Science.gov

Sample records for one-time reduced-fluence photodynamic

  1. Reduced-fluence photodynamic therapy and anti-vascular endothelial growth factor for polypoidal choroidal vasculopathy in an Indian population

    PubMed Central

    Sen, Parveen; Bhende, Muna; Sachidanandam, Ramya; Bansal, Nishat; Sharma, Tarun

    2016-01-01

    Aims: The aim was to study the efficacy of combined therapy with reduced-fluence photodynamic therapy (RFPDT) and intravitreal bevacizumab/ranibizumab from the Indian subcontinent. Settings and Design: This was a single-center, retrospective interventional study. Methods: Thirty-five eyes of 34 patients diagnosed with polypoidal choroidal vasculopathy were included. All the patients underwent RFPDT, followed by intravitreal bevacizumab/ranibizumab. Statistical Analysis Used: SPSS software, version 17.0 (SPSS Inc., Chicago, IL, USA) was used to compare the logarithm of the minimal angle of resolution visual acuity at presentation and final follow-up. P < 0.05 was considered statistically significant. Results: Regression of polyps after a single session of RFPDT was seen in five eyes; multiple sessions of treatment were required in thirty eyes. An average number of intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections given were 4 ± 1.9 and average number of PDT sessions were 1.2 ± 0.5. Visual acuity improvement was seen in 21 (60%) eyes (P < 0.001), decrease in visual acuity was seen in 7 (20%) eyes (P = 0.016), and in 7 eyes (20%), vision remained stable. Regression of polypoidal lesions was seen in 80% of cases. No complications of massive subretinal hemorrhage or breakthrough vitreous hemorrhage were noted in our patients. The mean follow-up period was 18 months (range, 12–24 months). Conclusions: RFPDT with anti-VEGF is safe and effective treatment with polyp regression and vision improvement in 80% of cases, without any complication of subretinal hemorrhage/vitreous hemorrhage. PMID:28112132

  2. Photodynamic therapy for cancer

    MedlinePlus

    ... Cancer of the esophagus-photodynamic; Esophageal cancer-photodynamic; Lung cancer-photodynamic ... the light at the cancer cells. PDT treats cancer in the: Lungs, using a bronchoscope Esophagus, using upper endoscopy Doctors ...

  3. Photodynamic therapy: current role in the treatment of chorioretinal conditions

    PubMed Central

    Newman, D K

    2016-01-01

    Verteporfin photodynamic therapy (vPDT) is a selective vaso-occlusive treatment that targets choroidal vascular abnormalities. It was initially developed to treat neovascular age-related macular degeneration using the ‘standard' vPDT protocol (verteporfin 6 mg/m2, vPDT laser fluence 50 J/cm2). vPDT therapy has subsequently evolved as an important treatment modality for a range of other chorioretinal conditions including choroidal haemangioma, central serous chorioretinopathy, polypoidal choroidal vasculopathy, and peripapillary choroidal neovascularisation. Various ‘safety-enhanced' vPDT protocols have been devised to optimise treatment outcomes, typically using reduced dose verteporfin (verteporfin 3 mg/m2) or reduced fluence vPDT (vPDT laser fluence 25 J/cm2). This paper reviews the current role of vPDT therapy in the treatment of chorioretinal conditions. PMID:26742867

  4. Supporting One-Time Point Annotations for Gesture Recognition.

    PubMed

    Nguyen-Dinh, Long-Van; Calatroni, Alberto; Troester, Gerhard

    2016-12-08

    This paper investigates a new annotation technique that reduces significantly the amount of time to annotate training data for gesture recognition. Conventionally, the annotations comprise the start and end times, and the corresponding labels of gestures in sensor recordings. In this work, we propose a one-time point annotation in which labelers do not have to select the start and end time carefully, but just mark a one-time point within the time a gesture is happening. The technique gives more freedom and reduces significantly the burden for labelers. To make the one-time point annotations applicable, we propose a novel BoundarySearch algorithm to find automatically the correct temporal boundaries of gestures by discovering data patterns around their given one-time point annotations. The corrected annotations are then used to train gesture models. We evaluate the method on three applications from wearable gesture recognition with various gesture classes (10-17 classes) recorded with different sensor modalities. The results show that training on the corrected annotations can achieve performances close to a fully supervised training on clean annotations (lower by just up to 5% F1-score on average). Furthermore, the BoundarySearch algorithm is also evaluated on the ChaLearn 2014 multi-modal gesture recognition challenge recorded with Kinect sensors from computer vision and achieves similar results.

  5. One-Time Pad as a nonlinear dynamical system

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin

    2012-11-01

    The One-Time Pad (OTP) is the only known unbreakable cipher, proved mathematically by Shannon in 1949. In spite of several practical drawbacks of using the OTP, it continues to be used in quantum cryptography, DNA cryptography and even in classical cryptography when the highest form of security is desired (other popular algorithms like RSA, ECC, AES are not even proven to be computationally secure). In this work, we prove that the OTP encryption and decryption is equivalent to finding the initial condition on a pair of binary maps (Bernoulli shift). The binary map belongs to a family of 1D nonlinear chaotic and ergodic dynamical systems known as Generalized Luröth Series (GLS). Having established these interesting connections, we construct other perfect secrecy systems on the GLS that are equivalent to the One-Time Pad, generalizing for larger alphabets. We further show that OTP encryption is related to Randomized Arithmetic Coding - a scheme for joint compression and encryption.

  6. [Photodynamic therapy vs imiquimod].

    PubMed

    Serra-Guillén, C; Nagore, E; Guillén, C

    2012-01-01

    Photodynamic therapy and imiquimod are highly regarded treatments dermatologists frequently prescribe for actinic keratoses, basal cell carcinoma, and Bowen disease. The scarcity of evidence from comparative trials prevents us from drawing well-founded conclusions about the efficacy, tolerance, and adverse effects of these therapeutic options or to recommend one over the other in any particular type of lesion or patient. On the other hand, in certain conditions (eg, actinic chelitis, immunosuppression, and basal cell carcinoma affecting the eyelids), there is evidence to support the use of photodynamic therapy or imiquimod even though they might initially seem contraindicated. We critically review and compare the use of these 2 treatments in order to suggest which is more appropriate in specific cases.

  7. Photodynamic therapy with fullerenes†

    PubMed Central

    Mroz, Pawel; Tegos, George P.; Gali, Hariprasad; Wharton, Tim; Sarna, Tadeusz; Hamblin, Michael R.

    2010-01-01

    Fullerenes are a class of closed-cage nanomaterials made exclusively from carbon atoms. A great deal of attention has been focused on developing medical uses of these unique molecules especially when they are derivatized with functional groups to make them soluble and therefore able to interact with biological systems. Due to their extended π-conjugation they absorb visible light, have a high triplet yield and can generate reactive oxygen species upon illumination, suggesting a possible role of fullerenes in photodynamic therapy. Depending on the functional groups introduced into the molecule, fullerenes can effectively photoinactivate either or both pathogenic microbial cells and malignant cancer cells. The mechanism appears to involve superoxide anion as well as singlet oxygen, and under the right conditions fullerenes may have advantages over clinically applied photosensitizers for mediating photodynamic therapy of certain diseases. PMID:17973044

  8. Photodynamic immune modulation (PIM)

    NASA Astrophysics Data System (ADS)

    North, John R.; Hunt, David W. C.; Simkin, Guillermo O.; Ratkay, Leslie G.; Chan, Agnes H.; Lui, Harvey; Levy, Julia G.

