Sample records for one-pot multicomponent coupling

  1. Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles.

    PubMed

    Banerjee, Bubun

    2017-03-01

    Heterocycles are the backbone of organic compounds. Specially, N- &O-containing heterocycles represent privileged structural subunits well distributed in naturally occurring compounds with immense biological activities. Multicomponent reactions (MCRs) are becoming valuable tool for synthesizing structurally diverse molecular entities. On the other hand, the last decade has seen a tremendous outburst in modifying chemical processes to make them sustainable for the betterment of our environment. The application of ultrasound in organic synthesis is fulfilling some of the goals of 'green and sustainable chemistry' as it has some advantages over the traditional thermal methods in terms of reaction rates, yields, purity of the products, product selectivity, etc. Therefore the synthesis of biologically relevant heterocycles using one-pot multi-component technique coupled with the application of ultrasound is one of the thrusting areas in the 21st Century among the organic chemists. The present review deals with the "up to date" developments on ultrasound assisted one-pot multi-component synthesis of biologically relevant heterocycles reported so far. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols

    PubMed Central

    Kerrigan, Michael H.; Jeon, Sang-Jin; Chen, Young K.; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    (Z)-Trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-α,α,β-trisubstituted allylic alcohols. (Z)-Trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metallate rearrangement that is followed by a boron-to-zinc transmetallation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl protected α- and β-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl protected α-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (−)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. α-Ethyl and α-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors. PMID:19476375

  3. Imides: forgotten players in the Ugi reaction. One-pot multicomponent synthesis of quinazolinones.

    PubMed

    Mossetti, Riccardo; Pirali, Tracey; Saggiorato, Dèsirèe; Tron, Gian Cesare

    2011-06-28

    Up to now, the synthesis of quinazolinones has required lengthy synthetic procedures. Here, we describe an innovative one-pot multicomponent reaction leading to highly substituted quinazolinones. We believe that this novel transformation may open the door for the generation of new and pharmacologically active quinazolinones, but, most important of all, the resurrection of the imide-Ugi scaffold paves the way for the synthesis of novel molecular architectures. This journal is © The Royal Society of Chemistry 2011

  4. Synthesis of unnatural amino acids via microwave-assisted regio-selective one-pot multi-component reactions of sulfamidates

    EPA Science Inventory

    Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...

  5. Synthesis of Thieno[3,2-b]indoles via Halogen Dance and Ligand-Controlled One-Pot Sequential Coupling Reaction.

    PubMed

    Hayashi, Yuki; Okano, Kentaro; Mori, Atsunori

    2018-02-16

    A two-pot synthesis of thieno[3,2-b]indole from 2,5-dibromothiophene is described. A halogen dance of 2,5-dibromothiophene was performed with LDA, and subsequent Negishi coupling was performed with 2-iodoaniline derivatives to provide the corresponding coupling products. The resulting two bromo groups have different reactivities, which were utilized for the one-pot Suzuki-Miyaura coupling/intramolecular Buchwald-Hartwig amination to produce thieno[3,2-b]indole via an assisted tandem catalysis that involved in situ ligand exchange.

  6. Ionic liquid catalyzed one-pot multi-component synthesis, characterization and antibacterial activity of novel chromeno[2,3-d]pyrimidin-8-amine derivatives

    NASA Astrophysics Data System (ADS)

    Kanakaraju, Sankari; Prasanna, Bethanamudi; Basavoju, Srinivas; Chandramouli, G. V. P.

    2012-06-01

    An efficient, simple and convenient method for the one-pot multi-component synthesis of novel chromeno[2,3-d]pyrimidin-8-amine derivatives has been accomplished by starting from α-naphthol, aryl aldehydes, malononitrile and NH4Cl. The reaction has been catalyzed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4 ionic liquid. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR, mass spectra, and elemental analysis. The structure of compound 4a was confirmed by single-crystal X-ray diffraction. All the synthesized compounds were evaluated for their in vitro antibacterial activity.

  7. Palladium-catalyzed one-pot three- or four-component coupling of aryl iodides, alkynes, and amines through C-N bond cleavage: efficient synthesis of indole derivatives.

    PubMed

    Hao, Wei; Geng, Weizhi; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-02-24

    An efficient synthesis of N-substituted indole derivatives was realized by combining the Pd-catalyzed one-pot multicomponent coupling approach with cleavage of the C(sp(3))-N bonds. Three or four components of aryl iodides, alkynes, and amines were involved in this coupling process. The cyclopentadiene-phosphine ligand showed high efficiency. A variety of aryl iodides, including cyclic and acyclic tertiary amino aryl iodides, and substituted 1-bromo-2-iodobenzene derivatives could be used. Both symmetric and unsymmetric alkynes substituted with alkyl, aryl, or trimethylsilyl groups could be applied. Cyclic secondary amines such as piperidine, morpholine, 4-methylpiperidine, 1-methylpiperazine, 2-methylpiperidine, and acyclic amines including secondary and primary amines all showed good reactivity. Further application of the resulting indole derivatives was demonstrated by the synthesis of benzosilolo[2,3-b]indole. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of cyclopentadiene-fused chromanones via one-pot multicomponent reactions.

    PubMed

    Ghandi, Mehdi; Ghomi, Ali-Tabatabaei; Kubicki, Maciej

    2013-03-15

    We have developed one-pot method for the synthesis of functionalized novel cyclopentadiene-fused chromanone scaffolds. A variety of 4-oxo-2,4-dihydrocyclopenta[c]chromene-1,2-dicarboxylates were obtained in moderate to good yields via condensation of 2-hydroxybenzaldehydes and ethyl acetoacetate with 1:1 acetylenecarboxylate-isocyanides in toluene. These reactions presumably proceed via reaction of the in situ generated 3-acetyl-2H-chromen-2-ones with acetylenecarboxylate-isocyanide zwitterionic intermediates through Michael addition/intramolecular cyclization and double [1,5] acyl shift rearrangement cascade.

  9. Pd-catalyzed one-pot synthesis of polysubstituted acrylamidines from isocyanides, diazo compounds, and imines.

    PubMed

    Yan, Xu; Liao, Jinxi; Lu, Yongzhi; Liu, Jinsong; Zeng, Youlin; Cai, Qian

    2013-05-17

    A novel and efficient Pd-catalyzed one-pot reaction of ethyl diazoacetate, isocyanides, and imines for the synthesis of acrylamidines was developed. The multicomponent reaction may have occurred through an unpredicted ring-opening process of the ketenimine-imine [2 + 2] intermediate to form the acrylamidine products.

  10. Pot economy and one-pot synthesis.

    PubMed

    Hayashi, Yujiro

    2016-02-01

    The one-pot synthesis of a target molecule in the same reaction vessel is widely considered to be an efficient approach in synthetic organic chemistry. In this review, the characteristics and limitations of various one-pot syntheses of biologically active molecules are explained, primarily involving organocatalytic methods as key tactics. Besides catalysis, the pot-economy concepts presented herein are also applicable to organometallic and organic reaction methods in general.

  11. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β- amino triazoles

    EPA Science Inventory

    Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...

  12. A One-Pot Synthesis of Dibenzofurans from 6-Diazo-2-cyclohexenones.

    PubMed

    Zhao, Hua; Yang, Ke; Zheng, Hongyan; Ding, Ruichao; Yin, Fangjie; Wang, Ning; Li, Yun; Cheng, Bin; Wang, Huifei; Zhai, Hongbin

    2015-12-04

    A novel and efficient protocol for the rapid construction of dibenzofuran motifs from 6-diazo-2-cyclohexenone and ortho-haloiodobenzene has been developed. The process involves one-pot Pd-catalyzed cross-coupling/aromatization and Cu-catalyzed Ullmann coupling.

  13. Facile one-pot multicomponent synthesis and molecular docking studies of steroidal oxazole/thiazole derivatives with effective antimicrobial, antibiofilm and hemolytic properties.

    PubMed

    Ansari, Anam; Ali, Abad; Asif, Mohd; Rauf, Mohd Ahmar; Owais, Mohammad; Shamsuzzaman

    2018-06-01

    A series of steroidal oxazole and thiazole derivatives have been synthesized employing thiosemicarbazide/semicarbazide hydrochloride and ethyl 2-chloroacetoacetate with a simple and facile one-pot multicomponent reaction pathway. The antimicrobial activity of newly synthesized compounds were evaluated against four bacterial strains namely Gram-negative (Escherichia coliand Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) in addition to pathogenic fungi (Candida albicans and Cryptococcus neoformans). Bioactivity assay manifested that most of the compounds exhibited good antimicrobial activity. To provide additional insight into antimicrobial activity, the compounds were also tested for their antibiofilm activity against S. aureus biofilm. Moreover, molecular docking study shows binding of compounds with amino acid residues of DNA gyrase and glucosamine-6-phosphate synthase (promising antimicrobial target) through hydrogen bonding interactions. Hemolytic activity have been also investigated to ascertain the effect of compounds over RBC lysis and results indicate good prospects for biocompatibility. The expedient synthesis of steroidal heterocycles, effective antibacterial and antifungal behavior against various clinically relevant human pathogens, promising biocompatibility offer opportunities for further modification and potential applications as therapeutic agents. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. C–C Cross-Coupling Reactions of O6-Alkyl-2-Haloinosine Derivatives and a One-Pot Cross-Coupling/O6-Deprotection Procedure

    PubMed Central

    Gurram, Venkateshwarlu; Pottabathini, Narender; Garlapati, Ramesh; Chaudhary, Avinash B.; Patro, Balaram; Lakshman, Mahesh K.

    2012-01-01

    Reaction conditions for the C–C cross-coupling of O6-alkyl-2-bromo- and 2-chloroinosine derivatives with aryl-, hetaryl-, and alkylboronic acids were studied. Optimization experiments with silyl-protected 2-bromo-O6-methylinosine led to the identification of [PdCl2(dcpf)]/K3PO4 in 1,4-dioxane as the best condition for these reactions (dcpf = 1,1’-bis(dicyclohexylphosphino)ferrocene). Attempted O6-demethylation, as well as the replacement of the C-6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd-cleavable groups such that C–C cross-coupling and O6-deprotection could be accomplished in a single step. Thus, inosine 2-chloro-O6-allylinosine was chosen as the substrate and, after re-evaluation of the cross-coupling conditions with 2-chloro-O6-methylinosine as a model substrate, one-step C–C cross-coupling/deprotection reactions were performed with the O6-allyl analogue. These reactions are the first such examples of a one-pot procedure for the modification and deprotection of purine nucleosides under C–C cross-coupling conditions. PMID:22570232

  15. C-C cross-coupling reactions of O6-alkyl-2-haloinosine derivatives and a one-pot cross-coupling/O6-deprotection procedure.

    PubMed

    Gurram, Venkateshwarlu; Pottabathini, Narender; Garlapati, Ramesh; Chaudhary, Avinash B; Patro, Balaram; Lakshman, Mahesh K

    2012-08-01

    Reaction conditions for the CC cross-coupling of O(6)-alkyl-2-bromo- and 2-chloroinosine derivatives with aryl-, hetaryl-, and alkylboronic acids were studied. Optimization experiments with silyl-protected 2-bromo-O(6)-methylinosine led to the identification of [PdCl(2)(dcpf)]/K(3)PO(4) in 1,4-dioxane as the best conditions for these reactions (dcpf=1,1'-bis(dicyclohexylphosphino)ferrocene). Attempted O(6)-demethylation, as well as the replacement of the C-6 methoxy group by amines, was unsuccessful, which led to the consideration of Pd-cleavable groups such that C-C cross-coupling and O(6)-deprotection could be accomplished in a single step. Thus, inosine 2-chloro-O(6)-allylinosine was chosen as the substrate and, after re-evaluation of the cross-coupling conditions with 2-chloro-O(6)-methylinosine as a model substrate, one-step C-C cross-coupling/deprotection reactions were performed with the O(6)-allyl analogue. These reactions are the first such examples of a one-pot procedure for the modification and deprotection of purine nucleosides under C-C cross-coupling conditions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rapid Synthesis of Thiophene-Based, Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) by a One-Pot, Four-Component Coupling Approach.

    PubMed

    Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi

    2015-06-26

    This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. MICROWAVE-ACCELERATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    The application of microwave-accelerated solventless synthetic protocols in multicomponent (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of valuable heterocyclic compounds from in situ generated intermed...

  18. MICROWAVE-FACILITATED MULTICOMPONENT REACTIONS UNDER SOLVENT-FREE CONDITIONS

    EPA Science Inventory

    The application of microwave-expedited solvent-free synthetic protocols in multi-component (MCC) reactions will be exemplified by several condensation and cyclization reactions including the rapid one-pot assembly of heterocyclic compounds from in situ generated intermediates. R...

  19. Copper-catalyzed, C-C coupling-based one-pot tandem reactions for the synthesis of benzofurans using o-iodophenols, acyl chlorides, and phosphorus ylides.

    PubMed

    Liu, Yunyun; Wang, Hang; Wan, Jie-Ping

    2014-11-07

    One-pot reactions involving acyl chlorides, phosphorus ylides, and o-iodophenols with copper catalysis have been established for the rapid synthesis of functionalized benzofurans. With all of these easily available and stable reactants, the construction of the target products has been accomplished via tandem transformations involving a key C-C coupling, leading to the formation of one C(sp(2))-C bond, one C(sp(2))-O bond, and one C ═ C bond.

  20. One-Pot Synthesis of Cyclopropane-Fused Cyclic Amidines: An Oxidative Carbanion Cyclization.

    PubMed

    Veeranna, Kirana Devarahosahalli; Das, Kanak Kanti; Baskaran, Sundarababu

    2017-12-18

    A novel and efficient one-pot method has been developed for the synthesis of cyclopropane-fused bicyclic amidines on the basis of a CuBr 2 -mediated oxidative cyclization of carbanions. The usefulness of this unique multicomponent strategy has been demonstrated by the use of a wide variety of substrates to furnish novel cyclopropane-containing amidines with a quaternary center in very good yields. This ketenimine-based approach provides straightforward access to biologically active and pharmaceutically important 3-azabicyclo[n.1.0]alkane frameworks under mild conditions. The synthetic power of this methodology is exemplified in the concise synthesis of the pharmaceutically important antidepressant drug candidate GSK1360707 and key intermediates for the synthesis of amitifadine, bicifadine, and narlaprevir. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Proton movement and coupling in the POT family of peptide transporters

    PubMed Central

    Parker, Joanne L.; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M. J.; Caffrey, Martin; Voth, Gregory A.

    2017-01-01

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. PMID:29180426

  2. Proton movement and coupling in the POT family of peptide transporters.

    PubMed

    Parker, Joanne L; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M J; Caffrey, Martin; Voth, Gregory A; Newstead, Simon

    2017-12-12

    POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. Copyright © 2017 the Author(s). Published by PNAS.

  3. One-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles via a multicomponent [4 + 1] cycloaddition reaction.

    PubMed

    Hsiao, Ya-Shan; Narhe, Bharat D; Chang, Ying-Sheng; Sun, Chung-Ming

    2013-10-14

    A one-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles has been achieved by a three-component reaction of 2-aminobenzimidazoles with an aromatic aldehyde and an isocyanide. The reaction involving condensation of 2-aminobenzimidazole with an aldehyde is run under microwave activation to generate an imine intermediate under basic conditions which then undergoes [4 + 1] cycloaddition with an isocyanide.

  4. Synthesis of amino ester-embedded benzimidazoles: a one-pot sequential protocol under metal-free neutral conditions.

    PubMed

    Roy, Priyabrata; Bodhak, Chandan; Pramanik, Animesh

    2017-02-01

    A one-pot three-component protocol has been developed for the synthesis of amino ester-embedded benzimidazoles under metal-free neutral conditions. Sequentially, the methodology involves coupling of an amino ester with 1-fluoro-2-nitrobenzene, reduction of the coupled nitroarene by sodium dithionite, and cyclization of the corresponding diamine with an aldehyde.

  5. Gold-nanoparticle-catalyzed synthesis of propargylamines: the traditional A3-multicomponent reaction performed as a two-step flow process.

    PubMed

    Abahmane, Lahbib; Köhler, J Michael; Gross, G Alexander

    2011-03-01

    The alkyne, aldehyde, amine A(3)-coupling reaction, a traditional multicomponent reaction (MCR), has been investigated as a two-step flow process. The implicated aminoalkylation reaction of phenylacetylene with appropriate aldimine intermediates was catalyzed by gold nanoparticles impregnated on alumina. The aldimine formation was catalyzed by Montmorillonite K10 beforehand. The performance of the process has been investigated with respect to different reaction regimes. Usually, the A(3)-multicomponent reaction is performed as a "one-pot" process. Diversity-oriented syntheses using MCRs often have the shortcoming that only low selectivity and low yields are achieved. We have used a flow-chemistry approach to perform the A(3)-MCR in a sequential manner. In this way, the reaction performance was significantly enhanced in terms of shortened reaction time, and the desired propargylamines were obtained in high yields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Recent advances in the chemistry of Rh carbenoids: multicomponent reactions of diazocarbonyl compounds

    NASA Astrophysics Data System (ADS)

    Medvedev, J. J.; Nikolaev, V. A.

    2015-07-01

    Multicomponent reactions of diazo compounds catalyzed by RhII complexes become a powerful tool for organic synthesis. They enable three- or four-step processes to be carried out as one-pot procedures (actually as one step) with high stereoselectivity to give complex organic molecules, including biologically active compounds. This review addresses recent results in the chemistry of Rh-catalyzed multicomponent reactions of diazocarbonyl compounds with the intermediate formation of N-, O- and C=O-ylides. The diastereo- and enantioselectivity of these reactions and the possibility of using various co-catalysts to increase the efficiency of the processes under consideration are discussed. The bibliography includes 120 references.

  7. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 3. Numerical methods and comparisons with exact solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelbard, F.; Fitzgerald, J.W.; Hoppel, W.A.

    1998-07-01

    We present the theoretical framework and computational methods that were used by {ital Fitzgerald} {ital et al.} [this issue (a), (b)] describing a one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. The concepts and limitations of modeling spatially varying multicomponent aerosols are elucidated. New numerical sectional techniques are presented for simulating multicomponent aerosol growth, settling, and eddy transport, coupled to time-dependent and spatially varying condensing vapor concentrations. Comparisons are presented with new exact solutions for settling and particle growth by simultaneous dynamic condensation of one vapor and by instantaneous equilibration with a spatially varying secondmore » vapor. {copyright} 1998 American Geophysical Union« less

  8. Assessment of the removal of side nanoparticulated populations generated during one-pot synthesis by asymmetric flow field-flow fractionation coupled to elemental mass spectrometry.

    PubMed

    Bouzas-Ramos, Diego; García-Cortes, Marta; Sanz-Medel, Alfredo; Encinar, Jorge Ruiz; Costa-Fernández, José M

    2017-10-13

    Coupling of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) has been recently proposed as a powerful diagnostic tool for characterization of the bioconjugation of CdSe/ZnS core-shell Quantum Dots (QDs) to antibodies. Such approach has been used herein to demonstrate that cap exchange of the native hydrophobic shell of core/shell QDs with the bidentate dihydrolipoic acid ligands directly removes completely the eventual side nanoparticulated populations generated during simple one-pot synthesis, which can ruin the subsequent final bioapplication. The critical assessment of the chemical and physical purity of the surface-modified QDs achieved allows to explain the transmission electron microscopy findings obtained for the different nanoparticle surface modification assayed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Facile one-pot synthesis and characterization of nickel supported on hierarchically porous carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotbagi, Trupti V.; Hakat, Yasemin; Bakker, Martin G., E-mail: Bakker@ua.edu

    2016-01-15

    Highlights: • Novel, inexpensive, one-pot, synthesis method for Ni on hierarchically porous carbon. • Disappearance of surfactant mesopores seen with incorporation of nickel. • Distribution of Ni nanoparticles on the hierarchically porous carbon support was studied by SEM. • Nickel nanoparticles were dispersed on macropore walls and not within carbon. - Abstract: Described is a novel, facile route for the synthesis of nickel supported on hierarchically porous carbon (Ni/HPC) using a one-pot co-gelation sol–gel method. Ni/HPC with varying nickel loadings (0.5, 1, 2.5 and 5 wt% Ni) were synthesized and the materials characterized by nitrogen physisorption, X-ray diffraction (XRD), scanningmore » electron microscopy (SEM), and Fourier transform infrared (FTIR) and Raman spectroscopies. The results show a three-dimensional network of disordered carbon with fine nickel nanoparticles of sizes ranging from 8 nm to 13 nm at 0.5 wt% Ni loading which gradually increased with increase in the Ni loading. The carbon structure was retained at the macropore level, but not at the mesoscale where the ordered mesopores were lost on nickel addition. The nickel nanoparticles were observed to grow on the surface of the ligaments. This may make them particularly suitable for low pressure Ni-catalyzed organic transformations e.g., hydrogenations, C–C coupling, C-heteroatom coupling, etc.« less

  10. 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity

    NASA Astrophysics Data System (ADS)

    Essid, Idris; Lahbib, Karima; Kaminsky, Werner; Ben Nasr, Cherif; Touil, Soufiane

    2017-08-01

    Herein we report a simple and efficient one-pot three-component synthesis of 5-phosphonato-3,4-dihydropyrimidin-2(1H)-ones, through the zinc triflate-catalyzed Biginelli-type reaction of β-ketophosphonates, aldehydes and urea. The compounds obtained were characterized by various spectroscopic tools including IR, NMR (1H, 31P, 13C) spectroscopy, mass spectrometry and single crystal X-ray diffraction. All the synthesized compounds were screened, for the first time, for anti-inflammatory activity by carrageenan-induced hind paw edema method, using female Wister rats and they showed significant anti-inflammatory activity in some cases higher than the standard indomethacin.

  11. Multicomponent Reactions in Ligation and Bioconjugation Chemistry.

    PubMed

    Reguera, Leslie; Méndez, Yanira; Humpierre, Ana R; Valdés, Oscar; Rivera, Daniel G

    2018-05-25

    Multicomponent reactions (MCRs) encompass an exciting class of chemical transformations that have proven success in almost all fields of synthetic organic chemistry. These convergent procedures incorporate three or more reactants into a final product in one pot, thus combining high levels of complexity and diversity generation with low synthetic cost. Striking applications of these processes are found in heterocycle, peptidomimetic, and natural product syntheses. However, their potential in the preparation of large macro- and biomolecular constructs has been realized just recently. This Account describes the most relevant results of our group in the utilization of MCRs for ligation/conjugation of biomolecules along with significant contributions from other laboratories that validate the utility of this special class of bioconjugation process. Thus, MCRs have proven to be efficient in the ligation of lipids to peptides and oligosaccharides as well as the ligation of steroids, carbohydrates, and fluorescent and affinity tags to peptides and proteins. In the field of glycolipids, we highlight the power of isocyanide-based MCRs with the one-pot double lipidation of glycan fragments functionalized as either the carboxylic acid or amine. In peptide chemistry, the versatility of the multicomponent ligation strategy is demonstrated in both solution-phase lipidation protocols and solid-phase procedures enabling the simultaneous lipidation and biotinylation of peptides. In addition, we show that MCRs are powerful methods for synchronized lipidation/labeling and macrocyclization of peptides, thus accomplishing in one step what usually requires long sequences. In the realm of protein bioconjugation, MCRs have also proven to be effective in labeling, site-selective modification, immobilization, and glycoconjugation processes. For example, we illustrate a successful application of multicomponent polysaccharide-protein conjugation with the preparation of multivalent

  12. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    PubMed

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  13. Coupled Kardar-Parisi-Zhang Equations in One Dimension

    NASA Astrophysics Data System (ADS)

    Ferrari, Patrik L.; Sasamoto, Tomohiro; Spohn, Herbert

    2013-11-01

    Over the past years our understanding of the scaling properties of the solutions to the one-dimensional KPZ equation has advanced considerably, both theoretically and experimentally. In our contribution we export these insights to the case of coupled KPZ equations in one dimension. We establish equivalence with nonlinear fluctuating hydrodynamics for multi-component driven stochastic lattice gases. To check the predictions of the theory, we perform Monte Carlo simulations of the two-component AHR model. Its steady state is computed using the matrix product ansatz. Thereby all coefficients appearing in the coupled KPZ equations are deduced from the microscopic model. Time correlations in the steady state are simulated and we confirm not only the scaling exponent, but also the scaling function and the non-universal coefficients.

  14. [Exploration of one-step preparation of Ganoderma lucidum multicomponent microemulsion].

    PubMed

    He, Jun-Jie; Chen, Yan; Du, Meng; Cao, Wei; Yuan, Ling; Zheng, Li-Yan

    2013-03-01

    To explore one-step method for the preparation of Ganoderma lucidum multicomponent microemulsion, according to the dissolution characteristics of triterpenes and polysaccharides in Ganoderma lucidum, formulation of the microemulsion was optimized. The optimal blank microemulsion was used as a solvent to sonicate the Ganoderma lucidum powder to prepare the multicomponent microemulsion, besides, its physicochemical properties were compared with the microemulsion made by conventional method. The results showed that the multicomponent microemulsion was characterized as (43.32 +/- 6.82) nm in size, 0.173 +/- 0.025 in polydispersity index (PDI) and -(3.98 +/- 0.82) mV in zeta potential. The contents of Ganoderma lucidum triterpenes and polysaccharides were (5.95 +/- 0.32) and (7.58 +/- 0.44) mg x mL(-1), respectively. Sonicating Ganoderma lucidum powder by blank microemulsion could prepare the multicomponent microemulsion. Compared with the conventional method, this method is simple and low cost, which is suitable for industrial production.

  15. Darboux transformation of the coupled nonisospectral Gross-Pitaevskii system and its multi-component generalization

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Chen, Yong

    2018-04-01

    In this paper, we extend the one-component Gross-Pitaevskii (GP) equation to the two-component coupled GP system including damping term, linear and parabolic density profiles. The Lax pair with nonisospectral parameter and infinitely-many conservation laws of this coupled GP system are presented. Actually, the Darboux transformation (DT) for this kind of nonautonomous system is essentially different from the autonomous case. Consequently, we construct the DT of the coupled GP equations, besides, nonautonomous multi-solitons, one-breather and the first-order rogue wave are also obtained. Various kinds of one-soliton solution are constructed, which include stationary one-soliton and nonautonomous one-soliton propagating along the negative (positive) direction of x-axis. The interaction of two solitons and two-soliton bound state are demonstrated respectively. We get the nonautonomous one-breather on a curved background and this background is completely controlled by the parameter β. Using a limiting process, the nonautonomous first-order rogue wave can be obtained. Furthermore, some dynamic structures of these analytical solutions are discussed in detail. In addition, the multi-component generalization of GP equations are given, then the corresponding Lax pair and DT are also constructed.

  16. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    PubMed

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  17. One-Pot, Three-Component Arylalkynyl Sulfone Synthesis

    PubMed Central

    2015-01-01

    A one-pot three-component protocol for the preparation of arylsulfonyl alkynes through the reaction of ethynyl-benziodoxolone (EBX) reagents, DABSO (DABCO·SO2), and either organomagnesium reagents or aryl iodides with a palladium catalyst is reported. A broad range of aryl and heteroarylalkynyl sulfones were obtained in 46–85% overall yield. PMID:25633719

  18. Multi-component ground motion response spectra for coupled horizontal, vertical, angular accelerations, and tilt

    USGS Publications Warehouse

    Kalkan, E.; Graizer, V.

    2007-01-01

    Rotational and vertical components of ground motion are almost always ignored in design or in the assessment of structures despite the fact that vertical motion can be twice as much as the horizontal motion and may exceed 2g level, and rotational excitation may reach few degrees in the proximity of fault rupture. Coupling of different components of ground excitation may significantly amplify the seismic demand by introducing additional lateral forces and enhanced P-?? effects. In this paper, a governing equation of motion is postulated to compute the response of a SDOF oscillator under a multi-component excitation. The expanded equation includes secondary P-?? components associated with the combined impacts of tilt and vertical excitations in addition to the inertial forcing terms due to the angular and translational accelerations. The elastic and inelastic spectral ordinates traditionally generated considering the uniaxial input motion are compared at the end with the multi-component response spectra of coupled horizontal, vertical and tilting motions. The proposed multi-component response spectrum reflects kinematic characteristics of the ground motion that are not identifiable by the conventional spectrum itself, at least for the near-fault region where high intensity vertical shaking and rotational excitation are likely to occur.

  19. A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M.

    2008-01-01

    The Robinson annulation is a topic of importance in the second-year organic curriculum. A one-pot, enantioselective Robinson annulation is described. The experiment is completed in two lab periods and is geared towards the second-year organic chemistry major. To our knowledge, this is the first example of a one-pot enantioselective Robinson…

  20. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    PubMed

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-08

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  1. High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization.

    PubMed

    Boukis, Andreas C; Llevot, Audrey; Meier, Michael A R

    2016-04-01

    A novel and straightforward one-pot multicomponent polycondensation method was established in this work. The Biginelli reaction is a versatile multicomponent reaction of an aldehyde, a β-ketoester (acetoacetate) and urea, which can all be obtained from renewable resources, yielding diversely substituted 3,4-dihydropyrimidin-2(1H)-ones (DHMPs). In this study, renewable diacetoacetate monomers with different spacer chain lengths (C3, C6, C10, C20) were prepared via simple transesterification of renewable diols and commercial acetoacetates. The diacetoacetate monomers were then reacted with renewable dialdehydes, i.e., terephthalaldehyde and divanillin in a Biginelli type step-growth polymerization. The obtained DHMP polymers (polyDHMPs) displayed high molar masses, high glass transition temperatures (Tg) up to 203 °C and good thermal stability (Td5%) of 280 °C. The Tg of the polyDHMPs could be tuned by variation of the structure of the dialdehyde or the diacetoacetate component. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Research-Based Undergraduate Organic Laboratory Project: Investigation of a One-Pot, Multicomponent, Environmentally Friendly Prins-Friedel-Crafts-Type Reaction

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Maresh, Justin J.; Kinzie, Charles R.; Arena, Anthony F.; Speltz, Thomas

    2012-01-01

    Students in the undergraduate organic laboratory synthesize tetrahydro-2-(4-nitrophenyl)-4-phenyl-2"H"-pyran via the Montmorillonite K10 clay-catalyzed reaction of p-nitrobenzaldehye with methanol, 3-buten-1-ol, and benzene. The synthesis comprises an environmentally friendly tandem Prins-Friedel-Crafts-type multicomponent reaction (MCR) and sets…

  3. Preparation of magnetic resonance probes using one-pot method for detection of hepatocellular carcinoma.

    PubMed

    Li, You-Wei; Chen, Zheng-Guang; Zhao, Zhou-She; Li, Hong-Li; Wang, Ji-Chen; Zhang, Zong-Ming

    2015-04-14

    To prepare the specific magnetic resonance (MR) probes for detection of hepatocellular carcinoma (HCC) using one-pot method. The carboxylated dextran-coated nanoparticles were conjugated with anti-α-fetoprotein (anti-AFP) or anti-glypican 3 (anti-GPC3) antibodies through 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS)-mediated reaction to synthesize the probes. The physical and chemical properties of the probes were determined by transmission electron microscopy (TEM) and dynamic light scattering, and the relaxivity was compared to uncombined ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) using a 1.5T clinical MR scanner. The binding efficiency of the antibodies to nanoparticles was measured with an ultraviolet-visible spectrophotometer. In addition, the probes were incubated with targetable cells in vitro. The superparamagnetic MR probes (anti-GPC3-USPION probe and anti-AFP-USPION probe) were synthesized using one-pot method. Their mean hydrodynamic diameter was 47 nm with a broader slight size distribution. The coupling efficiency of carboxylated dextran-coated ultrasmall superparamagnetic iron oxide (USPIO) with anti-GPC3 or anti-AFP antibody was 15.9% and 88.8%, respectively. Each of the USPIO nanoparticles may bind 3 GPC3 antibodies or 12 AFP antibodies. The statistical analysis showed no significance (P > 0.05) in shortening the T1 and T2 values when comparing the USPIO-AFP or USPIO-GPC3 to USPIO. Analysis of TEM images revealed that anti-GPC3-USPION probes and anti-AFP-USPION probes could specifically enter into the HepG2 cell by combining with the GPC3 receptors or AFP receptors, whereas the HepG2 cell sample incubated with USPIONs showed no or few nanoparticles in the cytoplasm. The synthesized probes using one-pot method can be used for in vitro experimental study and have potential clinical application in MR imaging for detection of hepatocellular carcinomas.

  4. One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system.

    PubMed

    Zhang, Xing; Wu, Hui; Huang, Bing; Li, Zhimin; Ye, Qin

    2017-01-10

    In vitro cascade catalysis using enzyme-based system is becoming a promising biomanufacturing platform for biofuels and biochemicals production. Glutathione is a pivotal non-protein thiol compound and widely applied in food and pharmaceutical industries. In this study, glutathione was synthesized by a bifunctional glutathione synthetase together with a thermophilic ATP regeneration system through a two-enzyme cascade in vitro. Four bifunctional glutathione synthetases from Streptococcus sanguinis, S. gordonii, S. uberis and Bacillus cereus were applied for glutathione synthesis. The bifunctional glutathione synthetase from S. sanguinis was selected and coupled with the polyphosphate kinase from Thermosynechococcus elongatus BP-1 for regenerating ATP to produce glutathione in one pot. In the optimized system, 28.5mM glutathione was produced within 5h due to efficient ATP regeneration from low-cost polyphosphate. The yield based on added l-cysteine reached 81.4% and the productivity of glutathione achieved 5.7mM/h. The one-pot system indicated a potential biotransformation platform for industrial production of glutathione. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Exploring the Chemistry of Bicyclic Isoxazolidines for the Multicomponent Synthesis of Glycomimetic Building Blocks.

    PubMed

    Hoogenboom, Jorin; Lutz, Martin; Zuilhof, Han; Wennekes, Tom

    2016-10-07

    Starting from a chiral furanone, the nitrone-olefin [3 + 2] cycloaddition can be used to obtain bicyclic isoxazolidines for which we report a set of reactions to selectively modify each functional position. These synthetically versatile bicyclic isoxazolidines allowed us to obtain complex glycomimetic building blocks, like iminosugars, via multicomponent chemistry. For example, a library of 20 pipecolic acid derivatives, a recurring motif in various prescription drugs, could be obtained via a one-pot Staudinger/aza-Wittig/Ugi three-component reaction of a bicyclic isoxazolidine-derived azido-hemiacetal. Notably, specific pipecolic acids in this library were obtained via hydrolysis of an unique tricyclic imidate side product of the Ugi reaction. The azido-hemiacetal was also converted into an aza-C-glycoside iminosugar via an unprecendented one-pot Staudinger/aza-Wittig/Mannich reaction.

  6. Substituted 1H-1,2,3-Triazol-4-yl-1H-pyrrolo[2,3-b]pyridines by De Novo One-Pot Ring Forming Coupling-Cyclization-Desilylation-CuAAC-Sequence.

    PubMed

    Müller, Thomas J J; Lessing, Timo; van Mark, Hauke

    2018-05-04

    Substituted 1H-1,2,3-triazol-4-yl-pyrrolo[2,3-b]pyridines are efficiently prepared by a one-pot coupling-cyclization-desilylation-CuAAC-sequence in the sense of a consecutive three-component fashion. The key feature of this novel de novo formation of azole and triazole anellation is the sequentially Pd/Cu-catalyzed process employing tri(iso-propyl)silylbutadiyne (TIPS-butadiyne) as a four-carbon building block. In addition, the sequence can be expanded in a four-component fashion also employing the in situ formation of the require azides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Silyl Glyoxylates. Conception and Realization of Flexible Conjunctive Reagents for Multicomponent Coupling

    PubMed Central

    Boyce, Gregory R.; Greszler, Stephen N.; Linghu, Xin; Malinowski, Justin T.; Nicewicz, David A.; Satterfield, Andrew D.; Schmitt, Daniel C.; Steward, Kimberly M.

    2012-01-01

    This Perspective describes the discovery and development of silyl glyoxylates, a new family of conjunctive reagents for use in multicomponent coupling reactions. The selection of the nucleophilic and electrophilic components determines whether the silyl glyoxylate reagent will function as a synthetic equivalent to the dipolar glycolic acid synthon, the glyoxylate anion synthon, or the α-keto ester homoenolate synthon. The ability to select for any of these reaction modes has translated to excellent structural diversity in the derived three- and four-component coupling adducts. Preliminary findings on the development of catalytic reactions using these reagents are detailed, as are the design and discovery of new reactions directed toward particular functional group arrays embedded within bioactive natural products. PMID:22414181

  8. Praseodymium methanesulfonate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones.

    PubMed

    Wang, Min; Song, Zhiguo; Gong, Hong; Jiang, Heng

    2008-01-01

    A series of 3,4-dihydropyrimidin-2-(1H)-ones compounds was synthesized efficiently by a one-pot cyclocondensation of an aldehyde, 1,3-dicarbonyl compound, and urea in absolute ethanol under refluxing temperature using praseodymium methanesulfonate as catalyst. After the reaction, the catalyst can be easily recovered and reused several times without distinct decrease in reaction yields.

  9. Catalytic bismetallative multicomponent coupling reactions: scope, applications, and mechanisms

    PubMed Central

    Cho, Hee Yeon

    2014-01-01

    Catalytic reactions have played an indispensable role in organic chemistry for the last several decades. In particular, catalytic multicomponent reactions have attracted a lot of attention due to their efficiency and expediency towards complex molecule synthesis. The presence of bismetallic reagents (e.g. B–B, Si–Si, B–Si, Si–Sn, etc.) in this process renders the products enriched with various functional groups and multiple stereocenters. For this reason, catalytic bismetallative coupling is considered an effective method to generate the functional and stereochemical complexity of simple hydrocarbon substrates. This review highlights key developments of transition-metal catalyzed bismetallative reactions involving multiple π components. Specifically, it will highlight the scope, synthetic applications, and proposed mechanistic pathways of this process. PMID:24736839

  10. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-08-01

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.

  11. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance.

    PubMed

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-08-30

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility.

  12. PdCo/Pd-Hexacyanocobaltate Hybrid Nanoflowers: Cyanogel-Bridged One-Pot Synthesis and Their Enhanced Catalytic Performance

    PubMed Central

    Liu, Zhen-Yuan; Fu, Geng-Tao; Zhang, Lu; Yang, Xiao-Yu; Liu, Zhen-Qi; Sun, Dong-Mei; Xu, Lin; Tang, Ya-Wen

    2016-01-01

    Elaborate architectural manipulation of nanohybrids with multi-components into controllable 3D hierarchical structures is of great significance for both fundamental scientific interest and realization of various functionalities, yet remains a great challenge because different materials with distinct physical/chemical properties could hardly be incorporated simultaneously into the synthesis process. Here, we develop a novel one-pot cyanogel-bridged synthetic approach for the generation of 3D flower-like metal/Prussian blue analogue nanohybrids, namely PdCo/Pd-hexacyanocobaltate for the first time. The judicious introduction of polyethylene glycol (PEG) and the formation of cyanogel are prerequisite for the successful fabrication of such fascinating hierarchical nanostructures. Due to the unique 3D hierarchical structure and the synergistic effect between hybrid components, the as-prepared hybrid nanoflowers exhibit a remarkable catalytic activity and durability toward the reduction of Rhodamine B (RhB) by NaBH4. We expect that the obtained hybrid nanoflowers may hold great promises in water remediation field and beyond. Furthermore, the facile synthetic strategy presented here for synthesizing functional hybrid materials can be extendable for the synthesis of various functional hybrid nanomaterials owing to its versatility and feasibility. PMID:27573057

  13. One-Pot Synthesis, Spectroscopic and Physicochemical Studies of Quinoline Based Blue Emitting Donor-Acceptor Chromophores with Their Biological Application.

    PubMed

    Asiri, Abdullah M; Khan, Salman A; Al-Thaqafya, Saad H

    2015-09-01

    Blue emitting cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in good agreement with their chemical structures. UV-vis and fluorescence spectroscopy measurements proved that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, excitation coefficient, stokes shift, oscillator strength, transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria then the minimum inhibitory concentration (MIC) was determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Graphical Abstract ᅟ.

  14. One-Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5-Hydroxylmethylfurfural as Intermediates.

    PubMed

    Liu, Bing; Zhang, Zehui

    2016-08-23

    Recently, there has been growing interest in the transformation of renewable biomass into value-added fuels and chemicals. The catalytic conversion of naturally abundant carbohydrates can generate two-important furan chemicals: 5-hydroxymethylfurfural (HMF) from C6 carbohydrates and furfural from C5 carbohydrates. Both HMF and furfural have received great interest as precursors in the synthesis of commodity chemicals and liquid fuels. In recent years, a trend has emerged to integrate sequential catalytic processes involving multistep reactions for the direct one-pot transformation of carbohydrates into the aimed fuels and chemicals. One-pot reactions have remarkably unique and environmentally friendly benefits, including the fact that isolation and purification of intermediate compounds can be avoided. Herein, the present article aims to review recent advances in the one-pot conversion of carbohydrates into furan derivatives via furfural and HMF as intermediates. Special attention will be paid to the catalytic systems, mechanistic insight, reaction pathways, and catalyst stability. It is expected that this review will guide researchers to develop effective catalytic systems for the one-pot transformation of carbohydrates into furan derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. One-Pot/Sequential Native Chemical Ligation Using Photocaged Crypto-thioester.

    PubMed

    Aihara, Keisuke; Yamaoka, Kosuke; Naruse, Naoto; Inokuma, Tsubasa; Shigenaga, Akira; Otaka, Akira

    2016-02-05

    A practical and efficient methodology for the chemical synthesis of peptides/proteins using a one-pot/sequential ligation is described. It features the use of photocleavable S-protection on an N-sulfanylethylaniline moiety. Removal of the S-protecting ligated materials under UV irradiation provides a readily usable mixture for subsequent native chemical ligation.

  16. Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis

    PubMed Central

    Eniyan, Kandasamy; Kumar, Anuradha; Rayasam, Geetha Vani; Perdih, Andrej; Bajpai, Urmi

    2016-01-01

    The cell wall of Mycobacterium tuberculosis (Mtb) consists of peptidoglycan, arabinogalactan and mycolic acids. The cytoplasmic steps in the peptidoglycan biosynthetic pathway, catalyzed by the Mur (A-F) enzymes, involve the synthesis of UDP-n-acetylmuramyl pentapeptide, a key precursor molecule required for the formation of the peptidoglycan monomeric building blocks. Mur enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be promising Mtb drug targets. However, the caveat is that most of the current assays utilize a single Mur enzyme, thereby identifying inhibitors against only one of the enzymes. Here, we report development of a one-pot assay that reconstructs the entire Mtb Mur pathway in vitro and has the advantage of eliminating the requirement for nucleotide intermediates in the pathway as substrates. The MurA-MurF enzymes were purified and a one-pot assay was developed through optimization of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate. The assay is biochemically characterized and optimized for high-throughput screening of molecules that could disrupt multiple targets within the pathway. Furthermore, we have validated the assay by performing it to identify D-Cycloserine and furan-based benzene-derived compounds with known Mur ligase inhibition as inhibitors of Mtb MurE and MurF. PMID:27734910

  17. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae

    PubMed Central

    2012-01-01

    Background While the ethanol production from biomass by consolidated bioprocess (CBP) is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF) is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. Results Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF) as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v) of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8–12 FPU/ml throughout the one-pot process. When 50–300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7–46.3 g/l and 0.15–0.18 (g ethanol/g SF), respectively. In 3-l fermentor with 50–300 g SF/l, the ethanol concentration and yield were 9.5–35.1 g/l with their yields of 0.12–0.19 (g/g) respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol. Conclusion A. cellulolyticus

  18. Initiator and Photocatalyst-Free Visible Light Induced One-Pot Reaction: Concurrent RAFT Polymerization and CuAAC Click Reaction.

    PubMed

    Wang, Jie; Wang, Xinbo; Xue, Wentao; Chen, Gaojian; Zhang, Weidong; Zhu, Xiulin

    2016-05-01

    A new, visible light-catalyzed, one-pot and one-step reaction is successfully employed to design well-controlled side-chain functionalized polymers, by the combination of ambient temperature revisible addtion-fragmentation chain transfer (RAFT) polymerization and click chemistry. Polymerizations are well controlled in a living way under the irradiation of visible light-emitting diode (LED) light without photocatalyst and initiator, using the trithiocarbonate agent as iniferter (initiator-transfer agent-terminator) agent at ambient temperature. Fourier transfer infrared spectroscopy (FT-IR), NMR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) data confirm the successful one-pot reaction. Compared to the reported zero-valent metal-catalyzed one-pot reaction, the polymerization rate is much faster than that of the click reaction, and the visible light-catalyzed one-pot reaction can be freely and easily regulated by turning on and off the light. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Facile route to versatile nanoplatforms for drug delivery by one-pot self-assembly.

    PubMed

    Zhou, Xing; Che, Ling; Wei, Yanling; Dou, Yin; Chen, Sha; He, Hongmei; Gong, Hao; Li, Xiaohui; Zhang, Jianxiang

    2014-06-01

    There is still unmet demand for developing powerful approaches to produce polymeric nanoplatforms with versatile functions and broad applications, which are essential for the successful bench-to-bedside translation of polymeric nanotherapeutics developed in the laboratory. We have discovered a facile, convenient, cost-effective and easily scalable one-pot strategy to assemble various lipophilic therapeutics bearing carboxyl groups into nanomedicines, through which highly effective cargo loading and nanoparticle formation can be achieved simultaneously. Besides dramatically improving water solubility, the assembled nanopharmaceuticals showed significantly higher bioavailability and much better therapeutic activity. These one-pot assemblies may also serve as nanocontainers to effectively accommodate other highly hydrophobic drugs such as paclitaxel (PTX). PTX nanomedicines thus formulated display strikingly enhanced in vitro antitumor activity and can reverse the multidrug resistance of tumor cells to PTX therapy. The special surface chemistry offers these assembled entities the additional capability of efficiently packaging and efficaciously transfecting plasmid DNA, with a transfection efficiency markedly higher than that of commonly used positive controls. Consequently, this one-pot assembly approach provides a facile route to multifunctional nanoplatforms for simultaneous delivery of multiple therapeutics with improved therapeutic significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Recent Advances in the Catalytic One-Pot Synthesis of Flavonoids and Chromones.

