COST) Section to monitor and assess the quality of field deployed closed-loop signal system plans using the data inherent in ...
Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.
Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard
2015-01-01
Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.
A review of active control approaches in stabilizing combustion systems in aerospace industry
NASA Astrophysics Data System (ADS)
Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin
2018-02-01
Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.
NASA Technical Reports Server (NTRS)
Cockell, C.; Catling, D.; Waites, H.
1999-01-01
Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.
Power corrections to the HTL effective Lagrangian of QED
NASA Astrophysics Data System (ADS)
Carignano, Stefano; Manuel, Cristina; Soto, Joan
2018-05-01
We present compact expressions for the power corrections to the hard thermal loop (HTL) Lagrangian of QED in d space dimensions. These are corrections of order (L / T) 2, valid for momenta L ≪ T, where T is the temperature. In the limit d → 3 we achieve a consistent regularization of both infrared and ultraviolet divergences, which respects the gauge symmetry of the theory. Dimensional regularization also allows us to witness subtle cancellations of infrared divergences. We also discuss how to generalize our results in the presence of a chemical potential, so as to obtain the power corrections to the hard dense loop (HDL) Lagrangian.
Ultrafiltrative deinking of flexographic ONP : the role of surfactants
Bradley H. Upton; Gopal A. Krishnagopalan; Said Abubakr
1999-01-01
Ultrafiltration is a potentially viable method of removing finely dispersed flexographic pigments from the deinking water loop. This work examines the effects of surface-active materials on ultrafiltration efficiency. A logarithmic relationship between permeate flax and pigment concentration was demonstrated at ink concentrations above 0.4%, permeation rates becoming...
Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations.
Jiang, Jun; Aduri, Raviprasad; Chow, Christine S; SantaLucia, John
2014-04-01
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson-Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.
NASA Technical Reports Server (NTRS)
Fleming, M. L.
1980-01-01
Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
DNA unzipping with asymmetric periodic forces: Robustness of the scaling behavior of hysteresis loop
NASA Astrophysics Data System (ADS)
Pal, Tanmoy; Kumar, Sanjay
2018-01-01
We study the effect of periodic unzipping forces (symmetric and asymmetric) on the steady-state hysteresis loop area of force-extension curves of DNA. For the triangular force, we get back the previously reported scaling exponents but for the ratchet force, we find that the scaling exponents deviate from the reported ones. We also study the temperature dependence of the scaling exponents for the triangular force. At the low-frequency regime, the choice of the scaling form determines whether the scaling exponents depend on the temperature or not.
HMDs as enablers of situation awareness: the OODA loop and sense-making
NASA Astrophysics Data System (ADS)
Melzer, James E.
2012-06-01
Helmet-Mounted Displays have been shown to be powerful tools that can unlock the pilot from the interior of the cockpit or the forward line of sight of the Head-Up Display. Imagery that is presented in one of three reference frames can enable the pilots to do their job more effectively while simultaneously decreasing workload. This paper will review key attributes of Situation Awareness, the Observe/Orient/Decide/Act (OODA) Loop and Sensemaking and how HMDs can aid the pilot in achieving these ideal cognitive states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Qiaozhen; Krug, Robert M.; Tao, Yizhi Jane
Influenza A viruses pose a serious threat to world public health, particularly the currently circulating avian H5N1 viruses. The influenza viral nucleoprotein forms the protein scaffold of the helical genomic ribonucleoprotein complexes, and has a critical role in viral RNA replication. Here we report a 3.2 Angstrom crystal structure of this nucleoprotein, the overall shape of which resembles a crescent with a head and a body domain, with a protein fold different compared with that of the rhabdovirus nucleoprotein. Oligomerization of the influenza virus nucleoprotein is mediated by a flexible tail loop that is inserted inside a neighboring molecule. Thismore » flexibility in the tail loop enables the nucleoprotein to form loose polymers as well as rigid helices, both of which are important for nucleoprotein functions. Single residue mutations in the tail loop result in the complete loss of nucleoprotein oligomerization. An RNA-binding groove, which is found between the head and body domains at the exterior of the nucleoprotein oligomer, is lined with highly conserved basic residues widely distributed in the primary sequence. The nucleoprotein structure shows that only one of two proposed nuclear localization signals are accessible, and suggests that the body domain of nucleoprotein contains the binding site for the viral polymerase. Our results identify the tail loop binding pocket as a potential target for antiviral development.« less
Constraints on the trilinear Higgs self coupling from precision observables
Degrassi, G.; Fedele, M.; Giardino, P. P.
2017-04-27
We present the constraints on the trilinear Higgs self coupling that arise from loop effects in the W boson mass and the effective sine predictions. Here, we compute the contributions to these precision observables of two-loop diagrams featuring an anomalous trilinear Higgs self coupling. We explicitly show that the same anomalous contributions are found if the analysis of m W and sin 2θmore » $$lep\\atop{eff}$$ is performed in a theory in which the scalar potential in the Standard Model Lagrangian is modified by an (in)finite tower of (Φ †Φ) n terms with Φ the Higgs doublet. Lastly, we find that the bounds on the trilinear Higgs self coupling from precision observables are competitive with those coming from Higgs pair production.« less
Strings in bubbling geometries and dual Wilson loop correlators
NASA Astrophysics Data System (ADS)
Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.
2017-12-01
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.
TeV scale dark matter and electroweak radiative corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciafaloni, Paolo; Urbano, Alfredo
2010-08-15
Recent anomalies in cosmic rays data, namely, from the PAMELA Collaboration, can be interpreted in terms of TeV scale decaying/annihilating dark matter. We analyze the impact of radiative corrections coming from the electroweak sector of the standard model on the spectrum of the final products at the interaction point. As an example, we consider virtual one loop corrections and real gauge bosons emission in the case of a very heavy vector boson annihilating into fermions. We find electroweak corrections that are relevant, but not as big as sometimes found in the literature; we relate this mismatch to the issue ofmore » gauge invariance. At scales much higher than the symmetry breaking scale, one loop electroweak effects are so big that eventually higher orders/resummations have to be considered: we advocate for the inclusion of these effects in parton shower Monte Carlo models aiming at the description of TeV scale physics.« less
Hypersurface-deformation algebroids and effective spacetime models
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Büyükçam, Umut; Brahma, Suddhasattwa; D'Ambrosio, Fabio
2016-11-01
In canonical gravity, covariance is implemented by brackets of hypersurface-deformation generators forming a Lie algebroid. Lie-algebroid morphisms, therefore, allow one to relate different versions of the brackets that correspond to the same spacetime structure. An application to examples of modified brackets found mainly in models of loop quantum gravity can, in some cases, map the spacetime structure back to the classical Riemannian form after a field redefinition. For one type of quantum corrections (holonomies), signature change appears to be a generic feature of effective spacetime, and it is shown here to be a new quantum spacetime phenomenon which cannot be mapped to an equivalent classical structure. In low-curvature regimes, our constructions not only prove the existence of classical spacetime structures assumed elsewhere in models of loop quantum cosmology, they also show the existence of additional quantum corrections that have not always been included.