    1999-09-01

    Photodynamic Therapy (PDT) is accepted for treatment of superficial and lumen-occluding tumors in regions accessible to activating light and is now known to be effective in closure of choroidal neovasculature in Age Related Macular Degeneration. PDT utilizes light absorbing drugs (photosensitizers) that generate the localized formation of reactive oxygen species after light exposure. In a number of systems, PDT has immunomodulatory effects; Photodynamic Immune Modulation (PIM). Using low- intensity photodynamic regimens applied over a large body surface area, progression of mouse autoimmune disease could be inhibited. Further, this treatment strongly inhibited the immunologically- medicated contact hypersensitivity response to topically applied chemical haptens. Immune modulation appears to result from selective targeting of activated T lymphocytes and reduction in immunostimulation by antigen presenting cells. Psoriasis, an immune-mediated skin condition, exhibits heightened epidermal cell proliferation, epidermal layer thickening and plaque formation at different body sites. In a recent clinical trial, approximately one-third of patients with psoriasis and arthritis symptoms (psoriatic arthritis) displayed a significant clinical improvement in several psoriasis-related parameters after four weekly whole-body PIM treatments with verteporfin. The safety profile was favorable. The capacity of PIM to influence other human immune disorders including rheumatoid arthritis is under extensive evaluation.

  9. Secure direct communication with a quantum one-time pad

    SciTech Connect

    Deng Fuguo; Long Guilu

    2004-05-01

    Quantum secure direct communication is the direct communication of secret messages without first producing a shared secret key. It may be used in some urgent circumstances. Here we propose a quantum secure direct communication protocol using single photons. The protocol uses batches of single photons prepared randomly in one of four different states. These single photons serve as a one-time pad which is used directly to encode the secret messages in one communication process. We also show that it is unconditionally secure. The protocol is feasible with present-day technique.

  10. Physical key-protected one-time pad

    PubMed Central

    Horstmeyer, Roarke; Judkewitz, Benjamin; Vellekoop, Ivo M.; Assawaworrarit, Sid; Yang, Changhuei

    2013-01-01

    We describe an encrypted communication principle that forms a secure link between two parties without electronically saving either of their keys. Instead, random cryptographic bits are kept safe within the unique mesoscopic randomness of two volumetric scattering materials. We demonstrate how a shared set of patterned optical probes can generate 10 gigabits of statistically verified randomness between a pair of unique 2 mm3 scattering objects. This shared randomness is used to facilitate information-theoretically secure communication following a modified one-time pad protocol. Benefits of volumetric physical storage over electronic memory include the inability to probe, duplicate or selectively reset any bits without fundamentally altering the entire key space. Our ability to securely couple the randomness contained within two unique physical objects can extend to strengthen hardware required by a variety of cryptographic protocols, which is currently a critically weak link in the security pipeline of our increasingly mobile communication culture. PMID:24345925

  11. Photodynamic therapy laser system

    NASA Astrophysics Data System (ADS)

    Shu, Xiaoqin; Lin, Qing; Wang, Feng; Shu, Chao; Wang, Jianhua

    2009-08-01

    Photodynamic therapy (PDT) treatment is a new treatment for tumour and Dermatology. With the successful development of the second-generation photosensitizer and the significant manifestations in clinics, PDT has shown a more extensive application potentials. To activate the photosensitizer, in this paper, we present a GaAs-based diode laser system with a wavelength of 635 nm. In this system, to prolong the working life-time of the diode lasers, we use specific feedback algorithm to control the current and the temperature of the diode laser with high precision. The clinic results show an excellent effect in the treatment of Condyloma combined with 5-ALA.

  12. Photodynamic therapy in dermatology.

    PubMed

    Ceburkov, O; Gollnick, H

    2000-01-01

    Application of non-ionising radiation with or without photosensitizers is rather common in dermatology. Though the method itself was described in ancient times, its routine use in medicine based on scientific research started in the second half of the 20th century. Light can be used in three different patterns: phototherapy (UV-A or UV-B light), photochemotherapy (combination of psoralens with UV-A light) and photodynamic therapy (combination of photosensitizers with UV- and/or visible light). The following article deals with the photodynamic therapy or PDT. Using PDT implies the understanding of light dosimetry and calculation of light dose using different light sources and photosensitizers. The number of PDT sensitisers under investigation is rapidly increasing. The PDT itself, being a relatively new modality, quickly spreads its list of applications covering new indications in different areas of medicine. Though the main part of this list is made up of dermatological conditions, the use of PDT in other disciplines is also discussed to make dermatologists familiar with different aspects of the issue. PDT, like any treatment modality, has its benefits and adverse effects. The future of PDT is closely related to teamwork in physical, biochemical and clinical research which could provide better understanding of underlying mechanisms and help to create protocols for higher therapeutic efficacy.

  13. [Photodynamic therapy for actinic cheilitis].

    PubMed

    Castaño, E; Comunión, A; Arias, D; Miñano, R; Romero, A; Borbujo, J

    2009-12-01

    Actinic cheilitis is a subtype of actinic keratosis that mainly affects the lower lip and has a higher risk of malignant transformation. Its location on the labial mucosa influences the therapeutic approach. Vermilionectomy requires local or general anesthetic and is associated with a risk of an unsightly scar, and the treatment with 5-fluorouracil or imiquimod lasts for several weeks and the inflammatory reaction can be very intense. A number of authors have used photodynamic therapy as an alternative to the usual treatments. We present 3 patients with histologically confirmed actinic cheilitis treated using photodynamic therapy with methyl aminolevulinic acid as the photosensitizer and red light at 630 nm. The clinical response was good, with no recurrences after 3 to 6 months of follow-up. Our experience supports the use of photodynamic therapy as a good alternative for the treatment of actinic cheilitis.

  14. [Historical development of photodynamic therapy].

    PubMed

    Kick, G; Messer, G; Plewig, G

    1996-08-01

    Photodynamic therapy is based on the accumulation of photosensitizing drugs in tumours and subsequent activation by visible light, leading to the release of singlet oxygen in photochemical reactions. Besides the treatment of precancerous lesions and malignant tumours in superficial sites, new experimental indications, such as psoriasis, are being investigated. The development of new photosensitizing agents for topical application and appropriate light sources has led to increasing interest in this promising treatment modality among dermatologists. This historical review deals with the scientific investigations of photodynamic therapy and diagnosis that started with the experiments of Oscar Raab at the end of the nineteenth century.

  15. 75 FR 22804 - Submission for OMB Review; American Recovery and Reinvestment Act-One-Time Reporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ...; American Recovery and Reinvestment Act--One-Time Reporting, Compensation Requirements AGENCIES: Department... Recovery and Reinvestment Act--One-time Reporting, Compensation Requirements published in the...

  16. Medical complex for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Soldatov, Anatoly N.; Domanov, Michail S.; Lyabin, Nikolay A.; Chursin, Alexandr D.; Mirza, Sergey Y.; Sukhanov, Viktor B.; Polunin, Yu. P.; Ivanov, Aleksandr I.; Kirilov, Anatoly E.; Rubanov, Sergey N.

    2002-03-01

    Experimental results of initial testing dye-laser 'MLK-02' pumped by a copper vapor laser 'Kulon-10' are presented. Output parameters obtained are the following: average power - 1 and 1.5 W, efficiency - 17.6 and 18.7% at the wavelengths of 670 and 725 nm, respectively. The laser apparatus is supposed to be used for methods of photodynamic therapy.

  17. Photodynamic therapy for basal cell carcinoma.

    PubMed

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  18. Future of oncologic photodynamic therapy.

    PubMed

    Allison, Ron R; Bagnato, Vanderlei S; Sibata, Claudio H

    2010-06-01

    Photodynamic therapy (PDT) is a tumor-ablative and function-sparing oncologic intervention. The relative simplicity of photosensitizer application followed by light activation resulting in the cytotoxic and vasculartoxic photodynamic reaction has allowed PDT to reach a worldwide audience. With several commercially available photosensitizing agents now on the market, numerous well designed clinical trials have demonstrated the efficacy of PDT on various cutaneous and deep tissue tumors. However, current photosensitizers and light sources still have a number of limitations. Future PDT will build on those findings to allow development and refinement of more optimal therapeutic agents and illumination devices. This article reviews the current state of the art and limitations of PDT, and highlight the progress being made towards the future of oncologic PDT.

