Sample records for one-loop squared contributions

  1. Renormalization of the one-loop theory of fluctuations in polymer blends and diblock copolymer melts.

    PubMed

    Grzywacz, Piotr; Qin, Jian; Morse, David C

    2007-12-01

    Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, i.e., by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor S(-1)(k) predicted by a "one-loop" approximation similar to that used in several previous studies. We consider both miscible homopolymer blends and disordered diblock copolymer melts. We show, in both cases, that all UV divergent contributions can be absorbed into a renormalization of the values of the phenomenological parameters of a generalized self-consistent field theory (SCFT). This observation allows the construction of an UV convergent theory of corrections to SCFT phenomenology. The UV-divergent one-loop contribution to S(-1)(k) is shown to be the sum of (i) a k -independent contribution that arises from a renormalization of the effective chi parameter, (ii) a k-dependent contribution that arises from a renormalization of monomer statistical segment lengths, (iii) a contribution proportional to k(2) that arises from a square-gradient contribution to the one-loop fluctuation free energy, and (iv) a k-dependent contribution that is inversely proportional to the degree of polymerization, which arises from local perturbations in fluid structure near chain ends and near junctions between blocks in block copolymers.

  2. Effective field theory of integrating out sfermions in the MSSM: Complete one-loop analysis

    NASA Astrophysics Data System (ADS)

    Huo, Ran

    2018-04-01

    We apply the covariant derivative expansion of the Coleman-Weinberg potential to the sfermion sector in the minimal supersymmetric standard model, matching it to the relevant dimension-6 operators in the standard model effective field theory at one-loop level. Emphasis is paid to nondegenerate large soft supersymmetry breaking mass squares, and the most general analytical Wilson coefficients are obtained for all pure bosonic dimension-6 operators. In addition to the non-logarithmic contributions, they generally have another logarithmic contributions. Various numerical results are shown, in particular the constraints in the large Xt branch reproducing the 125 GeV Higgs mass can be pushed to high values to almost completely probe the low stop mass region at the future FCC-ee experiment, even given the Higgs mass calculation uncertainty.

  3. Effects of two-loop contributions in the pseudofermion functional renormalization group method for quantum spin systems

    NASA Astrophysics Data System (ADS)

    Rück, Marlon; Reuther, Johannes

    2018-04-01

    We implement an extension of the pseudofermion functional renormalization group method for quantum spin systems that takes into account two-loop diagrammatic contributions. An efficient numerical treatment of the additional terms is achieved within a nested graph construction which recombines different one-loop interaction channels. In order to be fully self-consistent with respect to self-energy corrections, we also include certain three-loop terms of Katanin type. We first apply this formalism to the antiferromagnetic J1-J2 Heisenberg model on the square lattice and benchmark our results against the previous one-loop plus Katanin approach. Even though the renormalization group (RG) equations undergo significant modifications when including the two-loop terms, the magnetic phase diagram, comprising Néel ordered and collinear ordered phases separated by a magnetically disordered regime, remains remarkably unchanged. Only the boundary position between the disordered and the collinear phases is found to be moderately affected by two-loop terms. On the other hand, critical RG scales, which we associate with critical temperatures Tc, are reduced by a factor of ˜2 indicating that the two-loop diagrams play a significant role in enforcing the Mermin-Wagner theorem. Improved estimates for critical temperatures are also obtained for the Heisenberg ferromagnet on the three-dimensional simple cubic lattice where errors in Tc are reduced by ˜34 % . These findings have important implications for the quantum phase diagrams calculated within the previous one-loop plus Katanin approach which turn out to be already well converged.

  4. Nucleon and Delta axial-vector couplings in 1/N{sub c}-Baryon Chiral Perturbation Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goity, Jose Luis; Calle Cordon, Alvaro

    In this contribution, baryon axial-vector couplings are studied in the framework of the combined 1/N{sub c} and chiral expansions. This framework is implemented on the basis of the emergent spin-flavor symmetry in baryons at large N{sub c} and HBChPT, and linking both expansions ({xi}-expansion), where 1/N{sub c} is taken to be a quantity order p. The study is carried out including one-loop contributions, which corresponds to order xi to the third for baryon masses and order {xi} square for the axial couplings.

  5. Does one need the O({epsilon})- and O({epsilon}{sup 2})-terms of one-loop amplitudes in a next-to-next-to-leading order calculation ?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Stefan

    2011-10-01

    This article discusses the occurrence of one-loop amplitudes within a next-to-next-to-leading-order calculation. In a next-to-next-to-leading-order calculation, the one-loop amplitude enters squared and one would therefore naively expect that the O({epsilon})- and O({epsilon}{sup 2})-terms of the one-loop amplitudes are required. I show that the calculation of these terms can be avoided if a method is known, which computes the O({epsilon}{sup 0})-terms of the finite remainder function of the two-loop amplitude.

  6. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.

    PubMed

    Arlet, Vincent; Draxinger, Kevin; Beckman, Lorne; Steffen, Thomas

    2006-07-01

    Sublaminar wires have been used for many years for segmental spinal instrumentation in scoliosis surgery. More recently, stainless steel wires have been replaced by titanium cables. However, in rigid scoliotic curves, sublaminar wires or simple cables can either brake or pull out. The square-lashing technique was devised to avoid complications such as cable breakage or lamina cutout. The purpose of the study was therefore to test biomechanically the pull out and failure mode of simple sublaminar constructs versus the square-lashing technique. Individual vertebrae were subjected to pullout testing having one of two different constructs (single loop and square lashing) using either monofilament wire or multifilament cables. Four different methods of fixation were therefore tested: single wire construct, square-lashing wiring construct, single cable construct, and square-lashing cable construct. Ultimate failure load and failure mechanism were recorded. For the single wire the construct failed 12/16 times by wire breakage with an average ultimate failure load of 793 N. For the square-lashing wire the construct failed with pedicle fracture in 14/16, one bilateral lamina fracture, and one wire breakage. Ultimate failure load average was 1,239 N For the single cable the construct failed 12/16 times due to cable breakage (average force 1,162 N). 10/12 of these breakages were where the cable looped over the rod. For the square-lashing cable all of these constructs (16/16) failed by fracture of the pedicle with an average ultimate failure load of 1,388 N. The square-lashing construct had a higher pullout strength than the single loop and almost no cutting out from the lamina. The square-lashing technique with cables may therefore represent a new advance in segmental spinal instrumentation.

  7. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops.

    PubMed

    Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E

    2016-01-01

    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.

  8. A string theory which isn't about strings

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  9. Double-loop frequency selective surfaces for multi frequency division multiplexing in a dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1994-01-01

    A multireflector antenna utilizes a frequency-selective surface (FSS) in a subreflector to allow signals in two different RF bands to be selectively reflected back into a main reflector and to allow signals in other RF bands to be transmitted through it to the main reflector for primary focus transmission. A first approach requires only one FSS at the subreflector which may be an array of double-square-loop conductive elements. A second approach uses two FSS's at the subreflector which may be an array of either double-square-loop (DSL) or double-ring (DR). In the case of DR elements, they may be advantageously arranged in a triangular array instead of the rectangular array for the DSL elements.

  10. THE LITTLEST HIGGS MODEL AND ONE-LOOP ELECTROWEAK PRECISION CONSTRAINTS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHEN, M.C.; DAWSON,S.

    2004-06-16

    We present in this talk the one-loop electroweak precision constraints in the Littlest Higgs model, including the logarithmically enhanced contributions from both fermion and scalar loops. We find the one-loop contributions are comparable to the tree level corrections in some regions of parameter space. A low cutoff scale is allowed for a non-zero triplet VEV. Constraints on various other parameters in the model are also discussed. The role of triplet scalars in constructing a consistent renormalization scheme is emphasized.

  11. Scrutinizing R -parity violating interactions in light of RK(*) data

    NASA Astrophysics Data System (ADS)

    Das, Diganta; Hati, Chandan; Kumar, Girish; Mahajan, Namit

    2017-11-01

    The LHCb has measured the ratios of B →K*μ+μ- to B →K*e+e- branching fractions in two dilepton invariant mass squared bins, which deviate from the standard model predictions by approximately 2.5 σ . These new measurements strengthen the hint of lepton flavor universality breaking which was observed earlier in B →K ℓ+ℓ- decays. In this work we explore the possibility of explaining these anomalies within the framework of R -parity violating interactions. In this framework, b →s ℓ+ℓ- transitions are generated through tree and one loop diagrams involving exchange of down-type right-handed squarks, up-type left-handed squarks and left-handed sneutrinos. We find that the tree level contributions are not enough to explain the anomalies, but at one loop, simultaneous explanation of the deviations in B →K*ℓ+ ℓ- and B →K ℓ+ℓ- is feasible for a parameter space of the Yukawa couplings that is consistent with the bounds coming from B →K(*)ν ν ¯ and D0→μ+μ- decays and Bs-B¯s mixing.

  12. Metamaterial composition comprising frequency-selective-surface resonant element disposed on/in a dielectric flake, methods, and applications

    DOEpatents

    Shelton, David; Boreman, Glenn; D'Archangel, Jeffrey

    2015-11-10

    Infrared metamaterial arrays containing Au elements immersed in a medium of benzocyclobutene (BCB) were fabricated and selectively etched to produce small square flakes with edge dimensions of approximately 20 .mu.m. Two unit-cell designs were fabricated: one employed crossed-dipole elements while the other utilized square-loop elements.

  13. Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic Control

    NASA Technical Reports Server (NTRS)

    Jacklin, Stephen A.

    1998-01-01

    This report presents an analysis and performance comparison of five system identification algorithms. The methods are presented in the context of identifying a frequency-domain transfer matrix for the higher harmonic control (HHC) of helicopter vibration. The five system identification algorithms include three previously proposed methods: (1) the weighted-least- squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and the generalized LMS filter method were derived as extensions of the classic methods to permit identification by using more than one measurement per identification cycle. Simulation results are presented for conditions ranging from the ideal case of a stationary transfer matrix and no measurement noise to the more complex cases involving both measurement noise and transfer-matrix variation. Both open-loop identification and closed- loop identification were simulated. Closed-loop mode identification was more challenging than open-loop identification because of the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation considered both local-model identification, with measured vibration feedback and global-model identification with feedback of the identified uncontrolled vibration. The algorithms were evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and relative ease of implementation.

  14. Unimodular gravity and the lepton anomalous magnetic moment at one-loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martín, Carmelo P., E-mail: carmelop@fis.ucm.es

    We work out the one-loop contribution to the lepton anomalous magnetic moment coming from Unimodular Gravity. We use Dimensional Regularization and Dimensional Reduction to carry out the computations. In either case, we find that Unimodular Gravity gives rise to the same one-loop correction as that of General Relativity.

  15. Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability.

    PubMed

    Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang

    2018-01-22

    A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.

  16. Comparisons of a Constrained Least Squares Model versus Human-in-the-Loop for Spectral Unmixing to Determine Material Type of GEO Debris

    NASA Technical Reports Server (NTRS)

    Abercromby, Kira J.; Rapp, Jason; Bedard, Donald; Seitzer, Patrick; Cardona, Tommaso; Cowardin, Heather; Barker, Ed; Lederer, Susan

    2013-01-01

    Constrained Linear Least Squares model is generally more accurate than the "human-in-the-loop". However, "human-in-the-loop" can remove materials that make no sense. The speed of the model in determining a "first cut" at the material ID makes it a viable option for spectral unmixing of debris objects.

  17. Quadratic electroweak corrections for polarized Moller scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Aleksejevs, S. Barkanova, Y. Kolomensky, E. Kuraev, V. Zykunov

    2012-01-01

    The paper discusses the two-loop (NNLO) electroweak radiative corrections to the parity violating electron-electron scattering asymmetry induced by squaring one-loop diagrams. The calculations are relevant for the ultra-precise 11 GeV MOLLER experiment planned at Jefferson Laboratory and experiments at high-energy future electron colliders. The imaginary parts of the amplitudes are taken into consideration consistently in both the infrared-finite and divergent terms. The size of the obtained partial correction is significant, which indicates a need for a complete study of the two-loop electroweak radiative corrections in order to meet the precision goals of future experiments.

  18. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  19. Modeling and control of non-square MIMO system using relay feedback.

    PubMed

    Kalpana, D; Thyagarajan, T; Gokulraj, N

    2015-11-01

    This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Degradation in finite-harmonic subcarrier demodulation

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Townes, S.; Pham, T.

    1995-01-01

    Previous estimates on the degradations due to a subcarrier loop assume a square-wave subcarrier. This article provides a closed-form expression for the degradations due to the subcarrier loop when a finite number of harmonics are used to demodulate the subcarrier, as in the case of the buffered telemetry demodulator. We compared the degradations using a square wave and using finite harmonics in the subcarrier demodulation and found that, for a low loop signal-to-noise ratio, using finite harmonics leads to a lower degradation. The analysis is under the assumption that the phase noise in the subcarrier (SC) loop has a Tikhonov distribution. This assumption is valid for first-order loops.

  1. Hexagonalization of correlation functions II: two-particle contributions

    NASA Astrophysics Data System (ADS)

    Fleury, Thiago; Komatsu, Shota

    2018-02-01

    In this work, we compute one-loop planar five-point functions in N=4 super-Yang-Mills using integrability. As in the previous work, we decompose the correlation functions into hexagon form factors and glue them using the weight factors which depend on the cross-ratios. The main new ingredient in the computation, as compared to the four-point functions studied in the previous paper, is the two-particle mirror contribution. We develop techniques to evaluate it and find agreement with the perturbative results in all the cases we analyzed. In addition, we consider next-to-extremal four-point functions, which are known to be protected, and show that the sum of one-particle and two-particle contributions at one loop adds up to zero as expected. The tools developed in this work would be useful for computing higher-particle contributions which would be relevant for more complicated quantities such as higher-loop corrections and non-planar correlators.

  2. Improved performance of a digital phase-locked loop combined with a frequency/frequency-rate estimator

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Simon, M.

    1986-01-01

    When a digital phase-locked loop with a long loop update time tracks a signal with high Doppler, the demodualtion losses due to frequency mismatch can become very significant. One way of reducing these Doppler-related losses is to compensate for the Doppler effect using some kind of frequency-rate estimator. The performance of the fixed-window least-squares estimator and the Kalman filter is investigated; several Doppler compensating techniques are proposed. It is shown that the variance of the frequency estimator can be made as small as desired, and with this, the Doppler effect can be effectively compensated. The remaining demodulation losses due to phase jitter in the loop can be less than 0.1 dB.

  3. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE PAGES

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    2018-02-01

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  4. On the bispectra of very massive tracers in the Effective Field Theory of Large-Scale Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadler, Ethan O.; Perko, Ashley; Senatore, Leonardo

    The Effective Field Theory of Large-Scale Structure (EFTofLSS) provides a consistent perturbative framework for describing the statistical distribution of cosmological large-scale structure. In a previous EFTofLSS calculation that involved the one-loop power spectra and tree-level bispectra, it was shown that the k-reach of the prediction for biased tracers is comparable for all investigated masses if suitable higher-derivative biases, which are less suppressed for more massive tracers, are added. However, it is possible that the non-linear biases grow faster with tracer mass than the linear bias, implying that loop contributions could be the leading correction to the bispectra. To check this,more » we include the one-loop contributions in a fit to numerical data in the limit of strongly enhanced higher-order biases. Here, we show that the resulting one-loop power spectra and higher-derivative plus leading one-loop bispectra fit the two- and three-point functions respectively up to k≃0.19 h Mpc -1 and ksime 0.14 h Mpc -1 at the percent level. We find that the higher-order bias coefficients are not strongly enhanced, and we argue that the gain in perturbative reach due to the leading one-loop contributions to the bispectra is relatively small. Thus, we conclude that higher-derivative biases provide the leading correction to the bispectra for tracers of a very wide range of masses.« less

  5. ONE SHAKE GATE FORMER

    DOEpatents

    Kalibjian, R.; Perez-Mendez, V.

    1957-08-20

    An improved circuit for forming square pulses having substantially short and precise durations is described. The gate forming circuit incorporates a secondary emission R. F. pentode adapted to receive input trigger pulses amd having a positive feedback loop comnected from the dynode to the control grid to maintain conduction in response to trigger pulses. A short circuited pulse delay line is employed to precisely control the conducting time of the tube and a circuit for squelching spurious oscillations is provided in the feedback loop.

  6. LOOP CALCULUS AND BELIEF PROPAGATION FOR Q-ARY ALPHABET: LOOP TOWER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHERTKOV, MICHAEL; CHERNYAK, VLADIMIR

    Loop calculus introduced in [1], [2] constitutes a new theoretical tool that explicitly expresses symbol Maximum-A-Posteriori (MAP) solution of a general statistical inference problem via a solution of the Belief Propagation (BP) equations. This finding brought a new significance to the BP concept, which in the past was thought of as just a loop-free approximation. In this paper they continue a discussion of the Loop Calculus, partitioning the results into three Sections. In Section 1 they introduce a new formulation of the Loop Calculus in terms of a set of transformations (gauges) that keeping the partition function of the problemmore » invariant. The full expression contains two terms referred to as the 'ground state' and 'excited states' contributions. The BP equations are interpreted as a special (BP) gauge fixing condition that emerges as a special orthogonality constraint between the ground state and excited states, which also selects loop contributions as the only surviving ones among the excited states. In Section 2 they demonstrate how the invariant interpretation of the Loop Calculus, introduced in Section 1, allows a natural extension to the case of a general q-ary alphabet, this is achieved via a loop tower sequential construction. The ground level in the tower is exactly equivalent to assigning one color (out of q available) to the 'ground state' and considering all 'excited' states colored in the remaining (q-1) colors, according to the loop calculus rule. Sequentially, the second level in the tower corresponds to selecting a loop from the previous step, colored in (q-1) colors, and repeating the same ground vs excited states splitting procedure into one and (q-2) colors respectively. The construction proceeds till the full (q-1)-levels deep loop tower (and the corresponding contributions to the partition function) are established. In Section 3 they discuss an ultimate relation between the loop calculus and the Bethe-Free energy variational approach of [3].« less

  7. Pion decay constant and the {rho}-meson mass at finite temperature in hidden local symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, M.; Shibata, A.

    1997-06-01

    We study the temperature dependence of the pion decay constant and {rho}-meson mass in the hidden local symmetry model at one loop. Using the standard imaginary time formalism, we include the thermal effect of the {rho} meson as well as that of the pion. We show that the pion gives a dominant contribution to the pion decay constant and the {rho}-meson contribution slightly decreases the critical temperature. The {rho}-meson pole mass increases as T{sup 4}/m{sub {rho}}{sup 2} at low temperature, dominated by the pion-loop effect. At high temperature, although the pion-loop effect decreases the {rho}-meson mass, the {rho}-loop contribution overcomesmore » the pion-loop contribution and the {rho}-meson mass increases with temperature. We also show that the conventional parameter a is stable as the temperature increases. {copyright} {ital 1997} {ital The American Physical Society}« less

  8. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    PubMed Central

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-01-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442

  9. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy.

    PubMed

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-18

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  10. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola

    2016-07-01

    Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.

  11. Costas loop lock detection in the advanced receiver

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Hinedi, S.

    1989-01-01

    The advanced receiver currently being developed uses a Costas digital loop to demodulate the subcarrier. Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between the samples of the phase-error process. Accounting for this correlation is necessary to achieve the desired lock-detection probability for a given false-alarm rate. Both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the square-law and the absolute-value type detectors. Results are obtained which depict the lock-detection probability as a function of loop signal-to-noise ratio for a given false-alarm rate. The mathematical model and computer simulation show that the square-law detector experiences less degradation due to phase jitter than the absolute-value detector and that the degradation in detector signal-to-noise ratio is more pronounced for square-wave than for sine-wave signals.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Tlalpa, A.; Novales-Sanchez, H.; Toscano, J. J.

    The one-loop contribution of the excited Kaluza-Klein (KK) modes of the SU{sub L}(2) gauge group on the off-shell W{sup -}W{sup +}{gamma} and W{sup -}W{sup +}Z vertices is calculated in the context of a pure Yang-Mills theory in five dimensions and its phenomenological implications discussed. The use of a gauge-fixing procedure for the excited KK modes that is covariant under the standard gauge transformations of the SU{sub L}(2) group is stressed. A gauge-fixing term and the Faddeev-Popov ghost sector for the KK gauge modes that are separately invariant under the standard gauge transformations of SU{sub L}(2) are presented. It is shownmore » that the one-loop contributions of the KK modes to the off-shell W{sup -}W{sup +}{gamma} and W{sup -}W{sup +}Z vertices are free of ultraviolet divergences and well-behaved at high energies. It is found that for a size of the fifth dimension of R{sup -1{approx}}1 TeV, the one-loop contribution of the KK modes to these vertices is about 1 order of magnitude lower than the corresponding standard model radiative correction. This contribution is similar to the one estimated for new gauge bosons contributions in other contexts. Tree-level effects on these vertices induced by operators of higher canonical dimension are also investigated. It is found that these effects are lower than those generated at the one-loop order by the KK gauge modes.« less

  13. Sizable electron/neutron electric dipole moment in D 3 /D 7 μ -split supersymmetry

    NASA Astrophysics Data System (ADS)

    Dhuria, Mansi; Misra, Aalok

    2014-10-01

    Within the framework of N =1 gauged supergravity, using a phenomenological model that can be obtained locally as a Swiss-cheese Calabi-Yau string-theoretic compactification with a mobile D 3 -brane localized on a nearly special Lagrangian three cycle in the Calabi-Yau and fluxed stacks of wrapped D 7 -branes, and which provides a natural realization of μ -split supersymmetry (SUSY), we show that in addition to getting a significant value of an [electron/neutron (e/n)] electron dipole moment (EDM) at two-loop level, one can obtain a sizable contribution of (e/n) EDM even at one-loop level due to the presence of heavy supersymmetric fermions nearly isospectral with heavy sfermions. Unlike traditional split SUSY models in which the one-loop diagrams do not give significant contribution to the EDM of the electron/neutron because of very heavy sfermions existing as propagators in the loop, we show that one obtains a "healthy" value of the EDM in our model because of the presence of a heavy Higgsino, neutralino/chargino, and gaugino as fermionic propagators in the loops. The independent C P -violating phases are generated from nontrivial distinct phase factors associated with four Wilson line moduli [identified with first-generation leptons and quarks and their S U (2 )L -singlet cousins] as well as the D 3 -brane position moduli (identified with two Higgses), and the same are sufficient to produce overall distinct phase factors corresponding to all possible effective Yukawas as well as effective gauge couplings that we discuss in the context of N =1 gauged supergravity action. However, the complex phases responsible to generate a nonzero EDM at one-loop level mainly appear from an off-diagonal contribution of sfermion as well as Higgs mass matrices at the electroweak scale (EW). In our analysis, we obtain a dominant contribution of the electron/neutron EDM around de/e ≡O (1 0-29) cm from two-loop diagrams involving heavy sfermions and a light Higgs, and de/e ≡O (1 0-32) cm from a one-loop diagram involving a heavy chargino and a light Higgs as propagators in the loop. The neutron EDM gets a dominant contribution of the order dn/e ≡O (1 0-33) cm from the one-loop diagram involving SM-like quarks and Higgs. To justify the possibility of obtaining a large EDM value in the case of a Barr-Zee diagram which involves W± and the Higgs (responsible to generate the nontrivial C P -violating phase) in the two-loop diagrams as discussed by Leigh et al. [Nucl. Phys. B267, 509 (1986)], we provide an analysis of the same in the context of our D 3 /D 7 μ -split SUSY model at the EW scale. By conjecturing that the C P -violating phase can appear from the diagonalization of the Higgs mass matrix obtained in the context of μ -split SUSY, we also get an EDM of the electron/neutron around O (1 0-27) e cm in the case of the two-loop diagram involving W± bosons.

  14. Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    The next-to-next-to-leading order spin-squared interaction potential for generic compact binaries is derived for the first time via the effective field theory for gravitating spinning objects in the post-Newtonian scheme. The spin-squared sector is an intricate one, as it requires the consideration of the point particle action beyond minimal coupling, and mainly involves the spin-squared worldline couplings, which are quite complex, compared to the worldline couplings from the minimal coupling part of the action. This sector also involves the linear in spin couplings, as we go up in the nonlinearity of the interaction, and in the loop order. Hence, there ismore » an excessive increase in the number of Feynman diagrams, of which more are higher loop ones. We provide all the Feynman diagrams and their values. The beneficial ''nonrelativistic gravitational'' fields are employed in the computation. This spin-squared correction, which enters at the fourth post-Newtonian order for rapidly rotating compact objects, completes the conservative sector up to the fourth post-Newtonian accuracy. The robustness of the effective field theory for gravitating spinning objects is shown here once again, as demonstrated in a recent series of papers by the authors, which obtained all spin dependent sectors, required up to the fourth post-Newtonian accuracy. The effective field theory of spinning objects allows to directly obtain the equations of motion, and the Hamiltonians, and these will be derived for the potential obtained here in a forthcoming paper.« less

  15. Optical phase-locked loop (OPLL) for free-space laser communications with heterodyne detection

    NASA Technical Reports Server (NTRS)

    Win, Moe Z.; Chen, Chien-Chung; Scholtz, Robert A.

    1991-01-01

    Several advantages of coherent free-space optical communications are outlined. Theoretical analysis is formulated for an OPLL disturbed by shot noise, modulation noise, and frequency noise consisting of a white component, a 1/f component, and a 1/f-squared component. Each of the noise components is characterized by its associated power spectral density. It is shown that the effect of modulation depends only on the ratio of loop bandwidth and data rate, and is negligible for an OPLL with loop bandwidth smaller than one fourth the data rate. Total phase error variance as a function of loop bandwidth is displayed for several values of carrier signal to noise ratio. Optimal loop bandwidth is also calculated as a function of carrier signal to noise ratio. An OPLL experiment is performed, where it is shown that the measured phase error variance closely matches the theoretical predictions.

  16. New two-loop contributions to hadronic EDMs in the MSSM

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Nagai, Minoru; Paradisi, Paride

    2006-11-01

    Flavor-changing terms with CP-violating phases in the quark sector may contribute to the hadronic electric dipole moments (EDMs). However, within the Standard Model (SM), the source of CP violation comes from the unique CKM phase, and it turns out that the EDMs are strongly suppressed. This implies that the EDMs are very sensitive to non-minimal flavor violation structures of theories beyond the SM. In this Letter, we discuss the quark EDMs and CEDMs (chromoelectric dipole moments) in the MSSM with general flavor-changing terms in the squark mass matrices. In particular, the charged-Higgs mediated contributions to the down-quark EDM and CEDM are evaluated at two-loop level. We point out that these two-loop contributions may dominate over the one-loop induced gluino or higgsino contributions even when the squark and gluino masses are around few TeV and tanβ is moderate.

  17. Wide Angle, Single Screen, Gridded Square-Loop Frequency Selective Surface for Diplexing Two Closely Separated Frequency Bands

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao (Inventor)

    1996-01-01

    The design and performance of a wide angle, single screen, frequency selective surface (FSS) with gridded square-loop path elements are described for diplexing closely separated signal bands, for example, X- and Ku-band signals in an Orbiting Very Long Baseline Interferometer (OVLBI) earth station reflector antenna system, as well as other applications such as military and commercial communications via satellites. Excellent agreement is obtained between the predicted and measured results of this FSS design using the gridded square-loop patch elements sandwiched between 0.0889 cm thick tetrafluoroethylene fluorocarbon polymer (PTFE) slabs. Resonant frequency drift is reduced by 1 GHz with an incidence angle from 0 deg normal to 40 deg from normal.

  18. Adsorption on Nanopores of Different Cross Sections Made by Electron Beam Nanolithography.

    PubMed

    Bruschi, Lorenzo; Mistura, Giampaolo; Prasetyo, Luisa; Do, Duong D; Dipalo, Michele; De Angelis, Francesco

    2018-01-09

    Adsorption on nanoporous matrices is characterized by a pronounced hysteresis loop in the adsorption isotherm, when the substrate is loaded and unloaded with adsorbate, the origin of which is a matter of immense debate in the literature. In this work, we report a study of argon adsorption at 85 K on nonconnecting nanopores with one end closed to the surrounding where the effects of different pore cross sections fabricated by electron beam lithography (EBL) are investigated. A polymethylmethacrylate (PMMA) resist is deposited on the electrodes of a sensitive quartz crystal microbalance without degradation of the resonance quality factor or the long-term and short-term stabilities of the device even at cryogenic temperatures. Four different pores' cross sections: circular, square, rectangular, and triangular, are produced from EBL, and the isotherms for these pore shapes exhibit pronounced hysteresis loops whose adsorption and desorption branches are nearly vertical and have almost the same slopes. No difference is observed in the hysteresis loops of the isotherms for the pores with triangular and square cross sections, whereas the hysteresis loop for the pore with circular cross sections is much narrower, suggesting that they are more regular than the other pores. All of these observations suggest that the hysteresis behavior resulted mainly from microscopic geometric irregularities present in these porous matrices.

  19. A molecular dynamics study of loop fluctuation in human papillomavirus type 16 virus-like particles: a possible indicator of immunogenicity.

    PubMed

    Joshi, Harshad; Cheluvaraja, Srinath; Somogyi, Endre; Brown, Darron R; Ortoleva, Peter

    2011-11-28

    Immunogenicity varies between the human papillomavirus (HPV) L1 monomer assemblies of various sizes (e.g., monomers, pentamers or whole capsids). The hypothesis that this can be attributed to the intensity of fluctuations of important loops containing neutralizing epitopes for the various assemblies is proposed for HPV L1 assemblies. Molecular dynamics simulations were utilized to begin testing this hypothesis. Fluctuations of loops that contain critical neutralizing epitopes (especially FG loop) were quantified via root-mean-square fluctuation and features in the frequency spectrum of dynamic changes in loop conformation. If this fluctuation-immunogenicity hypothesis is a universal aspect of immunogenicity (i.e., immune system recognition of an epitope within a loop is more reliable when it is presented via a more stable delivery structure), then fluctuation measures can serve as one predictor of immunogenicity as part of a computer-aided vaccine design strategy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Open-loop-feedback control of serum drug concentrations: pharmacokinetic approaches to drug therapy.

    PubMed

    Jelliffe, R W

    1983-01-01

    Recent developments to optimize open-loop-feedback control of drug dosage regimens, generally applicable to pharmacokinetically oriented therapy with many drugs, involve computation of patient-individualized strategies for obtaining desired serum drug concentrations. Analyses of past therapy are performed by least squares, extended least squares, and maximum a posteriori probability Bayesian methods of fitting pharmacokinetic models to serum level data. Future possibilities for truly optimal open-loop-feedback therapy with full Bayesian methods, and conceivably for optimal closed-loop therapy in such data-poor clinical situations, are also discussed. Implementation of these various therapeutic strategies, using automated, locally controlled infusion devices, has also been achieved in prototype form.

  1. Connected, disconnected and strange quark contributions to HVP

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Relefors, Johan

    2016-11-01

    We calculate all neutral vector two-point functions in Chiral Perturbation Theory (ChPT) to two-loop order and use these to estimate the ratio of disconnected to connected contributions as well as contributions involving the strange quark. We extend the ratio of -1/10 derived earlier in two flavour ChPT at one-loop order to a large part of the higher order contributions and discuss corrections to it. Our final estimate of the ratio disconnected to connected is negative and a few % in magnitude.

  2. Near-field investigation of the effect of the array edge on the resonance of loop frequency selective surface elements at mid-infrared wavelengths.

    PubMed

    Tucker, Eric; D' Archangel, Jeffrey; Raschke, Markus B; Boreman, Glenn

    2015-05-04

    Mid-infrared scattering scanning near-field optical microscopy, in combination with far-field infrared spectroscopy, and simulations, was employed to investigate the effect of mutual-element coupling towards the edge of arrays of loop elements acting as frequency selective surfaces (FSSs). Two different square loop arrays on ZnS over a ground plane, resonant at 10.3 µm, were investigated. One array had elements that were closely spaced while the other array had elements with greater inter-element spacing. In addition to the dipolar resonance, we observed a new emergent resonance associated with the edge of the closely-spaced array as a finite size effect, due to the broken translational invariance.

  3. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.

    PubMed

    D' Archangel, Jeffrey; Tucker, Eric; Kinzel, Ed; Muller, Eric A; Bechtel, Hans A; Martin, Michael C; Raschke, Markus B; Boreman, Glenn

    2013-07-15

    Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.

  4. On higher order discrete phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Gupta, S. C.

    1972-01-01

    An exact mathematical model is developed for a discrete loop of a general order particularly suitable for digital computation. The deterministic response of the loop to the phase step and the frequency step is investigated. The design of the digital filter for the second-order loop is considered. Use is made of the incremental phase plane to study the phase error behavior of the loop. The model of the noisy loop is derived and the optimization of the loop filter for minimum mean-square error is considered.

  5. A comparison of methods for DPLL loop filter design

    NASA Technical Reports Server (NTRS)

    Aguirre, S.; Hurd, W. J.; Kumar, R.; Statman, J.

    1986-01-01

    Four design methodologies for loop filters for a class of digital phase-locked loops (DPLLs) are presented. The first design maps an optimum analog filter into the digital domain; the second approach designs a filter that minimizes in discrete time weighted combination of the variance of the phase error due to noise and the sum square of the deterministic phase error component; the third method uses Kalman filter estimation theory to design a filter composed of a least squares fading memory estimator and a predictor. The last design relies on classical theory, including rules for the design of compensators. Linear analysis is used throughout the article to compare different designs, and includes stability, steady state performance and transient behavior of the loops. Design methodology is not critical when the loop update rate can be made high relative to loop bandwidth, as the performance approaches that of continuous time. For low update rates, however, the miminization method is significantly superior to the other methods.

  6. One-loop corrections from higher dimensional tree amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n + 2 particles in five dimensions, one assumes that two of them cannot be “detected” and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with thosemore » derived by Geyer et al. from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous functions of the loop momentum and can be discarded. We also show that the contribution from singular solutions turns out to be homogeneous as well.« less

  7. One-loop corrections from higher dimensional tree amplitudes

    DOE PAGES

    Cachazo, Freddy; He, Song; Yuan, Ellis Ye

    2016-08-01

    We show how one-loop corrections to scattering amplitudes of scalars and gauge bosons can be obtained from tree amplitudes in one higher dimension. Starting with a complete tree-level scattering amplitude of n + 2 particles in five dimensions, one assumes that two of them cannot be “detected” and therefore an integration over their LIPS is carried out. The resulting object, function of the remaining n particles, is taken to be four-dimensional by restricting the corresponding momenta. We perform this procedure in the context of the tree-level CHY formulation of amplitudes. The scattering equations obtained in the procedure coincide with thosemore » derived by Geyer et al. from ambitwistor constructions and recently studied by two of the authors for bi-adjoint scalars. They have two sectors of solutions: regular and singular. We prove that the contribution from regular solutions generically gives rise to unphysical poles. However, using a BCFW argument we prove that the unphysical contributions are always homogeneous functions of the loop momentum and can be discarded. We also show that the contribution from singular solutions turns out to be homogeneous as well.« less

  8. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  9. New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED

    NASA Astrophysics Data System (ADS)

    Volkov, Sergey

    2017-11-01

    This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.

  10. From Loops to Trees By-passing Feynman's Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catani, Stefano; Gleisberg, Tanju; Krauss, Frank

    2008-04-22

    We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluationmore » of cross-sections at next-to-leading order.« less

  11. Loop series for discrete statistical models on graphs

    NASA Astrophysics Data System (ADS)

    Chertkov, Michael; Chernyak, Vladimir Y.

    2006-06-01

    In this paper we present the derivation details, logic, and motivation for the three loop calculus introduced in Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R)). Generating functions for each of the three interrelated discrete statistical models are expressed in terms of a finite series. The first term in the series corresponds to the Bethe-Peierls belief-propagation (BP) contribution; the other terms are labelled by loops on the factor graph. All loop contributions are simple rational functions of spin correlation functions calculated within the BP approach. We discuss two alternative derivations of the loop series. One approach implements a set of local auxiliary integrations over continuous fields with the BP contribution corresponding to an integrand saddle-point value. The integrals are replaced by sums in the complementary approach, briefly explained in Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R)). Local gauge symmetry transformations that clarify an important invariant feature of the BP solution are revealed in both approaches. The individual terms change under the gauge transformation while the partition function remains invariant. The requirement for all individual terms to be nonzero only for closed loops in the factor graph (as opposed to paths with loose ends) is equivalent to fixing the first term in the series to be exactly equal to the BP contribution. Further applications of the loop calculus to problems in statistical physics, computer and information sciences are discussed.

  12. A second-order all-digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Holmes, J. K.; Tegnelia, C. R.

    1974-01-01

    A simple second-order digital phase-locked loop has been designed to synchronize itself to a square-wave subcarrier. Analysis and experimental performance are given for both acquisition behavior and steady-state phase error performance. In addition, the damping factor and the noise bandwidth are derived analytically. Although all the data are given for the square-wave subcarrier case, the results are applicable to arbitrary subcarriers that are odd symmetric about their transition region.

  13. From SL(5, ℝ) Yang-Mills theory to induced gravity

    NASA Astrophysics Data System (ADS)

    Assimos, T. S.; Pereira, A. D.; Santos, T. R. S.; Sobreiro, R. F.; Tomaz, A. A.; Otoya, V. J. Vasquez

    From pure Yang-Mills action for the SL(5, ℝ) group in four Euclidean dimensions we obtain a gravity theory in the first order formalism. Besides the Einstein-Hilbert term, the effective gravity has a cosmological constant term, a curvature squared term, a torsion squared term and a matter sector. To obtain such geometrodynamical theory, asymptotic freedom and the Gribov parameter (soft BRST symmetry breaking) are crucial. Particularly, Newton and cosmological constant are related to these parameters and they also run as functions of the energy scale. One-loop computations are performed and the results are interpreted.

  14. Poisson equation for the Mercedes diagram in string theory at genus one

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-03-01

    The Mercedes diagram has four trivalent vertices which are connected by six links such that they form the edges of a tetrahedron. This three-loop Feynman diagram contributes to the {D}12{{ R }}4 amplitude at genus one in type II string theory, where the vertices are the points of insertion of the graviton vertex operators, and the links are the scalar propagators on the toroidal worldsheet. We obtain a modular invariant Poisson equation satisfied by the Mercedes diagram, where the source terms involve one- and two-loop Feynman diagrams. We calculate its contribution to the {D}12{{ R }}4 amplitude.

  15. Misfit stress relaxation in composite core-shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops

    NASA Astrophysics Data System (ADS)

    Krasnitckii, S. A.; Kolomoetc, D. R.; Smirnov, A. M.; Gutkin, M. Yu

    2018-03-01

    The misfit stress relaxation via generation of rectangular prismatic dislocation loops at the interface in core-shell nanowires is considered. The core has the shape of a long parallelepiped of a square cross-section. The energy change caused by loop generation in such nanowires is calculated. Critical conditions for the onset of such loops are calculated and analyzed.

  16. Closed-loop carrier phase synchronization techniques motivated by likelihood functions

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Hinedi, S.; Simon, M.

    1994-01-01

    This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.

  17. Comments on higher rank Wilson loops in N = 2∗

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Zayas, Leopoldo A. Pando; Zhou, Shan

    2018-01-01

    For N = 2∗ theory with U( N ) gauge group we evaluate expectation values of Wilson loops in representations described by a rectangular Young tableau with n rows and k columns. The evaluation reduces to a two-matrix model and we explain, using a combination of numerical and analytical techniques, the general properties of the eigen-value distributions in various regimes of parameters ( N, λ , n, k) where λ is the 't Hooft coupling. In the large N limit we present analytic results for the leading and sub-leading contributions. In the particular cases of only one row or one column we reproduce previously known results for the totally symmetry and totally antisymmetric representations. We also extensively discusss the N = 4 limit of the N = 2∗ theory. While establishing these connections we clarify aspects of various orders of limits and how to relax them; we also find it useful to explicitly address details of the genus expansion. As a result, for the totally symmetric Wilson loop we find new contributions that improve the comparison with the dual holographic computation at one loop order in the appropriate regime.

  18. Higgs bosons with large transverse momentum at the LHC

    NASA Astrophysics Data System (ADS)

    Kudashkin, Kirill; Lindert, Jonas M.; Melnikov, Kirill; Wever, Christopher

    2018-07-01

    We compute the next-to-leading order QCD corrections to the production of Higgs bosons with large transverse momentum p⊥ ≫ 2mt at the LHC. To accomplish this, we combine the two-loop amplitudes for processes gg → Hg, qg → Hq and q q bar → Hg, recently computed in the approximation of nearly massless top quarks, with the numerical calculation of the squared one-loop amplitudes for gg → Hgg, qg → Hqg and q q bar → Hgg processes. The latter computation is performed with OpenLoops. We find that the QCD corrections to the Higgs transverse momentum distribution at very high p⊥ are large but quite similar to the QCD corrections obtained for point-like Hgg coupling. Our result removes one of the largest sources of theoretical uncertainty in the description of high-p⊥ Higgs boson production and opens a way to use the high-p⊥ region to search for physics beyond the Standard Model.

  19. Differential equations for loop integrals in Baikov representation

    NASA Astrophysics Data System (ADS)

    Bosma, Jorrit; Larsen, Kasper J.; Zhang, Yang

    2018-05-01

    We present a proof that differential equations for Feynman loop integrals can always be derived in Baikov representation without involving dimension-shift identities. We moreover show that in a large class of two- and three-loop diagrams it is possible to avoid squared propagators in the intermediate steps of setting up the differential equations.

  20. Near- and far-field investigation of dark and bright higher order resonances in square loop elements at mid-infrared wavelengths.

    PubMed

    Tucker, Eric; D'Archangel, Jeffrey; Boreman, Glenn

    2017-03-06

    Three different size gold square loop structures were fabricated as arrays on ZnS over a ground plane and designed to have absorptive fundamental, second order, and third order resonances at a wavelength of 10.6 µm and 60° off-normal. The angular dependent far-field spectral absorptivity was investigated over the mid-infrared for each size loop array. It was found that the second order modes were dark at normal incidence, but became excited at off-normal incidence, which is consistent with previous work for similar geometry structures. Furthermore, near-field measurements and simulations at a wavelength of 10.6 µm and 60° off-normal showed that the second order mode (quadrupolar) of the medium size loop yielded a near-field response similar in magnitude to the fundamental mode (dipolar) of the small size loop, which can be important for sensing related applications where both strong near-field enhancement and more uniform or less localized field is beneficial.

  1. Soliton concepts and protein structure

    NASA Astrophysics Data System (ADS)

    Krokhotin, Andrei; Niemi, Antti J.; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  2. Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system

    NASA Astrophysics Data System (ADS)

    C, X. Sang; G, P. Zhao; W, X. Xia; X, L. Wan; F, J. Morvan; X, C. Zhang; L, H. Xie; J, Zhang; J, Du; A, R. Yan; P, Liu

    2016-03-01

    The hysteresis loops as well as the spin distributions of Sm-Co/α-Fe bilayers have been investigated by both three-dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Ahs between the hard and soft layers varies from 1.8 × 10-6 erg/cm to 0.45 × 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/α-Fe multilayers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179 and 10747007), the National Basic Research Program of China (Grant No. 2014CB643702), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14E010006), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry, China, and the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08).

  3. CP-odd Higgs boson production in eγ collisions

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken; Uematsu, Tsuneo

    2018-06-01

    We investigate the CP-odd Higgs boson production via two-photon processes in eγ collisions. The CP-odd Higgs boson, which we denote as A0, is expected to appear in the Two-Higgs Doublet Models (2HDM) as a minimal extension of Higgs sector for which the Minimal Supersymmetric Standard Model (MSSM) is a special case. The scattering amplitude for eγ → eA0 is evaluated at the electroweak one-loop level. The dominant contribution comes from top-quark loops when A0 boson is rather light and tan ⁡ β is not large. There are no contributions from the W-boson and Z-boson loops nor the scalar top-quark (stop) loops. The differential cross section for the A0 production is analyzed.

  4. Ku-band signal design study. [for space shuttle orbiter communication links

    NASA Technical Reports Server (NTRS)

    Lindsey, W. L.; Woo, K. T.

    1977-01-01

    The acquisition/tracking performance of a practical squaring loop in which the times two multiplier is mechanized as a limiter/multiplier combination is evaluated. This squaring approach serves to produce the absolute value of the arriving signal as opposed to the perfect square law action which is required in order to render acquisition and tracking performance equivalent to that of a Costas loop. The Ku-Band orbiter signal design for the forward link is assessed. Acquisition time results and acquisition and tracking thresholds are summarized. A tradeoff study which pertains to bit synchronization techniques for the high rate Ku-Band channel is included and an optimum selection is made based upon the appropriate design constraints.

  5. New Physics Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Cai, Haiying

    In this thesis we discuss several extensons of the standard model, with an emphasis on the hierarchy problem. The hierachy problem related to the Higgs boson mass is a strong indication of new physics beyond the Standard Model. In the literature, several mechanisms, e.g. , supersymmetry (SUSY), the little Higgs and extra dimensions, are proposed to explain why the Higgs mass can be stabilized to the electroweak scale. In the Standard Model, the largest quadratically divergent contribution to the Higgs mass-squared comes from the top quark loop. We consider a few novel possibilities on how this contribution is cancelled. In the standard SUSY scenario, the quadratic divergence from the fermion loops is cancelled by the scalar superpartners and the SUSY breaking scale determines the masses of the scalars. We propose a new SUSY model, where the superpartner of the top quark is spin-1 rather than spin-0. In little Higgs theories, the Higgs field is realized as a psudo goldstone boson in a nonlinear sigma model. The smallness of its mass is protected by the global symmetry. As a variation, we put the little Higgs into an extra dimensional model where the quadratically divergent top loop contribution to the Higgs mass is cancelled by an uncolored heavy "top quirk" charged under a different SU(3) gauge group. Finally, we consider a supersymmetric warped extra dimensional model where the superpartners have continuum mass spectra. We use the holographic boundary action to study how a mass gap can arise to separate the zero modes from continuum modes. Such extensions of the Standard Model have novel signatures at the Large Hadron Collider.

  6. Examining the Relationship between Immediate Serial Recall and Immediate Free Recall: Common Effects of Phonological Loop Variables but Only Limited Evidence for the Phonological Loop

    ERIC Educational Resources Information Center

    Spurgeon, Jessica; Ward, Geoff; Matthews, William J.

    2014-01-01

    We examined the contribution of the phonological loop to immediate free recall (IFR) and immediate serial recall (ISR) of lists of between one and 15 words. Following Baddeley (1986, 2000, 2007, 2012), we assumed that visual words could be recoded into the phonological store when presented silently but that recoding would be prevented by…

  7. CP violation at one loop in the polarization-independent chargino production in e+e- collisions

    NASA Astrophysics Data System (ADS)

    Rolbiecki, K.; Kalinowski, J.

    2007-12-01

    Recently Osland and Vereshagin noticed, based on sample calculations of some box diagrams, that in unpolarized e+e- collisions CP-odd effects in the nondiagonal chargino-pair production process are generated at one loop. Here we perform a full one-loop analysis of these effects and point out that in some cases the neglected vertex and self-energy contributions may play a dominant role. We also show that CP asymmetries in chargino production are sensitive not only to the phase of μ parameter in the chargino sector but also to the phase of stop trilinear coupling At.

  8. A rationale for human operator pulsive control behavior

    NASA Technical Reports Server (NTRS)

    Hess, R. A.

    1979-01-01

    When performing tracking tasks which involve demanding controlled elements such as those with K/s-squared dynamics, the human operator often develops discrete or pulsive control outputs. A dual-loop model of the human operator is discussed, the dominant adaptive feature of which is the explicit appearance of an internal model of the manipulator-controlled element dynamics in an inner feedback loop. Using this model, a rationale for pulsive control behavior is offered which is based upon the assumption that the human attempts to reduce the computational burden associated with time integration of sensory inputs. It is shown that such time integration is a natural consequence of having an internal representation of the K/s-squared-controlled element dynamics in the dual-loop model. A digital simulation is discussed in which a modified form of the dual-loop model is shown to be capable of producing pulsive control behavior qualitively comparable to that obtained in experiment.

  9. Decoupling PI Controller Design for a Normal Conducting RF Cavity Using a Recursive LEVENBERG-MARQUARDT Algorithm

    NASA Astrophysics Data System (ADS)

    Kwon, Sung-il; Lynch, M.; Prokop, M.

    2005-02-01

    This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.

  10. Micromagnetic simulation of static magnetic properties and tuning of anisotropy strength in two dimensional square antidot elements

    NASA Astrophysics Data System (ADS)

    Dash, S.; Satish, S.; Parida, B.; Satapathy, S.; Ipsita, N. S.; Joshi, R. S.

    2018-04-01

    We demonstrate the tailoring of anisotropy in magnetic nano-wire element using finite element method based micromagnetic simulation. We calculate the magentostatic properties for the structure by simulating hysteresis for these nano wire elements. The angular variation of remanence for the structures of different dimensions is used as the depiction to establish fourfold magnetic anisotropy. The change of anisotropy strength, which is the ratio of squareness of hysteresis loop in hard axis to easy axis, is demonstrated in this study which is one of the most important parameters to utilize these nanowire elements in multi state magnetic memory application.