    PubMed

    Mohadeszadeh, Manijeh; Iranshahi, Mehrdad

    2017-01-01

    Flavonoids and chromones are two important classes of natural products that have various biological properties. During the past 10 years, there has been a significant increase in studies on the one-pot synthesis of flavonoids and chromones as medicinal scaffolds in drug discovery. This review describes the scope, mechanistic properties and regio- and chemo-selectivity features of several recently developed one-pot procedures for the synthesis of substituted chromones and flavonoids that have recently been published. Special importance is placed on the most promising and exciting medicinal applications of flavonoids and chromones. In this review, we discuss the progress on the synthesis of flavonoid and chromone derivatives in the presence of metal catalysts, organocatalysts, solid surfaces, microwave irradiation, acid and base catalysis, etc. For example, flavones can be prepared via the catalytic coordination of palladium complexes in a short time and at a low temperature with a high yield. Additionally, the one-pot synthesis of 2-substituted chromones via metal triflate (Yb(OTf)3) has provided the best result for this type of reaction with a high yield and a high regio and chemoselectivity. Generally, this review proposes the first specific overview of this developing and rapidly expanding field of flavonoid synthesis. We also discuss the mechanisms and advantages and disadvantages of methods for the synthesis of flavonoids and chromones. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Anomalous regioselective four-member multicomponent Biginelli reaction II: one-pot parallel synthesis of spiro heterobicyclic aliphatic rings.

    PubMed

    Byk, Gerardo; Kabha, Eihab

    2004-01-01

    In a previous preliminary study, we found that a cyclic five-member ring beta-keto ester (lactone) reacts with one molecule of urea and two of aldehyde to give a new family of spiro heterobicyclic aliphatic rings in good yields with no traces of the expected dihydropyrimidine (Biginelli) products. The reaction is driven by a regiospecific condensation of two molecules of aldehyde with urea and beta-keto-gamma-lactone to afford only products harboring substitutions exclusively in a syn configuration (Byk, G.; Gottlieb, H. E.; Herscovici, J.; Mirkin, F. J. Comb. Chem. 2000, 2, 732-735). In the present work ((a) Presented in part at ISCT Combitech, October 15, 2002, Israel, and Eurocombi-2, Copenhagen 2003 (oral and poster presentation). (b) Also in American Peptide Society Symposium, Boston, 2003 (poster presentation). (c) Abstract in Biopolymers 2003, 71 (3), 354-355), we report a large and exciting extension of this new reaction utilizing parallel organic synthesis arrays, as demonstrated by the use of chiral beta-keto-gamma-lactams, derived from natural amino acids, instead of tetronic acid (beta-keto-gamma-lactone) and the potential of the spirobicyclic products for generating "libraries from libraries". Interestingly, we note an unusual and important anisotropy effect induced by perpendicular interactions between rigid pi systems and different groups placed at the alpha position of the obtained spirobicyclic system. Stereo/regioselectivity of the aldehyde condensation is driven by the nature of the substitutions on the starting beta-keto-gamma-lactam. Aromatic aldehydes can be used as starting reagents with good yields; however, when aliphatic aldehydes are used, the desired products are obtained in poor yields, as observed in the classical Biginelli reaction. The possible reasons for these poor yields are addressed and clarify, to some extent, the complexity of the Biginelli multicomponent reaction mechanism and, in particular, the mechanism of the present

  2. Synthesis of Polyheterocyclic Pyrrolo[3,4-b]pyridin-5-ones via a One-Pot (Ugi-3CR/aza Diels-Alder/N-acylation/aromatization/SN2) Process. A Suitable Alternative towards Novel Aza-Analogues of Falipamil.

    PubMed

    Zamudio-Medina, Angel; García-González, Ailyn N; Herrera-Carrillo, Genesis K; Zárate-Zárate, Daniel; Benavides-Macías, Adriana; Tamariz, Joaquín; Ibarra, Ilich A; Islas-Jácome, Alejandro; González-Zamora, Eduardo

    2018-03-27

    We describe the one-pot synthesis of twenty polyheterocyclic pyrrolo[3,4- b ]pyridin-5-ones via a cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization) in 20 to 95% overall yields, as well as four pharmacologically promising analogues via an improved cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization/S N 2): two piperazine-linked pyrrolo[3,4- b ]pyridin-5-ones in 33 and 34%, and a couple of Falipamil aza-analogues in 30 and 35% overall yields. It is worth highlighting the good substrate scope found, because final products are furnished with alkyl, aryl, and heterocyclic substituents. The use of chain-ring tautomerizable isocyanides (as key reagents for the Ugi-type three component reaction) allowed for a rapid and efficient assembly of the polysubstituted oxindoles, which were used in situ toward the complex products, conferring features like robustness, sustainability, and the one-pot approach to this synthetic methodology.

  3. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    NASA Astrophysics Data System (ADS)

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  4. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    PubMed Central

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  5. Environmentally friendly, one-pot synthesis of folic acid-decorated graphene oxide-based drug delivery system

    NASA Astrophysics Data System (ADS)

    Lin, Quankui; Huang, Xiaojie; Tang, Junmei; Han, Yuemei; Chen, Hao

    2013-12-01

    A targeted drug delivery system based on graphene oxide (GO) was produced via one-pot synthesis method, taking advantages of the self-polymerization of the dopamine (DA). The polymerization of dopamine resulted in polydopamine capped GO nanocomposite. Meanwhile, the anti-tumor drug doxorubicin (DOX) can be loaded in the nanocomposite and the tumor cell targeting molecule folic acid (FA) can also been immobilized on the nanocomposite surface simultaneously. The size of the obtained FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) is about 600 nm. It renders a sustained drug release manner. The cell culture results reveal that the FA-decorated GO-based drug delivery system (DA/GO(DOX)-FA) via one-pot method shows property of targeted killing of cancer cells in vitro. This one-pot method just needs the pH adjusting to induce the self-polymerization of DA, but excludes the fussy chemical grafting process and the organic solvents, which make it an environmentally friendly method to synthesize FA-decorated GO-based drug delivery system.

  6. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.

    PubMed

    Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok

    2015-03-25

    In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.

  7. Caryophyllene driven diversity in an one-pot rearrangement of oxidation and transanular reactions

    NASA Astrophysics Data System (ADS)

    Tang, Hao-Yu; Quan, Lu-Lu; Yu, Jie; Zhang, Qiang; Gao, Jin-Ming

    2018-03-01

    Diversity oriented synthesis starting from natural products is a newly coming strategy to build diverse skeletons to meet the demands of high throughput screening in drug development. Caryophyllene was being considered as an ideal starting point to build divers natural-like sesquiterpenes due to its rich sources and build-in reactivity. In this paper, six new natural-like products (2-7) were synthesized form the natural cryophyllene oxide via cascade oxidation and transannular reactions in a one-pot procedure. Their structures were elucidated by exhaustive spectra method including 2D NMR and X-ray diffraction. Of the products, compounds 6 and 7 possess very similar skeleton to natural products. Our findings demonstrated that one-pot cascade reactions on macrocyclic natural products is a concise strategy to create diverse natural-like skeletons.

  8. A one-pot, microwave-influenced synthesis of diverse small molecules by multicomponent reaction cascades.

    PubMed

    Santra, Soumava; Andreana, Peter R

    2007-11-22

    Small molecule diversity can be achieved in a single synthetic operation from bifunctional substrates in the absence of additives and under the influence of microwaves with complete control of pathway selectivity. The preliminary Ugi four-component coupling products give rise to three structurally distinct scaffolds that are dependent on solvent effects and sterics. 2,5-Diketopiperazines (Type A), 2-azaspiro[4.5]deca-6,9-diene-3,8-diones (Type B), and thiophene-derived Diels-Alder tricyclic lactams (Type C) predominate in this reaction cascade.

  9. Multicomponent Dark Matter in Radiative Seesaw Models

    NASA Astrophysics Data System (ADS)

    Aoki, Mayumi; Kaneko, Daiki; Kubo, Jisuke

    2017-11-01

    We discuss radiative seesaw models, in which an exact Z_2¥times Z_2' symmetry is imposed. Due to the exact Z_2¥times Z_2' symmetry, neutrino masses are generated at a two-loop level and at least two extra stable electrically neutral particles are predicted. We consider two models: one has a multi-component dark matter system and the other one has a dark radiation in addition to a dark matter. In the multi-component dark matter system, non-standard dark matter annihilation processes exist. We find that they play important roles in determining the relic abundance and also responsible for the monochromatic neutrino lines resulting from the dark matter annihilation process. In the model with the dark radiation, the structure of the Yukawa coupling is considerably constrained and gives an interesting relationship among cosmology, lepton flavor violating decay of the charged leptons and the decay of the inert Higgs bosons.

  10. A multiple multicomponent approach to chimeric peptide-peptoid podands.

    PubMed

    Rivera, Daniel G; León, Fredy; Concepción, Odette; Morales, Fidel E; Wessjohann, Ludger A

    2013-05-10

    The success of multi-armed, peptide-based receptors in supramolecular chemistry traditionally is not only based on the sequence but equally on an appropriate positioning of various peptidic chains to create a multivalent array of binding elements. As a faster, more versatile and alternative access toward (pseudo)peptidic receptors, a new approach based on multiple Ugi four-component reactions (Ugi-4CR) is proposed as a means of simultaneously incorporating several binding and catalytic elements into organizing scaffolds. By employing α-amino acids either as the amino or acid components of the Ugi-4CRs, this multiple multicomponent process allows for the one-pot assembly of podands bearing chimeric peptide-peptoid chains as appended arms. Tripodal, bowl-shaped, and concave polyfunctional skeletons are employed as topologically varied platforms for positioning the multiple peptidic chains formed by Ugi-4CRs. In a similar approach, steroidal building blocks with several axially-oriented isocyano groups are synthesized and utilized to align the chimeric chains with conformational constrains, thus providing an alternative to the classical peptido-steroidal receptors. The branched and hybrid peptide-peptoid appendages allow new possibilities for both rational design and combinatorial production of synthetic receptors. The concept is also expandable to other multicomponent reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  12. One-pot synthesis of hypervalent iodine reagents for electrophilic trifluoromethylation.

    PubMed

    Matoušek, Václav; Pietrasiak, Ewa; Schwenk, Rino; Togni, Antonio

    2013-07-05

    Simplified syntheses suited for large scale preparations of the two hypervalent iodine reagents 1 and 2 for electrophilic trifluoromethylation are reported. In both cases, the stoichiometric oxidants sodium metaperiodate and tert-butyl hypochlorite have been replaced by trichloroisocyanuric acid. Reagent 1 is accessible in a one-pot procedure from 2-iodobenzoic acid in 72% yield. Reagent 2 was prepared via fluoroiodane 11 in a considerably shorter reaction time and with no need of an accurate temperature control.

  13. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.

    PubMed

    Yu, Hai; Chen, Xi

    2016-03-14

    Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.

  14. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates

    PubMed Central

    Yu, Hai; Chen, Xi

    2016-01-01

    Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with the glycosyltransferases in one pot for efficient production of target glycans from simple monosaccharides and accpetors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitate the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modificiation (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequential for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of glycosyltransferasese define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. The Perspective summariezes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed. PMID:26881499

  15. One-pot hydrothermal synthesis of zeolite/sodium tantalate composite and its photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Xiaoli; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096; Lu, Haiqiang

    2015-08-15

    Highlights: • Sodalite/NaTaO{sub 3} composite is prepared by a one-pot hydrothermal synthesis. • Enhanced photodegradation is achieved due to the heterogeneous doping effect. • Structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing. - Abstract: Sodalite/NaTaO{sub 3} composite was prepared by a one-pot hydrothermal synthesis method. Sodalite and NaTaO{sub 3} grow interpenetrated, and the resulting composites have similar morphology as the pure sodalite. The sodalite/NaTaO{sub 3} composite has a lower band gap of 3.35 eV due to the heterogeneous doping effect, and exhibits an enhanced photodegradation of methyl orange under UV irradiation as compared to themore » pure NaTaO{sub 3}. A slight structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing the sodalite/NaTaO{sub 3} composite, and such result further confirms the co-growth of the two crystals. This one-pot hydrothermal method opens up new avenues for the preparation of photocatalytic composites.« less

  16. A Rapid, One-Pot Synthesis of β-Siloxy-α-Haloaldehydes

    PubMed Central

    Saadi, Jakub; Akakura, Matsujiro

    2011-01-01

    The Mukaiyama cross aldol reaction of α-fluoro-, α-chloro-, and α-bromoacetaldehyde-derived (Z)-tris(trimethylsilyl)- silyl enol ethers furnishing anti-β-siloxy-α-haloaldehydes is described. A highly diastereoselective, one-pot, sequential double aldol process, affording novel β,δ-bissiloxy-α,γ-bishaloaldehydes is developed. Reactions are catalyzed by C6F5CHTf2 and C6F5CTf2AlMe2 (0.5–1.5 mol%) and provide access to halogenated polyketide fragments. PMID:21815682

  17. Simple one-pot conversion of aldehydes and ketones to enals.

    PubMed

    Valenta, Petr; Drucker, Natalie A; Bode, Jeffrey W; Walsh, Patrick J

    2009-05-21

    A simple and efficient method to convert aldehydes into alpha,beta-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH(3).SMe(2) generates tris(ethoxyvinyl) borane. Transmetalation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride, the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure.

  18. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors.

    PubMed

    Sun, Boqiao; Hartl, Florian; Castiglione, Kathrin; Weuster-Botz, Dirk

    2015-01-01

    Ursodeoxycholic acid (UDCA) is a bile acid which is used as pharmaceutical for the treatment of several diseases, such as cholesterol gallstones, primary sclerosing cholangitis or primary biliary cirrhosis. A potential chemoenzymatic synthesis route of UDCA comprises the two-step reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid (12-keto-UDCA), which can be conducted in a multienzymatic one-pot process using 3α-hydroxysteroid dehydrogenase (3α-HSDH), 7β-hydroxysteroid dehydrogenase (7β-HSDH), and glucose dehydrogenase (GDH) with glucose as cosubstrate for the regeneration of cofactor. Here, we present a dynamic mechanistic model of this one-pot reduction which involves three enzymes, four different bile acids, and two different cofactors, each with different oxidation states. In addition, every enzyme faces two competing substrates, whereas each bile acid and cofactor is formed or converted by two different enzymes. First, the kinetic mechanisms of both HSDH were identified to follow an ordered bi-bi mechanism with EBQ-type uncompetitive substrate inhibition. Rate equations were then derived for this mechanism and for mechanisms describing competing substrates. After the estimation of the model parameters of each enzyme independently by progress curve analyses, the full process model of a simple batch-process was established by coupling rate equations and mass balances. Validation experiments of the one-pot multienzymatic batch process revealed high prediction accuracy of the process model and a model analysis offered important insight to the identification of optimum reaction conditions. © 2015 American Institute of Chemical Engineers.

  19. Highly efficient one-pot/one-step synthesis of multiblock copolymers from three-component polymerization of carbon dioxide, epoxide and lactone.

    PubMed

    Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang

    2015-02-01

    It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.

  20. Synthesis of Polysubstituted Pyridines via a One-Pot Metal-Free Strategy.

    PubMed

    Wei, Hongbo; Li, Yun; Xiao, Ke; Cheng, Bin; Wang, Huifei; Hu, Lin; Zhai, Hongbin

    2015-12-18

    An efficient strategy for the one-pot synthesis of polysubstituted pyridines via a cascade reaction from aldehydes, phosphorus ylides, and propargyl azide is reported. The reaction sequence involves a Wittig reaction, a Staudinger reaction, an aza-Wittig reaction, a 6π-3-azatriene electrocyclization, and a 1,3-H shift. This protocol provides quick access to the polysubstituted pyridines from readily available substrates in good to excellent yields.

  1. Application of Ionic Liquids in Pot-in-Pot Reactions.

    PubMed

    Çınar, Simge; Schulz, Michael D; Oyola-Reynoso, Stephanie; Bwambok, David K; Gathiaka, Symon M; Thuo, Martin

    2016-02-26

    Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.

  2. One-Pot Anti-Markovnikov Hydroamination of Unactivated Alkenes by Hydrozirconation and Amination

    PubMed Central

    Strom, Alexandra E.

    2013-01-01

    A one-pot hydroamination of alkenes is reported. The synthesis of primary and secondary amines from unactivated olefins was accomplished in the presence of a variety of functional groups. Hydrozirconation, followed by amination with nitrogen electrophiles, provides exclusive anti-Markovnikov selectivity, and most products are isolated in high yields without the use of column chromatography. PMID:23899320

  3. Uphill diffusion in multicomponent mixtures.

    PubMed

    Krishna, Rajamani

    2015-05-21

    Molecular diffusion is an omnipresent phenomena that is important in a wide variety of contexts in chemical, physical, and biological processes. In the majority of cases, the diffusion process can be adequately described by Fick's law that postulates a linear relationship between the flux of any species and its own concentration gradient. Most commonly, a component diffuses down the concentration gradient. The major objective of this review is to highlight a very wide variety of situations that cause the uphill transport of one constituent in the mixture. Uphill diffusion may occur in multicomponent mixtures in which the diffusion flux of any species is strongly coupled to that of its partner species. Such coupling effects often arise from strong thermodynamic non-idealities. For a quantitative description we need to use chemical potential gradients as driving forces. The transport of ionic species in aqueous solutions is coupled with its partner ions because of the electro-neutrality constraints; such constraints may accelerate or decelerate a specific ion. When uphill diffusion occurs, we observe transient overshoots during equilibration; the equilibration process follows serpentine trajectories in composition space. For mixtures of liquids, alloys, ceramics and glasses the serpentine trajectories could cause entry into meta-stable composition zones; such entry could result in phenomena such as spinodal decomposition, spontaneous emulsification, and the Ouzo effect. For distillation of multicomponent mixtures that form azeotropes, uphill diffusion may allow crossing of distillation boundaries that are normally forbidden. For mixture separations with microporous adsorbents, uphill diffusion can cause supra-equilibrium loadings to be achieved during transient uptake within crystals; this allows the possibility of over-riding adsorption equilibrium for achieving difficult separations.

  4. One-pot and two-step synthesis of novel carbonylthioureas and dicarbonyldithioureas derivatives

    NASA Astrophysics Data System (ADS)

    Banaei, Alireza; Shiran, Jafar Abbasi; Saadat, Afshin; Ardabili, Farnaz Fazlalizadeh; McArdle, Patrick

    2015-11-01

    One-pot, two-step synthesis of several 1-cyclopropanecarbonyl-3-(substituted phenyl)-thioureas and 1-(phenylene-1,4-dione)-3,3‧-(substituted phenyl)-dithioureas have been successfully prepared. The structures of the synthesized compounds were confirmed by elemental analysis, FT-IR spectroscopy and NMR. Also the crystal structure one of these compounds was determined by X-ray crystallography. All synthesized compounds were evaluated for antibacterial activity using Salmonella enterica (SE), Micrococcus luteus (ML), Bacillus subtilis (BS) and Pseudomonas aeruginosa (PS).

  5. Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong

    2016-01-01

    In this paper, we defined a new multi-component B type Kadomtsev-Petviashvili (BKP) hierarchy that takes values in a commutative subalgebra of {gl}(N,{{C}}). After this, we give the gauge transformation of this commutative multicomponent BKP (CMBKP) hierarchy. Meanwhile, we construct a new constrained CMBKP hierarchy that contains some new integrable systems, including coupled KdV equations under a certain reduction. After this, the quantum torus symmetry and quantum torus constraint on the tau function of the commutative multi-component BKP hierarchy will be constructed.

  6. Multicomponent Reaction of Z-Chlorooximes, Isocyanides, and Hydroxylamines as Hypernucleophilic Traps. A One-Pot Route to Aminodioximes and Their Transformation into 5-Amino-1,2,4-oxadiazoles by Mitsunobu-Beckmann Rearrangement.

    PubMed

    Mercalli, Valentina; Massarotti, Alberto; Varese, Monica; Giustiniano, Mariateresa; Meneghetti, Fiorella; Novellino, Ettore; Tron, Gian Cesare

    2015-10-02

    Synthetically useful aminodioximes are prepared via a novel three-component reaction among Z-chlorooximes, isocyanides, and hydroxylamines by exploiting the preferential attack of isocyanides to nitrile N-oxides via a [3 + 1] cycloaddition reaction. The results of quantum mechanical studies of the reaction mechanism are also discussed. Furthermore, the one-pot conversion of aminodioximes to 1,2,3-oxadiazole-5-amines via Mitsunobu-Beckmann rearrangement is reported for the first time.

  7. Trypsin-catalyzed tandem reaction: one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones by in situ formed acetaldehyde.

    PubMed

    Xie, Zong-Bo; Wang, Na; Wu, Wan-Xia; Le, Zhang-Gao; Yu, Xiao-Qi

    2014-01-20

    A simple, mild, one-pot tandem method catalyzed by trypsin was developed for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones by the Biginelli reaction of urea, β-dicarbonyl compounds, and in situ-formed acetaldehyde. Trypsin was found to display dual promiscuous functions to catalyze transesterification and the Biginelli reaction in sequence. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. One-Pot Isomerization–Cross Metathesis–Reduction (ICMR) Synthesis of Lipophilic Tetrapeptides

    PubMed Central

    2015-01-01

    An efficient, versatile and rapid method toward homologue series of lipophilic tetrapeptide derivatives (herein, the opioid peptides H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal number of synthetic steps resulted from a one-pot tandem isomerization-cross metathesis-reduction sequence (ICMR), applicable both in solution and solid phase methodology. The broadly applicable synthesis proceeds with short reaction times and simple work-up, as illustrated in this work for alkylated opioid tetrapeptides. PMID:24906051

  9. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation

    NASA Astrophysics Data System (ADS)

    Kukwikila, Mikiembo; Gale, Nittaya; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali

    2017-11-01

    The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5ʹ-azide and 3ʹ-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.

  10. Redox and Lewis acid relay catalysis: a titanocene/zinc catalytic platform in the development of multicomponent coupling reactions.

    PubMed

    Gianino, Joseph B; Campos, Catherine A; Lepore, Antonio J; Pinkerton, David M; Ashfeld, Brandon L

    2014-12-19

    A titanocene-catalyzed multicomponent coupling is described herein. Using catalytic titanocene, phosphine, and zinc dust, zinc acetylides can be generated from the corresponding iodoalkynes to affect sequential nucleophilic additions to aromatic aldehydes. The intermediate propargylic alkoxides are trapped in situ with acetic anhydride, which are susceptible to a second nucleophilic displacement upon treatment with a variety of electron-rich species, including acetylides, allyl silanes, electron-rich aromatics, silyl enol ethers, and silyl ketene acetals. Additionally, employing cyclopropane carboxaldehydes led to ring-opened products resulting from iodine incorporation. Taken together, these results form the basis for a new mode of three-component coupling reactions, which allows for rapid access to value added products in a single synthetic operation.

  11. One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties.

    PubMed

    Tremblay, Hugo; St-Georges, Catherine; Legault, Marc-André; Morin, Caroline; Fortin, Samuel; Marsault, Eric

    2014-12-15

    A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Transition-metal-free one-pot synthesis of biaryls from Grignard reagents and substituted cyclohexanones.

    PubMed

    Zhou, Feng; Simon, Marc-Oliver; Li, Chao-Jun

    2013-05-27

    A new strategy for the construction of biaryls by a transition-metal-free process is presented. A sequence of a Grignard reaction, dehydration, and oxidative aromatization affords the desired products in a one-pot fashion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. One-Pot Exfoliation of Graphite and Synthesis of Nanographene/Dimesitylporphyrin Hybrids

    PubMed Central

    Bernal, M. Mar; Pérez, Emilio M.

    2015-01-01

    A simple one-pot process to exfoliate graphite and synthesize nanographene-dimesitylporphyrin hybrids has been developed. Despite the bulky mesityl groups, which are expected to hinder the efficient π–π stacking between the porphyrin core and graphene, the liquid-phase exfoliation of graphite is significantly favored by the presence of the porphyrins. Metallation of the porphyrin further enhances this effect. The resulting graphene/porphyrin hybrids were characterized by spectroscopy (UV-visible, fluorescence, and Raman) and microscopy (STEM, scanning transmission electron microscopy). PMID:25984598

  14. A Simple One-pot Conversion of Aldehydes and Ketones to Enals

    PubMed Central

    Valenta, Petr; Drucker, Natalie A.; Bode, Jeffrey W.; Walsh, Patrick J.

    2009-01-01

    A simple and efficient method to convert aldehydes into α,β-unsaturated aldehydes with a two-carbon homologation is presented. Hydroboration of ethoxy acetylene with BH3•SMe2 generates tris(ethoxyvinyl) borane. Transmetallation with diethylzinc, addition to aldehydes or ketones, and acidic workup affords enals. When the addition is quenched with anilinium hydrochloride, 1,2-dithioglycol, or acetic anhydride the unsaturated imine, dithiolane, or 1,1-diacetate is isolated in high yield. These transformations can be performed in a one-pot procedure. PMID:19419211

  15. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy.

    PubMed

    Jiang, Shan; Hua, Li; Guo, Zilong; Sun, Lin

    2018-09-01

    The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel dextran derivatives with unconventional structure formed in an efficient one-pot reaction.

    PubMed

    Hotzel, Konrad; Heinze, Thomas

    2016-11-03

    An efficient one-pot synthesis of new dextran derivatives is described. The functional groups of β-alanine, i.e., the carboxyl- and amine group, are converted independently in one-step by iminium chloride to form products with a single substituent. The dextran N-[(dimethylamino)methylene]-β-alanine ester is formed selectively. The structure of the resulting polymers is unambiguously determined by means of NMR- and FTIR-spectroscopy and elemental analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Dienamine and Friedel-Crafts one-pot synthesis, and antitumor evaluation of diheteroarylalkanals.

    PubMed

    Frías, María; Padrón, José M; Alemán, José

    2015-05-26

    An asymmetric synthesis of diheteroarylalkanals through one-pot dienamine and Friedel-Crafts reaction is presented. The reaction tolerates a large variety of substituents at different positions of the starting aldehyde and also in the indole nucleophile, and a range of diheterocyclic alkanals can be achieved. Furthermore, we have studied the antiproliferative activity of these new compounds in representative cancer tumor cell lines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Superconducting electromechanical rotating device having a liquid-cooled, potted, one layer stator winding

    DOEpatents

    Dombrovski, Viatcheslav V.; Driscoll, David I.; Shovkhet, Boris A.

    2001-01-01

    A superconducting electromechanical rotating (SER) device, such as a synchronous AC motor, includes a superconducting field winding and a one-layer stator winding that may be water-cooled. The stator winding is potted to a support such as the inner radial surface of a support structure and, accordingly, lacks hangers or other mechanical fasteners that otherwise would complicate stator assembly and require the provision of an unnecessarily large gap between adjacent stator coil sections. The one-layer winding topology, resulting in the number of coils being equal to half the number of slots or other mounting locations on the support structure, allows one to minimize or eliminate the gap between the inner radial ends of adjacent straight sections of the stator coilswhile maintaining the gap between the coil knuckles equal to at least the coil width, providing sufficient room for electrical and cooling element configurations and connections. The stator winding may be potted to the support structure or other support, for example, by a one-step VPI process relying on saturation of an absorbent material to fill large gaps in the stator winding or by a two-step process in which small gaps are first filled via a VPI or similar operation and larger gaps are then filled via an operation that utilizes the stator as a portion of an on-site mold.

  20. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite

    EPA Science Inventory

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  1. Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sojeong; Qu, Wenchao; Alexoff, David L.

    2014-12-12

    An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.

  2. One-Pot Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) for Detecting MERS-CoV

    PubMed Central

    Lee, Se Hee; Baek, Yun Hee; Kim, Yang-Hoon; Choi, Young-Ki; Song, Min-Suk; Ahn, Ji-Young

    2017-01-01

    Due to the limitation of rapid development of specific antiviral drug or vaccine for novel emerging viruses, an accurate and rapid diagnosis is a key to manage the virus spread. We developed an efficient and rapid method with high specificity for the Middle East Respiratory Syndrome coronavirus (MERS-CoV), based on one-pot reverse transcription loop-mediated isothermal amplification (one-pot RT-LAMP). A set of six LAMP primers [F3, B3, FIP, BIP, LF (Loop-F), and LB (Loop-B)] were designed using the sequence of nucleocapsid (N) gene with optimized RT-LAMP enzyme conditions: 100 U M-MLV RTase and 4 U Bst polymerase, implying that the reaction was able to detect four infectious viral genome copies of MERS-CoV within a 60 min reaction time period. Significantly, EvaGreen dye has better signal read-out properties in one-pot RT-LAMP reaction and is more compatible with DNA polymerase than SYBR green I. Isothermally amplified specific N genes were further evaluated using field-deployable microchamber devices, leading to the specific identification of as few as 0.4 infectious viral genome copies, with no cross-reaction to the other acute respiratory disease viruses, including influenza type A (H1N1 and H3N2), type B, human coronavirus 229E, and human metapneumovirus. This sensitive, specific and feasible method provides a large-scale technical support in emergencies, and is also applied as a sample-to-detection module in Point of Care Testing devices. PMID:28119682

  3. One-pot preparation of a sulfamethoxazole functionalized affinity monolithic column for selective isolation and purification of trypsin.

    PubMed

    Xiao, Yuan; Guo, Jialiang; Ran, Danni; Duan, Qianqian; Crommen, Jacques; Jiang, Zhengjin

    2015-06-26

    A facile and efficient "one-pot" copolymerization strategy was used for the preparation of sulfonamide drug (SA) functionalized monolithic columns. Two novel SA-immobilized methacrylate monolithic columns, i.e. poly(GMA-SMX-co-EDMA) and poly(GMA-SAA-co-EDMA) were prepared by one-pot in situ copolymerization of the drug ligand (sulfamethoxazole (SMX) or sulfanilamide (SAA)), the monomer (glycidyl methacrylate, GMA) and the cross-linker (ethylene dimethacrylate, EDMA) within 100 μm i.d. capillaries under optimized polymerization conditions. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, scanning electron microscopy and micro-HPLC. Satisfactory column permeability, efficiency and separation performance were obtained on the optimized poly(GMA-SMX-co-EDMA) monolithic column for small molecules, such as a standard test mixture and eight aromatic ketones. Notably, it was found that the poly(GMA-SMX-co-EDMA) monolith showed a selective affinity to trypsin, while the poly(GMA-SAA-co-EDMA) monolith containing sulfanilamide did not exhibit such affinity at all. This research not only provides a novel monolith for the selective isolation and purification of trypsin, but it also offers the possibility to easily prepare novel drug functionalized methacrylate monoliths through a one-pot copolymerization strategy. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis.

    PubMed

    Salgaonkar, Manish; Nadar, Shamraja S; Rathod, Virendra K

    2018-07-01

    The multi-enzyme biocatalyst allows to run in vitro multi-step cascade reactions in single pot. An efficient combi-metal organic frameworks (combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis was constructed by mixing zinc acetate and 2‑methylimmidazole with enzyme mixture in one pot under biocompatible conditions. The prepared combi-MOF was characterized and analyzed by powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Thermo-stability was evaluated for combi-MOF in the range of 55 to 75°C which showed three folds improved stability in terms of half-life. In kinetic parameter studies, rate of starch hydrolysis (V max ) of combi-MOF was found to be enhanced after co-immobilization. Further, combi-MOF was recycled in batch mode which retained up to 52% residual activity after five successive cycles of reuse. In addition to that, combi-MOF exhibited extraordinary storage stability till 24days. At the end, starch hydrolytic activity of combi-MOF was tested for different sources of starch (corn, rice, wheat and potato) which exhibited higher rate of hydrolysis than mixture of free enzymes due to spatially co-localized multi-enzymatic systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Copper(II) sulfamate: an efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones and thiones.

    PubMed

    Liu, Chen-Jiang; Wang, Ji-De

    2009-02-13

    A simple, efficient procedure for the one-pot Biginelli condensation reaction of aldehydes, beta-ketoesters and urea or thiourea employing copper(II) sulfamate as a novel catalyst is described. Compared to the classical Biginelli reaction conditions, the present method has the advantages of good yields, short reaction times and experimental simplicity.

  6. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis

    PubMed Central

    Rodríguez-Robledo, M. Concepción; González-Lozano, M. Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; López-Martínez, Rubén; Ramírez-Galicia, Guillermo

    2018-01-01

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications. PMID:29642522

  7. Cellulose-Silica Nanocomposites of High Reinforcing Content with Fungi Decay Resistance by One-Pot Synthesis.

    PubMed

    Rodríguez-Robledo, M Concepción; González-Lozano, M Azucena; Ponce-Peña, Patricia; Quintana Owen, Patricia; Aguilar-González, Miguel Angel; Nieto-Castañeda, Georgina; Bazán-Mora, Elva; López-Martínez, Rubén; Ramírez-Galicia, Guillermo; Poisot, Martha

    2018-04-09

    Hybrid bionanocomposites based on cellulose matrix, with silica nanoparticles as reinforcers, were prepared by one-pot synthesis of cellulose surface modified by solvent exchange method to keep the biopolymer net void for hosting inorganic nanoparticles. Neither expensive inorganic-particle precursors nor crosslinker agents or catalysts were used for effective dispersion of reinforcer concentration up to 50 wt %. Scanning electron microscopy of the nanocomposites shows homogeneous dispersion of reinforcers in the surface modified cellulose matrix. The FTIR spectra demonstrated the cellulose features even at 50 weight percent content of silica nanoparticles. Such a high content of silica provides high thermal stability to composites, as seen by TGA-DSC. The fungi decay resistance to Trametes versicolor was measured by standard test showing good resistance even with no addition of antifungal agents. This one-pot synthesis of biobased hybrid materials represents an excellent way for industrial production of high performance materials, with a high content of inorganic nanoparticles, for a wide variety of applications.

  8. Whole-cell based solvent-free system for one-pot production of biodiesel from waste grease.

    PubMed

    Li, Aitao; Ngo, Thao P N; Yan, Jinyong; Tian, Kaiyuan; Li, Zhi

    2012-06-01

    A whole-cell based solvent-free system was developed for efficient conversion of waste grease to biodiesel via one-pot esterification and transesterification. By isolation and screening of lipase-producing strains from soil, Serratia marcescens YXJ-1002 was discovered for the biotransformation of grease to biodiesel. The lipase (SML) from this strain was cloned and expressed in Escherichia coli as an intracellular enzyme, showing 6 times higher whole-cell based hydrolysis activity than that of wild type strain. The recombinant cells were used for biodiesel production from waste grease in one-pot reactions containing no solvent with the addition of methanol in several small portions, and 97% yield of biodiesel (FAME) was achieved under optimized conditions. In addition, the whole-cell biocatalysts showed excellent reusability, retaining 74% productivity after 4 cycles. The developed system, biocatalyst, and process enable the efficient, low-cost, and green production of biodiesel from waste grease, providing with a potential industrial application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Water-tolerant and reusable Lewis acid catalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions.

    PubMed

    Wang, Min; Song, Zhiguo; Jiang, Heng; Gong, Hong

    2010-01-01

    3,4-Dihydropyrimidin-2-(1H)-ones were synthesized in high yields by a one-pot cyclocondensation of an aldehyde, a 1,3-dicarbonyl compound, and urea using copper methanesulfonate (2 mol%) as a recyclable catalyst under solvent-free conditions in short reaction time (1-2 h).

  10. One-Pot Synthesis of Fused Pyrroles via a Key Gold Catalysis-Triggered Cascade

    PubMed Central

    Zheng, Zhitong; Tu, Huangfei

    2014-01-01

    A two-step, one-pot synthesis of fused pyrroles is realized by firstly condensing N-alkynylhydroxammonium salt with readily enolizable ketone under mild basic condition and then subjecting the reaction mixture to a gold catalyst, which triggers a cascade reaction featured by a facile initial 3.3-sigmatropic rearrangement of the gold catalysis product, i.e., an N,O-dialkenylhydroxamine. The reaction provides a facile access to polycyclic pyrroles in moderate to good yields. PMID:24482098

  11. Predicting Microstructure and Microsegregation in Multicomponent Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Xinyan; Ding, Ling; Chen, ShuangLin; Xie, Fanyou; Chu, M.; Chang, Y. Austin

    Accurate predictions of microstructure and microsegregation in metallic alloys are highly important for applications such as alloy design and process optimization. Restricted assumptions concerning the phase diagram could easily lead to erroneous predictions. The best approach is to couple microsegregation modeling with phase diagram computations. A newly developed numerical model for the prediction of microstructure and microsegregation in multicomponent alloys during dendritic solidification was introduced. The micromodel is directly coupled with phase diagram calculations using a user-friendly and robust phase diagram calculation engine-PANDAT. Solid state back diffusion, undercooling and coarsening effects are included in this model, and the experimentally measured cooling curves are used as the inputs to carry out the calculations. This model has been used to predict the microstructure and microsegregation in two multicomponent aluminum alloys, 2219 and 7050. The calculated values were confirmed using results obtained from directional solidification.

  12. One-pot Catalyst-free Synthesis of β- and γ-Hydroxy Sulfides Using Diaryliodonium Salts and Microwaves

    EPA Science Inventory

    A facile one-pot high-yield protocol is described for the preparation of β- and γ-hydroxy sulfides directly from diaryliodonium salts, potassium thiocyanate, and ethane-1,2-diol (ethylene glycol)/propane-1,3-diol (β-propylene glycol) without the need for any addit...

  13. Three-component access to pyrroles promoted by the CAN-silver nitrate system under high-speed vibration milling conditions: a generalization of the Hantzsch pyrrole synthesis.

    PubMed

    Estévez, Verónica; Villacampa, Mercedes; Menéndez, J Carlos

    2013-01-21

    A sequential multicomponent process involving the high-speed vibration milling of ketones with N-iodosuccinimide and p-toluenesulfonic acid, followed by addition of a mixture of primary amines, β-dicarbonyl compounds, cerium(IV) ammonium nitrate and silver nitrate afforded polysubstituted, functionalized pyrroles. This one-pot, solid-state process can be considered as the coupling of an α-iodoketone preparation with a general version of the classical Hantzsch pyrrole synthesis.

  14. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    PubMed

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  15. Multicomponent Synthesis and Evaluation of New 1,2,3-Triazole Derivatives of Dihydropyrimidinones as Acidic Corrosion Inhibitors for Steel.

    PubMed

    González-Olvera, Rodrigo; Román-Rodríguez, Viridiana; Negrón-Silva, Guillermo E; Espinoza-Vázquez, Araceli; Rodríguez-Gómez, Francisco Javier; Santillan, Rosa

    2016-02-22

    An efficient one-pot synthesis of 1,2,3-triazole derivatives of dihydropyrimidinones has been developed using two multicomponent reactions. The aldehyde-1,2,3-triazoles were obtained in good yields from in situ-generated organic azides and O-propargylbenzaldehyde. The target heterocycles were synthesized through the Biginelli reaction in which the aldehyde-1,2,3-triazoles reacted with ethyl acetoacetate and urea in the presence of Ce(OTf)₃ as the catalyst. The corrosion inhibition of steel grade API 5 L X52 in 1 M HCl by the synthesized compounds was investigated using the electrochemical impedance spectroscopy technique. The measurements revealed that these heterocycles are promising candidates to inhibit acidic corrosion of steel.

  16. A facile one-pot solvothermal method for synthesis of magnetically recoverable Pd-Fe3O4 hybrid nanocatalysts for the Mizoroki-Heck reaction

    NASA Astrophysics Data System (ADS)

    Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing

    2018-03-01

    Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.

  17. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    PubMed

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Direct Production of Furfural in One-pot Fashion from Raw Biomass Using Brønsted Acidic Ionic Liquids.

    PubMed

    Matsagar, Babasaheb M; Hossain, Shahriar A; Islam, Tofazzal; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Dhepe, Paresh L; Wu, Kevin C-W

    2017-10-18

    The conversion of raw biomass into C5-sugars and furfural was demonstrated with the one-pot method using Brønsted acidic ionic liquids (BAILs) without any mineral acids or metal halides. Various BAILs were synthesized and characterized using NMR, FT-IR, TGA, and CHNS microanalysis and were used as the catalyst for raw biomass conversion. The remarkably high yield (i.e. 88%) of C5 sugars from bagasse can be obtained using 1-methyl-3(3-sulfopropyl)-imidazolium hydrogen sulfate ([C 3 SO 3 HMIM][HSO 4 ]) BAIL catalyst in a water medium. Similarly, the [C 3 SO 3 HMIM][HSO 4 ] BAIL also converts the bagasse into furfural with very high yield (73%) in one-pot method using a water/toluene biphasic solvent system.

  19. One-pot synthesis of β-acetamido ketones using boric acid at room temperature.

    PubMed

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products.

  20. A Short, One-Pot Synthesis of Bupropion (Zyban®, Wellbutrin®)

    NASA Astrophysics Data System (ADS)

    Perrine, Daniel M.; Ross, Jason T.; Nervi, Stephen J.; Zimmerman, Richard H.

    2000-11-01

    A one-pot synthesis of (±)-2-(t-butylamino)-3'-chloropropiophenone (bupropion) as its hydrochloride salt (Zyban, Wellbutrin), an important antidepressant drug used in the treatment of nicotine addiction, is described. The procedure, suitable for students in their first year of organic chemistry, can be carried out in less than two hours and provides material of high purity in overall yield of 75-85%. A solution of m-chloropropiophenone in CH2Cl2 is treated with Br2. After removal of the solvent, t-butylamine and N-methylpyrrolidinone are added and the mixture is warmed briefly, quenched with water, and extracted with ether. Concentrated HCl is added to the ether solution to precipitate the product.

  1. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    USDA-ARS?s Scientific Manuscript database

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  2. A one pot organic/CdSe nanoparticle hybrid material synthesis with in situ π-conjugated ligand functionalization.

    PubMed

    Mazzio, Katherine A; Okamoto, Ken; Li, Zhi; Gutmann, Sebastian; Strein, Elisabeth; Ginger, David S; Schlaf, Rudy; Luscombe, Christine K

    2013-02-14

    A one pot method for organic/colloidal CdSe nanoparticle hybrid material synthesis is presented. Relative to traditional ligand exchange processes, these materials require smaller amounts of the desired capping ligand, shorter syntheses and fewer processing steps, while maintaining nanoparticle morphology.

  3. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    PubMed

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  4. One-Pot Synthesis of β-Acetamido Ketones Using Boric Acid at Room Temperature

    PubMed Central

    Karimi-Jaberi, Zahed; Mohammadi, Korosh

    2012-01-01

    β-acetamido ketones were synthesized in excellent yields through one-pot condensation reaction of aldehydes, acetophenones, acetyl chloride, and acetonitrile in the presence of boric acid as a solid heterogeneous catalyst at room temperature. It is the first successful report of boric acid that has been used as solid acid catalyst for the preparation of β-acetamido ketones. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedure, short reaction times, and good-to-excellent yields of products. PMID:22666168

  5. Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass

    DOE PAGES

    Frederix, Marijke; Mingardon, Florence; Hu, Matthew; ...

    2016-04-11

    Biological production of chemicals and fuels using microbial transformation of sustainable carbon sources, such as pretreated and saccharified plant biomass, is a multi-step process. Typically, each segment of the workflow is optimized separately, often generating conditions that may not be suitable for integration or consolidation with the upstream or downstream steps. While significant effort has gone into developing solutions to incompatibilities at discrete steps, very few studies report the consolidation of the multi-step workflow into a single pot reactor system. Here we demonstrate a one-pot biofuel production process that uses the ionic liquid 1-ethyl-3-methylimidazolium acetate (C 2C 1Im][OAc] ) formore » pretreatment of switchgrass biomass. [C 2C 1Im][OAc] is highly effective in deconstructing lignocellulose, but nonetheless leaves behind residual reagents that are toxic to standard saccharification enzymes and the microbial production host. We report the discovery of an [C 2C 1Im]-tolerant E. coli strain, where [C 2C 1Im] tolerance is bestowed by a P7Q mutation in the transcriptional regulator encoded by rcdA. We establish that the causal impact of this mutation is the derepression of a hitherto uncharacterized major facilitator family transporter, YbjJ. To develop the strain for a one-pot process we engineered this [C 2C 1Im]-tolerant strain to express a recently reported d-limonene production pathway. We also screened previously reported [C 2C 1Im]-tolerant cellulases to select one that would function with the range of E. coli cultivation conditions and expressed it in the [C 2C 1 Im]-tolerant E. coli strain so as to secrete this [C 2C 1Im]-tolerant cellulase. The final strain digests pretreated biomass, and uses the liberated sugars to produce the bio-jet fuel candidate precursor d-limonene in a one-pot process.« less

  6. One-Pot Synthesis of a bis-Pocket Corrole through a 14-fold Bromination Reaction

    DOE PAGES

    Norheim, Hans-Kristian; Schneider, Christian; Gagnon, Kevin J.; ...

    2017-02-14

    For a one-pot protocol, effecting 14-fold bromination with elemental bromine, has afforded copper β-octabromo-meso-tris(2,6-dibromo-3,5-dimethoxyphenyl)corrole, a new bis-pocket metallocorrole. The Cu complex underwent smooth demetalation under reductive conditions, affording the free corrole ligand, which in turn could be readily complexed to Mn III and Au III. Finally, a single-crystal X-ray structure was obtained for the MnIII complex.