The static quark potential from the gauge independent Abelian decomposition
NASA Astrophysics Data System (ADS)
Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon
2015-06-01
We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for confinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Aveek; Walsh, Robert W.
2009-07-10
Determining the preferred spatial location of the energy input to solar coronal loops would be an important step forward toward a more complete understanding of the coronal heating problem. Following from the 2008 paper of Sarkar and Walsh, this paper presents a short (10{sup 9} cm {identical_to}10 Mm) 'global loop' as 125 individual strands, where each strand is modeled independently by a one-dimensional hydrodynamic simulation. The strands undergo small-scale episodic heating and are coupled together through the frequency distribution of the total energy input to the loop which follows a power-law distribution with index {approx}2.29. The spatial preference of themore » swarm of heating events from apex to footpoint is investigated. From a theoretical perspective, the resulting emission-measure-weighted temperature profiles along these two extreme cases do demonstrate a possible observable difference. Subsequently, the simulated output is folded through the Transition Region and Coronal Explorer (TRACE) instrument response functions and a rederivation of the temperature using different filter ratio techniques is performed. Given the multithermal scenario created by this many-strand loop model, a broad differential emission measure results; the subsequent double and triple filter ratios are very similar to those obtained from observations. However, any potential observational signature to differentiate between apex and footpoint dominant heating is possibly below instrumental thresholds. The consequences of using a broadband instrument like TRACE and Hinode-XRT in this way are discussed.« less
Loop corrections for Kaluza-Klein AdS amplitudes
NASA Astrophysics Data System (ADS)
Aprile, F.; Drummond, J. M.; Heslop, P.; Paul, H.
2018-05-01
Recently we conjectured the four-point amplitude of graviton multiplets in AdS5 × S5 at one loop by exploiting the operator product expansion of N = 4 super Yang-Mills theory. Here we give the first extension of those results to include Kaluza-Klein modes, obtaining the amplitude for two graviton multiplets and two states of the first KK mode. Our method again relies on resolving the large N degeneracy among a family of long double-trace operators, for which we obtain explicit formulas for the leading anomalous dimensions. Having constructed the one-loop amplitude we are able to obtain a formula for the one-loop corrections to the anomalous dimensions of all twist five double-trace operators.
Analytic Result for the Two-loop Six-point NMHV Amplitude in N = 4 Super Yang-Mills Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Lance J.; /SLAC; Drummond, James M.
2012-02-15
We provide a simple analytic formula for the two-loop six-point ratio function of planar N = 4 super Yang-Mills theory. This result extends the analytic knowledge of multi-loop six-point amplitudes beyond those with maximal helicity violation. We make a natural ansatz for the symbols of the relevant functions appearing in the two-loop amplitude, and impose various consistency conditions, including symmetry, the absence of spurious poles, the correct collinear behavior, and agreement with the operator product expansion for light-like (super) Wilson loops. This information reduces the ansatz to a small number of relatively simple functions. In order to fix these parametersmore » uniquely, we utilize an explicit representation of the amplitude in terms of loop integrals that can be evaluated analytically in various kinematic limits. The final compact analytic result is expressed in terms of classical polylogarithms, whose arguments are rational functions of the dual conformal cross-ratios, plus precisely two functions that are not of this type. One of the functions, the loop integral {Omega}{sup (2)}, also plays a key role in a new representation of the remainder function R{sub 6}{sup (2)} in the maximally helicity violating sector. Another interesting feature at two loops is the appearance of a new (parity odd) x (parity odd) sector of the amplitude, which is absent at one loop, and which is uniquely determined in a natural way in terms of the more familiar (parity even) x (parity even) part. The second non-polylogarithmic function, the loop integral {tilde {Omega}}{sup (2)}, characterizes this sector. Both {Omega}{sup (2)} and {tilde {Omega}}{sup (2)} can be expressed as one-dimensional integrals over classical polylogarithms with rational arguments.« less
Closed-loop fiber optic gyroscope with homodyne detection
NASA Astrophysics Data System (ADS)
Zhu, Yong; Qin, BingKun; Chen, Shufen
1996-09-01
Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.
A new method for the adjustment of neochordal length: the adjustable slip knot technique.
Yano, Mitsuhiro; Sakaguchi, Syuuhei; Furukawa, Kohji; Nakamura, Eisaku
2015-08-01
The use of expanded polytetrafluoroethylene (ePTFE) sutures for the correction of mitral valve prolapse has become a standardized procedure. Adjustment of neochordal length is crucial to the efficacy of this technique. Various methods have been described for this purpose; however, the fine adjustment of neochordal length is technically challenging. We describe a simple and effective technique for the implantation of neochordae, which we have termed the 'adjustable slip knot technique'. The first step of this technique is reinforcement of the papillary muscle by a Teflon pledget with or without polytetrafluoroethylene (CV-4) loops. The second step is the formation of a neochordal loop by introducing an ePTFE suture between the affected mitral leaflet and the papillary muscle or ePTFE loops. The third step is the adjustment of the length of neochordae. The formation of a slip knot in one arm of the ePTFE suture is the pivot of this technique. The neochordal loop can be constricted by the application of tension to one arm of the suture. We applied this technique in 5 patients with satisfactory results. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Reconnection, Particle Acceleration, and Hard X-ray Emission in Eruptive Solar Flares
NASA Astrophysics Data System (ADS)
Martens, Petrus C.
1998-11-01
The frequent occurrence of Hard X-ray emission from the top of flaring loops was one of the discoveries by the Hard X-ray telescope on board the Japanese Yohkoh satellite. I will show how the combined effect of magnetic field convergence and pitch- angle scattering of non-thermal electrons injected at the top of the loop results in the generation of looptop sources with properties akin to those observed by Yohkoh. In addition it is shown that the injection of proton beams in the loop legs, expected from theory, reproduces the observed high temperature ``ridges" in the loop legs by mirroring and energy loss through collisions. I will interpret these numerical results as supporting the now widely accepted model of an erupting magnetic flux tube generating a reconnecting current sheet in its wake, where most of the energy release takes place. The strong similarity with the reconnection observed in the MRX experiment in Princeton will be analyzed in detail.
Analysis and Design of a Speed and Position System for Maglev Vehicles
Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang
2012-01-01
This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed. PMID:23012504
Analysis and design of a speed and position system for maglev vehicles.
Dai, Chunhui; Dou, Fengshan; Song, Xianglei; Long, Zhiqiang
2012-01-01
This paper mainly researches one method of speed and location detection for maglev vehicles. As the maglev train doesn't have any physical contact with the rails, it has to use non-contact measuring methods. The technology based on the inductive loop-cable could fulfill the requirement by using an on-board antenna which could detect the alternating magnetic field produced by the loop-cable on rails. This paper introduces the structure of a speed and position system, and analyses the electromagnetic field produced by the loop-cable. The equivalent model of the loop-cable is given and the most suitable component of the magnetic flux density is selected. Then the paper also compares the alternating current (AC) resistance and the quality factor between two kinds of coils which the antenna is composed of. The effect of the rails to the signal receiving is also researched and then the structure of the coils is improved. Finally, considering the common-mode interference, 8-word coils are designed and analyzed.