  19. 78 FR 54252 - Information Collection; American Recovery and Reinvestment Act-Reporting Requirements-One Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ...; American Recovery and Reinvestment Act-- Reporting Requirements--One Time Reporting Requirements for Prime... concerning the American Recovery and Reinvestment Act--Reporting Requirements--One Time Reporting... Requirements-- One Time Reporting Requirements for Prime Contractors, by any of the following...

  20. Photodynamic Diagnosis and Therapy of Cancer

    SciTech Connect

    Subiel, Anna

    2010-01-05

    This paper gives brief information about photodynamic method used in diagnosis and therapy for cancer and other human body disorders. In particular it concentrates on detection and analysis of fluorescent dye, i.e. protoporphyrin IX (PpIX) and its two-photon excitation (TPE) process, which offers photodynamic method many fascinating possibilities.

  1. Photodynamic therapy in endodontics: a literature review.

    PubMed

    Trindade, Alessandra Cesar; De Figueiredo, José Antônio Poli; Steier, Liviu; Weber, João Batista Blessmann

    2015-03-01

    Recently, several in vitro and in vivo studies demonstrated promising results about the use of photodynamic therapy during root canal system disinfection. However, there is no consensus on a standard protocol for its incorporation during root canal treatment. The purpose of this study was to summarize the results of research on photodynamic therapy in endodontics published in peer-reviewed journals. A review of pertinent literature was conducted using the PubMed database, and data obtained were categorized into sections in terms of relevant topics. Studies conducted in recent years highlighted the antimicrobial potential of photodynamic therapy in endodontics. However, most of these studies were not able to confirm a significant improvement in root canal disinfection for photodynamic therapy as a substitute for current disinfection methods. Its indication as an excellent adjunct to conventional endodontic therapy is well documented, however. Data suggest the need for protocol adjustments or new photosensitizer formulations to enhance photodynamic therapy predictability in endodontics.

  2. Clinical efficacy of photodynamic therapy

    PubMed Central

    Park, Ye-Kyu

    2016-01-01

    Objective The management of cervical intraepithelial neoplasia (CIN) and early invasive cancer of the uterine cervix is very difficult to approach, especially in case of young woman who wants to preserve her fertility. Conization of the cervix may have various kinds of disadvantage. The objective of this clinical retrospective study is to investigate the therapeutic effects and clinical efficacy of photodynamic therapy (PDT) including combined chemo-photodynamic therapy in patients with pre-malignant CIN and malignant invasive cervical cancer. Methods Total number of PDT trial case was 50 cases and total number of patient was 22 patients who registered to PDT clinic. We used photogem sensitizer and 632 nm diode laser in early two cases. After then we performed PDT using photofrin sensitizer and 630 nm diode laser in other cases. We used flat-cut, microlens, cylindrical diffuser, and interstitial type optic fibers in order to irradiate the lesions. 240 J/cm2 energy was irradiated to the lesions. Results CIN 2 were 4 cases (18.2%) and CIN 3 were 15 (68.2%) and invasive cervical cancer were 3 (13.6%). Complete remission (CR) was found in 20 patients (91%). One case of 19 patients with CIN lesion recurred at 18 months after PDT treatment. CR was found in 18 cases in the patients with CIN lesions (95%). CR was found in 2 cases in the patients with invasive cervical cancer (67%). Conclusion Our data showed that CR rate was fantastic in CIN group (95%). This study suggests that PDT can be recommended as new optimistic management modality on the patients with pre-malignant CIN lesions including carcinoma in situ and relatively early invasive cancer of the uterine cervix. Combined chemo-photodynamic therapy is essential in case of invasive cervical cancer. For the young age group who desperately want to preserve their fertility and have a healthy baby, PDT can be a beacon of hope. PMID:27896250

  3. Nuclear targets of photodynamic tridentate ruthenium complexes.

    PubMed

    Zhao, Ran; Hammitt, Richard; Thummel, Randolph P; Liu, Yao; Turro, Claudia; Snapka, Robert M

    2009-12-28

    Octahedral ruthenium complexes, capable of photodynamic singlet oxygen production at near 100% efficiency, were shown to cause light-dependent covalent crosslinking of p53 and PCNA subunits in mammalian cells and cell lysates. Azide, a singlet oxygen quencher, greatly reduced the p53 photocrosslinking, consistent with the idea that singlet oxygen is the reactive oxygen species involved in p53 photocrosslinking. A photodynamically inactive ruthenium complex, [Ru(tpy)(2)](2+) (tpy = [2,2';6',2'']-terpyridine), had no effect on p53 or PCNA photocrosslinking. Photodynamic damage to p53 has particular relevance since p53 status is an important determinant of phototoxicity and the effectiveness of photodynamic cancer therapy. The two photodynamic complexes studied, [Ru(tpy)(pydppn)](2+), where pydppn = (3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene, and [Ru(pydppn)(2)](2+), differed in their efficiency of p53 and PCNA photocrosslinking in cells, but showed similar efficiency of photocrosslinking in cell lysates, suggesting that they differ in their ability to enter cells. Photocrosslinking of PCNA by [Ru(tpy)(pydppn)](2+) increased linearly with concentration, time of uptake, or light exposure. Both [Ru(tpy)(pydppn)](2+) and [Ru(pydppn)(2)](2+) caused photodynamic protein-DNA crosslinking in cells, but [Ru(tpy)(pydppn)](2+) was more efficient. The efficiency of photodynamic protein-DNA crosslinking by [Ru(tpy)(pydppn)](2+) in cells increased with increasing levels of photodynamic damage. Photodynamic damage by [Ru(tpy)(pydppn)](2+) caused inhibition of DNA replication in a classical biphasic response, suggesting that DNA damage signaling and cell cycle checkpoint pathways were still operative after significant damage to nuclear proteins.

  4. Photodynamic therapy for actinic keratoses.

    PubMed

    Kalisiak, Michal S; Rao, Jaggi

    2007-01-01

    Actinic keratoses (AKs) are one of the most common conditions that are treated by dermatologists and they have the potential to progress to squamous cell carcinoma if left untreated. Photodynamic therapy (PDT) has emerged as a novel and versatile method of treating those lesions. Topical preparations of aminolevulinic acid and methyl aminolevulinate are commercially available photosensitizers, and numerous light sources may be used for photoactivation. This article focuses on practical aspects of PDT in the treatment of AKs, outcomes of relevant clinical trials, and special applications of PDT in transplant recipients and other who are predisposed to AK formation. Step-by-step descriptions of PDT sessions are presented.

  5. 75 FR 18835 - Submission for OMB Review; American Recovery and Reinvestment Act-One-Time Reporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ...; American Recovery and Reinvestment Act--One-Time Reporting, Compensation Requirements AGENCY: Department of... requirement concerning the one-time reporting, compensation requirements. A request for public comments was... technological collection techniques or other forms of information technology. DATES: Submit comments on...

  6. Vascular effect of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fyodorov, Svyatoslav N.; Kopayeva, V. G.; Andreev, J. B.; Ponomarev, Gelii V.; Stranadko, Eugeny P.; Suchin, H. M.

    1996-01-01

    Vascular effect of PDT has been studied in patients with corneal vascularized leucomas (10 patients) and in patients with corneal neovascularized transplant (3 patients). For vascularized leucomas the method of photodynamic therapy consisted of the local injection of dimegin (deiteroporphyrin derivative) into the space of the newly-formed vessels under operating microscope (opton) with the microneedle (diameter 200 microns) and corneal irradiation by the operating microscope light. For corneal neovascularized transplant the injection of photogem (hematoporphyrin derivative) intravenously were made with subsequent irradiation by light of dye laser (5 hours after the injection) with light density of 150 mW/cm2 for 15 minutes. In all the cases at the time of irradiation the aggregated blood flow was appeared, followed by blood flow stasis. In postoperative period the vessels disintegrated into separate fragments which disappeared completely after 10 - 15 days. Taking into account the data of light microscopy, the disappearance of the vessels took place as a result of the vascular endothelium lisis along the vascular walls. Neovascularized cornea and newly-formed vessels in tumor stroms have much in common. The vessel alterations study presented in this paper, may serve to specify the mechanism of photodynamic destruction of neovascularized stroma of tumor.