  11. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact.more » From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.« less

  12. Spinning AdS loop diagrams: two point functions

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Sleight, Charlotte; Taronna, Massimo

    2018-06-01

    We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.

  13. Comments on higher rank Wilson loops in N$$ \\mathcal{N} $$ = 2∗

    DOE PAGES

    Liu, James T.; Zayas, Leopoldo A. Pando; Zhou, Shan

    2018-01-01

    For N = 2∗ theory with U(N) gauge group we evaluate expectation values of Wilson loops in representations described by a rectangular Young tableau with n rows and k columns. The evaluation reduces to a two-matrix model and we explain, using a combination of numerical and analytical techniques, the general properties of the eigenvalue distributions in various regimes of parameters (N, λ, n, k) where λ is the ’t Hooft coupling. In the large N limit we present analytic results for the leading and sub-leading contributions. In the particular cases of only one row or one column we reproduce previouslymore » known results for the totally symmetry and totally antisymmetric representations. We also extensively discusss the N = 4 limit of the N = 2∗ theory. While establishing these connections we clarify aspects of various orders of limits and how to relax them; we also find it useful to explicitly address details of the genus expansion. As a result, for the totally symmetric Wilson loop we find new contributions that improve the comparison with the dual holographic computation at one loop order in the appropriate regime.« less

  14. The application of cluster analysis in the intercomparison of loop structures in RNA.

    PubMed

    Huang, Hung-Chung; Nagaswamy, Uma; Fox, George E

    2005-04-01

    We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence.

  15. The application of cluster analysis in the intercomparison of loop structures in RNA

    PubMed Central

    HUANG, HUNG-CHUNG; NAGASWAMY, UMA; FOX, GEORGE E.

    2005-01-01

    We have developed a computational approach for the comparison and classification of RNA loop structures. Hairpin or interior loops identified in atomic resolution RNA structures were intercompared by conformational matching. The root-mean-square deviation (RMSD) values between all pairs of RNA fragments of interest, even if from different molecules, are calculated. Subsequently, cluster analysis is performed on the resulting matrix of RMSD distances using the unweighted pair group method with arithmetic mean (UPGMA). The cluster analysis objectively reveals groups of folds that resemble one another. To demonstrate the utility of the approach, a comprehensive analysis of all the terminal hairpin tetraloops that have been observed in 15 RNA structures that have been determined by X-ray crystallography was undertaken. The method found major clusters corresponding to the well-known GNRA and UNCG types. In addition, two tetraloops with the unusual primary sequence UMAC (M is A or C) were successfully assigned to the GNRA cluster. Larger loop structures were also examined and the clustering results confirmed the occurrence of variations of the GNRA and UNCG tetraloops in these loops and provided a systematic means for locating them. Nineteen examples of larger loops that closely resemble either the GNRA or UNCG tetraloop were found in the large ribosomal RNAs. When the clustering approach was extended to include all structures in the SCOR database, novel relationships were detected including one between the ANYA motif and a less common folding of the GAAA tetraloop sequence. PMID:15769871

  16. Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Nakariakov, Valery

    We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.

  17. Looped suture versus stapler device in pediatric laparoscopic appendectomy: a comparative outcomes and intraoperative cost analysis.

    PubMed

    Parikh, Punam P; Tashiro, Jun; Wagenaar, Amy E; Curbelo, Miosotys; Perez, Eduardo A; Neville, Holly L; Hogan, Anthony R; Sola, Juan E

    2018-04-01

    Appendiceal ligation during pediatric laparoscopic appendectomy (LA) may be performed using looped suture versus stapler. Controversy regarding the utility of either method exists. Clinical outcomes and cost analysis of LA with both methods were compared. All pediatric LA were performed from fiscal years 2013 and 2014 by two pediatric surgeons. While one surgeon used looped suture, the other used stapler exclusively. chi-Square tests were performed to analyze associations. Two hundred thirty-eight cases were analyzed where looped suture versus stapler LA was performed in 46% and 54% of patients, respectively. Operating room costs were $317.10 and $707.12/person for looped suture and stapler LA, respectively (P<0.0001). Difference in cost of $390.02/person was attributed solely to ligation type. On bivariate analysis, rate of in-hospital complications, length of stay, return-to-ER and readmission within 30 days did not significantly differ between groups. A comparative analysis of looped suture versus stapler device during LA for pediatric appendicitis revealed that postoperative complications, length of stay, ER visits and readmissions were not significantly different. Looped suture LA was significantly more cost efficient than stapler LA. In pediatric appendicitis, appendiceal ligation during LA may be performed safely and cost effectively with looped suture versus stapler. Cost effectiveness LEVEL OF EVIDENCE: III. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Fingerprints and cardiovascular risk. The San Valentino fingerprint vascular screening project (SanVal/FP).

    PubMed

    Belcaro, G; Cesarone, M R; Ledda, A; Cornelli, U; Dugall, M; Di Renzo, A; Hosoi, M; Stuard, S; Vinciguerra, G; Pellegrini, L; Gizzi, G

    2008-10-01

    Fingerprints (FP), characteristic of humans, are impressions due to skin marks (ridges) on fingertips. Ridges are present on fingers/hands forming curved lines of different sizes/patterns. The point where a line stops or splits is defined typica' (their number/amount constitute identification patterns). FP are permanent and unique. This study compared FP patterns with cardiovascular risk factors: 7 main types of FP were used: 1. Arch: lines form waves from one site to the other side. 2. Tentarch: like arches but with a rising stick in the middle. 3. Loop: lines coming from one site returning in the middle to the same site. 4. Double loop: like loops but with two loops inside: one standing, one hanging. 5. Pocked loop: like the loop but with a small circle in the turning point. 6. Whorl: lines make circles. 7. Mixed figure: composed of different figures. There are two kinds of real typica: A. Ending line; B. Splitting lines (bifurcations). Several combinations may result. Ultrasound evaluation of carotid/femoral arteries in asymptomatic subjects. Arteries were evaluated with high-resolution ultrasound at the bifurcations. Four classes were defined: 1: normal intima-media (IMT) complex; 2: IMT thickening; 3: non-stenosing plaques (<50% stenosis); 4: stenosing plaque (>50%). Subjects in classes 1, 2, 3 were included into the analysis made comparing FP patterns and ultrasound. For each FP pattern: A. the main proportion of subjects with cardiovacular risk factors (91%) had arches (41.2%) and loops (either single, 38.2% or double 11.7% for a total of 49.9%). B. The remaining classes were statistically less important. C. The number of ridges per square mm was comparable in all pattern classes. D. The analysis of typica and other ridges characteristics requires a more elaborated system. Future research must define simple, low cost screening methods for preselection of subjects at higher cardiovascular risk or for exclusion of low risk subjects. The evaluation of fingerprint pattern may be useful to define risk groups.

  19. Cyclic coordinate descent: A robotics algorithm for protein loop closure.

    PubMed

    Canutescu, Adrian A; Dunbrack, Roland L

    2003-05-01

    In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.

  20. Computing black hole partition functions from quasinormal modes

    DOE PAGES

    Arnold, Peter; Szepietowski, Phillip; Vaman, Diana

    2016-07-07

    We propose a method of computing one-loop determinants in black hole space-times (with emphasis on asymptotically anti-de Sitter black holes) that may be used for numerics when completely-analytic results are unattainable. The method utilizes the expression for one-loop determinants in terms of quasinormal frequencies determined by Denef, Hartnoll and Sachdev in [1]. A numerical evaluation must face the fact that the sum over the quasinormal modes, indexed by momentum and overtone numbers, is divergent. A necessary ingredient is then a regularization scheme to handle the divergent contributions of individual fixed-momentum sectors to the partition function. To this end, we formulatemore » an effective two-dimensional problem in which a natural refinement of standard heat kernel techniques can be used to account for contributions to the partition function at fixed momentum. We test our method in a concrete case by reproducing the scalar one-loop determinant in the BTZ black hole background. Furthermore, we then discuss the application of such techniques to more complicated spacetimes.« less

  1. Local constraints on cosmic string loops from photometry and pulsar timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pshirkov, M. S.; Tuntsov, A. V.; Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, 119992

    2010-04-15

    We constrain the cosmological density of cosmic string loops using two observational signatures--gravitational microlensing and the Kaiser-Stebbins effect. Photometry from RXTE and CoRoT space missions and pulsar timing from Parkes Pulsar Timing Array, Arecibo and Green Bank radio telescopes allow us to probe cosmic strings in a wide range of tensions G{mu}/c{sup 2}=10{sup -16} divide 10{sup -10}. We find that pulsar timing data provide the most stringent constraints on the abundance of light strings at the level {Omega}{sub s{approx}}10{sup -3}. Future observational facilities such as the Square Kilometer Array will allow one to improve these constraints by orders of magnitude.

  2. New broadband square-law detector

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    Compact device has wide dynamic range, accurate square-law response, good thermal stability, high-level dc output with immunity to ground-loop problems, ability to insert known time constants for radiometric applications, and fast response times compatible with computer systems.

  3. Structural Damage Detection Using Virtual Passive Controllers

    NASA Technical Reports Server (NTRS)

    Lew, Jiann-Shiun; Juang, Jer-Nan

    2001-01-01

    This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures, where passive controllers are energy dissipative devices and thus guarantee the closed-loop stability. The use of the identified parameters of various closed-loop systems can solve the problem that reliable identified parameters, such as natural frequencies of the open-loop system may not provide enough information for damage detection. Only a small number of sensors are required for the proposed approaches. The identified natural frequencies, which are generally much less sensitive to noise and more reliable than the identified natural frequencies, are used for damage detection. Two damage detection techniques are presented. One technique is based on the structures with direct output feedback controllers while the other technique uses the second-order dynamic feedback controllers. A least-squares technique, which is based on the sensitivity of natural frequencies to damage variables, is used for accurately identifying the damage variables.

  4. Loop-anchor purse-string closure of gastrotomy in NOTES(R) procedures: survival studies in a porcine model.

    PubMed

    Romanelli, John R; Desilets, David J; Chapman, Christopher N; Surti, Vihar C; Lovewell, Carolanne; Earle, David B

    2010-12-01

    Transgastric NOTES(®) procedures remain without a simple method to close the gastrotomy. In four survival swine studies, we have tested a novel gastric closure device: the loop-anchor purse-string (LAPS) closure system. In four anesthetized pigs, an endoscopic gastrotomy was performed. Four loop anchors were arrayed in a 2-cm square pattern around the gastrotomy. The endoscope was passed into the abdominal cavity, and the gastrotomy was cinched closed. Procedure times ranged from 50-180 minutes. Three pigs survived 14 days. One animal was sacrificed early due to signs of sepsis. Another animal developed fevers and was treated with antibiotics. At necropsy, there were no abscesses, including in the septic animal. Histologic examination revealed evidence of healing in all animals. The LAPS system holds promise with early success in an animal model. Future human studies are needed to determine viability as a human visceral closure device.

  5. Neutrino mass implications for muon decay parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erwin, Rebecca J.; Kile, Jennifer; Ramsey-Musolf, Michael J.

    2007-02-01

    We use the scale of neutrino mass and naturalness considerations to obtain model-independent expectations for the magnitude of possible contributions to muon decay Michel parameters from new physics above the electroweak symmetry-breaking scale. Focusing on Dirac neutrinos, we obtain a complete basis of dimension four and dimension six effective operators that are invariant under the gauge symmetry of the standard model and that contribute to both muon decay and neutrino mass. We show that - in the absence of fine tuning - the most stringent neutrino-mass naturalness bounds on chirality-changing vector operators relevant to muon decay arise from one-loop operatormore » mixing. The bounds we obtain on their contributions to the Michel parameters are 2 orders of magnitude stronger than bounds previously obtained in the literature. In addition, we analyze the implications of one-loop matching considerations and find that the expectations for the size of various scalar and tensor contributions to the Michel parameters are considerably smaller than derived from previous estimates of two-loop operator mixing. We also show, however, that there exist gauge-invariant operators that generate scalar and tensor contributions to muon decay but whose flavor structure allows them to evade neutrino-mass naturalness bounds. We discuss the implications of our analysis for the interpretation of muon-decay experiments.« less

  6. The two-mass contribution to the three-loop gluonic operator matrix element Agg,Q(3)

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Goedicke, A.; Schneider, C.; Schönwald, K.

    2018-07-01

    We calculate the two-mass QCD contributions to the massive operator matrix element Agg,Q at O (αs3) in analytic form in Mellin N- and z-space, maintaining the complete dependence on the heavy quark mass ratio. These terms are important ingredients for the matching relations of the variable flavor number scheme in the presence of two heavy quark flavors, such as charm and bottom. In Mellin N-space the result is given in the form of nested harmonic, generalized harmonic, cyclotomic and binomial sums, with arguments depending on the mass ratio. The Mellin inversion of these quantities to z-space gives rise to generalized iterated integrals with square root valued letters in the alphabet, depending on the mass ratio as well. Numerical results are presented.

  7. Soliton concepts and protein structure.

    PubMed

    Krokhotin, Andrei; Niemi, Antti J; Peng, Xubiao

    2012-03-01

    Structural classification shows that the number of different protein folds is surprisingly small. It also appears that proteins are built in a modular fashion from a relatively small number of components. Here we propose that the modular building blocks are made of the dark soliton solution of a generalized discrete nonlinear Schrödinger equation. We find that practically all protein loops can be obtained simply by scaling the size and by joining together a number of copies of the soliton, one after another. The soliton has only two loop-specific parameters, and we compute their statistical distribution in the Protein Data Bank (PDB). We explicitly construct a collection of 200 sets of parameters, each determining a soliton profile that describes a different short loop. The ensuing profiles cover practically all those proteins in PDB that have a resolution which is better than 2.0 Å, with a precision such that the average root-mean-square distance between the loop and its soliton is less than the experimental B-factor fluctuation distance. We also present two examples that describe how the loop library can be employed both to model and to analyze folded proteins.

  8. The structure of the L3 loop from the hepatitis delta virus ribozyme: a syn cytidine.

    PubMed Central

    Lynch, S R; Tinoco, I

    1998-01-01

    The structure of the L3 central hairpin loop isolated from the antigenomic sequence of the hepatitis delta virus ribozyme with the P2 and P3 stems from the ribozyme stacked on top of the loop has been determined by NMR spectroscopy. The 26 nt stem-loop structure contains nine base pairs and a 7 nt loop (5'-UCCUCGC-3'). This hairpin loop is critical for efficient catalysis in the intact ribozyme. The structure was determined using homonuclear and heteronuclear NMR techniques on non-labeled and15N-labeled RNA oligonucleotides. The overall root mean square deviation for the structure was 1.15 A (+/- 0.28 A) for the loop and the closing C.G base pair and 0.90 A (+/- 0.18 A) for the loop and the closing C.G base pair but without the lone purine in the loop, which is not well defined in the structure. The structure indicates a U.C base pair between the nucleotides on the 5'- and 3'-ends of the loop. This base pair is formed with a single hydrogen bond involving the cytosine exocyclic amino proton and the carbonyl O4 of the uracil. The most unexpected finding in the loop is a syn cytidine. While not unprecedented, syn pyrimidines are highly unusual. This one can be confidently established by intranucleotide distances between the ribose and the base determined by NMR spectroscopy. A similar study of the structure of this loop showed a somewhat different three-dimensional structure. A discussion of differences in the two structures, as well as possible sites of interaction with the cleavage site, will be presented. PMID:9461457

  9. Open-loop radio science with a suppressed-carrier signal

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    1980-01-01

    When a suppressed-carrier signal is squared, the carrier reappears in doubled form. An open-loop receiver can be used to deliver a recording of a band-limited waveform containing this carrier, whose amplitude and phase can be tracked by the radio science experimenter.

  10. Tensile strength of surgical knots in abdominal wound closure.

    PubMed

    Fong, Eva D M; Bartlett, Adam S R; Malak, Sharif; Anderson, Iain A

    2008-03-01

    Abdominal wound dehiscence is a surgical catastrophe that can be attributed to patients or technical factors. The technical properties of the monofilament sutures and knots that are commonly used in abdominal closure are poorly understood. The aim of this study was to compare the tensile strength of monofilament sutures tied with conventional knots. To do this, the knot-holding capacity of four types of knots (square, surgeons', Aberdeen and loop) were tested using three types of gauge 1 monofilament suture, namely nylon, polyglyconate and polydioxanone, using a tensiometer. We found that the knot-holding capacity of the loop knot was between twofold and threefold greater than all the other knots examined. In comparing suture types, polyglyconate had the highest knot-holding capacity for all the knots that were examined and there was no difference in the tensile strength of nylon and polyglyconate tied in a square, surgeons' or Aberdeen knot (P < 0.05). In conclusion, our findings suggest that closure of an abdominal wound would be best commenced with a loop knot, using gauge 1 polyglyconate and finished with either an Aberdeen square or surgeons' knot would be appropriate.

  11. Mixed heavy–light matching in the Universal One-Loop Effective Action

    DOE PAGES

    Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...

    2016-11-10

    Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. In this study we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure ofmore » the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.« less

  12. A simplifying feature of the heterotic one loop four graviton amplitude

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2018-01-01

    We show that the weight four modular graph functions that contribute to the integrand of the t8t8D4R4 term at one loop in heterotic string theory do not require regularization, and hence the integrand is simple. This is unlike the graphs that contribute to the integrands of the other gravitational terms at this order in the low momentum expansion, and these integrands require regularization. This property persists for an infinite number of terms in the effective action, and their integrands do not require regularization. We find non-trivial relations between weight four graphs of distinct topologies that do not require regularization by performing trivial manipulations using auxiliary diagrams.

  13. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    NASA Astrophysics Data System (ADS)

    Ablinger, Jakob; Blümlein, Johannes; Raab, Clemens; Schneider, Carsten; Wißbrock, Fabian

    2014-08-01

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝aN,a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  14. 2D Inversion of Transient Electromagnetic Method (TEM)

    NASA Astrophysics Data System (ADS)

    Bortolozo, Cassiano Antonio; Luís Porsani, Jorge; Acácio Monteiro dos Santos, Fernando

    2017-04-01

    A new methodology was developed for 2D inversion of Transient Electromagnetic Method (TEM). The methodology consists in the elaboration of a set of routines in Matlab code for modeling and inversion of TEM data and the determination of the most efficient field array for the problem. In this research, the 2D TEM modeling uses the finite differences discretization. To solve the inversion problem, were applied an algorithm based on Marquardt technique, also known as Ridge Regression. The algorithm is stable and efficient and it is widely used in geoelectrical inversion problems. The main advantage of 1D survey is the rapid data acquisition in a large area, but in regions with two-dimensional structures or that need more details, is essential to use two-dimensional interpretation methodologies. For an efficient field acquisition we used in an innovative form the fixed-loop array, with a square transmitter loop (200m x 200m) and 25m spacing between the sounding points. The TEM surveys were conducted only inside the transmitter loop, in order to not deal with negative apparent resistivity values. Although it is possible to model the negative values, it makes the inversion convergence more difficult. Therefore the methodology described above has been developed in order to achieve maximum optimization of data acquisition. Since it is necessary only one transmitter loop disposition in the surface for each series of soundings inside the loop. The algorithms were tested with synthetic data and the results were essential to the interpretation of the results with real data and will be useful in future situations. With the inversion of the real data acquired over the Paraná Sedimentary Basin (PSB) was successful realized a 2D TEM inversion. The results indicate a robust geoelectrical characterization for the sedimentary and crystalline aquifers in the PSB. Therefore, using a new and relevant approach for 2D TEM inversion, this research effectively contributed to map the most promising regions for groundwater exploration. In addition, there was the development of new geophysical software that can be applied as an important tool for many geological/hydrogeological applications and educational purposes.

  15. Sum-of-squares-based fuzzy controller design using quantum-inspired evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Gwo-Ruey; Huang, Yu-Chia; Cheng, Chih-Yung

    2016-07-01

    In the field of fuzzy control, control gains are obtained by solving stabilisation conditions in linear-matrix-inequality-based Takagi-Sugeno fuzzy control method and sum-of-squares-based polynomial fuzzy control method. However, the optimal performance requirements are not considered under those stabilisation conditions. In order to handle specific performance problems, this paper proposes a novel design procedure with regard to polynomial fuzzy controllers using quantum-inspired evolutionary algorithms. The first contribution of this paper is a combination of polynomial fuzzy control and quantum-inspired evolutionary algorithms to undertake an optimal performance controller design. The second contribution is the proposed stability condition derived from the polynomial Lyapunov function. The proposed design approach is dissimilar to the traditional approach, in which control gains are obtained by solving the stabilisation conditions. The first step of the controller design uses the quantum-inspired evolutionary algorithms to determine the control gains with the best performance. Then, the stability of the closed-loop system is analysed under the proposed stability conditions. To illustrate effectiveness and validity, the problem of balancing and the up-swing of an inverted pendulum on a cart is used.

  16. A small modified hammerhead ribozyme and its conformational characteristics determined by mutagenesis and lattice calculation.

    PubMed Central

    Lustig, B; Lin, N H; Smith, S M; Jernigan, R L; Jeang, K T

    1995-01-01

    A prototypic hammerhead ribozyme has three helices that surround an asymmetrical central core loop. We have mutagenized a hammerhead type ribozyme. In agreement with previous studies, progressive removal of stem-loop II from a three stemmed ribozyme showed that this region is not absolutely critical for catalysis. However, complete elimination of stem II and its loop did reduce, but did not eliminate, function. In a stem-loop II-deleted ribozyme, activity was best preserved when a purine, preferably a G, was present at position 10.1. This G contributed to catalysis irregardless of its role as either one part of a canonical pair with a C residue at 11.1 or a lone nucleotide with C (11.1) deleted. Computational methods using lattices generated 87 million three-dimensional chain forms for a stem-loop II-deleted RNA complex that preserved one potential G.C base pair at positions 10.1 and 11.1. This exhaustive set of chain forms included one major class of structures with G(10.1) being spatially proximal to the GUCX cleavage site of the substrate strand. Strong correlations were observed between colinear arrangement of stems I and III, constraints of base-pairing in the central core loop, and one particular placement of G(10.1) relative to the cleavage site. Our calculations of a stem-loop II-deleted ribozyme indicate that without needing to invoke any other constraints, the inherent asymmetry in the lengths of the two loop strands (3 nt in one and 7 nt in the other) that compose the core and flank G10.1-C11.1 stipulated strongly this particular G placement. This suggests that the hammerhead ribozyme maintains an asymmetry in its internal loop for a necessary structure/function reason. Images PMID:7567466

  17. A proposal of a local modified QCD

    NASA Astrophysics Data System (ADS)

    Cabo Montes de Oca, A.

    2012-06-01

    A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.

  18. The massive soft anomalous dimension matrix at two loops

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander; Sterman, George; Sung, Ilmo

    2009-05-01

    We study two-loop anomalous dimension matrices in QCD and related gauge theories for products of Wilson lines coupled at a point. We verify by an analysis in Euclidean space that the contributions to these matrices from diagrams that link three massive Wilson lines do not vanish in general. We show, however, that for two-to-two processes the two-loop anomalous dimension matrix is diagonal in the same color-exchange basis as the one-loop matrix for arbitrary masses at absolute threshold and for scattering at 90 degrees in the center of mass. This result is important for applications of threshold resummation in heavy quark production.

  19. On the Casimir scaling violation in the cusp anomalous dimension at small angle

    NASA Astrophysics Data System (ADS)

    Grozin, Andrey; Henn, Johannes; Stahlhofen, Maximilian

    2017-10-01

    We compute the four-loop n f contribution proportional to the quartic Casimir of the QCD cusp anomalous dimension as an expansion for small cusp angle ϕ. This piece is gauge invariant, violates Casimir scaling, and first appears at four loops. It requires the evaluation of genuine non-planar four-loop Feynman integrals. We present results up to O({φ}^4) . One motivation for our calculation is to probe a recent conjecture on the all-order structure of the cusp anomalous dimension. As a byproduct we obtain the four-loop HQET wave function anomalous dimension for this color structure.

  20. T -odd correlations in polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) and in the quasi-three-body decay t (↑)→ Xb+ℓ++νℓ

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Groote, S.; Körner, J. G.

    2018-05-01

    We identify the T -odd structure functions that appear in the description of polarized top quark decays in the sequential decay t (↑)→Xb+W+(→ℓ++νℓ) (two structure functions) and the quasi-three-body decay t (↑)→X b+ℓ++νℓ (one structure function). A convenient measure of the magnitude of the T -odd structure functions is the contribution of the imaginary part Im gR of the right-chiral tensor coupling gR to the T -odd structure functions which we work out. Contrary to the case of QCD, the NLO electroweak corrections to polarized top quark decays admit absorptive one-loop vertex contributions. We analytically calculate the imaginary parts of the relevant four electroweak one-loop triangle vertex diagrams and determine their contributions to the T -odd helicity structure functions that appear in the description of polarized top quark decays.

  1. Porous Foam Based Wick Structures for Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  2. The complete two-loop integrated jet thrust distribution in soft-collinear effective theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Manteuffel, Andreas; Schabinger, Robert M.; Zhu, Hua Xing

    2014-03-01

    In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e+e- annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, themore » sum of all global terms can be expressed in terms of classical polylogarithms. Our explicit two-loop calculation enables us to clarify the small r picture discussed in earlier work. In particular, we show that the resummation of the logarithms of r that appear in the previously uncomputed part of the two-loop integrated jet thrust distribution is inextricably linked to the resummation of the non-global logarithms. Furthermore, we find that the logarithms of r which cannot be absorbed into the non-global logarithms in the way advocated in earlier work have coefficients fixed by the two-loop cusp anomalous dimension. We also show that in many cases one can straightforwardly predict potentially large logarithmic contributions to the integrated jet thrust distribution at L loops by making use of analogous contributions to the simpler integrated hemisphere soft function.« less

  3. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop

    NASA Astrophysics Data System (ADS)

    Weng, Hai-Zhong; Han, Jun-Yuan; Li, Qing; Yang, Yue-De; Xiao, Jin-Long; Qin, Guan-Shi; Huang, Yong-Zhen

    2018-05-01

    A novel approach using a dual-mode square microlaser as the pump source is demonstrated to produce wideband optical frequency comb (OFC). The enhanced nonlinear frequency conversion processes are accomplished in a nonlinear fiber loop, which can reduce the stimulated Brillouin scattering threshold and then generate a dual-mode Brillouin laser with improved optical signal-to-noise ratio. An OFC with 130 nm bandwidth and 76 GHz repetition rate is successfully generated under the four-wave mixing, and the number of the comb lines is enhanced by 26 times compared with the system without fiber loop. In addition, the repetition rate of the comb can be adjusted by changing the injection current of the microlaser. The pulse width of the comb spectrum is also compressed from 3 to 1 ps with an extra amplification-nonlinear process.

  4. Search for C=+ charmonium and bottomonium states in e{sup +}e{sup -}{yields}{gamma}+ X at B factories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Dan; Chao Kuangta; He Zhiguo

    2009-12-01

    We study the production of C=+ charmonium states X in e{sup +}e{sup -}{yields}{gamma}+X at B factories with X={eta}{sub c}(nS) (n=1, 2, 3), {chi}{sub cJ}(mP) (m=1, 2), and {sup 1}D{sub 2}(1D). In the S- and P-wave case, contributions of QED with one-loop QCD corrections are calculated within the framework of nonrelativistic QCD (NRQCD), and in the D-wave case only the QED contribution is considered. We find that in most cases the one-loop QCD corrections are negative and moderate, in contrast to the case of double charmonium production e{sup +}e{sup -}{yields}J/{psi}+X, where one-loop QCD corrections are positive and large in most cases.more » We also find that the production cross sections of some of these states in e{sup +}e{sup -}{yields}{gamma}+X are larger than that in e{sup +}e{sup -}{yields}J/{psi}+X by an order of magnitude even after the negative one-loop QCD corrections are included. We then argue that search for the X(3872), X(3940), Y(3940), and X(4160) in e{sup +}e{sup -}{yields}{gamma}+X at B factories may be helpful to clarify the nature of these states. For completeness, the production of bottomonium states in e{sup +}e{sup -} annihilation is also discussed.« less

  5. Leptoquark mechanism of neutrino masses within the grand unification framework

    NASA Astrophysics Data System (ADS)

    Doršner, Ilja; Fajfer, Svjetlana; Košnik, Nejc

    2017-06-01

    We demonstrate the viability of the one-loop neutrino mass mechanism within the framework of grand unification when the loop particles comprise scalar leptoquarks (LQs) and quarks of the matching electric charge. This mechanism can be implemented in both supersymmetric and non-supersymmetric models and requires the presence of at least one LQ pair. The appropriate pairs for the neutrino mass generation via the up-type and down-type quark loops are S_3-R_2 and S_{1, 3}-\\tilde{R}_2, respectively. We consider two distinct regimes for the LQ masses in our analysis. The first regime calls for very heavy LQs in the loop. It can be naturally realized with the S_{1, 3}-\\tilde{R}_2 scenarios when the LQ masses are roughly between 10^{12} and 5 × 10^{13} GeV. These lower and upper bounds originate from experimental limits on partial proton decay lifetimes and perturbativity constraints, respectively. Second regime corresponds to the collider accessible LQs in the neutrino mass loop. That option is viable for the S_3-\\tilde{R}_2 scenario in the models of unification that we discuss. If one furthermore assumes the presence of the type II see-saw mechanism there is an additional contribution from the S_3-R_2 scenario that needs to be taken into account beside the type II see-saw contribution itself. We provide a complete list of renormalizable operators that yield necessary mixing of all aforementioned LQ pairs using the language of SU(5). We furthermore discuss several possible embeddings of this mechanism in SU(5) and SO(10) gauge groups.

  6. Yangian symmetry for bi-scalar loop amplitudes

    NASA Astrophysics Data System (ADS)

    Chicherin, Dmitry; Kazakov, Vladimir; Loebbert, Florian; Müller, Dennis; Zhong, De-liang

    2018-05-01

    We establish an all-loop conformal Yangian symmetry for the full set of planar amplitudes in the recently proposed integrable bi-scalar field theory in four dimensions. This chiral theory is a particular double scaling limit of γ-twisted weakly coupled N=4 SYM theory. Each amplitude with a certain order of scalar particles is given by a single fishnet Feynman graph of disc topology cut out of a regular square lattice. The Yangian can be realized by the action of a product of Lax operators with a specific sequence of inhomogeneity parameters on the boundary of the disc. Based on this observation, the Yangian generators of level one for generic bi-scalar amplitudes are explicitly constructed. Finally, we comment on the relation to the dual conformal symmetry of these scattering amplitudes.

  7. Charm Penguin in B± → K±K+K-: Partonic and hadronic loops

    NASA Astrophysics Data System (ADS)

    Bediaga, I.; Frederico, T.; Magalhães, P. C.

    2018-05-01

    Charm penguin diagrams are known to be the main contribution to charmless B decay process with strangeness variation equal to minus one, which is the case of B± →K±K+K- decay. The large phase space available in this and other B three-body decays allows non trivial final state interactions with all sort of rescattering processes and also access high momentum transfers in the central region of the Dalitz plane. In this work we investigate the charm Penguin contribution to B± →K±K+K-, described by a hadronic triangle loop in nonperturbative regions of the phase space, and by a partonic loop at the quasi perturbative region. These nonresonant amplitudes should have a particular structure in the Dalitz plane and their contributions to the final decay amplitude can be confirmed by a data amplitude analysis in this channel. In particular, the hadronic amplitude has a changing sign in the phase at D D bar threshold which can result in a change of sign for the CP asymmetry.

  8. Doppler-shift estimation of flat underwater channel using data-aided least-square approach

    NASA Astrophysics Data System (ADS)

    Pan, Weiqiang; Liu, Ping; Chen, Fangjiong; Ji, Fei; Feng, Jing

    2015-06-01

    In this paper we proposed a dada-aided Doppler estimation method for underwater acoustic communication. The training sequence is non-dedicate, hence it can be designed for Doppler estimation as well as channel equalization. We assume the channel has been equalized and consider only flat-fading channel. First, based on the training symbols the theoretical received sequence is composed. Next the least square principle is applied to build the objective function, which minimizes the error between the composed and the actual received signal. Then an iterative approach is applied to solve the least square problem. The proposed approach involves an outer loop and inner loop, which resolve the channel gain and Doppler coefficient, respectively. The theoretical performance bound, i.e. the Cramer-Rao Lower Bound (CRLB) of estimation is also derived. Computer simulations results show that the proposed algorithm achieves the CRLB in medium to high SNR cases.

  9. The 1-loop effective potential for the Standard Model in curved spacetime

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen

    2018-06-01

    The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.

  10. Nonequilibrium Chromosome Looping via Molecular Slip Links

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  11. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process.

    PubMed

    Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.

  12. Lorentz covariance of loop quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovelli, Carlo; Speziale, Simone

    2011-05-15

    The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the projected spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleulermore » formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are precisely in K on the boundary. This clarifies how the SL(2,C) spinfoam formalism yields an SU(2) theory on the boundary. These structures define a tidy Lorentz-covariant formalism for loop gravity.« less

  13. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process

    PubMed Central

    Mohamed, Amr E.; Dorrah, Hassen T.

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444

  14. Optimal random Lévy-loop searching: New insights into the searching behaviours of central-place foragers

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    2008-04-01

    A random Lévy-looping model of searching is devised and optimal random Lévy-looping searching strategies are identified for the location of a single target whose position is uncertain. An inverse-square power law distribution of loop lengths is shown to be optimal when the distance between the centre of the search and the target is much shorter than the size of the longest possible loop in the searching pattern. Optimal random Lévy-looping searching patterns have recently been observed in the flight patterns of honeybees (Apis mellifera) when attempting to locate their hive and when searching after a known food source becomes depleted. It is suggested that the searching patterns of desert ants (Cataglyphis) are consistent with the adoption of an optimal Lévy-looping searching strategy.

  15. Dark matter, muon g -2 , electric dipole moments, and Z →ℓi+ℓj- in a one-loop induced neutrino model

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Okada, Hiroshi; Senaha, Eibun

    2017-07-01

    We study a simple one-loop induced neutrino mass model that contains both bosonic and fermionic dark matter candidates and has the capacity to explain the muon anomalous magnetic moment anomaly. We perform a comprehensive analysis by taking into account the relevant constraints of charged lepton flavor violation, electric dipole moments, and neutrino oscillation data. We examine the constraints from lepton flavor-changing Z boson decays at the one-loop level, particularly when the involved couplings contribute to the muon g -2 . It is found that BR (Z →μ τ )≃(10-7- 10-6) while BR (τ →μ γ )≲10-11 in the fermionic dark matter scenario. The former can be probed by the precision measurement of the Z boson at future lepton colliders.

  16. Refined counting of necklaces in one-loop N=4 SYM

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryo

    2017-06-01

    We compute the grand partition function of N=4 SYM at one-loop in the SU(2) sector with general chemical potentials, extending the results of Pólya's theorem. We make use of finite group theory, applicable to all orders of perturbative 1 /N c expansion. We show that only the planar terms contribute to the grand partition function, which is therefore equal to the grand partition function of an ensemble of {XXX}_{1/2} spin chains. We discuss how Hagedorn temperature changes on the complex plane of chemical potentials.

  17. Exchange coupled CoPd/TbCo magneto-optic storage films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambino, R.J.; Ruf, R.R.; Rishi, R.

    1989-09-01

    Films of CoPd with weak perpendicular anisotropy are shown to exchange couple to square loop TbCo films on both the Tb and Co sides of compensation. The exchange is sensitive to reactive impurities at the interface and is broken under conditions that produce as little as one monolayer of paramagnetic compound. Even when the coupling at the interface is strong, the authors show that only a limited thickness of the CoPd layer is spin oriented perpendicular.

  18. Higgs boson decay into b-quarks at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-04-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  19. Nuclear axial currents in chiral effective field theory

    DOE PAGES

    Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...

    2016-01-11

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less

  20. Critical behavior of a chiral superfluid in a bipartite square lattice

    NASA Astrophysics Data System (ADS)

    Okamoto, Junichi; Huang, Wen-Min; Höppner, Robert; Mathey, Ludwig

    2018-01-01

    We study the critical behavior of Bose-Einstein condensation in the second band of a bipartite optical square lattice in a renormalization group framework at one-loop order. Within our field theoretical representation of the system, we approximate the system as a two-component Bose gas in three dimensions. We demonstrate that the system is in a different universality class than the previously studied condensation in a frustrated triangular lattice due to an additional Umklapp scattering term, which stabilizes the chiral superfluid order at low temperatures. We derive the renormalization group flow of the system and show that this order persists in the low energy limit. Furthermore, the renormalization flow suggests that the phase transition from the thermal phase to the chiral superfluid state is first order.

  1. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands.

    PubMed Central

    Richardson, J; Thomas, K A; Rubin, B H; Richardson, D C

    1975-01-01

    An electron density map at 3 angstrom resolution has been calculated for Cu2+, Zn2+ superoxide dismutase from bovine erythrocytes, and the course of the main chain has been traced. The dominant structural feature is an 8-stranded barrel of antiparallel beta-pleated sheet. There is one very short helical section and two long loops of non-repetitive structure. The Cu and Zn are bound between the loops and one side of the beta barrel and are about 6 Angstrom apart, with a common histidine ligand. The Cu has four histidine ligands in a somewhat distorted square plane, and the Zn has three histidines and an aspartate in approximately tetrahedral arrangement. The two coppers of a dimer are about 34 Angstrom apart. The two subunits have essentially the same conformation and have an extensive contact area that mainly involves hydrophobic side chain interactions. The overall folding pattern of the polypeptide chain is very similar to that of an immunoglobulin domain. Images PMID:1055410

  2. Clinical and optical intraocular performance of rotationally asymmetric multifocal IOL plate-haptic design versus C-loop haptic design.

    PubMed

    Alió, Jorge L; Plaza-Puche, Ana B; Javaloy, Jaime; Ayala, María José; Vega-Estrada, Alfredo

    2013-04-01

    To compare the visual and intraocular optical quality outcomes with different designs of the refractive rotationally asymmetric multifocal intraocular lens (MFIOL) (Lentis Mplus; Oculentis GmbH, Berlin, Germany) with or without capsular tension ring (CTR) implantation. One hundred thirty-five consecutive eyes of 78 patients with cataract (ages 36 to 82 years) were divided into three groups: 43 eyes implanted with the C-Loop haptic design without CTR (C-Loop haptic only group); 47 eyes implanted with the C-Loop haptic design with CTR (C-Loop haptic with CTR group); and 45 eyes implanted with the plate-haptic design (plate-haptic group). Visual acuity, contrast sensitivity, defocus curve, and ocular and intraocular optical quality were evaluated at 3 months postoperatively. Significant differences in the postoperative sphere were found (P = .01), with a more myopic postoperative refraction for the C-Loop haptic only group. No significant differences were detected in photopic and scotopic contrast sensitivity among groups (P ⩾ .05). Significantly better visual acuities were present in the C-Loop haptic with CTR group for the defocus levels of -2.0, -1.5, -1.0, and -0.50 D (P ⩽.03). Statistically significant differences among groups were found in total intraocular root mean square (RMS), high-order intraocular RMS, and intraocular coma-like RMS aberrations (P ⩽.04), with lower values from the plate-haptic group. The plate-haptic design and the C-Loop haptic design with CTR implantation both allow good visual rehabilitation. However, better refractive predictability and intraocular optical quality was obtained with the plate-haptic design without CTR implantation. The plate-haptic design seems to be a better design to support rotational asymmetric MFIOL optics. Copyright 2013, SLACK Incorporated.

  3. Construction of a Magnetic Induction Antenna to Detect Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Fernald, Trevr; Bowers, Alexis; Cossel, Raquel; McIntyre, Maxwell; Reid, John, , Dr.

    2016-03-01

    An antenna was designed and built to detect magnetic field changes in the form of Schumann resonances. This was done in hopes of eventually being able to correlate data with sprite occurrence. A square loop was constructed with one meter sides using 2x4s and was wrapped with six hundred turns of 0.2mm thick copper wire. The antenna was tested in a rural location in northern Pennsylvania, chosen for its isolation and expectations of low electrical noise. Detected signals were filtered using a band-pass filter and observed using an oscilloscope. The signal had too much interference to make it possible to see any unmistakably Schumann character, but a Fourier Transform function made it possible to see the contribution of each component frequency to the overall interference. This function revealed possible presence of Schumann character in the signal, indicating mostly 2nd and 3rd mode Schumann frequencies. The fundamental mode may have been observed as well, but was less consistent and pronounced than the other frequencies. The performance of the filter was somewhat questionable and electrical noise was evident, so further experimentation is necessary.

  4. Search for the rare decay B→Kνν¯

    NASA Astrophysics Data System (ADS)

    Del Amo Sanchez, P.; Lees, J. P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D. N.; Hooberman, B.; Kerth, L. T.; Kolomensky, Yu. G.; Lynch, G.; Osipenkov, I. L.; Tanabe, T.; Hawkes, C. M.; Watson, A. T.; Koch, H.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Khan, A.; Randle-Conde, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Martin, E. C.; Stoker, D. P.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; Eisner, A. M.; Heusch, C. A.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.; Winstrom, L. O.; Cheng, C. H.; Doll, D. A.; Echenard, B.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.; Andreassen, R.; Dubrovin, M. S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Jasper, H.; Karbach, T. M.; Merkel, J.; Petzold, A.; Spaan, B.; Wacker, K.; Kobel, M. J.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Watson, J. E.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cecchi, A.; Cibinetto, G.; Fioravanti, E.; Franchini, P.; Luppi, E.; Munerato, M.; Negrini, M.; Petrella, A.; Piemontese, L.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Pacetti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Adametz, A.; Marks, J.; Uwer, U.; Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.; Volk, A.; Dauncey, P. D.; Tibbetts, M.; Behera, P. K.; Mallik, U.; Chen, C.; Cochran, J.; Crawley, H. B.; Dong, L.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.; Gao, Y. Y.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Firmino da Costa, J.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Perez, A.; Roudeau, P.; Schune, M. H.; Serrano, J.; Sordini, V.; Stocchi, A.; Wang, L.; Wormser, G.; Lange, D. J.; Wright, D. M.; Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Paramesvaran, S.; Wren, A. C.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; West, T. J.; Anderson, J.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Simi, G.; Tuggle, J. M.; Dallapiccola, C.; Salvati, E.; Cowan, R.; Dujmic, D.; Fisher, P. H.; Sciolla, G.; Zhao, M.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.; Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; de Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Raven, G.; Snoek, H. L.; Jessop, C. P.; Knoepfel, K. J.; Losecco, J. M.; Wang, W. F.; Corwin, L. A.; Honscheid, K.; Kass, R.; Morris, J. P.; Blount, N. L.; Brau, J.; Frey, R.; Igonkina, O.; Kolb, J. A.; Rahmat, R.; Sinev, N. B.; Strom, D.; Strube, J.; Torrence, E.; Castelli, G.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Ben-Haim, E.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Prendki, J.; Sitt, S.; Biasini, M.; Manoni, E.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Paoloni, E.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Baracchini, E.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Mazzoni, M. A.; Piredda, G.; Renga, F.; Hartmann, T.; Leddig, T.; Schröder, H.; Waldi, R.; Adye, T.; Franek, B.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Zito, M.; Allen, M. T.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Franco Sevilla, M.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; Macfarlane, D. B.; Marsiske, H.; Muller, D. R.; Neal, H.; Nelson, S.; O'Grady, C. P.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Schwiening, J.; Snyder, A.; Su, D.; Sullivan, M. K.; Sun, S.; Suzuki, K.; Thompson, J. M.; Va'Vra, J.; Wagner, A. P.; Weaver, M.; West, C. A.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.; Chen, X. R.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Edwards, A. J.; Miyashita, T. S.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Pan, B.; Saeed, M. A.; Zain, S. B.; Guttman, N.; Soffer, A.; Lund, P.; Spanier, S. M.; Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Pelliccioni, M.; Bomben, M.; Lanceri, L.; Vitale, L.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D. A.; Oyanguren, A.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; Hamano, K.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Flood, K. T.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.

    2010-12-01

    We present a search for the rare decays B+→K+νν¯ and B0→K0νν¯ using 459×106 BB¯ pairs collected with the BABAR detector at the SLAC National Accelerator Laboratory. Flavor-changing neutral-current decays such as these are forbidden at tree level but can occur through one-loop diagrams in the standard model (SM), with possible contributions from new physics at the same order. The presence of two neutrinos in the final state makes identification of signal events challenging, so reconstruction in the semileptonic decay channels B→D(*)lν of the B meson recoiling from the signal B is used to suppress backgrounds. We set an upper limit at the 90% confidence level (CL) of 1.3×10-5 on the total branching fraction for B+→K+νν¯, and 5.6×10-5 for B0→K0νν¯. We additionally report 90% CL upper limits on partial branching fractions in two ranges of dineutrino mass squared for B+→K+νν¯.

  5. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    NASA Technical Reports Server (NTRS)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  6. Can Flare Loops Contribute to the White-light Emission of Stellar Superflares?

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Shibata, K.

    2018-06-01

    Since the discovery of stellar superflares by the Kepler satellite, these extremely energetic events have been studied in analogy to solar flares. Their white-light (WL) continuum emission has been interpreted as being produced by heated ribbons. In this paper, we compute the WL emission from overlying flare loops depending on their density and temperature and show that, under conditions expected during superflares, the continuum brightening due to extended loop arcades can significantly contribute to stellar flux detected by Kepler. This requires electron densities in the loops of 1012‑1013 cm‑3 or higher. We show that such densities, exceeding those typically present in solar-flare loops, can be reached on M-dwarf and solar-type superflare stars with large starspots and much stronger magnetic fields. Quite importantly, the WL radiation of loops is not very sensitive to their temperature and thus both cool as well as hot loops may contribute. We show that the WL intensity emergent from optically thin loops is lower than the blackbody radiation from flare ribbons, but the contribution of loops to total stellar flux can be quite important due to their significant emitting areas. This new scenario for interpreting superflare emission suggests that the observed WL flux is due to a mixture of the ribbon and loop radiation and can be even loop-dominated during the gradual phase of superflares.

  7. Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.

    PubMed

    Piatrou, Piotr; Gilles, Luc

    2005-02-20

    Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.

  8. Fully probabilistic control design in an adaptive critic framework.

    PubMed

    Herzallah, Randa; Kárný, Miroslav

    2011-12-01

    Optimal stochastic controller pushes the closed-loop behavior as close as possible to the desired one. The fully probabilistic design (FPD) uses probabilistic description of the desired closed loop and minimizes Kullback-Leibler divergence of the closed-loop description to the desired one. Practical exploitation of the fully probabilistic design control theory continues to be hindered by the computational complexities involved in numerically solving the associated stochastic dynamic programming problem; in particular, very hard multivariate integration and an approximate interpolation of the involved multivariate functions. This paper proposes a new fully probabilistic control algorithm that uses the adaptive critic methods to circumvent the need for explicitly evaluating the optimal value function, thereby dramatically reducing computational requirements. This is a main contribution of this paper. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Worldsheet scattering in AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Sundin, Per; Wulff, Linus

    2013-07-01

    We confront the recently proposed exact S-matrices for AdS 3/ CFT 2 with direct worldsheet calculations. Utilizing the BMN and Near Flat Space (NFS) expansions for strings on AdS 3 × S 3 × S 3 × S 1 and AdS 3 × S 3 × T 4 we compute both tree-level and one-loop scattering amplitudes. Up to some minor issues we find nice agreement in the tree-level sector. At the one-loop level however we find that certain non-zero tree-level processes, which are not visible in the exact solution, contribute, via the optical theorem, and give an apparent mismatch for certain amplitudes. Furthermore we find that a proposed one-loop modification of the dressing phase correctly reproduces the worldsheet calculation while the standard Hernandez-Lopez phase does not. We also compute several massless to massless processes.

  10. Poisson equation for the three-loop ladder diagram in string theory at genus one

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2016-11-01

    The three-loop ladder diagram is a graph with six links and four cubic vertices that contributes to the D12ℛ4 amplitude at genus one in type II string theory. The vertices represent the insertion points of vertex operators on the toroidal worldsheet and the links represent scalar Green functions connecting them. By using the properties of the Green function and manipulating the various expressions, we obtain a modular invariant Poisson equation satisfied by this diagram, with source terms involving one-, two- and three-loop diagrams. Unlike the source terms in the Poisson equations for diagrams at lower orders in the momentum expansion or the Mercedes diagram, a particular source term involves a five-point function containing a holomorphic and a antiholomorphic worldsheet derivative acting on different Green functions. We also obtain simple equalities between topologically distinct diagrams, and consider some elementary examples.

  11. Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Höche, Stefan; Prestel, Stefan

    We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.

  12. Stabilization of a system with saturating, non-monotone hysteresis and frequency dependent power losses by a PD controller

    NASA Astrophysics Data System (ADS)

    Ekanayake, D. B.; Iyer, R. V.

    2015-02-01

    We prove the closed loop stability of a PD controller for certain systems with saturating, non-monotone hysteresis and frequency dependent power losses. Most controllers use inverse compensators to cancel out actuator hysteresis nonlinearity. We show that we can achieve stability of the closed-loop system without an explicit inverse computation (using least squares minimization or otherwise).