Valproic acid disrupts the oscillatory expression of core circadian rhythm transcription factors.
Griggs, Chanel A; Malm, Scott W; Jaime-Frias, Rosa; Smith, Catharine L
2018-01-15
Valproic acid (VPA) is a well-established therapeutic used in treatment of seizure and mood disorders as well as migraines and a known hepatotoxicant. About 50% of VPA users experience metabolic disruptions, including weight gain, hyperlipidemia, and hyperinsulinemia, among others. Several of these metabolic abnormalities are similar to the effects of circadian rhythm disruption. In the current study, we examine the effect of VPA exposure on the expression of core circadian transcription factors that drive the circadian clock via a transcription-translation feedback loop. In cells with an unsynchronized clock, VPA simultaneously upregulated the expression of genes encoding core circadian transcription factors that regulate the positive and negative limbs of the feedback loop. Using low dose glucocorticoid, we synchronized cultured fibroblast cells to a circadian oscillatory pattern. Whether VPA was added at the time of synchronization or 12h later at CT12, we found that VPA disrupted the oscillatory expression of multiple genes encoding essential transcription factors that regulate circadian rhythm. Therefore, we conclude that VPA has a potent effect on the circadian rhythm transcription-translation feedback loop that may be linked to negative VPA side effects in humans. Furthermore, our study suggests potential chronopharmacology implications of VPA usage. Copyright © 2017. Published by Elsevier Inc.
Two-loop renormalization of gaugino masses in general supersymmetric gauge models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Y.
1994-01-03
We calculate the two-loop renormalization group equations for the running gaugino masses in general supersymmetry (SUSY) gauge models, improving our previous result. We also study its consequences on the unification of the gaugino masses in the SUSY SU(5) model. The two-loop correction to the one-loop relation [ital m][sub [ital i
R-loop-mediated genomic instability is caused by impairment of replication fork progression
Gan, Wenjian; Guan, Zhishuang; Liu, Jie; Gui, Ting; Shen, Keng; Manley, James L.; Li, Xialu
2011-01-01
Transcriptional R loops are anomalous RNA:DNA hybrids that have been detected in organisms from bacteria to humans. These structures have been shown in eukaryotes to result in DNA damage and rearrangements; however, the mechanisms underlying these effects have remained largely unknown. To investigate this, we first show that R-loop formation induces chromosomal DNA rearrangements and recombination in Escherichia coli, just as it does in eukaryotes. More importantly, we then show that R-loop formation causes DNA replication fork stalling, and that this in fact underlies the effects of R loops on genomic stability. Strikingly, we found that attenuation of replication strongly suppresses R-loop-mediated DNA rearrangements in both E. coli and HeLa cells. Our findings thus provide a direct demonstration that R-loop formation impairs DNA replication and that this is responsible for the deleterious effects of R loops on genome stability from bacteria to humans. PMID:21979917
Two-body decays of gluino at full one-loop level in the quark-flavour violating MSSM.
Eberl, Helmut; Ginina, Elena; Hidaka, Keisho
2017-01-01
We study the two-body decays of the gluino at full one-loop level in the Minimal Supersymmetric Standard Model with quark-flavour violation (QFV) in the squark sector. The renormalisation is done in the [Formula: see text] scheme. The gluon and photon radiations are included by adding the corresponding three-body decay widths. We discuss the dependence of the gluino decay widths on the QFV parameters. The main dependence stems from the [Formula: see text]-[Formula: see text] mixing in the decays to up-type squarks, and from the [Formula: see text]-[Formula: see text] mixing in the decays to down-type squarks due to the strong constraints from B-physics on the other quark-flavour-mixing parameters. The full one-loop corrections to the gluino decay widths are mostly negative and of the order of about -10%. The QFV part stays small in the total width but can vary up to -8% for the decay width into the lightest [Formula: see text] squark. For the corresponding branching ratio the effect is somehow washed out by at least a factor of two. The electroweak corrections can be as large as 35% of the SUSY QCD corrections.
Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon
2017-01-01
Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 10 2 -10 5 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing.
Seok, Youngung; Joung, Hyou-Arm; Byun, Ju-Young; Jeon, Hyo-Sung; Shin, Su Jeong; Kim, Sanghyo; Shin, Young-Beom; Han, Hyung Soo; Kim, Min-Gon
2017-01-01
Paper-based diagnostic devices have many advantages as a one of the multiple diagnostic test platforms for point-of-care (POC) testing because they have simplicity, portability, and cost-effectiveness. However, despite high sensitivity and specificity of nucleic acid testing (NAT), the development of NAT based on a paper platform has not progressed as much as the others because various specific conditions for nucleic acid amplification reactions such as pH, buffer components, and temperature, inhibitions from technical differences of paper-based device. Here, we propose a paper-based device for performing loop-mediated isothermal amplification (LAMP) with real-time simultaneous detection of multiple DNA targets. We determined the optimal chemical components to enable dry conditions for the LAMP reaction without lyophilization or other techniques. We also devised the simple paper device structure by sequentially stacking functional layers, and employed a newly discovered property of hydroxynaphthol blue fluorescence to analyze real-time LAMP signals in the paper device. This proposed platform allowed analysis of three different meningitis DNA samples in a single device with single-step operation. This LAMP-based multiple diagnostic device has potential for real-time analysis with quantitative detection of 102-105 copies of genomic DNA. Furthermore, we propose the transformation of DNA amplification devices to a simple and affordable paper system approach with great potential for realizing a paper-based NAT system for POC testing. PMID:28740546
Fuel-cell engine stream conditioning system
DuBose, Ronald Arthur
2002-01-01
A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.
Nonperturbative study of the four gluon vertex
NASA Astrophysics Data System (ADS)
Binosi, D.; Ibañez, D.; Papavassiliou, J.
2014-09-01
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.
Guédin, Aurore; Lin, Linda Yingqi; Armane, Samir; Lacroix, Laurent; Mergny, Jean-Louis; Thore, Stéphane; Yatsunyk, Liliya A
2018-06-01
Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.