  7. Photosensitizers for photodynamic immune modulation

    NASA Astrophysics Data System (ADS)

    North, John R.; Boch, Ronald; Hunt, David W. C.; Ratkay, Leslie G.; Simkin, Guillermo O.; Tao, Jing-Song; Richter, Anna M.; Levy, Julia G.

    2000-06-01

    PDT may be an effective treatment for certain immune-mediated disorders. The immunomodulatory action of PDT is likely a consequence of effects exerted at a number of levels including stimulation of specific cell signaling pathways, selective depletion of activated immune cells, alteration of receptor expression by immune and non-immune cells, and the modulation of cytokine availability. QLT0074, a potent photosensitizer that exhibits rapid clearance kinetics in vivo, is in development for the treatment of immune disorders. In comparison to the well-characterized and structurally related photosensitizer verteporfin, lower concentrations of QLT0074 were required to induce apoptosis in human blood T cells and keratinocytes using blue light for photoactivation. Both photosensitizers triggered the stress activated protein kinase (SAPK) and p38 (HOG1) pathways but not extracellularly regulated kinase (ERK) activity in mouse Pam212 keratinocytes. In cell signaling responses, QLT0074 was active at lower concentrations than verteporfin. For all in vitro test systems, the stronger photodynamic activity of QLT0074 was associated with a greater cell uptake of this photosensitize than verteporfin. In mouse immune models, sub-erythemogenic doses of QLT0074 in combination with whole body blue light irradiation inhibited the contact hypersensitivity response and limited the development of adjuvant-induced arthritis. QLT0074 exhibits activities that indicate it may be a favorable agent for the photodynamic treatment of human immune disease.

  8. Photodynamic Cancer Therapy - Recent Advances

    SciTech Connect

    Abrahamse, Heidi

    2011-09-22

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when 'photoradiation therapy' was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  9. Photodynamic therapy with ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Petersen, Mark G.; Dees, Craig

    1999-06-01

    The photodynamic properties of several photosensitive compounds have been evaluated in vivo using simultaneous two-photon excitation (TPE) and multi-photon excitation (MPE). TPE and MPE are effected using a mode-locked laser, such as the mode-locked titanium:sapphire or Nd:YLF laser, the near infrared output of which allows direct promotion of various non-resonant transitions. Such lasers are exceptionally well suited for non-linear activation of exogenous or endogenous PDT agents in biological systems due to their extremely short pulse width, modest pulse energy, and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non- specific biological damage, improved spatial localization of activation, and enhanced depth of penetration. Results in several murine models are presented.

  10. Photodynamic therapy of acne vulgaris.

    NASA Astrophysics Data System (ADS)

    Ershova, Ekaterina Y.; Karimova, Lubov N.; Kharnas, Sergey S.; Kuzmin, Sergey G.; Loschenov, Victor B.

    2003-06-01

    Photodynamic therapy (PDT) with topical 5-aminolevulinic acid (ALA) was tested for the treatment of acne vulgaris. Patients with acne were treated with ALA plus red light. Ten percent water solution of ALA was applied with 1,5-2 h occlusion and then 18-45 J/cm2 630 nm light was given. Bacterial endogenous porphyrins fluorescence also was used for acne therapy. Treatment control and diagnostics was realized by fluorescence spectra and fluorescence image. Light sources and diagnostic systems were used: semiconductor laser (λ=630 nm, Pmax=1W), (LPhT-630-01-BIOSPEC); LED system for PDT and diagnostics with fluorescent imager (λ=635 nm, P=2W, p=50 mW/cm2), (UFPh-630-01-BIOSPEC); high sensitivity CCD video camera with narrow-band wavelength filter (central wavelength 630 nm); laser electronic spectrum analyzer for fluorescent diagnostics and photodynamic therapy monitoring (LESA-01-BIOSPEC). Protoporphyrin IX (PP IX) and endogenous porphyrins concentrations were measured by fluorescence at wavelength, correspondingly, 700 nm and 650 nm. It was shown that topical ALA is converted into PP IX in hair follicles, sebaceous glands and acne scars. The amount of resulting PP IX is sufficient for effective PDT. There was good clinical response and considerable clearance of acne lesion. ALA-PDT also had good cosmetic effect in treatment acne scars. PDT with ALA and red light assist in opening corked pores, destroying Propionibacterium acnes and decreasing sebum secretion. PDT treatment associated with several adverse effects: oedema and/or erytema for 3-5 days after PDT, epidermal exfoliation from 5th to 10th day and slight pigmentation during 1 month after PDT. ALA-PDT is effective for acne and can be used despite several side effects.

  11. 75 FR 22805 - Submission for OMB Review; American Recovery and Reinvestment Act-One-Time Reporting Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ...; American Recovery and Reinvestment Act--One-Time Reporting Requirements for Prime Contractors AGENCIES... Recovery and Reinvestment Act--One-time Reporting Requirements for Prime Contractors published in...

  12. Inside the Black Box: What Happens on a One-Time Field Trip?

    ERIC Educational Resources Information Center

    Kraybill, Anne

    2014-01-01

    Crystal Bridges Museum of American Art opened on November 11, 2011. Located in Bentonville, Arkansas, it was the first art museum of its size in the region. Since few students had ever been to a museum, this situation provided an opportunity to causally measure the impact of a one-time art museum field trip upon student outcomes through the…

  13. 24 CFR 203.281 - Calculation of one-time MIP.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Calculation of one-time MIP. 203.281 Section 203.281 Housing and Urban Development Regulations Relating to Housing and...

  14. 24 CFR 203.283 - Refund of one-time MIP.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Refund of one-time MIP. 203.283 Section 203.283 Housing and Urban Development Regulations Relating to Housing and Urban...

  15. 24 CFR 203.281 - Calculation of one-time MIP.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Calculation of one-time MIP. 203.281 Section 203.281 Housing and Urban Development Regulations Relating to Housing and...

  16. 24 CFR 203.280 - One-time or Up-front MIP.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false One-time or Up-front MIP. 203.280 Section 203.280 Housing and Urban Development Regulations Relating to Housing and Urban...

  17. 24 CFR 203.280 - One-time or Up-front MIP.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false One-time or Up-front MIP. 203.280 Section 203.280 Housing and Urban Development Regulations Relating to Housing and Urban...

  18. 24 CFR 203.283 - Refund of one-time MIP.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Refund of one-time MIP. 203.283 Section 203.283 Housing and Urban Development Regulations Relating to Housing and Urban...

  19. 24 CFR 203.280 - One-time or Up-front MIP.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false One-time or Up-front MIP. 203.280 Section 203.280 Housing and Urban Development Regulations Relating to Housing and Urban...

  20. 24 CFR 203.281 - Calculation of one-time MIP.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Calculation of one-time MIP. 203.281 Section 203.281 Housing and Urban Development Regulations Relating to Housing and...

  1. 24 CFR 203.283 - Refund of one-time MIP.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Refund of one-time MIP. 203.283 Section 203.283 Housing and Urban Development Regulations Relating to Housing and Urban...

  2. 24 CFR 203.281 - Calculation of one-time MIP.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Calculation of one-time MIP. 203.281 Section 203.281 Housing and Urban Development Regulations Relating to Housing and...