  13. Reformulations of Yang–Mills theories with space–time tensor fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zhi-Qiang, E-mail: gzhqedu@gmail.com

    2016-01-15

    We provide the reformulations of Yang–Mills theories in terms of gauge invariant metric-like variables in three and four dimensions. The reformulations are used to analyze the dimension two gluon condensate and give gauge invariant descriptions of gluon polarization. In three dimensions, we obtain a non-zero dimension two gluon condensate by one loop computation, whose value is similar to the square of photon mass in the Schwinger model. In four dimensions, we obtain a Lagrangian with the dual property, which shares the similar but different property with the dual superconductor scenario. We also make discussions on the effectiveness of one loopmore » approximation.« less

  14. Exploring the limits of cryospectroscopy: Least-squares based approaches for analyzing the self-association of HCl

    NASA Astrophysics Data System (ADS)

    De Beuckeleer, Liene I.; Herrebout, Wouter A.

    2016-02-01

    To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before.

  15. Soft thermal contributions to 3-loop gauge coupling

    NASA Astrophysics Data System (ADS)

    Laine, M.; Schicho, P.; Schröder, Y.

    2018-05-01

    We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O({α}s^{3/2}) . We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.

  16. Least Squares Computations in Science and Engineering

    DTIC Science & Technology

    1994-02-01

    iterative least squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise , direct...optimization methods. Generally, the problems are accompanied by constraints, such as bound constraints, and the observations are corrupted by noise . The...engineering. This effort has involved interaction with researchers in closed-loop active noise (vibration) control at Phillips Air Force Laboratory

  17. Some finite terms from ladder diagrams in three and four loop maximal supergravity

    NASA Astrophysics Data System (ADS)

    Basu, Anirban

    2015-10-01

    We consider the finite part of the leading local interactions in the low energy expansion of the four graviton amplitude from the ladder skeleton diagrams in maximal supergravity on T 2, at three and four loops. At three loops, we express the {D}8{{R}}4 and {D}10{{R}}4 amplitudes as integrals over the moduli space of an underlying auxiliary geometry. These amplitudes are evaluated exactly for special values of the the moduli of the auxiliary geometry, where the integrand simplifies. We also perform a similar analysis for the {D}8{{R}}4 amplitude at four loops that arise from the ladder skeleton diagrams for a special value of a parameter in the moduli space of the auxiliary geometry. While the dependence of the amplitudes on the volume of the T 2 is very simple, the dependence on the complex structure of the T 2 is quite intricate. In some of the cases, the amplitude consists of terms each of which factorizes into a product of two {SL}(2,{{Z}}) invariant modular forms. While one of the factors is a non-holomorphic Eisenstein series, the other factor splits into a sum of modular forms each of which satisfies a Poisson equation on moduli space with source terms that are bilinear in the Eisenstein series. This leads to several possible perturbative contributions unto genus 5 in type II string theory on S1. Unlike the one and two loop supergravity analysis, these amplitudes also receive non-perturbative contributions from bound states of three D-(anti)instantons in the IIB theory.

  18. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  19. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.

    PubMed

    Du, Yu-Fan; He, Xin; Lan, Ning

    2010-01-01

    A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.

  20. The effect of an air knot on surgical knot integrity.

    PubMed

    Shatkin-Margolis, Abigail; Kow, Nathan; Patonai, Nicolas; Boin, Michael; Muffly, Tyler M

    2015-01-01

    Surgical trainees may tie air knots, which have a questionable tensile strength and rate of untying. The purpose of this study was to determine the effect of an air knot on knot integrity. The 5 suture materials tested were 0-0 gauge coated polyethylene, polyglyconate, glycolide/lactide, polypropylene, and silk. The suture was tied between 2 hex screws 50 mm on center. The strands were tied using 5 square throws, and the knot tails were cut at 3-mm length. To create a standardized air knot, a round common nail measuring 3 mm in diameter was inserted between throws before tying square throw #3. The suture loop was positioned around the upper and lower hooks of the tensiometer so the location of the knot was roughly equidistant from the hooks. Ultimately, either the loop broke or the knot slipped. At that time, the peak tensile force as well as the outcome of the knot were recorded. A total of 480 knots were tied. The presence of an air knot significantly lowered the tension at knot failure in the glycolide/lactide (P = 0.0003), polypropylene (P = 0.0005), and silk (P = 0.0001) knot configurations. Air knots had the same integrity as surgical knots when coated polyethylene and polyglyconate suture were used. Linear regression was performed and identified both suture material (P < 0.0001) and presence of an air knot (P < 0.0001) to be independently associated with a lower tension at failure. Under laboratory conditions, an air knot may contribute to a lower tensile strength at failure for certain suture materials.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong

    Recently, a general result for evaluating the path integral at one loop was obtained in the form of the Universal One-Loop Effective Action. It may be used to derive effective field theory operators of dimensions up to six, by evaluating the traces of matrices in this expression, with the mass dependence encapsulated in the universal coefficients. In this study we show that it can account for loops of mixed heavy–light particles in the matching procedure. Our prescription for computing these mixed contributions to the Wilson coefficients is conceptually simple. Moreover it has the advantage of maintaining the universal structure ofmore » the effective action, which we illustrate using the example of integrating out a heavy electroweak triplet scalar coupling to a light Higgs doublet. Finally we also identify new structures that were previously neglected in the universal results.« less

  2. Loop versus end colostomy reversal: has anything changed?

    PubMed

    Bruns, B R; DuBose, J; Pasley, J; Kheirbek, T; Chouliaras, K; Riggle, A; Frank, M K; Phelan, H A; Holena, D; Inaba, K; Diaz, J; Scalea, T M

    2015-10-01

    Though primary repair of colon injuries is preferred, certain injury patterns require colostomy creation. Colostomy reversal is associated with significant morbidity and healthcare cost. Complication rates may be influenced by technique of diversion (loop vs. end colostomy), though this remains ill-defined. We hypothesized that reversal of loop colostomies is associated with fewer complications than end colostomies. This is a retrospective, multi-institutional study (four, level-1 trauma centers) of patients undergoing colostomy takedown for trauma during the time period 1/2006-12/2012. Data were collected from index trauma admission and subsequent admission for reversal and included demographics and complications of reversal. Student's t test was used to compare continuous variables against loop versus end colostomy. Discrete variables were compared against both groups using Chi-squared tests. Over the 6-year study period, 218 patients underwent colostomy takedown after trauma with a mean age of 30; 190 (87%) were male, 162 (74%) had penetrating injury as their indication for colostomy, and 98 (45%) experienced at least one complication. Patients in the end colostomy group (n = 160) were more likely to require midline laparotomy (145 vs. 18, p < 0.001), had greater intra-operative blood loss (260.7 vs. 99.4 mL, p < 0.001), had greater hospital length of stay (8.4 vs. 5.5 days, p < 0.001), and had more overall complications (81 vs. 17, p = 0.005) than patients managed with loop colostomy (n = 58). Local takedown of a loop colostomy is safe and leads to shorter hospital stays, less intra-operative blood loss, and fewer complications when compared to end colostomy.

  3. Magnetization reversal in epitaxial exchange-biased IrMn/FeGa bilayers with anisotropy geometries controlled by oblique deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Zhan, Qingfeng; Zuo, Zhenghu; Yang, Huali; Zhang, Xiaoshan; Dai, Guohong; Liu, Yiwei; Yu, Ying; Wang, Jun; Wang, Baomin; Li, Run-Wei

    2015-05-01

    We fabricated epitaxial exchange biased (EB) IrMn/FeGa bilayers by oblique deposition and systematically investigated their magnetization reversal. Two different configurations with the uniaxial magnetic anisotropy Ku parallel and perpendicular to the unidirectional anisotropy Ke b were obtained by controlling the orientation of the incident FeGa beam during deposition. A large ratio of Ku/Ke b was obtained by obliquely depositing the FeGa layer to achieve a large Ku while reducing the IrMn thickness to obtain a small Ke b. Besides the previously reported square loops, conventional asymmetrically shaped loops, and one-sided and two-sided two-step loops, unusual asymmetrically shaped loops with a three-step magnetic transition for the descending branch and a two-step transition for the ascending branch and biased three-step loops were observed at various field orientations in the films of both IrMn (tIrMn=1.5 to 20 nm)/FeGa (10 nm) with Ku⊥ Ke b and IrMn (tIrMn≤2 nm)/FeGa (10 nm) with Ku|| Ke b . Considering the geometries of anisotropies, a model based on domain wall nucleation and propagation was employed to quantitatively describe the angular dependent behaviors of IrMn/FeGa bilayers. The biased three-step magnetic switching was predicted to take place when | Ku|> ɛ90°+Ke b , where ɛ90° is the 90° domain wall nucleation energy, and the EB leads to the appearance of the unusual asymmetrically shaped hysteresis loops.

  4. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    PubMed

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  5. Technically natural vacuum energy at the tip of a supersymmetric teardrop

    NASA Astrophysics Data System (ADS)

    Williams, Matthew

    2014-04-01

    A minimal supersymmetric braneworld model is presented which has (i) zero classical four-dimensional vacuum curvature, despite the large naive vacuum energy due to contributions from Standard Model particles and (ii) one-(bulk)-loop quantum corrections to the vacuum energy with a size set by the radius of the extra-dimensional spheroid. These corrections are technically natural because a Bogomol'nyi-Prasad-Sommerfield-like relation between the brane tension and R charge—which would have preserved (half of) the bulk supersymmetry—is violated by the requirement that the stabilizing R-symmetry gauge flux be quantized. The extra-dimensional geometry is similar to previous rugby-ball geometries, but is simpler in that there is only one brane and so fewer free parameters. Although the sign of the renormalized vacuum energy ends up being the unphysical one for this model (in the limit considered here, where the massive bulk loop is the leading contribution), it serves as an illustrative example of the relevant physics.

  6. Mean-square angle-of-arrival difference between two counter-propagating spherical waves in the presence of atmospheric turbulence.

    PubMed

    Chen, Chunyi; Yang, Huamin; Tong, Shoufeng; Lou, Yan

    2015-09-21

    The mean-square angle-of-arrival (AOA) difference between two counter-propagating spherical waves in atmospheric turbulence is theoretically formulated. Closed-form expressions for the path weighting functions are obtained. It is found that the diffraction and refraction effects of turbulent cells make negative and positive contributions to the mean-square AOA difference, respectively, and the turbulent cells located at the midpoint of the propagation path have no contributions to the mean-square AOA difference. If the mean-square AOA difference is separated into the refraction and diffraction parts, the refraction part always dominates the diffraction one, and the ratio of the diffraction part to the refraction one is never larger than 0.5 for any turbulence spectrum. Based on the expressions for the mean-square AOA difference, formulae for the correlation coefficient between the angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are derived. Numerical calculations are carried out by considering that the turbulence spectrum has no path dependence. It is shown that the mean-square AOA difference always approximates to the variance of AOA fluctuations. It is found that the correlation coefficient between the angles of arrival in the x or y direction of two counter-propagating spherical waves ranges from 0.46 to 0.5, implying that the instantaneous angles of arrival of two counter-propagating spherical waves in atmospheric turbulence are far from being perfectly correlated even when the turbulence spectrum does not vary along the path.

  7. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2015-03-17

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Nonequilibrium phase transitions in isotropic Ashkin-Teller model

    NASA Astrophysics Data System (ADS)

    Akıncı, Ümit

    2017-03-01

    Dynamic behavior of an isotropic Ashkin-Teller model in the presence of a periodically oscillating magnetic field has been analyzed by means of the mean field approximation. The dynamic equation of motion has been constructed with the help of a Glauber type stochastic process and solved for a square lattice. After defining the possible dynamical phases of the system, phase diagrams have been given and the behavior of the hysteresis loops has been investigated in detail. The hysteresis loop for specific order parameter of isotropic Ashkin-Teller model has been defined and characteristics of this loop in different dynamical phases have been given.

  9. Contribution of spontaneous polarization and its fluctuations to refraction of light in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Markovin, P. A.; Trepakov, V. A.; Tagantsev, A. K.; Deineka, A.; Andreev, D. A.

    2016-01-01

    The expressions for the spontaneous polar contribution δ n i s to the principal values of the refractive index due to the quadratic electro-optic effect in ferroelectrics have been considered within the phenomenological approach taking into account the polarization fluctuations. A method has been proposed for calculating the magnitude and temperature dependence of the root-mean-square fluctuations of the polarization (short-range local polar order) P sh = < P fl 2 >1/2 below the ferroelectric transition temperature T c from temperature changes in the spontaneous polar contribution δ n i s ( T) if the average spontaneous polarization P s = < P> characterizing the long-range order is determined from independent measurements (for example, from dielectric hysteresis loops). For the case of isotropic fluctuations, the proposed method has made it possible to calculate P sh and P s only from refractometric measurements. It has been shown that, upon interferometric measurements, the method developed in this work allows calculating P sh and P s directly from the measured temperature and electric-field changes in the relative optical path (the specific optical retardation) of the light.

  10. Scalar Contribution to the Graviton Self-Energy During Inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sohyun

    2012-01-01

    We use dimensional regularization to evaluate the one loop contribution to the graviton self-energy from a massless, minimally coupled scalar on a locally de Sitter background. For noncoincident points our result agrees with the stress tensor correlators obtained recently by Perez-Nadal, Roura and Verdaguer. We absorb the ultraviolet divergences using the R 2 and C 2 counterterms first derived by ’t Hooft and Veltman, and we take the D = 4 limit of the finite remainder. The renormalized result is expressed as the sum of two transverse, 4th order differential operators acting on nonlocal, de Sitter invariant structure functions. Inmore » this form it can be used to quantum-correct the linearized Einstein equations so that one can study how the inflationary production of infrared scalars affects the propagation of dynamical gravitons and the force of gravity. We have seen that they have no effect on the propagation of dynamical gravitons. Our computation motivates a conjecture for the first correction to the vacuum state wave functional of gravitons. We comment as well on performing the same analysis for the more interesting contribution from inflationary gravitons, and on inferring one loop corrections to the force of gravity.« less

  11. Comparisons of a Constrained Least Squares Model versus Human-in-the-Loop for Spectral Unmixing to Determine Material Type of GEO Debris

    NASA Technical Reports Server (NTRS)

    Abercromby, Kira J.; Rapp, Jason; Bedard, Donald; Seitzer, Patrick; Cardona, Tommaso; Cowardin, Heather; Barker, Ed; Lederer, Susan

    2013-01-01

    Spectral reflectance data through the visible regime was collected at Las Campanas Observatory in Chile using an imaging spectrograph on one of the twin 6.5-m Magellan telescopes. The data were obtained on 1-2 May 2012 on the 'Landon Clay' telescope with the LDSS3 (Low Dispersion Survey Spectrograph 3). Five pieces of Geosynchronous Orbit (GEO) or near-GEO debris were identified and observed with an exposure time of 30 seconds on average. In addition, laboratory spectral reflectance data was collected using an Analytical Spectral Device (ASD) field spectrometer at California Polytechnic State University (Cal Poly) in San Luis Obispo on several typical common spacecraft materials including solar cells, circuit boards, various Kapton materials used for multi-layer insulation, and various paints. The remotely collected data and the laboratory-acquired data were then incorporated in a newly developed model that uses a constrained least squares method to unmix the spectrum in specific material components. The results of this model are compared to the previous method of a human-in-the-loop (considered here the traditional method) that identifies possible material components by varying the materials and percentages until a spectral match is obtained. The traditional model was found to match the remotely collected spectral data after it had been divided by the continuum to remove the space weathering effects, or a reddening of the materials. The constrained least-squares model also used the de-reddened spectra as inputs and the results were consistent with those obtained through the traditional method. For comparison, a first-order examination of including reddening effects into the constrained least-squares model will be explored and comparisons to the remotely collected data will be examined. The identification of each object s suspected material component will be discussed herein.

  12. Comparisons of a Constrained Least Squares Model Versus Human-in-the-Loop for Spectral Unmixing to Determine Material Type of GEO Debris

    NASA Technical Reports Server (NTRS)

    Rapp, Jason; Abercromby, Kira J.; Bedard, Donald; Seitzer, Patrick; Cardona, Tommaso; Cowardin, Heather; Barker, Ed; Lederer, Susan

    2012-01-01

    Spectral reflectance data through the visible regime was collected at Las Campanas Observatory in Chile using an imaging spectrograph on one of the twin 6.5-m Magellan telescopes. The data were obtained on 1-2 May 2012 on the 'Landon Clay' telescope with the LDSS3 (Low Dispersion Survey Spectrograph 3). Five pieces of Geosynchronous Orbit (GEO) or near-GEO debris were identified and observed with an exposure time of 30 seconds on average. In addition, laboratory spectral reflectance data was collected using an Analytical Spectral Device (ASD) field spectrometer at California Polytechnic State University in San Luis Obispo on several typical common spacecraft materials including solar cells, circuit boards, various Kapton materials used for multi-layer insulation, and various paints. The remotely collected data and the laboratory-acquired data were then incorporated in a newly developed model that uses a constrained least squares method to unmix the spectrum in specific material components. The results of this model are compared to the previous method of a human-in-the-loop (considered here the traditional method) that identifies possible material components by varying the materials and percentages until a spectral match is obtained. The traditional model was found to match the remotely collected spectral data after it had been divided by the continuum to remove the space weathering effects, or a "reddening" of the materials. The constrained least-squares model also used the de-reddened spectra as inputs and the results were consistent with those obtained through the traditional method. For comparison, a first-order examination of including reddening effects into the constrained least-squares model will be explored and comparisons to the remotely collected data will be examined. The identification of each object's suspected material component will be discussed herein.

  13. Enhanced Performance Controller Design for Stochastic Systems by Adding Extra State Estimation onto the Existing Closed Loop Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less

  14. Sum-of-Squares-Based Region of Attraction Analysis for Gain-Scheduled Three-Loop Autopilot

    NASA Astrophysics Data System (ADS)

    Seo, Min-Won; Kwon, Hyuck-Hoon; Choi, Han-Lim

    2018-04-01

    A conventional method of designing a missile autopilot is to linearize the original nonlinear dynamics at several trim points, then to determine linear controllers for each linearized model, and finally implement gain-scheduling technique. The validation of such a controller is often based on linear system analysis for the linear closed-loop system at the trim conditions. Although this type of gain-scheduled linear autopilot works well in practice, validation based solely on linear analysis may not be sufficient to fully characterize the closed-loop system especially when the aerodynamic coefficients exhibit substantial nonlinearity with respect to the flight condition. The purpose of this paper is to present a methodology for analyzing the stability of a gain-scheduled controller in a setting close to the original nonlinear setting. The method is based on sum-of-squares (SOS) optimization that can be used to characterize the region of attraction of a polynomial system by solving convex optimization problems. The applicability of the proposed SOS-based methodology is verified on a short-period autopilot of a skid-to-turn missile.

  15. Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares

    NASA Technical Reports Server (NTRS)

    Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.

    2012-01-01

    A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.

  16. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes.

    PubMed

    Mank, Nils N; Berghoff, Bork A; Klug, Gabriele

    2013-03-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.

  17. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes

    PubMed Central

    Mank, Nils N.; Berghoff, Bork A.; Klug, Gabriele

    2013-01-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail. PMID:23392242

  18. The role of higher-order terms in perturbation approaches to the monomer and\\xA0bonding contributions in a SAFT-type equation of state for square-well chain\\xA0fluids

    NASA Astrophysics Data System (ADS)

    Solana, J. R.; Akhouri, B. P.

    2018-07-01

    A perturbation theory for square-well chain fluids is developed within the scheme of the (generalised) Wertheim thermodynamic perturbation theory. The theory is based on the Pavlyukhin parametrisations [Y. T. Pavlyukhin, J. Struct. Chem. 53, 476 (2012)] of their simulation data for the first four perturbation terms in the high temperature expansion of the Helmholtz free energy of square-well monomer fluids combined with a second-order perturbation theory for the contact value of the radial distribution function of the square-well monomer fluid that enters into bonding contribution. To obtain the latter perturbation terms, we have performed computer simulations in the hard-sphere reference system. The importance of the perturbation terms beyond the second-order one for the monomer fluid and of the approximations of different orders in the bonding contribution for the chain fluids in the predicted equation of state, excess energy and liquid-vapour coexistence densities is analysed.

  19. Two-loop hard-thermal-loop thermodynamics with quarks

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-08-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for Nf=2 and with exact numerical results obtained in the large-Nf limit.

  20. The Kroll-Lee-Zumino Model and Pion Form Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, C. A.; Loewe, M.

    2010-08-04

    At the one loop level, we make use of the renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino (KLZ) in order to compute the vertex corrections to the tree-level, Vector Meson Dominance (VMD) electromagnetic pion form factor. This result, together with the one-loop vacuum polarization contribution, implies an electromagnetic pion form factor which is in outstanding agreement with data in the whole range of accessible momentum transfers in the space-like region. The time-like form factor, which reproduces the Gounaris-Sakurai formula at and near the rho-meson peak, remains unaffected by the vertex correction at order O(g{sup 2}). Wemore » also use the KLZ model to compute the pion scalar radius at the one loop level, finding S = 0.40 fm{sup 2}. From this value we find for the low energy constant of chiral perturbation theory l{sub 4} = 3.4.« less

  1. Vacuum instabilities with a wrong-sign Higgs-gluon-gluon amplitude

    NASA Astrophysics Data System (ADS)

    Reece, Matthew

    2013-04-01

    The recently discovered 125 GeV boson appears very similar to a Standard Model (SM) Higgs, but with data favoring an enhanced h → γγ rate. A number of groups have found that fits would allow (or, less so after the latest updates, prefer) that the ht\\bar {t} coupling have the opposite sign. This can be given meaning in the context of an electroweak chiral Lagrangian, but it might also be interpreted to mean that a new colored and charged particle runs in loops and reinforces the W-loop contribution to hFF, while also producing the opposite-sign hGG amplitude to that generated by integrating out the top. Due to a correlation in sign of the new physics amplitudes, when the SM hFF coupling is enhanced the hGG coupling is decreased. Thus, in order to not suppress the rate of h → WW and h → ZZ, which appear to be approximately SM-like, one would need the loop to ‘overshoot’, not only canceling the top contribution but producing an opposite-sign hGG vertex of about the same magnitude as that in the SM. We argue that most such explanations have severe problems with fine-tuning and, more importantly, vacuum stability. In particular, the case of stop loops producing an opposite-sign hGG vertex of the same size as the SM one is ruled out by a combination of vacuum decay bounds and Large Electron-Positron Collider (LEP) constraints. We also show that scenarios with a sign flip from loops of color octet charged scalars or new fermionic states are highly constrained.

  2. Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope.

    PubMed

    Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen

    2016-06-10

    For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00  deg/h to 0.62  deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.

  3. Analysis and modeling of a family of two-transistor parallel inverters

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1973-01-01

    A family of five static dc-to-square-wave inverters, each employing a square-loop magnetic core in conjunction with two switching transistors, is analyzed using piecewise-linear models for the nonlinear characteristics of the transistors, diodes, and saturable-core devices. Four of the inverters are analyzed in detail for the first time. These analyses show that, by proper choice of a frame of reference, each of the five quite differently appearing inverter circuits can be described by a common equivalent circuit. This equivalent circuit consists of a five-segment nonlinear resistor, a nonlinear saturable reactor, and a linear capacitor. Thus, by proper interpretation and identification of the parameters in the different circuits, the results of a detailed solution for one of the inverter circuits provide similar information and insight into the local and global behavior of each inverter in the family.

  4. A reconfigurable frequency-selective surface for dual-mode multi-band filtering applications

    NASA Astrophysics Data System (ADS)

    Majidzadeh, Maryam; Ghobadi, Changiz; Nourinia, Javad

    2017-03-01

    A reconfigurable single-layer frequency-selective surface (FSS) with dual-mode multi-band modes of operation is presented. The proposed structure is printed on a compact 10 × 10 mm2 FR4 substrate with the thickness of 1.6 mm. A simple square loop is printed on the front side while another one along with two defected vertical arms is deployed on the backside. To realise the reconfiguration, two pin diodes are embedded on the backside square loop. Suitable insertion of conductive elements along with pin diodes yields in dual-mode multi-band rejection of applicable in service frequency ranges. The first operating mode due to diodes' 'ON' state provides rejection of 2.4 GHz WLAN in 2-3 GHz, 5.2/5.8 GHz WLAN and X band in 5-12 GHz, and a part of Ku band in 13.9-16 GHz. In diodes 'OFF' state, the FSS blocks WLAN in 4-7.3 GHz, X band in 8-12.7 GHz as well as part of Ku band in 13.7-16.7 GHz. As well, high attenuation of incident waves is observed by a high shielding effectiveness (SE) in the blocked frequency bands. Also, a stable behaviour against different polarisations and angles of incidence is obtained. Comprehensive studies are conducted on a fabricated prototype to assess its performance from which encouraging results are obtained.

  5. Exploring the limits of cryospectroscopy: Least-squares based approaches for analyzing the self-association of HCl.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-05

    To rationalize the concentration dependent behavior observed for a large spectral data set of HCl recorded in liquid argon, least-squares based numerical methods are developed and validated. In these methods, for each wavenumber a polynomial is used to mimic the relation between monomer concentrations and measured absorbances. Least-squares fitting of higher degree polynomials tends to overfit and thus leads to compensation effects where a contribution due to one species is compensated for by a negative contribution of another. The compensation effects are corrected for by carefully analyzing, using AIC and BIC information criteria, the differences observed between consecutive fittings when the degree of the polynomial model is systematically increased, and by introducing constraints prohibiting negative absorbances to occur for the monomer or for one of the oligomers. The method developed should allow other, more complicated self-associating systems to be analyzed with a much higher accuracy than before. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Two-loop renormalization of the quark propagator in the light-cone gauge

    NASA Astrophysics Data System (ADS)

    Williams, James Daniel

    The divergent parts of the five two-loop quark self- energy diagrams of quantum chromodynamics are evaluated in the noncovariant light-cone gauge. Most of the Feynman integrals are computed by means of the powerful matrix integration method, originally developed for the author's Master's thesis. From the results of the integrations, it is shown how to renormalize the quark mass and wave function in such a way that the effective quark propagator is rendered finite at two-loop order. The required counterterms turn out to be local functions of the quark momentum, due to cancellation of the nonlocal divergent parts of the two-loop integrals with equal and opposite contributions from one-loop counterterm subtraction diagrams. The final form of the counterterms is seen to be consistent with the renormalization framework proposed by Bassetto, Dalbosco, and Soldati, in which all noncovariant divergences are absorbed into the wave function normalizations. It also turns out that the mass renormalization d m is the same in the light-cone gauge as it is in a general covariant gauge, at least up to two-loop order.

  7. Plasticity of 150-loop in influenza neuraminidase explored by Hamiltonian replica exchange molecular dynamics simulations.

    PubMed

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147-150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus.

  8. Plasticity of 150-Loop in Influenza Neuraminidase Explored by Hamiltonian Replica Exchange Molecular Dynamics Simulations

    PubMed Central

    Han, Nanyu; Mu, Yuguang

    2013-01-01

    Neuraminidase (NA) of influenza is a key target for antiviral inhibitors, and the 150-cavity in group-1 NA provides new insight in treating this disease. However, NA of 2009 pandemic influenza (09N1) was found lacking this cavity in a crystal structure. To address the issue of flexibility of the 150-loop, Hamiltonian replica exchange molecular dynamics simulations were performed on different groups of NAs. Free energy landscape calculated based on the volume of 150-cavity indicates that 09N1 prefers open forms of 150-loop. The turn A (residues 147–150) of the 150-loop is discovered as the most dynamical motif which induces the inter-conversion of this loop among different conformations. In the turn A, the backbone dynamic of residue 149 is highly related with the shape of 150-loop, thus can function as a marker for the conformation of 150-loop. As a contrast, the closed conformation of 150-loop is more energetically favorable in N2, one of group-2 NAs. The D147-H150 salt bridge is found having no correlation with the conformation of 150-loop. Instead the intimate salt bridge interaction between the 150 and 430 loops in N2 variant contributes the stabilizing factor for the closed form of 150-loop. The clustering analysis elaborates the structural plasticity of the loop. This enhanced sampling simulation provides more information in further structural-based drug discovery on influenza virus. PMID:23593372

  9. Delineation of areas contributing recharge to selected public-supply wells in Glacial Valley-Fill and Wetland Settings, Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.

    2004-01-01

    Areas contributing recharge and sources of water to one proposed and seven present public-supply wells, screened in sand and gravel deposits and clustered in three study areas, were determined on the basis of calibrated, steady-state ground-water-flow models representing average hydrologic conditions. The area contributing recharge to a well is defined as the surface area where water recharges the ground water and then flows toward and discharges to the well. In Cumberland and Lincoln, public-supply well fields on opposite sides of the Blackstone River are in a narrow valley bordered by steep hillslopes. Ground-water-level and river-stage measurements indicated that river water was infiltrating the aquifer and flowing toward the wells during pumping conditions. Simulated areas contributing recharge to the Cumberland well field operating alone for both average (324 gallons per minute) and maximum (1,000 gallons per minute) pumping rates extend on both sides of the river to the lateral model boundaries, which is the contact between the valley and uplands. The area contributing recharge at the average pumping rate is about 0.05 square mile and the well field derives 72 percent of pumped water from upland runoff. At the maximum pumping rate, the area contributing recharge extends farther up and down the valley to 0.12 square mile and the primary source of water to the well field was infiltrated river water (53 percent). Upland areas draining toward the areas contributing recharge encompass 0.58 and 0.66 square mile for the average and maximum rates, respectively. By incorporating the backup Lincoln well-field withdrawals (2,083 gallons per minute) into the model, the area contributing recharge to the Cumberland well field operating at its maximum rate is reduced to 0.08 square mile; part of the simulated area which contributes recharge to the Cumberland well field when it is operating alone contributes instead to the Lincoln well field when both well fields are pumped. The Cumberland well field compensates by increasing the percentage of water it withdraws from the river by 11 percent. The upland area draining toward the Cumberland contributing area is 0.55 square mile. The area contributing recharge to the Lincoln well field is 0.08 square mile and infiltrated river water contributes 88 percent of the total water; the upland area draining toward the contributing area is 0.34 square mile. In North Smithfield, a public-supply well in a valley-fill setting is close to Trout Brook Pond, which is an extension of the Lower Slatersville Reservoir. A comparison of water levels from the pond and underlying sediments indicates that water is not infiltrated from Trout Brook Pond when the supply well is pumped at its maximum rate of 200 gallons per minute. Simulated areas contributing recharge for the maximum pumping rate and for the estimated maximum yield, 500 gallons per minute, of a proposed replacement well extend to the ground-water divides on both sides of Trout Brook Pond. For the 200 gallons-per-minute rate, the area contributing recharge is 0.23 square mile; the well derives almost all of its water from intercepted ground water that normally discharges to surface-water bodies. For the pumping rate of 500 gallons per minute, the area contributing recharge is 0.45 square mile. The increased pumping rate is balanced by additional intercepted ground water and by inducing 25 percent of the total withdrawn water from surface water. In Westerly, one public-supply well is in a watershed where the primarily hydrologic feature is a wetland. Water levels in piezometers surrounding the well site indicated a downward vertical gradient and the potential for water in the wetland to infiltrate the underlying aquifer. The simulated area contributing recharge for the average pumping rate (240 gallons per minute) and for the maximum pumping rate (700 gallons per minute) extends to the surrounding uplands (surficial materials not covered by t

  10. Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.

    2006-01-01

    In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.

  11. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Stockem, Irina; Porrati, Fabrizio; Huth, Michael; Schröder, Christian; Müller, Jens

    2016-10-01

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamics of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.

  12. Neutrino masses in the minimal gauged (B -L ) supersymmetry

    NASA Astrophysics Data System (ADS)

    Yan, Yu-Li; Feng, Tai-Fu; Yang, Jin-Lei; Zhang, Hai-Bin; Zhao, Shu-Min; Zhu, Rong-Fei

    2018-03-01

    We present the radiative corrections to neutrino masses in a minimal supersymmetric extension of the standard model with local U (1 )B -L symmetry. At tree level, three tiny active neutrinos and two nearly massless sterile neutrinos can be obtained through the seesaw mechanism. Considering the one-loop corrections to the neutrino masses, the numerical results indicate that two sterile neutrinos obtain KeV masses and the small active-sterile neutrino mixing angles. The lighter sterile neutrino is a very interesting dark matter candidate in cosmology. Meanwhile, the active neutrinos mixing angles and mass squared differences agree with present experimental data.

  13. Leyla loop: a time-saving suture technique for robotic atrial closure

    PubMed Central

    Kılıç, Leyla; Şenay, Şahin; Ümit Güllü, A.; Alhan, Cem

    2013-01-01

    The longer durations of cardiopulmonary bypass and aortic cross-clamp times remain the disadvantages of robotic or minimally invasive cardiac surgery. For this reason, every small contribution to speeding up these procedures is of the utmost importance. Here, we present a practical, easy and time-saving suture technique for atrial closure. It consists of a hand-made loop at one end of the suture and saves the time otherwise consumed by knotting. It may also be used during conventional or minimally invasive cardiac surgery. PMID:23760357

  14. Research on spacecraft electrical power conversion

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.

    1974-01-01

    The steady state characteristics and starting behavior of some widely used self-oscillating magnetically coupled square wave inverters were studied and the development of LC-tuned square wave inverters is reported. An analysis on high amplitude voltage spikes which occur in dc-to-square-wave parallel converters shows the importance of various circuit parameters for inverter design and for the suppression of spikes. A computerized simulation of an inductor energy storage dc-to-dc converter with closed loop regulators and of a preregulating current step-up converter are detailed. Work continued on the computer aided design of two-winding energy storage dc-to-dc converters.

  15. A non-planar two-loop three-point function beyond multiple polylogarithms

    NASA Astrophysics Data System (ADS)

    von Manteuffel, Andreas; Tancredi, Lorenzo

    2017-06-01

    We consider the analytic calculation of a two-loop non-planar three-point function which contributes to the two-loop amplitudes for t\\overline{t} production and γγ production in gluon fusion through a massive top-quark loop. All subtopology integrals can be written in terms of multiple polylogarithms over an irrational alphabet and we employ a new method for the integration of the differential equations which does not rely on the rationalization of the latter. The top topology integrals, instead, in spite of the absence of a massive three-particle cut, cannot be evaluated in terms of multiple polylogarithms and require the introduction of integrals over complete elliptic integrals and polylogarithms. We provide one-fold integral representations for the solutions and continue them analytically to all relevant regions of the phase space in terms of real functions, extracting all imaginary parts explicitly. The numerical evaluation of our expressions becomes straightforward in this way.

  16. Toward microstate counting beyond large N in localization and the dual one-loop quantum supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal

    The topologically twisted index for ABJM theory with gauge group U(N)k × U(N)−k has recently been shown, in the large-N limit, to reproduce the BekensteinHawking entropy of certain magnetically charged asymptotically AdS4 black holes. We numerically study the index beyond the large-N limit and provide evidence that it contains a subleading logarithmic term of the form −1/2 log N. On the holographic side, this term naturally arises from a one-loop computation. However, we find that the contribution coming from the near horizon states does not reproduce the field theory answer. We give some possible reasons for this apparent discrepancy.

  17. R 4 couplings in M- and type II theories on Calabi-Yau spaces

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.; Feffara, S.; Minasian, R.; Narain, K. S.

    1997-02-01

    We discuss several implications of R 4 couplings in M-theory when compactified on Calabi-Yau (CY) manifolds. In particular, these couplings can be predicted by supersymmetry from the mixed gauge-gravitational Chem-Simons couplings in five dimensions and are related to the one-loop holomorphic anomaly in four-dimensional N = 2 theories. We find a new contribution to the Einstein term in five dimensions proportional to the Euler number of the internal CY threefold, which corresponds to a one-loop correction of the hypermultiplet geometry. This correction is reproduced by a direct computation in type 11 string theories. Finally, we discuss a universal non-perturbative correction to the type IIB hyper-metric.

  18. Speed-Accuracy Trade-Off in Skilled Typewriting: Decomposing the Contributions of Hierarchical Control Loops

    ERIC Educational Resources Information Center

    Yamaguchi, Motonori; Crump, Matthew J. C.; Logan, Gordon D.

    2013-01-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer-…

  19. Charged lepton flavor violation in a class of radiative neutrino mass generation models

    NASA Astrophysics Data System (ADS)

    Chowdhury, Talal Ahmed; Nasri, Salah

    2018-04-01

    We investigate the charged lepton flavor violating processes μ →e γ , μ →e e e ¯, and μ -e conversion in nuclei for a class of three-loop radiative neutrino mass generation models with electroweak multiplets of increasing order. We find that, because of certain cancellations among various one-loop diagrams which give the dipole and nondipole contributions in an effective μ e γ vertex and a Z-penguin contribution in an effective μ e Z vertex, the flavor violating processes μ →e γ and μ -e conversion in nuclei become highly suppressed compared to μ →e e e ¯ process. Therefore, the observation of such a pattern in LFV processes may reveal the radiative mechanism behind neutrino mass generation.

  20. Postural control model interpretation of stabilogram diffusion analysis

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.

    2000-01-01

    Collins and De Luca [Collins JJ. De Luca CJ (1993) Exp Brain Res 95: 308-318] introduced a new method known as stabilogram diffusion analysis that provides a quantitative statistical measure of the apparently random variations of center-of-pressure (COP) trajectories recorded during quiet upright stance in humans. This analysis generates a stabilogram diffusion function (SDF) that summarizes the mean square COP displacement as a function of the time interval between COP comparisons. SDFs have a characteristic two-part form that suggests the presence of two different control regimes: a short-term open-loop control behavior and a longer-term closed-loop behavior. This paper demonstrates that a very simple closed-loop control model of upright stance can generate realistic SDFs. The model consists of an inverted pendulum body with torque applied at the ankle joint. This torque includes a random disturbance torque and a control torque. The control torque is a function of the deviation (error signal) between the desired upright body position and the actual body position, and is generated in proportion to the error signal, the derivative of the error signal, and the integral of the error signal [i.e. a proportional, integral and derivative (PID) neural controller]. The control torque is applied with a time delay representing conduction, processing, and muscle activation delays. Variations in the PID parameters and the time delay generate variations in SDFs that mimic real experimental SDFs. This model analysis allows one to interpret experimentally observed changes in SDFs in terms of variations in neural controller and time delay parameters rather than in terms of open-loop versus closed-loop behavior.

  1. Simple on-shell renormalization framework for the Cabibbo-Kobayashi-Maskawa matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kniehl, Bernd A.; Sirlin, Alberto

    2006-12-01

    We present an explicit on-shell framework to renormalize the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix at the one-loop level. It is based on a novel procedure to separate the external-leg mixing corrections into gauge-independent self-mass (sm) and gauge-dependent wave-function renormalization contributions, and to adjust nondiagonal mass counterterm matrices to cancel all the divergent sm contributions, and also their finite parts subject to constraints imposed by the Hermiticity of the mass matrices. It is also shown that the proof of gauge independence and finiteness of the remaining one-loop corrections to W{yields}q{sub i}+q{sub j} reduces to that in the unmixed, single-generation case. Diagonalizationmore » of the complete mass matrices leads then to an explicit expression for the CKM counterterm matrix, which is gauge independent, preserves unitarity, and leads to renormalized amplitudes that are nonsingular in the limit in which any two fermions become mass degenerate.« less

  2. Perturbation theory for BAO reconstructed fields: One-loop results in the real-space matter density field

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Koyama, Kazuya; Heavens, Alan

    2017-08-01

    We compute the power spectrum at one-loop order in standard perturbation theory for the matter density field to which a standard Lagrangian baryonic acoustic oscillation (BAO) reconstruction technique is applied. The BAO reconstruction method corrects the bulk motion associated with the gravitational evolution using the inverse Zel'dovich approximation (ZA) for the smoothed density field. We find that the overall amplitude of one-loop contributions in the matter power spectrum substantially decreases after reconstruction. The reconstructed power spectrum thereby approaches the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smoothing scale Rs≳10 h-1 Mpc . On smaller Rs, however, the deviation from the linear spectrum becomes significant on large scales (k ≲Rs-1 ) due to the nonlinearity in the smoothed density field, and the reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed power spectrum at one-loop order agrees with simulations better than the unreconstructed power spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investigate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum agrees well with N-body results in the weakly nonlinear regime.

  3. Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops.

    PubMed

    Olsen, Chris M; Lee, Hui-Ting; Marky, Luis A

    2009-03-05

    G-quadruplexes are a highly studied DNA motif with a potential role in a variety of cellular processes and more recently are considered novel targets for drug therapy in aging and anticancer research. In this work, we have investigated the thermodynamic contributions of the loops on the stable formation of G-quadruplexes. Specifically, we use a combination of UV, circular dichroism (CD) and fluorescence spectroscopies, and differential scanning calorimetry (DSC) to determine thermodynamic profiles, including the differential binding of ions and water, for the unfolding of the thrombin aptamer: d(GGT2GGTGTGGT2GG) that is referred to as G2. The sequences in italics, TGT and T2, are known to form loops. Other sequences examined contained base substitutions in the TGT loop (TAT, TCT, TTT, TAPT, and UUU), in the T2 loops (T4, U2), or in both loops (UGU and U2, UUU and U2). The CD spectra of all molecules show a positive band centered at 292 nm, which corresponds to the "chair" conformation. The UV and DSC melting curves of each G-quadruplex show monophasic transitions with transition temperatures (T(M)s) that remained constant with increasing strand concentration, confirming their intramolecular formation. These G-quadruplexes unfold with T(M)s in the range from 43.2 to 56.5 degrees C and endothermic enthalpies from 22.9 to 37.2 kcal/mol. Subtracting the contribution of a G-quartet stack from each experimental profile indicated that the presence of the loops stabilize each G-quadruplex by favorable enthalpy contributions, larger differential binding of K+ ions (0.1-0.6 mol K+/ mol), and a variable uptake/release of water molecules (-6 to 8 mol H2O/mol). The thermodynamic contributions for these specific base substitutions are discussed in terms of loop stacking (base-base stacking within the loops) and their hydration effects.

  4. Microwave detector

    DOEpatents

    Meldner, H.W.; Cusson, R.Y.; Johnson, R.M.

    1985-02-08

    A microwave detector is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite produces a magnetization field flux that links a B-dot loop. The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  5. Study of inverse magnetostrictive effect in metallic glasses Fe80-x Co x P14B6

    NASA Astrophysics Data System (ADS)

    Severikov, V. S.; Grishin, A. M.; Ignahin, V. S.

    2017-11-01

    The paper presents the possibility to build a tension gauge capable to discriminate different kinds of deformations: compression and twisting (induced by torsion strain) based on the magnetoelastic effect in new metallic glasses Fe80-x Co x P14B6. Applied loads increase coercive field H c, saturation induction B s and rectangularity of magnetic hysteresis loop. For example, hysteresis loop traced for 1 mm narrow, 50 cm long and 30 μm thick Fe40Co40P14B6 straight ribbon subjected to longitudinal stress of 346 MPa shown increased B s from 1.24 to 1.7 T and squareness from 0.55 to 0.88 compared to unloaded specimen. For twisting, on the contrary, both squareness and coercive field vary whereas the value of B s remains unchanged.

  6. Seismic performance of recycled concrete-filled square steel tube columns

    NASA Astrophysics Data System (ADS)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  7. Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops.

    PubMed

    Yu, Zhenpeng; Wang, Jiandong

    2016-09-01

    This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Experimental and theoretical investigation of the magnetization dynamics of an artificial square spin ice cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We study the magnetization dynamics of a spin ice cluster which is a building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition both experimentally and theoretically. The spin ice cluster is composed of twelve interacting Co nanoislands grown directly on top of a high-resolution micro-Hall sensor. By employing micromagnetic simulations and a macrospin model, we calculate the magnetization and the experimentally investigated stray field emanating from a single nanoisland. The parameters determined from a comparison with the experimental hysteresis loop are used to derive an effective single-dipole macrospin model that allows us to investigate the dynamicsmore » of the spin ice cluster. Our model reproduces the experimentally observed non-deterministic sequences in the magnetization curves as well as the distinct temperature dependence of the hysteresis loop.« less

  9. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography.

    PubMed

    Terrill, Philip I; Edwards, Bradley A; Nemati, Shamim; Butler, James P; Owens, Robert L; Eckert, Danny J; White, David P; Malhotra, Atul; Wellman, Andrew; Sands, Scott A

    2015-02-01

    Elevated loop gain, consequent to hypersensitive ventilatory control, is a primary nonanatomical cause of obstructive sleep apnoea (OSA) but it is not possible to quantify this in the clinic. Here we provide a novel method to estimate loop gain in OSA patients using routine clinical polysomnography alone. We use the concept that spontaneous ventilatory fluctuations due to apnoeas/hypopnoeas (disturbance) result in opposing changes in ventilatory drive (response) as determined by loop gain (response/disturbance). Fitting a simple ventilatory control model (including chemical and arousal contributions to ventilatory drive) to the ventilatory pattern of OSA reveals the underlying loop gain. Following mathematical-model validation, we critically tested our method in patients with OSA by comparison with a standard (continuous positive airway pressure (CPAP) drop method), and by assessing its ability to detect the known reduction in loop gain with oxygen and acetazolamide. Our method quantified loop gain from baseline polysomnography (correlation versus CPAP-estimated loop gain: n=28; r=0.63, p<0.001), detected the known reduction in loop gain with oxygen (n=11; mean±sem change in loop gain (ΔLG) -0.23±0.08, p=0.02) and acetazolamide (n=11; ΔLG -0.20±0.06, p=0.005), and predicted the OSA response to loop gain-lowering therapy. We validated a means to quantify the ventilatory control contribution to OSA pathogenesis using clinical polysomnography, enabling identification of likely responders to therapies targeting ventilatory control. Copyright ©ERS 2015.

  10. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography

    PubMed Central

    Terrill, Philip I.; Edwards, Bradley A.; Nemati, Shamim; Butler, James P.; Owens, Robert L.; Eckert, Danny J.; White, David P.; Malhotra, Atul; Wellman, Andrew; Sands, Scott A.

    2015-01-01

    Elevated loop gain, consequent to hypersensitive ventilatory control, is a primary nonanatomical cause of obstructive sleep apnoea (OSA) but it is not possible to quantify this in the clinic. Here we provide a novel method to estimate loop gain in OSA patients using routine clinical polysomnography alone. We use the concept that spontaneous ventilatory fluctuations due to apnoeas/hypopnoeas (disturbance) result in opposing changes in ventilatory drive (response) as determined by loop gain (response/disturbance). Fitting a simple ventilatory control model (including chemical and arousal contributions to ventilatory drive) to the ventilatory pattern of OSA reveals the underlying loop gain. Following mathematical-model validation, we critically tested our method in patients with OSA by comparison with a standard (continuous positive airway pressure (CPAP) drop method), and by assessing its ability to detect the known reduction in loop gain with oxygen and acetazolamide. Our method quantified loop gain from baseline polysomnography (correlation versus CPAP-estimated loop gain: n=28; r=0.63, p<0.001), detected the known reduction in loop gain with oxygen (n=11; mean±SEM change in loop gain (ΔLG) −0.23±0.08, p=0.02) and acetazolamide (n=11; ΔLG −0.20±0.06, p=0.005), and predicted the OSA response to loop gain-lowering therapy. We validated a means to quantify the ventilatory control contribution to OSA pathogenesis using clinical polysomnography, enabling identification of likely responders to therapies targeting ventilatory control. PMID:25323235

  11. One-loop pseudo-Goldstone masses in the minimal S O (10 ) Higgs model

    NASA Astrophysics Data System (ADS)

    Gráf, Lukáš; Malinský, Michal; Mede, Timon; Susič, Vasja

    2017-04-01

    We calculate the prominent perturbative contributions shaping the one-loop scalar spectrum of the minimal renormalizable nonsupersymmetric S O (10 ) Higgs model whose unified gauge symmetry is spontaneously broken by an adjoint scalar. Focusing on its potentially realistic 45 ⊕126 variant in which the rank is reduced by a vacuum expectation value of the 5-index antisymmetric self-dual tensor, we provide a thorough analysis of the corresponding Coleman-Weinberg one-loop effective potential, paying particular attention to the masses of the potentially tachyonic pseudo-Goldstone bosons transforming as (1, 3, 0) and (8, 1, 0) under the standard model (SM) gauge group. The results confirm the assumed existence of extended regions in the parameter space supporting a locally stable SM-like quantum vacuum inaccessible at the tree level. The effective potential tedium is compared to that encountered in the previously studied 45 ⊕16 S O (10 ) Higgs model where the polynomial corrections to the relevant pseudo-Goldstone masses turn out to be easily calculable within a very simplified purely diagrammatic approach.

  12. Toward one-loop tunneling rates of near-extremal magnetic black hole pair production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, P.