Ground-based adaptive optics coronagraphic performance under closed-loop predictive control
NASA Astrophysics Data System (ADS)
Males, Jared R.; Guyon, Olivier
2018-01-01
The discovery of the exoplanet Proxima b highlights the potential for the coming generation of giant segmented mirror telescopes (GSMTs) to characterize terrestrial-potentially habitable-planets orbiting nearby stars with direct imaging. This will require continued development and implementation of optimized adaptive optics systems feeding coronagraphs on the GSMTs. Such development should proceed with an understanding of the fundamental limits imposed by atmospheric turbulence. Here, we seek to address this question with a semianalytic framework for calculating the postcoronagraph contrast in a closed-loop adaptive optics system. We do this starting with the temporal power spectra of the Fourier basis calculated assuming frozen flow turbulence, and then apply closed-loop transfer functions. We include the benefits of a simple predictive controller, which we show could provide over a factor of 1400 gain in raw point spread function contrast at 1 λ/D on bright stars, and more than a factor of 30 gain on an I=7.5 mag star such as Proxima. More sophisticated predictive control can be expected to improve this even further. Assuming a photon-noise limited observing technique such as high-dispersion coronagraphy, these gains in raw contrast will decrease integration times by the same large factors. Predictive control of atmospheric turbulence should therefore be seen as one of the key technologies that will enable ground-based telescopes to characterize terrestrial planets.
Toward a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops
NASA Astrophysics Data System (ADS)
Warren, Harry P.; Crump, Nicholas A.; Ugarte-Urra, Ignacio; Sun, Xudong; Aschwanden, Markus J.; Wiegelmann, Thomas
2018-06-01
It is widely believed that loops observed in the solar atmosphere trace out magnetic field lines. However, the degree to which magnetic field extrapolations yield field lines that actually do follow loops has yet to be studied systematically. In this paper, we apply three different extrapolation techniques—a simple potential model, a nonlinear force-free (NLFF) model based on photospheric vector data, and an NLFF model based on forward fitting magnetic sources with vertical currents—to 15 active regions that span a wide range of magnetic conditions. We use a distance metric to assess how well each of these models is able to match field lines to the 12202 loops traced in coronal images. These distances are typically 1″–2″. We also compute the misalignment angle between each traced loop and the local magnetic field vector, and find values of 5°–12°. We find that the NLFF models generally outperform the potential extrapolation on these metrics, although the differences between the different extrapolations are relatively small. The methodology that we employ for this study suggests a number of ways that both the extrapolations and loop identification can be improved.
When Does Length Cause the Word Length Effect?
ERIC Educational Resources Information Center
Jalbert, Annie; Neath, Ian; Bireta, Tamra J.; Surprenant, Aimee M.
2011-01-01
The word length effect, the finding that lists of short words are better recalled than lists of long words, has been termed one of the benchmark findings that any theory of immediate memory must account for. Indeed, the effect led directly to the development of working memory and the phonological loop, and it is viewed as the best remaining…
Toward rational design of electrical stimulation strategies for epilepsy control
Sunderam, Sridhar; Gluckman, Bruce; Reato, Davide; Bikson, Marom
2009-01-01
Electrical stimulation is emerging as a viable alternative for epilepsy patients whose seizures are not alleviated by drugs or surgery. Its attractions are temporal and spatial specificity of action, flexibility of waveform parameters and timing, and the perception that its effects are reversible unlike resective surgery. However, despite significant advances in our understanding of mechanisms of neural electrical stimulation, clinical electrotherapy for seizures relies heavily on empirical tuning of parameters and protocols. We highlight concurrent treatment goals with potentially conflicting design constraints that must be resolved when formulating rational strategies for epilepsy electrotherapy: namely seizure reduction versus cognitive impairment, stimulation efficacy versus tissue safety, and mechanistic insight versus clinical pragmatism. First, treatment markers, objectives, and metrics relevant to electrical stimulation for epilepsy are discussed from a clinical perspective. Then the experimental perspective is presented, with the biophysical mechanisms and modalities of open-loop electrical stimulation, and the potential benefits of closed-loop control for epilepsy. PMID:19926525
Hippocampal closed-loop modeling and implications for seizure stimulation design
NASA Astrophysics Data System (ADS)
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2015-10-01
Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Hippocampal closed-loop modeling and implications for seizure stimulation design.
Sandler, Roman A; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W; Marmarelis, Vasilis Z
2015-10-01
Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.
Hippocampal Closed-Loop Modeling and Implications for Seizure Stimulation Design
Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.
2016-01-01
Objective Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the Entorhinal Cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3→CA1, via the Schaffer-Collateral synapse, and CA1→CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (Principal Dynamic Modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main Results Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance DBS is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy. PMID:26355815
Chemical looping integration with a carbon dioxide gas purification unit
Andrus, Jr., Herbert E.; Jukkola, Glen D.; Thibeault, Paul R.; Liljedahl, Gregory N.
2017-01-24
A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.
Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops.
Olsen, Chris M; Lee, Hui-Ting; Marky, Luis A
2009-03-05
G-quadruplexes are a highly studied DNA motif with a potential role in a variety of cellular processes and more recently are considered novel targets for drug therapy in aging and anticancer research. In this work, we have investigated the thermodynamic contributions of the loops on the stable formation of G-quadruplexes. Specifically, we use a combination of UV, circular dichroism (CD) and fluorescence spectroscopies, and differential scanning calorimetry (DSC) to determine thermodynamic profiles, including the differential binding of ions and water, for the unfolding of the thrombin aptamer: d(GGT2GGTGTGGT2GG) that is referred to as G2. The sequences in italics, TGT and T2, are known to form loops. Other sequences examined contained base substitutions in the TGT loop (TAT, TCT, TTT, TAPT, and UUU), in the T2 loops (T4, U2), or in both loops (UGU and U2, UUU and U2). The CD spectra of all molecules show a positive band centered at 292 nm, which corresponds to the "chair" conformation. The UV and DSC melting curves of each G-quadruplex show monophasic transitions with transition temperatures (T(M)s) that remained constant with increasing strand concentration, confirming their intramolecular formation. These G-quadruplexes unfold with T(M)s in the range from 43.2 to 56.5 degrees C and endothermic enthalpies from 22.9 to 37.2 kcal/mol. Subtracting the contribution of a G-quartet stack from each experimental profile indicated that the presence of the loops stabilize each G-quadruplex by favorable enthalpy contributions, larger differential binding of K+ ions (0.1-0.6 mol K+/ mol), and a variable uptake/release of water molecules (-6 to 8 mol H2O/mol). The thermodynamic contributions for these specific base substitutions are discussed in terms of loop stacking (base-base stacking within the loops) and their hydration effects.
NASA Astrophysics Data System (ADS)
Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan
2016-07-01
This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.