  3. 24 CFR 203.281 - Calculation of one-time MIP.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HOUSING AND URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Calculation of one-time MIP. 203.281 Section 203.281 Housing and Urban Development Regulations Relating to Housing and...

  4. 24 CFR 203.283 - Refund of one-time MIP.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Refund of one-time MIP. 203.283 Section 203.283 Housing and Urban Development Regulations Relating to Housing and Urban...

  5. 24 CFR 203.283 - Refund of one-time MIP.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Refund of one-time MIP. 203.283 Section 203.283 Housing and Urban Development Regulations Relating to Housing and Urban...

  6. 24 CFR 203.280 - One-time or Up-front MIP.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false One-time or Up-front MIP. 203.280 Section 203.280 Housing and Urban Development Regulations Relating to Housing and Urban...

  7. 24 CFR 203.280 - One-time or Up-front MIP.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT MORTGAGE AND LOAN INSURANCE PROGRAMS UNDER NATIONAL HOUSING ACT AND OTHER AUTHORITIES... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false One-time or Up-front MIP. 203.280 Section 203.280 Housing and Urban Development Regulations Relating to Housing and Urban...

  8. One-time tillage of no-till: Effects on nutrients, mycorrhizae, and phosphorus uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stratification of nutrient availability, especially of P, that develops with continuous no-till (NT) can affect runoff nutrient concentration and possibly nutrient uptake. The effects of composted manure application and one-time tillage of NT on the distribution of soil chemical properties, root co...

  9. 77 FR 70876 - Revised Guidance for Requesting One-Time Movement Approvals (OTMA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Railroad Administration Revised Guidance for Requesting One-Time Movement Approvals (OTMA) AGENCY.... SUMMARY: FRA is notifying the public of the availability of revised guidance for requesting...

  10. 77 FR 10799 - Revised Guidance for Requesting One-Time Movement (OTM) Approvals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Railroad Administration Revised Guidance for Requesting One-Time Movement (OTM) Approvals AGENCY... Administrator for Railroad Safety/Chief Safety Officer. These approvals are generally referred to as...

  11. Photodynamic inactivation of mammalian viruses and bacteriophages.

    PubMed

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  12. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  13. Nanoparticles in photodynamic therapy: an emerging paradigm.

    PubMed

    Chatterjee, Dev Kumar; Fong, Li Shan; Zhang, Yong

    2008-12-14

    Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in management of cancer and other diseases [M. Triesscheijn, P. Baas, J.H. Schellens, F.A. Stewart, Photodynamic therapy in oncology, Oncologist 11 (2006) 1034-1044]. Most photosensitizers are highly hydrophobic and require delivery systems. Previous classification of delivery systems was based on presence or absence of a targeting molecule on the surface [Y.N. Konan, R. Gurny, E. Allemann, State of the art in the delivery of photosensitizers for photodynamic therapy, J. Photochem. Photobiol., B 66 (2002) 89-106]. Recent reports have described carrier nanoparticles with additional active complementary and supplementary roles in PDT. We introduce a functional classification for nanoparticles in PDT to divide them into passive carriers and active participants in photosensitizer excitation. Active nanoparticles are distinguished from non-biodegradable carriers with extraneous functions, and sub-classified mechanistically into photosensitizer nanoparticles, [A.C. Samia, X. Chen, C. Burda, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc. 125 (2003) 15736-15737, R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, Y. Baba, Quantum dots as photosensitizers? Nat. Biotechnol. 22 (2004) 1360-1361] self-illuminating nanoparticles [W. Chen, J. Zhang, Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment, J. Nanosci. Nanotechnology 6 (2006) 1159-1166] and upconverting nanoparticles [P. Zhang, W. Steelant, M. Kumar, M. Scholfield, Versatile photosensitizers for photodynamic therapy at infrared excitation, J. Am. Chem. Soc. 129 (2007) 4526-4527]. Although several challenges remain before they can be adopted for clinical use, these active or second-generation PDT nanoparticles probably offer the best hope for extending the reach of PDT to regions deep in the body.

  14. Inorganic nanoparticles for enhanced photodynamic cancer therapy.

    PubMed

    Cheng, Shih-Hsun; Lo, Leu-Wei

    2011-09-01

    Photodynamic therapy (PDT) in cancer treatment uses photosensitizers to generate singlet oxygen followed by photoirradiation. The efficacy of PDT is greatly determined by the dosimetry of activation light and the photosensitizer (PS), modulating the photodynamic reaction at depth in diseased tissue. Development of nano-formulated photosensitizer has emerged as a promising field because of the biocompatibility and the accessibility for multi-functionalization of nanoparticles. In this review, we summarize the contemporary progress in use of inorganic nanoparticles for improvement of PDT in cancer therapeutics.

  15. Can nanotechnology potentiate photodynamic therapy?

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K.; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Chiang, Long Y.

    2015-01-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, “can nano-technology potentiate PDT?” PMID:26361572

  16. New photosensitizers for photodynamic therapy.

    PubMed

    Abrahamse, Heidi; Hamblin, Michael R

    2016-02-15

    Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound.

  17. Inorganic Nanoparticles for Photodynamic Therapy.

    PubMed

    Colombeau, L; Acherar, S; Baros, F; Arnoux, P; Gazzali, A Mohd; Zaghdoudi, K; Toussaint, M; Vanderesse, R; Frochot, C

    2016-01-01

    Photodynamic therapy (PDT) is a well-established technique employed to treat aged macular degeneration and certain types of cancer, or to kill microbes by using a photoactivatable molecule (a photosensitizer, PS) combined with light of an appropriate wavelength and oxygen. Many PSs are used against cancer but none of them are highly specific. Moreover, most are hydrophobic, so are poorly soluble in aqueous media. To improve both the transportation of the compounds and the selectivity of the treatment, nanoparticles (NPs) have been designed. Thanks to their small size, these can accumulate in a tumor because of the well-known enhanced permeability effect. By changing the composition of the nanoparticles it is also possible to achieve other goals, such as (1) targeting receptors that are over-expressed on tumoral cells or neovessels, (2) making them able to absorb two photons (upconversion or biphoton), and (3) improving singlet oxygen generation by the surface plasmon resonance effect (gold nanoparticles). In this chapter we describe recent developments with inorganic NPs in the PDT domain. Pertinent examples selected from the literature are used to illustrate advances in the field. We do not consider either polymeric nanoparticles or quantum dots, as these are developed in other chapters.

  18. Can nanotechnology potentiate photodynamic therapy?

    PubMed

    Huang, Ying-Ying; Sharma, Sulbha K; Dai, Tianhong; Chung, Hoon; Yaroslavsky, Anastasia; Garcia-Diaz, Maria; Chang, Julie; Chiang, Long Y; Hamblin, Michael R

    2012-03-01

    Photodynamic therapy (PDT) uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, "can nano-technology potentiate PDT?"

  19. Functionalized Fullerenes in Photodynamic Therapy

    PubMed Central

    Huang, Ying-Ying; Sharma, Sulbha K.; Yin, Rui; Agrawal, Tanupriya; Chiang, Long Y.; Hamblin, Michael R.

    2014-01-01

    Since the discovery of C60 fullerene in 1985, scientists have been searching for biomedical applications of this most fascinating of molecules. The unique photophysical and photochemical properties of C60 suggested that the molecule would function well as a photosensitizer in photodynamic therapy (PDT). PDT uses the combination of non-toxic dyes and harmless visible light to produce reactive oxygen species that kill unwanted cells. However the extreme insolubility and hydrophobicity of pristine C60, mandated that the cage be functionalized with chemical groups that provided water solubility and biological targeting ability. It has been found that cationic quaternary ammonium groups provide both these features, and this review covers work on the use of cationic fullerenes to mediate destruction of cancer cells and pathogenic microorganisms in vitro and describes the treatment of tumors and microbial infections in mouse models. The design, synthesis, and use of simple pyrrolidinium salts, more complex decacationic chains, and light-harvesting antennae that can be attached to C60, C70 and C84 cages are covered. In the case of bacterial wound infections mice can be saved from certain death by fullerene-mediated PDT. PMID:25544837

  20. New photosensitizers for photodynamic therapy

    PubMed Central

    Abrahamse, Heidi; Hamblin, Michael R.