  7. One-pot, two-step desymmetrization of symmetrical benzils catalyzed by the methylsulfinyl (dimsyl) anion.

    PubMed

    Ragno, Daniele; Bortolini, Olga; Giovannini, Pier Paolo; Massi, Alessandro; Pacifico, Salvatore; Zaghi, Anna

    2014-08-14

    An operationally simple one-pot, two-step procedure for the desymmetrization of benzils is herein described. This consists in the chemoselective cross-benzoin reaction of symmetrical benzils with aromatic aldehydes catalyzed by the methyl sulfinyl (dimsyl) anion, followed by microwave-assisted oxidation of the resulting benzoylated benzoins with nitrate, avoiding the costly isolation procedure. Both electron-withdrawing and electron-donating substituents may be accommodated on the aromatic rings of the final unsymmetrical benzil.

  8. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    NASA Astrophysics Data System (ADS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ , effective magnetic field H1, H2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν =1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry.

  9. Catalyst-free synthesis of skipped dienes from phosphorus ylides, allylic carbonates, and aldehydes via a one-pot SN2' allylation-Wittig strategy.

    PubMed

    Xu, Silong; Zhu, Shaoying; Shang, Jian; Zhang, Junjie; Tang, Yuhai; Dou, Jianwei

    2014-04-18

    A catalyst-free allylic alkylation of stabilized phosphorus ylides with allylic carbonates via a regioselective SN2' process is presented. Subsequent one-pot Wittig reaction with both aliphatic and aromatic aldehydes as well as ketenes provides structurally diverse skipped dienes (1,4-dienes) in generally high yields and moderate to excellent stereoselectivity with flexible substituent patterns. This one-pot SN2' allylation-Wittig strategy constitutes a convenient and efficient synthetic method for highly functionalized skipped dienes from readily available starting materials.

  10. Palladium-catalyzed domino C,N-coupling/carbonylation/Suzuki coupling reaction: an efficient synthesis of 2-aroyl-/heteroaroylindoles.

    PubMed

    Arthuis, Martin; Pontikis, Renée; Florent, Jean-Claude

    2009-10-15

    A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

  11. One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.

    PubMed

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G

    2016-12-14

    Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.

  12. One-pot green synthesis of carbon quantum dot for biological application

    NASA Astrophysics Data System (ADS)

    Asghar, Khushnuma; Qasim, Mohd; Das, D.

    2017-05-01

    A one-pot microwave assisted method for synthesizing carbon quantum dots (CQDs) from honey is presented in this paper. The structural, morphological and optical properties of synthesized CQDs were characterized by XRD, TEM, UV-Vis spectrophotometer, and Raman techniques. The average particle size of CQDs is found to be 2 to 7 nm. The main advantage of this work is the use of inexpensive, less toxic and environmental friendly precursors and synthesis procedure for CQDs. In addition to this, the particle size of prepared CQDs was found to be ultrafine with narrow size distribution. The as-prepared CQDs, with smaller particle size, good stability, good optical properties, water dispersibility and low toxicity, show promising potential for applications in biomedical field.

  13. Light fluorous-tagged traceless one-pot synthesis of benzimidazoles facilitated by microwave irradiation.

    PubMed

    Tseng, Chih-Chung; Tasi, Cheng-Hsun; Sun, Chung-Ming

    2012-06-01

    A novel protocol for rapid assemble of benzimidazole framework has been demonstrated. This method incorporated with light fluorous-tag provides a convenient method for diversification of benzimidazoles and for easy purification via fluorous solid-phase extraction (F-SPE) in a parallel manner. The key transformation of this study involves in situ reduction of aromatic nitro compound, amide formation, cyclization and aromatization promoted by microwave irradiation in a one-pot fashion. The strategy is envisaged to be applied for the establishment of drug-like small molecule libraries for high throughput screening.

  14. TiO2 Hollow Spheres: One-Pot Synthesis and Enhanced Photocatalysis

    NASA Astrophysics Data System (ADS)

    Jia, Changchao; Cao, Yongqiang; Yang, Ping

    2013-04-01

    Hollow TiO2 microspheres were successfully fabricated by metal salts with low solubility in ethanol acting as intelligent templates using a simple one-pot solvothermal method. Hollow spheres with large diameter were obtained using CuSO4ṡ5H2O as templates while small ones were obtained using Sr(NO3)2 as templates. It is found that titanium precursor plays an important role for the morphology of samples. Solid TiO2 microspheres were prepared by using titanium tetrabutoxide (TBT). In contrast, bowl-like hollow microspheres were obtained by using titanium tetrachloride (TiCl4). Furthermore, the amount of H2O can stimulate the hydrolysis rate of TiCl4 to form solid spheres. Compared with solid microspheres, hollow TiO2 microspheres depending on their interior cavity structure exhibited enhanced photocatalysis efficiency for the UV-light photodegradation of methyl orange. Quantificationally, the apparent photocatalytic degradation pseudo-first-rate constant of the hollow microspheres is 1.25 times of that of the solid ones.

  15. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  16. Exploiting the Electrophilic and Nucleophilic Dual Role of Nitrile Imines: One-Pot, Three-Component Synthesis of Furo[2,3-d]pyridazin-4(5H)-ones.

    PubMed

    Giustiniano, Mariateresa; Mercalli, Valentina; Amato, Jussara; Novellino, Ettore; Tron, Gian Cesare

    2015-08-21

    An expeditious multicomponent reaction to synthesize tetrasubstituted furo[2,3-d]pyridazin-4(5H)-ones is reported. In brief, hydrazonoyl chlorides react with isocyanoacetamides, in the presence of TEA, to give 1,3-oxazol-2-hydrazones which, without being isolated, can react with dimethylacetylene dicarboxylate to afford furo[2,3-d]pyridazin-4(5H)-ones with an unprecedented level of complexity in a triple domino Diels-Alder/retro-Diels-Alder/lactamization reaction sequence.

  17. One Pot Synthesis, Photophysical and X-ray Studies of Novel Highly Fluorescent Isoquinoline Derivatives with Higher Antibacterial Efficacy Based on the In-vitro and Density Functional Theory.

    PubMed

    Asiri, Abdullah M; Khan, Salman A; Al-Thaqafy, Saad H; Sharma, Kamlesh

    2015-05-01

    Series of cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in agreement with their chemical structures. Structure of the compound was further conformed by X-ray crystallographic. UV-vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, extenction coefficient, Stokes shift, oscillator strength transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria. The minimum inhibitory concentration was then determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Furthermore, quantum chemistry calculations using DFT/6-31-G* level of theory confirm the results. Dipole moment and frontier molecular orbitals were also investigated.

  18. Viscosity and diffusivity in melts: from unary to multicomponent systems

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun

    2014-05-01

    Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.

  19. One-Pot Catalyst-Free Synthesis of β- and γ-Hydroxy Sulfides using Diaryliodonium Salts and Microwave Irradiation

    EPA Science Inventory

    A facile one-pot high-yield protocol is described for the preparation of β- and γ-hydroxy sulfides directly from diaryliodonium salts, potassium thiocyanate, and ethane-1,2-diol (ethylene glycol)/propane-1,3-diol (β-propylene glycol) without the need for any additional catalyst o...

  20. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    NASA Astrophysics Data System (ADS)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J.

    2017-02-01

    The Huisgen cycloaddition reaction (;click; chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  1. Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.

    PubMed

    Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon

    2018-04-05

    The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.

  2. TANDEM BIS-ALDOL REACTION OF KETONES: A FACILE ONE-POT SYNTHESIS OF 1,3-DIOXANES IN AQUEOUS MEDIUM

    EPA Science Inventory

    A novel tandem bis-aldol reaction of ketone with paraformaldehyde catalyzed by polystyrenesulfonic acid in aqueous medium delivers 1,3-dioxanes in high yield. This one pot, operationally simple microwave-assisted synthetic protocol proceeds efficiently in water in the absence of ...

  3. Multi-component Wronskian solution to the Kadomtsev-Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Sun, Fu-Wei; Zhang, Yi; Li, Juan

    2014-01-01

    It is known that the Kadomtsev-Petviashvili (KP) equation can be decomposed into the first two members of the coupled Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy by the binary non-linearization of Lax pairs. In this paper, we construct the N-th iterated Darboux transformation (DT) for the second- and third-order m-coupled AKNS systems. By using together the N-th iterated DT and Cramer's rule, we find that the KPII equation has the unreduced multi-component Wronskian solution and the KPI equation admits a reduced multi-component Wronskian solution. In particular, based on the unreduced and reduced two-component Wronskians, we obtain two families of fully-resonant line-soliton solutions which contain arbitrary numbers of asymptotic solitons as y → ∓∞ to the KPII equation, and the ordinary N-soliton solution to the KPI equation. In addition, we find that the KPI line solitons propagating in parallel can exhibit the bound state at the moment of collision.

  4. A One-Pot Tandem Strategy in Catalytic Asymmetric Vinylogous Aldol Reaction of Homoallylic Alcohols.

    PubMed

    Hou, Xufeng; Jing, Zhenzhong; Bai, Xiangbin; Jiang, Zhiyong

    2016-06-27

    Reported is a rationally-designed one-pot sequential strategy that allows homoallylic alcohols to be employed in a catalytic, asymmetric, direct vinylogous aldol reaction with a series of activated acyclic ketones, including trifluoromethyl ketones, γ-ketoesters, and α-keto phosphonates, in high yields (up to 95%) with excellent regio- and enantio-selectivity (up to 99% ee). This modular combination, including Jones oxidation and asymmetric organocatalysis, has satisfactory compatibility and reliability even at a 20 mmol scale, albeit without intermediary purification.

  5. One pot synthesis of CdS/TiO{sub 2} hetero-nanostructures for enhanced H{sub 2} production from water and removal of pollutants from aqueous streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mani, A. Daya; Subrahmanyam, Ch., E-mail: csubbu@iith.ac.in

    2016-01-15

    Highlights: • Novel one pot synthesis of CdS/TiO{sub 2} hetero nanostructures by combustion synthesis. • Excellent visible light photocatalytic activity for H{sub 2} production from water. • Enhanced activity for the removal of Cr(VI) from aqueous streams. - Abstract: To achieve more effective coupling of cadmium sulfide (CdS) to the TiO{sub 2}, single step synthesis of CdS/TiO{sub 2} composites is advantageous. In the present study a novel one pot synthesis of several CdS/TiO{sub 2} hetero-nanostructures was explored through combustion technique. As the process involves the simultaneous nucleation of CdS and TiO{sub 2} it leads to the proper connectivity between themore » constituent materials. All the catalysts were characterized by using several techniques and the excellent visible light activity of the composites has been asserted by the H{sub 2} production from water containing sacrificial reagents, removal of methylene blue and Cr(VI) from aqueous streams. Therefore the present synthetic strategy which is devoid of using molecular linker at interface is more suitable for solar applications, which require faster rates of electron transfer at the hetero junctions.« less

  6. One-Pot Enzymatic Production of Lignin-Composites.

    PubMed

    Ion, Sabina; Opris, Cristina; Cojocaru, Bogdan; Tudorache, Madalina; Zgura, Irina; Galca, Aurelian C; Bodescu, Adina M; Enache, Madalin; Maria, Gabriel-Mihai; Parvulescu, Vasile I

    2018-01-01

    A novel and efficient one-pot system for green production of artificial lignin bio-composites has been developed. Monolignols such as sinapyl (SA) and coniferyl (CA) alcohols were linked together with caffeic acid (CafAc) affording a polymeric network similar with natural lignin. The interaction of the dissolved SA/CA with CafAc already bound on a solid support (S C2 /S C6 -CafAc) allowed the attachment of the polymeric product direct on the support surface (S C2 /S C6 -CafAc-L 1 and S C2 /S C6 -CafAc-L 2 , from CA and SA, respectively). Accordingly, this procedure offers the advantage of a simultaneous polymer production and deposition. Chemically, oxi-copolymerization of phenolic derivatives (SA/CA and CAfAc) was performed with H 2 O 2 as oxidation reagent using peroxidase enzyme (2-1B mutant of versatile peroxidase from Pleurotus eryngii ) as catalyst. The system performance reached a maximum of conversion for SA and CA of 71.1 and 49.8%, respectively. The conversion is affected by the system polarity as resulted from the addition of a co-solvent (e.g., MeOH, EtOH, or THF). The chemical structure, morphology, and properties of the bio-composites surface were investigated using different techniques, e.g., FTIR, TPD-NH 3 , TGA, contact angle, and SEM. Thus, it was demonstrated that the SA monolignol favored bio-composites with a dense polymeric surface, high acidity, and low hydrophobicity, while CA allowed the production of thinner polymeric layers with high hydrophobicity.

  7. Copper-catalyzed one-pot synthesis of 1,2,4-triazoles from nitriles and hydroxylamine.

    PubMed

    Xu, Hao; Ma, Shuang; Xu, Yuanqing; Bian, Longxiang; Ding, Tao; Fang, Xiaomin; Zhang, Wenkai; Ren, Yanrong

    2015-02-06

    A simple and efficient copper-catalyzed one-pot synthesis of substituted 1,2,4-triazoles through reactions of two nitriles with hydroxylamine has been developed. The protocol uses simple and readily available nitriles and hydroxylamine hydrochloride as the starting materials and inexpensive Cu(OAc)2 as the catalyst, and the corresponding 1,2,4-triazole derivatives are obtained in moderate to good yields. The reactions include sequential intermolecular addition of hydroxylamine to one nitrile to provide amidoxime, copper-catalyzed treatment of the amidoxime with another nitrile, and intramolecular dehydration/cyclization. This finding provides a new and useful strategy for synthesis of 1,2,4-triazole derivatives.

  8. One pot synthesis of exchange coupled Nd2Fe14B/alpha-Fe by pechini type sol-gel method.

    PubMed

    Hussain, Abid; Jadhav, Abhijit P; Baek, Yeon Kyung; Choi, Hul Jin; Lee, Jaeho; Kang, Young Soo

    2013-11-01

    In this work, a combination of nanoparticles of Nd2Fe14B hard magnetic phase and alpha-Fe soft magnetic phase were synthesized by one pot chemical synthesis technique using sol-gel method. A gel of Nd-Fe-B was prepared using NdCl3 x 6H2O, FeCl3 x 6H2O, H3BO3, citric acid, and ethylene glycol by pechini type sol-gel method. The gel was subsequently calcined and annealed to obtain the mixed oxide powders. The produced metal oxide particles were identified with XRD, SEM, TEM to obtain the crystal structure, shape and domain structure of them. The nanoparticles of mixed phase of Nd2Fe14B/alpha-Fe were obtained from these oxides by a process of reduction-diffusion in vacuum by employing CaH2 as reducing agent. During this process it was optimized by controlling temperature, reaction time and concentration of the reducing agent (CaH2). The phase formation of Nd2Fe14B was resulted by the direct diffusion of NdH2, Fe and B. The magnetic property of produced hard and soft phases was successfully identified with vibrating sample magnetometer (VSM). The mixed domains of the hard and soft phases were identified with selected area electron diffraction method (SAED) patterns.

  9. A multicomponent CuAAC "click" approach to a library of hybrid polydentate 2-pyridyl-1,2,3-triazole ligands: new building blocks for the generation of metallosupramolecular architectures.

    PubMed

    Crowley, James D; Bandeen, Pauline H

    2010-01-14

    A one pot, multicomponent CuAAC reaction has been exploited for the safe generation of alkyl, benzyl or aryl linked polydentate pyridyl-1,2,3-triazole ligands from their corresponding halides, sodium azide and alkynes in excellent yields. The ligands have been fully characterised by elemental analysis, HR-ESMS, IR, (1)H and (13)C NMR and in two cases the structures were confirmed by X-ray crystallography. Additionally, we have examined the Ag(I) coordination chemistry of these ligands and found, using HR-ESMS, (1)H NMR, and X-ray crystallography, that both discrete and polymeric metallosupramolecular architectures can be formed.

  10. RAFT-Polymerization-Induced Self-Assembly and Reorganizations: Ultrahigh-Molecular-Weight Polymer and Morphology-Tunable Micro-/Nanoparticles in One Pot.

    PubMed

    Zhang, Xiao-Yun; Liu, Dong-Ming; Lv, Xin-Hu; Sun, Miao; Sun, Xiao-Li; Wan, Wen-Ming

    2016-11-01

    A one-pot method is introduced for the successful synthesis of narrow-distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 10 6 g mol -1 ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS

    EPA Science Inventory

    A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...

  12. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction

    NASA Astrophysics Data System (ADS)

    Sharma, M. G.; Rajani, D. P.; Patel, H. M.

    2017-06-01

    A novel green and efficient one-pot multicomponent reaction of dihydropyridine derivatives was reported as having good to excellent yield. In the presence of the catalyst ceric ammonium nitrate (CAN), different 1,3-diones and same starting materials as 5-bromothiophene-2-carboxaldehyde and ammonium acetate were used at room temperature under solvent-free condition for the Hantzsch pyridine synthesis within a short period of time. All compounds were evaluated for their in vitro antibacterial and antifungal activity and, interestingly, we found that 5(b-f) show excellent activity compared with Ampicillin, whereas only the 5e compound shows excellent antifungal activity against Candida albicans compared with griseofulvin. The cytotoxicity of all compounds has been assessed against breast tumour cell lines (BT-549), but no activity was found. The X-ray structure of one such compound, 5a, viewed as a colourless block crystal, corresponded accurately to a primitive monoclinic cell.

  13. One-pot synthesis of pyrrole-2-carboxylates and -carboxamides via an electrocyclization/oxidation sequence.

    PubMed

    Imbri, Dennis; Netz, Natalie; Kucukdisli, Murat; Kammer, Lisa Marie; Jung, Philipp; Kretzschmann, Annika; Opatz, Till

    2014-12-05

    An electrocyclic ring closure is the key step of an efficient one-pot method for the synthesis of pyrrole-2-carboxylates and -carboxamides from chalcones and glycine esters or amides. The 3,4-dihydro-2H-pyrrole intermediates generated in situ are oxidized to the corresponding pyrroles by stoichiometric oxidants or by catalytic copper(II) and air in moderate to high yields. A wide range of functional groups are tolerated, and further combination with an in situ bromination gives access to polyfunctional pyrrole scaffolds.

  14. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides

    EPA Science Inventory

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...

  15. Selective One-Pot Production of High-Grade Diesel-Range Alkanes from Furfural and 2-Methylfuran over Pd/NbOPO4.

    PubMed

    Xia, Qineng; Xia, Yinjiang; Xi, Jinxu; Liu, Xiaohui; Zhang, Yongguang; Guo, Yong; Wang, Yanqin

    2017-02-22

    A one-pot method for the selective production of high-grade diesel-range alkanes from biomass-derived furfural and 2-methylfuran (2-MF) was developed by combining the hydroxyalkylation/alkylation (HAA) condensation of furfural with 2-MF and the subsequent hydrodeoxygenation (HDO) over a multifunctional Pd/NbOPO 4 catalyst. The effects of various reaction conditions as well as a variety of solid-acid catalysts and metal-loaded NbOPO 4 catalysts were systematically investigated to optimize the reaction conditions for both reactions. Under the optimal reaction conditions up to 89.1 % total yield of diesel-range alkanes was obtained from furfural and 2-MF by this one-pot method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Room-temperature Pd-catalyzed C-H chlorination by weak coordination: one-pot synthesis of 2-chlorophenols with excellent regioselectivity.

    PubMed

    Sun, Xiuyun; Sun, Yonghui; Zhang, Chao; Rao, Yu

    2014-02-07

    A room-temperature Pd(II)-catalyzed regioselective chlorination reaction has been developed for a facile one-pot synthesis of a broad range of 2-chlorophenols. The reaction demonstrates an excellent regioselectivity and reactivity for C-H chlorination. This reaction represents one of the rare examples of mild C-H functionalization at ambient temperature.

  17. One-Pot Catalytic Enantio- and Diastereoselective Syntheses of anti-, syn-cis-Disubstituted, and syn-Vinyl Cyclopropyl Alcohols

    PubMed Central

    Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a

  18. A one-pot radioiodination of aryl amines via stable diazonium salts: preparation of 125I-imaging agents.

    PubMed

    Sloan, Nikki L; Luthra, Sajinder K; McRobbie, Graeme; Pimlott, Sally L; Sutherland, Andrew

    2017-10-05

    An operationally simple, one-pot, two-step tandem procedure that allows the incorporation of radioactive iodine into aryl amines via stable diazonium salts is described. The mild conditions are tolerant of various functional groups and substitution patterns, allowing late-stage, rapid access to a wide range of 125 I-labelled aryl compounds and SPECT radiotracers.

  19. One-pot synthesis of active copper-containing carbon dots with laccase-like activities

    NASA Astrophysics Data System (ADS)

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-11-01

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching

  20. One-pot synthesis of ethylenediamine-connected graphene/carbon nanotube composite material for isolation of clenbuterol from pork.

    PubMed

    Yuan, Yanan; Jiao, Xiaoyan; Han, Yehong; Bai, Ligai; Liu, Haiyan; Qiao, Fengxia; Yan, Hongyuan

    2017-09-01

    A fluffy porous ethylenediamine-connected graphene/carbon nanotube composite (EGC), prepared by a simple and time-saving one-pot synthesis, was successfully applied as an adsorbent in pipette-tip solid-phase extraction (PT-SPE) for the rapid extraction and determination of clenbuterol (CLB) from pork. In the one-pot synthesis, carbon nanotubes were inserted into graphene sheets and then connected with ethylenediamine through chemical modification to form a three-dimensional framework structure to prevent agglomeration of the graphene sheets. Under the optimum conditions for extraction and determination, good linearity was achieved for CLB in the range of 15.0-1000.0ngg -1 (r=0.9998) and the recoveries at three spiked levels were in the range of 92.2-96.2% with relative standard deviation ≤9.2% (n=3). In comparison with other adsorbents, including silica, NH 2 , C 18 , and Al 2 O 3 , EGC showed higher extraction and purification efficiency for CLB from pork samples. This analytical method combines excellent adsorption performance of EGC and high extraction efficiency of PT-SPE. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Facile rhenium-peptide conjugate synthesis using a one-pot derived Re(CO)3 reagent.

    PubMed

    Chanawanno, Kullapa; Kondeti, Vinay; Caporoso, Joel; Paruchuri, Sailaja; Leeper, Thomas C; Herrick, Richard S; Ziegler, Christopher J

    2016-03-21

    We have synthesized two Re(CO)3-modified lysine complexes (1 and 2), where the metal is attached to the amino acid at the Nε position, via a one-pot Schiff base formation reaction. These compounds can be used in the solid phase synthesis of peptides, and to date we have produced four conjugate systems incorporating neurotensin, bombesin, leutenizing hormone releasing hormone, and a nuclear localization sequence. We observed uptake into human umbilical vascular endothelial cells as well as differential uptake depending on peptide sequence identity, as characterized by fluorescence and rhenium elemental analysis.

  2. MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE FLUID PHASE POROUS MEDIA

    EPA Science Inventory

    A two-dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between nonaqueous phase liquid, water, gas and solid phases in porous media under the assumption of local chemical equilib...

  3. Coupling Oxygen Consumption with Hydrocarbon Oxidation in Bacterial Multicomponent Monooxygenases.

    PubMed

    Wang, Weixue; Liang, Alexandria D; Lippard, Stephen J

    2015-09-15

    A fundamental goal in catalysis is the coupling of multiple reactions to yield a desired product. Enzymes have evolved elegant approaches to address this grand challenge. A salient example is the biological conversion of methane to methanol catalyzed by soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily. sMMO is a dynamic protein complex of three components: a hydroxylase, a reductase, and a regulatory protein. The active site, a carboxylate-rich non-heme diiron center, is buried inside the 251 kDa hydroxylase component. The enzyme processes four substrates: O2, protons, electrons, and methane. To couple O2 activation to methane oxidation, timely control of substrate access to the active site is critical. Recent studies of sMMO, as well as its homologues in the BMM superfamily, have begun to unravel the mechanism. The emerging and unifying picture reveals that each substrate gains access to the active site along a specific pathway through the hydroxylase. Electrons and protons are delivered via a three-amino-acid pore located adjacent to the diiron center; O2 migrates via a series of hydrophobic cavities; and hydrocarbon substrates reach the active site through a channel or linked set of cavities. The gating of these pathways mediates entry of each substrate to the diiron active site in a timed sequence and is coordinated by dynamic interactions with the other component proteins. The result is coupling of dioxygen consumption with hydrocarbon oxidation, avoiding unproductive oxidation of the reductant rather than the desired hydrocarbon. To initiate catalysis, the reductase delivers two electrons to the diiron(III) center by binding over the pore of the hydroxylase. The regulatory component then displaces the reductase, docking onto the same surface of the hydroxylase. Formation of the hydroxylase-regulatory component complex (i) induces conformational changes of pore residues that may bring protons to the

  4. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  5. Synthesis of Quaternary Ammonium Salts of Tricyclic Cationic Drugs: A One-Pot Synthesis for the Bioorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Mogannam, Abid C.; Hwee, Won B.; Chen, James Y.

    2007-01-01

    A one-pot conversion of tricyclic cationic drugs to their quaternary ammonium forms is described for a widely used bioactive drug: chlorpromazine, a phenothiazine-based antipsychotic. After conversion to its free base, the parent drug was methylated using substoichiometric amounts of methyl iodide dissolved in ether; the charged quaternary…

  6. Combining silver catalysis and organocatalysis: a sequential Michael addition/hydroalkoxylation one-pot approach to annulated coumarins.

    PubMed

    Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Hermann, Gary N; Mertens, Lucas; Raabe, Gerhard; Enders, Dieter

    2014-10-03

    A highly stereoselective one-pot procedure for the synthesis of five-membered annulated hydroxycoumarins has been developed. By merging primary amine catalysis with silver catalysis, a series of functionalized coumarin derivatives were obtained in good yields (up to 91%) and good to excellent enantioselectivities (up to 99% ee) via a Michael addition/hydroalkoxylation reaction. Depending on the substituents on the enynone, the synthesis of annulated six-membered rings is also feasible.

  7. MODELING MULTICOMPONENT ORGANIC CHEMICAL TRANSPORT IN THREE-FLUID-PHASE POROUS MEDIA

    EPA Science Inventory

    A two dimensional finite-element model was developed to predict coupled transient flow and multicomponent transport of organic chemicals which can partition between NAPL, water, gas and solid phases in porous media under the assumption of local chemical equilibrium. as-phase pres...

  8. An In Situ One-Pot Synthetic Approach towards Multivariate Zirconium MOFs.

    PubMed

    Sun, Yujia; Sun, Lixian; Feng, Dawei; Zhou, Hong-Cai

    2016-05-23

    Chemically highly stable MOFs incorporating multiple functionalities are of great interest for applications under harsh environments. Herein, we presented a facile one-pot synthetic strategy to incorporate multiple functionalities into stable Zr-MOFs from mixed ligands of different geometry and connectivity. Via our strategy, tetratopic tetrakis(4-carboxyphenyl)porphyrin (TCPP) ligands were successfully integrated into UiO-66 while maintaining the crystal structure, morphology, and ultrahigh chemical stability of UiO-66. The amount of incorporated TCPP is controllable. Through various combinations of BDC derivatives and TCPP, 49 MOFs with multiple functionalities were obtained. Among them, MOFs modified with FeTCPPCl were demonstrated to be catalytically active for the oxidation of ABTS. We anticipate our strategy to provide a facile route to introduce multiple functionalities into stable Zr-MOFs for a wide variety of potential applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Iodine-catalyzed Csp3-H functionalization of methylhetarenes: One-pot synthesis and cytotoxic evaluation of heteroarenyl-benzimidazoles and benzothiazole.

    PubMed

    Baig, Mirza Feroz; Shaik, Siddiq Pasha; Nayak, V Lakshma; Alarifi, Abdullah; Kamal, Ahmed

    2017-09-01

    An efficient one-pot synthetic procedure has been developed for the preparation of heteroarenyl-benzimidazoles via oxidative C sp3 -H functionalization with o-phenylenediamine using I 2 -DMSO in open air from easily available starting materials. Based on a logical plan a spectrum of multi fundamental reactions like iodination, Kornblum oxidation and amination were brought into one-pot. By using this simple method a library of heteroarenyl-benzimidazoles derivatives (3a-t and 5a-g) and heteroarenyl-benzothiazole (3u) have been synthesized in good to excellent yield and screened for their cytotoxicity against a group of four human cancer cell lines. Among them 3h, 3q and 5b showed significant cytotoxic activities with an IC 50 of 1.69, 1.62 and 2.81µM respectively against lung cancer (A549) cell line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. One-pot size-controlled growth of graphene-encapsulated germanium nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Lee, Eun-Kyung; Kang, Seog-Gyun; Jung, Su-Ho; Son, Seok-Kyun; Nam, Woo Hyun; Kim, Tae-Hoon; Choi, Byong Lyong; Whang, Dongmok

    2018-05-01

    To realize graphene-encapsulated semiconductor nanocrystals (NCs), an additional graphene coating process, which causes shape destruction and chemical contamination, has so far been inevitable. We report herein one-pot growth of uniform graphene-germanium core-shell nanocrystals (Ge@G NCs) in gram scale by the addition of methane as a carbon source during the thermal pyrolysis of germane. The methane plays a critical role in the growth of the graphene shell, as well as in the determination of the nucleation density and diameter of the NCs, similar to a surfactant in the liquid-phase growth of monodisperse NCs. By adjusting the gas ratio of precursors, a mixture of germane and methane, we can control the size of the Ge@G NCs in the range of ∼5-180 nm. The Ge@G NCs were characterized by various microscopic and spectroscopic tools, which indicated that the Ge core is single crystalline, and is completely covered by the graphene shell. We further investigated the merits of the graphene shell, which can enhance the electrical conductivity of nanocrystalline materials.

  11. Lead poisoning from drinking Kombucha tea brewed in a ceramic pot.

    PubMed

    Phan, T G; Estell, J; Duggin, G; Beer, I; Smith, D; Ferson, M J

    Kombucha tea is an alternative therapy that is gaining popularity as a remedy for a diverse range of ailments. We report two cases of symptomatic lead poisoning requiring chelation therapy in a married couple who had been drinking Kombucha tea for six months, brewing the tea in a ceramic pot. We postulate that acids in the tea eluted lead from the glaze pigment used in the ceramic pot, in a manner analogous to elution of lead from crystal decanters by wine and spirits.

  12. PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I.

    PubMed

    Kamal, Ahmed; Tangella, Yellaiah; Manasa, Kesari Lakshmi; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Alarifi, Abdullah

    2015-08-28

    Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-β-carboline acids and dehydrogenation of tetrahydro-β-carbolines to access the corresponding aromatic β-carbolines. To the best of our knowledge this is the first synthesis of β-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of β-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).

  13. Pot/Lid Illusion

    PubMed Central

    Kennedy, John M.

    2016-01-01

    A new everyday visual size illusion is presented—the Pot/Lid illusion. Observers choose an unduly large lid for a pot. We ask whether the optic slant of the pot brim would increase its apparent size or if vision underestimates the size of tilted lids. PMID:27698990

  14. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    NASA Astrophysics Data System (ADS)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  15. A General One-Pot Synthesis of 2H-Indazoles Using an Organophosphorus-Silane System.

    PubMed

    Schoene, Jens; Bel Abed, Hassane; Schmieder, Peter; Christmann, Mathias; Nazaré, Marc

    2018-04-12

    A simple and direct approach for the regioselective construction of the privileged 2H-indazole scaffold is described. The developed one-pot strategy employs a phospholene mediated N-N bond formation to access 2H-indazoles. The amount of organophosphorus reagent was minimized by recycling the phospholene oxide with organosilanes as reductant. Starting from functionalized 2-nitrobenzaldehydes and primary amines a mild reductive cyclisation, using commercially available phospholene oxide and silanes, delivered a wide variety of substituted 2H-indazoles in good to excellent yields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. One-Pot Synthesis of N-Substituted β-Amino Alcohols from Aldehydes and Isocyanides.

    PubMed

    Cioc, Răzvan C; van der Niet, Daan J H; Janssen, Elwin; Ruijter, Eelco; Orru, Romano V A

    2015-05-18

    A practical two-stage one-pot synthesis of N-substituted β-amino alcohols using aldehydes and isocyanides as starting materials has been developed. This method features mild reaction conditions, broad scope, and general tolerance of functional groups. Based on a less common central carbon-carbon bond disconnection, this protocol complements traditional approaches that involve amines and various carbon electrophiles (epoxides, α-halo ketones, β-halohydrins). Medicinally relevant products can be prepared in a concise and efficient way from simple building blocks, as demonstrated in the synthesis of the antiasthma drug salbutamol. Upgrading the synthesis to an enantioselective variant is also feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Emittance formula for slits and pepper-pot measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.

  18. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: aqueous hydration of nitriles to amides.

    PubMed

    Baig, R B Nasir; Varma, Rajender S

    2012-06-25

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involves the in situ generation of magnetic silica (Fe(3)O(4)@SiO(2)) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this catalyst which proceeds exclusively in aqueous medium under neutral conditions.

  19. General multicomponent Yajima-Oikawa system: Painlevé analysis, soliton solutions, and energy-sharing collisions.

    PubMed

    Kanna, T; Sakkaravarthi, K; Tamilselvan, K

    2013-12-01

    We consider the multicomponent Yajima-Oikawa (YO) system and show that the two-component YO system can be derived in a physical setting of a three-coupled nonlinear Schrödinger (3-CNLS) type system by the asymptotic reduction method. The derivation is further generalized to the multicomponent case. This set of equations describes the dynamics of nonlinear resonant interaction between a one-dimensional long wave and multiple short waves. The Painlevé analysis of the general multicomponent YO system shows that the underlying set of evolution equations is integrable for arbitrary nonlinearity coefficients which will result in three different sets of equations corresponding to positive, negative, and mixed nonlinearity coefficients. We obtain the general bright N-soliton solution of the multicomponent YO system in the Gram determinant form by using Hirota's bilinearization method and explicitly analyze the one- and two-soliton solutions of the multicomponent YO system for the above mentioned three choices of nonlinearity coefficients. We also point out that the 3-CNLS system admits special asymptotic solitons of bright, dark, anti-dark, and gray types, when the long-wave-short-wave resonance takes place. The short-wave component solitons undergo two types of energy-sharing collisions. Specifically, in the two-component YO system, we demonstrate that two types of energy-sharing collisions-(i) energy switching with opposite nature for a particular soliton in two components and (ii) similar kind of energy switching for a given soliton in both components-result for two different choices of nonlinearity coefficients. The solitons appearing in the long-wave component always exhibit elastic collision whereas those of short-wave components exhibit standard elastic collisions only for a specific choice of parameters. We have also investigated the collision dynamics of asymptotic solitons in the original 3-CNLS system. For completeness, we explore the three-soliton interaction

  20. One-pot in situ mixed film formation by azo coupling and diazonium salt electrografting.

    PubMed

    Esnault, Charles; Delorme, Nicolas; Louarn, Guy; Pilard, Jean-François

    2013-06-24

    So simple: The in situ synthesis of an aryldiazonium salt and an azo-aryldiazonium salt by azo coupling from sulfanilic acid and aniline is reported. Formation of a mixed organic layer is monitored by cyclic voltammetry and atomic force microscopy. A compact mixed layer is obtained with a global roughness of 0.4 nm and 10-15 % vertical extension in the range 1.5-6 nm. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. One-pot enzymatic glycan remodeling of a therapeutic monoclonal antibody by endoglycosidase S (Endo-S) from Streptococcus pyogenes.

    PubMed

    Tong, Xin; Li, Tiezheng; Orwenyo, Jared; Toonstra, Christian; Wang, Lai-Xi

    2018-04-01

    A facile, one-pot enzymatic glycan remodeling of antibody rituximab to produce homogeneous high-mannose and hybrid type antibody glycoforms is described. This method was based on the unique substrate specificity of the endoglycosidase S (Endo-S) from Streptococcus pyogenes. While Endo-S efficiently hydrolyzes the bi-antennary complex type IgG Fc N-glycans, we found that Endo-S did not hydrolyze the "ground state" high-mannose or hybrid glycoforms, and only slowly hydrolyzed the highly activated high-mannose or hybrid N-glycan oxazolines. Moreover, we found that wild-type Endo-S could efficiently use high-mannose or hybrid glycan oxazolines for transglycosylation without product hydrolysis. The combination of the remarkable difference in substrate specificity of Endo-S allows the deglycosylation of heterogeneous rituximab and the transglycosylation with glycan oxazoline to take place in one-pot without the need of isolating the deglycosylated intermediate or changing the enzyme to afford the high-mannose type, hybrid type, and some selectively modified truncated form of antibody glycoforms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.

    PubMed

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin

    2016-05-16

    The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is

  3. One-pot conjugated linoleic acid production from castor oil by Rhizopus oryzae lipase and resting cells of Lactobacillus plantarum.

    PubMed

    Khaskheli, Abid Ali; Talpur, Farah Naz; Cebeci Aydin, Aysun; Jawaid, Sana; Surhio, Muhammad Ali; Afridi, Hassan Imran

    2017-10-01

    Conjugated linoleic acid (CLA) has attracted as novel type of fatty acids having unusual health-promoting properties such as anticarcinogenic and antiobesitic effects. The present work employed castor oil as substrate for one-pot production of CLA using washed cells of Lactobacillus plantarum (L. plantarum) and lipases as catalysts. Among the screened lipases, the lipase Rhizopus oryzae (ROL) greatly assisted resting cells to produce CLA. Mass spectral analysis of the product showed that two major isomers of CLA were produced in the reaction mixture i.e. cis-9, trans-11 56.55% and trans-10, cis-12 43.45%. Optimum factors for CLA synthesis were found as substrate concentration (8 mg/mL), pH (6.5), washed cell concentration (12% w/v), and incubation time of 20 h. Hence, the combination of ROL with L. plantarum offers one pot production of CLA selectively using castor oil as a cost-effective substrate.

  4. One-pot synthesis of triangular Ag nanoplates with tunable edge length.

    PubMed

    Zhang, Yulan; Yang, Ping; Zhang, Lipeng

    2012-11-01

    Triangular Ag nanoplates were prepared via a one-pot synthesis method by using citrate and poly (vinyl pyrolidone) (PVP). The edge length of the nanoplates was changed from 30 nm to 100 nm with increasing the concentration of PVP and the amount of sodium borohydride in aqueous solutions during preparation. The molar ratio of PVP to Ag nitrate affected the morphologies of the nanoplates. PVP plays an important role for determining the final morphologies and edge length of resulting nanoplates because the amount of PVP affected the viscosity of solutions. The viscosity of solutions kinetically controlled the nucleation and growth of Ag nanoplates. Furthermore, Ag nanoplates were not created in the case of without PVP. After adding sodium chloride, irregular Ag nanoparticles (NPs) instead of nanoplates were fabricated because of a Cl-/O2 etching process. Stacking fault was a key for the growth of triangular nanostructures. Reaction temperature and aging time also affected the formation of Ag nanoplates.

  5. Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing

    NASA Astrophysics Data System (ADS)

    Kopielski, Andreas; Schneider, Anne; Csáki, Andrea; Fritzsche, Wolfgang

    2015-01-01

    The DNA origami technique offers great potential for nanotechnology. Using biomolecular self-assembly, defined 2D and 3D nanoscale DNA structures can be realized. DNA origami allows the positioning of proteins, fluorophores or nanoparticles with an accuracy of a few nanometers and enables thereby novel nanoscale devices. Origami assembly usually includes a thermal denaturation step at 90 °C. Additional components used for nanoscale assembly (such as proteins) are often thermosensitive, and possibly damaged by such harsh conditions. They have therefore to be attached in an extra second step to avoid defects. To enable a streamlined one-step nanoscale synthesis - a so called one-pot folding - an adaptation of the folding procedures is required. Here we present a thermal optimization of this process for a 2D DNA rectangle-shaped origami resulting in an isothermal assembly protocol below 60 °C without thermal denaturation. Moreover, a room temperature protocol is presented using the chemical additive betaine, which is biocompatible in contrast to chemical denaturing approaches reported previously.The DNA origami technique offers great potential for nanotechnology. Using biomolecular self-assembly, defined 2D and 3D nanoscale DNA structures can be realized. DNA origami allows the positioning of proteins, fluorophores or nanoparticles with an accuracy of a few nanometers and enables thereby novel nanoscale devices. Origami assembly usually includes a thermal denaturation step at 90 °C. Additional components used for nanoscale assembly (such as proteins) are often thermosensitive, and possibly damaged by such harsh conditions. They have therefore to be attached in an extra second step to avoid defects. To enable a streamlined one-step nanoscale synthesis - a so called one-pot folding - an adaptation of the folding procedures is required. Here we present a thermal optimization of this process for a 2D DNA rectangle-shaped origami resulting in an isothermal assembly

  6. Microwave-assisted Stille-coupling of steroidal substrates.

    PubMed

    Skoda-Földes, Rita; Pfeiffer, Péter; Horváth, Judit; Tuba, Zoltán; Kollár, László

    2002-07-01

    Steroidal dienes were synthesised by Stille-coupling of the corresponding alkenyl iodides with vinyltributyltin under microwave irradiation in a domestic microwave oven in drastically reduced reaction times. Rate acceleration was observed also in the one-pot Stille-coupling-Diels-Alder reaction of 17-iodo-5alpha-androst-16-ene. Stereoselectivity of cycloaddition was slightly improved with diethyl maleate as the dienophile, compared to that achieved with thermal heating.

  7. Electrochemistry for the Generation of Renewable Chemicals: One-Pot Electrochemical Deoxygenation of Xylose to δ-Valerolactone.

    PubMed

    James, Olusola O; Sauter, Waldemer; Schröder, Uwe

    2017-05-09

    In this study, the electrochemical conversion of xylose to δ-valerolactone via carbonyl intermediates is demonstrated. The conversion was achieved in aqueous media and at ambient conditions. This study also demonstrates that the feedstock for production of renewable chemicals and biofuels through electrochemistry can be extended to primary carbohydrate molecules. This is the first report on a one-pot electrochemical deoxygenation of xylose to δ-valerolactone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Catalytic asymmetric synthesis of 2,2-disubstituted oxetanes from ketones by using a one-pot sequential addition of sulfur ylide.

    PubMed

    Sone, Toshihiko; Lu, Gang; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2009-01-01

    Better the second time around: The title compounds were synthesized by using a one-pot double methylene transfer catalyzed by a heterobimetallic La/Li complex. Chiral amplification in the second step was the key to obtaining oxetanes in high enantiomeric excess (see scheme).

  9. One-pot synthesis of molecular bottle-brush functionalized single-walled carbon nanotubes with superior dispersibility in water.

    PubMed

    Deng, Yong; Hu, Qin; Yuan, Qiulin; Wu, Yan; Ling, Ying; Tang, Haoyu

    2014-01-01

    Molecular bottle-brush functionalized single-walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one-pot synthetic methodology. Elongating the main-chain and side-chain length of molecular bottle-brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Consecutive three-component synthesis of (hetero)arylated propargyl amides by chemoenzymatic aminolysis-Sonogashira coupling sequence.

    PubMed

    Hassan, Sidra; Ullrich, Anja; Müller, Thomas J J

    2015-02-07

    A novel chemoenzymatic three-component synthesis of (hetero)arylated propargyl amides in good yields based upon Novozyme® 435 (Candida antarctica lipase B (CAL-B)) catalyzed aminolysis of methyl carboxylates followed by Sonogashira coupling with (hetero)aryliodides in a consecutive one-pot fashion has been presented. This efficient methodology can be readily concatenated with a CuAAC (Cu catalyzed alkyne azide cycloaddition) as a third consecutive step to furnish 1,4-disubstituted 1,2,3-triazole ligated arylated propargyl amides. This one-pot process can be regarded as a transition metal catalyzed sequence that takes advantage of the copper source still present from the cross-coupling step.

  11. One-Pot Approach to Prepare Organo-silica Hybrid Capillary Monolithic Column with Intact Mesoporous Silica Nanoparticle as Building Block.

    PubMed

    Liu, Shengju; Peng, Jiaxi; Liu, Zheyi; Liu, Zhongshan; Zhang, Hongyan; Wu, Ren'an

    2016-10-04

    A facile "one-pot" approach to prepare organo-silica hybrid capillary monolithic column with intact mesoporous silica nanoparticle (IMSN) as crosslinker and building block was described. An IMSN crosslinked octadecyl-silica hybrid capillary monolithic column (IMSN-C18 monolithic column) was successfully prepared, and the effects of fabrication conditions (e.g. concentration of intact mesoporous silica nanoparticle, polycondensation temperature, content of vinyltrimethoxysilane and stearyl methacrylate) on the structures of the IMSN-C18 monolithic column were studied in detail. The IMSN-C18 hybrid monolithic column possessed uniform morphology, good mechanical and pH stability (pH 1.1-11), which was applied to the separations of alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), as well as proteins. The minimum plate height of 10.5 μm (corresponding to 95000 N m -1 ) for butylbenzene and high reproducibility were achieved. The analysis of tryptic digest of bovine serum albumin (BSA) was carried out on the IMSN-C18 monolithic column by cLC coupled mass spectrometry (cLC-MS/MS), with the protein sequence coverage of 87.5% for BSA, demonstrating its potential application in proteomics.

  12. Ti-Catalyzed Multicomponent Oxidative Carboamination of Alkynes with Alkenes and Diazenes

    PubMed Central

    Davis-Gilbert, Zachary W.; Yao, Letitia J.; Tonks, Ian A.