Phan, Andy; Mailey, Katherine; Saeki, Jessica; Gu, Xiaobo; Schroeder, Susan J
2017-05-01
Accurate thermodynamic parameters improve RNA structure predictions and thus accelerate understanding of RNA function and the identification of RNA drug binding sites. Many viral RNA structures, such as internal ribosome entry sites, have internal loops and bulges that are potential drug target sites. Current models used to predict internal loops are biased toward small, symmetric purine loops, and thus poorly predict asymmetric, pyrimidine-rich loops with >6 nucleotides (nt) that occur frequently in viral RNA. This article presents new thermodynamic data for 40 pyrimidine loops, many of which can form UU or protonated CC base pairs. Uracil and protonated cytosine base pairs stabilize asymmetric internal loops. Accurate prediction rules are presented that account for all thermodynamic measurements of RNA asymmetric internal loops. New loop initiation terms for loops with >6 nt are presented that do not follow previous assumptions that increasing asymmetry destabilizes loops. Since the last 2004 update, 126 new loops with asymmetry or sizes greater than 2 × 2 have been measured. These new measurements significantly deepen and diversify the thermodynamic database for RNA. These results will help better predict internal loops that are larger, pyrimidine-rich, and occur within viral structures such as internal ribosome entry sites. © 2017 Phan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Power modulation based fiber-optic loop-sensor having a dual measurement range
NASA Astrophysics Data System (ADS)
Nguyen, Nguyen Q.; Gupta, Nikhil
2009-08-01
A fiber-optic sensor is investigated in this work for potential applications in structural health monitoring. The sensor, called fiber-loop-sensor, is based on bending an optical fiber beyond a critical radius to obtain intensity losses and calibrating the losses with respect to the applied force or displacement. Additionally, in the present case, the use of single-mode optical fibers allows the appearance of several resonance peaks in the transmitted power-displacement graph. The intensity of one of these resonances can be tracked in a narrow range to obtain high sensitivity. Experimental results show that the resolution of 10-4 N for force and 10-5 m for displacement can be obtained in these sensors. The sensors are calibrated for various loop radii and for various loading rates. They are also tested under loading-unloading conditions for over 104 cycles to observe their fatigue behavior. The sensors show very repeatable response and no degradation in performance under these test conditions. Simple construction and instrumentation, high sensitivity, and low cost are the advantages of these sensors.
Lacroix-Labonté, Julie; Girard, Nicolas; Dagenais, Pierre; Legault, Pascale
2016-08-19
The Neurospora VS ribozyme is a catalytic RNA that has the unique ability to specifically recognize and cleave a stem-loop substrate through formation of a highly stable kissing-loop interaction (KLI). In order to explore the engineering potential of the VS ribozyme to cleave alternate substrates, we substituted the wild-type KLI by other known KLIs using an innovative engineering method that combines rational and combinatorial approaches. A bioinformatic search of the protein data bank was initially performed to identify KLIs that are structurally similar to the one found in the VS ribozyme. Next, substrate/ribozyme (S/R) pairs that incorporate these alternative KLIs were kinetically and structurally characterized. Interestingly, several of the resulting S/R pairs allowed substrate cleavage with substantial catalytic efficiency, although with reduced activity compared to the reference S/R pair. Overall, this study describes an innovative approach for RNA engineering and establishes that the KLI of the trans VS ribozyme can be adapted to cleave other folded RNA substrates. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
On-the-fly reduction of open loops
NASA Astrophysics Data System (ADS)
Buccioni, Federico; Pozzorini, Stefano; Zoller, Max
2018-01-01
Building on the open-loop algorithm we introduce a new method for the automated construction of one-loop amplitudes and their reduction to scalar integrals. The key idea is that the factorisation of one-loop integrands in a product of loop segments makes it possible to perform various operations on-the-fly while constructing the integrand. Reducing the integrand on-the-fly, after each segment multiplication, the construction of loop diagrams and their reduction are unified in a single numerical recursion. In this way we entirely avoid objects with high tensor rank, thereby reducing the complexity of the calculations in a drastic way. Thanks to the on-the-fly approach, which is applied also to helicity summation and for the merging of different diagrams, the speed of the original open-loop algorithm can be further augmented in a very significant way. Moreover, addressing spurious singularities of the employed reduction identities by means of simple expansions in rank-two Gram determinants, we achieve a remarkably high level of numerical stability. These features of the new algorithm, which will be made publicly available in a forthcoming release of the OpenLoops program, are particularly attractive for NLO multi-leg and NNLO real-virtual calculations.
Strings in bubbling geometries and dual Wilson loop correlators
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...
2017-12-20
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Third generation sfermion decays into Z and W gauge bosons: Full one-loop analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arhrib, Abdesslam; LPHEA, Departement de Physique, Faculte des Sciences-Semlalia, B.P. 2390 Marrakech; Benbrik, Rachid
2005-05-01
The complete one-loop radiative corrections to third-generation scalar fermions into gauge bosons Z and W{sup {+-}} is considered. We focus on f-tilde{sub 2}{yields}Zf-tilde{sub 1} and f-tilde{sub i}{yields}W{sup {+-}}f-tilde{sub j}{sup '}, f,f{sup '}=t,b. We include SUSY-QCD, QED, and full electroweak corrections. It is found that the electroweak corrections can be of the same order as the SUSY-QCD corrections. The two sets of corrections interfere destructively in some region of parameter space. The full one-loop correction can reach 10% in some supergravity scenario, while in model independent analysis like general the minimal supersymmetric standard model, the one-loop correction can reach 20% formore » large tan{beta} and large trilinear soft breaking terms A{sub b}.« less
Dynamically limiting energy consumed by cooling apparatus
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.
2015-05-26
Cooling apparatuses and methods are provided which include one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is coupled to the N controllable components, and dynamically adjusts operation of the N controllable components, based on Z input parameters and one or more specified constraints, to provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.
Dynamically limiting energy consumed by cooling apparatus
Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.
2015-06-09
Cooling methods are provided which include providing: one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is also provided to dynamically adjust operation of the N controllable components, based on Z input parameters and one or more specified constraints, and provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.
Strings in bubbling geometries and dual Wilson loop correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco
We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less
Multi-mode ultrasonic welding control and optimization
Tang, Jason C.H.; Cai, Wayne W
2013-05-28
A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.
NASA Astrophysics Data System (ADS)
Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira
1995-08-01
Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.
Role of inhibitory feedback for information processing in thalamocortical circuits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Joerg; Schuster, Heinz Georg; Claussen, Jens Christian
2006-03-15
The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurrence of spindle waves. In order to describe the dynamic mechanisms which control the sensory transfer of information, it is necessary to have a qualitative model for the response properties of thalamic neurons. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson et al. [Nature (London) 417, 854 (2002)] on the thalamocortical loop. We use a conductance based model in order to motivate an extension of the Hindmarsh-Rose model, which mimics experimental observationsmore » of Le Masson et al. Typically, thalamic neurons posses two different firing modes, depending on their membrane potential. At depolarized potentials, the cells fire in a single spike mode and relay synaptic inputs in a one-to-one manner to the cortex. If the cell gets hyperpolarized, T-type calcium currents generate burst-mode firing which leads to a decrease in the spike transfer. In thalamocortical circuits, the cell membrane gets hyperpolarized by recurrent inhibitory feedback loops. In the case of reciprocally coupled excitatory and inhibitory neurons, inhibitory feedback leads to metastable self-sustained oscillations, which mask the incoming input, and thereby reduce the information transfer significantly.« less
Skylab observations of X-ray loops connecting separate active regions. [solar activity
NASA Technical Reports Server (NTRS)
Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.
1976-01-01
One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.
Vehicle to wireless power transfer coupling coil alignment sensor
Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.