    2016-01-01

    Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound. PMID:26862179

  1. Chaos-based color pathological image encryption scheme using one-time keys.

    PubMed

    Liu, Guoyan; Li, Jie; Liu, Hongjun

    2014-02-01

    This paper proposes an improved chaos-based color pathological image encryption algorithm, using SHA-2 to generate one-time keys. In order to send different ciphered images to different recipients, the hash value of the plain image and a random number are applied to generate one-time initial conditions for Chebyshev maps, to make the key stream change in every confusion process without changing the common initial values. The permuted image is divided into 256-bit long blocks, the avalanche effect is applied to diffuse the blocks, i.e., each block is XORed with the hash value of the prior block. Simulation results demonstrate that the proposed algorithm is robust against common attacks.

  2. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience.

    PubMed

    Nakazawa, Kazu; Sun, Linus D; Quirk, Michael C; Rondi-Reig, Laure; Wilson, Matthew A; Tonegawa, Susumu

    2003-04-24

    Lesion and pharmacological intervention studies have suggested that in both human patients and animals the hippocampus plays a crucial role in the rapid acquisition and storage of information from a novel one-time experience. However, how the hippocampus plays this role is poorly known. Here, we show that mice with NMDA receptor (NR) deletion restricted to CA3 pyramidal cells in adulthood are impaired in rapidly acquiring the memory of novel hidden platform locations in a delayed matching-to-place version of the Morris water maze task but are normal when tested with previously experienced platform locations. CA1 place cells in the mutant animals had place field sizes that were significantly larger in novel environments, but normal in familiar environments relative to those of control mice. These results suggest that CA3 NRs play a crucial role in rapid hippocampal encoding of novel information for fast learning of one-time experience.

  3. Cost-effectiveness of one-time genetic testing to minimize lifetime adverse drug reactions.

    PubMed

    Alagoz, O; Durham, D; Kasirajan, K

    2016-04-01

    We evaluated the cost-effectiveness of one-time pharmacogenomic testing for preventing adverse drug reactions (ADRs) over a patient's lifetime. We developed a Markov-based Monte Carlo microsimulation model to represent the ADR events in the lifetime of each patient. The base-case considered a 40-year-old patient. We measured health outcomes in life years (LYs) and quality-adjusted LYs (QALYs) and estimated costs using 2013 US$. In the base-case, one-time genetic testing had an incremental cost-effectiveness ratio (ICER) of $43,165 (95% confidence interval (CI) is ($42,769,$43,561)) per additional LY and $53,680 per additional QALY (95% CI is ($53,182,$54,179)), hence under the base-case one-time genetic testing is cost-effective. The ICER values were most sensitive to the average probability of death due to ADR, reduction in ADR rate due to genetic testing, mean ADR rate and cost of genetic testing.

  4. Photodynamic application in neurosurgery: present and future

    NASA Astrophysics Data System (ADS)

    Kostron, Herwig

    2009-06-01

    Photodynamic techniques such as photodynamic diagnosis (PDD), fluorescence guided tumor resection (FGR) and photodynamic therapy (PDT) are currently undergoing intensive clinical investigations as adjunctive treatment for malignant brain tumours. This review provides an overview on the current clinical data and trials as well as on photosensitisers, technical developments and indications for photodynamic application in Neurosurgery. Furthermore new developments and clinical significance of FGR for neurosurgery will be discussed. Over 1000 patients were enrolled in various clinical phase I/II trials for PDT for malignant brain tumours. Despite various treatment protocols, variation of photosensitisers and light dose there is a clear trend towards prolonging median survival after one single PDT as compared to conventional therapeutic modalities. The median survival after PDT for primary glioblastoma multiforme WHO IV was 19 months and for recurrent GBM 9 months as compared to standard convential treatment which is 15 months and 3 months, respectively. FGR in combination with adjunctive radiation was significantly superior to standard surgical resection followed by radiation. The combination of FGR/PDD and intraoperative PDT increased significantly survival in recurrent glioblastoma patients. The combination of PDD/ FGR and PDT offers an exciting approach to the treatment of malignant brain tumours "to see and to treat." PDT was generally well tolerated and side effects consisted of occasionally increased intracranial pressure and prolonged skin sensitivity against direct sunlight. This review covers the current available data and draws the future potential of PDD and PDT for its application in neurosurgery.

  5. One-Time Password Generation and Two-Factor Authentication Using Molecules and Light.

    PubMed

    Naren, Gaowa; Li, Shiming; Andréasson, Joakim

    2017-03-02

    Herein, we report the first example of one-time password (OTP) generation and two-factor authentication (2FA) using a molecular approach. OTPs are passwords that are valid for one entry only. For the next login session, a new, different password is generated. This brings the advantage that any undesired recording of a password will not risk the security of the authentication process. Our molecular realization of the OTP generator is based on a photochromic molecular triad where the optical input required to set the triad to the fluorescent form differs depending on the initial isomeric state.

  6. Methodologies for estimating one-time hazardous waste generation for capacity generation for capacity assurance planning

    SciTech Connect

    Tonn, B.; Hwang, Ho-Ling; Elliot, S.; Peretz, J.; Bohm, R.; Hendrucko, B.

    1994-04-01

    This report contains descriptions of methodologies to be used to estimate the one-time generation of hazardous waste associated with five different types of remediation programs: Superfund sites, RCRA Corrective Actions, Federal Facilities, Underground Storage Tanks, and State and Private Programs. Estimates of the amount of hazardous wastes generated from these sources to be shipped off-site to commercial hazardous waste treatment and disposal facilities will be made on a state by state basis for the years 1993, 1999, and 2013. In most cases, estimates will be made for the intervening years, also.

  7. [The wider application of photodynamic therapy in dermatology].

    PubMed

    Thissen, M R T M; Kuijpers, D I M; Neumann, H A M

    2005-01-29

    Photodynamic treatment is increasingly employed in the detection and treatment of malignant and non-malignant skin disease. --Indications for photodynamic therapy so far are actinic keratosis, Bowen's disease and superficially growing basal cell carcinomas, and probably verrucae and acne vulgaris. --This technology is also currently under investigation for fluorescence diagnostics oftumour margins. --The exact position of photodynamic therapy has not yet been established because there are too less long-term comparative studies demonstrating its effectiveness. --Based on the short-term results, photodynamic therapy deserves a place within the total therapeutic arsenal of the dermatologist of today for the indications mentioned above.