    2017-01-01

    The inter- or intramolecular oxidative carboamination of alkynes catalyzed by [py2TiCl2NPh]2 is reported. These multicomponent reactions couple alkenes, alkynes and diazenes to form either α,β-unsaturated imines or α-(iminomethyl)cyclopropanes via a TiII/TiIV redox cycle. Each of these products is formed from a common azatitanacyclohexene intermediate that undergoes either β-H elimination or α,γ-coupling, wherein the selectivity is under substrate control. PMID:27790910

  13. Coupling between geochemical reactions and multicomponent gas and solute transport in unsaturated media: A reactive transport modeling study

    USGS Publications Warehouse

    Molins, S.; Mayer, K.U.

    2007-01-01

    The two‐way coupling that exists between biogeochemical reactions and vadose zone transport processes, in particular gas phase transport, determines the composition of soil gas. To explore these feedback processes quantitatively, multicomponent gas diffusion and advection are implemented into an existing reactive transport model that includes a full suite of geochemical reactions. Multicomponent gas diffusion is described on the basis of the dusty gas model, which accounts for all relevant gas diffusion mechanisms. The simulation of gas attenuation in partially saturated landfill soil covers, methane production, and oxidation in aquifers contaminated by organic compounds (e.g., an oil spill site) and pyrite oxidation in mine tailings demonstrate that both diffusive and advective gas transport can be affected by geochemical reactions. Methane oxidation in landfill covers reduces the existing upward pressure gradient, thereby decreasing the contribution of advective methane emissions to the atmosphere and enhancing the net flux of atmospheric oxygen into the soil column. At an oil spill site, methane oxidation causes a reversal in the direction of gas advection, which results in advective transport toward the zone of oxidation both from the ground surface and the deeper zone of methane production. Both diffusion and advection contribute to supply atmospheric oxygen into the subsurface, and methane emissions to the atmosphere are averted. During pyrite oxidation in mine tailings, pressure reduction in the reaction zone drives advective gas flow into the sediment column, enhancing the oxidation process. In carbonate‐rich mine tailings, calcite dissolution releases carbon dioxide, which partly offsets the pressure reduction caused by O2 consumption.

  14. Three-component one-pot synthesis of 4,6-diarylpyrimidin- 2(1H)-ones under solvent-free conditions in the presence of sulfamic acid as a green and reusable catalyst.

    PubMed

    Heravi, Majid M; Ranjbar, Leila; Derikvand, Fatemeh; Alimadadi, Behnoush

    2008-01-01

    A rapid and efficient one-pot method for the synthesis of 4,6-diarylpyrimidin-2(1H)-ones and related heterocycles is described. The condensation of acetophenone derivatives, aldehydes and urea in the presence of sulfamic acid was employed to synthesize a variety of pyrimidinones in moderate to excellent yields. The scope and limitations of this method are described.

  15. One-pot synthesis of active copper-containing carbon dots with laccase-like activities.

    PubMed

    Ren, Xiangling; Liu, Jing; Ren, Jun; Tang, Fangqiong; Meng, Xianwei

    2015-12-14

    Herein, an effective strategy for designing a new type of nanozyme, blue fluorescent laccase mimics, is reported. Active copper-containing carbon dots (Cu-CDs) were synthesized through a simple, nontoxic and one-pot hydrothermal method, which showed favorable photoluminescence properties and good photostability under high-salt conditions or in a broad pH range (3.0-13.5). The Cu-CDs possessed intrinsic laccase-like activities and could catalyze the oxidation of the laccase substrate p-phenylenediamine (PPD) to produce a typical color change from colorless to brown. Poly(methacrylic acid sodium salt) (PMAA) not only was used as the carbon source and reducing agent, but also provided carboxyl groups to assist flocculation between Cu-CDs and polyacrylamide, which facilitated the removal of PPD. Importantly, the intrinsic fluorescence of the as-prepared Cu-CDs could indicate the presence of hydroquinone, one of the substrates of laccases, based on laccase mimics and fluorescence quenching.

  16. One-pot synthesis of magnetic nanoclusters enabling atherosclerosis-targeted magnetic resonance imaging.

    PubMed

    Kukreja, Aastha; Lim, Eun-Kyung; Kang, Byunghoon; Choi, Yuna; Lee, Taeksu; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2014-01-01

    In this study, dextran-encrusted magnetic nanoclusters (DMNCs) were synthesized using a one-pot solution phase method for detection of atherosclerosis by magnetic resonance imaging. Pyrenyl dextran was used as a surfactant because of its electron-stabilizing effect and its amphiphilic nature, rendering the DMNCs stable and water-dispersible. The DMNCs were 65.6±4.3 nm, had a narrow size distribution, and were superparamagnetic with a high magnetization value of 60.1 emu/g. Further, they showed biocompatibility and high cellular uptake efficiency, as indicated by a strong interaction between dextran and macrophages. In vivo magnetic resonance imaging demonstrated the ability of DMNCs to act as an efficient magnetic resonance imaging contrast agent capable of targeted detection of atherosclerosis. In view of these findings, it is concluded that DMNCs can be used as magnetic resonance imaging contrast agents to detect inflammatory disease.

  17. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  18. Porous multi-component material for the capture and separation of species of interest

    DOEpatents

    Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A

    2016-06-21

    A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.

  19. Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via N-(Acyloxy)phthalimides.

    PubMed

    Sherwood, Trevor C; Li, Ning; Yazdani, Aliza N; Dhar, T G Murali

    2018-03-02

    An improved, one-pot Minisci reaction has been developed using visible light, an organic photocatalyst, and carboxylic acids as radical precursors via the intermediacy of in situ-generated N-(acyloxy)phthalimides. The conditions employed are mild, demonstrate a high degree of functional group tolerance, and do not require a large excess of the carboxylic acid reactant. As a result, this reaction can be applied to drug-like scaffolds and molecules with sensitive functional groups, enabling late-stage functionalization, which is of high interest to medicinal chemistry.

  20. Simplified one-pot synthesis of [.sup.18F]SFB for radiolabeling

    DOEpatents

    Olma, Sebastian; Shen, Clifton Kwang-Fu

    2015-08-04

    A non-aqueous single pot synthesis of [.sup.18F]SFB is set forth. The [.sup.18F]SFB produced with this method is then used, for example, to label a peptide or an engineered antibody fragment (diabody) targeting human epidermal growth factor receptor 2 (HER2) as representative examples of labeled compounds for use as an injectable composition to locate abnormal tissue, specifically tumors within an animal or human using a PET scan.

  1. Simplified one-pot synthesis of [.sup.18F]SFB for radiolabeling

    DOEpatents

    Olma, Sebastian; Shen, Clifton Kwang-Fu

    2013-07-16

    A non-aqueous single pot synthesis of [.sup.18F]SFB is set forth. The [.sup.18F]SFB produced with this method is then used, for example, to label a peptide or an engineered antibody fragment (diabody) targeting human epidermal growth factor receptor 2 (HER2) as representative examples of labeled compounds for use as an injectable composition to locate abnormal tissue, specifically tumors within an animal or human using a PET scan.

  2. Multi-enzymatic one-pot reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid with whole-cell biocatalysts.

    PubMed

    Sun, Boqiao; Kantzow, Christina; Bresch, Sven; Castiglione, Kathrin; Weuster-Botz, Dirk

    2013-01-01

    Ursodeoxycholic acid (UDCA) is a bile acid of industrial interest as it is used as an agent for the treatment of primary sclerosing cholangitis and the medicamentous, non-surgical dissolution of gallstones. Currently, it is prepared industrially from cholic acid following a seven-step chemical procedure with an overall yield of <30%. In this study, we investigated the key enzymatic steps in the chemo-enzymatic preparation of UDCA-the two-step reduction of dehydrocholic acid (DHCA) to 12-keto-ursodeoxycholic acid using a mutant of 7β-hydroxysteroid dehydrogenase (7β-HSDH) from Collinsella aerofaciens and 3α-hydroxysteroid dehydrogenase (3α-HSDH) from Comamonas testosteroni. Three different one-pot reaction approaches were investigated using whole-cell biocatalysts in simple batch processes. We applied one-biocatalyst systems, where 3α-HSDH, 7β-HSDH, and either a mutant of formate dehydrogenase (FDH) from Mycobacterium vaccae N10 or a glucose dehydrogenase (GDH) from Bacillus subtilis were expressed in a Escherichia coli BL21(DE3) based host strain. We also investigated two-biocatalyst systems, where 3α-HSDH and 7β-HSDH were expressed separately together with FDH enzymes for cofactor regeneration in two distinct E. coli hosts that were simultaneously applied in the one-pot reaction. The best result was achieved by the one-biocatalyst system with GDH for cofactor regeneration, which was able to completely convert 100 mM DHCA to >99.5 mM 12-keto-UDCA within 4.5 h in a simple batch process on a liter scale. Copyright © 2012 Wiley Periodicals, Inc.

  3. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.

    PubMed

    Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard

    2016-10-01

    The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. New method to access hyperbranched polymers with uniform structure via one-pot polymerization of inimer in microemulsion.

    PubMed

    Min, Ke; Gao, Haifeng

    2012-09-26

    A facile approach is presented for successful synthesis of hyperbranched polymers with high molecular weight and uniform structure by a one-pot polymerization of an inimer in a microemulsion. The segregated space in the microemulsion confined the inimer polymerization and particularly the polymer-polymer reaction within discrete nanoparticles. At the end of polymerization, each nanoparticle contained one hyperbranched polymer that had thousands of inimer units and low polydispersity. The hyperbranched polymers were used as multifunctional macroinitiators for synthesis of "hyper-star" polymers. When a degradable inimer was applied, the hyper-stars showed fast degradation into linear polymer chains with low molecular weight.

  5. One-Pot Conversion of Epoxidized Soybean Oil (ESO) into Soy-Based Polyurethanes by MoCl₂O₂ Catalysis.

    PubMed

    Pantone, Vincenzo; Annese, Cosimo; Fusco, Caterina; Fini, Paola; Nacci, Angelo; Russo, Antonella; D'Accolti, Lucia

    2017-02-21

    An innovative and eco-friendly one-pot synthesis of bio-based polyurethanes is proposed via the epoxy-ring opening of epoxidized soybean oil (ESO) with methanol, followed by the reaction of methoxy bio-polyols intermediates with 2,6-tolyl-diisocyanate (TDI). Both synthetic steps, methanolysis and polyurethane linkage formation, are promoted by a unique catalyst, molybdenum(VI) dichloride dioxide (MoCl₂O₂), which makes this procedure an efficient, cost-effective, and environmentally safer method amenable to industrial scale-up.

  6. Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans

    PubMed Central

    Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir

    2013-01-01

    Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969

  7. One-pot formation of 1,3,4-oxadiazol-2(3H)-ones and dibenzo[c,e]azepines by concomitant cathodic reduction of diazonium salts and phenanthrenequinones.

    PubMed

    Batanero, Belen; Barba, Fructuoso; Martin, Avelino

    2013-09-20

    The one-pot concomitant electrochemical reduction of phenanthrenequinones (1, 2) and arenediazonium salts (3a-f) led to the formation of 1,3,4-oxadiazol-2(3H)-ones (4a-f, 5a) and dibenzo[c,e]azepines (6a-f) when N-methylformamide was used as the solvent. A new pathway, different from those previously described with other aprotic solvents, is proposed. The experimental data support a radical mechanism for the electrochemical process followed by an internal rearrangement to give the products.

  8. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

    PubMed

    Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand

    2016-12-01

    We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of

  9. Maghemite nanoparticles with enhanced magnetic properties: one-pot preparation and ultrastable dextran shell.

    PubMed

    Di Corato, Riccardo; Aloisi, Alessandra; Rella, Simona; Greneche, Jean-Marc; Pugliese, Giammarino; Pellegrino, Teresa; Malitesta, Cosimino; Rinaldi, Rosaria

    2018-05-10

    In the field on nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this paper, a one-pot synthesis of magnetic nanoparticles is presented, with elevated control on particles size from 10 to 40 nm. The monitoring of vacuum level is here introduced as a crucial parameter for achieving a fine particle morphology. Magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by a high resolution XPS analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred in water by a non-derivatized dextran coating. The thermogravimetric analysis confirms that the polysaccharide molecules replace the oleic acid on the surface by stabilizing the particles in aqueous phase and culture media. Preliminary in vitro test reveals as the dextran coated nanoparticles are not passively internalized from the cells. As proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing the cellular internalization.

  10. Multicomponent phase-field model for extremely large partition coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welland, Michael J.; Wolf, Dieter; Guyer, Jonathan E.

    2014-01-01

    We develop a multicomponent phase-field model specially formulated to robustly simulate concentration variations from molar to atomic magnitudes across an interlace, i.e., partition coefficients in excess of 10±23 such as may be the case with species which are predominant in one phase and insoluble in the other. Substitutional interdiffusion on a normal lattice and concurrent interstitial diffusion are included. The composition in the interlace follows the approach of Kim. Kim, and Suzuki [Phys. Rev. E 60, 7186 (1999)] and is compared to that of Wheeler, Boettinger, and McFadden [Phys. Rev. A 45, 7424 (1992)] in the context of large partitioning.more » The model successfully reproduces analytical solutions for binary diffusion couples and solute trapping for the demonstrated cases of extremely large partitioning.« less

  11. Textured Sling Pots

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2010-01-01

    Clay is one of the most satisfying mediums for children to work with. It's relatively inexpensive, and the texture and changes that take place with the clay during firing make it irresistible. Molding clay from rolled-out slabs of clay is an easy way to make simple, shallow vessels or display pots. In this article, the author describes how her…

  12. One-Pot Synthesis of Multifunctional Polymers by Light-Controlled Radical Polymerization and Enzymatic Catalysis with Candida antarctica Lipase B.

    PubMed

    Hrsic, Emin; Keul, Helmut; Möller, Martin

    2015-12-01

    The preparation of multifunctional polymers and block copolymers by a straightforward one-pot reaction process that combines enzymatic transacylation with light-controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light-controlled polymerization, leading to multifunctional methacrylate-based polymers with well-defined microstructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Validation of a numerical method for interface-resolving simulation of multicomponent gas-liquid mass transfer and evaluation of multicomponent diffusion models

    NASA Astrophysics Data System (ADS)

    Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf

    2018-03-01

    The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.

  14. Myocardium Segmentation From DE MRI Using Multicomponent Gaussian Mixture Model and Coupled Level Set.

    PubMed

    Liu, Jie; Zhuang, Xiahai; Wu, Lianming; An, Dongaolei; Xu, Jianrong; Peters, Terry; Gu, Lixu

    2017-11-01

    Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. Results: The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. Conclusion: The results can provide a benchmark for the myocardial segmentation in the literature. Significance: DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients. Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with

  15. An Efficient, Eco-friendly and Sustainable One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Directly from Alcohols Catalyzed by Heteropolyanion-Based Ionic Liquids.

    PubMed

    Fu, Renzhong; Yang, Yang; Ma, Xudong; Sun, Yu; Li, Jin; Gao, Hang; Hu, Huaxing; Zeng, Xiaojun; Yi, Jun

    2017-09-11

    Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1 H )-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.

  16. A facile one-pot hydrothermal synthesis of β-MnO{sub 2} nanopincers and their catalytic degradation of methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Gao; Yu, Lin, E-mail: gych@gdut.edu.cn; Lin, Ting

    2014-09-15

    Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method via a redox reaction between NaClO{sub 3} and MnSO{sub 4} in sulfuric acid solution without using any surfactants or templates. The products were characterized in detail by various techniques including X-ray powder diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, surface area analyzer, field emission scanning electron microscopy and transmission electron microscopy. Results show that the obtained β-MnO{sub 2} nanopincers consist of two sharp nanorods with a diameter of 100–200 nm and a length of 1–2 μm. The concentration of H{sub 2}SO{sub 4} solution plays anmore » important role in controlling the crystal phase and morphology of the final product. A possible formation mechanism for the β-MnO{sub 2} nanopincers was proposed. Moreover, these β-MnO{sub 2} nanostructures exhibited better catalytic performance than the commercial MnO{sub 2} particles to decompose methyl blue (MB) in the presence of H{sub 2}O{sub 2}. - Graphical abstract: Branched β-MnO{sub 2} bipods with novel nanopincer morphology were prepared by a facile one-pot hydrothermal method through oxidizing MnSO{sub 4} with NaClO{sub 3} in H2SO{sub 4} condition without using any surfactants or templates. - Highlights: {sup •} Branched β-MnO{sub 2} nanopincers were prepared by a facile one-pot hydrothermal method. {sup •} Morphology and crystal phase of MnO{sub 2} were controlled by the H{sub 2}SO{sub 4} concentration. {sup •} A possible formation mechanism for the obtained β-MnO{sub 2} nanopincers was proposed. {sup •} The products showed great catalytic performance in degradation of methylene blue.« less

  17. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy.

    PubMed

    Thayer, Desiree A; Wong, Chi-Huey

    2006-09-18

    Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.

  18. One-pot, one-step synthesis of 2,5-diformylfuran from carbohydrates over Mo-containing Keggin heteropolyacids.

    PubMed

    Liu, Yu; Zhu, Liangfang; Tang, Jinqiang; Liu, Mingyang; Cheng, Ruodi; Hu, Changwei

    2014-12-01

    In this work, a one-pot strategy for directly converting fructose into 2,5-diformylfuran (DFF) over Mo-containing Keggin heteropolyacids (HPAs) in open air is developed. H3 PMo12 O40 HPA is found to show high activity and selectivity to the formation of DFF owing to its higher Brønsted acidity and moderate redox potential. The partial substitution of the H(+) in H3 PMo12 O40 with Cs(+) leads to the heterogenization of the HPA by forming its cesium salts Csx H3-x PMo12 (x=0.5, 1.5, and 2.5). A satisfactory yield of 69.3% to DFF is obtained over Cs0.5 H2.5 PMo12 polyoxometalate after deliberate optimization of the reaction conditions. The heterogenized polyoxometalate could be recycled and reused without significant loss of catalytic activity for five runs. The produced DFF could be separated from the resulting mixture by an adsorption-desorption method using activated carbon as the adsorbent and furfural as the desorbent. A highest isolated yield of 58.2% is obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Base-promoted one-pot tandem reaction of 3-(1-alkynyl)chromones under microwave irradiation to functionalized amino-substituted xanthones.

    PubMed

    Liu, Yang; Huang, Liping; Xie, Fuchun; Hu, Youhong

    2010-09-17

    A base-promoted one-pot tandem reaction has been developed from 3-(1-alkynyl)chromones with various acetonitriles to afford functionalized amino-substituted xanthones 3 under microwave irradiation. This tandem process involves multiple reactions, such as Michael addition/cyclization/1,2-addition, without a transition metal catalyst. This method provides an efficient approach to build up natural product-like diversified amino-substituted xanthone scaffolds rapidly.

  20. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  1. One-Pot Amide Bond Formation from Aldehydes and Amines via a Photoorganocatalytic Activation of Aldehydes.

    PubMed

    Papadopoulos, Giorgos N; Kokotos, Christoforos G

    2016-08-19

    A mild, one-pot, and environmentally friendly synthesis of amides from aldehydes and amines is described. Initially, a photoorganocatalytic reaction of aldehydes with di-isopropyl azodicarboxylate leads to an intermediate carbonyl imide, which can react with a variety of amines to afford the desired amides. The initial visible light-mediated activation of a variety of monosubstituted or disubstituted aldehydes is usually fast, occurring in a few hours. Following the photocatalytic reaction, addition of the primary amine at room temperature or the secondary amine at elevated temperatures leads to the corresponding amide from moderate to excellent yields without epimerization. This methodology was applied in the synthesis of Moclobemide, a drug against depression and social anxiety.

  2. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa.

    PubMed

    Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro

    2010-11-16

    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C(6)-C(7)-C(6) diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C(6)-C(3) coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H(2)O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C(6)-C(7)-C(6) scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes.

  3. Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from Oryza sativa

    PubMed Central

    Morita, Hiroyuki; Wanibuchi, Kiyofumi; Nii, Hirohiko; Kato, Ryohei; Sugio, Shigetoshi; Abe, Ikuro

    2010-01-01

    Curcuminoid synthase (CUS) from Oryza sativa is a plant-specific type III polyketide synthase (PKS) that catalyzes the remarkable one-pot formation of the C6-C7-C6 diarylheptanoid scaffold of bisdemethoxycurcumin, by the condensation of two molecules of 4-coumaroyl-CoA and one molecule of malonyl-CoA. The crystal structure of O. sativa CUS was solved at 2.5-Å resolution, which revealed a unique, downward expanding active-site architecture, previously unidentified in the known type III PKSs. The large active-site cavity is long enough to accommodate the two C6-C3 coumaroyl units and one malonyl unit. Furthermore, the crystal structure indicated the presence of a putative nucleophilic water molecule, which forms hydrogen bond networks with Ser351-Asn142-H2O-Tyr207-Glu202, neighboring the catalytic Cys174 at the active-site center. These observations suggest that CUS employs unique catalytic machinery for the one-pot formation of the C6-C7-C6 scaffold. Thus, CUS utilizes the nucleophilic water to terminate the initial polyketide chain elongation at the diketide stage. Thioester bond cleavage of the enzyme-bound intermediate generates 4-coumaroyldiketide acid, which is then kept within the downward expanding pocket for subsequent decarboxylative condensation with the second 4-coumaroyl-CoA starter, to produce bisdemethoxycurcumin. The structure-based site-directed mutants, M265L and G274F, altered the substrate and product specificities to accept 4-hydroxyphenylpropionyl-CoA as the starter to produce tetrahydrobisdemethoxycurcumin. These findings not only provide a structural basis for the catalytic machinery of CUS but also suggest further strategies toward expanding the biosynthetic repertoire of the type III PKS enzymes. PMID:21041675

  4. Scaled Particle Theory for Multicomponent Hard Sphere Fluids Confined in Random Porous Media.

    PubMed

    Chen, W; Zhao, S L; Holovko, M; Chen, X S; Dong, W

    2016-06-23

    The formulation of scaled particle theory (SPT) is presented for a quite general model of fluids confined in a random porous media, i.e., a multicomponent hard sphere (HS) fluid in a multicomponent hard sphere or a multicomponent overlapping hard sphere (OHS) matrix. The analytical expressions for pressure, Helmholtz free energy, and chemical potential are derived. The thermodynamic consistency of the proposed theory is established. Moreover, we show that there is an isomorphism between the SPT for a multicomponent system and that for a one-component system. Results from grand canonical ensemble Monte Carlo simulations are also presented for a binary HS mixture in a one-component HS or a one-component OHS matrix. The accuracy of various variants derived from the basic SPT formulation is appraised against the simulation results. Scaled particle theory, initially formulated for a bulk HS fluid, has not only provided an analytical tool for calculating thermodynamic properties of HS fluid but also helped to gain very useful insight for elaborating other theoretical approaches such as the fundamental measure theory (FMT). We expect that the general SPT for multicomponent systems developed in this work can contribute to the study of confined fluids in a similar way.

  5. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine.

    PubMed

    An, Xiao-De; Yu, Shouyun

    2015-06-05

    A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.

  6. One-pot synthesis of spiropyrroloquinoline-isoindolinone and their aza-analogs via the Ugi-4CR/metal-free intramolecular bis-annulation process.

    PubMed

    Ghandi, Mehdi; Zarezadeh, Nahid; Abbasi, Alireza

    2015-08-14

    This presentation discloses a one-pot synthesis of a series of spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds. The reaction proceeds by the combination of a Ugi four-component reaction (4CR) and two intramolecular cyclizations under metal-free conditions. The proof of the structures relies on analytical investigation and X-ray crystallography.

  7. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  8. Heat transfer and evaporative cooling in the function of pot-in-pot coolers

    NASA Astrophysics Data System (ADS)

    Chemin, Arsène; Levy Dit Vehel, Victor; Caussarieu, Aude; Plihon, Nicolas; Taberlet, Nicolas

    2018-03-01

    A pot-in-pot cooler is an affordable electricity-free refrigerator which uses the latent heat of vaporization of water to maintain a low temperature inside an inner compartment. In this article, we experimentally investigate the influence of the main physical parameters in model pot-in-pot coolers. The effect of the wind on the evaporation rate of the cooling fluid is studied in model experiments while the influence of the fluid properties (thermal conductivity, specific heat, and latent heat) is elucidated using a variety of cooling fluids (water, ethanol, and ether). A model based on a simplified heat conduction equation is proposed and is shown to be in good quantitative agreement with the experimental measurements.

  9. Potting procedure for electronic components

    NASA Technical Reports Server (NTRS)

    Rubino, A. G.; Zimmerman, J.

    1977-01-01

    Potting process is modified to effect a match more closely between embedded electronic components, potting mediums, and thermal environment. Application of room-temperature vulcanizing silicone rubber band cured in modified thermal cycle minimizes coil-to-resin adhesion and thus lowers stresses between transformer and potting compound.

  10. Criteria for Modeling in LES of Multicomponent Fuel Flow

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2009-01-01

    A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.

  11. Structure-induced microalloying effect in multicomponent alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Gu -Qing; Yang, Liang; Wu, Shi -Yang

    2016-04-28

    In this study, the microalloying effect on glass-forming ability (GFA) has been investigated from the structural aspect, by performing synchrotron radiation x-ray diffraction and absorption measurements coupled with simulations in the NiNbZr ternary system. We propose a new parameter which counts the fraction of the fivefold symmetries in all clusters and find it is strongly associated with the GFA. In particular, this structural parameter has the highest value in a composition where the best GFA is achieved. The present work provides an in-depth understanding of microalloying-induced high GFAs in multicomponent alloys.

  12. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.

    PubMed

    Chhabra, Rahul; Moralez, Jesus G; Raez, Jose; Yamazaki, Takeshi; Cho, Jae-Young; Myles, Andrew J; Kovalenko, Andriy; Fenniri, Hicham

    2010-01-13

    A one-pot strategy for the nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles (NPs) on self-assembled rosette nanotubes (RNTs) is described. Tapping-mode atomic force microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and selected-area electron diffraction were used to establish the structure and organization of this hybrid material. Notably, we found that the Au NPs formed were nearly monodisperse clusters of Au(55) (1.4-1.5 nm) nestled in pockets on the RNT surface.

  13. Detailed finite element method modeling of evaporating multi-component droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diddens, Christian, E-mail: C.Diddens@tue.nl

    The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less

  14. Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrödinger-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Sun, Baonan; Lian, Zhan

    2018-02-01

    By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrödinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrödinger-Boussinesq system are generated.

  15. Facile one-pot synthesis of flower-like AgCl microstructures and enhancing of visible light photocatalysis

    PubMed Central

    2013-01-01

    Flower-like AgCl microstructures with enhanced visible light-driven photocatalysis are synthesized by a facile one-pot hydrothermal process for the first time. The evolution process of AgCl from dendritic structures to flower-like octagonal microstructures is investigated quantitatively. Furthermore, the flower-like AgCl microstructures exhibit enhanced ability of visible light-assisted photocatalytic degradation of methyl orange. The enhanced photocatalytic activity of the flower-like AgCl microstructure is attributed to its three-dimensional hierarchical structure exposing with [100] facets. This work provides a fresh view into the insight of electrochemical process and the application area of visible light photocatalysts. PMID:24153176

  16. Diversity-Oriented Synthesis of Coumarin-Linked Benzimidazoles via a One-Pot, Three-Step, Intramolecular Knoevenagel Cyclization.

    PubMed

    Yao, Po-Hsin Eric; Kumar, Sunil; Liu, Yu-Li; Fang, Chiu-Ping; Liu, Chia-Chen; Sun, Chung-Ming

    2017-04-10

    Diversity-oriented synthesis of coumarin-linked benzimidazoles from N-(2-aminophenyl)-2-cyanoacetamide was achieved via a one-pot, three-step sequential reaction in excellent yields. In situ intramolecular cyclization of the cyanoacetamide afforded benzimidazoles which subsequently underwent a Knoevenagel condensation of the 2-cyanomethylbenzimidazoles with salicylaldehydes promoted by triethylamine to reach the target compounds. An important intermediate, 2-(2-imino-2H-chromen-3-yl)-1H-benzimidazole was characterized by X-ray analysis and further hydrolyzed to 2-(coumarin-3-yl)benzimidazole in acidic condition. Among the synthesized compounds, some were found to be promising inhibitors of porcine kidney d-amino acid oxidase (pkDAO).

  17. One-pot synthesis and cytotoxicity studies of new Mannich base derivatives of polyether antibiotic--lasalocid acid.

    PubMed

    Huczyński, Adam; Rutkowski, Jacek; Borowicz, Izabela; Wietrzyk, Joanna; Maj, Ewa; Brzezinski, Bogumil

    2013-09-15

    Seven Mannich base derivatives of polyether antibiotic Lasalocid acid (2a-2g) were synthesized and screened for their antiproliferative activity against various human cancer cell lines. A novel chemoselective one-pot synthesis of these Mannich bases was developed. Compounds 2a-2c and 2g with sterically smaller dialkylamine substituent, displayed potent antiproliferative activity (IC50: 3.2-7.3 μM), and demonstrated higher than twofold selectivity for specific type of cancer. The nature of Mannich base substituent on C-2 atom at the aromatic ring may be critical in the search for selectivity towards a particular cancer cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Chen, Li Qiang; Li, Yuan Fang; Zhao, Xi Juan; Peng, Li; Zhi Huang, Cheng

    2010-07-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  19. Marital Contracts of One- Versus Two-Career Couples.

    ERIC Educational Resources Information Center

    Wachowiak, Dale G.; Barret, Robert L.

    One- and two-career married couples, though existing on comparable total family incomes, may be experiencing very different marital situations. The marital agreements of one- and two-career couples were compared to examine the relationship between marital adjustment and the one- versus two-career situation. Married college students and their…

  20. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging.

    PubMed

    Hussain, Sahid; Won, Nayoun; Nam, Jutaek; Bang, Jiwon; Chung, Hyokyun; Kim, Sungjee

    2009-07-13

    True colors: High-quality InP and InP/ZnS quantum dots (QDs) are obtained by means of a simple one-pot method in the presence of polyethylene glycol (PEG). Rapid and size-controlled reactions lead to highly crystalline and nearly monodisperse QDs at relatively low temperatures. The particles emit from cyan blue to far-red, and are successfully used in cellular imaging (see figure).

  1. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    PubMed

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  2. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH3-SCR 2: Solid-state Ion Exchange and One-pot Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.

    2015-01-01

    Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents bothmore » as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 ºC. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 ºC. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the

  3. From supramolecular polymers to multi-component biomaterials.

    PubMed

    Goor, Olga J G M; Hendrikse, Simone I S; Dankers, Patricia Y W; Meijer, E W

    2017-10-30

    The most striking and general property of the biological fibrous architectures in the extracellular matrix (ECM) is the strong and directional interaction between biologically active protein subunits. These fibers display rich dynamic behavior without losing their architectural integrity. The complexity of the ECM taking care of many essential properties has inspired synthetic chemists to mimic these properties in artificial one-dimensional fibrous structures with the aim to arrive at multi-component biomaterials. Due to the dynamic character required for interaction with natural tissue, supramolecular biomaterials are promising candidates for regenerative medicine. Depending on the application area, and thereby the design criteria of these multi-component fibrous biomaterials, they are used as elastomeric materials or hydrogel systems. Elastomeric materials are designed to have load bearing properties whereas hydrogels are proposed to support in vitro cell culture. Although the chemical structures and systems designed and studied today are rather simple compared to the complexity of the ECM, the first examples of these functional supramolecular biomaterials reaching the clinic have been reported. The basic concept of many of these supramolecular biomaterials is based on their ability to adapt to cell behavior as a result of dynamic non-covalent interactions. In this review, we show the translation of one-dimensional supramolecular polymers into multi-component functional biomaterials for regenerative medicine applications.

  4. Marijuana (Weed, Pot) Facts

    MedlinePlus

    ... That People Abuse » Marijuana (Weed, Pot) Facts Marijuana (Weed, Pot) Facts Listen Marijuana is a green, brown, or gray mix of dried, shredded leaves and flowers from the marijuana plant. Marijuana can be rolled up and smoked ...

  5. One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process.

    PubMed

    Ghandi, Mehdi; Salahi, Saleh; Taheri, Abuzar; Abbasi, Alireza

    2018-05-01

    A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.

  6. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    PubMed

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. One-pot tandem Ugi-4CR/S(N)Ar approach to highly functionalized quino[2,3-b][1,5]benzoxazepines.

    PubMed

    Ghandi, Mehdi; Zarezadeh, Nahid; Abbasi, Alireza

    2016-05-01

    We have developed a convenient and facile method for the synthesis of functionalized diverse quino[2,3-b][1,5]benzoxazepines. These new compounds were synthesized through a one-pot sequential Ugi-4CR/base-free intramolecular aromatic nucleophilic substitution (S(N)Ar) reaction in moderate to good yields from readily available starting materials. Structural confirmation of the products is confirmed by analytical data and X-ray crystallography.

  8. An efficient route for annulation of pyrimidines to steroids and non-steroids via a base catalyzed one-pot three component reaction.

    PubMed

    Saikia, Pallabi; Gogoi, Shyamalee; Gogoi, Sanjib; Boruah, Romesh C

    2014-10-01

    A facile strategy for the synthesis of steroidal A- and D-ring fused pyrimidines has been accomplished in high yields via a one-pot reaction of steroidal ketones, aromatic aldehydes and amidine derivatives in presence of potassium tert-butoxide in refluxing ethanol. The generality of the reaction was also extended to non-steroidal ketones. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Greener and rapid access to bio-active heterocycles: one-pot solvent-free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles

    EPA Science Inventory

    A novel one-pot solvent free synthesis of 1,3,4-oxadiazoles and 1,3,4-thiadiazoles by condensation of acid hydrazide and triethyl orthoalkanates under microwave irradiations is reported. This green protocol was catalyzed efficiently by solid supported Nafion®NR50 and phosphorus p...

  10. Some aspects of multicomponent excess free energy models with subregular binaries

    NASA Astrophysics Data System (ADS)

    Cheng, Weiji; Ganguly, Jibamitra

    1994-09-01

    We have shown that two of the most commonly used multicomponent formulations of excess Gibbs free energy of mixing, those by WOHL (1946, 1953) and REDLICH and KISTER (1948), are formally equivalent if the binaries are constrained to have subregular properties, and also that other subregular multicomponent formulations developed in the mineralogical and geochemical literature are equivalent to, or higher order extensions of, these formulations. We have also presented a compact derivation of a multicomponent subregular solution leading to the same expression as derived by HELFFRICH and WOOD (1989). It is shown that Wohl's multicomponent formulation involves combination of binary excess free energies, which are calculated at compositions obtained by normal projection of the multicomponent composition onto the bounding binary joins, and is, thus, equivalent to the formulation developed by MUGGIANU et al. (1975). Finally, following the lead of HILLERT (1980), we have explored the limiting behavior of regular and subregular ternary solutions when a pair of components become energetically equivalent, and have, thus, derived an expression for calculating the ternary interaction parameter in a ternary solution from a knowledge of the properties of the bounding binaries, when one of these binaries is nearly ideal.

  11. Synthesis of Diverse Nitrogen-Enriched Heterocyclic Scaffolds Using a Suite of Tunable One-Pot Multicomponent Reactions

    PubMed Central

    2015-01-01

    Five elegant and switchable three-component reactions which enable access to a new series of nitrogen-containing heterocycles are reported. A novel one-step addition of an isocyanide to a hydrazine derived Schiff base affords unique six-membered pyridotriazine scaffolds (A and E). With slight modification of reaction conditions and replacement of the nucleophilic isocyanide moiety with different electrophiles (i.e., isocyanates, isothiocyanates, cyclic anhydrides, and acyl chlorides) five-membered triazolopyridine scaffolds (B, D, F, G) are generated in a single step. Furthermore, the use of phenyl hydrazine enables access to dihydroindazole-carboxamides, devoid of a bridge-head nitrogen (C). All protocols are robust and tolerate a diverse collection of reactants, and as such, it is expected that the new scaffolds and associated chemistry will garner high interest from medicinal chemists involved in either file enhancement or specific target-related drug discovery campaigns. PMID:24788091

  12. Organic crystal-binding peptides: morphology control and one-pot formation of protein-displaying organic crystals

    NASA Astrophysics Data System (ADS)

    Niide, Teppei; Ozawa, Kyohei; Nakazawa, Hikaru; Oliveira, Daniel; Kasai, Hitoshi; Onodera, Mari; Asano, Ryutaro; Kumagai, Izumi; Umetsu, Mitsuo

    2015-11-01

    Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals.Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar

  13. Efficiency of chemotherapy coupled with thermotherapy against citrus HLB

    USDA-ARS?s Scientific Manuscript database

    Six independent experiments were carried out to evaluate the effectiveness of the chemotherapy coupled with the thermotherapy on pot-contained HLB-affected plants based on our previous results from graft-based methods. Three-year old potted HLB-affected citrus plants were exposed to 4 thermotherapy ...

  14. Enantioselective organocatalytic one-pot amination/aza-Michael/aldol condensation reaction sequence: synthesis of 3-pyrrolines with a quaternary stereocenter.

    PubMed

    Desmarchelier, Alaric; Coeffard, Vincent; Moreau, Xavier; Greck, Christine

    2012-10-08

    Primary amine-catalyzed direct conversion of α,α-disubstituted aldehydes into 3-pyrrolines with a quaternary stereocenter is reported. The one-pot enantioselective sequence is based on a α-amination, an aza-Michael addition of hydrazine, an aldol condensation dehydratation and proceeds with good yields and excellent levels of enantioselectivity. Synthetically attractive applications including the formation of aziridinopyrrolidine or epoxypyrrolidine derivatives with good yields and selectivities are also described. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Highly Stereocontrolled, One-Pot Approach toward Pyrrolobenzoxazinones and Pyrroloquinazolinones through a Lewis Acid-Catalyzed [3 + 2]-Cycloannulation Process.

    PubMed

    Boomhoff, Michael; Ukis, Rostyslav; Schneider, Christoph

    2015-08-21

    We report herein a stereocontrolled [3 + 2]-cycloheteroannulation of bis-silyl dienediolate 1 with 2-aminobenzoic acid- and 2-aminobenzamide-derived imines to furnish highly substituted pyrrolo[1,2-a]benzoxazinones 3 and pyrrolo[1,2-a]quinazolinones 4, respectively, in good overall yields. This one-pot process rapidly generates molecular complexity and comprises a Lewis acid-catalyzed, vinylogous Mannich reaction of 1 followed by an intramolecular N,O-acetal- and N,N-aminal formation, respectively, which proceeds with good to excellent stereocontrol.

  16. Dissipative effects in multi-component systems

    NASA Astrophysics Data System (ADS)

    El, Andrej; Bouras, Ioannis; Xu, Zhe; Greiner, Carsten

    2013-05-01

    Using a smooth initial condition of Glauber type in the kinetic transport algorithm BAMPS we investigate differences in behavior of a multi-component system and its one-component equivalent with the same η/s value. Flow harmonic coefficients v2 and v4 are shown to have very low sensitivity to the details of microscopic interactions in the system.

  17. Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water.

    PubMed

    Baker, Matthew B; Gosens, Ronald P J; Albertazzi, Lorenzo; Matsumoto, Nicholas M; Palmans, Anja R A; Meijer, E W

    2016-02-02

    The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer. By creating a peptide-dye-monomer conjugate, we were able to measure high degrees of monomer incorporation and to visualize the equal distribution of monomers within the supramolecular polymer. Furthermore, by tracking the movement of monomers, we uncovered small differences in the dynamics of the bioactive monomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team

    Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.

  19. No-warp potted circuits

    NASA Technical Reports Server (NTRS)

    Robinson, W. W.

    1979-01-01

    Sponge inserts compensate for potting-compound expansion and relieve thermal stresses on circuit boards. Technique quality of production runs on PC boards intended for applications in environments less severe than those for aerospace equipment. Pads reduce weight of modules because they weigh far less than potting compound they displace.

  20. The Madden-Julian Oscillation in the NCAR Community Earth System Model Coupled Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Chatterjee, A.; Anderson, J. L.; Moncrieff, M.; Collins, N.; Danabasoglu, G.; Hoar, T.; Karspeck, A. R.; Neale, R. B.; Raeder, K.; Tribbia, J. J.

    2014-12-01

    We present a quantitative evaluation of the simulated MJO in analyses produced with a coupled data assimilation (CDA) framework developed at the National Center for Atmosphere Research. This system is based on the Community Earth System Model (CESM; previously known as the Community Climate System Model -CCSM) interfaced to a community facility for ensemble data assimilation (Data Assimilation Research Testbed - DART). The system (multi-component CDA) assimilates data into each of the respective ocean/atmosphere/land model components during the assimilation step followed by an exchange of information between the model components during the forecast step. Note that this is an advancement over many existing prototypes of coupled data assimilation systems, which typically assimilate observations only in one of the model components (i.e., single-component CDA). The more realistic treatment of air-sea interactions and improvements to the model mean state in the multi-component CDA recover many aspects of MJO representation, from its space-time structure and propagation (see Figure 1) to the governing relationships between precipitation and sea surface temperature on intra-seasonal scales. Standard qualitative and process-based diagnostics identified by the MJO Task Force (currently under the auspices of the Working Group on Numerical Experimentation) have been used to detect the MJO signals across a suite of coupled model experiments involving both multi-component and single-component DA experiments as well as a free run of the coupled CESM model (i.e., CMIP5 style without data assimilation). Short predictability experiments during the boreal winter are used to demonstrate that the decay rates of the MJO convective anomalies are slower in the multi-component CDA system, which allows it to retain the MJO dynamics for a longer period. We anticipate that the knowledge gained through this study will enhance our understanding of the MJO feedback mechanisms across the air

  1. Postural Tachycardia Syndrome (POTS)

    PubMed Central

    Low, Phillip A.; Sandroni, Paola; Joyner, Michael; Shen, Win-Kuang

    2014-01-01

    Introduction POTS is defined as the development of orthostatic symptoms associated with a heart rate (HR) increment ≥30, usually to ≥120 bpm without orthostatic hypotension. Symptoms of orthostatic intolerance are those due to brain hypoperfusion and those due to sympathetic overaction. Methods We provide a review of POTS based primarily on work from the Mayo Clinic. Results Females predominate over males by 5:1. Mean age of onset in adults is about 30 years and most patients are between the ages of 20–40 years. Pathophysiologic mechanisms (not mutually exclusive) include peripheral denervation, hypovolemia, venous pooling, β-receptor supersensitivity, psychologic mechanisms, and presumed impairment of brain stem regulation. Prolonged deconditioning may also interact with these mechanisms to exacerbate symptoms. The evaluation of POTS requires a focused history and examination, followed by tests that should include HUT, some estimation of volume status and preferably some evaluation of peripheral denervation and hyperadrenergic state. All patients with POTS require a high salt diet, copious fluids, and postural training. Many require β-receptor antagonists in small doses and low-dose vasoconstrictors. Somatic hypervigilance and psychologic factors are involved in a significant proportion of patients. Conclusions POTS is heterogeneous in presentation and mechanisms. Major mechanisms are denervation, hypovolemia, deconditioning, and hyperadrenergic state. Most patients can benefit from a pathophysiologically based regimen of management. PMID:19207771

  2. Organocatalytic Enantioselective Michael/Cyclization Domino Reaction between 3-Amideoxindoles and α,β-Unsaturated Aldehydes: One-Pot Preparation of Chiral Spirocyclic Oxindole-γ-lactams.

    PubMed

    Yang, Peng; Wang, Xiao; Chen, Feng; Zhang, Zheng-Bing; Chen, Chao; Peng, Lin; Wang, Li-Xin

    2017-04-07

    The first organocatalytic enantioselective Michael/cyclization domino reaction between 3-amideoxindoles and α,β-unsaturated aldehydes is described. After sequential oxidation with pyridinium chlorochromate, a direct and one-pot preparation of highly sterically hindered spirocyclic oxindole-γ-lactams was achieved in 51-81% yields with 75-97% ee and ≤80/20 dr.

  3. Stereoselective Borylative Ketone-Diene Coupling

    PubMed Central

    Cho, Hee Yeon; Yu, Zhiyong; Morken, James P.

    2011-01-01

    In the presence of catalytic Ni(cod)2 and P(t-Bu)3, ketones, dienes, and B2(pin)2 undergo a stereoselective multicomponent coupling reaction. Upon oxidation, the reaction furnishes 1,3-diols as the major reaction product. PMID:21905748

  4. The Solidification of Multicomponent Alloys

    PubMed Central

    Boettinger, William J.

    2017-01-01

    Various topics taken from the author’s research portfolio that involve multicomponent alloy solidification are reviewed. Topics include: ternary eutectic solidification and Scheil-Gulliver paths in ternary systems. A case study of the solidification of commercial 2219 aluminum alloy is described. Also described are modifications of the Scheil-Gulliver analysis to treat dendrite tip kinetics and solid diffusion for multicomponent alloys. PMID:28819348

  5. Simple One-Pot Syntheses and Characterizations of Free Fluoride- and Bifluoride-Containing Polymers Soluble in Non-Aqueous Solvents

    PubMed Central

    Steinle, Dominik; Friedrich, Laura; Bevilacqua, Nico; von Hauff, Elizabeth; Gschwind, Fabienne

    2016-01-01

    One of the problems that arise with bifluoride- or fluoride-containing compounds is their poor solubility in non-aqueous solvents. We report herein a facile one-pot synthesis and the chemical analysis of fluoride/bifluoride-containing polymers, which are soluble in MeCN. Different polymers, such as Polyvinylacetate or Polyethylene imine and saccharides, such as maltodextrin, were complexed with ammonium (bi)fluoride using hydrogen bonds to form the desired (bi)fluoride-containing compounds. The newly formed hydrogen bonding (bi)fluoride-doped polymer matrices were analyzed using infrared and nuclear magnetic resonance spectroscopies, and X-ray diffraction. The promising materials also underwent impedance spectroscopy, conductivity measurements and preliminary tests as electrolytes for room temperature fluoride ion batteries along with an analysis of their performance. PMID:28774092

  6. MOFAT: A TWO-DIMENSIONAL FINITE ELEMENT PROGRAM FOR MULTIPHASE FLOW AND MULTICOMPONENT TRANSPORT - PROGRAM DOCUMENTATION AND USER'S GUIDE

    EPA Science Inventory

    This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...