2016-02-16
A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.
The Cygnus Loop: An Older Supernova Remnant.
ERIC Educational Resources Information Center
Straka, William
1987-01-01
Describes the Cygnus Loop, one of brightest and most easily studied of the older "remnant nebulae" of supernova outbursts. Discusses some of the historical events surrounding the discovery and measurement of the Cygnus Loop and makes some projections on its future. (TW)
Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant
Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN
2006-02-07
A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.
Equilibrium models of coronal loops that involve curvature and buoyancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindman, Bradley W.; Jain, Rekha, E-mail: hindman@solarz.colorado.edu
2013-12-01
We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to amore » detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.« less
Computer-assisted propofol administration.
O'Connor, J P A; O'Moráin, C A; Vargo, J J
2010-01-01
The use of propofol for sedation in endoscopy may allow for better quality of sedation, quicker recovery and facilitate greater throughput in endoscopy units. The cost-effectiveness and utility of propofol sedation for endoscopic procedures is contingent on the personnel and resources required to carry out the procedure. Computer-based platforms are based on the patients response to stimulation and physiologic parameters. They offer an appealing means of delivering safe and effective doses of propofol. One such means is the bispectral index where continuous EEG recordings are used to assess the degree of sedation. Another is the closed-loop target-controlled system where a set of physical parameters, such as muscle relaxation and auditory-evoked potential, determine a level of medication appropriate to achieve sedation. Patient-controlled platforms may also be used. These electronic adjuncts may help endoscopists who wish to adopt propofol sedation to change current practices with greater confidence. Copyright 2010 S. Karger AG, Basel.
Shortening a loop can increase protein native state entropy.
Gavrilov, Yulian; Dagan, Shlomi; Levy, Yaakov
2015-12-01
Protein loops are essential structural elements that influence not only function but also protein stability and folding rates. It was recently reported that shortening a loop in the AcP protein may increase its native state conformational entropy. This effect on the entropy of the folded state can be much larger than the lower entropic penalty of ordering a shorter loop upon folding, and can therefore result in a more pronounced stabilization than predicted by polymer model for loop closure entropy. In this study, which aims at generalizing the effect of loop length shortening on native state dynamics, we use all-atom molecular dynamics simulations to study how gradual shortening a very long or solvent-exposed loop region in four different proteins can affect their stability. For two proteins, AcP and Ubc7, we show an increase in native state entropy in addition to the known effect of the loop length on the unfolded state entropy. However, for two permutants of SH3 domain, shortening a loop results only with the expected change in the entropy of the unfolded state, which nicely reproduces the observed experimental stabilization. Here, we show that an increase in the native state entropy following loop shortening is not unique to the AcP protein, yet nor is it a general rule that applies to all proteins following the truncation of any loop. This modification of the loop length on the folded state and on the unfolded state may result with a greater effect on protein stability. © 2015 Wiley Periodicals, Inc.
Kamisetty, Supradeep Kumar; N, Raghuveer; N, Rajavikram; N, Chakrapani; Dwaragesh; Praven
2014-07-01
Evaluations on retraction loop designs have been limited to describe the force systems applied to the buccal surfaces of the tooth that can be in different planes resulting undesirable effects, needing corrective action in future. By initially understanding these effects, modifications to the loop design can essentially counteract the undesired affects. To deter-mine Moments & M/F ratios produced by different gabling in the three retraction loops (Tear drop loop, T-loop, Open vertical loop) and movement of the anterior teeth and posterior teeth) of the maxillary arch in an extraction model, on activation of three retraction loops by1 mm. A PC with Quad core processor, 8GB RAM, 1TB storage space and Graphic Accelerator was used. Computer Software: ANSYS Version11, PRO/ENGINEER was used in the study. The first step is modeling, done by using Pro/Engineer software and for creating a model the CT scan data is required. The maxilla with teeth of a patient is scanned at various sections at regular intervals of 0.5 mm. These scanned images are then imported into Pro/E software to various offset planes. Once imported, the software can do an automatic meshing and establishes contact automatically. When angulations increases intrusive or extrusive movements and movements in horizontal direction of crown tip and root tip increases. All values of T-loop are more than Teardrop loop and less than Open vertical loop. FEM study concludes that Teardrop loop with 10-20(α-β) combination is preferred for Group A anchorage.
Rigid Body Rate Inference from Attitude Variation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.
2006-01-01
In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.
On the Extraction of Angular Velocity from Attitude Measurements
NASA Technical Reports Server (NTRS)
Bar-Itzhack, I. Y.; Harman, Richard R.; Thienel, Julie K.
2006-01-01
In this paper we research the extraction of the angular rate vector from attitude information without differentiation, in particular from quaternion measurements. We show that instead of using a Kalman filter of some kind, it is possible to obtain good rate estimates, suitable for spacecraft attitude control loop damping, using simple feedback loops, thereby eliminating the need for recurrent covariance computation performed when a Kalman filter is used. This considerably simplifies the computations required for rate estimation in gyro-less spacecraft. Some interesting qualities of the Kalman filter gain are explored, proven and utilized. We examine two kinds of feedback loops, one with varying gain that is proportional to the well known Q matrix, which is computed using the measured quaternion, and the other type of feedback loop is one with constant coefficients. The latter type includes two kinds; namely, a proportional feedback loop, and a proportional-integral feedback loop. The various schemes are examined through simulations and their performance is compared. It is shown that all schemes are adequate for extracting the angular velocity at an accuracy suitable for control loop damping.
Curvature effects on activation speed and repolarization in an ionic model of cardiac myocytes
NASA Astrophysics Data System (ADS)
Comtois, P.; Vinet, A.
1999-10-01
Reentry is a major mechanism underlying the initiation and perpetuation of many cardiac arrhythmias 12345. Stimulated ventricular myocytes give action potential characterized by a fast upstroke, a long-lasting plateau, and a late repolarization phase. The plateau phase determines the action potential duration (APD) during which the system remains refractory, a property essential to the synchronization of the heart cycle. The APD varies much with prematurity and this change has been shown to be the main determinant of the dynamics in models of paced cells and cable, and during reentry in the one-dimensional loop. Curvature has also been shown to be an important factor for propagation in experimental and theoretical cardiac extended tissue. The objective of this paper is to combine both curvature and prematurity effects in a kinematical model of propagation in cardiac tissue. First, an approximation of the ionic model is used to obtain the effects of curvature and prematurity on the speed of propagation, the APD, and the absolute refractory period. Two versions of the ionic model are studied that differ in their rate of excitability recovery. The functions are used in a kinematical model describing the propagation of period-1 solutions around an annulus.
Anomalous low-temperature thermodynamics of QCD in strong magnetic fields
NASA Astrophysics Data System (ADS)
Brauner, Tomáš; Kadam, Saurabh V.