    Pair production of magnetic Reissner-Nordstroem black holes (of charges [plus minus][ital q]) was recently studied in the leading WKB approximation. Here we consider generic quantum fluctuations in the corresponding instanton geometry given by the Euclidean Ernst metric, in order to simulate the behavior of the one-loop tunneling rate. A detailed study of the Ernst metric suggests that for a sufficiently weak field [ital B], the problem can be reduced to that of quantum fluctuations around a single near-extremal Euclidean black hole in thermal equilibrium with a heat bath of finite size. After appropriate renormalization procedures, typical one-loop contributions to themore » WKB exponent are shown to be inversely proportional to [ital B], as [ital B][r arrow]0, indicating that the leading Schwinger term is corrected by a small fraction [similar to][h bar]/[ital q][sup 2]. We demonstrate that this correction to the Schwinger term is actually due to a semiclassical shift of the black hole mass-to-charge ratio that persists even in the extremal limit. Finally we discuss a few loose ends.« less

  13. New method for estimating arterial pulse wave velocity at single site.

    PubMed

    Abdessalem, Khaled Ben; Flaud, Patrice; Zobaidi, Samir

    2018-01-01

    The clinical importance of measuring local pulse wave velocity (PWV), has encouraged researchers to develop several local methods to estimate it. In this work, we proposed a new method, the sum-of-squares method [Formula: see text], that allows the estimations of PWV by using simultaneous measurements of blood pressure (P) and arterial diameter (D) at single-location. Pulse waveforms generated by: (1) two-dimensional (2D) fluid-structure interaction simulation (FSI) in a compliant tube, (2) one-dimensional (1D) model of 55 larger human systemic arteries and (3) experimental data were used to validate the new formula and evaluate several classical methods. The performance of the proposed method was assessed by comparing its results to theoretical PWV calculated from the parameters of the model and/or to PWV estimated by several classical methods. It was found that values of PWV obtained by the developed method [Formula: see text] are in good agreement with theoretical ones and with those calculated by PA-loop and D 2 P-loop. The difference between the PWV calculated by [Formula: see text] and PA-loop does not exceed 1% when data from simulations are used, 3% when in vitro data are used and 5% when in vivo data are used. In addition, this study suggests that estimated PWV from arterial pressure and diameter waveforms provide correct values while methods that require flow rate (Q) and velocity (U) overestimate or underestimate PWV.

  14. Cosmological models in energy-momentum-squared gravity

    NASA Astrophysics Data System (ADS)

    Board, Charles V. R.; Barrow, John D.

    2017-12-01

    We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

  15. Spectral function of a hole in the t - J model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Manousakis, E.

    1991-08-01

    We give numerical solutions, on finite but large-size square lattices, of the equation for the single-hole Green's function obtained by the self-consistent approach of Schmitt-Rink {ital et} {ital al}. and Kane {ital et} {ital al}. The spectral function of the hole in a quantum antiferromagnet shows that most features describing the hole motion are in close agreement with the results of the exact diagonalization on the 4{sup 2} lattice in the region of {ital J}/{ital t}{le}0.2. Our results obtained on sufficiently large-size lattices suggest that certain important features of the spectral function survive in the thermodynamic limit while others changemore » due to finite-size effects. We find that the leading nonzero vertex correction is given by a two-loop diagram, which has a small contribution.« less

  16. Adaptive Control for Buck Power Converter Using Fixed Point Inducting Control and Zero Average Dynamics Strategies

    NASA Astrophysics Data System (ADS)

    Hoyos Velasco, Fredy Edimer; García, Nicolás Toro; Garcés Gómez, Yeison Alberto

    In this paper, the output voltage of a buck power converter is controlled by means of a quasi-sliding scheme. The Fixed Point Inducting Control (FPIC) technique is used for the control design, based on the Zero Average Dynamics (ZAD) strategy, including load estimation by means of the Least Mean Squares (LMS) method. The control scheme is tested in a Rapid Control Prototyping (RCP) system based on Digital Signal Processing (DSP) for dSPACE platform. The closed loop system shows adequate performance. The experimental and simulation results match. The main contribution of this paper is to introduce the load estimator by means of LMS, to make ZAD and FPIC control feasible in load variation conditions. In addition, comparison results for controlled buck converter with SMC, PID and ZAD-FPIC control techniques are shown.

  17. Speed-accuracy trade-off in skilled typewriting: decomposing the contributions of hierarchical control loops.

    PubMed

    Yamaguchi, Motonori; Crump, Matthew J C; Logan, Gordon D

    2013-06-01

    Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer- and inner-loop processes to the control of speed and accuracy in typewriting. Experiments 1 and 2 involved discontinuous typing of single words, and Experiments 3 and 4 involved continuous typing of paragraphs. Across experiments, typists were able to trade speed for accuracy but were unable to type at rates faster than 100 ms/keystroke, implying limits to the flexibility of the underlying processes. The analyses of the component latencies and errors indicated that the majority of the trade-offs were due to inner-loop processing. The contribution of outer-loop processing to the trade-offs was small, but it resulted in large costs in error rate. Implications for strategic control of automatic processes are discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  18. STEREOSCOPIC OBSERVATION OF SLIPPING RECONNECTION IN A DOUBLE CANDLE-FLAME-SHAPED SOLAR FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gou, Tingyu; Liu, Rui; Wang, Yuming

    2016-04-20

    The 2011 January 28 M1.4 flare exhibits two side-by-side candle-flame-shaped flare loop systems underneath a larger cusp-shaped structure during the decay phase, as observed at the northwestern solar limb by the Solar Dynamics Observatory . The northern loop system brightens following the initiation of the flare within the southern loop system, but all three cusp-shaped structures are characterized by ∼10 MK temperatures, hotter than the arch-shaped loops underneath. The “Ahead” satellite of the Solar Terrestrial Relations Observatory provides a top view, in which the post-flare loops brighten sequentially, with one end fixed while the other apparently slipping eastward. By performingmore » stereoscopic reconstruction of the post-flare loops in EUV and mapping out magnetic connectivities, we found that the footpoints of the post-flare loops are slipping along the footprint of a hyperbolic flux tube (HFT) separating the two loop systems and that the reconstructed loops share similarity with the magnetic field lines that are traced starting from the same HFT footprint, where the field lines are relatively flexible. These results argue strongly in favor of slipping magnetic reconnection at the HFT. The slipping reconnection was likely triggered by the flare and manifested as propagative dimmings before the loop slippage is observed. It may contribute to the late-phase peak in Fe xvi 33.5 nm, which is even higher than its main-phase counterpart, and may also play a role in the density and temperature asymmetry observed in the northern loop system through heat conduction.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahuatzin, G.; Bautista, I.; Hernandez-Lopez, J. A.

    A constant antisymmetric 2-tensor can arise in general relativity with spontaneous symmetry breaking or in field theories formulated in a noncommutative space-time. In this work, the one-loop contribution of a nonstandard WW{gamma} vertex on the flavor violating quark transition q{sub i}{yields}q{sub j}{gamma} is studied in the context of the electroweak Yang-Mills sector extended with a Lorentz-violating constant 2-tensor. An exact analytical expression for the on-shell case is presented. It is found that the loop amplitude is gauge independent, electromagnetic gauge invariant, and free of ultraviolet divergences. The dipolar contribution to the b{yields}s{gamma} transition together with the experimental data on themore » B{yields}X{sub s{gamma}} decay is used to derive the constraint {Lambda}{sub LV}>1.96 TeV on the Lorentz-violating scale.« less

  20. Simultaneous learning and filtering without delusions: a Bayes-optimal combination of Predictive Inference and Adaptive Filtering.

    PubMed

    Kneissler, Jan; Drugowitsch, Jan; Friston, Karl; Butz, Martin V

    2015-01-01

    Predictive coding appears to be one of the fundamental working principles of brain processing. Amongst other aspects, brains often predict the sensory consequences of their own actions. Predictive coding resembles Kalman filtering, where incoming sensory information is filtered to produce prediction errors for subsequent adaptation and learning. However, to generate prediction errors given motor commands, a suitable temporal forward model is required to generate predictions. While in engineering applications, it is usually assumed that this forward model is known, the brain has to learn it. When filtering sensory input and learning from the residual signal in parallel, a fundamental problem arises: the system can enter a delusional loop when filtering the sensory information using an overly trusted forward model. In this case, learning stalls before accurate convergence because uncertainty about the forward model is not properly accommodated. We present a Bayes-optimal solution to this generic and pernicious problem for the case of linear forward models, which we call Predictive Inference and Adaptive Filtering (PIAF). PIAF filters incoming sensory information and learns the forward model simultaneously. We show that PIAF is formally related to Kalman filtering and to the Recursive Least Squares linear approximation method, but combines these procedures in a Bayes optimal fashion. Numerical evaluations confirm that the delusional loop is precluded and that the learning of the forward model is more than 10-times faster when compared to a naive combination of Kalman filtering and Recursive Least Squares.

  1. Using baryon octet magnetic moments and masses to fix the pion cloud contribution

    DOE PAGES

    Franz L. Gross; Ramalho, Gilberto T. F.; Tsushima, Kazuo

    2010-05-12

    In this study, using SU(3) symmetry to constrain themore » $$\\pi BB'$$ couplings, assuming SU(3) breaking comes only from one-loop pion cloud contributions, and using the the covariant spectator theory to describe the photon coupling to the quark core, we show how the experimental masses and magnetic moments of the baryon octet can be used to set a model independent constraint on the strength of the pion cloud contributions to the octet, and hence the nucleon, form factors at $Q^2=0$.« less

  2. Magnetic dipolar ordering and hysteresis of geometrically defined nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Kure, Mathias; Beleggia, Marco; Frandsen, Cathrine

    2017-10-01

    Magnetic nanoparticle clusters have several biomedical and engineering applications, and revealing the basic interplay between particle configuration and magnetic properties is important for tuning the clusters for specific uses. Here, we consider the nanoparticles as macrospins and use computer simulations to determine their magnetic configuration when placed at the vertices of various polyhedra. We find that magnetic dipoles of equal magnitude arrange in flux-closed vortices on a layer basis, giving the structures a null remanent magnetic moment. Assigning a toroidal moment to each layer, we find that the geometrical arrangement, i.e., "triangular packing" vs. "square packing," of the moments in the adjacent layer determines whether the flux-closed layers are ferrotoroidal (co-rotating vortices) or antiferrotoroidal (counter-rotating vortices). Interestingly, upon adding a single magnetic moment at the center of the polyhedra, the central moment relaxes along one of the principal axes and induces partial alignment of the surrounding moments. The resulting net moment is up to nearly four times that of the single moment added. Furthermore, we model quasi-static hysteresis loops for structures with and without a central moment. We find that a central moment ensures an opening of the hysteresis loop, and the resultant loop areas are typically many-fold larger compared to the same structure without a central moment.

  3. Suboptimal Scheduling in Switched Systems With Continuous-Time Dynamics: A Least Squares Approach.

    PubMed

    Sardarmehni, Tohid; Heydari, Ali

    2018-06-01

    Two approximate solutions for optimal control of switched systems with autonomous subsystems and continuous-time dynamics are presented. The first solution formulates a policy iteration (PI) algorithm for the switched systems with recursive least squares. To reduce the computational burden imposed by the PI algorithm, a second solution, called single loop PI, is presented. Online and concurrent training algorithms are discussed for implementing each solution. At last, effectiveness of the presented algorithms is evaluated through numerical simulations.

  4. Eddy current heating in magnetic refrigerators

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1990-01-01

    Eddy current heating can be a significant source of parasitic heating in low temperature magnetic refrigerators. To study this problem a technique to approximate the heating due to eddy currents has been developed. A formula is presented for estimating the heating within a variety of shapes commonly found in magnetic refrigerators. These shapes include circular, square, and rectangular rods; cylindrical and split cylindrical shells; wire loops; and 'coil foil. One set of components evaluated are different types of thermal radiation shields. This comparison shows that a simple split shield is almost as effective (only 23 percent more heating) as using a shield, with the same axial thermal conductivity, made of 'coil foil'.

  5. A real-time sub-μrad laser beam tracking system

    NASA Astrophysics Data System (ADS)

    Buske, Ivo; Schragner, Ralph; Riede, Wolfgang

    2007-10-01

    We present a rugged and reliable real-time laser beam tracking system operating with a high speed, high resolution piezo-electric tip/tilt mirror. Characteristics of the piezo mirror and position sensor are investigated. An industrial programmable automation controller is used to develop a real-time digital PID controller. The controller provides a one million field programmable gate array (FPGA) to realize a high closed-loop frequency of 50 kHz. Beam tracking with a root-mean-squared accuracy better than 0.15 μrad has been laboratory confirmed. The system is intended as an add-on module for established mechanical mrad tracking systems.

  6. Predicting cognitive function from clinical measures of physical function and health status in older adults.

    PubMed

    Bolandzadeh, Niousha; Kording, Konrad; Salowitz, Nicole; Davis, Jennifer C; Hsu, Liang; Chan, Alison; Sharma, Devika; Blohm, Gunnar; Liu-Ambrose, Teresa

    2015-01-01

    Current research suggests that the neuropathology of dementia-including brain changes leading to memory impairment and cognitive decline-is evident years before the onset of this disease. Older adults with cognitive decline have reduced functional independence and quality of life, and are at greater risk for developing dementia. Therefore, identifying biomarkers that can be easily assessed within the clinical setting and predict cognitive decline is important. Early recognition of cognitive decline could promote timely implementation of preventive strategies. We included 89 community-dwelling adults aged 70 years and older in our study, and collected 32 measures of physical function, health status and cognitive function at baseline. We utilized an L1-L2 regularized regression model (elastic net) to identify which of the 32 baseline measures were strongly predictive of cognitive function after one year. We built three linear regression models: 1) based on baseline cognitive function, 2) based on variables consistently selected in every cross-validation loop, and 3) a full model based on all the 32 variables. Each of these models was carefully tested with nested cross-validation. Our model with the six variables consistently selected in every cross-validation loop had a mean squared prediction error of 7.47. This number was smaller than that of the full model (115.33) and the model with baseline cognitive function (7.98). Our model explained 47% of the variance in cognitive function after one year. We built a parsimonious model based on a selected set of six physical function and health status measures strongly predictive of cognitive function after one year. In addition to reducing the complexity of the model without changing the model significantly, our model with the top variables improved the mean prediction error and R-squared. These six physical function and health status measures can be easily implemented in a clinical setting.

  7. A digital optical phase-locked loop for diode lasers based on field programmable gate array.

    PubMed

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382∕MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad(2) and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  8. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Xu, Zhouxiang; Zhang, Xian; Huang, Kaikai; Lu, Xuanhui

    2012-09-01

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad2 and transition time of 100 μs under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  9. Topology-driven phase transitions in the classical monomer-dimer-loop model.

    PubMed

    Li, Sazi; Li, Wei; Chen, Ziyu

    2015-06-01

    In this work, we investigate the classical loop models doped with monomers and dimers on a square lattice, whose partition function can be expressed as a tensor network (TN). In the thermodynamic limit, we use the boundary matrix product state technique to contract the partition function TN, and determine the thermodynamic properties with high accuracy. In this monomer-dimer-loop model, we find a second-order phase transition between a trivial monomer-condensation and a loop-condensation (LC) phase, which cannot be distinguished by any local order parameter, while nevertheless the two phases have distinct topological properties. In the LC phase, we find two degenerate dominating eigenvalues in the transfer-matrix spectrum, as well as a nonvanishing (nonlocal) string order parameter, both of which identify the topological ergodicity breaking in the LC phase and can serve as the order parameter for detecting the phase transitions.

  10. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O3 antiferroelectric bulk ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin

    2016-05-01

    The dielectric and energy-storage properties of Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]0.98O3 (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T0, TC, T2 are obtained from the dielectric temperature spectrum. At different temperature regions (below T0, between T0 and TC, and above TC), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ˜T0. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.

  11. A novel system for automated propofol sedation: hybrid sedation system (HSS).

    PubMed

    Zaouter, Cedrick; Taddei, Riccardo; Wehbe, Mohamad; Arbeid, Erik; Cyr, Shantale; Giunta, Francesco; Hemmerling, Thomas M

    2017-04-01

    Closed-loop systems for propofol have been demonstrated to be safe and reliable for general anesthesia. However, no study has been conducted using a closed-loop system specifically designed for sedation in patients under spinal anesthesia. We developed an automatic anesthesia sedation system that allows for closed-loop delivery of propofol for sedation integrating a decision support system, called the hybrid sedation system (HSS). The objective of this study is to compare this system with standard practice. One hundred fifty patients were enrolled and randomly assigned to two groups: HSS-Group (N = 75), in which propofol was administered using a closed-loop system; Control Group (N = 75), in which propofol was delivered manually. The clinical performance of the propofol sedation control is defined as efficacy to maintain bispectral index (BIS) near 65. The clinical control was called 'Excellent', 'Good', 'Poor' and 'Inadequate' with BIS values within 10 %, from 11 to 20 %, 21 to 30 %, or greater than 30 % of the BIS target of 65, respectively. The controller performance was evaluated using Varvel's parameters. Data are presented as mean ± standard deviation, groups were compared using t test or Chi square test, P < 0.05. Clinical performance of sedation showed 'Excellent' control in the HSS-group for a significantly longer period of time (49 vs. 26 % in the control group, P < 0.0001). 'Poor' and 'Inadequate' sedation was significantly shorter in the HSS Group compared to the Control Group (11 and 10 % vs. 20 and 18 %, respectively, P < 0.0001). The novel, closed-loop system for propofol sedation showed better maintenance of the target BIS value compared to manual administration.

  12. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Astrophysics Data System (ADS)

    Aung, M.

    1992-11-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  13. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-08

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Technical Reports Server (NTRS)

    Aung, M.

    1992-01-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  15. RECOLA2: REcursive Computation of One-Loop Amplitudes 2

    NASA Astrophysics Data System (ADS)

    Denner, Ansgar; Lang, Jean-Nicolas; Uccirati, Sandro

    2018-03-01

    We present the Fortran95 program RECOLA2 for the perturbative computation of next-to-leading-order transition amplitudes in the Standard Model of particle physics and extended Higgs sectors. New theories are implemented via model files in the 't Hooft-Feynman gauge in the conventional formulation of quantum field theory and in the Background-Field method. The present version includes model files for Two-Higgs-Doublet Model and the Higgs-Singlet Extension of the Standard Model. We support standard renormalization schemes for the Standard Model as well as many commonly used renormalization schemes in extended Higgs sectors. Within these models the computation of next-to-leading-order polarized amplitudes and squared amplitudes, optionally summed over spin and colour, is fully automated for any process. RECOLA2 allows the computation of colour- and spin-correlated leading-order squared amplitudes that are needed in the dipole subtraction formalism. RECOLA2 is publicly available for download at http://recola.hepforge.org.

  16. A complex approach to the blue-loop problem

    NASA Astrophysics Data System (ADS)

    Ostrowski, Jakub; Daszynska-Daszkiewicz, Jadwiga

    2015-08-01

    The problem of the blue loops during the core helium burning, outstanding for almost fifty years, is one of the most difficult and poorly understood problems in stellar astrophysics. Most of the work focused on the blue loops done so far has been performed with old stellar evolution codes and with limited computational resources. In the end the obtained conclusions were based on a small sample of models and could not have taken into account more advanced effects and interactions between them.The emergence of the blue loops depends on many details of the evolution calculations, in particular on chemical composition, opacity, mixing processes etc. The non-linear interactions between these factors contribute to the statement that in most cases it is hard to predict without a precise stellar modeling whether a loop will emerge or not. The high sensitivity of the blue loops to even small changes of the internal structure of a star yields one more issue: a sensitivity to numerical problems, which are common in calculations of stellar models on advanced stages of the evolution.To tackle this problem we used a modern stellar evolution code MESA. We calculated a large grid of evolutionary tracks (about 8000 models) with masses in the range of 3.0 - 25.0 solar masses from the zero age main sequence to the depletion of helium in the core. In order to make a comparative analysis, we varied metallicity, helium abundance and different mixing parameters resulting from convective overshooting, rotation etc.The better understanding of the properties of the blue loops is crucial for our knowledge of the population of blue supergiants or pulsating variables such as Cepheids, α-Cygni or Slowly Pulsating B-type supergiants. In case of more massive models it is also of great importance for studies of the progenitors of supernovae.

  17. Custodial isospin violation in the Lee-Wick standard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chivukula, R. Sekhar; Farzinnia, Arsham; Foadi, Roshan

    2010-05-01

    We analyze the tension between naturalness and isospin violation in the Lee-Wick standard model (LW SM) by computing tree-level and fermionic one-loop contributions to the post-LEP electroweak parameters (S-circumflex, T-circumflex, W, and Y) and the Zb{sub L}b-bar{sub L} coupling. The model is most natural when the LW partners of the gauge bosons and fermions are light, but small partner masses can lead to large isospin violation. The post-LEP parameters yield a simple picture in the LW SM: the gauge sector contributes to Y and W only, with leading contributions arising at tree level, while the fermion sector contributes to S-circumflexmore » and T-circumflex only, with leading corrections arising at one loop. Hence, W and Y constrain the masses of the LW gauge bosons to satisfy M{sub 1}, M{sub 2} > or approx. 2.4 TeV at 95% C.L. Likewise, experimental limits on T-circumflex reveal that the masses of the LW fermions must satisfy M{sub q}, M{sub t} > or approx. 1.6 TeV at 95% C.L. if the Higgs mass is light and tend to exclude the LW SM for any LW fermion masses if the Higgs mass is heavy. Contributions from the top-quark sector to the Zb{sub L}b{sub L} coupling can be even more stringent, placing a lower bound of 4 TeV on the LW fermion masses at 95% C.L.« less

  18. Microwave detector

    DOEpatents

    Meldner, Heiner W.; Cusson, Ronald Y.; Johnson, Ray M.

    1986-01-01

    A microwave detector (10) is provided for measuring the envelope shape of a microwave pulse comprised of high-frequency oscillations. A biased ferrite (26, 28) produces a magnetization field flux that links a B-dot loop (16, 20). The magnetic field of the microwave pulse participates in the formation of the magnetization field flux. High-frequency insensitive means (18, 22) are provided for measuring electric voltage or current induced in the B-dot loop. The recorded output of the detector is proportional to the time derivative of the square of the envelope shape of the microwave pulse.

  19. One-Loop One-Point Functions in Gauge-Gravity Dualities with Defects.

    PubMed

    Buhl-Mortensen, Isak; de Leeuw, Marius; Ipsen, Asger C; Kristjansen, Charlotte; Wilhelm, Matthias

    2016-12-02

    We initiate the calculation of loop corrections to correlation functions in 4D defect conformal field theories (dCFTs). More precisely, we consider N=4 SYM theory with a codimension-one defect separating two regions of space, x_{3}>0 and x_{3}<0, where the gauge group is SU(N) and SU(N-k), respectively. This setup is made possible by some of the real scalar fields acquiring a nonvanishing and x_{3}-dependent vacuum expectation value for x_{3}>0. The holographic dual is the D3-D5 probe brane system where the D5-brane geometry is AdS_{4}×S^{2} and a background gauge field has k units of flux through the S^{2}. We diagonalize the mass matrix of the dCFT making use of fuzzy-sphere coordinates and we handle the x_{3} dependence of the mass terms in the 4D Minkowski space propagators by reformulating these as standard massive AdS_{4} propagators. Furthermore, we show that only two Feynman diagrams contribute to the one-loop correction to the one-point function of any single-trace operator and we explicitly calculate this correction in the planar limit for the simplest chiral primary. The result of this calculation is compared to an earlier string-theory computation in a certain double scaling limit and perfect agreement is found. Finally, we discuss how to generalize our calculation to any single-trace operator, to finite N, and to other types of observables such as Wilson loops.

  20. Theoretical nuclear physics

    NASA Astrophysics Data System (ADS)

    Rost, E.; Shephard, J. R.

    1992-08-01

    This report discusses the following topics: Exact 1-loop vacuum polarization effects in 1 + 1 dimensional QHD; exact 1-fermion loop contributions in 1 + 1 dimensional solitons; exact scalar 1-loop contributions in 1 + 3 dimensions; exact vacuum calculations in a hyper-spherical basis; relativistic nuclear matter with self-consistent correlation energy; consistent RHA-RPA for finite nuclei; transverse response functions in the (triangle)-resonance region; hadronic matter in a nontopological soliton model; scalar and vector contributions to (bar p)p yields (bar lambda)lambda reaction; 0+ and 2+ strengths in pion double-charge exchange to double giant-dipole resonances; and nucleons in a hybrid sigma model including a quantized pion field.

  1. Frequency Regulation and Oscillation Damping Contributions of Variable-Speed Wind Generators in the U.S. Eastern Interconnection (EI)

    DOE PAGES

    Liu, Yong; Gracia, Jose R,; King, Jr, Thomas J.; ...

    2014-05-16

    The U.S. Eastern Interconnection (EI) is one of the largest electric power grids in the world and is expected to have difficulties in dealing with frequency regulation and oscillation damping issues caused by the increasing wind power. On the other side, variable-speed wind generators can actively engage in frequency regulation or oscillation damping with supplementary control loops. This paper creates a 5% wind power penetration simulation scenario based on the 16 000-bus EI system dynamic model and developed the user-defined wind electrical control model in PSS (R) E that incorporates additional frequency regulation and oscillation damping control loops. We evaluatedmore » the potential contributions of variable-speed wind generations to the EI system frequency regulation and oscillation damping, and simulation results demonstrate that current and future penetrations of wind power are promising in the EI system frequency regulation and oscillation damping.« less

  2. Gluon-fusion Higgs production in the Standard Model Effective Field Theory

    NASA Astrophysics Data System (ADS)

    Deutschmann, Nicolas; Duhr, Claude; Maltoni, Fabio; Vryonidou, Eleni

    2017-12-01

    We provide the complete set of predictions needed to achieve NLO accuracy in the Standard Model Effective Field Theory at dimension six for Higgs production in gluon fusion. In particular, we compute for the first time the contribution of the chromomagnetic operator {\\overline{Q}}_LΦ σ {q}_RG at NLO in QCD, which entails two-loop virtual and one-loop real contributions, as well as renormalisation and mixing with the Yukawa operator {Φ}^{\\dagger}Φ{\\overline{Q}}_LΦ {q}_R and the gluon-fusion operator Φ†Φ GG. Focusing on the top-quark-Higgs couplings, we consider the phenomenological impact of the NLO corrections in constraining the three relevant operators by implementing the results into the M adG raph5_ aMC@NLO frame-work. This allows us to compute total cross sections as well as to perform event generation at NLO that can be directly employed in experimental analyses.

  3. 1.9 μm square-wave passively Q-witched mode-locked fiber laser.

    PubMed

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Wang, Furen; Zhang, Jing; Wang, Chengbo; Jiang, Huilin

    2018-05-14

    We propose and demonstrate the operation of Q-switched mode-locked square-wave pulses in a thulium-holmium co-doped fiber laser. By using a nonlinear amplifying loop mirror, continuous square-wave dissipative soliton resonance pulse is obtained with 4.4 MHz repetition rate. With the increasing pump power, square-wave pulse duration can be broadened from 1.7 ns to 3.2 ns. On such basis Q-switched mode-locked operation is achieved by properly setting the pump power and the polarization controllers. The internal mode-locked pulses in Q-switched envelope still keep square-wave type. The Q-switched repetition rate can be varied from 41.6 kHz to 74 kHz by increasing pump power. The corresponding average single-pulse energy increases from 2.67 nJ to 5.2 nJ. The average peak power is also improved from 0.6 W to 1.1 W when continuous square-wave operation is changed into Q-switched mode-locked operation. It indicates that Q-switched mode-locked operation is an effective method to increase the square-wave pulse energy and peak power.

  4. Unfolding and Targeting Thermodynamics of a DNA Intramolecular Complex with Joined Triplex-Duplex Domains.

    PubMed

    Johnson, Sarah E; Reiling-Steffensmeier, Calliste; Lee, Hui-Ting; Marky, Luis A

    2018-01-25

    Our laboratory is interested in developing methods that can be used for the control of gene expression. In this work, we are investigating the reaction of an intramolecular complex containing a triplex-duplex junction with partially complementary strands. We used a combination of isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectroscopy techniques to determine standard thermodynamic profiles for these targeting reactions. Specifically, we have designed single strands to target one loop (CTTTC) or two loops (CTTTC and GCAA) of this complex. Both reactions yielded exothermic enthalpies of -66.3 and -82.8 kcal/mol by ITC, in excellent agreement with the reaction enthalpies of -72.7 and -88.7 kcal/mol, respectively, obtained from DSC Hess cycles. The favorable heat contributions result from the formation of base-pair stacks involving mainly the unpaired bases of the loops. This shows that each complementary strand is able to invade and disrupt the secondary structure. The simultaneous targeting of two loops yielded a more favorable reaction free energy, by approximately -8 kcal/mol, which corresponds to the formation of roughly four base-pair stacks involving the unpaired bases of the 5'-GCAA loop. The main conclusion is that the targeting of loops with a large number of unpaired bases results in a more favorable reaction free energy.

  5. Prevalence and Length of the Anterior Loop of the Inferior Alveolar Nerve in Iranians.

    PubMed

    Moghddam, Maryam Rastegar; Davoudmanesh, Zeinab; Azizi, Nasim; Rakhshan, Vahid; Shariati, Mahsa

    2017-10-01

    The anterior loop of the inferior alveolar nerve is a sensitive anatomical feature that should be taken into account during installation of dental implants anterior to the mental foramen. This study was conducted to explore the controversy regarding prevalence and length. A total of 452 mandible quadrants of 234 patients (age: 50.1 ± 13.3 years, 113 males, 121 females) were studied using cone-beam computerized tomography. After reconstructing axial, frontal, and sagittal slices, the region between the most anterior point on the mental foramen and the most anterior part of the mandibular nerve was inspected for signs of anterior loop presence. If positive, the length of the anterior loop was measured in mm as the distance between the anterior border of mental foramen and the anterior border of the loop. Prevalence and length of the anterior loop were compared statistically between sexes and age groups. The anterior loop was observed in 106 quadrants (23.5% of 451 quadrants) of 95 patients (40.6% of 234 patients), of whom 11 had bilateral anterior loops. Prevalences were similar in males (41%) and females (39%, chi-square P =.791). The mean anterior loop length was 2.77 ± 1.56 mm (95% CI: 2.5-3.1 mm), without significant sex (regression beta = -0.159, P = .134) or age (beta = -0.059, P = .578) differences. The anterior loop might exist in about 40% of patients, regardless of their gender. The mean safe anterior distance from the anterior loop is about 3 mm + (2.5-3.1 mm) = 5.5-6.1 mm, regardless of age.

  6. A loop-mediated isothermal amplification method for a differential identification of Taenia tapeworms from human: application to a field survey.

    PubMed

    Nkouawa, Agathe; Sako, Yasuhito; Li, Tiaoying; Chen, Xingwang; Nakao, Minoru; Yanagida, Tetsuya; Okamoto, Munehiro; Giraudoux, Patrick; Raoul, Francis; Nakaya, Kazuhiro; Xiao, Ning; Qiu, Jiamin; Qiu, Dongchuan; Craig, Philip S; Ito, Akira

    2012-12-01

    In this study, we applied a loop-mediated isothermal amplification method for identification of human Taenia tapeworms in Tibetan communities in Sichuan, China. Out of 51 proglottids recovered from 35 carriers, 9, 1, and 41 samples were identified as Taenia solium, Taenia asiatica and Taenia saginata, respectively. Same results were obtained afterwards in the laboratory, except one sample. These results demonstrated that the LAMP method enabled rapid identification of parasites in the field surveys, which suggested that this method would contribute to the control of Taenia infections in endemic areas. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Acute cholangitis due to afferent loop syndrome after a Whipple procedure: a case report.

    PubMed

    Spiliotis, John; Karnabatidis, Demetrios; Vaxevanidou, Archodoula; Datsis, Anastasios C; Rogdakis, Athanasios; Zacharis, Georgios; Siamblis, Demetrios

    2009-08-25

    Patients with resection of stomach and especially with Billroth II reconstruction (gastro jejunal anastomosis), are more likely to develop afferent loop syndrome which is a rare complication. When the afferent part is obstructed, biliary and pancreatic secretions accumulate and cause the distention of this part. In the case of a complete obstruction (rare), there is a high risk developing necrosis and perforation. This complication has been reported once in the literature. A 54-year-old Greek male had undergone a pancreato-duodenectomy (Whipple procedure) one year earlier due to a pancreatic adenocarcinoma. Approximately 10 months after the initial operation, the patient started having episodes of cholangitis (fever, jaundice) and abdominal pain. This condition progressively worsened and the suspicion of local recurrence or stenosis of the biliary-jejunal anastomosis was discussed. A few days before his admission the patient developed signs of septic cholangitis. Our case demonstrates a rare complication with serious clinical manifestation of the afferent loop syndrome. This advanced form of afferent loop syndrome led to the development of huge enterobiliary reflux, which had a serious clinical manifestation as cholangitis and systemic sepsis, due to bacterial overgrowth, which usually present in the afferent loop. The diagnosis is difficult and the interventional radiology gives all the details to support the therapeutic decision making. A variety of factors can contribute to its development including adhesions, kinking and angulation of the loop, stenosis of gastro-jejunal anastomosis and internal herniation. In order to decompress the afferent loop dilatation due to adhesions, a lateral-lateral jejunal anastomosis was performed between the afferent loop and a small bowel loop.

  8. Complete Michel parameter analysis of the inclusive semileptonic b{yields}c transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dassinger, Benjamin; Feger, Robert; Mannel, Thomas

    2009-04-01

    We perform a complete 'Michel parameter' analysis of all possible helicity structures which can appear in the process B{yields}X{sub c}l{nu}{sub l}. We take into account the full set of operators parametrizing the effective Hamiltonian and include the complete one-loop QCD corrections as well as the nonperturbative contributions. The moments of the leptonic energy as well as the combined moments of the hadronic energy and hadronic invariant mass are calculated including the nonstandard contributions.

  9. Quantum corrections to the gravitational potentials of a point source due to conformal fields in de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröb, Markus B.; Verdaguer, Enric, E-mail: mfroeb@itp.uni-leipzig.de, E-mail: enric.verdaguer@ub.edu

    We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients b and b' appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds tomore » a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.« less

  10. 978-nm square-wave in an all-fiber single-mode ytterbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Li, Shujie; Xu, Lixin; Gu, Chun

    2018-01-01

    A 978 nm single mode passively mode-locked all-fiber laser delivering square-wave pulses was demonstrated using a figure-8 cavity and a 75 cm commercial double-clad ytterbium-doped fiber. We found the three-level system near 978 nm was able to operate efficiently under clad pumping, simultaneously oscillation around 1030 nm well inhibited. The optimized nonlinear amplifying loop mirror made the mode locking stable and performed the square-pulses shaping. To the best of our knowledge, it is the first time to report the square-wave pulse fiber laser operating at 980 nm. The spectral width of the 978 mode-locked square pulses was about 4 nm, far greater than that of the mode-locked square pulses around 1060 nm reported before, which would be helpful to deeply understand the various square-wave pulses' natures and forming mechanisms. Compared with modulated single-mode or multimode 980 nm LDs, this kind of 980 nm square-wave sources having higher brightness, more steeper rising and falling edge and shorter pulse width, might have potential applications in pumping nanosecond ytterbium or erbium fiber lasers and amplifiers.

  11. Scattering of glue by glue on the light-cone worldsheet: Helicity nonconserving amplitudes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, D.; Qiu, J.; Thorn, C. B.

    2005-09-01

    We give the light-cone gauge calculation of the one-loop on-shell scattering amplitudes for gluon-gluon scattering which violate helicity conservation. We regulate infrared divergences by discretizing the p+ integrations, omitting the terms with p+=0. Collinear divergences are absent diagram by diagram for the helicity nonconserving amplitudes. We also employ a novel ultraviolet regulator that is natural for the light-cone worldsheet description of planar Feynman diagrams. We show that these regulators give the known answers for the helicity nonconserving one-loop amplitudes, which do not suffer from the usual infrared vagaries of massless particle scattering. For the maximal helicity violating process we elucidate the physics of the remarkable fact that the loop momentum integrand for the on-shell Green function associated with this process, with a suitable momentum routing of the different contributing topologies, is identically zero. We enumerate the counterterms that must be included to give Lorentz covariant results to this order, and we show that they can be described locally in the light-cone worldsheet formulation of the sum of planar diagrams.

  12. Frequency noise measurement of diode-pumped Nd:YAG ring lasers

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Win, Moe Zaw

    1990-01-01

    The combined frequency noise spectrum of two model 120-01A nonplanar ring oscillator lasers was measured by first heterodyne detecting the IF signal and then measuring the IF frequency noise using an RF frequency discriminator. The results indicated the presence of a 1/f-squared noise component in the power-spectral density of the frequency fluctuations between 1 Hz and 1 kHz. After incorporating this 1/f-squared into the analysis of the optical phase tracking loop, the measured phase error variance closely matches the theoretical predictions.

  13. The influence of a prediction display on the quasi-linear describing function and remnant measured with an adaptive analog-pilot in a closed loop

    NASA Technical Reports Server (NTRS)

    Dey, D.

    1972-01-01

    The effect of a prediction display on the human transfer characteristics is explained with the aid of a quasi-linear model. The prediction display causes an increase of the gain factor and the lead factor, a diminishing of the lag factor and a decrease of the remnant. Altogether, these factors yield a smaller mean square value of the control deviation and a simultaneous decrease of the mean square value of the stick signal.

  14. Antidot shape dependence of switching mechanism in permalloy samples

    NASA Astrophysics Data System (ADS)

    Yetiş, Hakan; Denizli, Haluk

    2017-01-01

    We study antidot shape dependence of the switching magnetization for various permalloy samples with square and triangular arrays of nanometer scale antidots. The remnant magnetization, squareness ratio, and coercive fields of the samples are extracted from the hysteresis loops which are obtained by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically. We find several different magnetic spin configurations which reveal the existence of superdomain wall structures. Our results are discussed in terms of the local shape anisotropy, array geometry, and symmetry properties in order to explain the formation of inhomogeneous domain structures.

  15. Performance characteristics of an adaptive controller based on least-mean-square filters

    NASA Technical Reports Server (NTRS)

    Mehta, Rajiv S.; Merhav, Shmuel J.

    1986-01-01

    A closed loop, adaptive control scheme that uses a least mean square filter as the controller model is presented, along with simulation results that demonstrate the excellent robustness of this scheme. It is shown that the scheme adapts very well to unknown plants, even those that are marginally stable, responds appropriately to changes in plant parameters, and is not unduly affected by additive noise. A heuristic argument for the conditions necessary for convergence is presented. Potential applications and extensions of the scheme are also discussed.

  16. Val-407 and Ile-408 in the β5′-Loop of Pancreatic Lipase Mediate Lipase-Colipase Interactions in the Presence of Bile Salt Micelles*

    PubMed Central

    Freie, Angela Bourbon; Ferrato, Francine; Carrière, Frédéric; Lowe, Mark E.

    2013-01-01

    In a previous study, we demonstrated that the β5′-loop in the C-terminal domain of human pancreatic triglyceride lipase (hPTL) makes a major contribution in the function of hPTL (Chahinian et al. (2002) Biochemistry 41, 13725–13735). In the present study, we characterized the contribution of three residues in the β5′-loop, Val-407, Ile-408, and Leu-412, to the function of hPTL. By substituting charged residues, aspartate or lysine, in these positions, we altered the hydrophilic to lipophilic ratio of the β5′-loop. Each of the mutants was expressed, purified, and characterized for activity and binding with both monolayers and emulsions and for binding to colipase. Experiments with monolayers and with emulsions suggested that the interaction of hPTL with a phospholipid monolayer differs from the interaction of the hPTL-colipase complex with a dicaprin monolayer or a triglyceride emulsion (i.e. neutral lipids). Val-407, Ile-408, and Leu-412 make major contributions to interactions with monolayers, whereas only Val-407 and Ile-408 appear essential for activity on triglyceride emulsions in the presence of bile salt micelles. In solutions of taurodeoxycholate at micellar concentrations, a major effect of the β5′-loop mutations is to change the interaction between hPTL and colipase. These observations support a major contribution of residues in the β5′-loop in the function of hPTL and suggest that a third partner, bile salt micelles or the lipid interface or both, influence the binding of colipase and hPTL through interactions with the β5′-loop. PMID:16431912

  17. Dynamic parameter identification of robot arms with servo-controlled electrical motors

    NASA Astrophysics Data System (ADS)

    Jiang, Zhao-Hui; Senda, Hiroshi

    2005-12-01

    This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.

  18. Analysis of an all-digital maximum likelihood carrier phase and clock timing synchronizer for eight phase-shift keying modulation

    NASA Astrophysics Data System (ADS)

    Degaudenzi, Riccardo; Vanghi, Vieri

    1994-02-01

    In all-digital Trellis-Coded 8PSK (TC-8PSK) demodulator well suited for VLSI implementation, including maximum likelihood estimation decision-directed (MLE-DD) carrier phase and clock timing recovery, is introduced and analyzed. By simply removing the trellis decoder the demodulator can efficiently cope with uncoded 8PSK signals. The proposed MLE-DD synchronization algorithm requires one sample for the phase and two samples per symbol for the timing loop. The joint phase and timing discriminator characteristics are analytically derived and numerical results checked by means of computer simulations. An approximated expression for steady-state carrier phase and clock timing mean square error has been derived and successfully checked with simulation findings. Synchronizer deviation from the Cramer Rao bound is also discussed. Mean acquisition time for the digital synchronizer has also been computed and checked, using the Monte Carlo simulation technique. Finally, TC-8PSK digital demodulator performance in terms of bit error rate and mean time to lose lock, including digital interpolators and synchronization loops, is presented.

  19. An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs.

    PubMed

    Gu, Xiaobo; Chang, Qing; Glennon, Eamonn P; Xu, Baoda; Dempseter, Andrew G; Wang, Dun; Wu, Jiapeng

    2015-07-23

    An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs) that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD), synchronous time division (STDD) duplex and code division multiple access (CDMA) with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS) methods to predict the clock error and employs a third-order phase lock loop (PLL) to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided.

  20. Pattern generating and reflex-like processes controlling aiming movements in the presence of inertia, damping and gravity. A theoretical note.

    PubMed

    Kalveram, K T

    1991-01-01

    A model is proposed, in which goal-directed movements of the forearm are controlled by a central pattern generator (CPG) initiated for exactly one period, and by reflex-analogous processes. Movement width is proportional to the amplitude factor of the CPG's output, and to the square of the CPG's period length. The period duration can be freely selected, thus enabling the CPG to accommodate its time scale to the period of others CPG's. Parameters which influence movement accuracy can be adjusted by means of closed control loop, which are discrete with respect to time: The time unit corresponds to the period of the CPG. For instance, momentum adjustment balances the CPG in such a manner that the velocity of the arm becomes zero on termination of the period, while gain adjustment serves to attain a correct movement length in the presence of an inertial load. Friction, stiffness and gravitational force are neutralized by additional reflex-type processes, interpretable as positive feedback loops with adjustable gain factors, using position and velocity signals.

  1. Penguin-mediated exclusive hadronic weak B decays

    NASA Astrophysics Data System (ADS)

    Deshpande, N. G.; Trampetic, J.

    1990-02-01

    We estimate a number of exclusive two-body charmless decays of B+ and B- mesons. Some of these are mediated predominantly through one-loop gluon exchange, while others have a comparable or larger contribution from the doubly Cabibbo-suppressed tree diagrams. The rates for several decays are in an observable range and should test the standard model.

  2. The fabrication of ordered arrays of exchange biased Ni/FeF2 nanostructures.

    PubMed

    Kovylina, M; Erekhinsky, M; Morales, R; Schuller, I K; Labarta, A; Batlle, X

    2010-04-30

    The fabrication of ordered arrays of exchange biased Ni/FeF(2) nanostructures by focused ion beam lithography is reported. High quality nano-elements, with controlled removal depth and no significant re-deposition, were carved using small ion beam currents (30 pA), moderate dwell times (1 micros) and repeated passages over the same area. Two types of nanostructures were fabricated: square arrays of circular dots with diameters from 125 +/- 8 to 500 +/- 12 nm and periodicities ranging from 200 +/- 8 to 1000 +/- 12 nm, and square arrays of square antidots (207 +/- 8 nm in edge length) with periodicities ranging from 300 +/- 8 to 1200 +/- 12 nm. The arrays were characterized using scanning ion and electron microscopy, and atomic force microscopy. The effect of the patterning on the exchange bias field (i.e., the shift in the hysteresis loop of ferromagnetic Ni due to proximity to antiferromagnetic FeF(2)) was studied using magneto-transport measurements. These high quality nanostructures offer a unique method to address some of the open questions regarding the microscopic origin of exchange bias. This is not only of major relevance in the fabrication and miniaturization of magnetic devices but it is also one of the important proximity phenomena in nanoscience and materials science.

  3. Isothermal magnetostatic atmospheres. III - Similarity solutions with current proportional to the magnetic potential squared. [in solar corona

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1988-01-01

    A family of isothermal magnetostatic atmospheres with one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry is considered. It is assumed that the current (J) is proportional to the square of the magnetostatic potential and falls off exponentially with distance. Results are presented for the contributions of the anisotropic J x B force (where B is the magnetic field induction), the gravitational force, and the gas pressure gradient to the force balance.

  4. Synthesis and evaluation of phase detectors for active bit synchronizers

    NASA Technical Reports Server (NTRS)

    Mcbride, A. L.

    1974-01-01

    Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.

  5. Piloted Parameter Identification Flight Test Maneuvers for Closed Loop Modeling of the F-18 High Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1996-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5, 20, 30, 45, and 60 degrees angle of attack, using the NASA 1A control law. Each maneuver is to be realized by the pilot applying square wave inputs to specific pilot station controls. Maneuver descriptions and complete specifications of the time/amplitude points defining each input are included, along with plots of the input time histories.

  6. Oxygen vacancy effect on dielectric and hysteretic properties of zigzag ferroelectric iron dioxide nanoribbon

    NASA Astrophysics Data System (ADS)

    Zriouel, S.; Taychour, B.; Yahyaoui, F. El; Drissi, L. B.

    2017-07-01

    Zigzag FeO2 nanoribbon defected by the removal of oxygen atoms is simulated using Monte Carlo simulations. All possible arrangements of positions and number of oxygen vacancy are investigated. Temperature dependence of polarization, dielectric susceptibility, internal energy, specific heat and dielectric hysteresis loops are all studied. Results show the presence of second order phase transition and Q - type behavior. Dielectric properties dependence on ribbon's edge, positions and number of oxygen vacancy are discussed in detail. Moreover, single and square hysteresis loops are observed whatever the number of oxygen vacancy in the system.

  7. Data-derived symbol synchronization of MASK and QASK signals. [for multilevel digital communication systems

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1974-01-01

    Multilevel amplitude-shift-keying (MASK) and quadrature amplitude-shift-keying (QASK) as signaling techniques for multilevel digital communications systems, and the problem of providing symbol synchronization in the receivers of such systems are discussed. A technique is presented for extracting symbol sync from an MASK or QASK signal. The scheme is a generalization of the data transition tracking loop used in PSK systems. The performance of the loop was analyzed in terms of its mean-squared jitter and its effects on the data detection process in MASK and QASK systems.

  8. Scale-invariant instantons and the complete lifetime of the standard model

    NASA Astrophysics Data System (ADS)

    Andreassen, Anders; Frost, William; Schwartz, Matthew D.

    2018-03-01

    In a classically scale-invariant quantum field theory, tunneling rates are infrared divergent due to the existence of instantons of any size. While one expects such divergences to be resolved by quantum effects, it has been unclear how higher-loop corrections can resolve a problem appearing already at one loop. With a careful power counting, we uncover a series of loop contributions that dominate over the one-loop result and sum all the necessary terms. We also clarify previously incomplete treatments of related issues pertaining to global symmetries, gauge fixing, and finite mass effects. In addition, we produce exact closed-form solutions for the functional determinants over scalars, fermions, and vector bosons around the scale-invariant bounce, demonstrating manifest gauge invariance in the vector case. With these problems solved, we produce the first complete calculation of the lifetime of our Universe: 1 0139 years . With 95% confidence, we expect our Universe to last more than 1 058 years . The uncertainty is part experimental uncertainty on the top quark mass and on αs and part theory uncertainty from electroweak threshold corrections. Using our complete result, we provide phase diagrams in the mt/mh and the mt/αs planes, with uncertainty bands. To rule out absolute stability to 3 σ confidence, the uncertainty on the top quark pole mass would have to be pushed below 250 MeV or the uncertainty on αs(mZ) pushed below 0.00025.

  9. Effects of ligand binding on the dynamics of rice nonspecific lipid transfer protein 1: a model from molecular simulations.

    PubMed

    Lai, Yen-Ting; Cheng, Chao-Sheng; Liu, Yu-Nan; Liu, Yaw-Jen; Lyu, Ping-Chiang

    2008-09-01

    Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding. 2008 Wiley-Liss, Inc.