  7. A continuum theory for multicomponent chromatography modeling.

    PubMed

    Pfister, David; Morbidelli, Massimo; Nicoud, Roger-Marc

    2016-05-13

    A continuum theory is proposed for modeling multicomponent chromatographic systems under linear conditions. The model is based on the description of complex mixtures, possibly involving tens or hundreds of solutes, by a continuum. The present approach is shown to be very efficient when dealing with a large number of similar components presenting close elution behaviors and whose individual analytical characterization is impossible. Moreover, approximating complex mixtures by continuous distributions of solutes reduces the required number of model parameters to the few ones specific to the characterization of the selected continuous distributions. Therefore, in the frame of the continuum theory, the simulation of large multicomponent systems gets simplified and the computational effectiveness of the chromatographic model is thus dramatically improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dual role of allylsamarium bromide as a Grignard reagent and a single electron transfer reagent in the one-pot synthesis of terminal olefins.

    PubMed

    Li, Ying; Hu, Yuan-Yuan; Zhang, Song-Lin

    2013-11-21

    The utility of allylsamarium bromide, both as a nucleophilic reagent and a single-electron transfer reagent, in the reaction of carbonyl compounds with allylsamarium bromide in the presence of diethyl phosphate is reported in this communication. From a synthetic point of view, a simple one-pot method for the preparation of terminal olefins is developed.

  9. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor ismore » critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.« less

  10. Culturable fungi in potting soils and compost.

    PubMed

    Haas, Doris; Lesch, Susanne; Buzina, Walter; Galler, Herbert; Gutschi, Anna Maria; Habib, Juliana; Pfeifer, Bettina; Luxner, Josefa; Reinthaler, Franz F

    2016-11-01

    In the present study the spectrum and the incidence of fungi in potting soils and compost was investigated. Since soil is one of the most important biotopes for fungi, relatively high concentrations of fungal propagules are to be expected. For detection of fungi, samples of commercial soils, compost and soils from potted plants (both surface and sub-surface) were suspended and plated onto several mycological media. The resulting colonies were evaluated qualitatively and quantitatively. The results from the different sampling series vary, but concentrations on the surface of potted plants and in commercial soils are increased tenfold compared to compost and sub-surface soils. Median values range from 9.5 × 10(4) colony forming units (CFU)/g to 5.5 × 10(5) CFU/g. The spectrum of fungi also varies in the soils. However, all sampling series show high proportion of Aspergillus and Penicillium species, including potentially pathogenic species such as Aspergillus fumigatus. Cladosporium, a genus dominant in the ambient air, was found preferably in samples which were in contact with the air. The results show that potentially pathogenic fungi are present in soils. Immunocompromised individuals should avoid handling soils or potted plants in their immediate vicinity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. One-pot synthesis and biodistribution of fluorine-18 labeled serum albumin for vascular imaging.

    PubMed

    Basuli, Falguni; Zhang, Xiang; Williams, Mark R; Seidel, Jurgen; Green, Michael V; Choyke, Peter L; Swenson, Rolf E; Jagoda, Elaine M

    2018-05-30

    Equilibrium single-photon radionuclide imaging methods for assessing cardiac function and the integrity of the vascular system have long been in use for both clinical and research purposes. However, positron-emitting blood pool agents that could provide PET equivalents to these (and other) clinical procedures have not yet been adopted despite technical imaging advantages offered by PET. Our goal was to develop a PET blood pool tracer that not only meets necessary in vivo biological requirements but can be produced with an uncomplicated and rapid synthesis method which would facilitate clinical translation. Herein, albumin labeled with fluorine-18 was synthesized using a one-pot method and evaluated in vitro and in vivo in rats. A ligand (NODA-Bz-TFPE), containing NODA attached to a tetrafluorophenylester (TFPE) via a phenyl linker (Bz), was labeled with aluminum fluoride (Al[ 18 F]F). Conjugation of the serum albumin with the ligand (Al[ 18 F]F-NODA-Bz-TFPE), followed by purification (size exclusion chromatography), yielded the final product (Al[ 18 F]F-NODA-Bz-RSA/HSA). In vitro stability was evaluated in human serum albumin by HPLC. Rat biodistributions and whole-body PET imaging over a 4 h time course were used for the in vivo evaluation. This synthesis exhibited an overall radiochemical yield of 45 ± 10% (n = 30), a 50-min radiolabeling time, a radiochemical purity >99% and apparent stability up to 4 h in human serum. Blood had the highest retention of Al[ 18 F]F-NODA-Bz-RSA at all times with a blood half-life of 5.2 h in rats. Al[ 18 F]F-NODA-Bz-RSA distribution in most rat tissues remained relatively constant for up to 1 h, indicating that the tissue radioactivity content represents the respective tissue plasma volume. Dynamic whole-body PET images were in agreement with these findings. A new ligand has been developed and radiolabeled with Al[ 18 F]F that allows rapid (50-min) preparation of fluorine-18 serum albumin in one-pot. In addition

  12. Fast dye salts provide fast access to azidoarene synthons in multi-step one-pot tandem click transformations

    PubMed Central

    Fletcher, James T.; Reilly, Jacquelline E.

    2012-01-01

    This study examined whether commercially available diazonium salts could be used as efficient aromatic azide precursors in one-pot multi-step click transformations. Seven different diazonium salts, including Fast Red RC, Fast Blue B, Fast Corinth V and Variamine Blue B were surveyed under aqueous click reaction conditions of CuSO4/Na ascorbate catalyst with 1:1 t-BuOH:H2O solvent. Two-step tandem reactions with terminal alkyne and diyne co-reactants led to 1,2,3-triazole products in 66%-88% yields, while three-step tandem reactions with trimethylsilyl-protected alkyne and diyne co-reactants led to 1,2,3-triazole products in 61%-78% yields. PMID:22368306

  13. A one-pot synthesis of 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane by hydrodeoxygenation of xylose using a palladium catalyst

    USDA-ARS?s Scientific Manuscript database

    In an effort to expand the number of biobased chemicals available from sugars, xylose has been converted to 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane in a one-pot reaction using palladium supported on silica-alumina as the catalyst. The title compound is produced in 35-40% yield under 7 MPa H2 pr...

  14. One-pot synthesis of iniferter-bound polystyrene core nanoparticles for the controlled grafting of multilayer shells

    NASA Astrophysics Data System (ADS)

    Marchyk, Nataliya; Maximilien, Jacqueline; Beyazit, Selim; Haupt, Karsten; Sum Bui, Bernadette Tse

    2014-02-01

    A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and polymerisation time. Our method is straightforward and in addition, gives access to the preparation of fluorescent seeds and the possibility of grafting nanosized multiple shells. The core-shell nanoparticles were fully characterised by dynamic light scattering, transmission electron microscopy, Fourier transform infrared spectroscopy and microelemental analysis.A novel approach using one-pot synthesis for the production of uniform, iniferter-bound polystyrene core nanoparticles of size 30-40 nm is described. Conventional oil-in-water emulsion polymerisation of styrene and divinylbenzene, combining a hybrid initiation system (thermal and UV), triggered sequentially, was employed to form the surface-bound thiocarbamate iniferters in situ. The iniferter cores were then used as seeds for re-initiating further polymerisation by UV irradiation to produce water-compatible core-shell nanoparticles. Grafting of various shell-types is demonstrated: linear polymers of poly(N-isopropylacrylamide) brushes, crosslinked polymers bearing different surface charges and molecularly imprinted polymers. The shell thickness was readily tuned by varying the monomers' concentration and

  15. One-pot stereoselective synthesis of α,β-differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular SN2 reaction.

    PubMed

    Xiong, Yiwen; Qian, Ping; Cao, Chenhui; Mei, Haibo; Han, Jianlin; Li, Guigen; Pan, Yi

    2014-01-01

    We report here an efficient one-pot method for the synthesis of α,β-differentiated diamino esters directly from cinnamate esters using N,N-dichloro-p-toluenesulfonamide and benzylamine as nitrogen sources. The key transformations include a Cu-catalyzed aminohalogenation and aziridination, followed by an intermolecular SN2 nucleophilic ring opening by benzylamine. The reactions feature a wide scope of substrates and proceed with excellent stereo- and regioselectivity (anti:syn >99:1) .

  16. Stereoselective borylative ketone-diene coupling.

    PubMed

    Cho, Hee Yeon; Yu, Zhiyong; Morken, James P

    2011-10-07

    In the presence of catalytic Ni(cod)(2) and P(t-Bu)(3), ketones, dienes, and B(2)(pin)(2) undergo a stereoselective multicomponent coupling reaction. Upon oxidation, the reaction furnishes 1,3-diols as the major reaction product. © 2011 American Chemical Society

  17. One-pot synthesis of MnO2-chitin hybrids for effective removal of methylene blue.

    PubMed

    Dassanayake, Rohan S; Rajakaruna, Erandathi; Moussa, Hanna; Abidi, Noureddine

    2016-12-01

    Manganese dioxide (MnO 2 )-chitin-hybrid material was prepared by a facile "one-pot" synthesis method. MnO 2 -chitin hybrid was used for the effective removal of methylene blue (MB) from liquid solution as model for wastewater treatment. The hybrid obtained was characterized by field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The effect of pH and temperature were studied. MnO 2 -chitin hybrid showed high performance for oxidative decolorization and removal of MB. Typically, 25mL of MB (20mg/L) can be completely decolorized in 2.5min with 8.5mg of the MnO 2 -chitin hybrid. The hybrid material exhibited excellent recyclability and durability with the degradation value of 99% for MB after ten consecutive cycles. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm

    DOE PAGES

    Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; ...

    2016-02-10

    We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less

  19. Laser ultrasonic multi-component imaging

    DOEpatents

    Williams, Thomas K [Federal Way, WA; Telschow, Kenneth [Des Moines, WA

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  20. A fully-automated one-pot synthesis of [18F]fluoromethylcholine with reduced dimethylaminoethanol contamination via [18F]fluoromethyl tosylate.

    PubMed

    Rodnick, Melissa E; Brooks, Allen F; Hockley, Brian G; Henderson, Bradford D; Scott, Peter J H

    2013-08-01

    A novel one-pot method for preparing [(18)F]fluoromethylcholine ([(18)F]FCH) via in situ generation of [(18)F]fluoromethyl tosylate ([(18)F]FCH2OTs), and subsequent [(18)F]fluoromethylation of dimethylaminoethanol (DMAE), has been developed. [(18)F]FCH was prepared using a GE TRACERlab FXFN, although the method should be readily adaptable to any other fluorine-(18) synthesis module. Initially ditosylmethane was fluorinated to generate [(18)F]FCH2OTs. DMAE was then added and the reaction was heated at 120 °C for 10 min to generate [(18)F]FCH. After this time, reaction solvent was evaporated, and the crude reaction mixture was purified by solid-phase extraction using C(18)-Plus and CM-Light Sep-Pak cartridges to provide [(18)F]FCH formulated in USP saline. The formulated product was passed through a 0.22 µm filter into a sterile dose vial, and submitted for quality control testing. Total synthesis time was 1.25 h from end-of-bombardment. Typical non-decay-corrected yields of [(18)F]FCH prepared using this method were 91 mCi (7% non-decay corrected based upon ~1.3 Ci [(18)F]fluoride), and doses passed all other quality control (QC) tests. A one-pot liquid-phase synthesis of [(18)F]FCH has been developed. Doses contain extremely low levels of residual DMAE (31.6 µg/10 mL dose or ~3 ppm) and passed all other requisite QC testing, confirming their suitability for use in clinical imaging studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A Fully-automated One-pot Synthesis of [18F]Fluoromethylcholine with Reduced Dimethylaminoethanol Contamination via [18F]Fluoromethyl Tosylate

    PubMed Central

    Rodnick, Melissa E.; Brooks, Allen F.; Hockley, Brian G.; Henderson, Bradford D.; Scott, Peter J. H.

    2013-01-01

    Introduction A novel one-pot method for preparing [18F]fluoromethylcholine ([18F]FCH) via in situ generation of [18F]fluoromethyl tosylate ([18F]FCH2OTs), and subsequent [18F]fluoromethylation of dimethylaminoethanol (DMAE), has been developed. Methods [18F]FCH was prepared using a GE TRACERlab FXFN, although the method should be readily adaptable to any other fluorine-18 synthesis module. Initially ditosylmethane was fluorinated to generate [18F]FCH2OTs. DMAE was then added and the reaction was heated at 120°C for 10 min to generate [18F]FCH. After this time, reaction solvent was evaporated, and the crude reaction mixture was purified by solid-phase extraction using C18-Plus and CM-Light Sep-Pak cartridges to provide [18F]FCH formulated in USP saline. The formulated product was passed through a 0.22 μm filter into a sterile dose vial, and submitted for quality control testing. Total synthesis time was 1.25 hours from end-of-bombardment. Results Typical non-decay-corrected yields of [18F]FCH prepared using this method were 91 mCi (7% non-decay corrected based upon ~1.3 Ci [18F]fluoride), and doses passed all other quality control (QC) tests. Conclusion A one-pot liquid-phase synthesis of [18F]FCH has been developed. Doses contain extremely low levels of residual DMAE (31.6 μg / 10 mL dose or ~3 ppm) and passed all other requisite QC testing, confirming their suitability for use in clinical imaging studies. PMID:23665261

  2. Synthesis of a new class of Betti bases by the Mannich-type reaction: efficient, facile, solvent-free and one-pot protocol.

    PubMed

    Shahrisa, Aziz; Teimuri-Mofrad, Reza; Gholamhosseini-Nazari, Mahdi

    2015-02-01

    A variety of organocatalysts has been screened for the synthesis of arylaminonaphthols. It has been shown that (N,N-dimethylethanolamine) is a highly efficient organocatalyst for the direct synthesis of a novel class of arylaminonaphthols via three-component condensation of 2-naphthol, aldehydes, and arylamines under solvent-free conditions. Mild, one-pot, and green reaction conditions, relatively short reaction times and good yields make this protocol highly significant. 25 new compounds have been synthesized by this method.

  3. One-pot synthesis, quantum chemical calculations and X-ray diffraction studies of thiazolyl-coumarin hybrid compounds

    NASA Astrophysics Data System (ADS)

    Saeed, Aamer; Arif, Mubeen; Erben, Mauricio F.; Flörke, Ulrich; Simpson, Jim

    2018-06-01

    Two closely related hybrid species containing both, thiazolyl and coumarin groups, were synthesized by using two different one-pot procedures from a common precursor. The reaction of α-bromoacetylcoumarin with thioacetamide in methanol furnished 3‑(2‑methylthiazol‑4‑yl)‑2H‑chromen‑2‑one (2), whereas refluxing α‑bromoacetylcoumarin with potassium thiocyanate in ethanol afforded 3‑(2‑ethoxythiazol‑4‑yl)‑2H‑chromen‑2‑one (3). Both derivatives were fully characterized by spectroscopic methods, elemental analysis and X-ray diffraction studies. Intramolecular C4sbnd H⋯N and C5‧sbnd H⋯Odbnd C hydrogen bonds between the heterocycles determine the conformational behavior. The co-planarity of the coumarin and thiazolyl rings favors the occurrence of two remote orbital interactions involving the oxygen and nitrogen lone pairs and the corresponding σ*Csbnd H electron acceptor, as demonstrated by Natural Bond Orbital population analysis. The 2-substitution of the thiazol‑4‑yl group has little effect on the molecular structures but causes significant differences in the crystal packing of the two compounds.

  4. A Robust, "One-Pot" Method for Acquiring Kinetic Data for Hammett Plots Used to Demonstrate Transmission of Substituent Effects in Reactions of Aromatic Ethyl Esters

    ERIC Educational Resources Information Center

    Yau, Hon Man; Haines, Ronald S.; Harper, Jason B.

    2015-01-01

    A "one-pot" method for acquiring kinetic data for the reactions of a series of substituted aromatic esters with potassium hydroxide using [supserscript 13]C NMR spectroscopy is described, which provides an efficient way to obtain sufficient data to demonstrate the Hammett equation in undergraduate laboratories. The method is…

  5. One-pot synthesis of polythiol ligand for highly bright and stable hydrophilic quantum dots toward bioconjugate formation

    NASA Astrophysics Data System (ADS)

    Dezhurov, Sergey V.; Krylsky, Dmitry V.; Rybakova, Anastasia V.; Ibragimova, Sagila A.; Gladyshev, Pavel P.; Vasiliev, Alexey A.; Morenkov, Oleg S.

    2018-03-01

    A fast and efficient one-pot synthesis of thiol-terminated poly(vinylpirrolidone-co-maleic anhydride-co-ethylene glycol dimethacrylate) based heterobifunctional polymer (PTVP) has been developed. The polymer was used for the modification of quantum dots (QDs) to prepare water soluble and stable QDs with emission quantum yield as high as 80%. Using carbodiimide method, PTVP-capped red light-emitting QDs were conjugated to model monoclonal antibodies specific to glycoprotein B (gB) of Aujeszky’s disease virus (ADV) and successfully used in the lateral flow assay (LFA) for the detection of ADV gB in biological fluids. A comparative analysis of the sensitivity of the method was carried out using three types of QDs emitting in the red and far-red region.

  6. Multicomponent diffusion in basaltic melts at 1350 °C

    NASA Astrophysics Data System (ADS)

    Guo, Chenghuan; Zhang, Youxue

    2018-05-01

    Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during

  7. Antibiotics mediated facile one-pot synthesis of gold nanoclusters as fluorescent sensor for ferric ions.

    PubMed

    Yu, Mengqun; Zhu, Zheguo; Wang, Hong; Li, Linyao; Fu, Fei; Song, Yang; Song, Erqun

    2017-05-15

    In this paper, the cheap, easily obtained small antibiotic molecule of vancomycin was employed as reducer/stabilizer for facile one-pot synthesis of water exhibited a bluish fluorescence emission at 410nm within a short synthesis time about 50min. Based on the strong fluorescence quenching due to electron transfer mechanism by the introduction of ferric ions(Fe 3+ ), the Van-AuNCs were interestingly designed for sensitive and selective detecting Fe 3+ with a limit of 1.4μmol L -1 in the linear range of 2-100μmol L -1 within 20min. The Van-AuNCs based method was successfully applied to determine Fe 3+ in tap water, lake water, river water and sea water samples with the quantitative spike recoveries from 97.50-111.14% with low relative standard deviations ranging from 0.49-1.87%, indicating the potential application of this Van-AuNCs based fluorescent sensor for environmental sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases.

    PubMed

    Yan, Jinyong; Li, Aitao; Xu, Yi; Ngo, Thao P N; Phua, Szechao; Li, Zhi

    2012-11-01

    A novel concept and efficient method for producing biodiesel (FAME) from grease (15-40wt% free fatty acid, FFA) were developed by using tandem lipases for one-pot esterification of FFA and transesterification of triglyceride with methanol in a solvent-free system. Combining immobilized Candida antarctica lipase B (CALB) (Novozyme 435) favoring the esterification and immobilized Thermomyces lanuginosus lipase (TLL) (Lipozyme TLIM) preferring the transesterification at 2:8 (wt/wt) gave FAME in 80% yield, being better than that with Novozyme 435 or Lipozyme TLIM. Recombinant Escherichia coli (Calb/Tll) co-expressing CALB and TLL was engineered as a more efficient tandem-lipases system. Using wet or dry cells (4wt%) gave FAME in 87% or 95% yield, which is much better than that with E. coli cells expressing either CALB or TLL alone. Cells of E. coli (Calb/Tll) were recycled for five times and retained 75% productivity, thus being practical for producing biodiesel from grease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent

    DOE PAGES

    Luo, Helen Y.; Michaelis, Vladimir K.; Hodges, Sydney; ...

    2015-07-22

    A new material MIT-1 comprised of delaminated MWW zeolite nanosheets is synthesized in one-pot using a rationally designed organic structure-directing agent (OSDA). The OSDA is comprised of a hydrophilic head segment that resembles the OSDA used to synthesize the zeolite precursor MCM22(P), a hydrophobic tail segment that resembles the swelling agent used to swell MCM22(P), and a di-quaternary ammonium linker that connects both segments. MIT-1 features high crystallinity and surface areas exceeding 500 m 2g -1, and can be synthesized over a wide synthesis window that includes Si/Al ratios ranging from 13 to 67. Characterization data reveal high mesoporosity andmore » acid strength with no detectable amorphous silica phases. In conclusion, compared to MCM-22 and MCM-56, MIT-1 shows a three-fold increase in catalytic activity for the Friedel-Crafts alkylation of benzene with benzyl alcohol.« less

  10. One-pot synthesis and sigma receptor binding studies of novel spirocyclic-2,6-diketopiperazine derivatives.

    PubMed

    Ghandi, Mehdi; Sherafat, Fatemeh; Sadeghzadeh, Masoud; Alirezapour, Behrouz

    2016-06-01

    New spirocyclic-2,6-diketopiperazine derivatives containing benzylpiperidine and cycloalkane moieties were synthesized by a one-pot two-step sequential Ugi/intramolecular N-amidation process in moderate to good yields. The in vitro ligand-binding profile studies performed on the sigma-1 and sigma-2 receptors revealed that the σ1 affinities and subtype selectivities of three spirocyclic piperidine derivatives are generally comparable to those of spirocycloalkane analogues. Compared to the low σ1 affinities obtained for cycloalkyl-substituted spirocyclic-2,6-diketopiperazines with n=2, those with n=1 proved to have optimal fitting with σ2 subtype by exhibiting higher affinities. Moreover, the best binding affinity and subtype selectivity was identified for compound 3c with Kiσ1=5.9±0.5nM and Kiσ2=563±21nM as well as 95-fold σ1/σ2 selectivity ratio, respectively. Copyright © 2016. Published by Elsevier Ltd.

  11. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO 2 and As 2 O 3 , the gas-solid phase reaction of GeO 2 , As 2 O 3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  12. A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment.

    PubMed

    Mueller, Berit; Koch, Dietmar; Lutz, Rainer; Schlegel, Karl A; Treccani, Laura; Rezwan, Kurosch

    2014-09-01

    We present a mild one-pot freeze gelation process for fabricating near-net, complex-shaped hydroxyapatite scaffolds and to directly incorporate active proteins during scaffold processing. In particular, the direct protein incorporation enables a simultaneous adjustment and control of scaffold microstructure, porosity, resorbability and enhancement of initial mechanical and handling stability. Two proteins, serum albumin and lysozyme, are selected and their effect on scaffold stability and microstructure investigated by biaxial strength tests, electron microscopy, and mercury intrusion porosimetry. The resulting hydroxyapatite/protein composites feature adjustable porosities from 50% to 70% and a mechanical strength ranging from 2 to 6 MPa comparable to that of human spongiosa without any sintering step. Scaffold degradation behaviour and protein release are assessed by in vitro studies. A preliminary in vivo assessment of scaffold biocompatibility and resorption behaviour in adult domestic pigs is discussed. After implantation, composites were resorbed up to 50% after only 4 weeks and up to 65% after 8 weeks. In addition, 14% new bone formation after 4 weeks and 37% after 8 weeks were detected. All these investigations demonstrate the outstanding suitability of the one-pot-process to create, in a customisable and reliable way, biocompatible scaffolds with sufficient mechanical strength for handling and surgical insertion, and for potential use as biodegradable bone substitutes and versatile platform for local drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A rapid and efficient one-pot method for the reduction of N-protected α-amino acids to chiral α-amino aldehydes using CDI/DIBAL-H.

    PubMed

    Ivkovic, Jakov; Lembacher-Fadum, Christian; Breinbauer, Rolf

    2015-11-14

    N-Protected amino acids can be easily converted into chiral α-amino aldehydes in a one-pot reaction by activation with CDI followed by reduction with DIBAL-H. This method delivers Boc-, Cbz- and Fmoc-protected amino aldehydes from proteinogenic amino acids in very good isolated yields and complete stereointegrity.

  14. Room-temperature transition-metal-free one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines via iodo-hemiaminal intermediate.

    PubMed

    Lee, Seul Ki; Park, Jin Kyoon

    2015-04-03

    A mild and efficient one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines in up to 88% yield was developed. An adduct was formed after the simple mixing of 2-amino-4-methylpyridine, 2-phenylacetaldehyde, and N-iodosuccinimide in CH2Cl2, and the structure of the adduct was characterized by 2D NMR, IR, and high-resolution mass analysis. The adduct was readily cyclized by treatment with a saturated aqueous solution of NaHCO3. The reactions proceeded to completion after several hours at room temperature.

  15. High flow ceramic pot filters.

    PubMed

    van Halem, D; van der Laan, H; Soppe, A I A; Heijman, S G J

    2017-11-01

    Ceramic pot filters are considered safe, robust and appropriate technologies, but there is a general consensus that water revenues are limited due to clogging of the ceramic element. The objective of this study was to investigate the potential of high flow ceramic pot filters to produce more water without sacrificing their microbial removal efficacy. High flow pot filters, produced by increasing the rice husk content, had a higher initial flow rate (6-19 L h -1 ), but initial LRVs for E. coli of high flow filters was slightly lower than for regular ceramic pot filters. This disadvantage was, however, only temporarily as the clogging in high flow filters had a positive effect on the LRV for E. coli (from below 1 to 2-3 after clogging). Therefore, it can be carefully concluded that regular ceramic pot filters perform better initially, but after clogging, the high flow filters have a higher flow rate as well as a higher LRV for E. coli. To improve the initial performance of new high flow filters, it is recommended to further utilize residence time of the water in the receptacle, since additional E. coli inactivation was observed during overnight storage. Although a relationship was observed between flow rate and LRV of MS2 bacteriophages, both regular and high flow filters were unable to reach over 2 LRV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A concise synthesis of benzimidazoles via the microwave-assisted one-pot batch reaction of amino acids up to a 10-g scale.

    PubMed

    Peng, Pai; Xiong, Jin-Feng; Mo, Guang-Zhen; Zheng, Jia-Li; Chen, Ren-Hong; Chen, Xiao-Yun; Wang, Zhao-Yang

    2014-10-01

    An efficient method for the synthesis of aminomethyl benzimidazoles is developed by using a one-pot batch reaction between amino acids and o-phenylenediamines. This reaction proceeds smoothly in an unmodified household microwave oven, even though scale-up is to 10 g. A desirable method for the quick synthesis of benzimidazoles, which are used as a kind of important intermediates in drug synthesis, is provided by the scale-up utilization of amino acid resource.

  17. 242-16H 2H EVAPORATOR POT SAMPLING FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D; William Cheng, W

    2008-06-11

    Due to the materials that are processed through 2H Evaporator, scale is constantly being deposited on the surfaces of the evaporator pot. In order to meet the requirements of the Nuclear Criticality Safety Analysis/Evaluation (NCSA/NCSE) for 2H Evaporator, inspections of the pot are performed to determine the extent of scaling. Once the volume of scale reaches a certain threshold, the pot must be chemically cleaned to remove the scale. Prior to cleaning the pot, samples of the scale are obtained to determine the concentration of uranium and plutonium and also to provide information to assist with pot cleaning. Savannah Rivermore » National Laboratory (SRNL) was requested by Liquid Waste Organization (LWO) Engineering to obtain these samples from two locations within the evaporator. Past experience has proven the difficulty of successfully obtaining solids samples from the 2H Evaporator pot. To mitigate this risk, a total of four samplers were designed and fabricated to ensure that two samples could be obtained. Samples had previously been obtained from the cone surface directly below the vertical access riser using a custom scraping tool. This tool was fabricated and deployed successfully. A second scraper was designed to obtain sample from the nearby vertical thermowell and a third scraper was designed to obtain sample from the vertical pot wall. The newly developed scrapers both employed a pneumatically actuated elbow. The scrapers were designed to be easily attached/removed from the elbow assembly. These tools were fabricated and deployed successfully. A fourth tool was designed to obtain sample from the opposite side of the pot under the tube bundle. This tool was fabricated and tested, but the additional modifications required to make the tool field-ready could not be complete in time to meet the aggressive deployment schedule. Two samples were obtained near the pot entry location, one from the pot wall and the other from the evaporator feed pipe. Since a

  18. Thermodiffusion in multicomponent n-alkane mixtures.

    PubMed

    Galliero, Guillaume; Bataller, Henri; Bazile, Jean-Patrick; Diaz, Joseph; Croccolo, Fabrizio; Hoang, Hai; Vermorel, Romain; Artola, Pierre-Arnaud; Rousseau, Bernard; Vesovic, Velisa; Bou-Ali, M Mounir; Ortiz de Zárate, José M; Xu, Shenghua; Zhang, Ke; Montel, François; Verga, Antonio; Minster, Olivier

    2017-01-01

    Compositional grading within a mixture has a strong impact on the evaluation of the pre-exploitation distribution of hydrocarbons in underground layers and sediments. Thermodiffusion, which leads to a partial diffusive separation of species in a mixture due to the geothermal gradient, is thought to play an important role in determining the distribution of species in a reservoir. However, despite recent progress, thermodiffusion is still difficult to measure and model in multicomponent mixtures. In this work, we report on experimental investigations of the thermodiffusion of multicomponent n -alkane mixtures at pressure above 30 MPa. The experiments have been conducted in space onboard the Shi Jian 10 spacecraft so as to isolate the studied phenomena from convection. For the two exploitable cells, containing a ternary liquid mixture and a condensate gas, measurements have shown that the lightest and heaviest species had a tendency to migrate, relatively to the rest of the species, to the hot and cold region, respectively. These trends have been confirmed by molecular dynamics simulations. The measured condensate gas data have been used to quantify the influence of thermodiffusion on the initial fluid distribution of an idealised one dimension reservoir. The results obtained indicate that thermodiffusion tends to noticeably counteract the influence of gravitational segregation on the vertical distribution of species, which could result in an unstable fluid column. This confirms that, in oil and gas reservoirs, the availability of thermodiffusion data for multicomponent mixtures is crucial for a correct evaluation of the initial state fluid distribution.

  19. One-Pot Solvothermal Synthesis of Bi4V2O11 as A New Solar Water Oxidation Photocatalyst

    PubMed Central

    Jiang, Zaiyong; Liu, Yuanyuan; Li, Mengmeng; Jing, Tao; Huang, Baibiao; Zhang, Xiaoyang; Qin, Xiaoyan; Dai, Ying

    2016-01-01

    Bi4V2O11 was prepared via a one-pot solvothermal method and characterized via XRD, Raman, XPS, Electrochemical impedance spectroscopy. The as-prepared Bi4V2O11 sample displays excellent photocatalytic activity towards oxygen evolution under light irradiation. The hierarchical structure is in favour of the spatial separation of photogenerated electrons and holes. Furthermore, the internal polar field also plays a role in improving the charge separation. Both of the two results are responsible for excellent activity of O2 evolution. The resulting hierarchical Bi4V2O11 sample should be very promising photocatalyst for the application of photocatalytic O2 evolution in the future. PMID:26947126

  20. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.

    PubMed

    Maynard, Daniel; Müller, Sara Mareike; Hahmeier, Monika; Löwe, Jana; Feussner, Ivo; Gröger, Harald; Viehhauser, Andrea; Dietz, Karl-Josef

    2018-04-01

    Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ 2 and PGA 2 , cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Operationally Simple Synthesis of N,N-Diethyl-3-Methylbenzamide (DEET) Using COMU as a Coupling Reagent

    ERIC Educational Resources Information Center

    Withey, Jonathan M.; Bajic, Andrea

    2015-01-01

    A novel procedure is described where students use COMU [(1-cyano-2-ethoxy-2-oxoethylidenaminooxy)dimethylamino-morpholino-carbenium hexafluorophosphate], as a nonhazardous partner, in the one-pot coupling of a carboxylic acid and amine producing N,N-diethyl-3-methylbenzamide (DEET). Fundamental principles of carbonyl reactivity are understood,…

  2. Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Coon, E. T.; Brooks, S. C.

    2017-12-01

    Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.

  3. One-pot synthesis and antiproliferative activity of novel double-modified derivatives of the polyether ionophore monensin A.

    PubMed

    Klejborowska, Greta; Maj, Ewa; Wietrzyk, Joanna; Stefańska, Joanna; Huczyński, Adam

    2018-05-02

    Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity. New MON derivatives such as double-modified ester-carbonates and double-modified amide-carbonates were obtained by a new and efficient one-pot synthesis with triphosgene as the activating reagent and the respective alcohol or amine. All new derivatives were tested for their antiproliferative activity against two drug-sensitive (MES-SA, LoVo) and two drug-resistant (MES-SA/DX5, LoVo/DX) cancer cell lines, and were also studied for their antimicrobial activity against different Staphylococcus aureus and Staphylococcus epidermidis bacterial strains. For the first time, the activity of MON and its derivatives against MES-SA and MES-SA/DX5 were evaluated. © 2018 John Wiley & Sons A/S.

  4. Improved Cook-off Modeling of Multi-component Cast Explosives

    NASA Astrophysics Data System (ADS)

    Nichols, Albert

    2017-06-01

    In order to understand the hazards associated with energetic materials, it is important to understand their behavior in adverse thermal environments. These processes have been relatively well understood for solid explosives, however, the same cannot be said for multi-component melt-cast explosives. Here we describe the continued development of ALE3D, a coupled thermal/chemical/mechanical code, to improve its description of fluid explosives. The improved physics models include: 1) Chemical potential driven species segregation. This model allows us to model the complex flow fields associated with the melting and decomposing Comp-B, where the denser RDX tends to settle and the decomposing gasses rise, 2) Automatically scaled stream-wise diffusion model for thermal, species, and momentum diffusion. These models add sufficient numerical diffusion in the direction of flow to maintain numerical stability when the system is under resolved, as occurs for large systems. And 3) a slurry viscosity model, required to properly define the flow characteristics of the multi-component fluidized system. These models will be demonstrated on a simple Comp-B system. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  5. Design and Development of Emittance Measurement Device by Using the Pepper-pot Technique

    NASA Astrophysics Data System (ADS)

    Pakluea, S.; Rimjaem, S.

    2017-09-01

    Transverse emittance of a charged particle beam is one of the most important properties that reveals the quality of the beam. It is related to charge density, transvers size and angular displacement of the beam in transverse phase space. There are several techniques to measure the transverse emittance value. One of practical methods is the pepper-pot technique, which can measure both horizontal and vertical emittance value in a single measurement. This research concentrates on development of a pepper-pot device to measure the transverse emittance of electron beam produced from an accelerator injector system, which consists of a thermionic cathode RF electron gun and an alpha magnet, at the Plasma and Beam Physics Research Facility, Chiang Mai University. Simulation of beam dynamics was conducted with programs PARMELA, ELEGANT and self-developed codes using C and MATLAB. The geometry, dimensions and location of the pepper-pot as well as its corresponding screen station position were included in the simulation. The result from this study will be used to design and develop a practical pepper-pot experimental station.

  6. One-pot low-temperature green synthesis of magnetic graphene nanocomposite for the selective reduction of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Haridas, Vijayasree; Sugunan, Sankaran; Narayanan, Binitha N.

    2018-06-01

    In the present study, a green one-pot low-temperature method is adopted for the synthesis of a novel magnetic graphene nanocomposite catalyst. Graphene preparation is performed without employing any oxidizing agents or corrosive chemicals, under mild sonication in isopropyl alcohol - water mixture. Monolayered nanoplatelets of graphene are obtained in the green solvent mixture and the composite material is found to be ferromagnetic in nature, obvious from the vibrating sample magnetometric measurements. Fe in the nanocomposite exists in two different forms i.e., α-Fe2O3 and α-FeOOH, as evident from the material characterization results. The graphene nanocomposite is found to be highly efficient in the selective reduction of nitrobenzene to aniline under solvent free reaction conditions and magnetic separation of this fine nanomaterial from the reaction mixture is successfully carried out. The catalyst is efficiently reusable till five repeated cycles.

  7. Highly efficient one-pot labeling of new phosphonium cations with fluorine-18 as potential PET agents for myocardial perfusion imaging.

    PubMed

    Zhao, Zuoquan; Yu, Qian; Mou, Tiantian; Liu, Chang; Yang, Wenjiang; Fang, Wei; Peng, Cheng; Lu, Jie; Liu, Yu; Zhang, Xianzhong

    2014-11-03

    Lipophilic cations such as phosphonium salts can accumulate in mitochondria of heart in response to the negative inner-transmembrane potentials. Two phosphonium salts [(18)F]FMBTP and [(18)F]mFMBTP were prepared and evaluated as potential myocardial perfusion imaging (MPI) agents in this study. The cations were radiolabeled via a simplified one-pot method starting from [(18)F]fluoride and followed by physicochemical property tests, in vitro cellular uptake assay, ex vivo mouse biodistribution, and in vivo rat microPET imaging. The total radiosynthesis time was less than 60 min including HPLC purification. The [(18)F] labeled compounds were obtained in high radiolabeling yield (∼50%) and good radiochemical purity (>99%). Both compounds were electropositive, and their log P values at pH 7.4 were 1.16 ± 0.003 (n = 3) and 1.05 ± 0.01 (n = 3), respectively. Both [(18)F]FMBTP and [(18)F]mFMBTP had high heart uptake (25.24 ± 2.97% ID/g and 31.02 ± 0.33% ID/g at 5 min postinjection (p.i.)) in mice with good retention (28.99 ± 3.54% ID/g and 26.82 ± 3.46% ID/g at 120 min p.i.). From the PET images in rats, the cations exhibited high myocardium uptake and fast clearance from liver and small intestine to give high-contrast images across all time points. These phosphonium cations were radiosynthesized via a highly efficient one-pot procedure for potential MPI offering high heart accumulation and rapid nontarget clearance.

  8. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy

    PubMed Central

    Casini, Arturo; MacDonald, James T.; Jonghe, Joachim De; Christodoulou, Georgia; Freemont, Paul S.; Baldwin, Geoff S.; Ellis, Tom

    2014-01-01

    Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110

  9. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    PubMed

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  10. One-Pot Approach to Organo-Phosphorus-Chalcogen Macrocycles Incorporating Double OP(S)SCn or OP(Se)SeCn Scaffolds: A Synthetic and Structural Study.

    PubMed

    Hua, Guoxiong; Du, Junyi; Slawin, Alexandra M Z; Woollins, J Derek

    2016-06-01

    The development of new methodology for the preparation of functional macrocycles with practical applications is an important research area in macromolecular science. In this study, we report a new one-pot route for the synthesis of a series of macro-heterocycles by incorporating two phosphorus atoms and two chalcogen atoms and two oxygen atoms (double OP(S)SCn or OP(Se)SeCn scaffolds). The three-component condensation reactions of 2,4-diferrocenyl-1,3,2,4-diathiadiphosphetane 2,4-disulfide (FcLR, a ferrocene analogue of Lawesson's reagent) or 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide (LR, Lawesson's reagent), or 2,4-diphenyl-1,3,2,4-diselenadiphosphetane 2,4-diselenide (WR, Woollins' reagent), disodium alkenyl-diols, and dihalogenated alkanes are performed, giving rise to soluble and air or moisture-stable macrocycles in good-to-excellent yields (up to 92 %). This is the first systemically preparative and readily scalable example of one-pot ring opening/ring extending reaction of three-components to prepare phosphorus-chalcogen containing macrocycles. We also provide a systematic crystallographic study. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    PubMed

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  12. Spent Pot Lining Characterization Framework

    NASA Astrophysics Data System (ADS)

    Ospina, Gustavo; Hassan, Mohamed I.

    2017-09-01

    Spent pot lining (SPL) management represents a major concern for aluminum smelters. There are two key elements for spent pot lining management: recycling and safe storage. Spent pot lining waste can potentially have beneficial uses in co-firing in cement plants. Also, safe storage of SPL is of utmost importance. Gas generation of SPL reaction with water and ignition sensitivity must be studied. However, determining the feasibility of SPL co-firing and developing the required procedures for safe storage rely on determining experimentally all the necessary SPL properties along with the appropriate test methods, recognized by emissions standards and fire safety design codes. The applicable regulations and relevant SPL properties for this purpose are presented along with the corresponding test methods.

  13. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  14. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    NASA Astrophysics Data System (ADS)

    Kondo, Tomoki; Ando, Keita

    2016-03-01

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  15. Simultaneous introduction of various palladium active sites into MOF via one-pot synthesis: Pd@[Cu3-xPdx(BTC)2]n.

    PubMed

    Zhang, Wenhua; Chen, Zhihao; Al-Naji, Majd; Guo, Penghu; Cwik, Stefan; Halbherr, Olesia; Wang, Yuemin; Muhler, Martin; Wilde, Nicole; Gläser, Roger; Fischer, Roland A

    2016-10-14

    Simultaneous incorporation of palladium within Pd-Pd and/or Pd-Cu paddlewheels as framework-nodes and Pd nanoparticle (NP) dispersion into MOF have been achieved for the first time via one-pot synthesis. In particular, the framework substitution of Cu(2+) by Pd(2+) as well as the pore loading with PdNPs have been confirmed and characterized by XPS. The obtained solids featuring such multiple Pd-sites show enhanced catalytic activity in the aqueous-phase hydrogenation of p-nitrophenol (PNP) with NaBH4 to p-aminophenol (PAP).

  16. Reversible sympathetic vasomotor dysfunction in POTS patients.

    PubMed

    Freitas, J; Santos, R; Azevedo, E; Costa, O; Carvalho, M; de Freitas, A F

    2000-11-01

    Orthostatic intolerance refers to the development upon assuming an upright posture of disabling symptoms, which are partly relieved by resuming the supine position. Postural tachycardia syndrome (POTS) is an orthostatic intolerance syndrome characterized by palpitations due to excessive orthostatic sinus tachycardia, lightheadedness, tremor, and near-syncope. Patients usually undergo extensive medical, cardiac, endocrine, neurological and psychiatric evaluation, which usually fails to identify a specific abnormality. We investigated the autonomic and hemodynamic profile of POTS patients and the efficacy of bisoprolol and or fludrocortisone. We evaluated eleven female patients with POTS before and after medical treatment with a cardio-selective beta blocker (bisoprolol) and/or fludrocortisone, and eleven age-matched controls. Variability of heart rate and systolic blood pressure was assessed by Fast Fourier Transform, and spontaneous baroreceptor gain by temporal sequences slope and alpha index. Modelflow was used to quantify hemodynamics. All patients improved greatly after medication. The autonomic and hemodynamic impairment observed in patients with POTS, particularly after orthostatic stress, is treated effectively with bisoprolol and/or fludrocortisone. These results need further confirmation in a controlled double-blind study. Proper medical treatment dramatically improves the clinical and autonomic/hemodynamic disturbances observed in patients with POTS. The data support the hypothesis that POTS is due to a hyperadrenergic activation and/or hypovolemia during orthostasis.

  17. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots.

    PubMed

    Guarneri, Fabrizio; Costa, Chiara; Cannavò, Serafinella P; Catania, Stefania; Bua, Giuseppe D; Fenga, Concettina; Dugo, Giacomo

    2017-01-01

    Literature data on the release of nickel and chromium from stainless steel cookware during food preparation are contrasting, have often been obtained with uncommon foods and/or procedures, and are thus not widely applicable. To assess the release of nickel and chromium from 18/10 (grade 316) stainless steel pots in cooking conditions that are common in an urban lifestyle. Tomato sauce and lemon marmalade were cooked for 1 h, alone or with added EDTA, in used or unused stainless steel pots from different manufacturers. Additionally, aqueous solutions at pH 2.3, 7.7 and 9 were boiled for 1 h in the same pots. Metal release was assessed with inductively coupled plasma mass spectrometry. The release of nickel and chromium increased with cooking/boiling time, was higher with unused pots, at low pH or with EDTA, and was sometimes remarkably different between manufacturers. In all experiments, the amounts released were below known allergy-triggering thresholds. Under common conditions, the use of 18/10 stainless steel pots is considered to be safe for the majority of nickel-allergic and/or chromium-allergic subjects. However, the total amount of nickel contained in foods and released from pots may exceed the individual threshold for triggering allergy, potentially causing problems for highly sensitive patients, or, conversely, contribute to induction of immunotolerance by oral low-dose exposure. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.

    PubMed

    Wang, Kaikai; He, Junhui

    2018-04-04

    Thin films that integrate antireflective and antibacterial dual functions are not only scientifically interesting but also highly desired in many practical applications. Unfortunately, very few studies have been devoted to the preparation of thin films with both antireflective and antibacterial properties. In this study, mesoporous silica (MSiO 2 ) thin films with uniformly dispersed Ag nanoparticles (Ag NPs) were prepared through a one-pot process, which simultaneously shows high transmittance, excellent antibacterial activity, and mechanical robustness. The optimal thin-film-coated glass substrate demonstrates a maximum transmittance of 98.8% and an average transmittance of 97.1%, respectively, in the spectral range of 400-800 nm. The growth and multiplication of typical bacteria, Escherichia coli ( E. coli), were effectively inhibited on the coated glass. Pencil hardness test, tape adhesion test, and sponge washing test showed favorable mechanical robustness with 5H pencil hardness, 5A grade adhesion, and functional durability of the coating, which promises great potential for applications in various touch screens, windows for hygiene environments, and optical apparatuses for medical uses such as endoscope, and so on.

  19. Limitations to CO2-induced growth enhancement in pot studies.

    PubMed

    McConnaughay, K D M; Berntson, G M; Bazzaz, F A

    1993-07-01

    Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.