2017-11-01
The thermodynamics of quantum chromodynamics at low temperatures and in sufficiently strong magnetic fields is governed by neutral pions. We analyze the interacting system of neutral pions and photons at zero baryon chemical potential using effective field theory. As a consequence of the axial anomaly and the external magnetic field, the pions and photons mix with one another. The resulting spectrum contains one usual, relativistic photon state, and two nonrelativistic modes, one of which is gapless and the other gapped. Furthermore, we calculate the leading, one-loop contribution to the pressure of the system. In the chiral limit, a closed analytic expression for the pressure exists, which features an unusual scaling with temperature and magnetic field, T 3 B/ f π , at low temperatures, T ≪ B/ f π . Finally, we determine the pion decay rate as a function of the magnetic field at the tree level. The result is affected by a competition of the anisotropic kinematics and the enlarged phase space due to the anomalous mass of the neutral pion. In the chiral limit, the decay rate scales as B 3/ f π 5 .
Edge-on dislocation loop in anisotropic hcp zirconium thin foil
NASA Astrophysics Data System (ADS)
Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan
2015-10-01
Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.
Mechanism of auxiliary β-subunit-mediated membrane targeting of L-type (CaV1.2) channels
Fang, Kun; Colecraft, Henry M
2011-01-01
Abstract Ca2+ influx via CaV1/CaV2 channels drives processes ranging from neurotransmission to muscle contraction. Association of a pore-forming α1 and cytosolic β is necessary for trafficking CaV1/CaV2 channels to the cell surface through poorly understood mechanisms. A prevalent idea suggests β binds the α1 intracellular I–II loop, masking an endoplasmic reticulum (ER) retention signal as the dominant mechanism for CaV1/CaV2 channel membrane trafficking. There are hints that other α1 subunit cytoplasmic domains may play a significant role, but the nature of their potential contribution is unclear. We assessed the roles of all intracellular domains of CaV1.2-α1C by generating chimeras featuring substitutions of all possible permutations of intracellular loops/termini of α1C into the β-independent CaV3.1-α1G channel. Surprisingly, functional analyses demonstrated α1C I–II loop strongly increases channel surface density while other cytoplasmic domains had a competing opposing effect. Alanine-scanning mutagenesis identified an acidic-residue putative ER export motif responsible for the I–II loop-mediated increase in channel surface density. β-dependent increase in current arose as an emergent property requiring four α1C intracellular domains, with the I–II loop and C-terminus being essential. The results suggest β binding to the α1C I–II loop causes a C-terminus-dependent rearrangement of intracellular domains, shifting a balance of power between export signals on the I–II loop and retention signals elsewhere. PMID:21746784
NASA Astrophysics Data System (ADS)
Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin
2017-06-01
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Aiying; Zhang, Huai; Jiang, Chaowei
Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE–MHD–NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from themore » region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO /AIA. It is found that the CESE–MHD–NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ∼10°. This suggests that the CESE–MHD–NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (∼30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.« less
Renormalizing a viscous fluid model for large scale structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Führer, Florian; Rigopoulos, Gerasimos, E-mail: fuhrer@thphys.uni-heidelberg.de, E-mail: gerasimos.rigopoulos@ncl.ac.uk
2016-02-01
Using the Stochastic Adhesion Model (SAM) as a simple toy model for cosmic structure formation, we study renormalization and the removal of the cutoff dependence from loop integrals in perturbative calculations. SAM shares the same symmetry with the full system of continuity+Euler equations and includes a viscosity term and a stochastic noise term, similar to the effective theories recently put forward to model CDM clustering. We show in this context that if the viscosity and noise terms are treated as perturbative corrections to the standard eulerian perturbation theory, they are necessarily non-local in time. To ensure Galilean Invariance higher ordermore » vertices related to the viscosity and the noise must then be added and we explicitly show at one-loop that these terms act as counter terms for vertex diagrams. The Ward Identities ensure that the non-local-in-time theory can be renormalized consistently. Another possibility is to include the viscosity in the linear propagator, resulting in exponential damping at high wavenumber. The resulting local-in-time theory is then renormalizable to one loop, requiring less free parameters for its renormalization.« less
Software-in-the-loop simulation of a quadcopter portion for hybrid aircraft control
NASA Astrophysics Data System (ADS)
Mansoor, Shoaib; Saedan, Mana
2018-01-01
In this paper, we present the design of the software-in-the-loop simulation framework for a quadcopter that is incorporated in our hybrid aircraft. The hybrid aircraft comprises a quad-copter and a fixed wing with one forward thrust rotor. We need to develop a split control system that utilizes a typical quadcopter controller to control four motors/propellers and a supervisor controller to control a forward thrust rotor. The supervisor controller shall take feedback signals from the quadcopter and will command the fifth rotor for stabilizing the hybrid aircraft and resolves problems like thrust saturation. The simulation simulates the control algorithm and verifies the quadcopter’s behavior using MATLAB and Simulink together. Achieving these results, we come to know how our hybrid controller will be implemented, what results to expect once the forward thrust rotor is attached to the quadcopter. The software-in-the-loop simulation of a quadcopter is one of the most effective methods for verifying overall control performance and safety of the hybrid aircraft before actual hardware implementation and flight test.
Nonlinear feedback control for high alpha flight
NASA Technical Reports Server (NTRS)
Stalford, Harold
1990-01-01
Analytical aerodynamic models are derived from a high alpha 6 DOF wind tunnel model. One detail model requires some interpolation between nonlinear functions of alpha. One analytical model requires no interpolation and as such is a completely continuous model. Flight path optimization is conducted on the basic maneuvers: half-loop, 90 degree pitch-up, and level turn. The optimal control analysis uses the derived analytical model in the equations of motion and is based on both moment and force equations. The maximum principle solution for the half-loop is poststall trajectory performing the half-loop in 13.6 seconds. The agility induced by thrust vectoring capability provided a minimum effect on reducing the maneuver time. By means of thrust vectoring control the 90 degrees pitch-up maneuver can be executed in a small place over a short time interval. The agility capability of thrust vectoring is quite beneficial for pitch-up maneuvers. The level turn results are based currently on only outer layer solutions of singular perturbation. Poststall solutions provide high turn rates but generate higher losses of energy than that of classical sustained solutions.
Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Froment, C.; Auchère, F.; Bocchialini, K.
In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with themore » Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.« less
Austin, Jodie A; Smith, Ian R; Tariq, Amina
2018-01-22
Closed-loop electronic medication management systems (EMMS) are recognised as an effective intervention to improve medication safety, yet evidence of their effectiveness in hospitals is limited. Few studies have compared medication turnaround time for a closed-loop electronic versus paper-based medication management environment. To compare medication turnaround times in a paper-based hospital environment with a digital hospital equipped with a closed-loop EMMS, consisting of computerised physician order entry, profiled automated dispensing cabinets packaged with unit dose medications and barcode medication administration. Data were collected during 2 weeks at three private hospital sites (one with closed-loop EMMS) within the same organisation network in Queensland, Australia. Time between scheduled and actual administration times was analysed for first dose of time-critical and non-critical medications located on the ward or sourced via pharmacy. Medication turnaround times at the EMMS site were less compared to the paper-based sites (median, IQR: 35 min, 8-57 min versus 120 min, 30-180 min, P < 0.001). For time-critical medications, 77% were administered within 60 min of scheduled time at the EMMS site versus 38% for the paper-based sites. Similar difference was observed for non-critical medications, 80% were administered within 60 min of their scheduled time at the EMMS site versus 41% at the paper-based facilities. The study indicates medication turnaround times utilising a closed-loop EMMS are less compared to paper-based systems. This improvement may be attributable to increased accessibility of medications using automated dispensing cabinets and electronic medication administration records flagging tasks to nurses in real time. © 2018 Royal Pharmaceutical Society.