  10. Generation of dual-wavelength square pulse in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion.

    PubMed

    Shao, Zhihua; Qiao, Xueguang; Rong, Qiangzhou; Su, Dan

    2015-08-01

    A type of wave-breaking-free mode-locked dual-wavelength square pulse was experimentally observed in a figure-eight erbium-doped fiber laser with ultra-large net-anomalous dispersion. A 2.7 km long single-mode fiber (SMF) was incorporated as a nonlinear optical loop mirror (NOLM) and provided largely nonlinear phase accumulation and anomalous dispersion, which enhanced the four-wave-mixing effect to improve the stability of the dual-wavelength operation. In the NOLM, the long SMF with small birefringence supported the Sagnac interference as a filter to manage the dual-wavelength lasing. The dual-wavelength operation was made switchable by adjusting the intra-cavity polarization loss and phase delay corresponding to two square pulses. When the pump power was increased, the duration of the square pulse increased continuously while the peak pulse power gradually decreased. This square-type pulse can potentially be utilized for signal transmission and sensing.

  11. Motor loop dysfunction causes impaired cognitive sequencing in patients suffering from Parkinson's disease.

    PubMed

    Schönberger, Anna R; Hagelweide, Klara; Pelzer, Esther A; Fink, Gereon R; Schubotz, Ricarda I

    2015-10-01

    Cognitive impairment in Parkinson's disease (PD) is often attributed to dopamine deficiency in the prefrontal-basal ganglia-thalamo-cortical loops. Although recent studies point to a close interplay between motor and cognitive abilities in PD, the so-called "motor loop" connecting supplementary motor area (SMA) and putamen has been considered solely with regard to the patients' motor impairment. Our study challenges this view by testing patients with the serial prediction task (SPT), a cognitive task that requires participants to predict stimulus sequences and particularly engages premotor sites of the motor loop. We hypothesised that affection of the motor loop causes impaired SPT performance, especially when the internal sequence representation is challenged by suspension of external stimuli. As shown for motor tasks, we further expected this impairment to be compensated by hyperactivity of the lateral premotor cortex (PM). We tested 16 male PD patients ON and OFF dopaminergic medication and 16 male age-matched healthy controls in an functional Magnetic Resonance Imaging study. All subjects performed two versions of the SPT: one with on-going sequences (SPT0), and one with sequences containing non-informative wildcards (SPT+) increasing the demands on mnemonic sequence representation. Patients ON (compared to controls) revealed an impaired performance coming along with hypoactivity of SMA and putamen. Patients OFF compared to ON medication, while showing poorer performance, exhibited a significantly increased PM activity for SPT+ vs. SPT0. Furthermore, patients' performance positively co-varied with PM activity, corroborating a compensatory account. Our data reveal a contribution of the motor loop to cognitive impairment in PD, and suggest a close interplay of SMA and PM beyond motor control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat notemore » line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.« less

  13. Directly induced swing for closed loop control of electroslag remelting furnace

    DOEpatents

    Damkroger, Brian

    1998-01-01

    An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.

  14. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Gillemot, F.; Hernández-Mayoral, M.; Serrano, M.; Török, G.; Ulbricht, A.; Altstadt, E.

    2015-06-01

    Dislocation loops, nanovoids and Cu-rich clusters (CRPs) are known to represent obstacles for dislocation glide in neutron-irradiated reactor pressure vessel (RPV) steels, but a consistent experimental determination of the respective obstacle strengths is still missing. A set of Cu-bearing low-Ni RPV steels and model alloys was characterized by means of SANS and TEM in order to specify mean size and number density of loops, nanovoids and CRPs. The obstacle strengths of these families were estimated by solving an over-determined set of linear equations. We have found that nanovoids are stronger than loops and loops are stronger than CRPs. Nevertheless, CRPs contribute most to irradiation hardening because of their high number density. Nanovoids were only observed for neutron fluences beyond typical end-of-life conditions of RPVs. The estimates of the obstacle strength are critically compared with reported literature data.

  15. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com; Tipakontitikul, R.; Jantaratana, P.

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edgemore » Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.« less

  16. The contribution of scalars to N = 4 SYM amplitudes II: Young tableaux, asymptotic factorisation and strong coupling

    NASA Astrophysics Data System (ADS)

    Bonini, Alfredo; Fioravanti, Davide; Piscaglia, Simone; Rossi, Marco

    2018-06-01

    We disentangle the contribution of scalars to the OPE series of null hexagonal Wilson loops/MHV gluon scattering amplitudes in multicolour N = 4 SYM. In specific, we develop a systematic computation of the SU (4) matrix part of the Wilson loop by means of Young tableaux (with several examples). Then, we use a peculiar factorisation property (when a group of rapidities becomes large) to deduce an explicit polar form. Furthermore, we emphasise the advantages of expanding the logarithm of the Wilson loop in terms of 'connected functions' as we apply this procedure to find an explicit strong coupling expansion (definitively proving that the leading order can prevail on the classical AdS5 string contribution).

  17. TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.

    Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven additional TREAT fuel elements to facilitate the experiment will not inhibit the ability to successfully simulate a RIA for the 2-pin or 3-pin bundle. This new water loop design leaves room for accommodating a larger fuel pin bundle than previously analyzed. The 7-pin fuel bundle in a hexagonal array with similar spacing of fuel pins in a SFR fuel assembly was considered the minimum needed for one central fuel pin to encounter the most correct thermal conditions. The 9-rod fuel bundle in a square array similar in spacing to pins in a LWR fuel assembly would be considered the LWR equivalent. MCNP analysis conducted on a preliminary LWR 9-rod bundle design shows that sufficient energy deposition into the central pin can be achieved well within range to investigate fuel and cladding performance in a simulated RIA. This is achieved by surrounding the flow channel with an additional annulus of water. Findings also show that a highly significant increase in TREAT to specimen power coupling factor (PCF) within the central pin can be achieved by surrounding the experiment with one to two rings of TREAT upgrade fuel assemblies. The experiment design holds promise for the performance evaluation of PWR fuel at extremely high burnup under similar reactor environment conditions.« less

  18. G-Quadruplex conformational change driven by pH variation with potential application as a nanoswitch.

    PubMed

    Yan, Yi-Yong; Tan, Jia-Heng; Lu, Yu-Jing; Yan, Siu-Cheong; Wong, Kwok-Yin; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2013-10-01

    G-Quadruplex is a highly polymorphic structure, and its behavior in acidic condition has not been well studied. Circular dichroism (CD) spectra were used to study the conformational change of G-quadruplex. The thermal stabilities of the G-quadruplex were measured with CD melting. Interconversion kinetics profiles were investigated by using CD kinetics. The fluorescence of the inserted 2-Aminopurine (Ap) was monitored during pH change and acrylamide quenching, indicating the status of the loop. Proton NMR was adopted to help illustrate the change of the conformation. G-Quadruplex of specific loop was found to be able to transform upon pH variation. The transformation was resulted from the loop rearrangement. After screening of a library of diverse G-quadruplex, a sequence exhibiting the best transformation property was found. A pH-driven nanoswitch with three gears was obtained based on this transition cycle. Certain G-quadruplex was found to go through conformational change at low pH. Loop was the decisive factor controlling the interconversion upon pH variation. G-Quadruplex with TT central loop could be converted in a much milder condition than the one with TTA loop. It can be used to design pH-driven nanodevices such as a nanoswitch. These results provide more insights into G-quadruplex polymorphism, and also contribute to the design of DNA-based nanomachines and logic gates. © 2013.

  19. Two loop correction to interference in $$gg \\to ZZ$$

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Czakon, Michal; ...

    2016-08-01

    We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(αmore » $$_{s}^{3}$$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$$_{4l}$$), in a regime where m$$_{4l}$$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.« less

  20. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  1. Note: Low phase noise programmable phase-locked loop with high temperature stability.

    PubMed

    Michálek, Vojtěch; Procházka, Ivan

    2017-03-01

    The design and construction of low jitter programmable phase-locked loop with low temperature coefficient of phase are presented. It has been designed for demanding high precision timing applications, especially as a clock source for event timer with subpicosecond precision. The phase-locked loop itself has a jitter of few hundreds of femtoseconds. It produces square wave with programmable output frequency from 100 MHz to 500 MHz and programmable amplitude of 0.25 V to 1.2 V peak-to-peak, which is locked to 5 MHz or 10 MHz reference frequency common for disciplined oscillators and highly stable clocks such as hydrogen maser. Moreover, it comprises an on-board temperature compensated crystal oscillator for stand-alone usage. The device provides temperature coefficient of the phase lock of 0.9 ps/K near room temperature.

  2. Crystal structure analysis, covalent docking, and molecular dynamics calculations reveal a conformational switch in PhaZ7 PHB depolymerase.

    PubMed

    Kellici, Tahsin F; Mavromoustakos, Thomas; Jendrossek, Dieter; Papageorgiou, Anastassios C

    2017-07-01

    An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3-hydroxybutyrate) depolymerase were identified in two high-resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281-295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3-hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281-295 in comparison to the apo (substrate-free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281-295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  4. Supersymmetric contributions to weak decay correlation coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Profumo, S.; Ramsey-Musolf, M. J.; Tulin, S.

    2007-04-01

    We study supersymmetric contributions to correlation coefficients that characterize the spectral shape and angular distribution for polarized {mu}- and {beta}-decays. In the minimal supersymmetric standard model (MSSM), one-loop box graphs containing superpartners can give rise to non-(V-Ax(V-A) four-fermion operators in the presence of left-right or flavor mixing between sfermions. We analyze the present phenomenological constraints on such mixing and determine the range of allowed contributions to the weak decay correlation coefficients. We discuss the prospective implications for future {mu}- and {beta}-decay experiments, and argue that they may provide unique probes of left-right mixing in the first generation scalar fermion sector.

  5. QED contributions to electron g-2

    NASA Astrophysics Data System (ADS)

    Laporta, Stefano

    2018-05-01

    In this paper I briefly describe the results of the numerical evaluation of the mass-independent 4-loop contribution to the electron g-2 in QED with 1100 digits of precision. In particular I also show the semi-analytical fit to the numerical value, which contains harmonic polylogarithms of eiπ/3, e2iπ/3 and eiπ/2 one-dimensional integrals of products of complete elliptic integrals and six finite parts of master integrals, evaluated up to 4800 digits. I give also some information about the methods and the program used.

  6. Coronal Seismology -- Achievements and Perspectives

    NASA Astrophysics Data System (ADS)

    Ruderman, Michael

    Coronal seismology is a new and fast developing branch of the solar physics. The main idea of coronal seismology is the same as of any branches of seismology: to determine basic properties of a medium using properties of waves propagating in this medium. The waves and oscillations in the solar corona are routinely observed in the late space missions. In our brief review we concentrate only on one of the most spectacular type of oscillations observed in the solar corona - the transverse oscillations of coronal magnetic loops. These oscillations were first observed by TRACE on 14 July 1998. At present there are a few dozens of similar observations. Shortly after the first observation of the coronal loop transverse oscillations they were interpreted as kink oscillations of magnetic tubes with the ends frozen in the dense photospheric plasma. The frequency of the kink oscillation is proportional to the magnetic field magnitude and inversely proportional to the tube length times the square root of the plasma density. This fact was used to estimate the magnetic field magnitude in the coronal loops. In 2004 the first simultaneous observation of the fundamental mode and first overtone of the coronal loop transverse oscillation was reported. If we model a coronal loop as a homogeneous magnetic tube, then the ratio of the frequencies of the first overtone and the fundamental mode should be equal to 2. However, the ratio of the observed frequencies was smaller than 2. This is related to the density variation along the loop. If we assume that the corona is isothermal and prescribe the loop shape (usually it is assumed that it has the shape of half-circle), then, using the ratio of the two frequencies, we can determine the temperature of the coronal plasma. The first observation of transverse oscillations of the coronal loops showed that they were strongly damped. This phenomenon was confirmed by the subsequent observations. At present, the most reliable candidate for the explanation of the oscillation damping is resonant absorption. The damping due to resonant absorption is, broadly speaking, proportional to the inhomogeneity scale of the density in the loop in the transverse direction. This fact was used to estimate the density inhomogeneity scale from the observations. The first observation of the coronal loop transverse oscillations gave a strong boost to the theoretical study of this phenomenon. In the last ten years theorists sufficiently refined their models taking into account such loop properties as the density variation in the longitudinal and transverse directions, the twist of the magnetic field, the non-circular loop cross-section, the variation of the cross-section along the loop, and the loop curvature. Now, to obtain more accurate estimates of the coronal plasma parameters, we need the following from the observations: (i) Since the frequency of the loop oscillation depends on the plasma density, more accurate data on this quantity is required. (ii) Since the estimate of the coronal temperature strongly depends of the loop shape, an accurate three-dimensional picture of the loop is desirable. (iii) The fundamental frequency and first overtone of the loop oscillation are sufficiently affected by the variation of the loop cross-section. The observational data on this quantity is important for further progress of the coronal seismology.

  7. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    NASA Astrophysics Data System (ADS)

    Pohlit, Merlin; Porrati, Fabrizio; Huth, Michael; Ohno, Yuzo; Ohno, Hideo; Müller, Jens

    2015-05-01

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their "coercive field" with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior within experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' "survival time" with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct "paths" most likely driven by thermal perturbation.

  8. The contribution of transient counterion imbalances to DNA bending fluctuations.

    PubMed

    Manning, Gerald S

    2006-05-01

    A two-sided model for DNA is employed to analyze fluctuations of the spatial distribution of condensed counterions and the effect of these fluctuations on transient bending. We analyze two classes of fluctuations. In the first, the number of condensed counterions on one side of the DNA remains at its average value, while on the other side, counterions are lost to bulk solution or gained from it. The second class of fluctuations is characterized by movement of some counterions from one side of the DNA to the other. The root-mean-square fluctuation for each class is calculated from counterion condensation theory. The amplitude of the root-mean-square fluctuation depends on the ionic strength as well as the length of the segment considered and is of the order 5-10%. Both classes of fluctuation result in transient bends toward the side of greater counterion density. The bending amplitudes are approximately 15% of the total root-mean-square bends associated with the persistence length of DNA. We are thus led to suggest that asymmetric fluctuations of counterion density contribute modestly but significantly toward the aggregate of thermalized solvent fluctuations that cause bending deformations of DNA free in solution. The calculations support the idea that counterions may exert some modulating influence on the fine structure of DNA.

  9. Directly induced swing for closed loop control of electroslag remelting furnace

    DOEpatents

    Damkroger, B.

    1998-04-07

    An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

  10. Design and material selection for inverter transformer cores

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1973-01-01

    Report is announced which studied magnetic properties of candidate materials for use in spacecraft transformers, static inverters, converters, and transformer-rectifier power supplies. Included are material characteristics for available alloy compositions in tabular form, including: trade names, saturated flux density, dc coercive force, loop squareness, material density, and watts per pound at 3 KHz.

  11. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.

    PubMed

    Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2014-12-01

    High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.

  12. A Generic 1D Forward Modeling and Inversion Algorithm for TEM Sounding with an Arbitrary Horizontal Loop

    NASA Astrophysics Data System (ADS)

    Li, Zhanhui; Huang, Qinghua; Xie, Xingbing; Tang, Xingong; Chang, Liao

    2016-08-01

    We present a generic 1D forward modeling and inversion algorithm for transient electromagnetic (TEM) data with an arbitrary horizontal transmitting loop and receivers at any depth in a layered earth. Both the Hankel and sine transforms required in the forward algorithm are calculated using the filter method. The adjoint-equation method is used to derive the formulation of data sensitivity at any depth in non-permeable media. The inversion algorithm based on this forward modeling algorithm and sensitivity formulation is developed using the Gauss-Newton iteration method combined with the Tikhonov regularization. We propose a new data-weighting method to minimize the initial model dependence that enhances the convergence stability. On a laptop with a CPU of i7-5700HQ@3.5 GHz, the inversion iteration of a 200 layered input model with a single receiver takes only 0.34 s, while it increases to only 0.53 s for the data from four receivers at a same depth. For the case of four receivers at different depths, the inversion iteration runtime increases to 1.3 s. Modeling the data with an irregular loop and an equal-area square loop indicates that the effect of the loop geometry is significant at early times and vanishes gradually along the diffusion of TEM field. For a stratified earth, inversion of data from more than one receiver is useful in noise reducing to get a more credible layered earth. However, for a resistive layer shielded below a conductive layer, increasing the number of receivers on the ground does not have significant improvement in recovering the resistive layer. Even with a down-hole TEM sounding, the shielded resistive layer cannot be recovered if all receivers are above the shielded resistive layer. However, our modeling demonstrates remarkable improvement in detecting the resistive layer with receivers in or under this layer.

  13. Renormalization of minimally doubled fermions

    NASA Astrophysics Data System (ADS)

    Capitani, Stefano; Creutz, Michael; Weber, Johannes; Wittig, Hartmut

    2010-09-01

    We investigate the renormalization properties of minimally doubled fermions, at one loop in perturbation theory. Our study is based on the two particular realizations of Boriçi-Creutz and Karsten-Wilczek. A common feature of both formulations is the breaking of hyper-cubic symmetry, which requires that the lattice actions are supplemented by suitable counterterms. We show that three counterterms are required in each case and determine their coefficients to one loop in perturbation theory. For both actions we compute the vacuum polarization of the gluon. It is shown that no power divergences appear and that all contributions which arise from the breaking of Lorentz symmetry are cancelled by the counterterms. We also derive the conserved vector and axial-vector currents for Karsten-Wilczek fermions. Like in the case of the previously studied Boriçi-Creutz action, one obtains simple expressions, involving only nearest-neighbour sites. We suggest methods how to fix the coefficients of the counterterms non-perturbatively and discuss the implications of our findings for practical simulations.

  14. A silicon micromachined resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang

    2009-09-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  15. Gas dynamics and heat transfer in a packed pebble-bed reactor for the 4th generation nuclear energy

    NASA Astrophysics Data System (ADS)

    Abdulmohsin, Rahman

    For over three decades, the presence of magnetic flux noise with a power spectral density scaling roughly as S phi ( f) ∝ 1/falpha where a≲1, has been known to limit the low-frequency performance of dc superconducting quantum interference devices (SQUIDs). In recent years, experiments indicate that this same noise persists to frequencies up to 1 GHz and is a dominant source of dephasing in flux-sensitive superconducting quantum bits (qubits). Thus, the reduction of flux noise presents a major hurdle towards the successful realization of scalable quantum computers that are based on flux-based qubits. In this thesis, we present experimental measurements, theoretical analyses, and numerical simulations that support a more detailed understanding of both the microscopic and macroscopic properties of flux n. Our experimental work begins with flux noise measurements of a large number of SQUIDs in the temperature range from 0.1 K to 4 K. We report on measurements of ten SQUIDs with systematically varied geometries and show that alpha increases as the temperature is lowered; in so doing, each spectrum pivots about a nearly constant frequency. The mean square flux noise, inferred by integrating the power spectra, grows rapidly with temperature and at a given temperature is approximately independent of the outer dimension of a given SQUID washer. We show that these results are incompatible with a model based on the random reversal of independent, spins that are located at the surface of the SQUID washer. In the course of our flux noise measurements, we became aware of a spurious contribution to low-frequency critical current noise in Josephson junctions normally attributed to charge trapping in the barrier arising from temperature instabilities inherent in cryogenic systems. These temperature fluctuations modify the critical current via its temperature dependence. By computing cross-correlations between measured temperature and critical current noise in Al-AlOx-Al junctions, we show that, despite excellent temperature stability, temperature fluctuations induce observable critical current fluctuations. Particularly, becuase 1/ f critical current noise has decreased with improved fabrication techniques in recent years, it is important to understand and eliminate this additional noise source. Next, we introduce a numerical method of calculating the mean square flux noise F2 from independently fluctuating spins on the surface of thin-film loops of arbitrary geometry. By reciprocity, F2 is proportional to Br2 , where B(r) is the magnetic field generated by a circulating current around the loop and r varies over the loop surface. By discretizing the loop nonuniformly, we efficiently and accurately compute the current distribution and resulting magnetic field, which may vary rapidly across the loop. We use this method to compute F2 in a number of scenarios in which we systematically vary physical parameters of the loop. We compare our simulations to an earlier analytic result predicting that F2 ∝ R/W in the limit where the loop radius R is much greater than the linewidth W. We further show that the previously neglected contribution of edge spins to F2 is significant---even dominant---in narrow-linewidth loops. To calculate theoretical dephasing rates in qubits, we consider flux noise with a spectral density Sphi( f) = A2/ (f/1 Hz) alpha, where A is of the order of 1 muphi 0 Hz--1/2 and 0.6 ≤ alpha ≤ 1.2; applied flux, our calculations of the dependence of the pure dephasing time tau φ Ramsey and echo pulse sequences on alpha for fixed A show that tauφ decreases rapidly as alpha is reduced. We find that tauφ is relatively insensitive to the noise bandwidth, f1 ≤ f ≤ f2 for all alpha provided the ultraviolet cutoff frequency f2 > 1/tauφ. We calculate the ratio tauφ,E/tau φ, R of the echo (E) and Ramsey (R) sequences, and the dependence of the decay function on alpha and f2. We investigate the case in which S phi(f0) is fixed at the "pivot frequency" f0 ≠ 1 Hz while alpha is varied, and find that the choice of f 0 can greatly influence the sensitivity of tauφ, E and tauφ, R to the value of alpha. Finally, we conclude with a brief review of our principal results and conclusions. We also comment on promising avenues of future research.

  16. Solar hot water system installed at Day's Inn Motel, Savannah, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar System was designed to provide 50 percent of the total Domestic Hot Water (DHW) demand. Liquid Flat Plate Collectors (900 square feet) are used for the collector subsystem. The collector subsystem is closed loop, using 50 percent Ethylene Glycol solution antifreeze for freeze protection. The 1,000 gallon fiber glass storage tank contains two heat exchangers. One of the heat exchangers heats the storage tank with the collector solar energy. The other heat exchanger preheats the cold supply water as it passes through on the way to the Domestic Hot Water (DHW) tank heaters. Electrical energy supplements the solar energy for the DHW. The Collector Mounting System utilizes guy wires to structurally tie the collector array to the building.

  17. Dynamic loop gain increases upon adopting the supine body position during sleep in patients with obstructive sleep apnoea.

    PubMed

    Joosten, Simon A; Landry, Shane A; Sands, Scott A; Terrill, Philip I; Mann, Dwayne; Andara, Christopher; Skuza, Elizabeth; Turton, Anthony; Berger, Philip; Hamilton, Garun S; Edwards, Bradley A

    2017-11-01

    Obstructive sleep apnoea (OSA) is typically worse in the supine versus lateral sleeping position. One potential factor driving this observation is a decrease in lung volume in the supine position which is expected by theory to increase a key OSA pathogenic factor: dynamic ventilatory control instability (i.e. loop gain). We aimed to quantify dynamic loop gain in OSA patients in the lateral and supine positions, and to explore the relationship between change in dynamic loop gain and change in lung volume with position. Data from 20 patients enrolled in previous studies on the effect of body position on OSA pathogenesis were retrospectively analysed. Dynamic loop gain was calculated from routinely collected polysomnographic signals using a previously validated mathematical model. Lung volumes were measured in the awake state with a nitrogen washout technique. Dynamic loop gain was significantly higher in the supine than in the lateral position (0.77 ± 0.15 vs 0.68 ± 0.14, P = 0.012). Supine functional residual capacity (FRC) was significantly lower than lateral FRC (81.0 ± 15.4% vs 87.3 ± 18.4% of the seated FRC, P = 0.021). The reduced FRC we observed on moving to the supine position was predicted by theory to increase loop gain by 10.2 (0.6, 17.1)%, a value similar to the observed increase of 8.4 (-1.5, 31.0)%. Dynamic loop gain increased by a small but statistically significant amount when moving from the lateral to supine position and this may, in part, contribute to the worsening of OSA in the supine sleeping position. © 2017 Asian Pacific Society of Respirology.

  18. Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling.

    PubMed

    Afriat-Jurnou, Livnat; Jackson, Colin J; Tawfik, Dan S

    2012-08-07

    Only decades after the introduction of organophosphate pesticides, bacterial phosphotriesterases (PTEs) have evolved to catalyze their degradation with remarkable efficiency. Their closest known relatives, lactonases, with promiscuous phosphotriasterase activity, dubbed PTE-like lactonases (PLLs), share only 30% sequence identity and also differ in the configuration of their active-site loops. PTE was therefore presumed to have evolved from a yet unknown PLL whose primary activity was the hydrolysis of quorum sensing homoserine lactones (HSLs) (Afriat et al. (2006) Biochemistry 45, 13677-13686). However, how PTEs diverged from this presumed PLL remains a mystery. In this study we investigated loop remodeling as a means of reconstructing a homoserine lactonase ancestor that relates to PTE by few mutational steps. Although, in nature, loop remodeling is a common mechanism of divergence of enzymatic functions, reproducing this process in the laboratory is a challenge. Structural and phylogenetic analyses enabled us to remodel one of PTE's active-site loops into a PLL-like configuration. A deletion in loop 7, combined with an adjacent, highly epistatic, point mutation led to the emergence of an HSLase activity that is undetectable in PTE (k(cat)/K(M) values of up to 2 × 10(4)). The appearance of the HSLase activity was accompanied by only a minor decrease in PTE's paraoxonase activity. This specificity change demonstrates the potential role of bifunctional intermediates in the divergence of new enzymatic functions and highlights the critical contribution of loop remodeling to the rapid divergence of new enzyme functions.

  19. Understanding the Impact of Return-Current Losses on the X-Ray Emission from Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2012-01-01

    I obtain and examine the implications of one-dimensional analytic solutions for return-current losses on an initially power-law distribution of energetic electrons with a sharp low-energy cutoff in flare plasma with classical (collisional) resistivity. These solutions show, for example, that return-current losses are not sensitive to plasma density, but are sensitive to plasma temperature and the low energy cutoff of the injected nonthermal electron distribution. A characteristic distance from the electron injection site, x(sub rc), is derived. At distances less than x(sub rc) the electron flux density is not reduced by return-current losses, but plasma heating can be substantial in this region, in the upper, coronal part of the flare loop. Before the electrons reach the collisional thick-target region of the flare loop, an injected power-law electron distribution with a low-energy cutoff maintains that structure, but with a flat energy distribution below the cutoff energy, which is now determined by the total potential drop experienced by the electrons. Modifications due to the presence of collisional losses are discussed. I compare these results with earlier analytical results and with more recent numerical simulations. Emslie's 1980 conjecture that there is a maximum integrated X-ray source brightness on the order of 10(exp -15) photons per square centimeter per second per square centimeter is examined. I find that this is not actually a maximum brightness and its value is parameter dependent, but it is nevertheless a valuable benchmark for identifying return-current losses in hard X-ray spectra. I discuss an observational approach to identifying return-current losses in flare data, including identification of a return-current "bump" in X-ray light curves at low photon energies.

  20. Annual variations in chemical composition of atmospheric precipitation, eastern North Carolina and southeastern Virginia

    USGS Publications Warehouse

    Fisher, Donald W.

    1967-01-01

    A 2-year study of precipitation composition over eastern North Carolina and southeastern Virginia has been completed. Chemical analyses were made of the major ions in monthly rainfall samples from each of 12 sampling locations. Areal and seasonal distributions were determined for chloride, calcium, magnesium, sodium, potassium, sulfate, and nitrate. Annual changes in loads and in geographical distribution of sulfate and of nitrate are small. Yearly rainfall sulfate loads amount to approximately 7 tons per square mile, whereas deposition of nitrate is about 2 tons per square mile per year in the interior of the network and less near the coast. Areal patterns of chloride content are consistent with the assumption that the ocean is the only major source of rainfall chloride in the area. Chloride loads were 2.1 and 1.8 tons per square mile per year; the difference can be attributed to meteorological conditions. Cation concentrations in network precipitation appear to depend on localized sources, probably soil dust. Annual loads of the major cations are approximately 2 tons per square mile of calcium, 1.8 tons per square mile of sodium, 0.5 ton per square mile of magnesium, and 0.3 ton per square mile of potassium; considerable year-to-year differences were noted in these values. Bicarbonate and hydrogen ion in network rainfall are closely related to the relative concentrations of sulfate and calcium. Apparently, reaction of an acidic sulfur-containing aerosol with an alkaline calcium source is one of the principal controls on precipitation alkalinity and pH. Ions in precipitation contribute substantially to the quality of surface water in the network area. Comparisons between precipitation input and stream export of ions for four North Carolina rivers show that rainfall sulfate is equal to sulfate discharged, whereas nitrate in rain slightly exceeds stream nitrate. Contributions of cations to the streams by way of precipitation range from about 20 percent for potassium to almost 50 percent for calcium. Chloride deposited by precipitation amounts to about one-fourth of the stream load. Additions of manufactured salt may account for much of the remainder of the surface-water load.

  1. A digitalized silicon microgyroscope based on embedded FPGA.

    PubMed

    Xia, Dunzhu; Yu, Cheng; Wang, Yuliang

    2012-09-27

    This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system.

  2. A Digitalized Silicon Microgyroscope Based on Embedded FPGA

    PubMed Central

    Xia, Dunzhu; Yu, Cheng; Wang, Yuliang

    2012-01-01

    This paper presents a novel digital miniaturization method for a prototype silicon micro-gyroscope (SMG) with the symmetrical and decoupled structure. The schematic blocks of the overall system consist of high precision analog front-end interface, high-speed 18-bit analog to digital convertor, a high-performance core Field Programmable Gate Array (FPGA) chip and other peripherals such as high-speed serial ports for transmitting data. In drive mode, the closed-loop drive circuit are implemented by automatic gain control (AGC) loop and software phase-locked loop (SPLL) based on the Coordinated Rotation Digital Computer (CORDIC) algorithm. Meanwhile, the sense demodulation module based on varying step least mean square demodulation (LMSD) are addressed in detail. All kinds of algorithms are simulated by Simulink and DSPbuilder tools, which is in good agreement with the theoretical design. The experimental results have fully demonstrated the stability and flexibility of the system. PMID:23201990

  3. Eglin virtual range database for hardware-in-the-loop testing

    NASA Astrophysics Data System (ADS)

    Talele, Sunjay E.; Pickard, J. W., Jr.; Owens, Monte A.; Foster, Joseph; Watson, John S.; Amick, Mary Amenda; Anthony, Kenneth

    1998-07-01

    Realistic backgrounds are necessary to support high fidelity hardware-in-the-loop testing. Advanced avionics and weapon system sensors are driving the requirement for higher resolution imagery. The model-test-model philosophy being promoted by the T&E community is resulting in the need for backgrounds that are realistic or virtual representations of actual test areas. Combined, these requirements led to a major upgrade of the terrain database used for hardware-in-the-loop testing at the Guided Weapons Evaluation Facility (GWEF) at Eglin Air Force Base, Florida. This paper will describe the process used to generate the high-resolution (1-foot) database of ten sites totaling over 20 square kilometers of the Eglin range. this process involved generating digital elevation maps from stereo aerial imagery and classifying ground cover material using the spectral content. These databases were then optimized for real-time operation at 90 Hz.

  4. The Role of the Phonological Loop in English Word Learning: A Comparison of Chinese ESL Learners and Native Speakers

    ERIC Educational Resources Information Center

    Hamada, Megumi; Koda, Keiko

    2011-01-01

    Although the role of the phonological loop in word-retention is well documented, research in Chinese character retention suggests the involvement of non-phonological encoding. This study investigated whether the extent to which the phonological loop contributes to learning and remembering visually introduced words varies between college-level…

  5. Computational Model of a Positive BDNF Feedback Loop in Hippocampal Neurons Following Inhibitory Avoidance Training

    ERIC Educational Resources Information Center

    Zhang, Yili; Smolen, Paul; Alberini, Cristina M.; Baxter, Douglas A.; Byrne, John H.

    2016-01-01

    Inhibitory avoidance (IA) training in rodents initiates a molecular cascade within hippocampal neurons. This cascade contributes to the transition of short- to long-term memory (i.e., consolidation). Here, a differential equation-based model was developed to describe a positive feedback loop within this molecular cascade. The feedback loop begins…

  6. Unmixing Magnetic Hysteresis Loops

    NASA Astrophysics Data System (ADS)

    Heslop, D.; Roberts, A. P.

    2012-04-01

    Magnetic hysteresis loops provide important information in rock and environmental magnetic studies. Natural samples often contain an assemblage of magnetic particles composed of components with different origins. Each component potentially carries important environmental information. Hysteresis loops, however, provide information concerning the bulk magnetic assemblage, which makes it difficult to isolate the specific contributions from different sources. For complex mineral assemblages an unmixing strategy with which to separate hysteresis loops into their component parts is therefore essential. Previous methods to unmix hysteresis data have aimed at separating individual loops into their constituent parts using libraries of type-curves thought to correspond to specific mineral types. We demonstrate an alternative approach, which rather than decomposing a single loop into monomineralic contributions, examines a collection of loops to determine their constituent source materials. These source materials may themselves be mineral mixtures, but they provide a genetically meaningful decomposition of a magnetic assemblage in terms of the processes that controlled its formation. We show how an empirically derived hysteresis mixing space can be created, without resorting to type-curves, based on the co-variation within a collection of measured loops. Physically realistic end-members, which respect the expected behaviour and symmetries of hysteresis loops, can then be extracted from the mixing space. These end-members allow the measured loops to be described as a combination of invariant parts that are assumed to represent the different sources in the mixing model. Particular attention is paid to model selection and estimating the complexity of the mixing model, specifically, how many end-members should be included. We demonstrate application of this approach using lake sediments from Butte Valley, northern California. Our method successfully separates the hysteresis loops into sources with a variety of terrigenous and authigenic origins.

  7. Characterization of electrical noise limits in ultra-stable laser systems.

    PubMed

    Zhang, J; Shi, X H; Zeng, X Y; Lü, X L; Deng, K; Lu, Z H

    2016-12-01

    We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10 -15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10 -17 level locking in a wide frequency range is feasible with careful design.

  8. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  9. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O{sub 3} antiferroelectric bulk ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong

    2016-05-15

    The dielectric and energy-storage properties of Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.60}Sn{sub 0.40}){sub 0.95}Ti{sub 0.05}]{sub 0.98}O{sub 3} (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T{sub 0}, T{sub C}, T{sub 2} are obtained from the dielectric temperature spectrum. At different temperature regions (below T{sub 0}, between T{sub 0} and T{sub C}, and above T{sub C}), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reachmore » their peak values at ∼T{sub 0}. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.« less

  10. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    NASA Astrophysics Data System (ADS)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  11. Correcting highly aberrated eyes using large-stroke adaptive optics.

    PubMed

    Sabesan, Ramkumar; Ahmad, Kamran; Yoon, Geunyoung

    2007-11-01

    To investigate the optical performance of a large-stroke deformable mirror in correcting large aberrations in highly aberrated eyes. A large-stroke deformable mirror (Mirao 52D; Imagine Eyes) and a Shack-Hartmann wavefront sensor were used in an adaptive optics system. Closed-loop correction of the static aberrations of a phase plate designed for an advanced keratoconic eye was performed for a 6-mm pupil. The same adaptive optics system was also used to correct the aberrations in one eye each of two moderate keratoconic and three normal human eyes for a 6-mm pupil. With closed-loop correction of the phase plate, the total root-mean-square (RMS) over a 6-mm pupil was reduced from 3.54 to 0.04 microm in 30 to 40 iterations, corresponding to 3 to 4 seconds. Adaptive optics closed-loop correction reduced an average total RMS of 1.73+/-0.998 to 0.10+/-0.017 microm (higher order RMS of 0.39+/-0.124 to 0.06+/-0.004 microm) in the three normal eyes and 2.73+/-1.754 to 0.10+/-0.001 microm (higher order RMS of 1.82+/-1.058 to 0.05+/-0.017 microm) in the two keratoconic eyes. Aberrations in both normal and highly aberrated eyes were successfully corrected using the large-stroke deformable mirror to provide almost perfect optical quality. This mirror can be a powerful tool to assess the limit of visual performance achievable after correcting the aberrations, especially in eyes with abnormal corneal profiles.

  12. Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability.

    PubMed

    Stirling, Peter C; Hieter, Philip

    2017-10-27

    DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Finite-Horizon H∞ Consensus Control of Time-Varying Multiagent Systems With Stochastic Communication Protocol.

    PubMed

    Zou, Lei; Wang, Zidong; Gao, Huijun; Alsaadi, Fuad E

    2017-03-31

    This paper is concerned with the distributed H∞ consensus control problem for a discrete time-varying multiagent system with the stochastic communication protocol (SCP). A directed graph is used to characterize the communication topology of the multiagent network. The data transmission between each agent and the neighboring ones is implemented via a constrained communication channel where only one neighboring agent is allowed to transmit data at each time instant. The SCP is applied to schedule the signal transmission of the multiagent system. A sequence of random variables is utilized to capture the scheduling behavior of the SCP. By using the mapping technology combined with the Hadamard product, the closed-loop multiagent system is modeled as a time-varying system with a stochastic parameter matrix. The purpose of the addressed problem is to design a cooperative controller for each agent such that, for all probabilistic scheduling behaviors, the H∞ consensus performance is achieved over a given finite horizon for the closed-loop multiagent system. A necessary and sufficient condition is derived to ensure the H∞ consensus performance based on the completing squares approach and the stochastic analysis technique. Then, the controller parameters are obtained by solving two coupled backward recursive Riccati difference equations. Finally, a numerical example is given to illustrate the effectiveness of the proposed controller design scheme.

  14. An Autonomous Satellite Time Synchronization System Using Remotely Disciplined VC-OCXOs

    PubMed Central

    Gu, Xiaobo; Chang, Qing; Glennon, Eamonn P.; Xu, Baoda; Dempseter, Andrew G.; Wang, Dun; Wu, Jiapeng

    2015-01-01

    An autonomous remote clock control system is proposed to provide time synchronization and frequency syntonization for satellite to satellite or ground to satellite time transfer, with the system comprising on-board voltage controlled oven controlled crystal oscillators (VC-OCXOs) that are disciplined to a remote master atomic clock or oscillator. The synchronization loop aims to provide autonomous operation over extended periods, be widely applicable to a variety of scenarios and robust. A new architecture comprising the use of frequency division duplex (FDD), synchronous time division (STDD) duplex and code division multiple access (CDMA) with a centralized topology is employed. This new design utilizes dual one-way ranging methods to precisely measure the clock error, adopts least square (LS) methods to predict the clock error and employs a third-order phase lock loop (PLL) to generate the voltage control signal. A general functional model for this system is proposed and the error sources and delays that affect the time synchronization are discussed. Related algorithms for estimating and correcting these errors are also proposed. The performance of the proposed system is simulated and guidance for selecting the clock is provided. PMID:26213929

  15. Geometric structure of percolation clusters.

    PubMed

    Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin

    2014-01-01

    We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).

  16. Invariant measure of the one-loop quantum gravitational backreaction on inflation

    NASA Astrophysics Data System (ADS)

    Miao, S. P.; Tsamis, N. C.; Woodard, R. P.

    2017-06-01

    We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.

  17. Poly[[di-μ-aqua-(μ-4-formyl-2-meth­oxy­phenol­ato)disodium] 4-formyl-2-meth­oxy­phenolate

    PubMed Central

    Asghar, Muhammad Nadeem; Şahin, Onur; Arshad, Muhammad Nadeem; Mazhar, Uzma; Khan, Islam Ullah; Büyükgüngör, Orhan

    2010-01-01

    In the title coordination polymer, {[Na2(C8H7O3)(H2O)4](C8H7O3)}n, all the non-H atoms except the water O atoms lie on a crystallographic mirror plane. One sodium cation is bonded to four water O atoms and one vanillinate O atom in a distorted square-based pyramidal arrangement; the other Na+ ion is six-coordinated by four water O atoms and two vanillinate O atoms in an irregular geometry. One of the vanillinate anions is directly bonded to two sodium ions, whilst the other only inter­acts with the polymeric network by way of hydrogen bonds. In the crystal, a two-dimensional polymeric array is formed; this is reinforced by O—H⋯O hydrogen bonds, which generate R 2 1(6) and R 2 2(20) loops. PMID:21579628

  18. AB-stacked square-like bilayer ice in graphene nanocapillaries.

    PubMed

    Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn

    2016-08-10

    Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.

  19. Anisotropy Induced Switching Field Distribution in High-Density Patterned Media

    NASA Astrophysics Data System (ADS)

    Talapatra, A.; Mohanty, J.

    We present here micromagnetic study of variation of switching field distribution (SFD) in a high-density patterned media as a function of magnetic anisotropy of the system. We consider the manifold effect of magnetic anisotropy in terms of its magnitude, tilt in anisotropy axis and random arrangements of magnetic islands with random anisotropy values. Our calculation shows that reduction in anisotropy causes linear decrease in coercivity because the anisotropy energy tries to align the spins along a preferred crystallographic direction. Tilt in anisotropy axis results in decrease in squareness of the hysteresis loop and hence facilitates switching. Finally, the experimental challenges like lithographic distribution of magnetic islands, their orientation, creation of defects, etc. demanded the distribution of anisotropy to be random along with random repetitions. We have explained that the range of anisotropy values and the number of bits with different anisotropy play a key role over SFD, whereas the position of the bits and their repetitions do not show a considerable contribution.

  20. Anomalous Hall hysteresis in T m3F e5O12/Pt with strain-induced perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tang, Chi; Sellappan, Pathikumar; Liu, Yawen; Xu, Yadong; Garay, Javier E.; Shi, Jing

    2016-10-01

    We demonstrate robust interface strain-induced perpendicular magnetic anisotropy in atomically flat ferrimagnetic insulator T m3F e5O12 (TIG) films grown with pulsed laser deposition on a substituted G d3G a5O12 substrate which maximizes the tensile strain at the interface. In bilayers consisting of Pt and TIG, we observe large squared Hall hysteresis loops over a wide range of thicknesses of Pt at room temperature. When a thin Cu layer is inserted between Pt and TIG, the Hall hysteresis magnitude decays but stays finite as the thickness of Cu increases up to 5 nm. However, if the Cu layer is placed atop Pt instead, the Hall hysteresis magnitude is consistently larger than when the Cu layer with the same thickness is inserted in between for all Cu thicknesses. These results suggest that both the proximity-induced ferromagnetism and spin current contribute to the anomalous Hall effect.

  1. Analog of the Peter-Weyl expansion for Lorentz group

    NASA Astrophysics Data System (ADS)

    Perlov, Leonid

    2015-11-01

    The expansion of a square integrable function on SL(2, C) into the sum of the principal series matrix coefficients with the specially selected representation parameters was recently used in the Loop Quantum Gravity [C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory (Cambridge University Press, Cambridge, 2014) and C. Rovelli, Classical Quantum Gravity 28(11), 114005 (2011)]. In this paper, we prove that the sum used originally in the Loop Quantum Gravity: ∑ j = 0 ∞ ∑ |m| ≤ j ∑ |n| ≤ j Dj m , j n ( j , τ j ) ( g ) , where j, m, n ∈ Z, τ ∈ C is convergent to a function on SL(2, C); however, the limit is not a square integrable function; therefore, such sums cannot be used for the Peter-Weyl like expansion. We propose the alternative expansion and prove that for each fixed m: ∑ j = m ∞ D j m , j m ( j , τ j ) ( g ) is convergent and that the limit is a square integrable function on SL(2, C). We then prove the analog of the Peter-Weyl expansion: any ψ(g) ∈ L2(SL(2, C)) can be decomposed into the sum: ψ ( g ) = ∑ j = m ∞ j 2 ( 1 + τ 2 ) c j m m D j m , j m ( j , τ j ) ( g ) , with the Fourier coefficients c j m m = ∫ S L ( 2 , C ) ψ ( g ) Dj m , j m j , τ j ( g ) ¯ d g , g ∈ SL(2, C), τ ∈ C, τ ≠ i, - i, j, m ∈ Z, m is fixed. We also prove convergence of the sums ∑ j = |p| ∞ ∑ |m| ≤ j ∑ |n| ≤ j dp m /j 2 Dj m , j n ( j , τ j ) ( g ) , where d|p| m /j 2 = ( j + 1 ) /1 2 ∫ S U ( 2 ) ϕ ( u ) D|p| m /j 2 ( u ) ¯ d u is ϕ(u)'s Fourier transform and p, j, m, n ∈ Z, τ ∈ C, u ∈ SU(2), g ∈ SL(2, C), thus establishing the map between the square integrable functions on SU(2) and the space of the functions on SL(2, C). Such maps were first used in Rovelli [Class. Quant. Grav. 28, 11 (2011)].

  2. A Nonlinear Spacecraft Attitude Controller and Observer with an Unknown Constant Gyro Bias and Gyro Noise

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Sanner, Robert M.

    2001-01-01

    A nonlinear control scheme for attitude control of a spacecraft is combined with a nonlinear gyro bias observer for the case of constant gyro bias, in the presence of gyro noise. The observer bias estimates converge exponentially to a mean square bound determined by the standard deviation of the gyro noise. The resulting coupled, closed loop dynamics are proven to be globally stable, with asymptotic tracking which is also mean square bounded. A simulation of the proposed observer-controller design is given for a rigid spacecraft tracking a specified, time-varying attitude sequence to illustrate the theoretical claims.

  3. A new broadband square law detector. [microwave radiometers

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    A broadband constant law detector was developed for precision power measurements, radio metric measurements, and other applications. It has a wide dynamic range and an accurate square law response. Other desirable characteristics, which are all included in a single compact unit, are: (1) high-level dc output with immunity to ground loop problems; (2) fast response times; (3) ability to insert known time constants; and (4) good thermal stability. The detector and its performance are described in detail. The detector can be operated in a programmable system with a ten-fold increase in accuracy. The use and performance of the detector in a noise-adding radiometer system is also discussed.

  4. THE CORONAL LOOP INVENTORY PROJECT: EXPANDED ANALYSIS AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmelz, J. T.; Christian, G. M.; Chastain, R. A., E-mail: jschmelz@usra.edu

    We have expanded upon earlier work that investigates the relative importance of coronal loops with isothermal versus multithermal cross-field temperature distributions. These results are important for determining if loops have substructure in the form of unresolved magnetic strands. We have increased the number of loops targeted for temperature analysis from 19 to 207 with the addition of 188 new loops from multiple regions. We selected all loop segments visible in the 171 Å images of the Atmospheric Imaging Assembly (AIA) that had a clean background. Eighty-six of the new loops were rejected because they could not be reliably separated frommore » the background in other AIA filters. Sixty-one loops required multithermal models to reproduce the observations. Twenty-eight loops were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within uncertainties. Ten loops were isothermal. Also, part of our inventory was one small flaring loop, one very cool loop whose temperature distribution could not be constrained by the AIA data, and one loop with inconclusive results. Our survey can confirm an unexpected result from the pilot study: we found no isothermal loop segments where we could properly use the 171-to-193 ratio method, which would be similar to the analysis done for many loops observed with TRACE and EIT. We recommend caution to observers who assume the loop plasma is isothermal, and hope that these results will influence the direction of coronal heating models and the effort modelers spend on various heating scenarios.« less

  5. Pion mass dependence of the HVP contribution to muon g - 2

    NASA Astrophysics Data System (ADS)

    Golterman, Maarten; Maltman, Kim; Peris, Santiago

    2018-03-01

    One of the systematic errors in some of the current lattice computations of the HVP contribution to the muon anomalous magnetic moment g - 2 is that associated with the extrapolation to the physical pion mass. We investigate this extrapolation assuming lattice pion masses in the range of 220 to 440 MeV with the help of two-loop chiral perturbation theory, and find that such an extrapolation is unlikely to lead to control of this systematic error at the 1% level. This remains true even if various proposed tricks to improve the chiral extrapolation are taken into account.

  6. EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less

  7. An open-loop system design for deep space signal processing applications

    NASA Astrophysics Data System (ADS)

    Tang, Jifei; Xia, Lanhua; Mahapatra, Rabi

    2018-06-01

    A novel open-loop system design with high performance is proposed for space positioning and navigation signal processing. Divided by functions, the system has four modules, bandwidth selectable data recorder, narrowband signal analyzer, time-delay difference of arrival estimator and ANFIS supplement processor. A hardware-software co-design approach is made to accelerate computing capability and improve system efficiency. Embedded with the proposed signal processing algorithms, the designed system is capable of handling tasks with high accuracy over long period of continuous measurements. The experiment results show the Doppler frequency tracking root mean square error during 3 h observation is 0.0128 Hz, while the TDOA residue analysis in correlation power spectrum is 0.1166 rad.

  8. Parameter Identification Flight Test Maneuvers for Closed Loop Modeling of the F-18 High Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Batterson, James G. (Technical Monitor); Morelli, E. A.

    1996-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5,20,30,45, and 60 degrees angle of attack, using the Actuated Nose Strakes for Enhanced Rolling (ANSER) control law in Thrust Vectoring (TV) mode. Each maneuver is to be realized by applying square wave inputs to specific pilot station controls using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time / amplitude points defining each input are included, along with plots of the input time histories.

  9. Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (S = 5/2) and low-spin (S = 1/2)

    NASA Astrophysics Data System (ADS)

    Batı, Mehmet; Ertaş, Mehmet

    2017-09-01

    The dynamic hysteresis behaviors of a containing high spin-5/2 and low spin-1/2 Ising ferrimagnetic system on a square lattice are studied by using the dynamic mean-field approximation. The influences of the temperature, the single-ion anisotropy and the frequency on dynamic hysteresis behaviors are investigated in detail. Somewhat characteristic behaviors are found, such as the presence of triple hysteresis loop for appropriate values of the crystal field or temperature. Besides, we observed that, hysteresis loop area and phase transition points are very sensitive to changes in frequency and thus have profound importance in device application.