  20. Hazardous waste treatment for spent pot liner

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Ma, Lei

    2018-01-01

    The spent pot liner is the largest solid waste produced by the electrolytic aluminum industry, composed of a series of substances that accumulate in the containers with reduced aluminum during the process of bauxite purification and refining. More and more spent pot liner is accumulated and needs to be dealt with. This paper discusses the composition and harm of solid waste. This paper expounds the comprehensive utilization value and disposition of the waste pot liner.

  1. Development of "one-pot" method for multi-class compounds in porcine formula feed by multi-function impurity adsorption cleaning followed ultra-performance liquid chromatography-tandem mass spectrometry detection.

    PubMed

    Wang, Peilong; Wang, Xiao; Zhang, Wei; Su, Xiaoou

    2014-02-01

    A novel and efficient determination method for multi-class compounds including β-agonists, sedatives, nitro-imidazoles and aflatoxins in porcine formula feed based on a fast "one-pot" extraction/multifunction impurity adsorption (MFIA) clean-up procedure has been developed. 23 target analytes belonging to four different class compounds could be determined simultaneously in a single run. Conditions for "one-pot" extraction were studied in detail. Under the optimized conditions, the multi-class compounds in porcine formula feed samples were extracted and purified with methanol contained ammonia and absorbents by one step. The compounds in extracts were purified by using multi types of absorbent based on MFIA in one pot. The multi-walled carbon nanotubes were employed to improved clean-up efficiency. Shield BEH C18 column was used to separate 23 target analytes, followed by tandem mass spectrometry (MS/MS) detection using an electro-spray ionization source in positive mode. Recovery studies were done at three fortification levels. Overall average recoveries of target compounds in porcine formula feed at each levels were >51.6% based on matrix fortified calibration with coefficients of variation from 2.7% to 13.2% (n=6). The limit of determination (LOD) of these compounds in porcine formula feed sample matrix was <5.0 μg/kg. This method was successfully applied in screening and confirmation of target drugs in >30 porcine formula feed samples. It was demonstrated that the integration of the MFIA protocol with the MS/MS instrument could serve as a valuable strategy for rapid screening and reliable confirmatory analysis of multi-class compounds in real samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine

    PubMed Central

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-01-01

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine. PMID:27098929

  3. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization.

    PubMed

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-08

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe 2 O 4 )-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  4. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine.

    PubMed

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-04-21

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine.

  5. One-Pot Synthesis of Reduced Graphene Oxide/Anatase Titanium Dioxide Composites for Photocatalytic Degradation of Methylene Blue.

    PubMed

    Lee, Hyo In; Park, Soo-Jin

    2018-09-01

    In this work, highly ordered TiO2-reduced graphene oxide sheets (TGS) were successfully fabricated via a one-pot solvothermal method with different amounts of graphene oxide (0.01, 0.03, 0.05, and 0.07 g). This was achieved by reacting graphene oxide (GO) layers with titanium isopropoxide as the TiO2 precursor. The TGS exhibited superior efficiency compared to pristine TiO2 and the best results were recorded for the TGS-0.05 sample. The presence of the reduced graphene oxide (rGO) component was determined to be an important factor governing the separation of the photogenerated electron-hole pair via interfacial charge transfer. The significantly increased activity of the TGS under simulated solar light in the degradation of methylene blue (MB) indicates that these materials are promising photocatalysts for efficient water purification.

  6. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization

    NASA Astrophysics Data System (ADS)

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-01

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe2O4)-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  7. A Facile Route for Patterned Growth of Metal-Insulator Carbon Lateral Junction through One-Pot Synthesis.

    PubMed

    Park, Beomjin; Park, Jaesung; Son, Jin Gyeong; Kim, Yong-Jin; Yu, Seong Uk; Park, Hyo Ju; Chae, Dong-Hun; Byun, Jinseok; Jeon, Gumhye; Huh, Sung; Lee, Seoung-Ki; Mishchenko, Artem; Hyun, Seung; Lee, Tae Geol; Han, Sang Woo; Ahn, Jong-Hyun; Lee, Zonghoon; Hwang, Chanyong; Novoselov, Konstantin S; Kim, Kwang S; Hong, Byung Hee; Kim, Jin Kon

    2015-08-25

    Precise graphene patterning is of critical importance for tailor-made and sophisticated two-dimensional nanoelectronic and optical devices. However, graphene-based heterostructures have been grown by delicate multistep chemical vapor deposition methods, limiting preparation of versatile heterostructures. Here, we report one-pot synthesis of graphene/amorphous carbon (a-C) heterostructures from a solid source of polystyrene via selective photo-cross-linking process. Graphene is successfully grown from neat polystyrene regions, while patterned cross-linked polystyrene regions turn into a-C because of a large difference in their thermal stability. Since the electrical resistance of a-C is at least 2 orders of magnitude higher than that for graphene, the charge transport in graphene/a-C heterostructure occurs through the graphene region. Measurement of the quantum Hall effect in graphene/a-C lateral heterostructures clearly confirms the reliable quality of graphene and well-defined graphene/a-C interface. The direct synthesis of patterned graphene from polymer pattern could be further exploited to prepare versatile heterostructures.

  8. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-01

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  9. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation.

    PubMed

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-02

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu (F) /RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu (F) /RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  10. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity.

    PubMed

    Kebukawa, Yoko; Chan, Queenie H S; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E

    2017-03-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies.

  11. Polymers mediate a one-pot route for functionalized quantum dot barcodes with a large encoding capacity.

    PubMed

    Zhang, Ding Sheng-Zi; Jiang, Yang; Wei, Dan; Wei, Xunbin; Xu, Hong; Gu, Hongchen

    2018-06-21

    With the increasing demands for high-throughput multiplexed bioassays, quantum dot (QD)-encoded microbeads as biocarriers for various bioreactions have attracted considerable attention. However, three key requirements for these biocarriers are still longstanding issues: a stable fluorescence intensity, a large encoding capacity and abundant surface functional groups. Here, a novel one-pot strategy is developed, generating functionalized QD-encoded microspheres with a strong fluorescence intensity and optical stability. With poly(styrene-co-maleic anhydride) (PSMA) molecules as mediators, the encapsulation of QDs and carboxylation of the bead surface are integrated together, greatly improving the preparation efficiency and guaranteeing their potential application in biodetection. Moreover, the mechanism for preparing QD-doped beads is further proposed, which helps to precisely manipulate the preparation process and accurately encode the beads. Through this approach, a single- and dual-color barcode library of QD-encoded microspheres has been successfully established, which demonstrates their great potential in suspension arrays.

  12. C-C cross-coupling of primary and secondary benzylic alcohols using supported gold-based bimetallic catalysts.

    PubMed

    Liu, Xiang; Ding, Ran-Sheng; He, Lin; Liu, Yong-Mei; Cao, Yong; He, He-Yong; Fan, Kang-Nian

    2013-04-01

    Clean alcohol-alcohol cross-coupling: A clean and efficient one-pot direct C-C cross-coupling of equimolar amounts of primary and secondary alcohols by a facile hydrogen autotransfer pathway is achieved over a robust and easily recovered hydrotalcite-supported Au-Pd bimetallic catalyst system. A variety of primary and secondary alcohols have been selectively converted into the corresponding β-alkylated ketones in good yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Novel One-pot Fabrication of Lab-on-a-Bubble@Ag Substrate without Coupling-agent for Surface Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Jiang, Jizhou; Ou-Yang, Lei; Zhu, Lihua; Zou, Jing; Tang, Heqing

    2014-02-01

    Through in-situ reduction of silver nitrate without using any coupling-agent, a substrate for surface-enhanced Raman scattering (SERS) was prepared by coating silver on hollow buoyant silica microspheres as a lab on a bubble (LoB). The silver coated LoBs (LoBs@Ag) floated on surface of a solution could provide a very convenient platform for the detection of target molecules in the solution. The LoBs@Ag substrate not only immobilized well-distributed Ag nanoparticles on the surface LoBs, but excluded the interference of coupling agents. This yielded high-resolution SERS spectra with excellent reproducibility. The adsorption of crystal violet (CV) on the LoBs@Ag substrate was investigated by means of SERS combined with density functional theory (DFT) calculations. The LoBs@Ag substrate exhibited a remarkable Raman enhancement effect for CV with an enhancement factor of 6.9 × 108 and wide adaptability from dye, pesticide to bio-molecules. On the basis of this substrate, a simple and sensitive SERS method was proposed for the determination of trace organic pollutants or bio-molecules.

  14. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contentsmore » were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.« less

  15. Development of a pepper-pot device to determine the emittance of an ion beam generated by electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.

    2010-02-15

    This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less

  16. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent

  17. One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides.

    PubMed

    Rexer, Thomas F T; Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo

    2018-01-01

    Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl 2 . The maximum reaction rate of GDP-mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl 2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc) 2 -Man 1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc) 2 -Man 1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established

  18. Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines.

    PubMed

    Bon, Robin S; Hong, Chongen; Bouma, Marinus J; Schmitz, Rob F; de Kanter, Frans J J; Lutz, Martin; Spek, Anthony L; Orru, Romano V A

    2003-10-02

    [reaction: see text] The three-component condensation between an amine, an aldehyde, and an alpha-acidic isocyanide efficiently provides substituted 2-imidazolines in a one-pot reaction under mild conditions.

  19. PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis

    PubMed Central

    Nakaema, Walter M.; Hao, Zuo-Qiang; Rohwetter, Philipp; Wöste, Ludger; Stelmaszczyk, Kamil

    2011-01-01

    A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given. PMID:22319372

  20. One-pot, multicomponent synthesis of 2,3-disubstituted quinazolin-ones with potent and selective activity against Toxoplasma gondii.

    PubMed

    Brown, Carla E; Kong, Tiffany; Bordón, Claudia; Yolken, Robert; Jones-Brando, Lorraine; McNulty, James

    2018-05-15

    The discovery of two quinazolinones with selective, single-digit micromolar activity (IC 50  = 6-7 µM) against the tachyzoites of the apicomplexan parasite Toxoplasma gondii is reported. These potent and selective third generation derivatives contain a benzyloxybenzyl substituent at C2 and a bulky aliphatic moiety at N3. Here we show that these quinazolinones inhibit T. gondii tachyzoite replication in an established infection, but do not significantly affect host cell invasion by the tachyzoites. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Liquid-Phase Circulation and Mixing in Multicomponent Droplets Vaporizing in a Laminar Convective Environment

    DTIC Science & Technology

    1993-10-15

    included an f/2.8 dual port long-distance microscope coupled to a black d•rl white CCD video camera. A long-pass filter (with a cut-off at 530 nm) was...evaporation rates of multicomponent droplets is needed for the calibration of exciplex -based vapor/liquid visualization techniques that are employed today in...Publishing Co., Houston. Texas. Hanlon. T. R.. and Melton. L. A. (1992). Exciplex fluorescence thermometry of falling hexadecane droplets. Journal of Heat

  2. RPA and POT1: friends or foes at telomeres?

    PubMed

    Flynn, Rachel Litman; Chang, Sandy; Zou, Lee

    2012-02-15

    Telomere maintenance in cycling cells relies on both DNA replication and capping by the protein complex shelterin. Two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomere 1 (POT1) play critical roles in DNA replication and telomere capping, respectively. While RPA binds to ssDNA in a non-sequence-specific manner, POT1 specifically recognizes singlestranded TTAGGG telomeric repeats. Loss of POT1 leads to aberrant accumulation of RPA at telomeres and activation of the ataxia telangiectasia and Rad3-related kinase (ATR)-mediated checkpoint response, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. The requirement for both POT1 and RPA in telomere maintenance and the antagonism between the two proteins raises the important question of how they function in concert on telomeric ssDNA. Two interesting models were proposed by recent studies to explain the regulation of POT1 and RPA at telomeres. Here, we discuss how these models help unravel the coordination, and also the antagonism, between POT1 and RPA during the cell cycle.

  3. Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Danaila, I.; Khamehchi, M. A.; Gokhroo, V.; Engels, P.; Kevrekidis, P. G.

    2016-11-01

    Multicomponent Bose-Einstein condensates exhibit an intriguing variety of nonlinear structures. In recent theoretical work [C. Qu, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 116, 160402 (2016), 10.1103/PhysRevLett.116.160402], the notion of magnetic solitons has been introduced. Here we examine a variant of this concept in the form of vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates (BECs). We first provide concrete experimental evidence for such states in an atomic BEC and subsequently illustrate the broader concept of these states, which are based on the interplay between miscibility and intercomponent repulsion. Armed with this more general conceptual framework, we expand the notion of such states to higher dimensions presenting the possibility of both vortex-antidark states and ring-antidark-ring (dark soliton) states. We perform numerical continuation studies, investigate the existence of these states, and examine their stability using the method of Bogoliubov-de Gennes analysis. Dark-antidark and vortex-antidark states are found to be stable for broad parametric regimes. In the case of ring dark solitons, where the single-component ring state is known to be unstable, the vector entity appears to bear a progressively more and more stabilizing role as the intercomponent coupling is increased.

  4. Smoking cessation after 12 months with multi-component therapy.

    PubMed

    Raich, Antònia; Martínez-Sánchez, Jose Maria; Marquilles, Emili; Rubio, Lídia; Fu, Marcela; Fernández, Esteve

    2015-03-01

    Smoking is one of the most important causes of morbidity and mortality in developed countries. One of the priorities of public health programmes is the reduction of its prevalence, which would involve millions of people quitting smoking, but cessation programs often have modest results, especially within certain population groups. The aim of this study was to analyze the variables determining the success of a multicomponent therapy programme for smoking cessation. We conducted the study in the Smoking Addiction Unit at the Hospital of Manresa, with 314 patients (91.4% of whom had medium or high-level dependency). We observed that higher educational level, not living with a smoker, following a multimodal programme or smoking cessation with psychological therapy, and pharmacological treatment are relevant factors for quitting smoking. Abstinence rates are not associated with other factors, such as sex, age, smoking behaviour characteristics or psychiatric history. The combination of pharmacological and psychological treatment increased success rates in multicomponent therapy. Psychological therapy only also obtained positive results, though somewhat more modest.

  5. Continuous, One-pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambovane, Sachin R.; Nune, Satish K.; Kelly, Ryan T.

    Metal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis. Although there are discrete methods to synthesize well-defined nanoscale MOFs, rapid and flexible methods are not available for continuous, one-pot synthesis and post synthesis modification (functionalization) of MOFs. Here, we show a continuous, scalable nanodroplet-based microfluidic route that not only facilitates the synthesis of MOFs atmore » nanoscale, but also offers flexibility for direct functionalization with desired functional groups (e.g., -NH 2, -COCH 3, fluorescein isothiocyanate; FITC). In addition, the presented route of continuous manufacturing of functionalized MOFs takes significantly less time compared to state-of-the-art batch methods currently available (1 hr vs. several days). We envisage our approach to be a breakthrough method for synthesizing complex functionalized nanomaterials (metal, metal oxides, quantum dots and MOFs) that are not accessible by direct batch processing, and expand the range of a new class of functionalized MOF-based functional nanomaterials.« less

  6. One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging.

    PubMed

    Jana, Jayasmita; Ganguly, Mainak; Das, Bodhisatwa; Dhara, Santanu; Negishi, Yuichi; Pal, Tarasankar

    2016-04-01

    We report a simple one-pot synthesis of highly fluorescent carbon dots (CDs) via modified hydrothermal (MHT) treatment of alkaline solution of dopamine and cysteine. These CDs (λex=320 nm, λem=390 nm, and quantum yield ∼ 5.1%) are of ∼ 2-3 nm in diameter. Further attempt of synthesizing CDs in some common water-miscible solvents ends up the fact that the MHT product from acetone medium is nonfluorescent. However, CDs, produced in aqueous medium, are so stable that they can be dried as a deliverable solid (WCD) without any alteration of fluorescing property if reversibly dispersed in water. Fluorescence of WCD is quenched selectively in acetone. Quenching occurs presumably due to the disruption of radiative recombination along with the hindrance in quantum confinement of the emissive energy traps to the particle surface. Successive quenching of fluorescence of WCD in different acetone concentration admixed in water paves the way to selective acetone sensing (LOD=8.75 × 10(-7) M). The synthesized CDs (in aqueous medium) are cytocompatible and are efficient fluorescent probe for cell imaging. Only living cells are recognized exclusively from fluorescence imaging leaving aside dead cells, while cells are treated with CDs. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. One-pot hydrothermal synthesis of an assembly of magnetite nanoneedles on a scaffold of cyclic-diphenylalanine nanorods

    NASA Astrophysics Data System (ADS)

    Togashi, Takanari; Umetsu, Mitsuo; Naka, Takashi; Ohara, Satoshi; Hatakeyama, Yoshiharu; Adschiri, Tadafumi

    2011-09-01

    The assembly of metal oxide nanoparticles (NPs) on a biomolecular template by a one-pot hydrothermal synthesis method is achieved for the first time. Magnetite (Fe3O4) nanoneedles (length: 100 nm; width: 10 nm) were assembled on cyclic-diphenylalanine (cFF) nanorods (length: 2-10 μm; width: 200 nm). The Fe3O4 nanoneedles and cFF nanorods were simultaneously synthesized from FeSO4 and l-phenylalanine by hydrothermal synthesis (220 °C and 22 MPa), respectively. The samples were analyzed by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (IR), transmission electron microscopy (TEM), and superconducting quantum interference device (SQUID) magnetometry. Experimental results indicate that Fe3O4 nanoneedles were assembled on cFF nanorods during the hydrothermal reaction. The composite contained 3.3 wt% Fe3O4 nanoneedles without any loss of the original magnetic properties of Fe3O4.

  8. One-pot wet-chemical co-reduction synthesis of bimetallic gold-platinum nanochains supported on reduced graphene oxide with enhanced electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju

    2015-08-01

    In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.

  9. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  10. Analysing the substrate multispecificity of a proton-coupled oligopeptide transporter using a dipeptide library

    PubMed Central

    Ito, Keisuke; Hikida, Aya; Kawai, Shun; Lan, Vu Thi Tuyet; Motoyama, Takayasu; Kitagawa, Sayuri; Yoshikawa, Yuko; Kato, Ryuji; Kawarasaki, Yasuaki

    2013-01-01

    Peptide uptake systems that involve members of the proton-coupled oligopeptide transporter (POT) family are conserved across all organisms. POT proteins have characteristic substrate multispecificity, with which one transporter can recognize as many as 8,400 types of di/tripeptides and certain peptide-like drugs. Here we characterize the substrate multispecificity of Ptr2p, a major peptide transporter of Saccharomyces cerevisiae, using a dipeptide library. The affinities (Ki) of di/tripeptides toward Ptr2p show a wide distribution range from 48 mM to 0.020 mM. This substrate multispecificity indicates that POT family members have an important role in the preferential uptake of vital amino acids. In addition, we successfully establish high performance ligand affinity prediction models (97% accuracy) using our comprehensive dipeptide screening data in conjunction with simple property indices for describing ligand molecules. Our results provide an important clue to the development of highly absorbable peptides and their derivatives including peptide-like drugs. PMID:24060756

  11. One-pot Diels–Alder cycloaddition/gold(I)-catalyzed 6-endo-dig cyclization for the synthesis of the complex bicyclo[3.3.1]alkenone framework

    PubMed Central

    Sow, Boubacar; Bellavance, Gabriel; Barabé, Francis

    2011-01-01

    Summary The rapid synthesis of bicyclo[m.n.1]alkanone cores possessing quaternary carbon centers adjacent to a bridged ketone represents a significant synthetic challenge. This type of architectural feature is embedded in various complex biologically active compounds such as hyperforin and garsubellin A. Herein, we report a highly diastereoselective one-pot Diels–Alder reaction/Au(I)-catalyzed carbocyclization to generate bicyclo[3.3.1]alkanones in yields ranging from 48–93%. PMID:21915201

  12. Asymmetric organocatalyzed Michael addition of nitromethane to a 2-oxoindoline-3-ylidene acetaldehyde and the three one-pot sequential synthesis of (-)-horsfiline and (-)-coerulescine.

    PubMed

    Mukaiyama, Takasuke; Ogata, Kento; Sato, Itaru; Hayashi, Yujiro

    2014-10-13

    (-)-Horsfiline and (-)-coerulescine were synthesized through three one-pot operations in 33 and 46% overall yield, respectively. Key to the success was the efficient use of a diarylprolinol silyl ether to catalyze the asymmetric Michael addition of nitromethane to a 2-oxoindoline-3-ylidene acetaldehyde. This allowed the all-carbon quaternary, spirocyclic carbon stereocenter to be constructed in good yield with excellent enantioselectivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cognitive impairments associated with CFS and POTS.

    PubMed

    Shanks, Lindzi; Jason, Leonard A; Evans, Meredyth; Brown, Abigail

    2013-01-01

    Chronic fatigue syndrome (CFS) is characterized by fatigue, sleep dysfunction, and cognitive deficits (Fukuda et al., 1994). Research surrounding cognitive functioning among patients with CFS has found difficulty with memory, attention, and information processing. A similar disorder, postural tachycardia syndrome (POTS), is characterized by increased heart rate, fatigue, and mental cloudiness (Raj et al., 2009). Potential implications of cognitive deficits for patients with CFS and/or POTS are discussed, including difficulties with school and/or employment. A few biological theories (i.e., kindling, impairments in the central nervous system, and difficulty with blood flow) have emerged as potential explanations for the cognitive deficits reported in both CFS and POTS Future research should continue to examine possible explanations for cognitive impairments in CFS and POTS, and ultimately use this information to try and reduce cognitive impairments for these patients.

  14. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Tomoki; Ando, Keita, E-mail: kando@mech.keio.ac.jp

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s ismore » inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh–Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.« less

  15. One-Pot Large-Scale Synthesis of Carbon Quantum Dots: Efficient Cathode Interlayers for Polymer Solar Cells.

    PubMed

    Yang, Yuzhao; Lin, Xiaofeng; Li, Wenlang; Ou, Jiemei; Yuan, Zhongke; Xie, Fangyan; Hong, Wei; Yu, Dingshan; Ma, Yuguang; Chi, Zhenguo; Chen, Xudong

    2017-05-03

    Cathode interlayers (CILs) with low-cost, low-toxicity, and excellent cathode modification ability are necessary for the large-scale industrialization of polymer solar cells (PSCs). In this contribution, we demonstrated one-pot synthesized carbon quantum dots (C-dots) with high production to serve as efficient CIL for inverted PSCs. The C-dots were synthesized by a facile, economical microwave pyrolysis in a household microwave oven within 7 min. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the C-dots possessed the ability to form a dipole at the interface, resulting in the decrease of the work function (WF) of cathode. External quantum efficiency (EQE) measurements and 2D excitation-emission topographical maps revealed that the C-dots down-shifted the high energy near-ultraviolet light to low energy visible light to generate more photocurrent. Remarkably improvement of power conversion efficiency (PCE) was attained by incorporation of C-dots as CIL. The PCE was boosted up from 4.14% to 8.13% with C-dots as CIL, which is one of the best efficiency for i-PSCs used carbon based materials as interlayers. These results demonstrated that C-dots can be a potential candidate for future low cost and large area PSCs producing.

  16. Pot binding as a variable confounding plant phenotype: theoretical derivation and experimental observations.

    PubMed

    Sinclair, Thomas R; Manandhar, Anju; Shekoofa, Avat; Rosas-Anderson, Pablo; Bagherzadi, Laleh; Schoppach, Remy; Sadok, Walid; Rufty, Thomas W

    2017-04-01

    Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.

  17. Dynamic characterization and modeling of potting materials for electronics assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Lee, Gilbert F.; Santiago, Jaime R.

    2017-01-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling, which in turn needs both static and dynamic characterization of individual electronic components and encapsulation material to generate reliable material parameters for a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, difficulty arises in capturing one of the critical features characteristic of the loading environment in a high velocity impact: multiple loading events coupled with multi-axial stress states. Hence, potting materials need to be characterized well to understand its damping capacity at different frequencies and strain rates. An encapsulation scheme to protect electronic boards consists of multiple layers of filled as well as unfilled polymeric materials like Sylgard 184 and Trigger bond Epoxy # 20-3001. A combination of experiments conducted for characterization of materials used Split Hopkinson Pressure Bar (SHPB), and dynamic material analyzer (DMA). For material which behaves in an ideal manner, a master curve can be fitted to Williams-Landel-Ferry (WLF) model. To verify the applicability of WLF model, a new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor with experimental incremental shift factor. Deviations can be readily observed by comparison of experimental data with the model fit to determine if model parameters reflect the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests can readily indicate deviations from experimental high strain rate data. Experimental results for different materials used for mitigating impact, and ways to combine data from DMA and Hopkinson bar together with modeling refinements are presented.

  18. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    PubMed

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  19. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    NASA Astrophysics Data System (ADS)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-04-01

    Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between

  20. One-pot facile synthesis of 4-amino-1,8-naphthalimide derived Tröger's bases via a nucleophilic displacement approach.

    PubMed

    Shanmugaraju, Sankarasekaran; McAdams, Deirdre; Pancotti, Francesca; Hawes, Chris S; Veale, Emma B; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-09-13

    We report here a novel one-pot synthetic strategy for the synthesis of a family of N-alkyl-1,8-naphthalimide based Tröger's bases via a nucleophilic substitution reaction of a common 'precursor' (or a 'synthon') N-aryl-1,8-naphthalimide Tröger's base heated at 80 °C in neat aliphatic primary amine, in overall yield of 65-96%. This methodology provides an efficient and one-step facile route to design 1,8-naphthalimide derived Tröger's base structures in analytically pure form without the use of column chromatography purification, that can be used in medicinal chemistry and as supramolecular scaffolds. We also report the formation of the corresponding anhydride, and the crystallographic analysis of two of the resulting products, that of the N-phenyl-4-amino-1,8-naphthalimide and the anhydride derived Tröger's bases.

  1. Diffusion Of Mass In Evaporating Multicomponent Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1992-01-01

    Report summarizes study of diffusion of mass and related phenomena occurring in evaporation of dense and dilute clusters of drops of multicomponent liquids intended to represent fuels as oil, kerosene, and gasoline. Cluster represented by simplified mathematical model, including global conservation equations for entire cluster and conditions on boundary between cluster and ambient gas. Differential equations of model integrated numerically. One of series of reports by same authors discussing evaporation and combustion of sprayed liquid fuels.

  2. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications.

    PubMed

    Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan

    2018-04-18

    In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Multi-component dark matter through a radiative Higgs portal

    DOE PAGES

    DiFranzo, Anthony; Univ. of California, Irvine, CA; Rutgers Univ., Piscataway, NJ; ...

    2017-01-18

    Here, we study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged undermore » $$SU(2)_W \\times U(1)_Y$$ and under the dark gauge group, $$U(1)^\\prime$$. This results in two dark matter candidates. A spin-1 and a spin-1/2 candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance.« less

  4. "Self-Shaping" of Multicomponent Drops.

    PubMed

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  5. Multicomponent Droplet Evaporation on Chemical Micro-Patterned Surfaces

    PubMed Central

    He, Minghao; Liao, Dong; Qiu, Huihe

    2017-01-01

    The evaporation and dynamics of a multicomponent droplet on a heated chemical patterned surface were presented. Comparing to the evaporation process of a multicomponent droplet on a homogenous surface, it is found that the chemical patterned surface can not only enhance evaporation by elongating the contact line, but also change the evaporation process from three regimes for the homogenous surface including constant contact line (CCL) regime, constant contact angle (CCA) regime and mix mode (MM) to two regimes, i.e. constant contact line (CCL) and moving contact line (MCL) regimes. The mechanism of contact line stepwise movement in MCL regimes in the microscopic range is investigated in detail. In addition, an improved local force model on the contact line was employed for analyzing the critical receding contact angles on homogenous and patterned surfaces. The analysis results agree well for both surfaces, and confirm that the transition from CCL to MCL regimes indicated droplet composition changes from multicomponent to monocomponent, providing an important metric to predict and control the dynamic behavior and composition of a multicomponent droplet using a patterned surface. PMID:28157229

  6. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.

    PubMed

    Wu, Chuan-Yu; Best, Serena M; Bentham, A Craig; Hancock, Bruno C; Bonfield, William

    2006-08-01

    Pharmaceutical tablets are generally produced by compacting a mixture of several ingredients, including active drugs and excipients. It is of practical importance if the properties of such tablets can be predicted on the basis of the ones for constituent components. The purpose of this work is to develop a theoretical model which can predict the tensile strength of compacted multi-component pharmaceutical mixtures. The model was derived on the basis of the Ryshkewitch-Duckworth equation that was originally proposed for porous materials. The required input parameters for the model are the relative density or solid fraction (ratio of the volume of solid materials to the total volume of the tablets) of the multi-component tablets and parameters associated with the constituent single-component powders, which are readily accessible. The tensile strength of tablets made of various powder blends at different relative density was also measured using diametrical compression. It has been shown that the tensile strength of the multi-component powder compacts is primarily a function of the solid fraction. Excellent agreement between prediction and experimental data for tablets of binary, ternary and four-component blends of some widely used pharmaceutical excipients was obtained. It has been demonstrated that the proposed model can well predict the tensile strength of multi-component pharmaceutical tablets. Thus, the model will be a useful design tool for formulation engineers in the pharmaceutical industry.

  7. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Long; Zheng, Cheng; Zhang, Yun; Yang, Huang-Hao; Liu, Xiaolong; Liu, Jingfeng

    2016-07-01

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  8. One-pot synthesis of redox-responsive polymers-coated mesoporous silica nanoparticles and their controlled drug release.

    PubMed

    Sun, Jiao-Tong; Piao, Ji-Gang; Wang, Long-Hai; Javed, Mohsin; Hong, Chun-Yan; Pan, Cai-Yuan

    2013-09-01

    A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor.

    PubMed

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-02-18

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe₃O₄-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe₃O₄-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe₃O₄-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM(-1)∙cm(-2) and good long-term stability.

  10. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    PubMed Central

    Jomma, Ezzaldeen Younes; Ding, Shou-Nian

    2016-01-01

    In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB) through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability. PMID:26901204

  11. Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yao, Dahua; Yang, Yu; Deng, Yonghong; Wang, Chaoyang

    2018-03-01

    A series of polyimides, which contain polyethylene glycol (PEG) segments with different molecular weight in the polymer chains, are synthesized through a facile one-pot method and characterized by Fourier transform infrared spectroscopy and hydrogen nuclear magnetic resonance spectroscopy. The main part of polyimides is originated from trimellitic anhydride chloride (TMAC) and 4,4‧-methylenedianiline, onto which PEG segments are introduced through an esterification reaction with TMAC. These obtained polyimides, which acquire excellent water solubility after being neutralized by triethylamine, are applied as water-soluble binders to silicon negative electrodes for lithium ion batteries, and significantly improve the electrochemical performance of silicon anodes. Specially, the PI-200 (polyimide copolymerized with PEG-200) based silicon electrode exhibits a high initial discharge capacity of 2989.7 mAh g-1 and remains about 2235.5 mAh g-1 after 200 cycles at the current density of 0.1 C (420 mA g-1).

  12. One-pot preparation of mRNA/cDNA display by a novel and versatile puromycin-linker DNA.

    PubMed

    Mochizuki, Yuki; Biyani, Manish; Tsuji-Ueno, Sachika; Suzuki, Miho; Nishigaki, Koichi; Husimi, Yuzuru; Nemoto, Naoto

    2011-09-12

    A rapid, easy, and robust preparation method for mRNA/cDNA display using a newly designed puromycin-linker DNA is presented. The new linker is structurally simple, easy to synthesize, and cost-effective for use in "in vitro peptide and protein selection". An introduction of RNase T1 nuclease site to the new linker facilitates the easy recovery of mRNA/cDNA displayed protein by an improvement of the efficiency of ligating the linker to mRNAs and efficient release of mRNA/cDNA displayed protein from the solid-phase (magnetic bead). For application demonstration, affinity selections were successfully performed. Furthermore, we introduced a "one-pot" preparation protocol to perform mRNA display easy. Unlike conventional approaches that require tedious and downstream multistep process including purification, this protocol will make the mRNA/cDNA display methods more practical and convenient and also facilitate the development of next-generation, high-throughput mRNA/cDNA display systems amenable to automation.

  13. One-Pot Evolution of Ageladine A through a Bio-Inspired Cascade towards Selective Modulators of Neuronal Differentiation.

    PubMed

    Iwata, Takayuki; Otsuka, Satoshi; Tsubokura, Kazuki; Kurbangalieva, Almira; Arai, Daisuke; Fukase, Koichi; Nakao, Yoichi; Tanaka, Katsunori

    2016-10-04

    A bio-inspired cascade reaction has been developed for the construction of the marine natural product ageladine A and a de novo array of its N1-substituted derivatives. This cascade features a 2-aminoimidazole formation that is modeled after an arginine post-translational modification and an aza-electrocyclization. It can be effectively carried out in a one-pot procedure from simple anilines or guanidines, leading to structural analogues of ageladine A that had been otherwise synthetically inaccessible. We found that some compounds out of this structurally novel library show a significant activity in modulating the neural differentiation. Namely, these compounds selectively activate or inhibit the differentiation of neural stem cells to neurons, while being negligible in the differentiation to astrocytes. This study represents a successful case in which the native biofunction of a natural product could be altered by structural modifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Facile One-Pot Synthesis of Au/Cu2O Nanocomposites for Nonenzymatic Detection of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Tian, Liangliang; Chen, Yuan; Liu, Bitao; Zhang, Jin

    2015-06-01

    Au/Cu2O nanocomposites were successfully synthesized by a facile one-pot redox reaction without additional reducing agent under room temperature. The morphologies and structures of the as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic performance of Au/Cu2O nanocomposites towards hydrogen peroxide was evaluated by cyclic voltammetry (CV) and chronoamperometry (CA). The prepared Au/Cu2O nanocomposite electrode showed a wide linear range from 25 to 11.2 mM ( R = 0.9989) with a low detection limit of 1.05 μM ( S/ N = 3) and high sensitivity of 292.89 mA mM-1 cm-2. The enhanced performance for H2O2 detection can be attributed to the introduction of Au and the synergistic effect between Au and Cu2O. It is demonstrated that the Au/Cu2O nanocomposites material could be a promising candidate for H2O2 detection.

  15. Use of Elemental Sulfur or Selenium in a Novel One-Pot Copper-Catalyzed Tandem Cyclization of Functionalized Ynamides Leading to Benzosultams.

    PubMed

    Siva Reddy, Alla; Kumara Swamy, K C

    2015-06-19

    A novel and efficient [Cu]-catalyzed one-pot regio- and stereospecific synthesis of benzo[1,4,2]dithiazine 1,1-dioxides and benzo[1,4,2]thiaselenazine 1,1-dioxides by cyclization of functionalized ynamides with elemental sulfur/selenium has been developed. Its generality is elegantly illustrated by extension to benzodithiazepines and benzothiaselenazepines. Involvement of water in the reaction is demonstrated by the incorporation of (2)D at the olefinic site by using D2O in place of water. Selective oxidation at sulfur in benzo[1,4,2]dithiazine 1,1-dioxide by using mCPBA as the oxidizing agent is also described.

  16. One-dimensional growth of hexagonal rods of metastable h-MoO3 using one-pot, rapid and environmentally benign supercritical fluid processing

    NASA Astrophysics Data System (ADS)

    Thangasamy, Pitchai; Shanmugapriya, Vadivel; Sathish, Marappan

    2018-05-01

    A facile and one-pot supercritical fluid method was demonstrated for the synthesis of phase pure crystalline h-MoO3 microrods within a short reaction time of 5 min at 400 °C. The formation of h-MoO3 was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopic analysis. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images clearly revealed the formation of hexagonal h-MoO3 rods. Further, photoluminescence emission peaks corresponding to band to band transition was observed in the h-MoO3 microrods. It was observed that when increasing the reaction time from 5 min to 30 min at 400 °C, h-MoO3 microrods undergoes disintegration to α-MoO3 thin nanorods. Interestingly, h-MoO3 microrods were also formed in a reaction time of 30 min at 400 °C when reducing the volume of nitric acid from 1 mL to ∼0.5 mL. The short reaction time and simple synthetic strategy makes this method can be suitable for the synthesis of other semiconductor nanomaterials for diverse applications.

  17. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    PubMed

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simultaneous multi-component seismic denoising and reconstruction via K-SVD

    NASA Astrophysics Data System (ADS)

    Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang

    2018-06-01

    Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.

  19. Theory and Simulation of Multicomponent Osmotic Systems

    PubMed Central

    Karunaweera, Sadish; Gee, Moon Bae; Weerasinghe, Samantha; Smith, Paul E.

    2012-01-01

    Most cellular processes occur in systems containing a variety of components many of which are open to material exchange. However, computer simulations of biological systems are almost exclusively performed in systems closed to material exchange. In principle, the behavior of biomolecules in open and closed systems will be different. Here, we provide a rigorous framework for the analysis of experimental and simulation data concerning open and closed multicomponent systems using the Kirkwood-Buff (KB) theory of solutions. The results are illustrated using computer simulations for various concentrations of the solutes Gly, Gly2 and Gly3 in both open and closed systems, and in the absence or presence of NaCl as a cosolvent. In addition, KB theory is used to help rationalize the aggregation properties of the solutes. Here one observes that the picture of solute association described by the KB integrals, which are directly related to the solution thermodynamics, and that provided by more physical clustering approaches are different. It is argued that the combination of KB theory and simulation data provides a simple and powerful tool for the analysis of complex multicomponent open and closed systems. PMID:23329894

  20. Melting Pot or Not? Debating Cultural Identity. Multicultural Issues.

    ERIC Educational Resources Information Center

    Franklin, Paula A.

    The United States has been called a "melting pot," a container in which separate materials are heated and blended. When people call the United States a melting pot, they are using a metaphor for the blending of cultures that some feel has occurred in this country. Others doubt that America has been a melting pot, and many doubt that it…

  1. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jian; Konda, N. V. S. N. Murthy; Parthasarathi, Ramakrishnan

    The transformation of biomass into liquid fuels is of great importance. Previous work has demonstrated the capability of specific ionic liquids (ILs), such as 1-ethyl-3-methylimidazolium acetate ([C(2)C(1)Im][OAc]) and cholinium lysinate ([Ch][Lys]), to be effective biomass pretreatment solvents. Using these ILs for an integrated biomass-to-biofuel configuration is still challenging due to a significant water-wash related to the high toxicity of [C(2)C(1)Im][OAc] and pH adjustment prior to saccharification for the highly basic [Ch][Lys]. In this work, we demonstrate, for the first time, that a one-pot integrated biofuel production is enabled by a low cost (similar to$1 per kg) and biocompatible protic ILmore » (PIL), ethanolamine acetate, without pH adjustments, water-wash and solid-liquid separations. After pretreatment, the whole slurry is directly used for simultaneous saccharification and fermentation (SSF) with commercial enzyme cocktails and wild type yeast strains, generating 70% of the theoretical ethanol yield (based on switchgrass). The structure-performance relationships of PILs in terms of lignin removal, net basicity, and pH value are systematically studied. A technoeconomic analysis (TEA) revealed that an integrated biorefinery concept based on this PIL process could potentially reduce the minimum ethanol selling price by more than 40% compared to scenarios that require pH adjustment prior to SSF. Improvement of the economic performance will be made by reducing the dilution and enzyme loading during SSF as identified by TEA. This study demonstrates the impact of a biocompatible IL in terms of process optimization and conversion efficiency, and opens up avenues for realizing an IL based efficiently integrated biomass conversion technology.« less

  2. Using Pot-Magnets to Enable Stable and Scalable Electromagnetic Tactile Displays.

    PubMed

    Zarate, Juan Jose; Shea, Herbert

    2017-01-01

    We present the design, fabrication, characterization, and psychophysical testing of a scalable haptic display based on electromagnetic (EM) actuators. The display consists of a 4 × 4 array of taxels, each of which can be in a raised or a lowered position, thus generating different static configurations. One of the most challenging aspects when designing densely-packed arrays of EM actuators is obtaining large actuation forces while simultaneously generating only weak interactions between neighboring taxels. In this work, we introduce a lightweight and effective magnetic shielding architecture. The moving part of each taxel is a cylindrical permanent magnet embedded in a ferromagnetic pot, forming a pot-magnet. An array of planar microcoils attracts or repels each pot-magnet. This configuration reduces the interaction between neighboring magnets by more than one order of magnitude, while the coil/magnet interaction is only reduced by 10 percent. For 4 mm diameter pins on an 8 mm pitch, we obtained displacements of 0.55 mm and forces of 40 mN using 1.7 W. We measured the accuracy of human perception under two actuation configurations which differed in the force versus displacement curve. We obtained 91 percent of correct answers in pulling configuration and 100 percent in pushing configuration.

  3. Towards a new method for modeling multicomponent, multiphase flow and transport in porous media

    NASA Astrophysics Data System (ADS)

    Kong, X. Z.; Schaedle, P.; Leal, A. M. M.; Saar, M. O.

    2016-12-01

    The ability to computationally simulate multiphase-multicomponent fluid flow, coupled with geochemical reactions between fluid species and rock minerals, in porous and/or fractured subsurface systems is of major importance to a vast number of applications. These include (1) carbon dioxide storage in geologic formations, (2) geothermal energy extraction, (3) combinations of the latter two applications during CO2-Plume Geothermal energy extraction, (4) waste fluid and waste storage, as well as (5) groundwater and contaminant transport. Modeling these systems with such a wide variety of coupled physical and chemical processes is both challenging and computationally expensive. In this work we present a new approach to develop a simulator for multicomponent-multiphase flow and reactive transport in porous media by using state of the art numerical tools, namely FEniCS (fenicsproject.org) and Reaktoro (reaktoro.org). The governing partial differential equations for fluid flow and transport are solved using FEniCS, which enables fast and efficient implementation of computer codes for the simulation of complex physical phenomena using finite element methods on unstructured meshes. FEniCS supports a wide range of finite element schemes of special interest to porous media flow. In addition, FEniCS interfaces with many sparse linear solvers and provides convenient tools for adaptive mesh refinement and the capability of massively parallel calculations. A fundamental component of our contribution is the coupling of our FEniCS based flow and transport solver with our chemical reaction simulator, Reaktoro, which implements efficient, robust, and accurate methods for chemical equilibrium and kinetics calculations at every node of the mesh, at every time step. These numerical methods for reaction modeling have been especially developed for performance-critical applications such as reactive transport modeling. Furthermore, Reaktoro is also used for the calculation of thermodynamic

  4. Using Data to Individualize a Multicomponent, Technology-Based Self-Monitoring Intervention

    ERIC Educational Resources Information Center

    Bruhn, Allison Leigh; Vogelgesang, Kari; Fernando, Josephine; Lugo, Wilbeth

    2016-01-01

    Technology in schools is abundant as is the call for evidence-based interventions for students who need additional support to be successful. One promising use of technology is for self-monitoring interventions aimed at improving classroom behavior. In this study, two middle school students with disabilities used a multicomponent, self-monitoring…

  5. Minimum Energy of Multicomponent Distillation Systems Using Minimum Additional Heat and Mass Integration Sections

    DOE PAGES

    Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit; ...

    2018-04-20

    Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less

  6. Minimum Energy of Multicomponent Distillation Systems Using Minimum Additional Heat and Mass Integration Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit

    Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less

  7. Copper-Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions: Simultaneous Generation and Trapping of Copper-Triazoles and -Ketenimines for the Synthesis of Triazolopyrimidines.

    PubMed

    Nallagangula, Madhu; Namitharan, Kayambu

    2017-07-07

    First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.

  8. One-Pot Synthesis of Fe3O4@PS@P(AEMH-FITC) Magnetic Fluorescent Nanocomposites for Bimodal Imaging.

    PubMed

    Wang, Xuandong; Liu, Huiyu; Jun, Ren; Fu, Changhui; Li, Linlin; Li, Tianlong; Tang, Fangqiong; Meng, Xianwei

    2016-03-01

    Magnetic fluorescent nanocomposites have attracted much attention because of their merging magnetic and fluorescent properties for biomedical application. However, the procedure of synthesis of magnetic fluorescent nanocomposites is always complicated. In addition, the properties of fluorescent component could be easily influenced by magnetic component, retaining both of the magnetic and fluorescent properties into one single nanoparticle considered to be a significant challenge. Herein, we report one-pot method to synthesize multifunctional magnetic fluorescent Fe3O4@PS@P(AEMH-FITC) nanocomposites for bimodal imaging. The asprepared Fe3O4@PS@P(AEMH-FITC) nanocomposites with well-define spherical core/shell structure were stable properties. Moreover, the Fe3O4@PS@P(AEMH-FITC) nanocomposites displayed efficient fluorescent and magnetic properties, respectively. Meanwhile, the magnetic resonance imaging (MRI) and HePG2 cancer cell fluorescent images experiment results suggested that Fe3O4@PS@P(AEMH-FITC) nanocomposites could be used as MRI contrast agents and Fluorescence Imaging (FLI) agents for bioimaging application. Our investigation paves a facile avenue for synthesized magnetic fluorescent nanostructures with well biocompatibility for potential bioimaging application in MRI and FLI.