Helicity charging and eruption of magnetic flux from the Sun
NASA Technical Reports Server (NTRS)
Rust, David M.; Kumar, A.
1994-01-01
The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.
Xia, Xiaodong; Wang, Yang; Zhong, Zheng
2016-01-01
Unlike mechanical creep with inelastic deformation, electric creep with domain evolution is a rarely studied subject. In this paper, we present a theory of electric creep and related electromechanical coupling for both non-poled and fully poled ferroelectric ceramics. We consider electric creep to be a time-dependent process, with an initial condition lying on the D (electric displacement) versus E (electric field) hysteresis loop. Both processes are shown to share the same Gibbs free energy and thermodynamic driving force, but relative to creep, the hysteresis loop is just a field-dependent process. With this view, we develop a theory with a single thermodynamic driving force but with two separate kinetic equations, one for the field-dependent loops in terms of a Lorentzian-like function and the other for the time-dependent D in terms of a dissipation potential. We use the 0°–90° and then 90°–180° switches to attain these goals. It is demonstrated that the calculated results are in broad agreement with two sets of experiments, one for a non-poled PIC-151 and the other for a fully poled PZT-5A. The theory also shows that creep polarization tends to reach a saturation state with time and that the saturated polarization has its maximum at the coercive field. PMID:27843406
NASA Astrophysics Data System (ADS)
de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann
2016-03-01
We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.
Finite Feedback Cycling in Structural Equation Models
ERIC Educational Resources Information Center
Hayduk, Leslie A.
2009-01-01
In models containing reciprocal effects, or longer causal loops, the usual effect estimates assume that any effect touching a loop initiates an infinite cycling of effects around that loop. The real world, in contrast, might permit only finite feedback cycles. I use a simple hypothetical model to demonstrate that if the world permits only a few…
NASA Technical Reports Server (NTRS)
Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.
1994-01-01
When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Capodagli, Glenn C.; Lee, Stephen A.; Boehm, Kyle J.; ...
2014-11-12
Staphylococcus aureus is one of the most common nosocomial sources of soft-tissue and skin infections and has more recently become prevalent in the community setting as well. Since the use of penicillins to combat S. aureus infections in the 1940s, the bacterium has been notorious for developing resistances to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). With the persistence of MRSA as well as many other drug resistant bacteria and parasites, there is a growing need to focus on new pharmacological targets. Recently, class II fructose 1,6-bisphosphate aldolases (FBAs) have garnered attention to fill this role. Regrettably, scarce biochemical datamore » and no structural data are currently available for the class II FBA found in MRSA (SaFBA). With the recent finding of a flexible active site zinc-binding loop (Z-Loop) in class IIa FBAs and its potential for broad spectrum class II FBA inhibition, the lack of information regarding this feature of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop inhibitor development. Therefore, we elucidated the crystal structure of SaFBA to 2.1 Å allowing for a more direct structural analysis of SaFBA. Furthermore, we determined the KM for one of SaFBA’s substrates, fructose 1,6-bisphosphate, as well as performed mode of inhibition studies for an inhibitor that takes advantage of the Z-loop’s flexibility. Altogether the data offers insight into a class IIb FBA from a pervasively drug resistant bacterium and a comparison of Z-loops and other features between the different subtypes of class II FBAs.« less
Neuromuscular control and ankle instability.
Gutierrez, Gregory M; Kaminski, Thomas W; Douex, Al T
2009-04-01
Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most are resolved with conservative treatment, others develop chronic ankle instability (AI)-a condition associated with persistent pain, weakness, and instability-both mechanical (such as ligamentous laxity) and functional (neuromuscular impairment with or without mechanical laxity). The predominant theory in AI is one of articular deafferentation from the injury, affecting closed-loop (feedback/reflexive) neuromuscular control, but recent research has called that theory into question. A considerable amount of attention has been directed toward understanding the underlying causes of this pathology; however, little is known concerning the neuromuscular mechanisms behind the development of AI. The purpose of this review is to summarize the available literature on neuromuscular control in uninjured individuals and individuals with AI. Based on available research and reasonable speculation, it seems that open-loop (feedforward/anticipatory) neuromuscular control may be more important for the maintenance of dynamic joint stability than closed-loop control systems that rely primarily on proprioception. Therefore, incorporating perturbation activities into patient rehabilitation schemes may be of some benefit in enhancing these open-loop control mechanisms. Despite the amount of research conducted in this area, analysis of individuals with AI during dynamic conditions is limited. Future work should aim to evaluate dynamic perturbations in individuals with AI, as well as subjects who have a history of at least one LAS and never experienced recurrent symptoms. These potential findings may help elucidate some compensatory mechanisms, or more appropriate neuromuscular control strategies after an LAS event, thus laying the groundwork for future intervention studies that can attempt to reduce the incidence and severity of acute and chronic lateral ankle injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capodagli, Glenn C.; Lee, Stephen A.; Boehm, Kyle J.
Staphylococcus aureus is one of the most common nosocomial sources of soft-tissue and skin infections and has more recently become prevalent in the community setting as well. Since the use of penicillins to combat S. aureus infections in the 1940s, the bacterium has been notorious for developing resistances to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). With the persistence of MRSA as well as many other drug resistant bacteria and parasites, there is a growing need to focus on new pharmacological targets. Recently, class II fructose 1,6-bisphosphate aldolases (FBAs) have garnered attention to fill this role. Regrettably, scarce biochemical datamore » and no structural data are currently available for the class II FBA found in MRSA (SaFBA). With the recent finding of a flexible active site zinc-binding loop (Z-Loop) in class IIa FBAs and its potential for broad spectrum class II FBA inhibition, the lack of information regarding this feature of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop inhibitor development. Therefore, we elucidated the crystal structure of SaFBA to 2.1 Å allowing for a more direct structural analysis of SaFBA. Furthermore, we determined the KM for one of SaFBA’s substrates, fructose 1,6-bisphosphate, as well as performed mode of inhibition studies for an inhibitor that takes advantage of the Z-loop’s flexibility. Altogether the data offers insight into a class IIb FBA from a pervasively drug resistant bacterium and a comparison of Z-loops and other features between the different subtypes of class II FBAs.« less
Barashev, A. V.; Golubov, S. I.; Stoller, R. E.
2015-06-01
We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.