  8. Photodynamic therapy of diseased bone

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Yee, Albert; Siewerdsen, Jeffery; Wilson, Brian C.; Burch, Shane

    2005-08-01

    Objective: Photodynamic therapy (PDT) defines the oxygen-dependent reaction that occurs upon light-mediated activation of a photosensitizing compound, culminating in the generation of cytotoxic, reactive oxygen species, predominantly, singlet oxygen. We are investigating PDT treatment of diseased bone. Methods: Using a rat model of human breast cancer (MT-1)-derived bone metastasis we confirmed the efficacy of benzoporphyrin-derivative monoacid (BPD-MA)-PDT for treating metastatic lesions within vertebrae or long bones. Results: Light administration (150 J) 15 mins after BPDMA (2.5 mg/Kg, i.v.) into the lumbar (L3) vertebra of rats resulted in complete ablation of the tumour and surrounding bone marrow 48 hrs post-PDT without paralysis. Porcine vertebrae provided a model comparable to that of human for light propagation (at 150 J/cm) and PDT response (BPD-MA; 6 mg/m2, i.v.) in non-tumour vertebrae. Precise fibre placement was afforded by 3-D cone beam computed tomography. Average penetration depth of light was 0.16 +/- 0.04 cm, however, the necrotic/non-necrotic interface extended 0.6 cm out from the treatment fiber with an average incident fluence rate of 4.3 mW/cm2. Non-necrotic tissue damage was evident 2 cm out from the treatment fiber. Current studies involving BPD-MA-PDT treatment of primary osteosarcomas in the forelimbs of dogs are very promising. Magnetic resonance imaging 24 hr post treatment reveal well circumscribed margins of treatment that encompass the entire 3-4 cm lesion. Finally, we are also interested in using 5-aminolevulinic acid (ALA) mediated PDT to treat osteomyelitis. Response to therapy was monitored as changes in bioluminescence signal of staphylococcus aureus (SA)-derived biofilms grown onto 0.5 cm lengths of wire and subjected to ALA-PDT either in vitro or in vivo upon implant into the intramedullary space of rat tibia. Transcutaneous delivery of PDT (75 J/cm2) effectively eradicated SAbiofilms within bone. Conclusions: Results support

  9. Request for One-Time Shipment of 32 Watt PU-328 Source in 9968 Packaging

    SciTech Connect

    Massey, W.M.

    1998-11-25

    The 9968 package is designed for surface shipment of fissile and other radioactive materials where a high degree of double containment is required. The use of the 9968 radioactive material package for a one time shipment of a 32 watt heat source versus the SARP approved maximum 30 watt heat source is addressed in this report. The analyses show that the small increase in heat load from 30 watts to 32 watts does not substantially increase internal temperatures or pressures that would approach limits for the package. Also, the weight of the content is within the current 9968 package limits. It is concluded that the 32-watt heat source can be safely shipped in the 9968 package and therefore a waiver to ship the source is justified.

  10. Privacy-Preserving Authentication of Users with Smart Cards Using One-Time Credentials

    NASA Astrophysics Data System (ADS)

    Park, Jun-Cheol

    User privacy preservation is critical to prevent many sophisticated attacks that are based on the user's server access patterns and ID-related information. We propose a password-based user authentication scheme that provides strong privacy protection using one-time credentials. It eliminates the possibility of tracing a user's authentication history and hides the user's ID and password even from servers. In addition, it is resistant against user impersonation even if both a server's verification database and a user's smart card storage are disclosed. We also provide a revocation scheme for a user to promptly invalidate the user's credentials on a server when the user's smart card is compromised. The schemes use lightweight operations only such as computing hashes and bitwise XORs.

  11. Generalized dualities in one-time physics as holographic predictions from two-time physics

    NASA Astrophysics Data System (ADS)

    Araya, Ignacio J.; Bars, Itzhak

    2014-03-01

    In the conventional formalism of physics, with one time, systems with different Hamiltonians or Lagrangians have different physical interpretations and are considered to be independent systems unrelated to each other. However, in this paper we construct explicitly canonical maps in one-time (1T) phase space (including timelike components, specifically the Hamiltonian) to show that it is appropriate to regard various 1T physics systems, with different Lagrangians or Hamiltonians, as being duals of each other. This concept is similar in spirit to dualities discovered in more complicated examples in field theory or string theory. Our approach makes it evident that such generalized dualities are widespread. This suggests that, as a general phenomenon, there are hidden relations and hidden symmetries that conventional 1T physics does not capture, implying the existence of a more unified formulation of physics that naturally supplies the hidden information. In fact, we show that two-time (2T) physics in (d +2) dimensions is the generator of these dualities in 1T physics in d dimensions by providing a holographic perspective that unifies all the dual 1T systems into one. The unifying ingredient is a gauge symmetry in phase space. Via such dualities it is then possible to gain new insights toward new physical predictions not suspected before, and suggest new methods of computation that yield results not obtained before. As an illustration, we will provide concrete examples of 1T systems in classical mechanics that are solved analytically for the first time via our dualities. These dualities in classical mechanics have counterparts in quantum mechanics and field theory, and in some simpler cases they have already been constructed in field theory. We comment on the impact of our approach on the meaning of space-time and on the development of new computational methods based on dualities.

  12. Cyanines as efficient photosensitizers in photodynamic reaction: photophysical properties and in vitro photodynamic activity.

    PubMed

    Kulbacka, J; Pola, A; Mosiadz, D; Choromanska, A; Nowak, P; Kotulska, M; Majkowski, M; Hryniewicz-Jankowska, A; Purzyc, L; Saczko, J

    2011-04-01

    The purpose of the present study was to explore the potential application of cyanines in photodynamic treatment. The photophysical features of four cyanines (KF570, HM118, FBF-749, and ER-139) were investigated by elemental and spectral analyses. Two malignant cell lines (MCF-7/WT and MCF-7/DOX) were used to test the potential for use in the photodynamic therapy. The cytotoxic effects of these dyes were determined by the MTT assay after 4 and 24 h of incubation with the cyanine. KF570 and HM118 were irradiated with red light (630-nm filter) and FBF-749 and ER-139 with green light (435-nm filter). The results showed that the cyanine HM118 demonstrated a major phototoxic effect. It was also noted that the efficiency of photodynamic therapy was higher in the doxorubicin-resistant cell line (MCF-7/DOX).

  13. Photodynamic therapy of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Inada, Natalia M.; Lombardi, Welington; Leite, Marieli F. M.; Trujillo, Jose R.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Photodynamic therapy (PDT) is a technique that has been used for the treatment of tumors, especially in Gynecology. The photodynamic reaction is based on the production of reactive oxygen species after the activation of a photosensitizer. Advantages of the PDT in comparison to the surgical resection are: ambulatory treatment and tissue recovery highly satisfactory, through a non-invasive procedure. The cervical intraepithelial neoplasia (CIN) grades I and II presents potential indications for PDT. The aim of the proposed study is to evaluate the safety and efficacy of the PDT for the diagnostics and treatment of CIN I and II. The equipment and the photosensitizer are produced in Brazil with a representative low cost. It is possible to visualize the fluorescence of the cervix and to treat the lesions, without side effects. The proposed clinical protocol shows great potential to become a public health technique.

  14. Second generation photodynamic agents: a review.

    PubMed

    Sternberg, E D; Dolphin, D

    1993-10-01

    Over the last decade, laser treatment of neoplastic diseases has become routine. The ability of these light-induced therapies to effect positive results is increased with the utilization of photosensitizing dyes. The approval of Photofrin in Canada as a first generation photodynamic therapeutic agent for the treatment of some forms of bladder cancer is being followed by the development of other agents with improved properties. At this time a number of second generation photosensitizing dyes are under study in phase I/II clinical trials. A review of the status of these trials along with mechanistic aspects is reviewed in this article. In addition, a review of the status of lasers to be utilized for photodynamic therapy gives some indication of which instruments could be considered for this therapy in the future.

  15. Mechanism of photodynamic activity of pheophorbides.

    PubMed

    Tanielian, C; Kobayashi, M; Wolff, C

    2001-04-01

    Plasmid DNA is efficiently photocleaved by sodium pheophorbides (Na-Phdes) a and b in the absence of oxygen as well as in the presence of oxygen. Fluorescence microscopic observation shows a rapid incorporation of Na-Phde a into nuclei, mitochondria, and lysosome of human oral mucosa cells. In contrast Na-Phde b is incorporated only into the plasma membrane. The photodynamic activity of these pigments in living tissues is probably determined by the monomeric pigment molecules formed in hydrophobic cellular structures and involves two types of reactions: (i) direct electron transfer between DNA bases (especially guanine) and pheophorbide singlet excited state, and (ii) indirect reactions mediated by reactive oxygen species, including singlet oxygen whose production from molecular oxygen is sensitized by the Na-Phdes triplet state. A preliminary report has appeared in "Photodynamic Therapy of Cancer II," Proc. SPIE 2325, 416-424 (1994).