  9. Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles as efficient catalyst for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Sufeng; Zhao, Dongyan; Hou, Chen; Liang, Chen; Li, Hao

    2018-06-01

    A facile and efficient one-pot method for the synthesis of well-dispersed hollow CuFe2O4 nanoparticles (H-CuFe2O4 NPs) in the presence of cellulose nanocrystals (CNC) as the support was described. Based on the one-pot solvothermal condition control, magnetic H-CuFe2O4 NPs were in-situ grown on the CNC surface uniformly. TEM images indicated good dispersity of H-CuFe2O4 NPs with uniform size of 300 nm. The catalytic activity of H-CuFe2O4/CNC was tested in the catalytic reduction of 4-nitrophenol (4-NP) in aqueous solution. Compared with most CNC-based ferrite catalysts, H-CuFe2O4/CNC catalyst exhibited an excellent catalytic activity toward the reduction of 4-NP. The catalytic performance of H-CuFe2O4/CNC catalyst was remarkably enhanced with the rate constant of 3.24 s-1 g-1, which was higher than H-CuFe2O4 NPs (0.50 s-1 g-1). The high catalytic activity was attributed to the introduction of CNC and the special hollow mesostructure of H-CuFe2O4 NPs. In addition, the H-CuFe2O4/CNC catalyst promised good conversion efficiency without significant decrease even after 10 cycles, confirming relatively high stability. Because of its environmental sustainability and magnetic separability, H-CuFe2O4/CNC catalyst was shown to indicate that the ferrite nanoparticles supported on CNC were acted as a promising catalyst and exhibited potential applications in numerous ferrite based catalytic reactions.

  10. AJIPHASE®: A Highly Efficient Synthetic Method for One-Pot Peptide Elongation in the Solution Phase by an Fmoc Strategy.

    PubMed

    Takahashi, Daisuke; Inomata, Tatsuji; Fukui, Tatsuya

    2017-06-26

    We previously reported an efficient peptide synthesis method, AJIPHASE®, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. One-pot synthesis of powder-form β-Ni(OH)2 monolayer nanosheets with high electrochemical performance

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao

    2013-08-01

    In this work, β-Ni(OH)2 monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH)2 layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of β-Ni(OH)2 by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of β-Ni(OH)2 from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that β-Ni(OH)2 monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure.

  12. One-Pot Parallel Synthesis of Lipid Library via Thiolactone Ring Opening and Screening for Gene Delivery.

    PubMed

    Molla, Mijanur R; Böser, Alexander; Rana, Akshita; Schwarz, Karina; Levkin, Pavel A

    2018-04-18

    Efficient delivery of nucleic acids into cells is of great interest in the field of cell biology and gene therapy. Despite a lot of research, transfection efficiency and structural diversity of gene-delivery vectors are still limited. A better understanding of the structure-function relationship of gene delivery vectors is also essential for the design of novel and intelligent delivery vectors, efficient in "difficult-to-transfect" cells and in vivo clinical applications. Most of the existing strategies for the synthesis of gene-delivery vectors require multiple steps and lengthy procedures. Here, we demonstrate a facile, three-component one-pot synthesis of a combinatorial library of 288 structurally diverse lipid-like molecules termed "lipidoids" via a thiolactone ring opening reaction. This strategy introduces the possibility to synthesize lipidoids with hydrophobic tails containing both unsaturated bonds and reducible disulfide groups. The whole synthesis and purification are convenient, extremely fast, and can be accomplished within a few hours. Screening of the produced lipidoids using HEK293T cells without addition of helper lipids resulted in identification of highly stable liposomes demonstrating ∼95% transfection efficiency with low toxicity.

  13. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    NASA Astrophysics Data System (ADS)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye

  14. One-pot synthesis of biocompatible Te@phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process.

    PubMed

    Qian, Haisheng; Zhu, Enbo; Zheng, Shunji; Li, Zhengquan; Hu, Yong; Guo, Changfa; Yang, Xingyun; Li, Liangchao; Tong, Guoxiu; Guo, Huichen

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  15. Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors.

    PubMed

    Salve, Preeti S; Alegaon, Shankar G; Sriram, Dharmarajan

    2017-04-15

    An efficient three-component, one-pot protocol is described for the synthesis of biologically interesting 2-(benzylideneamino)-N-(7-chloroquinolin-4-yl)benzohydrazide derivatives from isatoic anhydride, 7-chloro-4-hydrazinylquinoline and aromatic and/or hetero aromatic aldehydes under catalyst free condensation by using water as reaction media. All synthesized compounds were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis (MTB) and cytotoxicity activity against normal VERO cell lines. The synthesized compounds exhibited minimum inhibitory concentration (MIC) ranging from 0.78 to 25μM. Among the tested compounds 4c, 4o, 4r, and 4u exhibited promising inhibitory activity (MIC=3.12μM). Compounds 4h and 4i stand out, showing MIC values of 0.78 and 1.56μM respectively. Both compounds were further screened for their Mycobacterium tuberculosis DNA gyrase inhibitory assay which suggested that these compounds have a great potential for further optimization and development as antitubercular agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fabrication and characterization of magnesium and calcium trimesate complexes via ion-exchange and one-pot self-assembly reaction

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur

    2018-03-01

    Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.

  17. Scalable One-pot Bacteria-templating Synthesis Route toward Hierarchical, Porous-Co3O4 Superstructures for Supercapacitor Electrodes

    PubMed Central

    Shim, Hyun-Woo; Lim, Ah-Hyeon; Kim, Jae-Chan; Jang, Eunjin; Seo, Seung-Deok; Lee, Gwang-Hee; Kim, T. Doohun; Kim, Dong-Wan

    2013-01-01

    Template-driven strategy has been widely used to synthesize inorganic nano/micro materials. Here, we used a bottom-up controlled synthesis route to develop a powerful solution-based method of fabricating three-dimensional (3D), hierarchical, porous-Co3O4 superstructures that exhibit the morphology of flower-like microspheres (hereafter, RT-Co3O4). The gram-scale RT-Co3O4 was facilely prepared using one-pot synthesis with bacterial templating at room temperature. Large-surface-area RT-Co3O4 also has a noticeable pseudocapacitive performance because of its high mass loading per area (~10 mg cm−2), indicating a high capacitance of 214 F g−1 (2.04 F cm−2) at 2 A g−1 (19.02 mA cm−2), a Coulombic efficiency averaging over 95%, and an excellent cycling stability that shows a capacitance retention of about 95% after 4,000 cycles. PMID:23900049

  18. A One-Pot/Single-Analysis Approach to Substrate Scope Investigations Using Comprehensive Two-Dimensional Gas Chromatography (GC×GC).

    PubMed

    O'Neil, Gregory W; Nelson, Robert K; Wright, Alicia M; Reddy, Christopher M

    2016-05-06

    A representative substrate scope investigation for an enantioselective catalytic ketone-reduction has been performed as a single reaction on a mixture containing equimolar amounts of nine (9) prototypical compounds. The resulting analyte pool containing 18 potential products from nine different reactions could all be completely resolved in a single chromatographic injection using comprehensive two-dimensional gas chromatography (GC×GC) with time-of-flight mass spectrometry, allowing for simultaneous determination of percent conversion and enantiomeric excess for each substrate. The results obtained for an enantioselective iron-catalyzed asymmetric transfer hydrogenation using this one-pot/single-analysis approach were similar to those reported for the individualized reactions, demonstrating the utility of this strategy for streamlining substrate scope investigations. Moreover, for this particular catalyst, activity and selectivity were not greatly affected by the presence of other ketones or enantioenriched reduced products. This approach allows for faster and greener analyses that are central to new reaction development, as well as an opportunity to gain further insights into other established transformations.

  19. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    PubMed Central

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01–100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis. PMID:28128225

  20. One-Pot Green Synthesis of Graphene Nanosheets Encapsulated Gold Nanoparticles for Sensitive and Selective Detection of Dopamine

    NASA Astrophysics Data System (ADS)

    Thirumalraj, Balamurugan; Rajkumar, Chellakannu; Chen, Shen-Ming; Palanisamy, Selvakumar

    2017-01-01

    We report a simple new approach for green preparation of gallic acid supported reduced graphene oxide encapsulated gold nanoparticles (GA-RGO/AuNPs) via one-pot hydrothermal method. The as-prepared composites were successfully characterized by using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray powder diffraction techniques (XRD), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and elemental analysis. The GA-RGO/AuNPs modified electrode behaves as a hybrid electrode material for sensitive and selective detection of dopamine (DA) in presence of ascorbic acid (AA) and uric acid (UA). The GA-RGO/AuNPs modified electrode displays an excellent electrocatalytic activity towards the oxidation of DA and exhibits a wide linear response range over the DA concentrations from 0.01-100.3 μM with a detection limit (LOD) of 2.6 nM based on S/N = 3. In addition, the proposed sensor could be applied for the determination of DA in human serum and urine samples for practical analysis.

  1. Safer one-pot synthesis of the ‘SHAPE’ reagent 1-methyl-7-nitroisatoic anhydride (1m7)

    PubMed Central

    Turner, Rushia; Shefer, Kinneret; Ares, Manuel

    2013-01-01

    Estimating the reactivity of 2′-hydroxyl groups along an RNA chain of interest aids in the modeling of the folded RNA structure; flexible loops tend to be reactive, whereas duplex regions are generally not. Among the most useful reagents for probing 2′-hydroxyl reactivity is 1-methyl-7-nitroisatoic anhydride (1m7), but the absence of a reliable, inexpensive source has prevented widespread adoption. An existing protocol for the conversion of an inexpensive precursor 4-nitroisatoic anhydride (4NIA) recommends the use of NaH in dimethylformamide (DMF), a reagent combination that most molecular biology labs are not equipped to handle, and that does not scale safely in any case. Here we describe a safer, one-pot method for bulk conversion of 4NIA to 1m7 that reduces costs and bypasses the use of NaH. We show that 1m7 produced by this method is free of side products and can be used to probe RNA structure in vitro. PMID:24141619

  2. Multi-component intermetallic electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M; Trahey, Lynn; Vaughey, John T

    2015-03-10

    Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.

  3. Estimating Dungeness crab (Cancer magister) abundance: Crab pots and dive transects compared

    USGS Publications Warehouse

    Taggart, S. James; O'Clair, Charles E.; Shirley, Thomas C.; Mondragon, Jennifer

    2004-01-01

    Dungeness crabs (Cancer magister) were sampled with commercial pots and counted by scuba divers on benthic transects at eight sites near Glacier Bay, Alaska. Catch per unit of effort (CPUE) from pots was compared to the density estimates from dives to evaluate the bias and power of the two techniques. Yearly sampling was conducted in two seasons: April and September, from 1992 to 2000. Male CPUE estimates from pots were significantly lower in April than in the following September; a step-wise regression demonstrated that season accounted for more of the variation in male CPUE than did temperature. In both April and September, pot sampling was significantly biased against females. When females were categorized as ovigerous and nonovigerous, it was clear that ovigerous females accounted for the majority of the bias because pots were not biased against nonovigerous females. We compared the power of pots and dive transects in detecting trends in populations and found that pots had much higher power than dive transects. Despite their low power, the dive transects were very useful for detecting bias in our pot sampling and in identifying the optimal times of year to sample so that pot bias could be avoided.

  4. Use of fully biodegradable panels to reduce derelict pot threats to marine fauna.

    PubMed

    Bilkovic, D M; Havens, K J; Stanhope, D M; Angstadt, K T

    2012-12-01

    Fishing pots (i.e., traps) are designed to catch fish or crustaceans and are used globally. Lost pots are a concern for a variety of fisheries, and there are reports that 10-70% of deployed pots are lost annually. Derelict fishing pots can be a source of mortality for target and bycatch species for several years. Because continual removal of derelict gear can be impractical over large spatial extents, modifications are needed to disarm gear once it is lost. We tested a fully biodegradable panel with a cull or escape ring designed for placement on the sides of a crab pot that completely degrades into environmentally neutral constituents after approximately 1 year. This panel is relatively inexpensive, easy to install, and can be used in multiple fisheries. We used the blue crab (Callinectes sapidus) fishery as a test case because it is a large pot fishery and blue crab pots are similar to traps used in other pot fisheries. We had commercial fishers deploy pots with panels alongside standard pots in Chesapeake Bay (U.S.A.) to assess potential effects of our experimental pots on blue crab catch. We compared the number, biomass, and size of crabs captured between standard and experimental pots and evaluated differences in catch over a crabbing season (March-November) at five locations. There was no evidence that biodegradable panels adversely affected catch. In all locations and time periods, legal catches were comparable in abundance, biomass, and size between experimental and standard pots. Properly designed biodegradable panels appear to be a viable solution to mitigate adverse effects of derelict pots. ©2012 Society for Conservation Biology.

  5. Dispersive—diffusive transport of non-sorbed solute in multicomponent solutions

    NASA Astrophysics Data System (ADS)

    Hu, Qinhong; Brusseau, Mark L.

    1995-10-01

    The composition of fuels, mixed-solvent wastes and other contaminants that find their way into the subsurface are frequently chemically complex. The dispersion and diffusion characteristics of multicomponent solutions in soil have rarely been compared to equivalent single-solute systems. The purpose of this work was to examine the diffusive and dispersive transport of single- and multi-component solutions in homogeneous porous media. The miscible displacement technique was used to investigate the transport behavior of 14C-labelled 2,4-dichlorophenoxyacetic acid ( 2,4-D) in two materials for which sorption of 2,4-D was minimal. Comparison of breakthrough curves collected for 2,4-D in single- and multi-component solutions shows that there is little, if any, difference in transport behavior over a wide range of pore-water velocities (70, 7, 0.66 and 0.06 cm h -1). Thus, dispersivities measured with a non-sorbing single-solute solution should be applicable to multicomponent systems.

  6. Multicomponent gas sorption Joule-Thomson refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Petrick, S. Walter (Inventor); Bard, Steven (Inventor)

    1991-01-01

    The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas.

  7. Surface-slip equations for multicomponent nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Scott, C. D.; Moss, J. N.

    1985-01-01

    Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.

  8. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  9. 3. OVERALL VIEW OF TWIN POTS RESERVOIR, LOOKING SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERALL VIEW OF TWIN POTS RESERVOIR, LOOKING SOUTHEAST - High Mountain Dams in Upalco Unit, Twin Pots Dam, Ashley National Forest, 10.1 miles North of Mountain Home, Mountain Home, Duchesne County, UT

  10. Copper catalyzed oxidative coupling reactions for trifluoromethylselenolations--synthesis of R-SeCF3 compounds using air stable tetramethylammonium trifluoromethylselenate.

    PubMed

    Lefebvre, Quentin; Pluta, Roman; Rueping, Magnus

    2015-03-14

    The aerobic, room-temperature coupling of tetramethylammonium trifluoromethylselenate with readily available boronic acids, boronic esters, and terminal alkynes has been developed. The method permits direct access to valuable trifluoromethylselenoarenes and alkynes under mild conditions. A convenient one-pot reaction, a scale up procedure as well as an extension to perfluoroalkylselenates are also presented to further demonstrate the synthetic utility of this reaction.

  11. Direct hydrogenation and one-pot reductive amidation of nitro compounds over Pd/ZnO nanoparticles as a recyclable and heterogeneous catalyst

    NASA Astrophysics Data System (ADS)

    Hosseini-Sarvari, Mona; Razmi, Zahra

    2015-01-01

    A novel Pd supported on ZnO nanoparticles was readily synthesized and characterized. The amount of palladium on ZnO is 9.84 wt% which was determined by ICP analysis and atomic absorption spectroscopy (AAS). Percentage of accessible Pd as active catalyst is also estimated to 2.72% based on the thermogravimetric (TG) analysis. This nano-sized Pd/ZnO with an average particle size of 20-25 nm and specific surface area 40.61 m2 g-1 was used as a new reusable heterogeneous catalyst for direct hydrogenation and one-pot reductive amidation of nitro compounds without the use of any ligands under atmospheric pressure. The catalyst can be recovered and recycled several times without marked loss of activity.

  12. Unsaturated C3,5,7,9-Monocarboxylic Acids by Aqueous, One-Pot Carbon Fixation: Possible Relevance for the Origin of Life

    PubMed Central

    Scheidler, Christopher; Sobotta, Jessica; Eisenreich, Wolfgang; Wächtershäuser, Günter; Huber, Claudia

    2016-01-01

    All scientific approaches to the origin of life share a common problem: a chemical path to lipids as main constituents of extant cellular enclosures. Here we show by isotope-controlled experiments that unsaturated C3,5,7,9-monocarboxylic acids form by one-pot reaction of acetylene (C2H2) and carbon monoxide (CO) in contact with nickel sulfide (NiS) in hot aqueous medium. The primary products are toto-olefinic monocarboxylic acids with CO-derived COOH groups undergoing subsequent stepwise hydrogenation with CO as reductant. In the resulting unsaturated monocarboxylic acids the double bonds are mainly centrally located with mainly trans-configuration. The reaction conditions are compatible with an origin of life in volcanic-hydrothermal sub-seafloor flow ducts. PMID:27283227

  13. One-pot synthesis and lubricity of fluorescent carbon dots applied on PCL-PEG-PCL hydrogel.

    PubMed

    Guo, Junde; Mei, Tangjie; Li, Yue; Hafezi, Mahshid; Lu, Hailin; Li, Jianhui; Dong, Guangneng

    2018-06-12

    This work presents a method for one-pot synthesis of N-doped nanometer-size carbon dots, which can be assembled with thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) hydrogel to achieve slow-release lubricity. The typical property of this green production was studied by fourier transform infrared (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The photoluminescence of composite PCEC/CDs hydrogel and its released solutions were characterized by ultraviolet spectrum, and the rheological properties were tested by rotary rheometer. Tribological performance of the released solution from composite PCEC/CDs hydrogel was obtained to compare with PBS and pure CDs solution. The experimental results reveal that the CDs contain the chemical groups of N-H, C-OH/C-O-C and -COOH, etc. In addition, the diameter of the CDs is in the range of 6~8 nm. The phase transition behavior of PCEC/CDs hydrogel can be still kept and its viscoelasticity hydrogel is improved by approximatively 7%. Furthermore, friction coefficient of the released solution from composite PCEC/CDs hydrogel decreases by about 70% than that of PBS. Besides, the wear condition can be improved by a lubricating transfer film formed by released CDs. This novel strategy for slow-release application is valuable for drug delivery and bio-tribology.

  14. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.

    PubMed

    Yang, Jia-Liang; Cao, Xiao-Han; Zhang, Cheng-Jian; Wu, Hai-Lin; Zhang, Xing-Hong

    2018-01-31

    A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h -1 ), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights ( M n s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.

  15. Virasoro symmetry of the constrained multicomponent Kadomtsev-Petviashvili hierarchy and its integrable discretization

    NASA Astrophysics Data System (ADS)

    Li, Chuanzhong; He, Jingsong

    2016-06-01

    We construct Virasoro-type additional symmetries of a kind of constrained multicomponent Kadomtsev-Petviashvili (KP) hierarchy and obtain the Virasoro flow equation for the eigenfunctions and adjoint eigenfunctions. We show that the algebraic structure of the Virasoro symmetry is retained under discretization from the constrained multicomponent KP hierarchy to the discrete constrained multicomponent KP hierarchy.

  16. Temperature variation of pitch in a pitch pot

    NASA Astrophysics Data System (ADS)

    Droste, Stefan; Klinger, Charles

    2007-05-01

    Opticians have for years kept polishing pitch in electrified containers called "pitch pots" that keeps it in at an elevated temperature. The temperature is adjusted to achieve the desired pitch viscosity. When pitch is desired, the optician will remove the cover, reach into the pot and scoop out a glob of pitch with his hand. However, without thinking, most opticians will "fold over" or "push aside" the top layer of pitch to select pitch from deeper in the pot. This paper documents the change in temperature as the distance from the top surface increases. It also shows the effect of insulating the top cover.

  17. Phytophthora ramorum disease transmission from artificially infested potting media

    Treesearch

    Jennifer L. Parke; Melody L. Roth; Carrie Lewis; Caroline J. Choquette

    2006-01-01

    Potted rhododendrons grown in potting media amended with inoculum of Phytophthora ramorum became infected and showed symptoms of stem necrosis, leaf wilting, and death. P. ramorum was isolated from roots and stems of infected plants.

  18. Ugi-Smiles couplings of 4-substituted pyridine derivatives: a fast access to chloroquine analogues.

    PubMed

    El Kaïm, Laurent; Grimaud, Laurence; Pravin, Patil

    2012-01-20

    4-Hydroxy and mercapto pyridines were successfully tested in Ugi-Smiles couplings. Such multicomponent reactions applied to quinoline derivatives afford a very convenient and short synthesis of antimalarial analogues. © 2011 American Chemical Society

  19. Direct Numerical Simulation of Transitional Multicomponent-Species Gaseous and Multicomponent-Liquid Drop-Laden Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent C.; Bellan, Josette

    2006-01-01

    A model of multicomponent-liquid (MC-liquid) drop evaporation in a three-dimensional mixing layer is here exercised at larger Reynolds numbers than in a previous study, and transitional states are obtained. The gas phase is followed in an Eulerian frame and the multitude of drops is described in a Lagrangian frame. Complete coupling between phases is included with source terms in the gas conservation equations accounting for the drop/flow interaction in terms of drop drag, drop heating and species evaporation. The liquid composition, initially specified as a single-Gamma (SG) probability distribution function (PDF) depending on the molar mass is allowed to evolve into a linear combination of two SGPDFs, called the double-Gamma PDF (DGPDF). The compositions of liquid and vapor emanating from the drops are calculated through four moments of the DGPDFs, which are drop-specific and location-specific, respectively. The mixing layer is initially excited to promote the double pairing of its four initial spanwise vortices into an ultimate vortex in which small scales proliferate. Simulations are performed for four liquids of different compositions and the effect of the initial mass loading and initial free-stream gas temperature are explored. For reference, Simulations are also performed for gaseous multicomponent mixing layers for which the effect of Reynolds number is investigated. The results encompass examination of the global layer characteristics, flow visualizations and homogeneous-plane statistics at transition. Comparisons are performed with previous pre-transitional MC-liquid simulations and with transitional single-component (SC) liquid studies. It is found that MCC flows at transition, the classical energy cascade is of similar strength, but that the smallest scales contain orders of magnitude less energy than SC flows, which is confirmed by the larger viscous dissipation in the former case. Contrasting to pre-transitional MC flows, the vorticity and drop

  20. Is the compressibility positive or negative in a strongly-coupled dusty plasma?

    NASA Astrophysics Data System (ADS)

    Goree, John; Ruhunusiri, W. D. Suranga

    2014-10-01

    In dusty plasmas, dust particles are often strongly coupled with a large Coulomb coupling parameter Γ, while the electrons and ions that share the same volume are weakly coupled. In most substances, compressibility β must be positive; otherwise there would be an explosive instability. In a multicomponent plasma, however, one could entertain the idea that β for a single strongly coupled component could be negative, provided that the restoring force from charge separation overwhelms the destabilizing effect. Indeed, the compressibility for a strongly-coupled dust component is assumed to be negative in three theories we identified in the literature for dust acoustic waves. These theories use a multi-fluid model, with an OCP (one component plasma) or Yukawa-OCP approach for the dust fluid. We performed dusty plasma experiments designed to determine the value of the inverse compressibility β-1, and in particular its sign. We fit an experimentally measured dispersion relation to theory, with β-1 as a free parameter, taking into account the systematic errors in the experiment and model. We find that β-1 is either positive, or it has a negligibly small negative value, which is not in agreement with the assumptions of the OCP-based theories. Supported by NSF and NASA.

  1. One-pot microwave assisted synthesis and structural elucidation of novel ethyl 3-substituted-7-methylindolizine-1-carboxylates with larvicidal activity against Anopheles arabiensis

    NASA Astrophysics Data System (ADS)

    Chandrashekharappa, Sandeep; Venugopala, Katharigatta N.; Nayak, Susanta K.; Gleiser, Raquel M.; García, Daniel A.; Kumalo, Hezekiel M.; Kulkarni, Rashmi S.; Mahomoodally, Fawzi M.; Venugopala, Rashmi; Mohan, Mahendra K.; Odhav, Bharti

    2018-03-01

    In the present investigation a series of novel ethyl 3-substituted-7-methylindolizine-1-carboxylates was achieved by microwave assisted one-pot method. The purity of the compounds was ascertained by HPLC and structural elucidation of the title compounds was achieved by FT-IR, NMR (1H and 13C), LC-MS and elemental analysis. One randomly selected compound from the series was further studied by single crystal X-ray method for intra and intermolecular interactions. Larvicidal properties of the characterized compounds were evaluated against Anopheles arabiensis and it was found that indolizine pharmacophore influences larvicidal activity as we can see larvicidal activity for all the analogues. The synthesized analogues (2j, 2m and 2f) were the most potent compounds based on the functional groups on the indolizine pharmacophore for larvicidal assay.

  2. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.

    2018-01-01

    Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the

  3. Study on Pot Forming of Induction Heater Type Rice Cookers by Forging Cast Process

    NASA Astrophysics Data System (ADS)

    Ohnishi, Masayuki; Yamaguchi, Mitsugi; Ohashi, Osamu

    This paper describes a study result on pot fabrication by the forging cast process of stainless steel with aluminum. Rice cooked with the new bowl-shaped pot for the induction heater type rice cookers is better tasting than rice cooked with the conventional cylindrical one, due to the achievement of better heat conduction and convection. The conventional pot is made of the clad sheet, consisting of stainless steel and aluminum. However, it is rather difficult to form a bowl shape from the clad sheet, primarily due to the problem of a material spring back. The fabrication of a new type of a pot was made possible by means of the adoption of a forging cast process instead of the clad sheet. In this process, iron powder is inserted between stainless steel and aluminum in order to alleviate the large difference on the coefficient of expansion between each material. It was made clear that the application of two kinds of iron particle, namely 10 μm size powder on the stainless steel side and 44 μm on the aluminum side, enables the joints to become strong enough. The joint strength of the new pot by this fabrication process was confirmed by the tests of the shear strength and the fatigue tests together with the stress analysis.

  4. Mutation in fission yeast phosphatidylinositol 4-kinase Pik1 is synthetically lethal with defect in telomere protection protein Pot1.

    PubMed

    Sugihara, Asami; Nguyen, Luan Cao; Shamim, Hossain Mohammad; Iida, Tetsushi; Nakase, Mai; Takegawa, Kaoru; Senda, Mitsuhisa; Jida, Shohei; Ueno, Masaru

    2018-02-19

    Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1 + causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ. We obtained a novel pik1 mutant, pik1-1, which is synthetically lethal with pot1Δ. We found phosphoinositol 4-phosphate in the Golgi was reduced in pik1-1. To investigate the mechanism of the lethality of the pot1Δ pik1-1 double mutant, we constructed the nmt-pot1-aid pik1-1 strain, where Pot1 function becomes low by drugs, which leads to telomere loss and chromosome circularization, and found pik1-1 mutation does not affect telomere resection and chromosome circularization. Thus, our results suggest that pik1 + is required for the maintenance of circular chromosomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Ultrasound promoted one pot synthesis of novel fluorescent triazolyl spirocyclic oxindoles using DBU based task specific ionic liquids and their antimicrobial activity.

    PubMed

    Singh, Harjinder; Sindhu, Jayant; Khurana, Jitender M; Sharma, Chetan; Aneja, K R

    2014-04-22

    Spirocyclic oxindoles and triazolyl derivatives posses remarkable biological activities. In present work, we have described an efficient one pot four-component domino reaction of 1-(prop-2-ynyl)indoline-2,3-dione, cyclic 1,3-diketones, malononitrile and various aryl azides in DBU based ionic liquids [DBU-H]OAc and [DBU-Bu]OH under ultrasonic irradiation for the construction of heterocycles, comprising spiro-oxindole, 2-amino-4H-pyran, and 1,2,3-triazoles substructures. The antimicrobial activity of all compounds has been investigated against six microbial strains. All compounds showed good antimicrobial activity. All newly synthesized compounds exhibit fluorescence in methanol with large stoke shift. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Modular in situ-Functionalization Strategy: Multicomponent Polymerization via Palladium/Norbornene Cooperative Catalysis.

    PubMed

    Yoon, Ki-Young; Dong, Guangbin

    2018-05-23

    Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis.

    PubMed

    Yu, Iris K M; Tsang, Daniel C W; Yip, Alex C K; Chen, Season S; Ok, Yong Sik; Poon, Chi Sun

    2017-10-01

    This study aimed to produce a high-value platform chemical, hydroxymethylfurfural (HMF), from food waste and evaluate the catalytic performance of trivalent and tetravalent metals such as AlCl 3 , CrCl 3 , FeCl 3 , Zr(O)Cl 2 , and SnCl 4 for one-pot conversion. Starchy food waste, e.g., cooked rice and penne produced 4.0-8.1 wt% HMF and 46.0-64.8 wt% glucose over SnCl 4 after microwave heating at 140 °C for 20 min. This indicated that starch hydrolysis was effectively catalyzed but subsequent glucose isomerization was rate-limited during food waste valorization, which could be enhanced by 40-min reaction to achieve 22.7 wt% HMF from cooked rice. Sugary food waste, e.g., kiwifruit and watermelon, yielded up to 13 wt% HMF over Sn catalyst, which mainly resulted from naturally present fructose. Yet, organic acids in fruits may hinder Fe-catalyzed dehydration by competing for the Lewis sites. In contrast, conversion of raw mixed vegetables as cellulosic food waste was limited by marginal hydrolysis at the studied conditions (120-160 °C and 20-40 min). It is interesting to note that tetravalent metals enabled HMF production at a lower temperature and shorter time, while trivalent metals could achieve a higher HMF selectivity at an elevated temperature. Further studies on kinetics, thermodynamics, and reaction pathways of food waste valorization are recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Structural and functional analysis of the human POT1-TPP1 telomeric complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Cory; Shastrula, Prashanth Krishna; Kossenkov, Andrew V.

    POT1 and TPP1 are part of the shelterin complex and are essential for telomere length regulation and maintenance. Naturally occurring mutations of the telomeric POT1–TPP1 complex are implicated in familial glioma, melanoma and chronic lymphocytic leukaemia. Here we report the atomic structure of the interacting portion of the human telomeric POT1–TPP1 complex and suggest how several of these mutations contribute to malignant cancer. The POT1 C-terminus (POT1C) forms a bilobal structure consisting of an OB-fold and a holiday junction resolvase domain. TPP1 consists of several loops and helices involved in extensive interactions with POT1C. Biochemical data shows that several ofmore » the cancer-associated mutations, partially disrupt the POT1–TPP1 complex, which affects its ability to bind telomeric DNA efficiently. A defective POT1–TPP1 complex leads to longer and fragile telomeres, which in turn promotes genomic instability and cancer.« less

  9. Structural and functional analysis of the human POT1-TPP1 telomeric complex

    DOE PAGES

    Rice, Cory; Shastrula, Prashanth Krishna; Kossenkov, Andrew V.; ...

    2017-04-10

    POT1 and TPP1 are part of the shelterin complex and are essential for telomere length regulation and maintenance. Naturally occurring mutations of the telomeric POT1–TPP1 complex are implicated in familial glioma, melanoma and chronic lymphocytic leukaemia. Here we report the atomic structure of the interacting portion of the human telomeric POT1–TPP1 complex and suggest how several of these mutations contribute to malignant cancer. The POT1 C-terminus (POT1C) forms a bilobal structure consisting of an OB-fold and a holiday junction resolvase domain. TPP1 consists of several loops and helices involved in extensive interactions with POT1C. Biochemical data shows that several ofmore » the cancer-associated mutations, partially disrupt the POT1–TPP1 complex, which affects its ability to bind telomeric DNA efficiently. A defective POT1–TPP1 complex leads to longer and fragile telomeres, which in turn promotes genomic instability and cancer.« less

  10. One-pot deposition of palladium on hybrid TiO2 nanoparticles and catalytic applications in hydrogenation.

    PubMed

    Mehri, Afef; Kochkar, Hafedh; Daniele, Stéphane; Mendez, Violaine; Ghorbel, Abdelhamid; Berhault, Gilles

    2012-03-01

    One-pot deposition of Pd onto TiO(2) has been achieved through directly contacting palladium(II) salt with nanosized functionalized TiO(2) support initially obtained by sol-gel process using titanium isopropoxide and citric acid. Citrate groups act as functional moieties able to directly reduce the Pd salt avoiding any further reducing treatment. Various palladium salts (Na(2)PdCl(4) and Pd(NH(3))(4)Cl(2)·H(2)O) and titanium to citrate (Ti/CA) ratios (20, 50, and 100) were used in order to study the effect of the nature of the precursor and of the citrate content on the final Pd particle size and catalytic properties of the as-obtained Pd/TiO(2) systems. Characterization was performed using N(2) adsorption-desorption isotherms, ICP-AES, FTIR, XRD, XPS, and TEM. The as-obtained hybrid Pd/TiO(2) catalysts were tested in the selective hydrogenation (HYD) of an α,β-unsaturated aldehyde, i.e. cinnamaldehyde. Citrate-free Pd/TiO(2)-based catalysts present lower selectivity into saturated alcohol. However, citrate-functionalized Pd/TiO(2) catalyst seems to control the selectivity, the particle size and dispersion of Pd NPs leading to high intrinsic activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis.

    PubMed

    Li, Ling; Kim, Seul-Ah; Heo, Ji Eun; Kim, Tae-Jip; Seo, Jin-Ho; Han, Nam Soo

    2017-12-20

    GDP-l-fucose is an l-fucose donor to synthesize fucosylated compounds such as human milk oligosaccharides or Lewis antigen. In this study, we used Lactococcus lactis subsp. cremoris NZ9000 to express 4 enzymes, ManB, ManC, Gmd, and WcaG and produced GDP-l-fucose by using one-pot synthesis method with mannose-6-phosphate as substrate and the enzymes as biocatalyst. For preparation of enzyme mixture, 4 genes (manB, manC, gmd, and wcaG) cloned from Escherichia coli were transformed into L. lactis strains using pNZ8008 and the recombinant cell lysates were obtained after cultivation. When mannose-6-phosphate was used as the substrate, the consecutive reactions with ManB, ManC, Gmd, and WcaG resulted in the successful production of GDP-l-fucose (0.13mM). When GDP-d-mannose was used as the substrate, it was entirely converted to GDP-l-fucose (0.2mM; 0.12g/L) via 2 enzymatic reactions mediated by Gmd and WcaG. This is the first report of GDP-l-fucose production by using multiple enzymes expressed in lactic acid bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. One-Pot Synthesis of D-Phenylalanine-Functionalized Multi-Walled Carbon Nanotubes: a Metal-Free Chiral Material for the Asymmetric Electroreduction of Aromatic Ketones.

    PubMed

    Yue, Ying-Na; Zeng, Sheng; Wang, Hui; Wang, Shuo; Wang, Huan; Lu, Jia-Xing

    2018-06-19

    A simple protocol to synthesize D-phenylalanine (D-PHE)-functionalized multi-walled carbon nanotubes (MWCNTs) via one-pot method was established by grafting D-PHE onto MWCNTs to obtain D-PHE-MWCNTs under mild reaction conditions. The resulting D-PHE-MWCNTs were detailedly characterized via spectroscopy and surface analysis. The electroreduction of 2,2,2-trifluoroacetophenone at D-PHE-MWCNTs cathode afforded (S)-α-(trifluoromethyl) benzyl alcohol whose yield was 65% and the enantiomeric excess was 40%. No extra catalysts were required in this electrochemical reaction solution compared with other reactions requiring homogeneous catalysis. The metal-free chiral material also showed acceptable asymmetric electroreduction performance, considerable stability and favorable reusability.

  13. Pectin assisted one-pot synthesis of three dimensional porous NiO/graphene composite for enhanced bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoshuai; Shi, Zhuanzhuan; Zou, Long; Li, Chang Ming; Qiao, Yan

    2018-02-01

    A three dimensional (3D) porous nickel oxide (NiO)/graphene composite is developed through one-pot hydrothermal synthesis with a biopolymer-pectin for tailoring the porous structure. The introduction of pectin makes the NiO grow into nanoflakes-assembled micro spheres that insert in the graphene layers rather than just deposit on the surface of graphene nanosheets as nanoparticles. As the increase of pectin ratio, the size and the amount of NiO micro spheres are both increased, which resulting a 3D hierarchical porous structure. With the optimized pectin concentration, the obtained NiO/graphene nanocomposite anode possesses good electrocatalytic capability and delivers maximum power density of 3.632 Wm-2 in Shewanella putrefaciens CN32 microbial fuel cells (MFCs). This work provides a new way to develop low cost, high performance anode materials for MFCs.

  14. Plaster, Portraits and Pots.

    ERIC Educational Resources Information Center

    Schimsky, Marc

    1982-01-01

    Describes an art activity in which junior high school students make portrait pots using plaster casts and clay. Each student created a reflection of his or her personality in clay. Specific teaching methods and ways of working with materials are discussed. (AM)

  15. 50 CFR 622.189 - Restrictions and requirements for sea bass pots.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Restrictions and requirements for sea... requirements for sea bass pots. (a) Tending restriction. A sea bass pot in the South Atlantic EEZ may be pulled... of the vessel so permitted. (b) Configuration restriction. In the South Atlantic EEZ, sea bass pots...

  16. 50 CFR 622.189 - Restrictions and requirements for sea bass pots.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Restrictions and requirements for sea... requirements for sea bass pots. (a) Tending restriction. A sea bass pot in the South Atlantic EEZ may be pulled... of the vessel so permitted. (b) Configuration restriction. In the South Atlantic EEZ, sea bass pots...

  17. dPotFit: A computer program to fit diatomic molecule spectral data to potential energy functions

    NASA Astrophysics Data System (ADS)

    Le Roy, Robert J.

    2017-01-01

    This paper describes program dPotFit, which performs least-squares fits of diatomic molecule spectroscopic data consisting of any combination of microwave, infrared or electronic vibrational bands, fluorescence series, and tunneling predissociation level widths, involving one or more electronic states and one or more isotopologs, and for appropriate systems, second virial coefficient data, to determine analytic potential energy functions defining the observed levels and other properties of each state. Four families of analytical potential functions are available for fitting in the current version of dPotFit: the Expanded Morse Oscillator (EMO) function, the Morse/Long-Range (MLR) function, the Double-Exponential/Long-Range (DELR) function, and the 'Generalized Potential Energy Function' (GPEF) of Šurkus, which incorporates a variety of polynomial functional forms. In addition, dPotFit allows sets of experimental data to be tested against predictions generated from three other families of analytic functions, namely, the 'Hannover Polynomial' (or "X-expansion") function, and the 'Tang-Toennies' and Scoles-Aziz 'HFD', exponential-plus-van der Waals functions, and from interpolation-smoothed pointwise potential energies, such as those obtained from ab initio or RKR calculations. dPotFit also allows the fits to determine atomic-mass-dependent Born-Oppenheimer breakdown functions, and singlet-state Λ-doubling, or 2Σ splitting radial strength functions for one or more electronic states. dPotFit always reports both the 95% confidence limit uncertainty and the "sensitivity" of each fitted parameter; the latter indicates the number of significant digits that must be retained when rounding fitted parameters, in order to ensure that predictions remain in full agreement with experiment. It will also, if requested, apply a "sequential rounding and refitting" procedure to yield a final parameter set defined by a minimum number of significant digits, while ensuring no

  18. The use of computational thermodynamics for the determination of surface tension and Gibbs-Thomson coefficient of multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.

    2018-04-01

    The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.

  19. One-pot template-free synthesis of porous CdMoO4 microspheres and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Madhusudan, Puttaswamy; Zhang, Jinfeng; Yu, Jiaguo; Cheng, Bei; Xu, Difa; Zhang, Jun

    2016-11-01

    The optical and catalytic performances of materials strongly depend on their size, morphology, dimensionality and structure. Herein, we demonstrate a facile one-pot template free synthesis of hierarchical CdMoO4 porous microspheres via a simple low temperature oil bath method. The photoactivity of the as-prepared samples was evaluated by photocatalytic decolorization of Methyl Orange (MO) and Methylene Blue (MB) mixed dye aqueous solutions at ambient temperature under full solar spectrum. The results indicated that the concentration of ammonium molybdate and reaction time greatly influence the diameter, average crystallite size, specific surface area, pore structure and photocatalytic activity of the prepared samples. Especially, under the suitable conditions the prepared hierarchical CdMoO porous microspheres exhibited enhanced photocatalytic activity and high stability. Furthermore, it is found that the photocatalytic activity and formation rate of hydroxyl radicals greatly depend on the particle sizes and morphology of as-prepared samples. This work not only demonstrates a simple way to fabricate the hierarchical CdMoO4 porous microspheres but also shows a possibility for utilization of CdMoO4 porous microspheres for the photocatalytic treatment of waste water pollutants.

  20. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation.

    PubMed

    Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua

    2010-08-01

    A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation. (c) 2010 Elsevier Ltd. All rights reserved.

  1. One-pot synthesis of metal-organic framework@SiO2 core-shell nanoparticles with enhanced visible-light photoactivity.

    PubMed

    Li, Zong-Qun; Wang, Ai; Guo, Chun-Yan; Tai, Yan-Fang; Qiu, Ling-Guang

    2013-10-14

    This paper presents a novel strategy to prepare Cu3(BTC)2@SiO2 core-shell nanoparticles in the size range of 200-400 nm using a new one-pot strategy under ultrasonic irradiation at room temperature. In this approach, the silica shell thickness could be finely tuned in the size range of 12-60 nm for various reaction times. Nanocomposite thin films were fabricated on the glass substrates by Sol-Gel spin coating using the products for 1.5 h, 2 h and 2.5 h, respectively, and heat treated using an infrared lamp heating system in air. The photocatalytic degradation of phenol in aqueous solution using Cu2(BTC)3@SiO2 thin films was investigated under visible light irradiation at pH 4. After a 45 min reaction with phenol, the degradation rate was up to 93.1%. Moreover, the thin film photocatalysts could be reused 5 times without appreciable loss of photocatalytic activity for degradation of phenol. The present work clearly shows that the films as photocatalysts showed higher photocatalytic performance.

  2. Multicomponent Separation Potential. Generalization of the Dirac Theory

    NASA Astrophysics Data System (ADS)

    Palkin, V. A.; Gadel‧shin, V. M.; Aleksandrov, O. E.; Seleznev, V. D.

    2014-05-01

    Formulas for the separation potential and the separative power have been obtained in the present work by generalizing the classical theory of Dirac, with the observance of his two axioms, to the case of a multicomponent mixture without considering a concrete cascade scheme. The resulting expressions are general characteristics of a separation process, since they are applicable to any separation methods and are independentof the form of the components in the mixture. They can be used in constructing actual cascades for separation of multicomponent mixtures and in determining the indices of their effi ciency.

  3. A Case Study of the Neti Pot's Rise, Americanization, and Rupture as Integrative Medicine in U.S. Media Discourse.

    PubMed

    Ho, Evelyn Y; Cady, Kathryn A; Robles, Jessica S

    2016-10-01

    In a period of only one decade in the United States, the neti pot shifted from obscure Ayurvedic health device to mainstream complementary and integrative medicine (CIM), touted by celebrities and sold widely in drug stores. We examine the neti pot as a case study for understanding how a foreign health practice became mainstreamed, and what that process reveals about more general discourses of health in the United States. Using discourse analysis of U.S. popular press and new media news (1999-2012) about the neti pot, we trace the development of discourses from neti's first introduction in mainstream news, through the hype following Dr. Oz's presentation on Oprah, to 2011 when two adults tragically died after using Naegleria fowleri amoeba-infested tap water in their neti pots. Neti pot discourses are an important site for communicative analysis because of the pot's complexity as an intercultural artifact: Neti pots and their use are enfolded into the biomedical practice of nasal irrigation and simultaneously Orientalized as exotic/magical and suspect/dangerous. This dual positioning as normal and exotic creates inequitable access for using the neti pot as a resource for increasing cultural health capital (CHC). This article contributes to work that critically theorizes the transnationalism of CIM, as the neti pot became successfully Americanized. These results have implications for understanding global health practices' incorporation or co-optation in new contexts, and the important role that popularly mediated health communication can play in framing what health care products and practices mean for consumers.

  4. On the direct detection of multi-component dark matter: sensitivity studies and parameter estimation

    NASA Astrophysics Data System (ADS)

    Herrero-Garcia, Juan; Scaffidi, Andre; White, Martin; Williams, Anthony G.

    2017-11-01

    We study the case of multi-component dark matter, in particular how direct detection signals are modified in the presence of several stable weakly-interacting-massive particles. Assuming a positive signal in a future direct detection experiment, stemming from two dark matter components, we study the region in parameter space where it is possible to distinguish a one from a two-component dark matter spectrum. First, we leave as free parameters the two dark matter masses and show that the two hypotheses can be significantly discriminated for a range of dark matter masses with their splitting being the critical factor. We then investigate how including the effects of different interaction strengths, local densities or velocity dispersions for the two components modifies these conclusions. We also consider the case of isospin-violating couplings. In all scenarios, we show results for various types of nuclei both for elastic spin-independent and spin-dependent interactions. Finally, assuming that the two-component hypothesis is confirmed, we quantify the accuracy with which the parameters can be extracted and discuss the different degeneracies that occur. This includes studying the case in which only a single experiment observes a signal, and also the scenario of having two signals from two different experiments, in which case the ratios of the couplings to neutrons and protons may also be extracted.

  5. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  6. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE PAGES

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-05

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  7. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. We found that for the same coupling parameters, the dynamic friction coefficient there tends to be unity. Our results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  8. An efficient numerical model for multicomponent compressible flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Firoozabadi, Abbas

    2014-12-01

    An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant-Freidricks-Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20-130 times in 2D. In 3D, one may expect even a higher computational efficiency.