  10. A recursive solution for a fading memory filter derived from Kalman filter theory

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1986-01-01

    A simple recursive solution for a class of fading memory tracking filters is presented. A fading memory filter provides estimates of filter states based on past measurements, similar to a traditional Kalman filter. Unlike a Kalman filter, an exponentially decaying weight is applied to older measurements, discounting their effect on present state estimates. It is shown that Kalman filters and fading memory filters are closely related solutions to a general least squares estimator problem. Closed form filter transfer functions are derived for a time invariant, steady state, fading memory filter. These can be applied in loop filter implementation of the Deep Space Network (DSN) Advanced Receiver carrier phase locked loop (PLL).

  11. Performance Analysis of a De-correlated Modified Code Tracking Loop for Synchronous DS-CDMA System under Multiuser Environment

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Ting; Wong, Wai-Ki; Leung, Shu-Hung; Zhu, Yue-Sheng

    This paper presents the performance analysis of a De-correlated Modified Code Tracking Loop (D-MCTL) for synchronous direct-sequence code-division multiple-access (DS-CDMA) systems under multiuser environment. Previous studies have shown that the imbalance of multiple access interference (MAI) in the time lead and time lag portions of the signal causes tracking bias or instability problem in the traditional correlating tracking loop like delay lock loop (DLL) or modified code tracking loop (MCTL). In this paper, we exploit the de-correlating technique to combat the MAI at the on-time code position of the MCTL. Unlike applying the same technique to DLL which requires an extensive search algorithm to compensate the noise imbalance which may introduce small tracking bias under low signal-to-noise ratio (SNR), the proposed D-MCTL has much lower computational complexity and exhibits zero tracking bias for the whole range of SNR, regardless of the number of interfering users. Furthermore, performance analysis and simulations based on Gold codes show that the proposed scheme has better mean square tracking error, mean-time-to-lose-lock and near-far resistance than the other tracking schemes, including traditional DLL (T-DLL), traditional MCTL (T-MCTL) and modified de-correlated DLL (MD-DLL).

  12. Optimizing the inner loop of the gravitational force interaction on modern processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Michael S

    2010-12-08

    We have achieved superior performance on multiple generations of the fastest supercomputers in the world with our hashed oct-tree N-body code (HOT), spanning almost two decades and garnering multiple Gordon Bell Prizes for significant achievement in parallel processing. Execution time for our N-body code is largely influenced by the force calculation in the inner loop. Improvements to the inner loop using SSE3 instructions has enabled the calculation of over 200 million gravitational interactions per second per processor on a 2.6 GHz Opteron, for a computational rate of over 7 Gflops in single precision (700/0 of peak). We obtain optimal performancemore » some processors (including the Cell) by decomposing the reciprocal square root function required for a gravitational interaction into a table lookup, Chebychev polynomial interpolation, and Newton-Raphson iteration, using the algorithm of Karp. By unrolling the loop by a factor of six, and using SPU intrinsics to compute on vectors, we obtain performance of over 16 Gflops on a single Cell SPE. Aggregated over the 8 SPEs on a Cell processor, the overall performance is roughly 130 Gflops. In comparison, the ordinary C version of our inner loop only obtains 1.6 Gflops per SPE with the spuxlc compiler.« less

  13. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.

    PubMed

    Arya, Preeti; Acharya, Vishal

    2018-02-01

    STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.

  14. Super energy saver heat pump with dynamic hybrid phase change material

    DOEpatents

    Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN

    2010-07-20

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  15. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  16. New constraints on dark matter effective theories from standard model loops.

    PubMed

    Crivellin, Andreas; D'Eramo, Francesco; Procura, Massimiliano

    2014-05-16

    We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ ≳ 1 TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter-nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.

  17. Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity

    PubMed Central

    2014-01-01

    Background One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are known as common structures to biological oscillators, the analytical solutions have not been presented for a general model of negative feedback oscillators. Results We present the analytical expressions for the period, amplitude and their associated MPSs for a general model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters. The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one, the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the number of molecular species constituting the feedback loop). Conclusions Since a general model of negative feedback oscillators was employed, the results shown in this paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions give synthetic biologists some clues to design gene oscillators with robust and desired period. PMID:25605374

  18. "It Is Definitely a Game Changer": A Qualitative Study of Experiences with In-home Overnight Closed-Loop Technology Among Adults with Type 1 Diabetes.

    PubMed

    Hendrieckx, Christel; Poole, Lucinda A; Sharifi, Amin; Jayawardene, Dilshani; Loh, Margaret M; Horsburgh, Jodie C; Bach, Leon A; Colman, Peter G; Kumareswaran, Kavita; Jenkins, Alicia J; MacIsaac, Richard J; Ward, Glenn M; Grosman, Benyamin; Roy, Anirban; O'Neal, David N; Speight, Jane

    2017-07-01

    This qualitative study explored trial participants' experiences of four nights of in-home closed loop. Sixteen adults with type 1 diabetes, who completed a randomized crossover trial, were interviewed after four consecutive nights of closed-loop. Interviews were audio recorded, transcribed, and analyzed with a coding framework developed to identify the main themes. Participants had a mean age of 42 ± 10 years, nine were women; mean diabetes duration was 27 ± 7 years, and all were using insulin pumps. Overall, first impressions were positive. Participants found closed-loop easy to use and understand. Most experienced more stable overnight glucose levels, although for some these were similar to usual care or higher than they expected. Compared with their usual treatment, they noticed the proactive nature of the closed-loop, being able to predict trends and deliver micro amounts of insulin. Most reported technical glitches or inconveniences during one or more nights, such as transmission problems, problematic connectivity between devices, ongoing alarms despite addressing low glucose levels, and sensor inaccuracy. Remote monitoring by the trial team and their own hypoglycemic awareness contributed to feelings of trust and safety. Although rare, safety concerns were raised, related to feeling unsure whether the system would respond in time to falling glucose levels. This study provides relevant insights for implementation of closed-loop in the real world. For people with diabetes who are less familiar with technology, remote monitoring for the first few days may provide reassurance, strengthen their trust/skills, and make closed-loop an acceptable option for more people with type 1 diabetes.

  19. The AdS/CFT Correspondence: Classical, Quantum, and Thermodynamical Aspects

    NASA Astrophysics Data System (ADS)

    Young, Donovan

    2007-06-01

    Certain aspects of the AdS/CFT correspondence are studied in detail. We investigate the one-loop mass shift to certain two-impurity string states in light-cone string field theory on a plane wave background. We find that there exist logarithmic divergences in the sums over intermediate mode numbers which cancel between the cubic Hamiltonian and quartic "contact term". We argue that generically, every order in intermediate state impurities contributes to the mass shift at leading perturbative order. The same mass shift is also computed using an improved 3-string vertex proposed by Dobashi and Yoneya. The result is found to agree with gauge theory at leading order and is close but not quite in agreement at subleading order. We extend the analysis to include discrete light-cone quantization, considering states with up to three units of p+. We study the (apparently) first-order phase transition in the weakly coupled plane-wave matrix model at finite temperature. We analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator to three loop order. We show that the phase transition is indeed of first order. We also compute the 2-loop correction to the Hagedorn temperature. Finally, correlation functions of 1/4 BPS Wilson loops with the infinite family of 1/2 BPS chiral primary operators are computed in N=4 super Yang-Mills theory by summing planar ladder diagrams. The correlation functions are also computed in the strong-coupling limit using string theory; the result is found to agree with the extrapolation of the planar ladders. The result is related to similar correlators of 1/2 BPS loops by a simple re-scaling of the coupling constant, discovered by Drukker for the case of the 1/4 BPS loop VEV.

  20. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.

    PubMed

    Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan

    2017-09-26

    Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.

  1. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  2. Control and optimization system and method for chemical looping processes

    DOEpatents

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2015-02-17

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  3. Revised and improved value of the QED tenth-order electron anomalous magnetic moment

    NASA Astrophysics Data System (ADS)

    Aoyama, Tatsumi; Kinoshita, Toichiro; Nio, Makiko

    2018-02-01

    In order to improve the theoretical prediction of the electron anomalous magnetic moment ae we have carried out a new numerical evaluation of the 389 integrals of Set V, which represent 6,354 Feynman vertex diagrams without lepton loops. During this work, we found that one of the integrals, called X 024 , was given a wrong value in the previous calculation due to an incorrect assignment of integration variables. The correction of this error causes a shift of -1.26 to the Set V contribution, and hence to the tenth-order universal (i.e., mass-independent) term A1(10 ). The previous evaluation of all other 388 integrals is free from errors and consistent with the new evaluation. Combining the new and the old (excluding X 024 ) calculations statistically, we obtain 7.606 (192 )(α /π )5 as the best estimate of the Set V contribution. Including the contribution of the diagrams with fermion loops, the improved tenth-order universal term becomes A1(10 )=6.675 (192 ) . Adding hadronic and electroweak contributions leads to the theoretical prediction ae(theory)=1 159 652 182.032 (720 )×10-12 . From this and the best measurement of ae, we obtain the inverse fine-structure constant α-1(ae)=137.035 999 1491 (331 ) . The theoretical prediction of the muon anomalous magnetic moment is also affected by the update of QED contribution and the new value of α , but the shift is much smaller than the theoretical uncertainty.

  4. Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.

    PubMed

    Cowen, Stephen L; Nitz, Douglas A

    2014-01-01

    Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.

  5. Dynameomics: data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction.

    PubMed

    Rysavy, Steven J; Beck, David A C; Daggett, Valerie

    2014-11-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.

  6. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.

    PubMed

    Mansouri, Misagh; Reinbolt, Jeffrey A

    2012-05-11

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB

    PubMed Central

    Mansouri, Misagh; Reinbolt, Jeffrey A.

    2013-01-01

    Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351

  8. Dynameomics: Data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction

    PubMed Central

    Rysavy, Steven J; Beck, David AC; Daggett, Valerie

    2014-01-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412

  9. Development of a new physics-based internal coordinate mechanics force field and its application to protein loop modeling.

    PubMed

    Arnautova, Yelena A; Abagyan, Ruben A; Totrov, Maxim

    2011-02-01

    We report the development of internal coordinate mechanics force field (ICMFF), new force field parameterized using a combination of experimental data for crystals of small molecules and quantum mechanics calculations. The main features of ICMFF include: (a) parameterization for the dielectric constant relevant to the condensed state (ε = 2) instead of vacuum, (b) an improved description of hydrogen-bond interactions using duplicate sets of van der Waals parameters for heavy atom-hydrogen interactions, and (c) improved backbone covalent geometry and energetics achieved using novel backbone torsional potentials and inclusion of the bond angles at the C(α) atoms into the internal variable set. The performance of ICMFF was evaluated through loop modeling simulations for 4-13 residue loops. ICMFF was combined with a solvent-accessible surface area solvation model optimized using a large set of loop decoys. Conformational sampling was carried out using the biased probability Monte Carlo method. Average/median backbone root-mean-square deviations of the lowest energy conformations from the native structures were 0.25/0.21 Å for four residues loops, 0.84/0.46 Å for eight residue loops, and 1.16/0.73 Å for 12 residue loops. To our knowledge, these results are significantly better than or comparable with those reported to date for any loop modeling method that does not take crystal packing into account. Moreover, the accuracy of our method is on par with the best previously reported results obtained considering the crystal environment. We attribute this success to the high accuracy of the new ICM force field achieved by meticulous parameterization, to the optimized solvent model, and the efficiency of the search method. © 2010 Wiley-Liss, Inc.

  10. Usage of mitochondrial D-loop variation to predict risk for Huntington disease.

    PubMed

    Mousavizadeh, Kazem; Rajabi, Peyman; Alaee, Mahsa; Dadgar, Sepideh; Houshmand, Massoud

    2015-08-01

    Huntington's disease (HD) is an inherited autosomal neurodegenerative disease caused by the abnormal expansion of the CAG repeats in the Huntingtin (Htt) gene. It has been proven that mitochondrial dysfunction is contributed to the pathogenesis of Huntington's disease. The mitochondrial displacement loop (D-loop) is proven to accumulate mutations at a higher rate than other regions of mtDNA. Thus, we hypothesized that specific SNPs in the D-loop may contribute to the pathogenesis of Huntington's disease. In the present study, 30 patients with Huntington's disease and 463 healthy controls were evaluated for mitochondrial mutation sites within the D-loop region using PCR-sequencing method. Sequence analysis revealed 35 variations in HD group from Cambridge Mitochondrial Sequences. A significant difference (p < 0.05) was seen between patients and control group in eight SNPs. Polymorphisms at C16069T, T16126C, T16189C, T16519C and C16223T were correlated with an increased risk of HD while SNPs at C16150T, T16086C and T16195C were associated with a decreased risk of Huntington's disease.

  11. Vestibular and Visual Contribution to Fish Behavior Under Microgravity

    NASA Astrophysics Data System (ADS)

    Ijiri, K.

    Vestibular and visual information are two major factors fish use for controlling their posture under 1 G conditions. Parabolic flight experiments were carried out to observe the fish behavior under microgravity for several different strains of Medaka fish (Oryzias latipes). There existed a clear strain-difference in the behavioral response of the fish under microgravity: Some strains looped, while other strains did not loop at all. However, even the latter strains looped under microgravity conditions when kept in complete darkness, suggesting the contribution of visual information to the posture control under microgravity. In the laboratory, eyesight (visual acuity) was checked for each strain, using a rotating striped-drum apparatus. The results also showed a strain-difference, which gave a clue to the different degree of adaptability to microgravity among different strains. Beside loopings, some fish exhibited rolling movement around their body axis. Tracing each fish during and between parabolas, it was shown that to which side each fish rolls was determined specifically to each individual fish, and not to each strain. Thus, rolling direction is not genetically determined. This may support the otolith asymmetry hypothesis. Fish of a mutant strain (ha strain, having homozygous recessive of one gene ha) have some malfunction in otolith-vestibular system, and their behavior showed they are not dependent on gravity. Morphological abnormalities of their ear vesicles during the embryonic and baby stages were noted. Their eyesight and dorsal light responses were also studied. Progress in the project of establishing a new strain which has good eyesight and, at the same time, being deficient in otolith-vestibular system was reported. Crosses between the strain of good eyesight and ha strain were made, and to some extent, F2 fish have already shown such characteristics suited for living under microgravity conditions

  12. Prediction of protein loop conformations using multiscale modeling methods with physical energy scoring functions.

    PubMed

    Olson, Mark A; Feig, Michael; Brooks, Charles L

    2008-04-15

    This article examines ab initio methods for the prediction of protein loops by a computational strategy of multiscale conformational sampling and physical energy scoring functions. Our approach consists of initial sampling of loop conformations from lattice-based low-resolution models followed by refinement using all-atom simulations. To allow enhanced conformational sampling, the replica exchange method was implemented. Physical energy functions based on CHARMM19 and CHARMM22 parameterizations with generalized Born (GB) solvent models were applied in scoring loop conformations extracted from the lattice simulations and, in the case of all-atom simulations, the ensemble of conformations were generated and scored with these models. Predictions are reported for 25 loop segments, each eight residues long and taken from a diverse set of 22 protein structures. We find that the simulations generally sampled conformations with low global root-mean-square-deviation (RMSD) for loop backbone coordinates from the known structures, whereas clustering conformations in RMSD space and scoring detected less favorable loop structures. Specifically, the lattice simulations sampled basins that exhibited an average global RMSD of 2.21 +/- 1.42 A, whereas clustering and scoring the loop conformations determined an RMSD of 3.72 +/- 1.91 A. Using CHARMM19/GB to refine the lattice conformations improved the sampling RMSD to 1.57 +/- 0.98 A and detection to 2.58 +/- 1.48 A. We found that further improvement could be gained from extending the upper temperature in the all-atom refinement from 400 to 800 K, where the results typically yield a reduction of approximately 1 A or greater in the RMSD of the detected loop. Overall, CHARMM19 with a simple pairwise GB solvent model is more efficient at sampling low-RMSD loop basins than CHARMM22 with a higher-resolution modified analytical GB model; however, the latter simulation method provides a more accurate description of the all-atom energy surface, yet demands a much greater computational cost. (c) 2007 Wiley Periodicals, Inc.

  13. Using artificial neural networks (ANN) for open-loop tomography

    NASA Astrophysics Data System (ADS)

    Osborn, James; De Cos Juez, Francisco Javier; Guzman, Dani; Butterley, Timothy; Myers, Richard; Guesalaga, Andres; Laine, Jesus

    2011-09-01

    The next generation of adaptive optics (AO) systems require tomographic techniques in order to correct for atmospheric turbulence along lines of sight separated from the guide stars. Multi-object adaptive optics (MOAO) is one such technique. Here, we present a method which uses an artificial neural network (ANN) to reconstruct the target phase given off-axis references sources. This method does not require any input of the turbulence profile and is therefore less susceptible to changing conditions than some existing methods. We compare our ANN method with a standard least squares type matrix multiplication method (MVM) in simulation and find that the tomographic error is similar to the MVM method. In changing conditions the tomographic error increases for MVM but remains constant with the ANN model and no large matrix inversions are required.

  14. Simple way to calculate a UV-finite one-loop quantum energy in the Randall-Sundrum model

    NASA Astrophysics Data System (ADS)

    Altshuler, Boris L.

    2017-04-01

    The surprising simplicity of Barvinsky-Nesterov or equivalently Gelfand-Yaglom methods of calculation of quantum determinants permits us to obtain compact expressions for a UV-finite difference of one-loop quantum energies for two arbitrary values of the parameter of the double-trace asymptotic boundary conditions. This result generalizes the Gubser and Mitra calculation for the particular case of difference of "regular" and "irregular" one-loop energies in the one-brane Randall-Sundrum model. The approach developed in the paper also allows us to get "in one line" the one-loop quantum energies in the two-brane Randall-Sundrum model. The relationship between "one-loop" expressions corresponding to the mixed Robin and to double-trace asymptotic boundary conditions is traced.

  15. Topics in Nonsupersymmetric Scattering Amplitudes in Gauge and Gravity Theories

    NASA Astrophysics Data System (ADS)

    Nohle, Joshua David

    In Chapters 1 and 2, we introduce and review the duality between color and kinematics in Yang-Mills theory uncovered by Bern, Carrasco and Johansson (BCJ). In Chapter 3, we provide evidence in favor of the conjectured duality between color and kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by constructing a form of the one-loop four-point amplitude of this theory that makes the duality manifest. Our construction is valid in any dimension. We also describe a duality-satisfying representation for the two-loop four-point amplitude with identical four-dimensional external helicities. We use these results to obtain corresponding gravity integrands for a theory containing a graviton, dilaton, and antisymmetric tensor, simply by replacing color factors with specified diagram numerators. Using this, we give explicit forms of ultraviolet divergences at one loop in four, six, and eight dimensions, and at two loops in four dimensions. In Chapter 4, we extend the four-point one-loop nonsupersymmetric pure Yang-Mills discussion of Chapter 3 to include fermions and scalars circulating in the loop with all external gluons. This gives another nontrivial loop-level example showing that the duality between color and kinematics holds in nonsupersymmetric gauge theory. The construction is valid in any spacetime dimension and written in terms of formal polarization vectors. We also convert these expressions into a four-dimensional form with explicit external helicity states. Using this, we compare our results to one-loop duality-satisfying amplitudes that are already present in literature. In Chapter 5, we switch from the topic of color-kinematics duality to discuss the recently renewed interest in the soft behavior of gravitons and gluons. Specifically, we discuss the subleading low-energy behavior. Cachazo and Strominger recently proposed an extension of the soft-graviton theorem found by Weinberg. In addition, they proved the validity of their extension at tree level. This was motivated by a Virasoro symmetry of the gravity S-matrix related to BMS symmetry. As shown long ago by Weinberg, the leading soft behavior is not corrected by loops. In contrast, we show in Chapter 6 that with the standard definition of soft limits in dimensional regularization, the subleading behavior is anomalous and modified by loop effects. We argue that there are no new types of corrections to the first subleading behavior beyond one loop and to the second subleading behavior beyond two loops. To facilitate our investigation, we introduce a new momentum-conservation prescription for defining the subleading terms of the soft limit. We discuss the loop-level subleading soft behavior of gauge-theory amplitudes before turning to gravity amplitudes. In Chapter 7, we show that at tree level, on-shell gauge invariance can be used to fully determine the first subleading soft-gluon behavior and the first two subleading soft-graviton behaviors. Our proofs of the behaviors for n-gluon and n-graviton tree amplitudes are valid in D dimensions and are similar to Low's proof of universality of the first subleading behavior of photons. In contrast to photons coupling to massive particles, in four dimensions the soft behaviors of gluons and gravitons are corrected by loop effects. We comment on how such corrections arise from this perspective. We also show that loop corrections in graviton amplitudes arising from scalar loops appear only at the second soft subleading order. This case is particularly transparent because it is not entangled with graviton infrared singularities. Our result suggests that if we set aside the issue of infrared singularities, soft-graviton Ward identities of extended BMS symmetry are not anomalous through the first subleading order. Finally, in Chapter 8, we conclude this dissertation with a discussion of the evanescent effects on nonsupersymmetric gravity at two loops. Evanescent operators such as the Gauss- Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this chapter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (non-evanescent) R3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop conformal anomaly---the coefficient of the Gauss-Bonnet operator---changes under p-form duality transformations. We concur, and also find that the leading R3 divergence changes under duality transformations. Nevertheless, in both cases the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. Its renormalization-scale dependence is unaltered. (Abstract shortened by UMI.).

  16. Ocular and Densimeter Estimates of Understory Foliar Cover in Forests of Alabama

    Treesearch

    Thomas W. Popham; Roger L. Baker

    1987-01-01

    Foliar cover estimates of woody and herbaceous understory vegetation were done on twenty l-m2 plots for a variety of forest types in Alabama. The methods of estimation were ocular, loop-densimeter assisted ocular, and point frame. The point frame was used as the standard and the other two methods were compared using chi-square. Some ocular...

  17. Closed-loop torque feedback for a universal field-oriented controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  18. Closed-loop torque feedback for a universal field-oriented controller

    DOEpatents

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  19. Closed-loop torque feedback for a universal field-oriented controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  20. Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation

    PubMed Central

    Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.

    2014-01-01

    High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188

  1. Dissolved-solids contribution to the Colorado River from public lands in southeastern Nevada, through September 1993

    USGS Publications Warehouse

    Westenburg, C.L.

    1995-01-01

    The Bureau of Land Management administers about 9,300 square miles of public lands in southeastern Nevada that are part of the Colorado River Basin. The U.S. Geological Survey, in cooperation with the Bureau of Land Management, began a 5-year program in October 1988 to assess the contribution of dissolved solids to the fiver from those lands. About 6,200 square miles of public lands are in the Muddy River subbasin in Nevada. The estimated average dissolved-solids load contributed to the Colorado River from those lands was 28,000 tons per year from October 1988 through September 1993. Subsurface flow contributed about 86 percent (24,000 tons per year) of that load. About 730 square miles of public lands in the Las Vegas Wash subbasin contribute dissolved-solids load to the Colorado River. (About 120 square miles of public lands do not contribute to the river.) The estimated average dissolved-solids load contributed to the river from those lands was about 1,300 tons per year from October 1988 through September 1993. Subsurface flow contributed almost all of that load. About 1,100 square miles of public lands are in the Virgin River subbasin in Nevada. The estimated average dissolved- solids load contributed to the Colorado River from Nevada public lands in the subbasin was 8,700 tons per year. Subsurface flow contributed almost the entire load. About 1,200 square miles of Nevada public lands are in ephemeral tributaries that drain direcfly to the Colorado River or its impoundments (Lake Mead and Lake Mobave). The estimated average dissolved-solids load contributed to the river from those lands was 50 tons per year from surface runoff; however, the dissolved-solids load contributed by subsurface flow was not estimated. From October 1992 to September 1993, the Colorado River carried about 6,600,000 tons of dissolved solids past a streamflow gaging station 0.3 mile downstream from Hoover Dam. In contrast, surface runoff and subsurface flow contribute an estimated average dissolved-solids load of 38,000 tons per year from public lands in southeastern Nevada to the Colorado River. Land-management practices probably would not substantially reduce this contribution.

  2. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence

    NASA Astrophysics Data System (ADS)

    Jones, S. P.; Kerner, M.; Luisoni, G.

    2018-04-01

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  3. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence.

    PubMed

    Jones, S P; Kerner, M; Luisoni, G

    2018-04-20

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  4. Model of directed lines for square ice with second-neighbor and third-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Kirov, Mikhail V.

    2018-02-01

    The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.

  5. Relating quark confinement and chiral symmetry breaking in QCD

    NASA Astrophysics Data System (ADS)

    Suganuma, Hideo; Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro

    2017-12-01

    We study the relation between quark confinement and chiral symmetry breaking in QCD. Using lattice QCD formalism, we analytically express the various ‘confinement indicators’, such as the Polyakov loop, its fluctuations, the Wilson loop, the inter-quark potential and the string tension, in terms of the Dirac eigenmodes. In the Dirac spectral representation, there appears a power of the Dirac eigenvalue {λ }n such as {λ }n{Nt-1}, which behaves as a reduction factor for small {λ }n. Consequently, since this reduction factor cannot be cancelled, the low-lying Dirac eigenmodes give negligibly small contribution to the confinement quantities, while they are essential for chiral symmetry breaking. These relations indicate that there is no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD. In other words, there is some independence of quark confinement from chiral symmetry breaking, which can generally lead to different transition temperatures/densities for deconfinement and chiral restoration. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, and find similar results. The independence of quark confinement from chiral symmetry breaking seems to be natural, because confinement is realized independently of quark masses and heavy quarks are also confined even without the chiral symmetry.

  6. Far-ultraviolet imagery of the Barnard Loop Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    An electrographic Schmidt camera carried on a sounding rocket has yielded far-ultraviolet (1050-2000 A and 1230-2000 A) images of the Barnard Loop Nebula and of the general background in the Orion region due to scattering of ultraviolet starlight by interstellar dust particles. The total intensity in the Barnard Loop region agrees well with OAO-2 measurements, but the discrete Loop structure contributes only some 15% of the total. The measurements are consistent with a relatively high albedo for the dust grains in the far-ultraviolet.

  7. Fine flow structures in the transition region small-scale loops

    NASA Astrophysics Data System (ADS)

    Yan, L.; Peter, H.; He, J.; Wei, Y.

    2016-12-01

    The observation and model have suggested that the transition region EUV emission from the quiet sun region is contributed by very small scale loops which have not been resolved. Recently, the observation from IRIS has revealed that this kind of small scale loops. Based on the high resolution spectral and imaging observation from IRIS, much more detail work needs to be done to reveal the fine flow features in this kind of loop to help us understand the loop heating. Here, we present a detail statistical study of the spatial and temporal evolution of Si IV line profiles of small scale loops and report the spectral features: there is a transition from blue (red) wing enhancement dominant to red (blue) wing enhancement dominant along the cross-section of the loop, which is independent of time. This feature appears as the loop appear and disappear as the loop un-visible. This is probably the signature of helical flow along the loop. The result suggests that the brightening of this kind of loop is probably due to the current dissipation heating in the twisted magnetic field flux tube.

  8. Nanocluster building blocks of artificial square spin ice: Stray-field studies of thermal dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohlit, Merlin, E-mail: pohlit@physik.uni-frankfurt.de; Porrati, Fabrizio; Huth, Michael

    We present measurements of the thermal dynamics of a Co-based single building block of an artificial square spin ice fabricated by focused electron-beam-induced deposition. We employ micro-Hall magnetometry, an ultra-sensitive tool to study the stray field emanating from magnetic nanostructures, as a new technique to access the dynamical properties during the magnetization reversal of the spin-ice nanocluster. The obtained hysteresis loop exhibits distinct steps, displaying a reduction of their “coercive field” with increasing temperature. Therefore, thermally unstable states could be repetitively prepared by relatively simple temperature and field protocols allowing one to investigate the statistics of their switching behavior withinmore » experimentally accessible timescales. For a selected switching event, we find a strong reduction of the so-prepared states' “survival time” with increasing temperature and magnetic field. Besides the possibility to control the lifetime of selected switching events at will, we find evidence for a more complex behavior caused by the special spin ice arrangement of the macrospins, i.e., that the magnetic reversal statistically follows distinct “paths” most likely driven by thermal perturbation.« less

  9. Electrophilic dark matter with dark photon: From DAMPE to direct detection

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; He, Xiao-Gang

    2018-03-01

    The electron-positron excess reported by the DAMPE collaboration recently may be explained by an electrophilic dark matter (DM). A standard model singlet fermion may play the role of such a DM when it is stabilized by some symmetries, such as a dark U(1)X gauge symmetry, and dominantly annihilates into the electron-positron pairs through the exchange of a scalar mediator. The model, with appropriate Yukawa couplings, can well interpret the DAMPE excess. Naively one expects that in this type of models the DM-nucleon cross section should be small since there is no tree-level DM-quark interactions. We however find that at one-loop level, a testable DM-nucleon cross section can be induced for providing ways to test the electrophilic model. We also find that a U (1) kinetic mixing can generate a sizable DM-nucleon cross section although the U(1)X dark photon only has a negligible contribution to the DM annihilation. Depending on the signs of the mixing parameter, the dark photon can enhance/reduce the one-loop induced DM-nucleon cross section.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Czakon, Michal

    We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(αmore » $$_{s}^{3}$$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$$_{4l}$$), in a regime where m$$_{4l}$$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.« less

  11. Thermodynamic stability of nanosized multicomponent bubbles/droplets: the square gradient theory and the capillary approach.

    PubMed

    Wilhelmsen, Øivind; Bedeaux, Dick; Kjelstrup, Signe; Reguera, David

    2014-01-14

    Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.

  12. Thermodynamic stability of nanosized multicomponent bubbles/droplets: The square gradient theory and the capillary approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilhelmsen, Øivind, E-mail: oivind.wilhelmsen@ntnu.no; Bedeaux, Dick; Kjelstrup, Signe

    Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which showsmore » the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.« less

  13. Online Soft Sensor of Humidity in PEM Fuel Cell Based on Dynamic Partial Least Squares

    PubMed Central

    Long, Rong; Chen, Qihong; Zhang, Liyan; Ma, Longhua; Quan, Shuhai

    2013-01-01

    Online monitoring humidity in the proton exchange membrane (PEM) fuel cell is an important issue in maintaining proper membrane humidity. The cost and size of existing sensors for monitoring humidity are prohibitive for online measurements. Online prediction of humidity using readily available measured data would be beneficial to water management. In this paper, a novel soft sensor method based on dynamic partial least squares (DPLS) regression is proposed and applied to humidity prediction in PEM fuel cell. In order to obtain data of humidity and test the feasibility of the proposed DPLS-based soft sensor a hardware-in-the-loop (HIL) test system is constructed. The time lag of the DPLS-based soft sensor is selected as 30 by comparing the root-mean-square error in different time lag. The performance of the proposed DPLS-based soft sensor is demonstrated by experimental results. PMID:24453923

  14. Loop technique.

    PubMed

    Seeburger, Joerg; Noack, Thilo; Winkfein, Michael; Ender, Joerg; Mohr, Friedrich Wilhelm

    2010-01-01

    The loop technique facilitates mitral valve repair for leaflet prolapse by implantation of Gore-Tex neo-chordae. The key feature of the technique is a premade bundle of four loops made out of one suture. The loops are available in different lengths ranging from 10 to 26 mm. After assessment of the ideal length of neo-chordae with a caliper the loops are then secured to the body of the papillary muscle over an additional felt pledget. In the following step, the free ends of the loops are distributed along the free margin of the prolapsing segment using one additional suture for each loop.

  15. f (R ,Rμν 2) at one loop

    NASA Astrophysics Data System (ADS)

    Ohta, N.; Percacci, R.; Pereira, A. D.

    2018-05-01

    We compute the one-loop divergences in a theory of gravity with a Lagrangian of the general form f (R ,Rμ νRμ ν), on an Einstein background. We also establish that the one-loop effective action is invariant under a duality that consists of changing certain parameters in the relation between the metric and the quantum fluctuation field. Finally, we discuss the unimodular version of such a theory and establish its equivalence at one-loop order with the general case.

  16. One-loop Parke-Taylor factors for quadratic propagators from massless scattering equations

    NASA Astrophysics Data System (ADS)

    Gomez, Humberto; Lopez-Arcos, Cristhiam; Talavera, Pedro

    2017-10-01

    In this paper we reconsider the Cachazo-He-Yuan construction (CHY) of the so called scattering amplitudes at one-loop, in order to obtain quadratic propagators. In theories with colour ordering the key ingredient is the redefinition of the Parke-Taylor factors. After classifying all the possible one-loop CHY-integrands we conjecture a new one-loop amplitude for the massless Bi-adjoint Φ3 theory. The prescription directly reproduces the quadratic propagators of the traditional Feynman approach.

  17. Tritium β decay in chiral effective field theory

    DOE PAGES

    Baroni, A.; Girlanda, L.; Kievsky, A.; ...

    2016-08-18

    We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritiummore » $$\\beta$$-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory ($$\\chi$$ EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schroedinger equation with two- and three-nucleon potentials corresponding to either $$\\chi$$ EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. Furthermore, we also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.« less

  18. The trispectrum in the Effective Field Theory of Large Scale Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertolini, Daniele; Schutz, Katelin; Solon, Mikhail P.

    2016-06-01

    We compute the connected four point correlation function (the trispectrum in Fourier space) of cosmological density perturbations at one-loop order in Standard Perturbation Theory (SPT) and the Effective Field Theory of Large Scale Structure (EFT of LSS). This paper is a companion to our earlier work on the non-Gaussian covariance of the matter power spectrum, which corresponds to a particular wavenumber configuration of the trispectrum. In the present calculation, we highlight and clarify some of the subtle aspects of the EFT framework that arise at third order in perturbation theory for general wavenumber configurations of the trispectrum. We consistently incorporatemore » vorticity and non-locality in time into the EFT counterterms and lay out a complete basis of building blocks for the stress tensor. We show predictions for the one-loop SPT trispectrum and the EFT contributions, focusing on configurations which have particular relevance for using LSS to constrain primordial non-Gaussianity.« less

  19. Enhanced asymmetric magnetization reversal in nanoscale Co/CoO arrays: competition between exchange bias and magnetostatic coupling.

    PubMed

    Girgis, E; Portugal, R D; Loosvelt, H; Van Bael, M J; Gordon, I; Malfait, M; Temst, K; Van Haesendonck, C; Leunissen, L H A; Jonckheere, R

    2003-10-31

    Magnetization reversal was studied in square arrays of square Co/CoO dots with lateral size varying between 200 and 900 nm. While reference nonpatterned Co/CoO films show the typical shift and increased width of the hysteresis loop due to exchange bias, the patterned samples reveal a pronounced size dependence. In particular, an anomaly appears in the upper branch of the magnetization cycle and becomes stronger as the dot size decreases. This anomaly, which is absent at room temperature in the patterned samples, can be understood in terms of a competition between magnetostatic interdot interaction and exchange anisotropy during the magnetic switching process.

  20. Dual-pulses and harmonic patterns of a square-wave soliton in passively mode-locked fiber laser

    NASA Astrophysics Data System (ADS)

    Ma, Wanzhuo; Wang, Tianshu; Su, Qingchao; Zhang, Jing; Jia, Qingsong; Jiang, Huilin

    2018-06-01

    We demonstrate a square-wave soliton pulse passively mode-locked fiber laser. The mode-locked pulses are achieved by using a nonlinear amplifying loop mirror. Single-pulse operation at a fundamental repetition rate of 3.2 MHz is obtained. The optical spectrum presents the soliton feature of several sidebands. The pulse duration expands with increasing pump power, but the amplitude hardly varies. Pulse breaking occurs and a stable dual-pulse is obtained with a fixed interval of 48 ns. Harmonic mode-locked states can be achieved when the total pump power is higher than 740 mW. The harmonic pulses can also operate in both single-pulse and dual-pulse states.

  1. Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point

    NASA Astrophysics Data System (ADS)

    Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration

    2017-12-01

    We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .

  2. An Iterative Information-Reduced Quadriphase-Shift-Keyed Carrier Synchronization Scheme Using Decision Feedback for Low Signal-to-Noise Ratio Applications

    NASA Technical Reports Server (NTRS)

    Simon, M.; Tkacenko, A.

    2006-01-01

    In a previous publication [1], an iterative closed-loop carrier synchronization scheme for binary phase-shift keyed (BPSK) modulation was proposed that was based on feeding back data decisions to the input of the loop, the purpose being to remove the modulation prior to carrier synchronization as opposed to the more conventional decision-feedback schemes that incorporate such feedback inside the loop. The idea there was that, with sufficient independence between the received data and the decisions on it that are fed back (as would occur in an error-correction coding environment with sufficient decoding delay), a pure tone in the presence of noise would ultimately be produced (after sufficient iteration and low enough error probability) and thus could be tracked without any squaring loss. This article demonstrates that, with some modification, the same idea of iterative information reduction through decision feedback can be applied to quadrature phase-shift keyed (QPSK) modulation, something that was mentioned in the previous publication but never pursued.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean- field method for a simplified model of a spin-crossovermaterialwith a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S = 1/2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley ( equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shapedmore » regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. As a result, we believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.« less

  4. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Patrick J.; Kribs, Graham D.; Martin, Adam

    2014-10-07

    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses ofmore » $$\\sim 10^{8-11}$$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $$\\gtrsim 10^{17}$$ GeV. The $$\\mu$$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.« less

  5. Fourth-order self-energy contribution to the two loop Lamb shift

    NASA Astrophysics Data System (ADS)

    Palur Mallampalli, Subrahmanyam

    1998-11-01

    The calculation of the two loop Lamb shift in hydrogenic ions involves the numerical evaluation of ten Feynman diagrams. In this thesis, four fourth-order Feynman diagrams including the pure self-energy contributions are evaluated using exact Dirac-Coulomb propagators, so that higher order binding corrections can be extracted by comparing with the known terms in the Z/alpha expansion. The entire calculation is performed in Feynman gauge. One of the vacuum polarization diagrams is evaluated in the Uehling approximation. At low Z, it is seen to be perturbative in Z/alpha, while new predictions for high Z are made. The calculation of the three self-energy diagrams is reorganized into four terms, which we call the PO, M, F and P terms. The PO term is separately gauge invariant while the latter three form a gauge invariant set. The PO term is shown to exhibit the most non-perturbative behavior yet encountered in QED at low Z, so much so that even at Z = 1, the complete result is of the opposite sign as that of the leading term in its Z/alpha expansion. At high Z, we agree with an earlier calculation. The analysis of ultraviolet divergences in the two loop self-energy is complicated by the presence of sub- divergences. All divergences except the self-mass are shown to cancel. The self-mass is then removed by a self- mass counterterm. Parts of the calculation are shown to contain reference state singularities, that finally cancel. A numerical regulator to handle these singularities is described. The M term, an ultraviolet finite quantity, is defined through a subtraction scheme in coordinate space. Being computationally intensive, it is evaluated only at high Z, specifically Z = 83 and 92. The F term involves the evaluation of several Feynman diagrams with free electron propagators. These are computed for a range of values of Z. The P term, also ultraviolet finite, involves Dirac- Coulomb propagators that are best defined in coordinate space, as well as functions associated with the one loop self-energy that are best defined in momentum space. Possible methods of evaluating the P term are discussed.

  6. Optimal sensor placement for control of a supersonic mixed-compression inlet with variable geometry

    NASA Astrophysics Data System (ADS)

    Moore, Kenneth Thomas

    A method of using fluid dynamics models for the generation of models that are useable for control design and analysis is investigated. The problem considered is the control of the normal shock location in the VDC inlet, which is a mixed-compression, supersonic, variable-geometry inlet of a jet engine. A quasi-one-dimensional set of fluid equations incorporating bleed and moving walls is developed. An object-oriented environment is developed for simulation of flow systems under closed-loop control. A public interface between the controller and fluid classes is defined. A linear model representing the dynamics of the VDC inlet is developed from the finite difference equations, and its eigenstructure is analyzed. The order of this model is reduced using the square root balanced model reduction method to produce a reduced-order linear model that is suitable for control design and analysis tasks. A modification to this method that improves the accuracy of the reduced-order linear model for the purpose of sensor placement is presented and analyzed. The reduced-order linear model is used to develop a sensor placement method that quantifies as a function of the sensor location the ability of a sensor to provide information on the variable of interest for control. This method is used to develop a sensor placement metric for the VDC inlet. The reduced-order linear model is also used to design a closed loop control system to control the shock position in the VDC inlet. The object-oriented simulation code is used to simulate the nonlinear fluid equations under closed-loop control.

  7. Vapor-liquid equilibrium and critical asymmetry of square well and short square well chain fluids.

    PubMed

    Li, Liyan; Sun, Fangfang; Chen, Zhitong; Wang, Long; Cai, Jun

    2014-08-07

    The critical behavior of square well fluids with variable interaction ranges and of short square well chain fluids have been investigated by grand canonical ensemble Monte Carlo simulations. The critical temperatures and densities were estimated by a finite-size scaling analysis with the help of histogram reweighting technique. The vapor-liquid coexistence curve in the near-critical region was determined using hyper-parallel tempering Monte Carlo simulations. The simulation results for coexistence diameters show that the contribution of |t|(1-α) to the coexistence diameter dominates the singular behavior in all systems investigated. The contribution of |t|(2β) to the coexistence diameter is larger for the system with a smaller interaction range λ. While for short square well chain fluids, longer the chain length, larger the contribution of |t|(2β). The molecular configuration greatly influences the critical asymmetry: a short soft chain fluid shows weaker critical asymmetry than a stiff chain fluid with same chain length.

  8. Flight test maneuvers for closed loop lateral-directional modeling of the F-18 High Alpha Research Vehicle (HARV) using forebody strakes

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.

    1996-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for lateral linear model parameter estimation at 30, 45, and 60 degrees angle of attack, using the Actuated Nose Strakes for Enhanced Rolling (ANSER) control law in Strake (S) model and Strake/Thrust Vectoring (STV) mode. Each maneuver is to be realized by applying square wave inputs to specific pilot station controls using the On-Board Excitation System (OBES). Maneuver descriptions and complete specification of the time/amplitude points defining each input are included, along with plots of the input time histories.

  9. Leading singularities and off-shell conformal integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, James; Duhr, Claude; Eden, Burkhard

    2013-08-29

    The three-loop four-point function of stress-tensor multiplets in N=4 super Yang-Mills theory contains two so far unknown, off-shell, conformal integrals, in addition to the known, ladder-type integrals. In our paper we evaluate the unknown integrals, thus obtaining the three-loop correlation function analytically. The integrals have the generic structure of rational functions multiplied by (multiple) polylogarithms. We use the idea of leading singularities to obtain the rational coefficients, the symbol — with an appropriate ansatz for its structure — as a means of characterising multiple polylogarithms, and the technique of asymptotic expansion of Feynman integrals to obtain the integrals in certainmore » limits. The limiting behaviour uniquely fixes the symbols of the integrals, which we then lift to find the corresponding polylogarithmic functions. The final formulae are numerically confirmed. Furthermore, we develop techniques that can be applied more generally, and we illustrate this by analytically evaluating one of the integrals contributing to the same four-point function at four loops. This example shows a connection between the leading singularities and the entries of the symbol.« less

  10. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.

    PubMed

    Kostanyan, Artak E

    2015-12-04

    The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.

    PubMed

    Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min

    2016-03-01

    In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.

  12. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.

    PubMed

    Eberini, Ivano; Guerini Rocco, Alessandro; Ientile, Anna Rita; Baptista, António M; Gianazza, Elisabetta; Tomaselli, Simona; Molinari, Henriette; Ragona, Laura

    2008-06-01

    The correlation between protein motions and function is a central problem in protein science. Several studies have demonstrated that ligand binding and protein dynamics are strongly correlated in intracellular lipid binding proteins (iLBPs), in which the high degree of flexibility, principally occurring at the level of helix-II, CD, and EF loops (the so-called portal area), is significantly reduced upon ligand binding. We have recently investigated by NMR the dynamic properties of a member of the iLBP family, chicken liver bile acid binding protein (cL-BABP), in its apo and holo form, as a complex with two bile salts molecules. Binding was found to be regulated by a dynamic process and a conformational rearrangement was associated with this event. We report here the results of molecular dynamics (MD) simulations performed on apo and holo cL-BABP with the aim of further characterizing the protein regions involved in motion propagation and of evaluating the main molecular interactions stabilizing bound ligands. Upon binding, the root mean square fluctuation values substantially decrease for CD and EF loops while increase for the helix-loop-helix region, thus indicating that the portal area is the region mostly affected by complex formation. These results nicely correlate with backbone dynamics data derived from NMR experiments. Essential dynamics analysis of the MD trajectories indicates that the major concerted motions involve the three contiguous structural elements of the portal area, which however are dynamically coupled in different ways whether in the presence or in the absence of the ligands. Motions of the EF loop and of the helical region are part of the essential space of both apo and holo-BABP and sample a much wider conformational space in the apo form. Together with NMR results, these data support the view that, in the apo protein, the flexible EF loop visits many conformational states including those typical of the holo state and that the ligand acts stabilizing one of these pre-existing conformations. The present results, in agreement with data reported for other iLBPs, sharpen our knowledge on the binding mechanism for this protein family. (c) 2008 Wiley-Liss, Inc.

  13. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy.

    PubMed

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N; Kim, Yunseok

    2016-07-28

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response.

  14. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    PubMed Central

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; Lee, Shinbuhm; Lee, Ho Nyung; Morozovska, Anna N.; Kim, Yunseok

    2016-01-01

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. However, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. Here, we suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. Our combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute to the EM response. PMID:27466086

  15. The role of the phonological loop in English word learning: a comparison of Chinese ESL learners and native speakers.

    PubMed

    Hamada, Megumi; Koda, Keiko

    2011-04-01

    Although the role of the phonological loop in word-retention is well documented, research in Chinese character retention suggests the involvement of non-phonological encoding. This study investigated whether the extent to which the phonological loop contributes to learning and remembering visually introduced words varies between college-level Chinese ESL learners (N = 20) and native speakers of English (N = 20). The groups performed a paired associative learning task under two conditions (control versus articulatory suppression) with two word types (regularly spelled versus irregularly spelled words) differing in degree of phonological accessibility. The results demonstrated that both groups' recall declined when the phonological loop was made less available (with irregularly spelled words and in the articulatory suppression condition), but the decline was greater for the native group. These results suggest that word learning entails phonological encoding uniformly across learners, but the contribution of phonology varies among learners with diverse linguistic backgrounds.

  16. Safe arming system for two-explosive munitions

    DOEpatents

    Jaroska, Miles F.; Niven, William A.; Morrison, Jasper J.

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  17. Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2018-03-01

    The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.

  18. Magnetic reversal dynamics of NiFe-based artificial spin ice: Effect of Nb layer in normal and superconducting state

    NASA Astrophysics Data System (ADS)

    Kaur, M.; Gupta, Anurag; Varandani, D.; Verma, Apoorva; Senguttuvan, T. D.; Mehta, B. R.; Budhani, R. C.

    2017-11-01

    Square arrays of artificial spin ice (ASI) constituting weakly interacting NiFe nano-islands, with length ˜312 nm, width ˜125 nm, thickness ˜20 nm, and lattice constant ˜570 nm, were fabricated on Nb thin film and on thermally grown 300 nm SiO2 on silicon. Detailed investigations of magnetic force microscopy (MFM) at room temperature, and magnetization M(H) loops and relaxation of remanent magnetization (Mr) at various temperatures were carried out in two in-plane field geometries, namely, parallel ("P"-parallel to the square lattice) and diagonal ("D"- 45° to the square lattice). The magnetic response of the ASI samples shows striking difference for insulating (SiO2), metallic (Nb, T > 6.6 K) and superconducting (Nb, T < 6.6 K) bases, and the field geometry. For instance, with the Nb base in the normal metallic state (T > 6.6 K), (1) in "P" geometry the M(H) loops are found to be more "S" shaped in comparison with that for SiO2 base; (2) the ratio of magnetic vertex population of Type II to Type III vertices extracted from MFM studies in "P"("D") geometry is ˜1:1.1(1.2:1) that changed for the SiO2 base to ˜2.1:1 (4: 1). However, the NiFe-ASI on both metallic Nb and SiO2 bases exhibit a highly athermal decay of magnetization, and the % change in Mr in about two hours at T = 10 K (300 K) lies in a range of ˜1.07-1.80 (0.25-0.62). With Nb base in superconducting state (T < 6.6 K), the M(H) loops not only look radically different from those with SiO2 and metallic Nb as bases but also show significant difference in "P" and "D" geometries. These results are discussed in terms of inter-island magnetostatic energy as influenced by field geometry, presence of metallic Nb base and competing vortex pinning energy of superconducting Nb base.

  19. New BCJ representations for one-loop amplitudes in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    He, Song; Schlotterer, Oliver; Zhang, Yong

    2018-05-01

    We explain a procedure to manifest the Bern-Carrasco-Johansson duality between color and kinematics in n-point one-loop amplitudes of a variety of supersymmetric gauge theories. Explicit amplitude representations are constructed through a systematic reorganization of the integrands in the Cachazo-He-Yuan formalism. Our construction holds for any nonzero number of supersymmetries and does not depend on the number of spacetime dimensions. The cancellations from supersymmetry multiplets in the loop as well as the resulting power counting of loop momenta is manifested along the lines of the corresponding superstring computations. The setup is used to derive the one-loop version of the Kawai-Lewellen-Tye formula for the loop integrands of gravitational amplitudes.

  20. Relationships of abscised cotton fruit to boll weevil (Coleoptera: Curculionidae) feeding, oviposition, and development.

    PubMed

    Showler, Allan T

    2008-02-01

    Abscised cotton, Gossypium hirsutum L., fruit in field plots planted at different times were examined to assess adult boll weevil, Anthonomus grandis grandis Boheman (Coleoptera: Curculionidae), use of squares and bolls during 2002 and 2003 in the Lower Rio Grande Valley of Texas. Although boll abscission is not necessarily related to infestation, generally more bolls abscised than squares and abundances of fallen bolls were not related to the planting date treatments. During 2003, fallen squares were most abundant in the late-planted treatment. Although large squares (5.5-8-mm-diameter) on the plant are preferred for boll weevil oviposition, diameter of abscised squares is not a reliable measurement because of shrinkage resulting from desiccation and larval feeding. Fallen feeding-punctured squares and bolls were most abundant in late plantings but differences between fallen feeding-punctured squares versus fallen feeding-punctured bolls were found in only one treatment in 2003. During the same year, fallen oviposition-punctured squares were more numerous in the late-planted treatment than in the earlier treatments. Treatment effects were not found on numbers of oviposition-punctured bolls, but fallen oviposition-punctured squares were more common than bolls in the late-planted treatment compared with earlier treatments each year. Dead weevil eggs, larvae, and pupae inside fallen fruit were few and planting date treatment effects were not detected. Living third instars and pupae were more abundant in fallen squares of the late-planted treatment than in the earlier treatments and bolls of all three treatments. This study shows that fallen squares in late-planted cotton contribute more to adult boll weevil populations than bolls, or squares of earlier plantings.

  1. Polyakov loop correlator in perturbation theory

    DOE PAGES

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter; ...

    2017-07-25

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  2. Polyakov loop correlator in perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berwein, Matthias; Brambilla, Nora; Petreczky, Péter

    We study the Polyakov loop correlator in the weak coupling expansion and show how the perturbative series re-exponentiates into singlet and adjoint contributions. We calculate the order g 7 correction to the Polyakov loop correlator in the short distance limit. We show how the singlet and adjoint free energies arising from the re-exponentiation formula of the Polyakov loop correlator are related to the gauge invariant singlet and octet free energies that can be defined in pNRQCD, namely we find that the two definitions agree at leading order in the multipole expansion, but differ at first order in the quark-antiquark distance.

  3. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    PubMed

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  4. A Limitation with Least Squares Predictions

    ERIC Educational Resources Information Center

    Bittner, Teresa L.

    2013-01-01

    Although researchers have documented that some data make larger contributions than others to predictions made with least squares models, it is relatively unknown that some data actually make no contribution to the predictions produced by these models. This article explores such noncontributory data. (Contains 1 table and 2 figures.)

  5. Textile drying using solarized can dryers to demonstrate the application of solar energy to industrial drying or dehydration processes, Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, P.D.; Beesing, M.E.; Bessler, G.L.

    This program has resulted in the installation of a solar energy collection system for providing process heat to a textile drying process. The solar collection subsystem uses 700 square meters (7500 square feet) of parabolic trough, single-axis tracking, concentrating collectors to heat water in a high temperature water (HTW) loop. The solar collectors nominally generate 193/sup 0/C (380/sup 0/F) water with the HTW loop at 1.9 x 10/sup 6/ Pa (275 psi). A steam generator is fueled with the HTW and produces 450 kg/hour (1000 pounds per hour) of process steam at the nominal design point conditions. The solar-generated processmore » steam is at 0.5 x 10/sup 6/ Pa (75 psi) and 160/sup 0/C (321/sup 0/F). It is predicted that the solar energy system will provide 1.2 x 10/sup 6/ MJ/year (1.1 x 10/sup 9/ Btu/year) to the process. This is 46 percent of the direct isolation available to the collector field during the operational hours (300 days/year of the Fairfax mill. The process being solarized is textile drying using can dryers. The can dryers are part of a slashing operation in a WestPoint Pepperell mill in Fairfax, Alabama. Over 50 percent of all woven goods are processed through slashers and dried on can dryers. The collectors were fabricated by Honeywell at a pilot production facility in Minneapolis, Minnesota, under a 3000-square-meter (32,000-square-foot) production run. The collectors and other system components were installed at the site by the Bahnson Service Company and their subcontractors, acting as the project general contractor. System checkout and start-up was conducted. Preliminary system performance was determined from data collected during start-up. System design, fabrication and installation, data analysis, operation and maintenance procedures, and specifications and drawings are presented.« less

  6. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.; Frank, J.R.; St. Martin, E.J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. The authors have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of themore » trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean-square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less

  7. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y. J.

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trendmore » of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system when a corrosion inhibitor was added into one of the test loops during the corrosion testing.« less

  8. Impact of alloy composition on one-dimensional glide of small dislocation loops in concentrated solid solution alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shi; Bei, Hongbin; Robertson, Ian M.

    2017-06-08

    One-dimensional glide of loops during ion irradiation at 773 K in a series of Ni-containing concentrated solid solution alloys has been observed directly during experiments conducted inside a transmission electron microscope. It was found that the frequency of the oscillatory motion of the loop, the loop glide velocity as well as the loop jump distance were dependent on the composition of the alloy and the size of the loop. Loop glide was most common for small loops and occurred more frequently in the less complex alloys, being highest in Ni, then NiCo, NiFe and NiCoFeCr. As a result, no measurablemore » loop glide occurred in the NiCoCr, NiCoFeCrMn and NiCoFeCrPd alloys.« less

  9. Networks of channels for self-healing composite materials

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Lorente, S.; Wang, K.-M.

    2006-08-01

    This is a fundamental study of how to vascularize a self-healing composite material so that healing fluid reaches all the crack sites that may occur randomly through the material. The network of channels is built into the material and is filled with pressurized healing fluid. When a crack forms, the pressure drops at the crack site and fluid flows from the network into the crack. The objective is to discover the network configuration that is capable of delivering fluid to all the cracks the fastest. The crack site dimension and the total volume of the channels are fixed. It is argued that the network must be configured as a grid and not as a tree. Two classes of grids are considered and optimized: (i) grids with one channel diameter and regular polygonal loops (square, triangle, hexagon) and (ii) grids with two channel sizes. The best architecture of type (i) is the grid with triangular loops. The best architecture of type (ii) has a particular (optimal) ratio of diameters that departs from 1 as the crack length scale becomes smaller than the global scale of the vascularized structure from which the crack draws its healing fluid. The optimization of the ratio of channel diameters cuts in half the time of fluid delivery to the crack.

  10. Restoration of rotational symmetry in the continuum limit of lattice field theories

    NASA Astrophysics Data System (ADS)

    Davoudi, Zohreh; Savage, Martin J.

    2012-09-01

    We explore how rotational invariance is systematically recovered from calculations on hyper-cubic lattices through the use of smeared lattice operators that smoothly evolve into continuum operators with definite angular momentum as the lattice-spacing is reduced. Perturbative calculations of the angular momentum violation associated with such operators at tree level and at one loop are presented in λϕ4 theory and QCD. Contributions from these operators that violate rotational invariance occur at tree-level, with coefficients that are suppressed by O(a2) in the continuum limit. Quantum loops do not modify this behavior in λϕ4, nor in QCD if the gauge-fields are smeared over a comparable spatial region. Consequently, the use of this type of operator should, in principle, allow for Lattice QCD calculations of the higher moments of the hadron structure functions.

  11. On the two-loop virtual QCD corrections to Higgs boson pair production in the standard model

    DOE PAGES

    Degrassi, Giuseppe; Giardino, Pier Paolo; Gröber, Ramona

    2016-07-21

    Here, we compute the next-to-leading order virtual QCD corrections to Higgs-pair production via gluon fusion. We also present analytic results for the two-loop contributions to the spin-0 and spin-2 form factors in the amplitude. The reducible contributions, given by the double-triangle diagrams, are evaluated exactly while the two-loop irreducible diagrams are evaluated by an asymptotic expansion in heavy top-quark mass up to and including terms of O(1/mmore » $$8\\atop{t}$$). We estimate that mass effects can reduce the hadronic cross section by at most 10 %, assuming that the finite top-quark mass effects are of similar size in the entire range of partonic energies.« less

  12. Landau singularities and symbology: One- and two-loop MHV amplitudes in SYM theory

    DOE PAGES

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N = 4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. Finally, we observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  13. An integrand reconstruction method for three-loop amplitudes

    NASA Astrophysics Data System (ADS)

    Badger, Simon; Frellesvig, Hjalte; Zhang, Yang

    2012-08-01

    We consider the maximal cut of a three-loop four point function with massless kinematics. By applying Gröbner bases and primary decomposition we develop a method which extracts all ten propagator master integral coefficients for an arbitrary triple-box configuration via generalized unitarity cuts. As an example we present analytic results for the three loop triple-box contribution to gluon-gluon scattering in Yang-Mills with adjoint fermions and scalars in terms of three master integrals.

  14. Adaptive Neural Output Feedback Control for Nonstrict-Feedback Stochastic Nonlinear Systems With Unknown Backlash-Like Hysteresis and Unknown Control Directions.

    PubMed

    Yu, Zhaoxu; Li, Shugang; Yu, Zhaosheng; Li, Fangfei

    2018-04-01

    This paper investigates the problem of output feedback adaptive stabilization for a class of nonstrict-feedback stochastic nonlinear systems with both unknown backlashlike hysteresis and unknown control directions. A new linear state transformation is applied to the original system, and then, control design for the new system becomes feasible. By combining the neural network's (NN's) parameterization, variable separation technique, and Nussbaum gain function method, an input-driven observer-based adaptive NN control scheme, which involves only one parameter to be updated, is developed for such systems. All closed-loop signals are bounded in probability and the error signals remain semiglobally bounded in the fourth moment (or mean square). Finally, the effectiveness and the applicability of the proposed control design are verified by two simulation examples.

  15. Advanced MOKE magnetometry in wide-field Kerr-microscopy

    NASA Astrophysics Data System (ADS)

    Soldatov, I. V.; Schäfer, R.

    2017-10-01

    The measurement of MOKE (Magneto-Optical Kerr Effect) magnetization loops in a wide-field Kerr microscope offers the advantage that the relevant domain images along the loop can be readily recorded. As the microscope's objective lens is exposed to the magnetic field, the loops are usually strongly distorted by non-linear Faraday rotations of the polarized light that occur in the objective lens and that are superimposed to the MOKE signal. In this paper, an experimental method, based on a motorized analyzer, is introduced which allows to compensate the Faraday contributions, thus leading to pure MOKE loops. A wide field Kerr microscope, equipped with this technology, works well as a laser-based MOKE magnetometer, additionally offering domain images and thus providing the basis for loop interpretation.

  16. Dynamic hysteresis in a one-dimensional Ising model: application to allosteric proteins.

    PubMed

    Graham, I; Duke, T A J

    2005-06-01

    We solve exactly the problem of dynamic hysteresis for a finite one-dimensional Ising model at low temperature. We find that the area of the hysteresis loop, as the field is varied periodically, scales as the square root of the field frequency for a large range of frequencies. Below a critical frequency there is a correction to the scaling law, resulting in a linear relationship between hysteresis area and frequency. The one-dimensional Ising model provides a simplified description of switchlike behavior in allosteric proteins, such as hemoglobin. Thus our analysis predicts the switching dynamics of allosteric proteins when they are exposed to a ligand concentration which changes with time. Many allosteric proteins bind a regulator that is maintained at a nonequilibrium concentration by active signal transduction processes. In the light of our analysis, we discuss to what extent allosteric proteins can respond to changes in regulator concentration caused by an upstream signaling event, while remaining insensitive to the intrinsic nonequilibrium fluctuations in regulator level which occur in the absence of a signal.

  17. Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals

    NASA Astrophysics Data System (ADS)

    Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.

    2018-04-01

    We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.

  18. VP40 of the Ebola Virus as a Target for EboV Therapy: Comprehensive Conformational and Inhibitor Binding Landscape from Accelerated Molecular Dynamics.

    PubMed

    Balmith, Marissa; Soliman, Mahmoud E S

    2017-03-01

    The first account of the dynamic features of the loop region of VP40 of the Ebola virus was studied using accelerated molecular dynamics simulations and reported herein. Among the proteins of the Ebola virus, the matrix protein (VP40) plays a significant role in the virus lifecycle thereby making it a promising therapeutic target. Of interest is the newly elucidated N-terminal domain loop region of VP40 comprising residues K127, T129, and N130 which when mutated to alanine have demonstrated an unrecognized role for N-terminal domain-plasma membrane interaction for efficient VP40-plasma membrane localization, oligomerization, matrix assembly, and egress. The molecular understanding of the conformational features of VP40 in complex with a known inhibitor still remains elusive. Using accelerated molecular dynamics approaches, we conducted a comparative study on VP40 apo and bound systems to understand the conformational features of VP40 at the molecular level and to determine the effect of inhibitor binding with the aid of a number of post-dynamic analytical tools. Significant features were seen in the presence of an inhibitor as per molecular mechanics/generalized born surface area binding free energy calculations. Results revealed that inhibitor binding to VP40 reduces the flexibility and mobility of the protein as supported by root mean square fluctuation and root mean square deviation calculations. The study revealed a characteristic "twisting" motion and coiling of the loop region of VP40 accompanied by conformational changes in the dimer interface upon inhibitor binding. We believe that results presented in this study will ultimately provide useful insight into the binding landscape of VP40 which could assist researchers in the discovery of potent Ebola virus inhibitors for anti-Ebola therapies.

  19. Structure and Dynamics Analysis on Plexin-B1 Rho GTPase Binding Domain as a Monomer and Dimer

    PubMed Central

    2015-01-01

    Plexin-B1 is a single-pass transmembrane receptor. Its Rho GTPase binding domain (RBD) can associate with small Rho GTPases and can also self-bind to form a dimer. In total, more than 400 ns of NAMD molecular dynamics simulations were performed on RBD monomer and dimer. Different analysis methods, such as root mean squared fluctuation (RMSF), order parameters (S2), dihedral angle correlation, transfer entropy, principal component analysis, and dynamical network analysis, were carried out to characterize the motions seen in the trajectories. RMSF results show that after binding, the L4 loop becomes more rigid, but the L2 loop and a number of residues in other regions become slightly more flexible. Calculating order parameters (S2) for CH, NH, and CO bonds on both backbone and side chain shows that the L4 loop becomes essentially rigid after binding, but part of the L1 loop becomes slightly more flexible. Backbone dihedral angle cross-correlation results show that loop regions such as the L1 loop including residues Q25 and G26, the L2 loop including residue R61, and the L4 loop including residues L89–R91, are highly correlated compared to other regions in the monomer form. Analysis of the correlated motions at these residues, such as Q25 and R61, indicate two signal pathways. Transfer entropy calculations on the RBD monomer and dimer forms suggest that the binding process should be driven by the L4 loop and C-terminal. However, after binding, the L4 loop functions as the motion responder. The signal pathways in RBD were predicted based on a dynamical network analysis method using the pathways predicted from the dihedral angle cross-correlation calculations as input. It is found that the shortest pathways predicted from both inputs can overlap, but signal pathway 2 (from F90 to R61) is more dominant and overlaps all of the routes of pathway 1 (from F90 to P111). This project confirms the allosteric mechanism in signal transmission inside the RBD network, which was in part proposed in the previous experimental study. PMID:24901636

  20. Catastrophic cooling and cessation of heating in the solar corona

    NASA Astrophysics Data System (ADS)

    Peter, H.; Bingert, S.; Kamio, S.

    2012-01-01

    Context. Condensations in the more than 106 K hot corona of the Sun are commonly observed in the extreme ultraviolet (EUV). While their contribution to the total solar EUV radiation is still a matter of debate, these condensations certainly provide a valuable tool for studying the dynamic response of the corona to the heating processes. Aims: We investigate different distributions of energy input in time and space to investigate which process is most relevant for understanding these coronal condensations. Methods: For a comparison to observations we synthesize EUV emission from a time-dependent, one-dimensional model for coronal loops, where we employ two heating scenarios: simply shutting down the heating and a model where the heating is very concentrated at the loop footpoints, while keeping the total heat input constant. Results: The heating off/on model does not lead to significant EUV count rates that one observes with SDO/AIA. In contrast, the concentration of the heating near the footpoints leads to thermal non-equilibrium near the loop top resulting in the well-known catastrophic cooling. This process gives a good match to observations of coronal condensations. Conclusions: This shows that the corona needs a steady supply of energy to support the coronal plasma, even during coronal condensations. Otherwise the corona would drain very fast, too fast to even form a condensation. Movies are available in electronic form at http://www.aanda.org

  1. Complete one-loop renormalization of the Higgs-electroweak chiral Lagrangian

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Catà, O.; Celis, A.; Knecht, M.; Krause, C.

    2018-03-01

    Employing background-field method and super-heat-kernel expansion, we compute the complete one-loop renormalization of the electroweak chiral Lagrangian with a light Higgs boson. Earlier results from purely scalar fluctuations are confirmed as a special case. We also recover the one-loop renormalization of the conventional Standard Model in the appropriate limit.

  2. Internal loop/bulge and hairpin loop of the iron-responsive element of ferritin mRNA contribute to maximal iron regulatory protein 2 binding and translational regulation in the iso-iron-responsive element/iso-iron regulatory protein family.

    PubMed

    Ke, Y; Sierzputowska-Gracz, H; Gdaniec, Z; Theil, E C

    2000-05-23

    Iron-responsive elements (IREs), a natural group of mRNA-specific sequences, bind iron regulatory proteins (IRPs) differentially and fold into hairpins [with a hexaloop (HL) CAGUGX] with helical distortions: an internal loop/bulge (IL/B) (UGC/C) or C-bulge. C-bulge iso-IREs bind IRP2 more poorly, as oligomers (n = 28-30), and have a weaker signal response in vivo. Two trans-loop GC base pairs occur in the ferritin IRE (IL/B and HL) but only one in C-bulge iso-IREs (HL); metal ions and protons perturb the IL/B [Gdaniec et al. (1998) Biochemistry 37, 1505-1512]. IRE function (translation) and physical properties (T(m) and accessibility to nucleases) are now compared for IL/B and C-bulge IREs and for HL mutants. Conversion of the IL/B into a C-bulge by a single deletion in the IL/B or by substituting the HL CG base pair with UA both derepressed ferritin synthesis 4-fold in rabbit reticulocyte lysates (IRP1 + IRP2), confirming differences in IRP2 binding observed for the oligomers. Since the engineered C-bulge IRE was more helical near the IL/B [Cu(phen)(2) resistant] and more stable (T(m) increased) and the HL mutant was less helical near the IL/B (ribonuclease T1 sensitive) and less stable (T(m) decreased), both CG trans-loop base pairs contribute to maximum IRP2 binding and translational regulation. The (1)H NMR spectrum of the Mg-IRE complex revealed, in contrast to the localized IL/B effects of Co(III) hexaammine observed previously, perturbation of the IL/B plus HL and interloop helix. The lower stability and greater helix distortion in the ferritin IL/B-IRE compared to the C-bulge iso-IREs create a combinatorial set of RNA/protein interactions that control protein synthesis rates with a range of signal sensitivities.

  3. Connected and disconnected contributions to nucleon axial form factors using Nf = 2 twisted mass fermions at the physical point

    NASA Astrophysics Data System (ADS)

    Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kallidonis, Christos; Koutsou, Giannis; Vaquero Avilés-Casco, Alejandro

    2018-03-01

    We present results on the isovector and isoscalar nucleon axial form factors including disconnected contributions, using an ensemble of Nf = 2 twisted mass cloverimproved Wilson fermions simulated with approximately the physical value of the pion mass. The light disconnected quark loops are computed using exact deflation, while the strange and the charm quark loops are evaluated using the truncated solver method. Techniques such as the summation and the two-state fits have been employed to access ground-state dominance.

  4. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. But, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. We suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. This combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute tomore » the EM response.« less

  5. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy

    DOE PAGES

    Seol, Daehee; Park, Seongjae; Varenyk, Olexandr V.; ...

    2016-07-28

    Hysteresis loop analysis via piezoresponse force microscopy (PFM) is typically performed to probe the existence of ferroelectricity at the nanoscale. But, such an approach is rather complex in accurately determining the pure contribution of ferroelectricity to the PFM. We suggest a facile method to discriminate the ferroelectric effect from the electromechanical (EM) response through the use of frequency dependent ac amplitude sweep with combination of hysteresis loops in PFM. This combined study through experimental and theoretical approaches verifies that this method can be used as a new tool to differentiate the ferroelectric effect from the other factors that contribute tomore » the EM response.« less

  6. Analog circuit for the measurement of phase difference between two noisy sine-wave signals

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Back, L. H.

    1989-01-01

    A simple circuit was designed to measure the phase difference between two noisy sine waves. It locks over a wide range of frequencies and produces an output proportional to the phase difference of rapidly varying signals. A square wave locked in frequency and phase to the first signal is produced by a phase-locked loop and is amplified by an operational amplifier.

  7. Influence of hydrostatic pressure on the switching time and switching coefficient of NiZnCo ferrites

    NASA Astrophysics Data System (ADS)

    Romanowski, S.; Goldberg, S.

    1980-04-01

    Results of the investigation of the effect of hydrostatic pressure on the pulse performance of NiZnCo ferrites with square hysteresis loop are given. It is stated that with increasing hydrostatic pressure, the threshold field strength increases, the switching coefficient value decreases, while the switching time value may increase monotonically or reach a maximum depending on the magnetizing field strength.

  8. Passive Turbulence Generating Grid Arrangements in a Turbine Cascade Wind Tunnel

    DTIC Science & Technology

    2015-01-01

    mean square of free stream velocity μ = flow viscosity I. Introduction and Background Turbine Cascade Wind Tunnels ( CWT ) are...closed-loop CWT . Turbine cascade facilities are used to simulate turbine operating conditions for the study of flow phenomena such as 2 boundary layer...A CWT test section inlet must have uniform flowfield properties. The inlet conditions of interest upstream of the cascade include velocity and

  9. Adaptive control strategies for flexible robotic arm

    NASA Technical Reports Server (NTRS)

    Bialasiewicz, Jan T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity if not unstable closed-loop behavior. Therefore a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  10. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  11. Pathogenesis of Central and Complex Sleep Apnoea

    PubMed Central

    Orr, Jeremy E.; Malhotra, Atul; Sands, Scott A.

    2016-01-01

    Central sleep apnoea (CSA)—the temporary absence or diminution of ventilator effort during sleep—is seen in a variety of forms including periodic breathing in infancy and healthy adults at altitude and Cheyne-Stokes respiration in heart failure. In most circumstances, the cyclic absence of effort is paradoxically a consequence of hypersensitive ventilatory chemoreflex responses to oppose changes in airflow, i.e. elevated loop gain, leading to overshoot/undershoot ventilatory oscillations. Considerable evidence illustrates overlap between CSA and obstructive sleep apnoea (OSA), including elevated loop gain in patients with OSA and the presence of pharyngeal narrowing during central apnoeas. Indeed, treatment of OSA, whether via CPAP, tracheostomy, or oral appliances, can reveal CSA, an occurrence referred to as complex sleep apnoea. Factors influencing loop gain include increased chemosensitivity (increased controller gain), reduced damping of blood gas levels (increased plant gain) and increased lung to chemoreceptor circulatory delay. Sleep-wake transitions and pharyngeal dilator muscle responses effectively raise the controller gain and therefore also contribute to total loop gain and overall instability. In some circumstances, for example apnoea of infancy and central congenital hypoventilation syndrome, central apnoeas are the consequence of ventilatory depression and defective ventilatory responses, i.e. low loop gain. The efficacy of available treatments for CSA can be explained in terms of their effects on loop gain, e.g. CPAP improves lung volume (plant gain), stimulants reduce the alveolar-inspired PCO2 difference, supplemental oxygen lowers chemosensitivity. Understanding the magnitude of loop gain and the mechanisms contributing to instability may facilitate personalised interventions for CSA. PMID:27797160

  12. Pathogenesis of central and complex sleep apnoea.

    PubMed

    Orr, Jeremy E; Malhotra, Atul; Sands, Scott A

    2017-01-01

    Central sleep apnoea (CSA) - the temporary absence or diminution of ventilatory effort during sleep - is seen in a variety of forms including periodic breathing in infancy and healthy adults at altitude and Cheyne-Stokes respiration in heart failure. In most circumstances, the cyclic absence of effort is paradoxically a consequence of hypersensitive ventilatory chemoreflex responses to oppose changes in airflow, that is elevated loop gain, leading to overshoot/undershoot ventilatory oscillations. Considerable evidence illustrates overlap between CSA and obstructive sleep apnoea (OSA), including elevated loop gain in patients with OSA and the presence of pharyngeal narrowing during central apnoeas. Indeed, treatment of OSA, whether via continuous positive airway pressure (CPAP), tracheostomy or oral appliances, can reveal CSA, an occurrence referred to as complex sleep apnoea. Factors influencing loop gain include increased chemosensitivity (increased controller gain), reduced damping of blood gas levels (increased plant gain) and increased lung to chemoreceptor circulatory delay. Sleep-wake transitions and pharyngeal dilator muscle responses effectively raise the controller gain and therefore also contribute to total loop gain and overall instability. In some circumstances, for example apnoea of infancy and central congenital hypoventilation syndrome, central apnoeas are the consequence of ventilatory depression and defective ventilatory responses, that is low loop gain. The efficacy of available treatments for CSA can be explained in terms of their effects on loop gain, for example CPAP improves lung volume (plant gain), stimulants reduce the alveolar-inspired PCO 2 difference and supplemental oxygen lowers chemosensitivity. Understanding the magnitude of loop gain and the mechanisms contributing to instability may facilitate personalized interventions for CSA. © 2016 Asian Pacific Society of Respirology.

  13. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

    ERIC Educational Resources Information Center

    Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

    2012-01-01

    In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

  14. Lattice corrections to the quark quasidistribution at one loop

    DOE PAGES

    Carlson, Carl E.; Freid, Michael

    2017-05-12

    Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less

  15. Lattice corrections to the quark quasidistribution at one loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Carl E.; Freid, Michael

    Here, we calculate radiative corrections to the quark quasidistribution in lattice perturbation theory at one loop to leading orders in the lattice spacing. We also consider one-loop corrections in continuum Euclidean space. We find that the infrared behavior of the corrections in Euclidean and Minkowski space are different. Furthermore, we explore features of momentum loop integrals and demonstrate why loop corrections from the lattice perturbation theory and Euclidean continuum do not correspond with their Minkowski brethren, and comment on a recent suggestion for transcending the differences in the results. Finally, we examine the role of the lattice spacing a andmore » of the r parameter in the Wilson action in these radiative corrections.« less

  16. Real-time edge-enhanced optical correlator

    NASA Astrophysics Data System (ADS)

    Shihabi, Mazen M.; Hinedi, Sami M.; Shah, Biren N.

    1992-08-01

    The performance of five symbol lock detectors are compared. They are the square-law detector with overlapping (SQOD) and non-overlapping (SQNOD) integrators, the absolute value detectors with overlapping and non-overlapping (AVNOD) integrators and the signal power estimator detector (SPED). The analysis considers various scenarios when the observation interval is much larger or equal to the symbol synchronizer loop bandwidth, which has not been considered in previous analyses. Also, the case of threshold setting in the absence of signal is considered. It is shown that the SQOD outperforms all others when the threshold is set in the presence of signal, independent of the relationship between loop bandwidth and observation period. On the other hand, the SPED outperforms all others when the threshold is set in the presence of noise only.

  17. Real-time edge-enhanced optical correlator

    NASA Technical Reports Server (NTRS)

    Shihabi, Mazen M. (Inventor); Hinedi, Sami M. (Inventor); Shah, Biren N. (Inventor)

    1992-01-01

    The performance of five symbol lock detectors are compared. They are the square-law detector with overlapping (SQOD) and non-overlapping (SQNOD) integrators, the absolute value detectors with overlapping and non-overlapping (AVNOD) integrators and the signal power estimator detector (SPED). The analysis considers various scenarios when the observation interval is much larger or equal to the symbol synchronizer loop bandwidth, which has not been considered in previous analyses. Also, the case of threshold setting in the absence of signal is considered. It is shown that the SQOD outperforms all others when the threshold is set in the presence of signal, independent of the relationship between loop bandwidth and observation period. On the other hand, the SPED outperforms all others when the threshold is set in the presence of noise only.

  18. Self-tuning regulators for multicyclic control of helicopter vibration

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1982-01-01

    A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.

  19. Open loop model for WDM links

    NASA Astrophysics Data System (ADS)

    D, Meena; Francis, Fredy; T, Sarath K.; E, Dipin; Srinivas, T.; K, Jayasree V.

    2014-10-01

    Wavelength Division Multiplexing (WDM) techniques overfibrelinks helps to exploit the high bandwidth capacity of single mode fibres. A typical WDM link consisting of laser source, multiplexer/demultiplexer, amplifier and detectoris considered for obtaining the open loop gain model of the link. The methodology used here is to obtain individual component models using mathematical and different curve fitting techniques. These individual models are then combined to obtain the WDM link model. The objective is to deduce a single variable model for the WDM link in terms of input current to system. Thus it provides a black box solution for a link. The Root Mean Square Error (RMSE) associated with each of the approximated models is given for comparison. This will help the designer to select the suitable WDM link model during a complex link design.

  20. Optimization of 200 MWth and 250 MWt Ship Based Small Long Life NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitriyani, Dian; Su'ud, Zaki

    2010-06-22

    Design optimization of ship-based 200 MWth and 250 MWt nuclear power reactors have been performed. The neutronic and thermo-hydraulic programs of the three-dimensional X-Y-Z geometry have been developed for the analysis of ship-based nuclear power plant. Quasi-static approach is adopted to treat seawater effect. The reactor are loop type lead bismuth cooled fast reactor with nitride fuel and with relatively large coolant pipe above reactor core, the heat from primary coolant system is directly transferred to watersteam loop through steam generators. Square core type are selected and optimized. As the optimization result, the core outlet temperature distribution is changing withmore » the elevation angle of the reactor system and the characteristics are discussed.« less

  1. Feedback-controlled laser fabrication of micromirror substrates.

    PubMed

    Petrak, Benjamin; Konthasinghe, Kumarasiri; Perez, Sonia; Muller, Andreas

    2011-12-01

    Short (40-200 μs) single focused CO(2) laser pulses of energy ≳100 μJ were used to fabricate high quality concave micromirror templates on silica and fluoride glass. The ablated features have diameters of ≈20-100 μm and average root-mean-square (RMS) surface microroughness near their center of less than 0.2 nm. Temporally monitoring the fabrication process revealed that it proceeds on a time scale shorter than the laser pulse duration. We implement a fast feedback control loop (≈20 kHz bandwidth) based on the light emitted by the sample that ensures an RMS size dispersion of less than 5% in arrays on chips or in individually fabricated features on an optical fiber tip, a significant improvement over previous approaches using longer pulses and open loop operation.

  2. Interlaboratory Comparison of Magnetic Thin Film Measurements.

    PubMed

    da Silva, F C S; Wang, C M; Pappas, D P

    2003-01-01

    A potential low magnetic moment standard reference material (SRM) was studied in an interlaboratory comparison. The mean and the standard deviation of the saturation moment m s, the remanent moment m r, and the intrinsic coercivity H c of nine samples were extracted from hysteresis-loop measurements. Samples were measured by thirteen laboratories using inductive-field loopers, vibrating-sample magnetometers, alternating-gradient force magnetometers, and superconducting quantum-interference-device magnetometers. NiFe films on Si substrates had saturation moment measurements reproduced within 5 % variation among the laboratories. The results show that a good candidate for an SRM must have a highly square hysteresis loop (m r/m s > 90 %), H c ≈ 400 A·m(-1) (5 Oe), and m s ≈ 2 × 10(-7) A·m(2) (2 × 10(-4) emu).

  3. Voltage-impulse-induced dual-range nonvolatile magnetization modulation in metglas/PZT heterostructure

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoli; Su, Hua; Zhang, Huaiwu; Sun, Nian X.

    2016-11-01

    Dual-range, nonvolatile magnetization modulation induced by voltage impulses was investigated in the metglas/lead zirconate titanate (PZT) heterostructure at room temperature. The heterostructure was obtained by bonding a square metglas ribbon on the top electrode of the PZT substrate, which contained defect dipoles resulting from acceptor doping. The PZT substrate achieved two strain hysteretic loops with the application of specific voltage impulse excitation modes. Through strain-mediated magnetoelectric coupling between the metglas ribbon and the PZT substrate, two strain hysteretic loops led to a dual-range nonvolatile magnetization modulation in the heterostructure. Reversible and stable voltage-impulse-induced nonvolatile modulation in the ferromagnetic resonance field and magnetic hysteresis characteristics were also realized. This method provides a promising approach in reducing energy consumption in magnetization modulation and other related devices.

  4. Has the pelvic renal stone position inside the upper loop of JJ stent any influence on the extracorporeal shock wave lithotripsy results?

    PubMed

    Pricop, Catalin; Serban, Dragomir N; Serban, Ionela Lacramioara; Cumpanas, Alin-Adrian; Gingu, Constantin-Virgil

    2016-01-01

    JJ stents are often encountered in patients with pelvic renal stones referred for shock wave lithotripsy, most of them being placed either for obstructive renal pelvic stones or for ureteric stones mobilized retrograde during the JJ stent insertion. The aim of the study was to determine whether the relative stone position in the upper loop of the JJ stent during extracorporeal shock wave lithotripsy (SWL) influences the efficiency of the procedure. The study was designed as a prospective cohort study on 162 patients addressing the same urological department, with single renal pelvic stone (primary or mobilized to the renal pelvis during the insertion of JJ stent), smaller than 15 mm, with JJ stent, treated by SWL using a second generation spark gap lithotripter, 18 kV, 3000 waves/session. Patients were divided in three groups according to the relative position of the stone to the upper loop of the JJ stent as appears on plain X-ray: stone-inside-loop, loop-crossing-stone and stone-outside the loop. The SWL success rate was the primary outcome of the study. p Value, Chi square and Kruskal-Wallis tests were used for statistical analysis. For stone-inside-loop cases, SWL efficiency was 22.7 versus 42 % for all the other cases (p = 0.002). Other factors for decreased SWL success rate were: higher stone radio-opacity, larger JJ of stent and obese patients. Study limitation is represented by the relative small study group and by the evaluation of stone density using plain X-ray instead of computer tomography. For pelvic renal stones having the same density characteristics studied by plain X-ray, the SWL efficiency is lower in stone-inside-loop cases comparing with the other positions. The overall stone free rate for renal pelvic stones could be explained by the second generation lithotripter used for all procedures.

  5. Comparison of Transverse Intraosseous Loop Technique and Pull Out Suture for Reinsertion of the Flexor Digitorum Profundus tendon. A Retrospective Study.

    PubMed

    Rigó, István Zoltán; Røkkum, Magne

    2013-12-01

    We compared the results of two methods for reinsertion of flexor digitorum profundus tendons retrospectively. In 35 fingers of 29 patients pull-out suture and in 13 fingers of 11 patients transverse intraosseous loop technique was performed with a mean follow-up of 8 and 6 months, respectively. Eleven and nine fingers achieved "excellent" or "good" function according to Strickland and Glogovac at 8 weeks; 20 and ten at the last control in the pull-out and transverse intraosseous loop groups, respectively. The difference at 8 weeks was statistically significant in favour of the transverse intraosseous loop group. Ten patients underwent 12 complications in the pull-out group (four superficial infections; one rerupture, one PIP and one DIP joint contracture, one adhesion, two granulomas, one nail deformity and one carpal tunnel syndrome) and four of them were reoperated (one carpal tunnel release, one teno-arthrolysis and two resections of granuloma). There was no complication and no reoperation in the transverse intraosseous loop group, the difference being statistically significant for the former. In our study the transverse intraosseous loop technique seemed to be a safe alternative with possibly better functional results compared to the pull-out suture.

  6. Development of helicopter attitude axes controlled hover flight without pilot assistance and vehicle crashes

    NASA Astrophysics Data System (ADS)

    Simon, Miguel

    In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)

  7. The singular behavior of one-loop massive QCD amplitudes with one external soft gluon

    NASA Astrophysics Data System (ADS)

    Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander

    2012-03-01

    We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.

  8. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    NASA Astrophysics Data System (ADS)

    Murayama, Hitoshi

    1997-07-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m2q~, m2l~ due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m2q~ and m2l~ can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed.

  9. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    PubMed Central

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  10. Locking the Active Conformation of c-Src Kinase through the Phosphorylation of the Activation Loop

    PubMed Central

    Meng, Yilin; Roux, Benoît

    2013-01-01

    Molecular dynamics umbrella sampling simulations are used to compare the relative stability of the active conformation of the catalytic domain of c-Src kinase while the tyrosine 416 in the activation loop (A-loop) is either unphosphorylated or phosphorylated. When the A-loop is unphosphorylated, there is considerable flexiblity of the kinase. While the active conformation of the kinase is not forbidden and can be visited transiently, it is not the predominant state. This is consistent with the view that c-Src displays some catalytic activity even when the A-loop is unphosphorylated. In contrast, phosphorylation of the A-loop contributes to stabilize several structural features that are critical for catalysis, such as the hydrophobic regulatory spine, the HRD motif, and the electrostatic switch. In summary, the free energy landscape calculations demonstrate that phosphorylation of tyrosine 416 in the A-loop essentially “locks” the kinase into its catalytically competent conformation. PMID:24103328

  11. Molecular principles underlying dual RNA specificity in the Drosophila SNF protein.

    PubMed

    Weber, Gert; DeKoster, Gregory T; Holton, Nicole; Hall, Kathleen B; Wahl, Markus C

    2018-06-07

    The first RNA recognition motif of the Drosophila SNF protein is an example of an RNA binding protein with multi-specificity. It binds different RNA hairpin loops in spliceosomal U1 or U2 small nuclear RNAs, and only in the latter case requires the auxiliary U2A' protein. Here we investigate its functions by crystal structures of SNF alone and bound to U1 stem-loop II, U2A' or U2 stem-loop IV and U2A', SNF dynamics from NMR spectroscopy, and structure-guided mutagenesis in binding studies. We find that different loop-closing base pairs and a nucleotide exchange at the tips of the loops contribute to differential SNF affinity for the RNAs. U2A' immobilizes SNF and RNA residues to restore U2 stem-loop IV binding affinity, while U1 stem-loop II binding does not require such adjustments. Our findings show how U2A' can modulate RNA specificity of SNF without changing SNF conformation or relying on direct RNA contacts.

  12. Spatiotemporal dynamics in excitable homogeneous random networks composed of periodically self-sustained oscillation.

    PubMed

    Qian, Yu; Liu, Fei; Yang, Keli; Zhang, Ge; Yao, Chenggui; Ma, Jun

    2017-09-19

    The collective behaviors of networks are often dependent on the network connections and bifurcation parameters, also the local kinetics plays an important role in contributing the consensus of coupled oscillators. In this paper, we systematically investigate the influence of network structures and system parameters on the spatiotemporal dynamics in excitable homogeneous random networks (EHRNs) composed of periodically self-sustained oscillation (PSO). By using the dominant phase-advanced driving (DPAD) method, the one-dimensional (1D) Winfree loop is exposed as the oscillation source supporting the PSO, and the accurate wave propagation pathways from the oscillation source to the whole network are uncovered. Then, an order parameter is introduced to quantitatively study the influence of network structures and system parameters on the spatiotemporal dynamics of PSO in EHRNs. Distinct results induced by the network structures and the system parameters are observed. Importantly, the corresponding mechanisms are revealed. PSO influenced by the network structures are induced not only by the change of average path length (APL) of network, but also by the invasion of 1D Winfree loop from the outside linking nodes. Moreover, PSO influenced by the system parameters are determined by the excitation threshold and the minimum 1D Winfree loop. Finally, we confirmed that the excitation threshold and the minimum 1D Winfree loop determined PSO will degenerate as the system size is expanded.

  13. Influence of rotational energy barriers to the conformational search of protein loops in molecular dynamics and ranking the conformations.

    PubMed

    Tappura, K

    2001-08-15

    An adjustable-barrier dihedral angle potential was added as an extension to a novel, previously presented soft-core potential to study its contribution to the efficacy of the search of the conformational space in molecular dynamics. As opposed to the conventional soft-core potential functions, the leading principle in the design of the new soft-core potential, as well as of its extension, the soft-core and adjustable-barrier dihedral angle (SCADA) potential (referred as the SCADA potential), was to maintain the main equilibrium properties of the original force field. This qualifies the methods for a variety of a priori modeling problems without need for additional restraints typically required with the conventional soft-core potentials. In the present study, the different potential energy functions are applied to the problem of predicting loop conformations in proteins. Comparison of the performance of the soft-core and SCADA potential showed that the main hurdles for the efficient sampling of the conformational space of (loops in) proteins are related to the high-energy barriers caused by the Lennard-Jones and Coulombic energy terms, and not to the rotational barriers, although the conformational search can be further enhanced by lowering the rotational barriers of the dihedral angles. Finally, different evaluation methods were studied and a few promising criteria found to distinguish the near-native loop conformations from the wrong ones.

  14. The Role of Dynamic Storage in the Response to Snowmelt Conditions in the Southwestern United States: Flux Hysteresis at the Catchment Scale

    NASA Astrophysics Data System (ADS)

    Driscoll, J. M.; Meixner, T.; Ferré, T. P. A.; Williams, M. W.; Sickman, J. O.; Molotch, N. P.; Jepsen, S. M.

    2014-12-01

    The role of dynamic storage in catchment discharge response to earlier snowmelt timing has not been fully quantified. Green Lake 4 (GL4) and Emerald Lake Watershed (ELW) have similar high-elevation settings but GL4 has greater estimated storage capacity relative to ELW due to differences in physical structure. Daily catchment area-normalized input (modelled snowmelt estimates) and output (measured discharge) in conjunction with mineral weathering products (hydrochemical data) for eleven snowmelt seasons from GL4 (more storage) and ELW (less storage) were used to determine the role of dynamic storage at the catchment scale. Daily fluxes generally show snowmelt is greater than discharge initially, changing mid-season to discharge being greater than snowmelt, creating a counter-clockwise hysteresis loop for each snowmelt season. This hysteresis loop can be approximated with a least-squares fitted ellipse. The properties of fitted ellipses were used to quantify catchment response, which were then compared between catchments with different storage capacities (GL4 and ELW). The eccentricity of the fitted ellipses can be used to quantify delay between snowmelt and discharge due to connection to subsurface storage; narrower loops show minimal storage delay whereas wider loops show greater storage delay. Variability of mineral weathering products shows changes in contribution from stored water over the snowmelt season. Both catchments show a moderate linear correlation between fitted ellipse area and total snowmelt volume (GL4 R2=0.516, ELW R2=0.614). Ellipse eccentricity is more consistent among years in ELW (range=0.81-0.94) than in GL4 (range=0.54-0.95), indicating a more consistent hydrologic structure and connectivity to shallow storage at ELW. The linear correlation between seasonal eccentricity versus snowmelt timing is stronger in ELW than GL4 (R2=0.741 and 0.223, respectively). ELW shows hydrochemical response independent of snowmelt timing, whereas GL4 shows more variability. The larger storage capacity of GL4 allows for a greater range of physical and chemical response to input conditions. The limited storage capacity of ELW shows greater vulnerability of physical response to changes in snowmelt conditions, though chemical response remains constant regardless of snowmelt conditions.

  15. A closed expression for the UV-divergent parts of one-loop tensor integrals in dimensional regularization

    NASA Astrophysics Data System (ADS)

    Sulyok, G.

    2017-07-01

    Starting from the general definition of a one-loop tensor N-point function, we use its Feynman parametrization to calculate the ultraviolet (UV-)divergent part of an arbitrary tensor coefficient in the framework of dimensional regularization. In contrast to existing recursion schemes, we are able to present a general analytic result in closed form that enables direct determination of the UV-divergent part of any one-loop tensor N-point coefficient independent from UV-divergent parts of other one-loop tensor N-point coefficients. Simplified formulas and explicit expressions are presented for A-, B-, C-, D-, E-, and F-functions.

  16. Hubble Space Telescope faint object camera instrument handbook (Post-COSTAR), version 5.0

    NASA Technical Reports Server (NTRS)

    Nota, A. (Editor); Jedrzejewski, R. (Editor); Greenfield, P. (Editor); Hack, W. (Editor)

    1994-01-01

    The faint object camera (FOC) is a long-focal-ratio, photon-counting device capable of taking high-resolution two-dimensional images of the sky up to 14 by 14 arc seconds squared in size with pixel dimensions as small as 0.014 by 0.014 arc seconds squared in the 1150 to 6500 A wavelength range. Its performance approaches that of an ideal imaging system at low light levels. The FOC is the only instrument on board the Hubble Space Telescope (HST) to fully use the spatial resolution capabilities of the optical telescope assembly (OTA) and is one of the European Space Agency's contributions to the HST program.

  17. Nonperturbative study of the four gluon vertex

    NASA Astrophysics Data System (ADS)

    Binosi, D.; Ibañez, D.; Papavassiliou, J.

    2014-09-01

    In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale p is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The origin of this characteristic behavior is proven to be entirely due to the masslessness of the ghost propagators forming the corresponding ghost-loop diagram, in close analogy to a similar effect established for the three-gluon vertex. However, in the case at hand, and under the approximations employed, this particular divergence does not affect the form factor proportional to the tree-level tensor, which remains finite in the entire range of momenta, and deviates moderately from its naive tree-level value. It turns out that the kinematic configuration chosen is ideal for carrying out lattice simulations, because it eliminates from the connected Green's function all one-particle reducible contributions, projecting out the genuine one-particle irreducible vertex. Motivated by this possibility, we discuss in detail how a hypothetical lattice measurement of this quantity would compare to the results presented here, and the potential interference from an additional tensorial structure, allowed by Bose symmetry, but not encountered within our scheme.

  18. Hot spine loops and the nature of a late-phase solar flare

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xudong; Todd Hoeksema, J.; Liu, Yang

    2013-12-01

    The fan-spine magnetic topology is believed to be responsible for many curious features in solar explosive events. A spine field line links distinct flux domains, but direct observation of such a feature has been rare. Here we report a unique event observed by the Solar Dynamic Observatory where a set of hot coronal loops (over 10 MK) connected to a quasi-circular chromospheric ribbon at one end and a remote brightening at the other. Magnetic field extrapolation suggests that these loops are partly tracers of the evolving spine field line. Continuous slipping- and null-point-type reconnections were likely at work, energizing themore » loop plasma and transferring magnetic flux within and across the fan quasi-separatrix layer. We argue that the initial reconnection is of the 'breakout' type, which then transitioned to a more violent flare reconnection with an eruption from the fan dome. Significant magnetic field changes are expected and indeed ensued. This event also features an extreme-ultraviolet (EUV) late phase, i.e., a delayed secondary emission peak in warm EUV lines (about 2-7 MK). We show that this peak comes from the cooling of large post-reconnection loops beside and above the compact fan, a direct product of eruption in such topological settings. The long cooling time of the large arcades contributes to the long delay; additional heating may also be required. Our result demonstrates the critical nature of cross-scale magnetic coupling—topological change in a sub-system may lead to explosions on a much larger scale.« less

  19. A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways.

    PubMed

    Kim, D; Rath, O; Kolch, W; Cho, K-H

    2007-07-05

    The Wnt and the extracellular signal regulated-kinase (ERK) pathways are both involved in the pathogenesis of various kinds of cancers. Recently, the existence of crosstalk between Wnt and ERK pathways was reported. Gathering all reported results, we have discovered a positive feedback loop embedded in the crosstalk between the Wnt and ERK pathways. We have developed a plausible model that represents the role of this hidden positive feedback loop in the Wnt/ERK pathway crosstalk based on the integration of experimental reports and employing established basic mathematical models of each pathway. Our analysis shows that the positive feedback loop can generate bistability in both the Wnt and ERK signaling pathways, and this prediction was further validated by experiments. In particular, using the commonly accepted assumption that mutations in signaling proteins contribute to cancerogenesis, we have found two conditions through which mutations could evoke an irreversible response leading to a sustained activation of both pathways. One condition is enhanced production of beta-catenin, the other is a reduction of the velocity of MAP kinase phosphatase(s). This enables that high activities of Wnt and ERK pathways are maintained even without a persistent extracellular signal. Thus, our study adds a novel aspect to the molecular mechanisms of carcinogenesis by showing that mutational changes in individual proteins can cause fundamental functional changes well beyond the pathway they function in by a positive feedback loop embedded in crosstalk. Thus, crosstalk between signaling pathways provides a vehicle through which mutations of individual components can affect properties of the system at a larger scale.