  9. Strongly coupled Sm0.2Ce0.8O2-Na2CO3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghong; Li, Wenjian; Huang, Wen; Cao, Zhiqun; Shao, Kang; Li, Fengjiao; Tang, Chaoyun; Li, Cuihua; He, Chuanxin; Zhang, Qianling; Fan, Liangdong

    2018-05-01

    Highly conductive ceria-carbonate composite represents one type of most promising electrolyte materials for low temperature solid oxide fuel cells (SOFCs). Composites with large oxide-carbonate interface and homogeneous element/phase distribution are desirable to further enhance electrical properties and to study the ionic conduction mechanism. In this work, we report the successful synthesis of element/phase well-distributed, interfacial strongly coupled Sm0.2Ce0.8O2-Na2CO3 (NSDC) nanocomposite with different residual carbonate contents by an in-situ one-pot one-step citric acid-nitrate combustion method. Interestingly, NSDC shows distinct properties over those prepared by conventional methods and improved ionic conductivity. In particular, NSDC9010 nanocomposite displays a proton conductivity of 0.044 S cm-1 at 650 °C, which is 3-5 times higher than the oxide proton conductors. Electrolyte supported SOFCs based on the resultant nanocomposite electrolyte, NSDC9010, give the best power output of 281.5 mW cm-2 at 600 °C with LiNiO2 symmetric electro-catalysts. The excellent ionic conductivity and fuel cell performance are correlated with the unique core-shell structure, good phase distribution and large interfacial area induced by the one-step fabrication method, the strong coupling between oxide and carbonate as verified by the differential thermal and Raman spectroscopy characterization results and the optimal interfacial carbonate layer thickness by intentionally adjusting of carbonate contents.

  10. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    PubMed

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  11. Toward a comprehensive UV laser ablation modeling of multicomponent materials—A non-equilibrium investigation on titanium carbide

    NASA Astrophysics Data System (ADS)

    Ait Oumeziane, Amina; Parisse, Jean-Denis

    2018-05-01

    Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.

  12. Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle.

    PubMed

    Peiris, Pubudu M; Toy, Randall; Abramowski, Aaron; Vicente, Pete; Tucci, Samantha; Bauer, Lisa; Mayer, Aaron; Tam, Morgan; Doolittle, Elizabeth; Pansky, Jenna; Tran, Emily; Lin, Dishen; Schiemann, William P; Ghaghada, Ketan B; Griswold, Mark A; Karathanasis, Efstathios

    2014-01-10

    While potent cytotoxic agents are available to oncologists, the clinical utility of these agents is limited due to their non-specific distribution in the body and toxicity to normal tissues leading to use of suboptimal doses for eradication of metastatic disease. Furthermore, treatment of micrometastases is impeded by several biobarriers, including their small size and high dispersion to organs, making them nearly inaccessible to drugs. To circumvent these limitations in treating metastatic disease, we developed a multicomponent, flexible chain-like nanoparticle (termed nanochain) that possesses a unique ability to gain access to and be deposited at micrometastatic sites. Moreover, coupling nanochain particles to radiofrequency (RF)-triggered cargo delivery facilitated widespread delivery of drug into hard-to-reach cancer cells. Collectively, these features synergistically facilitate effective treatment and ultimately eradication of micrometastatic disease using a low dose of a cytotoxic drug. © 2013.

  13. 'Pot of Gold'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by the panoramic camera on the Mars Exploration Rover Spirit shows the rock dubbed 'Pot of Gold' (upper left), located near the base of the 'Columbia Hills' in Gusev Crater. The rock's nodules and layered appearance have inspired rover team members to investigate the rock's detailed chemistry in coming sols. This picture was taken on sol 158 (June 13, 2004).

  14. Multi-Component Diffusion with Application To Computational Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Sutton, Kenneth; Gnoffo, Peter A.

    1998-01-01

    The accuracy and complexity of solving multicomponent gaseous diffusion using the detailed multicomponent equations, the Stefan-Maxwell equations, and two commonly used approximate equations have been examined in a two part study. Part I examined the equations in a basic study with specified inputs in which the results are applicable for many applications. Part II addressed the application of the equations in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) computational code for high-speed entries in Earth's atmosphere. The results showed that the presented iterative scheme for solving the Stefan-Maxwell equations is an accurate and effective method as compared with solutions of the detailed equations. In general, good accuracy with the approximate equations cannot be guaranteed for a species or all species in a multi-component mixture. 'Corrected' forms of the approximate equations that ensured the diffusion mass fluxes sum to zero, as required, were more accurate than the uncorrected forms. Good accuracy, as compared with the Stefan- Maxwell results, were obtained with the 'corrected' approximate equations in defining the heating rates for the three Earth entries considered in Part II.

  15. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    PubMed

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  16. An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions

    NASA Astrophysics Data System (ADS)

    Medina-Velazquez, D. Y.; Alejandre-Zuniga, B. Y.; Loera-Serna, S.; Ortiz, E. M.; Morales-Ramirez, A. de J.; Garfias-Garcia, E.; Garcia-Murillo, A.; Falcony, C.

    2016-12-01

    The increasing demand for optoelectronic devices requires the development of luminescent materials with high luminescence efficiency and low energy demands, and the metalorganic frameworks (MOFs) with lanthanides ions offer great potential in this area. The metalorganic materials provide properties of flexibility, low density, low-cost methods of synthesis, and insolubility in water, which gives them an advantage over traditional phosphors. In this study, a benzenetricarboxylate ligand (BTC) with a Eu3+ MOF was synthesized, and its structural and luminescent properties were measured. The metalorganic compound was generated in a one-pot reaction from europium nitrate and trimesic acid precursors. Through characterization by X-ray diffraction powder, infrared spectroscopy, SEM structural characterization, and luminescent spectroscopy, the formation of Europium benzenetricarboxylate (Eu-BTC) MOF nanorods was tested and the calculated value was in the range of 30-60 nm. A red luminescent emission with high intensity was observed for all the procedures.

  17. Numerical investigation of spray ignition of a multi-component fuel surrogate

    NASA Astrophysics Data System (ADS)

    Backer, Lara; Narayanaswamy, Krithika; Pepiot, Perrine

    2014-11-01

    Simulating turbulent spray ignition, an important process in engine combustion, is challenging, since it combines the complexity of multi-scale, multiphase turbulent flow modeling with the need for an accurate description of chemical kinetics. In this work, we use direct numerical simulation to investigate the role of the evaporation model on the ignition characteristics of a multi-component fuel surrogate, injected as droplets in a turbulent environment. The fuel is represented as a mixture of several components, each one being representative of a different chemical class. A reduced kinetic scheme for the mixture is extracted from a well-validated detailed chemical mechanism, and integrated into the multiphase turbulent reactive flow solver NGA. Comparisons are made between a single-component evaporation model, in which the evaporating gas has the same composition as the liquid droplet, and a multi-component model, where component segregation does occur. In particular, the corresponding production of radical species, which are characteristic of the ignition of individual fuel components, is thoroughly analyzed.

  18. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    PubMed

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  19. Enantioconvergent Cross-Couplings of Racemic Alkylmetal Reagents with Unactivated Secondary Alkyl Electrophiles: Catalytic Asymmetric Negishi α-Alkylations of N-Boc-pyrrolidine

    PubMed Central

    Cordier, Christopher J.; Lundgren, Rylan J.; Fu, Gregory C.

    2013-01-01

    Although enantioconvergent alkyl-alkyl couplings of racemic electrophiles have been developed, there have been no reports of the corresponding reactions of racemic nucleophiles. Herein, we describe Negishi cross-couplings of racemic α-zincated N-Boc-pyrrolidine with unactivated secondary halides, thus providing a one-pot, catalytic asymmetric method for the synthesis of a range of 2-alkylpyrrolidines (an important family of target molecules) from N-Boc-pyrrolidine, a commercially available precursor. Preliminary mechanistic studies indicate that two of the most straightforward mechanisms for enantioconvergence (a dynamic kinetic resolution of the organometallic coupling partner and a simple β-hydride elimination/β-migratory insertion pathway) are unlikely to be operative. PMID:23869442

  20. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  1. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    PubMed

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Microbial ingrowth around single- and multi-component adhesives studied in vitro.

    PubMed

    Preussker, S; Klimm, W; Pöschmann, M; Koch, R

    2003-01-01

    The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel

  3. A computer model for one-dimensional mass and energy transport in and around chemically reacting particles, including complex gas-phase chemistry, multicomponent molecular diffusion, surface evaporation, and heterogeneous reaction

    NASA Technical Reports Server (NTRS)

    Cho, S. Y.; Yetter, R. A.; Dryer, F. L.

    1992-01-01

    Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.

  4. One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Haichao; Fan, Meiqiang; Li, Chao; Tian, Guanglei; Lv, Chunju; Chen, Da; Shu, Kangying; Jiang, Jianjun

    2016-10-01

    Hollow NiSe-CoSe samples have been synthesized for the first time via a one-pot solvothermal approach. The strategy is robust enough to synthesize NiSe-CoSe nanoparticles with different NiSe to CoSe ratios but with a similar hollow structure. Co ions in the NiSe-CoSe nanoparticles play decisive role for formation of the hollow structure; otherwise, the nanoparticles become solid for the NiSe sample. When used as the positive electroactive materials for energy storage, the NiSe-CoSe samples show excellent electrochemical activity in alkaline electrolyte. Using the synergistic effect between NiSe and CoSe, the electrochemical performance of NiSe-CoSe can be tuned by varying the NiSe to CoSe ratios. The NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 shows the best electrochemical performance in terms of superior specific capacity, improved rate capability and excellent cycling stability. In addition, the electrochemical performance of NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 is also evaluated via assembling hybrid supercapacitors with RGO, and the hybrid supercapacitor delivers both high power and energy densities (41.8 Wh kg-1 at 750 W kg-1 and 20.3 Wh kg-1 at 30 kW kg-1).

  5. One-pot sonochemical synthesis of magnetite@reduced graphene oxide nanocomposite for high performance Li ion storage.

    PubMed

    Wu, Kaipeng; Liu, Diwei; Lu, Weiwei; Zhang, Kuibao

    2018-07-01

    In this research, we introduce a one-pot sonochemical method for the fabrication of magnetite@reduced graphene oxide (Fe 3 O 4 @rGO) nanocomposite as anode material for Li-ion batteries. Fe 3 O 4 @rGO is synthesized under ultrasonic irradiations by using iron (II) salt and GO as raw materials. An in-situ oxidation-reduction occurs between GO and Fe 2+ during the ultrasonic chemical reaction process. Fe 3 O 4 particles with the size of ∼20 nm are uniformly deposited on the surface of rGO nanosheets. The electrochemical activity of Fe 3 O 4 @rGO is systematically evaluated as an anode material in Li-ion battery. Li-ion cells using Fe 3 O 4 @rGO as electrode deliver high discharge and charge capacities of 1433.6 and 907.8 mAh g -1 in the initial cycle at 200 mA g -1 . Even performed at 500 and 5000 mA g -1 , it is able to deliver reversible capacities of 846.4 and 355.6 mAh g -1 , respectively, demonstrating outstanding Li-ion storage performance. This research presents a straightforward and efficient method for the fabrication of Fe 3 O 4 @rGO, which holds great potential in synthesis of other metal oxides on graphene sheets. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.

    2015-04-01

    In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm.more » Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.« less

  7. One-pot Sequential Reactions Featuring a Copper-catalyzed Amination Leading to Pyrido[2',1':2,3]imidazo[4,5-c]quinolines and Dihydropyrido[2',1':2,3]imidazo[4,5-c]quinolines.

    PubMed

    Fan, Xue-Sen; Zhang, Ju; Li, Bin; Zhang, Xin-Ying

    2015-06-01

    Tetracyclic skeletons combining an imidazo[1,2-a]pyridine moiety with a quinoline framework such as pyrido[2',1':2,3]imidazo[4,5-b]quinoline are stimulating increasing interests since they are close isosteres of a series of powerful antiproliferative compounds. In this paper, we report a novel methodology for the synthesis of pyrido[2',1':2,3]imidazo[4,5-c]quinolines through one-pot sequential reactions of commercially available or readily obtainable 2-aminopyridines, 2-bromophenacyl bromides, aqueous ammonia, and aldehydes. Moreover, dihydropyrido[2',1':2,3]imidazo[4,5-c]quinolines could also be obtained in a similar manner by using various ketones as the substrates in place of aldehydes. Notably, the whole procedure combines condensation/amination/cyclization reactions in one pot to give complex compounds in a simple and practical manner. Compared with literature methods, the synthetic strategy reported herein has the advantages of readily available starting materials, structural diversity of products, good functional group tolerance, and obviation of step-by-step operations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An Enduring Vision: The Melting Pot That Did Happen.

    ERIC Educational Resources Information Center

    Portes, Alejandro

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which argued that the melting pot never happened and neither assimilation nor cultural pluralism occurred (at least in New York City). Concludes that this is a landmark book because it challenges the canonical assimilation story, provides a new set of standards for expert knowledge in…

  9. General One-Pot Synthesis of Transition-Metal Phosphide/Nitrogen-Doped Carbon Hybrid Nanosheets as Ultrastable Anodes for Sodium-Ion Batteries.

    PubMed

    Li, Jingjing; Shi, Liang; Gao, Jingyu; Zhang, Genqiang

    2018-01-26

    Sodium-ion batteries (SIBs) have been considered as promising energy storage devices in grid-level applications, owing to their largely reduced cost compared with that of lithium-ion batteries. However, the practical application of SIBs has been seriously hindered because of the lack of appropriate anode materials, limited by the thermodynamics perspective, which is one of the central task at current stage. Herein, we have developed a general one-pot strategy for the synthesis of transition-metal phosphide (TMP) based hybrid nanosheets composed of carbon-coated TMP nanoparticles anchored to the surface of nitrogen-doped carbon nanosheets. This facile and cost-effective method is quite universal and holds potential to be further extended to other metal phosphide materials. Significantly, the hybrid nanosheet electrode possesses excellent sodium storage properties as anodes for SIBs, including high specific capacity, an ultra-long cycle life and a remarkable rate performance. This work makes a significant contribution to not only the synthetic methodology of TMP-carbon two-dimensional hybrid nanostructures, but also the application of TMP-based anodes for high-energy SIBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  11. Cascade multicomponent synthesis of indoles, pyrazoles, and pyridazinones by functionalization of alkenes.

    PubMed

    Matcha, Kiran; Antonchick, Andrey P

    2014-10-27

    The development of multicomponent reactions for indole synthesis is demanding and has hardly been explored. The present study describes the development of a novel multicomponent, cascade approach for indole synthesis. Various substituted indole derivatives were obtained from simple reagents, such as unfunctionalized alkenes, diazonium salts, and sodium triflinate, by using an established straightforward and regioselective method. The method is based on the radical trifluoromethylation of alkenes as an entry into Fischer indole synthesis. Besides indole synthesis, the application of the multicomponent cascade reaction to the synthesis of pyrazoles and pyridazinones is described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one derivatives as potential inhibitors of chorismate mutase.

    PubMed

    Mallikarjuna Rao, V; Mahesh Kumar, P; Rambabu, D; Kapavarapu, Ravikumar; Shobha Rani, S; Misra, Parimal; Pal, Manojit

    2013-12-01

    A series of novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives were designed, synthesized and evaluated in vitro as potential inhibitors of chorismate mutase (CM). All these compounds were prepared via a multi-component reaction (MCR) involving sequential I2-mediated Biginelli reaction followed by Cu-free Sonogashira coupling. Some of them showed promising inhibitory activities when tested at 30μM. One compound showed dose dependent inhibition of CM with IC50 value of 14.76±0.54μM indicating o-alkynylphenyl substituted DHPM as a new scaffold for the discovery of promising inhibitors of CM. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction.

    PubMed

    Dong, Suzhen; Lei, Yubing; Jia, Shikun; Gao, Lixin; Li, Jia; Zhu, Tong; Liu, Shunying; Hu, Wenhao

    2017-02-15

    Protein tyrosine phosphatase 1B (PTP1B) has been proposed to be an ideal target for treatment of type II diabetes and obesity. However, no druggable PTP1B inhibitor has been established and there is still an urgent demand for the development of structurally novel PTPIB inhibitor. Herein, we reported core-structurally novel PTP1B inhibitors with low micromole-ranged inhibitory activity by one-pot reaction from simple starting materials. Further studies demonstrated some of these active compounds had a specific selectivity over other PTPs. The structure and activity relationship was also described. The best active and selective compound 5e inhibited PTP1B activity with an IC 50 of 4.53μM. Molecular docking analysis further demonstrated that compound 5e bound to the active pocket of PTP1B. The results might provide some insights for further development of new drugs for type II diabetes and obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. General Synthetic Strategy for Libraries of Supported Multicomponent Metal Nanoparticles.

    PubMed

    Yang, Hui; Bradley, Siobhan J; Wu, Xin; Chan, Andrew; Waterhouse, Geoffrey I N; Nann, Thomas; Zhang, Jian; Kruger, Paul E; Ma, Shengqian; Telfer, Shane G

    2018-04-18

    Nanoparticles comprising three or more different metals are challenging to prepare. General methods that tackle this challenge are highly sought after as multicomponent metal nanoparticles display favorable properties in applications such as catalysis, biomedicine, and imaging. Herein, we report a practical and versatile approach for the synthesis of nanoparticles composed of up to four different metals. This method relies on the thermal decomposition of nanostructured composite materials assembled from platinum nanoparticles, a metal-organic framework (ZIF-8), and a tannic acid coordination polymer. The controlled integration of multiple metal cations (Ni, Co, Cu, Mn, Fe, and/or Tb) into the tannic acid shell of the precursor material dictates the composition of the final multicomponent metal nanoparticles. Upon thermolysis, the platinum nanoparticles seed the growth of the multicomponent metal nanoparticles via coalescence with the metallic constituents of the tannic acid coordination polymer. The nanoparticles are supported in the walls of hollow nitrogen-doped porous carbon capsules created by the decomposition of the organic components of the precursor. The capsules prevent sintering and detachment of the nanoparticles, and their porosity allows for efficient mass transport. To demonstrate the utility of producing a broad library of supported multicomponent metal nanoparticles, we tested their electrocatalytic performance toward the hydrogen evolution reaction and oxygen evolution reaction. We discovered functional relationships between the composition of the nanoparticles and their electrochemical activity and identified the PtNiCu and PtNiCuFe nanoparticles as particularly efficient catalysts. This highlights how to generate diverse libraries of multicomponent metal nanoparticles that can be synthesized and subsequently screened to identify high-performance materials for target applications.

  15. Facile and one-pot synthesis of uniform PtRu nanoparticles on polydopamine-modified multiwalled carbon nanotubes for direct methanol fuel cell application.

    PubMed

    Chen, Fengxia; Ren, Junkai; He, Qian; Liu, Jun; Song, Rui

    2017-07-01

    A facile, environment-friendly and one-pot synthesis method for the preparation of high performance PtRu electrocatalysts on the multiwalled carbon nanotubes (MWCNTs) is reported. Herein, bimetallic PtRu electrocatalysts are deposited onto polydopamine (Pdop) - functionalized MWCNTs by mildly stirring at room temperature. Without the use of expensive chemicals or corrosive acids, this noncovalent functionalization of MWCNTs by Pdop is simple, facile and eco-friendly, and thus preserving the integrity and electronic structure of MWCNTs. Due to the well improved dispersion and the decreased size of alloy nanoparticles, the PtRu electrocatalysts on Pdop-functionalized MWCNTs show much better dispersion, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells, compared with the conventional acid-treated MWCNTs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Catalysis and Multi-Component Reactions

    NASA Astrophysics Data System (ADS)

    Shibasaki, Masakatsu; Yus, Miguel; Bremner, Stacy; Comer, Eamon; Shore, Gjergji; Morin, Sylvie; Organ, Michael G.; van der Eycken, Erik; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Ryabukhin, Sergey V.; Ostapchuk, Eugeniy N.; Plaskon, Andrey S.; Volochnyuk, Dmitriy M.; Shivanyuk, Alexander N.; Tolmachev, Andrey A.; Sheibani, Hassan; Babaie, Maryam; Behzadi, Soheila; Dabiri, Minoo; Bahramnejad, Mahboobeh; Bashiribod, Sahareh; Hekmatshoar, Rahim; Sadjadi, Sodeh; Khorasani, Mohammad; Polyakov, Anatoliy I.; Eryomina, Vera A.; Medvedeva, Lidiya A.; Tihonova, Nadezhda I.; Listratova, Anna V.; Voskressensky, Leonid G.; Merkul, Eugen; Dorsch, Dieter; Müller, Thomas J. J.; Sheibani, Hassan; Esfandiarpoor, Zeinab; Behzadi, Soheila; Titova, Julia A.; Fedorova, Olga V.; Ovchinnikova, Irina G.; Valova, Marina S.; Koryakova, Olga V.; Rusinov, Gennady L.; Charushin, Valery N.; Hekmatshoar, Rahim; Sadjadi, Sodeh

    We have been studying the development of new asymmetric two-center catalysis using rare earth alkoxides and bifunctional sugar and related ligands. In The Fourth International Conference on Multi-Component Reactions and Related Chemistry (MCR 2009), new catalytic asymmetric reactions using catalysts 1 and 2 and catalytic asymmetric syntheses of ranirestat 3 and tamiflu 4 will be presented.

  17. One pot synthesis of GDP‐mannose by a multi‐enzyme cascade for enzymatic assembly of lipid‐linked oligosaccharides

    PubMed Central

    Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo

    2017-01-01

    Abstract Glycosylation of proteins is a key function of the biosynthetic‐secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell‐cell adhesion, blood‐group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein‐based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose‐1‐phosphate‐guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1‐domain polyphosphate kinase 2 (1D‐Ppk2) expressed in E. coli for the cell‐free production and regeneration of GDP‐mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP‐mannose is produced at various conditions, that is pH 7–8, temperature 25–35°C and co‐factor concentrations of 5–20 mM MgCl2. The maximum reaction rate of GDP‐mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl2 producing 566 nmol GDP‐mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane‐deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER‐associated lipid‐linked oligosaccharide (LLO) assembly. Thereby, in a one‐pot reaction, phytanyl‐PP‐(GlcNAc)2‐Man1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl‐PP‐(GlcNAc)2‐Man1 can serve as a substrate for the synthesis of LLO for the cell‐free in vitro glycosylation of proteins. A high‐performance anion exchange chromatography method with UV and conductivity detection (HPAEC‐UV/CD) assay was optimized and

  18. One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers

    NASA Astrophysics Data System (ADS)

    Chen, Dongdong; Yi, Jianxin

    2018-03-01

    Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.

  19. A One Pot Synthesis of Novel Bioactive Tri-Substitute-Condensed-Imidazopyridines that Targets Snake Venom Phospholipase A2

    PubMed Central

    Anilkumar, Nirvanappa C.; Sundaram, Mahalingam S.; Mohan, Chakrabhavi Dhananjaya; Rangappa, Shobith; Bulusu, Krishna C.; Fuchs, Julian E.; Girish, Kesturu S.; Bender, Andreas; Basappa; Rangappa, Kanchugarakoppal S.

    2015-01-01

    Drugs such as necopidem, saripidem, alpidem, zolpidem, and olprinone contain nitrogen-containing bicyclic, condensed-imidazo[1,2-α]pyridines as bioactive scaffolds. In this work, we report a high-yield one pot synthesis of 1-(2-methyl-8-aryl-substitued-imidazo[1,2-α]pyridin-3-yl)ethan-1-onefor the first-time. Subsequently, we performed in silico mode-of-action analysis and predicted that the synthesized imidazopyridines targets Phospholipase A2 (PLA2). In vitro analysis confirmed the predicted target PLA2 for the novel imidazopyridine derivative1-(2-Methyl-8-naphthalen-1-yl-imidazo [1,2-α]pyridine-3-yl)-ethanone (compound 3f) showing significant inhibitory activity towards snake venom PLA2 with an IC50 value of 14.3 μM. Evidently, the molecular docking analysis suggested that imidazopyridine compound was able to bind to the active site of the PLA2 with strong affinity, whose affinity values are comparable to nimesulide. Furthermore, we estimated the potential for oral bioavailability by Lipinski's Rule of Five. Hence, it is concluded that the compound 3f could be a lead molecule against snake venom PLA2. PMID:26196520

  20. Corona[5]arenes Accessed by a Macrocycle-to-Macrocycle Transformation Route and a One-Pot Three-Component Reaction.

    PubMed

    Wu, Zhi-Chen; Guo, Qing-Hui; Wang, Mei-Xiang

    2017-06-12

    Corona[5]arenes, a novel type of macrocyclic compound that is composed of alternating heteroatoms and para-arylenes, were synthesized efficiently by two distinct methods. In a macrocycle-to-macrocycle transformation approach, S 6 -corona[3]arene[3]tetrazine underwent sequential S N Ar reactions with HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) to produce the corresponding corona[3]arene[2]tetrazines. Different corona[3]arene[2]tetrazine compounds were also constructed in a straightforward manner by a one-pot three-component reaction of HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) with diethyl 2,5-dimercaptoterephthalate and 2 equiv of 3,6-dichlorotetrazine under very mild conditions. All corona[5]arenes adopted 1,2,4-alternate conformational structures in the crystalline state yielding similar nearly regular pentagonal cavities. Both the cavity size and the electronic property of the acquired macrocycles were fine-tuned by the nature of the bridging element X. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    PubMed

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modeling viscosity and diffusion of plasma mixtures across coupling regimes

    NASA Astrophysics Data System (ADS)

    Arnault, Philippe

    2014-10-01

    Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.

  3. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.

    PubMed

    Maehara, Larissa; Pereira, Sandra C; Silva, Adilson J; Farinas, Cristiane S

    2018-02-01

    The efficient use of renewable lignocellulosic feedstocks to obtain biofuels and other bioproducts is a key requirement for a sustainable biobased economy. This requires novel and effective strategies to reduce the cost contribution of the cellulolytic enzymatic cocktails needed to convert the carbohydrates into simple sugars, in order to make large-scale commercial processes economically competitive. Here, we propose the use of the whole solid-state fermentation (SSF) medium of mixed filamentous fungi as an integrated one-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production. Ten different individual and mixed cultivations of commonly used industrial filamentous fungi (Aspergillus niger, Aspergillus oryzae, Trichoderma harzianum, and Trichoderma reesei) were performed under SSF and the whole media (without the extraction step) were used in the hydrolysis of pretreated sugarcane bagasse. The cocultivation of T. reesei with A. oryzae increased the amount of glucose released by around 50%, compared with individual cultivations. The release of glucose and reducing sugars achieved using the whole SSF medium was around 3-fold higher than obtained with the enzyme extract. The addition of soybean protein (0.5% w/w) during the hydrolysis reaction further significantly improved the saccharification performance by blocking the lignin and avoiding unproductive adsorption of enzymes. The results of the alcoholic fermentation validated the overall integrated process, with a volumetric ethanol productivity of 4.77 g/L.h, representing 83.5% of the theoretical yield. These findings demonstrate the feasibility of the proposed one-pot integrated strategy using the whole SSF medium of mixed filamentous fungi for on-site enzymes production, biomass hydrolysis, and ethanol production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  4. Salicylaldehydes as privileged synthons in multicomponent reactions

    NASA Astrophysics Data System (ADS)

    Momahed Heravi, M.; Zadsirjan, V.; Mollaiye, M.; Heydari, M.; Taheri Kal Koshvandi, A.

    2018-06-01

    Salicylaldehyde (2-hydroxybenzaldehyde) bearing two different active functional groups, namely, a hydroxy group and an aldehyde group, finds wide application as a key chemical in a variety of industrial processes, especially in the large-scale production of pharmaceuticals. Salicylaldehyde and most of its derivatives are commercially available or readily accessible, and hence are ideal starting materials for multicomponent reactions (MCRs), mostly in pseudo-three and four-component ones, giving rise to a plethora of heterocyclic systems. The importance of salicylaldehyde and an impressive amount of studies concerning its applications in MCRs prompted us to highlight in this review the important role of this compound as a privileged synthon in the synthesis of heterocycles. The bibliography includes 276 references.

  5. One-pot syntheses of blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones by T3P® activation of 3-arylpropiolic acids.

    PubMed

    Denißen, Melanie; Kraus, Alexander; Reiss, Guido J; Müller, Thomas J J

    2017-01-01

    In situ activation of 3-arylpropiolic acids with T3P ® ( n -propylphosphonic acid anhydride) initiates a domino reaction furnishing 4-arylnaphtho[2,3- c ]furan-1,3-diones in excellent yields. Upon employing these anhydrides as reactive intermediates blue-luminescent 4-aryl-1 H -benzo[ f ]isoindole-1,3(2 H )-diones are formed by consecutive pseudo three-component syntheses in a one-pot fashion. The Stokes shifts correlate excellently with the Hammett-Taft σ R parameter indicating an extended degree of resonance stabilization in the vibrationally relaxed excited singlet state.

  6. One-pot syntheses of blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones by T3P® activation of 3-arylpropiolic acids

    PubMed Central

    Denißen, Melanie; Kraus, Alexander; Reiss, Guido J

    2017-01-01

    In situ activation of 3-arylpropiolic acids with T3P® (n-propylphosphonic acid anhydride) initiates a domino reaction furnishing 4-arylnaphtho[2,3-c]furan-1,3-diones in excellent yields. Upon employing these anhydrides as reactive intermediates blue-luminescent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones are formed by consecutive pseudo three-component syntheses in a one-pot fashion. The Stokes shifts correlate excellently with the Hammett–Taft σR parameter indicating an extended degree of resonance stabilization in the vibrationally relaxed excited singlet state. PMID:29181114

  7. One-pot Synthesis and Surface Modification of Fe3O4 Nanoparticles Using Polyvinyl Alcohol by Coprecipitation and Ultrasonication Methods

    NASA Astrophysics Data System (ADS)

    Nugraha, Aditya D.; Wulandari, Ika O.; Hutami Rahayu, L. B.; Riva'i, Imam; Santojo, D. J. Djoko H.; Sabarudin, Akhmad

    2018-01-01

    Among the various substances developed through nanoparticles, iron oxide (Fe3O4) nanoparticle is one of the substances that have been widely used in various fields such as industry, agriculture, biotechnology and biomedicine. The synthesis of Fe3O4 nanoparticle can be carried out by two methods, consist of chemical and mechanical synthesis methods. Coprecipitation is one of the most commonly used methods for chemical synthesis. Fe3O4 compounds are easily oxidized because they are amphoteric. To avoid the continuous oxidation process, chemical modification process should be carried out with the addition of a solution of polyvinyl alcohol (PVA). In this study, PVA-coated Fe3O4 nanoparticles were synthesized by in-situ coprecipitation and ultrasonication methods through direct mixing (one-pot synthesis) of the iron (II) chloride tetrahydrate (FeCl2.4H2O), iron (III) chloride hexahydrate (FeCl3.6H2O), and PVA under alkaline condition. The effects of addition amount of NH3solution (by adjusting its flow rate using automated syringe pump) and PVA concentration were gently studied. Interaction of PVA with Fe3O4 nanoparticle was identified by infrared spectroscopy whereas lattice parameters and crystallite sizes of the synthesized Fe3O4 nanoparticles and PVA-coated Fe3O4 nanoparticles were assessed by X-ray diffraction (XRD).

  8. A new synthetic approach to functionalize pyrimido[4,5-b]quinoline-2,4(1H,3H)-diones via a three-component one-pot reaction.

    PubMed

    Aknin, Karen; Desbène-Finck, Stéphanie; Helissey, Philippe; Giorgi-Renault, Sylviane

    2010-02-01

    Functionalized pyrimido[4,5-b]quinoline-2,4 (1H,3H)-diones were synthesized by a three-component one-pot reaction involving barbituric acid, aldehydes, and anilines. The use of commercially available anilines allowed the facile syntheses of pyrimido[4,5-b]quinolinediones substituted in all the positions on the benzene ring with electron donor or electron withdrawing groups. This straightforward method circumvents the preparation of unstable substituted 2-aminobenzaldehydes that limits the scope of previously described syntheses. Furthermore, access to the 5-substituted derivatives is now also possible starting from aliphatic or aromatic aldehydes. Our strategy and methodology offer significant and practical improvements over other methodologies.

  9. Synthesis of 2-Amino-3-hydroxy-3H-indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and N-Tosylhydrazones Derived from 2-Acylanilines.

    PubMed

    Chu, Haoke; Dai, Qiang; Jiang, Yan; Cheng, Jiang

    2017-08-04

    A cyanide-free one-pot procedure was developed to access 2-amino-3-hydroxy-3H-indoles, which involved: (1) in situ formation of ketenimines by the reaction of N'-(1-(2-aminophenyl)ethylidene)-p-tosylhydrazones with isonitriles; (2) the intramolecular nucleophilic attack of ketenimines by the amino in phenyl furnishing the ring closure leading to 2-aminoindoles; (3) the oxidation of 2-aminoindoles by O 2 leading to 2-amino-3-hydroxy-3H-indoles. This strategy represents not only a key compliment to the sporadic synthetic methods toward 2-amino-3-hydroxy-3H-indoles but also progress in N-tosylhydrazone, isonitrile, and ketenimine chemistry.

  10. Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide.

    PubMed

    Zhang, Zhe-Yong; Dong, Yu-Li; Zhang, Sheng-Li; Zhu, Shi-Qun

    2013-09-09

    Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where N(a) Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.

  11. One-pot synthesis of pH-responsive hybrid nanogel particles for the intracellular delivery of small interfering RNA

    PubMed Central

    Parodi, Alessandro; Evangelopoulos, Michael; Corbo, Claudia; Scaria, Shilpa; Hu, Ye; Haddix, Seth G.; Corradetti, Bruna; Salvatore, Francesco; Tasciotti, Ennio

    2016-01-01

    This report describes a novel, one-pot synthesis of hybrid nanoparticles formed by a nanostructured inorganic silica core and an organic pH-responsive hydrogel shell. This easy-to-perform, oil-in-water emulsion process synthesizes fluorescently-doped silica nanoparticles wrapped within a tunable coating of cationic poly(2-diethylaminoethyl methacrylate) hydrogel in one step. Transmission electron microscopy and dynamic light scattering analysis demonstrated that the hydrogel-coated nanoparticles are uniformly dispersed in the aqueous phase. The formation of covalent chemical bonds between the silica and the polymer increases the stability of the organic phase around the inorganic core as demonstrated by thermogravimetric analysis. The cationic nature of the hydrogel is responsible for the pH buffering properties of the nanostructured system and was evaluated by titration experiments. Zeta-potential analysis demonstrated that the charge of the system was reversed when transitioned from acidic to basic pH and vice versa. Consequently, small interfering RNA (siRNA) can be loaded and released in an acidic pH environment thereby enabling the hybrid particles and their payload to avoid endosomal sequestration and enzymatic degradation. These nanoparticles, loaded with specific siRNA molecules directed towards the transcript of the membrane receptor CXCR4, significantly decreased the expression of this protein in a human breast cancer cell line (i.e., MDA-MB-231). Moreover, intravenous administration of siRNA-loaded nanoparticles demonstrated a preferential accumulation at the tumor site that resulted in a reduction of CXCR4 expression. PMID:26901429

  12. Multicomponent Electron-Hole Superfluidity and the BCS-BEC Crossover in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Conti, S.; Perali, A.; Peeters, F. M.; Neilson, D.

    2017-12-01

    Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap Eg˜80 - 120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.

  13. One-pot synthesis of hierarchical Cu{sub 2}O/Cu hollow microspheres with enhanced visible-light photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianjie; Tao, Feifei, E-mail: feifeitao@usx.edu.cn; Lin, Jiudong

    2015-08-15

    The hierarchical Cu{sub 2}O/Cu hollow microspheres have been fabricated by the one-pot solvothermal redox method, which is one-step approach without any surfactant and template. By using the HRTEM, XRD, XPS and UV–vis spectroscopy, the as-prepared product is composed of Cu{sub 2}O and Cu with energy band gap of 1.72 eV. Based on the time-dependent experiments, the content of Cu{sub 2}O and Cu compositions can be effectively controlled by adjusting the reaction time and a possible mechanism is proposed. In addition, using various dye molecules to stimulate pollutants, the hierarchical Cu{sub 2}O/Cu hollow microspheres reacted for 8 h exhibit excellent visible-lightmore » photocatalytic activities, which is much higher than those of the Cu{sub 2}O/Cu catalysts formed at the shorter reaction time, commercial Cu{sub 2}O powder and the mixture of alone Cu{sub 2}O and Cu. This enhanced photocatalytic performance makes these hierarchical Cu{sub 2}O/Cu hollow microspheres a kind of efficient visible-light photocatalyst in removing some organic compounds in wastewater. - Graphical abstract: The hierarchical Cu{sub 2}O/Cu hollow microspheres with adjustable components have been synthesized by one-step solvothermal redox approach. The special structures and composition lead to the excellent visible-light photocatalytic activity. - Highlights: • The hierarchical Cu{sub 2}O/Cu hollow microspheres are fabricated by one-step approach. • The content of Cu{sub 2}O and Cu can be controlled by adjusting the reaction time. • The material exhibits a better visible-light photocatalytic activity and stability. • Degradation kinetics of MO by Cu{sub 2}O/Cu fits the pseudo first-order model.« less

  14. One-Pot Enzymatic Synthesis of D-Arylalanines Using Phenylalanine Ammonia Lyase and L-Amino Acid Deaminase.

    PubMed

    Zhu, Longbao; Feng, Guoqiang; Ge, Fei; Song, Ping; Wang, Taotao; Liu, Yi; Tao, Yugui; Zhou, Zhemin

    2018-06-08

    The phenylalanine ammonia-lyase (AvPAL) from Anabaena variabilis catalyzes the amination of substituent trans-cinnamic acid (t-CA) to produce racemic D,L-enantiomer arylalanine mixture owing to its low stereoselectivity. To produce high optically pure D-arylalanine, a modified AvPAL with high D-selectivity is expected. Based on the analyses of catalytic mechanism and structure, the Asn347 residue in the active site was proposed to control stereoselectivity. Therefore, Asn347 was mutated to construct mutant AvPAL-N347A, the stereoselectivity of AvPAL-N347A for D-enantiomer arylalanine was 2.3-fold higher than that of wild-type AvPAL (WtPAL). Furthermore, the residual L-enantiomer product in reaction solution could be converted into the D-enantiomer product through stereoselective oxidation by PmLAAD and nonselective reduction by reducing agent NH 3 BH 3 . At optimal conditions, the conversion rate of t-CA and optical purity (enantiomeric excess (ee D )) of D-phenylalanine reached 82% and exceeded 99%, respectively. The two enzymes displayed activity toward a broad range of substrate and could be used to efficiently synthesize D-arylalanine with different groups on the phenyl ring. Among these D-arylalanines, the yield of m-nitro-D-phenylalanine was highest and reached 96%, and the ee D exceeded 99%. This one-pot synthesis using AvPAL and PmLAAD has prospects for industrial application.

  15. Sliding over the Blocks in Enzyme-Free RNA Copying – One-Pot Primer Extension in Ice

    PubMed Central

    Löffler, Philipp M. G.; Groen, Joost; Dörr, Mark; Monnard, Pierre-Alain

    2013-01-01

    Template-directed polymerization of RNA in the absence of enzymes is the basis for an information transfer in the ‘RNA-world’ hypothesis and in novel nucleic acid based technology. Previous investigations established that only cytidine rich strands are efficient templates in bulk aqueous solutions while a few specific sequences completely block the extension of hybridized primers. We show that a eutectic water/ice system can support Pb2+/Mg2+-ion catalyzed extension of a primer across such sequences, i.e. AA, AU and AG, in a one-pot synthesis. Using mixtures of imidazole activated nucleotide 5′-monophosphates, the two first “blocking” residues could be passed during template-directed polymerization, i.e., formation of triply extended products containing a high fraction of faithful copies was demonstrated. Across the AG sequence, a mismatch sequence was formed in similar amounts to the correct product due to U·G wobble pairing. Thus, the template-directed extension occurs both across pyrimidine and purine rich sequences and insertions of pyrimidines did not inhibit the subsequent insertions. Products were mainly formed with 2′-5′-phosphodiester linkages, however, the abundance of 3′–5′-linkages was higher than previously reported for pyrimidine insertions. When enzyme-free, template-directed RNA polymerization is performed in a eutectic water ice environment, various intrinsic reaction limitations observed in bulk solution can then be overcome. PMID:24058695

  16. Evaluation of a Multicomponent Intervention for Diurnal Bruxism in a Young Child with Autism

    ERIC Educational Resources Information Center

    Barnoy, Emily L.; Najdowski, Adel C.; Tarbox, Jonathan; Wilke, Arthur E.; Nollet, Megan D.

    2009-01-01

    Bruxism, forceful grinding of one's teeth together, can produce destructive outcomes such as wear on the teeth and damaged gums and bone structures. The current study implemented a multicomponent intervention that consisted of vocal and physical cues to decrease rates of bruxism. A partial component analysis suggested that the vocal cue was only…

  17. Specificity Switching Pathways in Thermal and Mass Evaporation of Multicomponent Hydrocarbon Droplets: A Mesoscopic Observation.

    PubMed

    Nasiri, Rasoul; Luo, Kai H

    2017-07-10

    For well over one century, the Hertz-Knudsen equation has established the relationship between thermal - mass transfer coefficients through a liquid - vapour interface and evaporation rate. These coefficients, however, have been often separately estimated for one-component equilibrium systems and their simultaneous influences on evaporation rate of fuel droplets in multicomponent systems have yet to be investigated at the atomic level. Here we first apply atomistic simulation techniques and quantum/statistical mechanics methods to understand how thermal and mass evaporation effects are controlled kinetically/thermodynamically. We then present a new development of a hybrid method of quantum transition state theory/improved kinetic gas theory, for multicomponent hydrocarbon systems to investigate how concerted-distinct conformational changes of hydrocarbons at the interface affect the evaporation rate. The results of this work provide an important physical concept in fundamental understanding of atomistic pathways in topological interface transitions of chain molecules, resolving an open problem in kinetics of fuel droplets evaporation.

  18. Dynamic decoupling and local atomic order of a model multicomponent metallic glass-former.

    PubMed

    Kim, Jeongmin; Sung, Bong June

    2015-06-17

    The dynamics of multicomponent metallic alloys is spatially heterogeneous near glass transition. The diffusion coefficient of one component of the metallic alloys may also decouple from those of other components, i.e., the diffusion coefficient of each component depends differently on the viscosity of metallic alloys. In this work we investigate the dynamic heterogeneity and decoupling of a model system for multicomponent Pd43Cu27Ni10P20 melts by using a hard sphere model that considers the size disparity of alloys but does not take chemical effects into account. We also study how such dynamic behaviors would relate to the local atomic structure of metallic alloys. We find, from molecular dynamics simulations, that the smallest component P of multicomponent Pd43Cu27Ni10P20 melts becomes dynamically heterogeneous at a translational relaxation time scale and that the largest major component Pd forms a slow subsystem, which has been considered mainly responsible for the stabilization of amorphous state of alloys. The heterogeneous dynamics of P atoms accounts for the breakdown of Stokes-Einstein relation and also leads to the dynamic decoupling of P and Pd atoms. The dynamically heterogeneous P atoms decrease the lifetime of the local short-range atomic orders of both icosahedral and close-packed structures by orders of magnitude.

  19. Transferrable monolithic multicomponent system for near-ultraviolet optoelectronics

    NASA Astrophysics Data System (ADS)

    Qin, Chuan; Gao, Xumin; Yuan, Jialei; Shi, Zheng; Jiang, Yuan; Liu, Yuhuai; Wang, Yongjin; Amano, Hiroshi

    2018-05-01

    A monolithic near-ultraviolet multicomponent system is implemented on a 0.8-mm-diameter suspended membrane by integrating a transmitter, waveguide, and receiver into a single chip. Two identical InGaN/Al0.10Ga0.90N multiple-quantum well (MQW) diodes are fabricated using the same process flow, which separately function as a transmitter and receiver. There is a spectral overlap between the emission and detection spectra of the MQW diodes. Therefore, the receiver can respond to changes in the emission of the transmitter. The multicomponent system is mechanically transferred from silicon, and the wire-bonded transmitter on glass experimentally demonstrates spatial light transmission at 200 Mbps using non-return-to-zero on–off keying modulation.

  20. Mitigating by-catch of diamondback terrapins in crab pots

    USGS Publications Warehouse

    Hart, Kristen M.; Crowder, Larry B.

    2011-01-01

    Chronic by-catch of diamondback terrapins (Malaclemys terrapin) in blue crab (Callinectes sapidus) pots is a concern for terrapin conservation along the United States Atlantic and Gulf of Mexico coasts. Despite the availability of by-catch reduction devices (BRDs) for crab pots, adoption of BRDs has not been mandated and by-catch of terrapins continues. We conducted experimental fishing studies in North Carolina's year-round blue crab fishery from 2000 to 2004 to evaluate the ability of various BRDs to reduce terrapin by-catch without a concomitant reduction in the catch of blue crabs. In 4,822 crab pot days fished, we recorded only 21 terrapin captures. Estimated capture rates were 0.003 terrapins/pot per day in hard crab experimental fishing and 0.008 terrapins/pot per day in peeler experimental fishing. All terrapin captures occurred from April to mid-May within 321.4 m of the shoreline. Longer soak times produced more dead terrapins, with 4 live and 4 dead during hard crab experimental fishing and 11 live and 2 dead during peeler experimental fishing. The 4.0-cm BRDs in fall and 4.5-cm and 5.0-cm BRDs in spring reduced the catch of legal-sized male hard crabs by 26.6%, 21.2%, and 5.7%, respectively. Only the 5.0-cm BRDs did not significantly affect the catch of legal-sized hard male crabs. However, BRDs had no measurable effect on catch of target crabs in the peeler crab fishery. Our results identify 3 complementary and economically feasible tools for blue crab fishery managers to exclude terrapins from commercially fished crab pots in North Carolina: 1) gear modifications (e.g., BRDs); 2) distance-to-shore restrictions; and 3) time-of-year regulations. These measures combined could provide a reduction in terrapin by-catch of up to 95% without a significant reduction in target crab catch.