  20. Coronal hole boundaries evolution at small scales. I. EIT 195 Å  and TRACE 171 Å view

    NASA Astrophysics Data System (ADS)

    Madjarska, M. S.; Wiegelmann, T.

    2009-09-01

    Aims: We aim to study the small-scale evolution at the boundaries of an equatorial coronal hole connected with a channel of open magnetic flux to the polar region and an “isolated” one in the extreme-ultraviolet spectral range. We determine the spatial and temporal scale of these changes. Methods: Imager data from TRACE in the Fe ix/x 171 Å passband and EIT on-board Solar and Heliospheric Observatory in the Fe xii 195 Å passband were analysed. Results: We found that small-scale loops known as bright points play an essential role in coronal hole boundary evolution at small scales. Their emergence and disappearance continuously expand or contract coronal holes. The changes appear to be random on a time scale comparable to the lifetime of the loops seen at these temperatures. No signature was found for a major energy release during the evolution of the loops. Conclusions: Although coronal holes seem to maintain their general shape during a few solar rotations, a closer look at their day-by-day and even hour-by-hour evolution demonstrates significant dynamics. The small-scale loops (10´´-40´´ and smaller) which are abundant along coronal hole boundaries contribute to the small-scale evolution of coronal holes. Continuous magnetic reconnection of the open magnetic field lines of the coronal hole and the closed field lines of the loops in the quiet Sun is more likely to take place. Movies are only available in electronic form at http://www.aanda.org

  1. The Evolution of Transition Region Loops Using IRIS and AIA

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; DePontieu, Bart

    2014-01-01

    Over the past 50 years, the model for the structure of the solar transition region has evolved from a simple transition layer between the cooler chromosphere to the hotter corona to a complex and diverse region that is dominated by complete loops that never reach coronal temperatures. The IRIS slitjaw images show many complete transition region loops. Several of the "coronal" channels in the SDO AIA instrument include contributions from weak transition region lines. In this work, we combine slitjaw images from IRIS with these channels to determine the evolution of the loops. We develop a simple model for the temperature and density evolution of the loops that can explain the simultaneous observations. Finally, we estimate the percentage of AIA emission that originates in the transition region.

  2. A loop-mediated isothermal amplification assay and sample preparation procedure for sensitive detection of Xanthomonas fragariae in strawberry

    USDA-ARS?s Scientific Manuscript database

    Xanthomonas fragariae is a bacterium that causes angular leaf spot of strawberry. Asymptomatic infections are common and contribute to the difficulties in disease management. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay with a bacterial enrichment proced...

  3. Quantitative Modelling of Trace Elements in Hard Coal.

    PubMed

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.

  4. Quantitative Modelling of Trace Elements in Hard Coal

    PubMed Central

    Smoliński, Adam; Howaniec, Natalia

    2016-01-01

    The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross–validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment. PMID:27438794

  5. Relative stability of the open and closed conformations of the active site loop of streptavidin

    NASA Astrophysics Data System (ADS)

    Ignacio J., General; Meirovitch, Hagai

    2011-01-01

    The eight-residue surface loop, 45-52 (Ser, Ala, Val, Gly, Asn, Ala, Glu, Ser), of the homotetrameric protein streptavidin has a "closed" conformation in the streptavidin-biotin complex, where the corresponding binding affinity is one of the strongest found in nature (ΔG ˜ -18 kcal/mol). However, in most of the crystal structures of apo (unbound) streptavidin, the loop conformation is "open" and typically exhibits partial disorder and high B-factors. Thus, it is plausible to assume that the loop structure is changed from open to closed upon binding of biotin, and the corresponding difference in free energy, ΔF = Fopen - Fclosed in the unbound protein, should therefore be considered in the total absolute free energy of binding. ΔF (which has generally been neglected) is calculated here using our "hypothetical scanning molecular-dynamics" (HSMD) method. We use a protein model in which only the atoms closest to the loop are considered (the "template") and they are fixed in the x-ray coordinates of the free protein; the x-ray conformation of the closed loop is attached to the same (unbound) template and both systems are capped with the same sphere of TIP3P water. Using the force field of the assisted model building with energy refinement (AMBER), we carry out two separate MD simulations (at temperature T = 300 K), starting from the open and closed conformations, where only the atoms of the loop and water are allowed to move (the template-water and template-loop interactions are considered). The absolute Fopen and Fclosed (of loop + water) are calculated from these trajectories, where the loop and water contributions are obtained by HSMD and a thermodynamic integration (TI) process, respectively. The combined HSMD-TI procedure leads to total (loop + water) ΔF = -27.1 ± 2.0 kcal/mol, where the entropy TΔS constitutes 34% of ΔF, meaning that the effect of S is significant and should not be ignored. Also, ΔS is positive, in accord with the high flexibility of the open loop observed in crystal structures, while the energy ΔE is unexpectedly negative, thus also adding to the stability of the open loop. The loop and the 250 capped water molecules are the largest system studied thus far, which constitutes a test for the efficiency of HSMD-TI; this efficiency and technical issues related to the implementation of the method are also discussed. Finally, the result for ΔF is a prediction that will be considered in the calculation of the absolute free energy of binding of biotin to streptavidin, which constitutes our next project.

  6. Minima de L'intégrale D'action du Problème Newtoniende 4 Corps de Masses Égales Dans R3: Orbites `Hip-Hop'

    NASA Astrophysics Data System (ADS)

    Chenciner, Alain; Venturelli, Andrea

    2000-09-01

    We consider the problem of 4 bodies of equal masses in R 3 for the Newtonian r-1 potential. We address the question of the absolute minima of the action integral among (anti)symmetric loops of class H 1 whose period is fixed. It is the simplest case for which the results of [4] (corrected in [5]) do not apply: the minima cannot be the relative equilibria whose configuration is an absolute minimum of the potential among the configurations having a given moment of inertia with respect to their center of mass. This is because the regular tetrahedron cannot have a relative equilibrium motion in R 3 (see [2]). We show that the absolute minima of the action are not homographic motions. We also show that if we force the configuration to admit a certain type of symmetry of order 4, the absolute minimum is a collisionless orbit whose configuration ‘hesitates’ between the central configuration of the square and the one of the tetrahedron. We call these orbits ‘hip-hop’. A similar result holds in case of a symmetry of order 3 where the central configuration of the equilateral triangle with a body at the center of mass replaces the square.

  7. Science& Technology Review March 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D H

    2004-01-23

    This month's issue has the following articles: (1) ''Rethinking Atoms for Peace and the Future of Nuclear Technology'' a commentary by Ronald F. Lehman II; (2) ''Rich Legacy from Atoms for Peace'' In 1953, President Eisenhower encouraged world leaders to pursue peaceful uses of nuclear technology. Many of Livermore's contributions in the spirit of this initiative continue to benefit society today. (3) ''Tropopause Height Becomes Another Climate-Change Fingerprint'' Simulations and observational data show that human activities are largely responsible for the steady elevation of the tropopause, the boundary between the troposphere and the stratosphere. (4) ''A Better Method for Certifyingmore » the Nuclear Stockpile'' Livermore and Los Alamos are developing a common framework for evaluating the reliability and safety of nuclear weapons. (5) ''Observing How Proteins Loop the Loop'' A new experimental method developed at Livermore allows scientists to monitor the folding processes of proteins, one molecule at a time.« less

  8. A Parametric Computational Model of the Action Potential of Pacemaker Cells.

    PubMed

    Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L

    2018-01-01

    A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.

  9. A mechanically tunable and efficient ceramic probe for MR-microscopy at 17 Tesla

    NASA Astrophysics Data System (ADS)

    Kurdjumov, Sergei; Glybovski, Stanislav; Hurshkainen, Anna; Webb, Andrew; Abdeddaim, Redha; Ciobanu, Luisa; Melchakova, Irina; Belov, Pavel

    2017-09-01

    In this contribution we propose and study numerically a new probe (radiofrequency coil) for magnetic resonance mi-croscopy in the field of 17T. The probe is based on two coupled donut resonators made of a high-permittivity and low-loss ceramics excited by a non-resonant inductively coupled loop attached to a coaxial cable. By full-wave numerical simulation it was shown that the probe can be precisely tuned to the Larmor frequency of protons (723 MHz) by adjusting a gap between the two resonators. Moreover, the impedance of the probe can be matched by varying the distance from one of the resonators to the loop. As a result, a compact and mechanically tunable resonant probe was demonstrated for 17 Tesla applications using no lumped capacitors for tuning and matching. The new probe was numerically compared to a conventional solenoidal probe showing better efficiency.

  10. Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas

    USGS Publications Warehouse

    Asquith, William H.

    1998-01-01

    Peak-flow frequency for 38 stations with at least 8 years of data in natural (unregulated and nonurbanized) basins was estimated on the basis of annual peak-streamflow data through water year 1995. Peak-flow frequency represents the peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, 250, and 500 years. The peak-flow frequency and drainage basin characteristics for the stations were used to develop two sets of regression equations to estimate peak-flow frequency for tributaries of the Colorado River in the study area. One set of equations was developed for contributing drainage areas less than 32 square miles, and another set was developed for contributing drainage areas greater than 32 square miles. A procedure is presented to estimate the peak discharge at sites where both sets of equations are considered applicable. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent prediction interval for any estimation from the equations.

  11. The inheritance of fingerprint patterns.

    PubMed

    Slatis, H M; Katznelson, M B; Bonné-Tamir, B

    1976-05-01

    Analysis of the fingerprints of 571 members of the Habbanite isolate suggest inherited patterns and pattern sequences. A genetic theory has been developed; it assumes that the basic fingerprint pattern sequence is all ulnar loops and that a variety of genes cause deviations from this pattern sequence. Genes that have been proposed include: (1) a semidominant gene for whorls on the thumbs (one homozygote has whorls on both thumbs, the other has ulnar loops on both thumbs and the heterozygote usually has two ulnar loops or one ulnar loop and one whorl); (2) a semidominant gene for whorls on the ring fingers which acts like the gene for whorls on the thumbs; (3) a dominant gene for arches on the thumbs and often on other fingers; (4) one or more dominant genes for arches on the fingers; (5) a dominant gene for whorls on all fingers except for an ulnar loop on the middle finger; (6) a dominant gene for radial loops on the index fingers, frequently associated with an arch on the middle fingers; and (7) a recessive gene for radial loops on the ring and little fingers. These genes may act independently or may show epistasis.

  12. The inheritance of fingerprint patterns.

    PubMed Central

    Slatis, H M; Katznelson, M B; Bonné-Tamir, B

    1976-01-01

    Analysis of the fingerprints of 571 members of the Habbanite isolate suggest inherited patterns and pattern sequences. A genetic theory has been developed; it assumes that the basic fingerprint pattern sequence is all ulnar loops and that a variety of genes cause deviations from this pattern sequence. Genes that have been proposed include: (1) a semidominant gene for whorls on the thumbs (one homozygote has whorls on both thumbs, the other has ulnar loops on both thumbs and the heterozygote usually has two ulnar loops or one ulnar loop and one whorl); (2) a semidominant gene for whorls on the ring fingers which acts like the gene for whorls on the thumbs; (3) a dominant gene for arches on the thumbs and often on other fingers; (4) one or more dominant genes for arches on the fingers; (5) a dominant gene for whorls on all fingers except for an ulnar loop on the middle finger; (6) a dominant gene for radial loops on the index fingers, frequently associated with an arch on the middle fingers; and (7) a recessive gene for radial loops on the ring and little fingers. These genes may act independently or may show epistasis. PMID:1266855

  13. Scattering of glue by glue on the light-cone worldsheet. II. Helicity conserving amplitudes

    NASA Astrophysics Data System (ADS)

    Chakrabarti, D.; Qiu, J.; Thorn, C. B.

    2006-08-01

    This is the second of a pair of articles on scattering of glue by glue, in which we give the light-cone gauge calculation of the one-loop on-shell helicity conserving scattering amplitudes for gluon-gluon scattering (neglecting quark loops). The 1/p+ factors in the gluon propagator are regulated by replacing p+ integrals with discretized sums omitting the p+=0 terms in each sum. We also employ a novel ultraviolet regulator that is convenient for the light-cone worldsheet description of planar Feynman diagrams. The helicity conserving scattering amplitudes are divergent in the infrared. The infrared divergences in the elastic one-loop amplitude are shown to cancel, in their contribution to cross sections, against ones in the cross section for unseen bremsstrahlung gluons. We include here the explicit calculation of the latter, because it assumes an unfamiliar form due to the peculiar way discretization of p+ regulates infrared divergences. In resolving the infrared divergences we employ a covariant definition of jets, which allows a transparent demonstration of the Lorentz invariance of our final results. Because we use an explicit cutoff of the ultraviolet divergences in exactly four spacetime dimensions, we must introduce explicit counterterms to achieve this final covariant result. These counterterms are polynomials in the external momenta of the precise order dictated by power counting. We discuss the modifications they entail for the light-cone worldsheet action that reproduces the bare planar diagrams of the gluonic sector of QCD. The simplest way to do this is to interpret the QCD string as moving in six spacetime dimensions.

  14. Integrands for QCD rational terms and {N} = {4} SYM from massive CSW rules

    NASA Astrophysics Data System (ADS)

    Elvang, Henriette; Freedman, Daniel Z.; Kiermaier, Michael

    2012-06-01

    We use massive CSW rules to derive explicit compact expressions for integrands of rational terms in QCD with any number of external legs. Specifically, we present all- n integrands for the one-loop all-plus and one-minus gluon amplitudes in QCD. We extract the finite part of spurious external-bubble contributions systematically; this is crucial for the application of integrand-level CSW rules in theories without supersymmetry. Our approach yields integrands that are independent of the choice of CSW reference spinor even before integration. Furthermore, we present a recursive derivation of the recently proposed massive CSW-style vertex expansion for massive tree amplitudes and loop integrands on the Coulomb-branch of {N} = {4} SYM. The derivation requires a careful study of boundary terms in all-line shift recursion relations, and provides a rigorous (albeit indirect) proof of the recently proposed construction of massive amplitudes from soft-limits of massless on-shell amplitudes. We show that the massive vertex expansion manifestly preserves all holomorphic and half of the anti-holomorphic supercharges, diagram-by-diagram, even off-shell.

  15. Two-loop beam and soft functions for rapidity-dependent jet vetoes

    NASA Astrophysics Data System (ADS)

    Gangal, Shireen; Gaunt, Jonathan R.; Stahlhofen, Maximilian; Tackmann, Frank J.

    2017-02-01

    Jet vetoes play an important role in many analyses at the LHC. Traditionally, jet vetoes have been imposed using a restriction on the transverse momentum p Tj of jets. Alternatively, one can also consider jet observables for which p Tj is weighted by a smooth function of the jet rapidity y j that vanishes as | y j | → ∞. Such observables are useful as they provide a natural way to impose a tight veto on central jets but a looser one at forward rapidities. We consider two such rapidity-dependent jet veto observables, T_{Bj} and {T_{Cj} , and compute the required beam and dijet soft functions for the jet-vetoed color-singlet production cross section at two loops. At this order, clustering effects from the jet algorithm become important. The dominant contributions are computed fully analytically while corrections that are subleading in the limit of small jet radii are expressed in terms of finite numerical integrals. Our results enable the full NNLL' resummation and are an important step towards N3LL resummation for cross sections with a T_{Bj} or T_{Cj} jet veto.

  16. Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Fernandez-Carmona, Juan; Condom, Roger; Cabrol-Bass, Daniel

    2004-12-01

    Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.

  17. Initial conditions in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Petreska, Elena

    This thesis is focused on the initial stages of high-energy collisions in the saturation regime. We start by extending the McLerran-Venugopalan distribution of color sources in the initial wave-function of nuclei in heavy-ion collisions. We derive a fourth-order operator in the action and discuss its relevance for the description of color charge distributions in protons in high-energy experiments. We calculate the dipole scattering amplitude in proton-proton collisions with the quartic action and find an agreement with experimental data. We also obtain a modification to the fluctuation parameter of the negative binomial distribution of particle multiplicities in proton-proton experiments. The result implies an advancement of the fourth-order action towards Gaussian when the energy is increased. Finally, we calculate perturbatively the expectation value of the magnetic Wilson loop operator in the first moments of heavy-ion collisions. For the magnetic flux we obtain a first non-trivial term that is proportional to the square of the area of the loop. The result is close to numerical calculations for small area loops.

  18. Equilibrium, metastability, and hysteresis in a model spin-crossover material with nearest-neighbor antiferromagnetic-like and long-range ferromagnetic-like interactions

    NASA Astrophysics Data System (ADS)

    Rikvold, Per Arne; Brown, Gregory; Miyashita, Seiji; Omand, Conor; Nishino, Masamichi

    2016-02-01

    Phase diagrams and hysteresis loops were obtained by Monte Carlo simulations and a mean-field method for a simplified model of a spin-crossover material with a two-step transition between the high-spin and low-spin states. This model is a mapping onto a square-lattice S =1 /2 Ising model with antiferromagnetic nearest-neighbor and ferromagnetic Husimi-Temperley (equivalent-neighbor) long-range interactions. Phase diagrams obtained by the two methods for weak and strong long-range interactions are found to be similar. However, for intermediate-strength long-range interactions, the Monte Carlo simulations show that tricritical points decompose into pairs of critical end points and mean-field critical points surrounded by horn-shaped regions of metastability. Hysteresis loops along paths traversing the horn regions are strongly reminiscent of thermal two-step transition loops with hysteresis, recently observed experimentally in several spin-crossover materials. We believe analogous phenomena should be observable in experiments and simulations for many systems that exhibit competition between local antiferromagnetic-like interactions and long-range ferromagnetic-like interactions caused by elastic distortions.

  19. Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)

    NASA Astrophysics Data System (ADS)

    Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang

    2012-10-01

    In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.

  20. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Eugene; Lustbader, Jason; Leighton, Daniel

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided bymore » the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.« less

  1. MATLAB/Simulink Framework for Modeling Complex Coolant Flow Configurations of Advanced Automotive Thermal Management Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titov, Gene; Lustbader, Jason; Leighton, Daniel

    The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was extended by including a newly developed coolant loop solution method aimed at reducing the simulation effort for arbitrarily complex thermal management systems. The new approach does not require the user to identify specific coolant loops and their flow. The user only needs to connect the fluid network elements in a manner consistent with the desired schematic. Using the new solution method, a model of NREL's advanced combined coolant loop system for electric vehicles was created that reflected the test system architecture. This system was built using components provided bymore » the MAHLE Group and included both air conditioning and heat pump modes. Validation with test bench data and verification with the previous solution method were performed for 10 operating points spanning a range of ambient temperatures between -2 degrees C and 43 degrees C. The largest root mean square difference between pressure, temperature, energy and mass flow rate data and simulation results was less than 7%.« less

  2. Reducing full one-loop amplitudes to scalar integrals at the integrand level

    NASA Astrophysics Data System (ADS)

    Ossola, Giovanni; Papadopoulos, Costas G.; Pittau, Roberto

    2007-02-01

    We show how to extract the coefficients of the 4-, 3-, 2- and 1-point one-loop scalar integrals from the full one-loop amplitude of arbitrary scattering processes. In a similar fashion, also the rational terms can be derived. Basically no information on the analytical structure of the amplitude is required, making our method appealing for an efficient numerical implementation.

  3. Systematics of the cusp anomalous dimension

    NASA Astrophysics Data System (ADS)

    Henn, Johannes M.; Huber, Tobias

    2012-11-01

    We study the velocity-dependent cusp anomalous dimension in supersymmetric Yang-Mills theory. In a paper by Correa, Maldacena, Sever, and one of the present authors, a scaling limit was identified in which the ladder diagrams are dominant and are mapped onto a Schrödinger problem. We show how to solve the latter in perturbation theory and provide an algorithm to compute the solution at any loop order. The answer is written in terms of harmonic polylogarithms. Moreover, we give evidence for two curious properties of the result. Firstly, we observe that the result can be written using a subset of harmonic polylogarithms only, at least up to six loops. Secondly, we show that in a light-like limit, only single zeta values appear in the asymptotic expansion, again up to six loops. We then extend the analysis of the scaling limit to systematically include subleading terms. This leads to a Schrödinger-type equation, but with an inhomogeneous term. We show how its solution can be computed in perturbation theory, in a way similar to the leading order case. Finally, we analyze the strong coupling limit of these subleading contributions and compare them to the string theory answer. We find agreement between the two calculations.

  4. Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences

    DOE PAGES

    Bern, Zvi; Cheung, Clifford; Chi, Huan -Hang; ...

    2015-11-17

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D = 4 dimensions. Similarly, evanescent fields do not propagate in D = 4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R 3 counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual inmore » D = 4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly—the coefficient of the Gauss-Bonnet operator—changes under p-form duality transformations. In addition, we concur and also find that the leading R 3 divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.« less

  5. Evanescent Effects can Alter Ultraviolet Divergences in Quantum Gravity without Physical Consequences.

    PubMed

    Bern, Zvi; Cheung, Clifford; Chi, Huan-Hang; Davies, Scott; Dixon, Lance; Nohle, Josh

    2015-11-20

    Evanescent operators such as the Gauss-Bonnet term have vanishing perturbative matrix elements in exactly D=4 dimensions. Similarly, evanescent fields do not propagate in D=4; a three-form field is in this class, since it is dual to a cosmological-constant contribution. In this Letter, we show that evanescent operators and fields modify the leading ultraviolet divergence in pure gravity. To analyze the divergence, we compute the two-loop identical-helicity four-graviton amplitude and determine the coefficient of the associated (nonevanescent) R^{3} counterterm studied long ago by Goroff and Sagnotti. We compare two pairs of theories that are dual in D=4: gravity coupled to nothing or to three-form matter, and gravity coupled to zero-form or to two-form matter. Duff and van Nieuwenhuizen showed that, curiously, the one-loop trace anomaly-the coefficient of the Gauss-Bonnet operator-changes under p-form duality transformations. We concur and also find that the leading R^{3} divergence changes under duality transformations. Nevertheless, in both cases, the physical renormalized two-loop identical-helicity four-graviton amplitude can be chosen to respect duality. In particular, its renormalization-scale dependence is unaltered.

  6. Aeroelastic Deflection of NURBS Geometry

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1998-01-01

    The purpose of this paper is to present an algorithm for using NonUniform Rational B-Spline (NURBS) representation in an aeroelastic loop. The algorithm is based on creating a least-squares NURBS surface representing the aeroelastic defection. The resulting NURBS surfaces are used to update either the original Computer- Aided Design (CAD) model, Computational Structural Mechanics (CSM) grid or the Computational Fluid Dynamics (CFD) grid. Results are presented for a generic High-Speed Civil Transport (HSCT).

  7. European Science Notes. Volume 41, Number 5.

    DTIC Science & Technology

    1987-05-01

    Lisbon, from the food and beverage industry. Portugal. The absorption process is fast--it does not require long contact between the fungal mass and the...thousand square meters of buildings were large, the Norwegian authorities estab- consumed by a fire which, at its height, lished the Center for Disaster...riculture and Food Research Council, De- gests that components of both the D-loop partment of Zoology, University of Cam- endoribonuclease and the DNA primase

  8. Asymptotic 3-loop heavy flavor corrections to the charged current structure functions FLW+-W-(x ,Q2) and F2W+-W-(x ,Q2)

    NASA Astrophysics Data System (ADS)

    Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-12-01

    We derive the massive Wilson coefficients for the heavy flavor contributions to the nonsinglet charged current deep-inelastic scattering structure functions FLW+(x ,Q2)-FLW-(x ,Q2) and F2W+(x ,Q2)-F2W-(x ,Q2) in the asymptotic region Q2≫m2 to 3-loop order in quantum chromodynamics at general values of the Mellin variable N and the momentum fraction x . Besides the heavy quark pair production, also the single heavy flavor excitation s →c contributes. Numerical results are presented for the charm quark contributions, and consequences on the unpolarized Bjorken sum rule and Adler sum rule are discussed.

  9. Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Martin, S.; Martin, C. P.

    2018-01-01

    We work out the one-loop and order κ2 mphi2 UV divergent contributions, coming from Unimodular Gravity and General Relativity, to the S matrix element of the scattering process phi + phi→ phi + phi in a λ phi4 theory with mass mphi. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contributions in Dimensional Regularization. This seems to be at odds with the known result that in a multiplicative MS dimensional regularization scheme the General Relativity corrections, in the de Donder gauge, to the beta function, βλ, of the λ coupling do not vanish, whereas the Unimodular Gravity corrections, in a certain gauge, do vanish. Actually, by comparing the UV divergent contributions calculated in this paper with those which give rise to the non-vanishing gravitational corrections to βλ, one readily concludes that the UV divergent contributions that yield the just mentioned non-vanishing gravitational corrections to βλ do not contribute to the UV divergent behaviour of the S matrix element of phi + phi→ phi + phi. This shows that any physical consequence—such as the existence of asymptotic freedom due to gravitational interactions—drawn from the value of βλ is not physically meaningful.

  10. Non-planar one-loop Parke-Taylor factors in the CHY approach for quadratic propagators

    NASA Astrophysics Data System (ADS)

    Ahmadiniaz, Naser; Gomez, Humberto; Lopez-Arcos, Cristhiam

    2018-05-01

    In this work we have studied the Kleiss-Kuijf relations for the recently introduced Parke-Taylor factors at one-loop in the CHY approach, that reproduce quadratic Feynman propagators. By doing this, we were able to identify the non-planar one-loop Parke-Taylor factors. In order to check that, in fact, these new factors can describe non-planar amplitudes, we applied them to the bi-adjoint Φ3 theory. As a byproduct, we found a new type of graphs that we called the non-planar CHY-graphs. These graphs encode all the information for the subleading order at one-loop, and there is not an equivalent of these in the Feynman formalism.

  11. Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement

    NASA Astrophysics Data System (ADS)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2015-12-01

    We give a gauge-independent definition of magnetic monopoles in the S U (N ) Yang-Mills theory through the Wilson loop operator. For this purpose, we give an explicit proof of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of the S U (N ) gauge group to derive a new form for the non-Abelian Stokes theorem. The new form is used to extract the magnetic-monopole contribution to the Wilson loop operator in a gauge-invariant way, which enables us to discuss confinement of quarks in any representation from the viewpoint of the dual superconductor vacuum.

  12. Physicochemically Tunable Polyfunctionalized RNA Square Architecture with Fluorogenic and Ribozymatic Properties

    PubMed Central

    2015-01-01

    Recent advances in RNA nanotechnology allow the rational design of various nanoarchitectures. Previous methods utilized conserved angles from natural RNA motifs to form geometries with specific sizes. However, the feasibility of producing RNA architecture with variable sizes using native motifs featuring fixed sizes and angles is limited. It would be advantageous to display RNA nanoparticles of diverse shape and size derived from a given primary sequence. Here, we report an approach to construct RNA nanoparticles with tunable size and stability. Multifunctional RNA squares with a 90° angle were constructed by tuning the 60° angle of the three-way junction (3WJ) motif from the packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor. The physicochemical properties and size of the RNA square were also easily tuned by modulating the “core” strand and adjusting the length of the sides of the square via predictable design. Squares of 5, 10, and 20 nm were constructed, each showing diverse thermodynamic and chemical stabilities. Four “arms” extending from the corners of the square were used to incorporate siRNA, ribozyme, and fluorogenic RNA motifs. Unique intramolecular contact using the pre-existing intricacy of the 3WJ avoids relatively weaker intermolecular interactions via kissing loops or sticky ends. Utilizing the 3WJ motif, we have employed a modular design technique to construct variable-size RNA squares with controllable properties and functionalities for diverse and versatile applications with engineering, pharmaceutical, and medical potential. This technique for simple design to finely tune physicochemical properties adds a new angle to RNA nanotechnology. PMID:24971772

  13. Loop Integrands for Scattering Amplitudes from the Riemann Sphere

    NASA Astrophysics Data System (ADS)

    Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr

    2015-09-01

    The scattering equations on the Riemann sphere give rise to remarkable formulas for tree-level gauge theory and gravity amplitudes. Adamo, Casali, and Skinner conjectured a one-loop formula for supergravity amplitudes based on scattering equations on a torus. We use a residue theorem to transform this into a formula on the Riemann sphere. What emerges is a framework for loop integrands on the Riemann sphere that promises to have a wide application, based on off-shell scattering equations that depend on the loop momentum. We present new formulas, checked explicitly at low points, for supergravity and super-Yang-Mills amplitudes and for n -gon integrands at one loop. Finally, we show that the off-shell scattering equations naturally extend to arbitrary loop order, and we give a proposal for the all-loop integrands for supergravity and planar super-Yang-Mills theory.

  14. Radiative corrections to the η(') Dalitz decays

    NASA Astrophysics Data System (ADS)

    Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan

    2018-05-01

    We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.

  15. LQS_INVERSION v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Chester J

    FORTRAN90 codes for inversion of electrostatic geophysical data in terms of three subsurface parameters in a single-well, oilfield environment: the linear charge density of the steel well casing (L), the point charge associated with an induced fracture filled with a conductive contrast agent (Q) and the location of said fracture (s). Theory is described in detail in Weiss et al. (Geophysics, 2016). Inversion strategy is to loop over candidate fracture locations, and at each one minimize the squared Cartesian norm of the data misfit to arrive at L and Q. Solution method is to construct the 2x2 linear system ofmore » normal equations and compute L and Q algebraically. Practical Application: Oilfield environments where observed electrostatic geophysical data can reasonably be assumed by a simple L-Q-s model. This may include hydrofracking operations, as postulated in Weiss et al. (2016), but no field validation examples have so far been provided.« less

  16. Transverse momentum in double parton scattering: factorisation, evolution and matching

    NASA Astrophysics Data System (ADS)

    Buffing, Maarten G. A.; Diehl, Markus; Kasemets, Tomas

    2018-01-01

    We give a description of double parton scattering with measured transverse momenta in the final state, extending the formalism for factorisation and resummation developed by Collins, Soper and Sterman for the production of colourless particles. After a detailed analysis of their colour structure, we derive and solve evolution equations in rapidity and renormalisation scale for the relevant soft factors and double parton distributions. We show how in the perturbative regime, transverse momentum dependent double parton distributions can be expressed in terms of simpler nonperturbative quantities and compute several of the corresponding perturbative kernels at one-loop accuracy. We then show how the coherent sum of single and double parton scattering can be simplified for perturbatively large transverse momenta, and we discuss to which order resummation can be performed with presently available results. As an auxiliary result, we derive a simple form for the square root factor in the Collins construction of transverse momentum dependent parton distributions.

  17. Disconnected-Sea Quarks Contribution to Nucleon Electromagnetic Form Factors

    NASA Astrophysics Data System (ADS)

    Sufian, Raza Sabbir

    We present comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon electric and magnetic form factors. The lattice QCD estimates of strange quark magnetic moment GsM (0) = -0.064(14)(09) microN and the mean squared charge radius E = -0.0043(16)(14) fm2 are more precise than any existing experimental measurements and other lattice calculations. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light-sea and strange quarks contribution to the nucleon magnetic moment is -0.022(11)(09) microN and to the nucleon mean square charge radius is -0.019(05)(05) fm 2. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light-sea and strange quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.

  18. Reading Comprehension and Working Memory in Learning-Disabled Readers: Is the Phonological Loop More Important Than the Executive System?

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    1999-01-01

    Investigated the contribution of two working-memory systems (the articulatory loop and the central executive) to the performance differences between learning-disabled and skilled readers. Found that, compared to skilled readers, learning-disabled readers experienced constraints in the articulatory and long-term memory system, and suffered…

  19. Stabilizing windings for tilting and shifting modes

    DOEpatents

    Jardin, Stephen C.; Christensen, Uffe R.

    1984-01-01

    This invention relates to passive conducting loops for stabilizing a plasma ring against unstable tilting and/or shifting modes. To this end, for example, plasma ring in a spheromak is stabilized by a set of four figure-8 shaped loops having one pair on one side of the plasma and one pair on the other side with each pair comprising two loops whose axes are transverse to each other.

  20. Extending the Universal One-Loop Effective Action: heavy-light coefficients

    DOE PAGES

    Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong; ...

    2017-08-16

    The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less

  1. Extending the Universal One-Loop Effective Action: heavy-light coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Sebastian A. R.; Quevillon, Jérémie; You, Tevong

    The Universal One-Loop Effective Action (UOLEA) is a general expression for the effective action obtained by evaluating in a model-independent way the one-loop expansion of a functional path integral. It can also be used to match UV theories to their low-energy EFTs more efficiently by avoiding redundant steps in the application of functional methods, simplifying the process of obtaining Wilson coefficients of operators up to dimension six. In addition to loops involving only heavy fields, matching may require the inclusion of loops containing both heavy and light particles. Here we use the recently-developed covariant diagram technique to extend the UOLEAmore » to include heavy-light terms which retain the same universal structure as the previously-derived heavy-only terms. As an example of its application, we integrate out a heavy singlet scalar with a linear coupling to a light doublet Higgs. The extension presented here is a first step towards completing the UOLEA to incorporate all possible structures encountered in a covariant derivative expansion of the one-loop path integral.« less

  2. Extensive degeneracy, Coulomb phase and magnetic monopoles in artificial square ice.

    PubMed

    Perrin, Yann; Canals, Benjamin; Rougemaille, Nicolas

    2016-12-15

    Artificial spin-ice systems are lithographically patterned arrangements of interacting magnetic nanostructures that were introduced as way of investigating the effects of geometric frustration in a controlled manner. This approach has enabled unconventional states of matter to be visualized directly in real space, and has triggered research at the frontier between nanomagnetism, statistical thermodynamics and condensed matter physics. Despite efforts to create an artificial realization of the square-ice model-a two-dimensional geometrically frustrated spin-ice system defined on a square lattice-no simple geometry based on arrays of nanomagnets has successfully captured the macroscopically degenerate ground-state manifold of the model. Instead, square lattices of nanomagnets are characterized by a magnetically ordered ground state that consists of local loop configurations with alternating chirality. Here we show that all of the characteristics of the square-ice model are observed in an artificial square-ice system that consists of two sublattices of nanomagnets that are vertically separated by a small distance. The spin configurations we image after demagnetizing our arrays reveal unambiguous signatures of a Coulomb phase and algebraic spin-spin correlations, which are characterized by the presence of 'pinch' points in the associated magnetic structure factor. Local excitations-the classical analogues of magnetic monopoles-are free to evolve in an extensively degenerate, divergence-free vacuum. We thus provide a protocol that could be used to investigate collective magnetic phenomena, including Coulomb phases and the physics of ice-like materials.

  3. Kinetics of Internal-Loop Formation in Polypeptide Chains: A Simulation Study

    PubMed Central

    Doucet, Dana; Roitberg, Adrian; Hagen, Stephen J.

    2007-01-01

    The speed of simple diffusional motions, such as the formation of loops in the polypeptide chain, places one physical limit on the speed of protein folding. Many experimental studies have explored the kinetics of formation of end-to-end loops in polypeptide chains; however, protein folding more often requires the formation of contacts between interior points on the chain. One expects that, for loops of fixed contour length, interior loops will form more slowly than end-to-end loops, owing to the additional excluded volume associated with the “tails”. We estimate the magnitude of this effect by generating ensembles of randomly coiled, freely jointed chains, and then using the theory of Szabo, Schulten, and Schulten to calculate the corresponding contact formation rates for these ensembles. Adding just a few residues, to convert an end-to-end loop to an internal loop, sharply decreases the contact rate. Surprisingly, the relative change in rate increases for a longer loop; sufficiently long tails, however, actually reverse the effect and accelerate loop formation slightly. Our results show that excluded volume effects in real, full-length polypeptides may cause the rates of loop formation during folding to depart significantly from the values derived from recent loop-formation experiments on short peptides. PMID:17208979

  4. Effective action for stochastic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less

  5. Neural self-tuning adaptive control of non-minimum phase system

    NASA Technical Reports Server (NTRS)

    Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  6. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  7. First Principles Predictions of the Structure and Function of G-Protein-Coupled Receptors: Validation for Bovine Rhodopsin

    PubMed Central

    Trabanino, Rene J.; Hall, Spencer E.; Vaidehi, Nagarajan; Floriano, Wely B.; Kam, Victor W. T.; Goddard, William A.

    2004-01-01

    G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs. In this article we validate the MembStruk procedure by comparing its predictions with the high-resolution crystal structure of bovine rhodopsin. The crystal structure of bovine rhodopsin has the second extracellular (EC-II) loop closed over the transmembrane regions by making a disulfide linkage between Cys-110 and Cys-187, but we speculate that opening this loop may play a role in the activation process of the receptor through the cysteine linkage with helix 3. Consequently we predicted two structures for bovine rhodopsin from the primary sequence (with no input from the crystal structure)—one with the EC-II loop closed as in the crystal structure, and the other with the EC-II loop open. The MembStruk-predicted structure of bovine rhodopsin with the closed EC-II loop deviates from the crystal by 2.84 Å coordinate root mean-square (CRMS) in the transmembrane region main-chain atoms. The predicted three-dimensional structures for other GPCRs can be validated only by predicting binding sites and energies for various ligands. For such predictions we developed the HierDock first principles computational method. We validate HierDock by predicting the binding site of 11-cis-retinal in the crystal structure of bovine rhodopsin. Scanning the whole protein without using any prior knowledge of the binding site, we find that the best scoring conformation in rhodopsin is 1.1 Å CRMS from the crystal structure for the ligand atoms. This predicted conformation has the carbonyl O only 2.82 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 0.62 Å CRMS from the crystal structure. We also used HierDock to predict the binding site of 11-cis-retinal in the MembStruk-predicted structure of bovine rhodopsin (closed loop). Scanning the whole protein structure leads to a structure in which the carbonyl O is only 2.85 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 2.92 Å CRMS from the crystal structure. The good agreement of the ab initio-predicted protein structures and ligand binding site with experiment validates the use of the MembStruk and HierDock first principles' methods. Since these methods are generic and applicable to any GPCR, they should be useful in predicting the structures of other GPCRs and the binding site of ligands to these proteins. PMID:15041637

  8. Design of a Sub-Picosecond Jitter with Adjustable-Range CMOS Delay-Locked Loop for High-Speed and Low-Power Applications

    PubMed Central

    Abdulrazzaq, Bilal I.; Ibrahim, Omar J.; Kawahito, Shoji; Sidek, Roslina M.; Shafie, Suhaidi; Yunus, Nurul Amziah Md.; Lee, Lini; Halin, Izhal Abdul

    2016-01-01

    A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz. PMID:27690040

  9. Strength of surgical wire fixation. A laboratory study.

    PubMed

    Guadagni, J R; Drummond, D S

    1986-08-01

    Because of the frequent use of stainless steel wire in spinal surgery and to augment fracture fixation, several methods of securing wire fixation were tested in the laboratory to determine the relative strength of fixation. Any method of fixation stronger than the yield strength of the wire is sufficient. Square knots, knot twists, symmetric twists, and the AO loop-tuck techniques afforded acceptable resistance against tension loads, but the wire wrap and AO loop technique were unacceptable. The double symmetric twist, which is frequently used for tension banding, was barely acceptable. The symmetric twist technique was the most practical because it is strong enough, efficient in maintaining tension applied during fixation, and least likely to cause damage to the wire. To optimize the fixation strength of the symmetrical twist, at least two twists are required at a reasonably tight pitch.

  10. Ferroelectric Properties of La Substituted PZT Ceramics

    NASA Astrophysics Data System (ADS)

    Rani, Rekha; Juneja, J. K.; Raina, K. K.; Prakash, Chandra

    2011-11-01

    For the present study, La substituted PZT ceramics having compositional formula Pb1-3x/2LaxZr0.65Ti0.35O3 were prepared by conventional solid state method. La content was varied from x = 0 to 0.03 in the steps of 0.01. XRD analyses of all the samples were done and were found to have single phase with rhombohedral structure. In this paper, we are reporting the variation in ferroelectric properties of Pb1-3x/2LaxZr0.65Ti0.35O3 by varying La content. P-E hysteresis loops were recorded using P-E loop tracer based on Sawyer- Tower circuit for all the samples at 20 Hz. Increase in coercive field (Ec), remanant polarization (Pr), saturation polarization (Ps) and squareness ratio (Pr/Ps) was observed with increase in x.

  11. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Shuhong; Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and movemore » toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.« less

  12. First passage times and asymmetry of DNA translocation

    NASA Astrophysics Data System (ADS)

    Lua, Rhonald C.; Grosberg, Alexander Y.

    2005-12-01

    Motivated by experiments in which single-stranded DNA with a short hairpin loop at one end undergoes unforced diffusion through a narrow pore, we study the first passage times for a particle, executing one-dimensional Brownian motion in an asymmetric sawtooth potential, to exit one of the boundaries. We consider the first passage times for the case of classical diffusion, characterized by a mean-square displacement of the form ⟨(Δx)2⟩˜t , and for the case of anomalous diffusion or subdiffusion, characterized by a mean-square displacement of the form ⟨(Δx)2⟩˜tγ with 0<γ<1 . In the context of classical diffusion, we obtain an expression for the mean first passage time and show that this quantity changes when the direction of the sawtooth is reversed or, equivalently, when the reflecting and absorbing boundaries are exchanged. We discuss at which numbers of “teeth” N (or number of DNA nucleotides) and at which heights of the sawtooth potential this difference becomes significant. For large N , it is well known that the mean first passage time scales as N2 . In the context of subdiffusion, the mean first passage time does not exist. Therefore, we obtain instead the distribution of first passage times in the limit of long times. We show that the prefactor in the power relation for this distribution is simply the expression for the mean first passage time in classical diffusion. We also describe a hypothetical experiment to calculate the average of the first passage times for a fraction of passage events that each end within some time t* . We show that this average first passage time scales as N2/γ in subdiffusion.

  13. Sliding-mode control combined with improved adaptive feedforward for wafer scanner

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Yiguang

    2018-03-01

    In this paper, a sliding-mode control method combined with improved adaptive feedforward is proposed for wafer scanner to improve the tracking performance of the closed-loop system. Particularly, In addition to the inverse model, the nonlinear force ripple effect which may degrade the tracking accuracy of permanent magnet linear motor (PMLM) is considered in the proposed method. The dominant position periodicity of force ripple is determined by using the Fast Fourier Transform (FFT) analysis for experimental data and the improved feedforward control is achieved by the online recursive least-squares (RLS) estimation of the inverse model and the force ripple. The improved adaptive feedforward is given in a general form of nth-order model with force ripple effect. This proposed method is motivated by the motion controller design of the long-stroke PMLM and short-stroke voice coil motor for wafer scanner. The stability of the closed-loop control system and the convergence of the motion tracking are guaranteed by the proposed sliding-mode feedback and adaptive feedforward methods theoretically. Comparative experiments on a precision linear motion platform can verify the correctness and effectiveness of the proposed method. The experimental results show that comparing to traditional method the proposed one has better performance of rapidity and robustness, especially for high speed motion trajectory. And, the improvements on both tracking accuracy and settling time can be achieved.

  14. Robust time and frequency domain estimation methods in adaptive control

    NASA Technical Reports Server (NTRS)

    Lamaire, Richard Orville

    1987-01-01

    A robust identification method was developed for use in an adaptive control system. The type of estimator is called the robust estimator, since it is robust to the effects of both unmodeled dynamics and an unmeasurable disturbance. The development of the robust estimator was motivated by a need to provide guarantees in the identification part of an adaptive controller. To enable the design of a robust control system, a nominal model as well as a frequency-domain bounding function on the modeling uncertainty associated with this nominal model must be provided. Two estimation methods are presented for finding parameter estimates, and, hence, a nominal model. One of these methods is based on the well developed field of time-domain parameter estimation. In a second method of finding parameter estimates, a type of weighted least-squares fitting to a frequency-domain estimated model is used. The frequency-domain estimator is shown to perform better, in general, than the time-domain parameter estimator. In addition, a methodology for finding a frequency-domain bounding function on the disturbance is used to compute a frequency-domain bounding function on the additive modeling error due to the effects of the disturbance and the use of finite-length data. The performance of the robust estimator in both open-loop and closed-loop situations is examined through the use of simulations.

  15. Higgs mass prediction in the MSSM at three-loop level in a pure \\overline{{ {DR}}} context

    NASA Astrophysics Data System (ADS)

    Harlander, Robert V.; Klappert, Jonas; Voigt, Alexander

    2017-12-01

    The impact of the three-loop effects of order α _tα _s^2 on the mass of the light CP-even Higgs boson in the { {MSSM}} is studied in a pure \\overline{{ {DR}}} context. For this purpose, we implement the results of Kant et al. (JHEP 08:104, 2010) into the C++ module Himalaya and link it to FlexibleSUSY, a Mathematica and C++ package to create spectrum generators for BSM models. The three-loop result is compared to the fixed-order two-loop calculations of the original FlexibleSUSY and of FeynHiggs, as well as to the result based on an EFT approach. Aside from the expected reduction of the renormalization scale dependence with respect to the lower-order results, we find that the three-loop contributions significantly reduce the difference from the EFT prediction in the TeV-region of the { {SUSY}} scale {M_S}. Himalaya can be linked also to other two-loop \\overline{{ {DR}}} codes, thus allowing for the elevation of these codes to the three-loop level.

  16. Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability.

    PubMed

    García-Benítez, Francisco; Gaillard, Hélène; Aguilera, Andrés

    2017-10-10

    During transcription, the mRNA may hybridize with DNA, forming an R loop, which can be physiological or pathological, constituting in this case a source of genomic instability. To understand the mechanism by which eukaryotic cells prevent harmful R loops, we used human activation-induced cytidine deaminase (AID) to identify genes preventing R loops. A screening of 400 Saccharomyces cerevisiae selected strains deleted in nuclear genes revealed that cells lacking the Mlp1/2 nuclear basket proteins show AID-dependent genomic instability and replication defects that were suppressed by RNase H1 overexpression. Importantly, DNA-RNA hybrids accumulated at transcribed genes in mlp1/2 mutants, indicating that Mlp1/2 prevents R loops. Consistent with the Mlp1/2 role in gene gating to nuclear pores, artificial tethering to the nuclear periphery of a transcribed locus suppressed R loops in mlp1 ∆ cells. The same occurred in THO-deficient hpr1 ∆ cells. We conclude that proximity of transcribed chromatin to the nuclear pore helps restrain pathological R loops.

  17. Irreversibility and higher-spin conformal field theory

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  18. One-loop effects of a heavy Higgs boson: A functional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmaier, S.; Grosse-Knetter, C.

    1995-11-01

    We integrate out the Higgs boson in the electroweak standard model at one loop, assuming that it is very heavy. We construct a low-energy effective Lagrangian, which parametrizes the one-loop effect of the heavy Higgs boson at {O}({ital M}{sup O}{sup -}{sub {ital H}}). Instead of applying conventional diagrammatical techniques, we integrate out the Higgs boson directly in the path integral. {copyright} 1995 American Institute of Physics

  19. Higher-Loop Amplitude Monodromy Relations in String and Gauge Theory.

    PubMed

    Tourkine, Piotr; Vanhove, Pierre

    2016-11-18

    The monodromy relations in string theory provide a powerful and elegant formalism to understand some of the deepest properties of tree-level field theory amplitudes, like the color-kinematics duality. This duality has been instrumental in tremendous progress on the computations of loop amplitudes in quantum field theory, but a higher-loop generalization of the monodromy construction was lacking. In this Letter, we extend the monodromy relations to higher loops in open string theory. Our construction, based on a contour deformation argument of the open string diagram integrands, leads to new identities that relate planar and nonplanar topologies in string theory. We write one and two-loop monodromy formulas explicitly at any multiplicity. In the field theory limit, at one-loop we obtain identities that reproduce known results. At two loops, we check our formulas by unitarity in the case of the four-point N=4 super-Yang-Mills amplitude.

  20. Depression as a systemic syndrome: mapping the feedback loops of major depressive disorder.

    PubMed

    Wittenborn, A K; Rahmandad, H; Rick, J; Hosseinichimeh, N

    2016-02-01

    Depression is a complex public health problem with considerable variation in treatment response. The systemic complexity of depression, or the feedback processes among diverse drivers of the disorder, contribute to the persistence of depression. This paper extends prior attempts to understand the complex causal feedback mechanisms that underlie depression by presenting the first broad boundary causal loop diagram of depression dynamics. We applied qualitative system dynamics methods to map the broad feedback mechanisms of depression. We used a structured approach to identify candidate causal mechanisms of depression in the literature. We assessed the strength of empirical support for each mechanism and prioritized those with support from validation studies. Through an iterative process, we synthesized the empirical literature and created a conceptual model of major depressive disorder. The literature review and synthesis resulted in the development of the first causal loop diagram of reinforcing feedback processes of depression. It proposes candidate drivers of illness, or inertial factors, and their temporal functioning, as well as the interactions among drivers of depression. The final causal loop diagram defines 13 key reinforcing feedback loops that involve nine candidate drivers of depression. Future research is needed to expand upon this initial model of depression dynamics. Quantitative extensions may result in a better understanding of the systemic syndrome of depression and contribute to personalized methods of evaluation, prevention and intervention.

Top