  16. Photodynamic therapy for pododermatitis in penguins.

    PubMed

    Sellera, Fábio Parra; Sabino, Caetano Padial; Ribeiro, Martha Simões; Fernandes, Loriê Tukamoto; Pogliani, Fabio Celidonio; Teixeira, Carlos Roberto; Dutra, Gustavo Henrique Pereira; Nascimento, Cristiane Lassálvia

    2014-01-01

    Pododermatitis is currently one of most frequent and important clinical complications in seabirds kept in captivity or in rehabilitation centers. In this study, five Magellanic penguins with previous pododermatitis lesions on their footpad were treated with photodynamic therapy (PDT). All PDT treated lesions successfully regressed and no recurrence was observed during the 6-month follow-up period. PDT seems to be an inexpensive and effective alternative treatment for pododermatitis in Magellanic penguins encouraging further research on this topic.

  17. Retinoblastoma: might photodynamic therapy be an option?

    PubMed

    Teixo, Ricardo; Laranjo, Mafalda; Abrantes, Ana Margarida; Brites, Gonçalo; Serra, Arménio; Proença, Rui; Botelho, Maria Filomena

    2015-12-01

    Retinoblastoma is a tumor that mainly affects children under 5 years, all over the world. The origin of these tumors is related with mutations in the RB1 gene, which may result from genetic alterations in cells of the germ line or in retinal somatic cells. In developing countries, the number of retinoblastoma-related deaths is higher due to less access to treatment, unlike what happens in developed countries where survival rates are higher. However, treatments such as chemotherapy and radiotherapy, although quite effective in treating this type of cancer, do not avoid high indices of mortality due to secondary malignances which are quite frequent in these patients. Additionally, treatments such as cryotherapy, thermotherapy, thermochemotherapy, or brachytherapy represent other options for retinoblastoma. When all these approaches fail, enucleation is the last option. Photodynamic therapy might be considered as an alternative, particularly because of its non-mutagenic character. Photodynamic therapy is a treatment modality based on the administration of photosensitizing molecules that only upon irradiation of the tumor with a light source of appropriate wavelength are activated, triggering its antitumor action. This activity may be not only due to direct damage to tumor cells but also due to damage caused to the blood vessels responsible for the vascular supply of the tumor. Over the past decades, several in vitro and in vivo studies were conducted to assess the effectiveness of photodynamic therapy in the treatment of retinoblastoma, and very promising results were achieved.

  18. Combined surgery and photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Douplik, Alexandre

    According to the recent guidelines, the gold standard is resecting an extra 0.5-3 cm beyond the lesion margins that are visually detected and/or biopsy confirmed depending on type of malignancy and its localisation to avoid missing the residuals of the tumour. Often, such a large resection leads to dysfunctions of the organ or tissues, which underwent the surgery. In some cases, an extra tumour-free margin cannot be achieved because of tumour proximity to vital sites such as major vascular or nerve structures. Photodynamic Therapy (PDT) is an emerging clinical modality to locally destroy cancer lesions selectively. The limitation of photodynamic therapy is the curable depth of an order of one centimetre or less. A combination of cancer surgery following by PDT can bring a benefit to reduce the resection and minimise the impact on the organ or tissue functionality. Combination of cancer surgery and photodynamic therapy provides another opportunity-fluorescence image guidance of cancer removal. Most of the photosensitizers intensively fluoresce and hence facilitate a strong fluorescence contrast versus healthy adjacent tissues.

  19. Security enhanced optical one-time password authentication method by using digital holography

    NASA Astrophysics Data System (ADS)

    Gil, Sang Keun; Jeon, Seok Hee; Jeong, Jong Rae

    2015-03-01

    We propose a new optical one-time password(OTP) authentication method by using digital holography, which enhances security strength in the cryptosystem compared to the conventional electronic OTP method. In this paper, a challenge-response optical OTP authentication based on two-factor authentication is presented by 2-step quadrature phase-shifting digital holography using orthogonal polarization, and two-way authentication is also performed using the challenge-response handshake in both directions. The ID (identification), PW (password) and OTP information are encrypted with a shared key by applying phase-shifting digital holography, and these encrypted information are verified each other by the shared key. Because the encrypted digital holograms which are transmitted to the other party are expressed as random distribution, it guards against a replay attack and results in higher security level. Optically, encrypted digital hologram in our method is Fourier transform hologram and is recorded on CCD with 256 gray-level quantized intensities. The proposed method has an advantage that it does not need a time-synchronized OTP and can be applied to various security services. Computer experiments show that the proposed method is suitable for high secure OTP authentication.

  20. System requirements for one-time-use ENRAF control panel software

    SciTech Connect

    HUBER, J.H.

    1999-08-19

    An Enraf Densitometer is installed on tank 241-AY-102. The Densitometer will frequently be tasked to obtain and log density profiles. The activity can be effected a number of ways. Enraf Incorporated provides a software package called ''Logger18'' to its customers for the purpose of in-shop testing of their gauges. Logger18 is capable of accepting an input file which can direct the gauge to obtain a density profile for a given tank level and bottom limit. Logger18 is a complex, DOS based program which will require trained technicians and/or tank farm entries to obtain the data. ALARA considerations have prompted the development of a more user-friendly, computer-based interface to the Enraf densitometers. This document records the plan by which this new Enraf data acquisition software will be developed, reviewed, verified, and released. This plan applies to the development and implementation of a one-time-use software program, which will be called ''Enraf Control Panel.'' The software will be primarily used for remote operation of Enraf Densitometers for the purpose of obtaining and logging tank product density profiles.

  1. Pulse mode of laser photodynamic treatment induced cell apoptosis.

    PubMed

    Klimenko, Vladimir V; Knyazev, Nickolay A; Moiseenko, Fedor V; Rusanov, Anatoliy A; Bogdanov, Alexey A; Dubina, Michael V

    2016-03-01

    One of the factors limiting photodynamic therapy (PDT) is hypoxia in tumor cells during photodynamic action. PDT with pulse mode irradiation and appropriate irradiation parameters could be more effective in the singlet oxygen generation and tissue re-oxygenation than continuous wave (CW) mode. We theoretically demonstrate differences between the cumulative singlet oxygen concentration in PDT using pulse mode and CW mode of laser irradiation. In vitro experimental results show that photodynamic treatment with pulse mode irradiation has similar cytotoxicity to CW mode and induces mainly cell apoptosis, whereas CW mode induces necrotic cell death. We assume that the cumulative singlet oxygen concentration and the temporal distribution of singlet oxygen are important in photodynamic cytotoxicity and apoptosis initiation. We expect our research may improve irradiation protocols and photodynamic therapy efficiency.

  2. Physical layer one-time-pad data encryption through synchronized semiconductor laser networks

    NASA Astrophysics Data System (ADS)

    Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris

    2016-02-01

    Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.

  3. 75 FR 17919 - Submission for OMB Review; American Recovery and Reinvestment Act-One-time Reporting Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...; American Recovery and Reinvestment Act--One-time Reporting Requirements for Prime Contractors AGENCY... collection requirement concerning the American Recovery and Reinvestment Act--One-time Reporting Requirements... information on those who are to respond, through the use of appropriate technological collection techniques...

  4. 75 FR 17918 - Submission for OMB Review; American Recovery and Reinvestment Act-One-Time Reporting Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ...; American Recovery and Reinvestment Act--One-Time Reporting Requirements for First-Tier Subcontractors...--One-time Reporting Requirements for First-tier Subcontractors. A request for public comments was... technological collection techniques or other forms of information technology. DATES: Submit comments on...

  5. In-office Painless Aminolevulinic Acid Photodynamic Therapy

    PubMed Central

    2016-01-01

    Objective: To evaluate the efficacy, safety, and pain of in-office “painless” aminolevulinic acid photodynamic therapy aimed at decreasing treatment-associated pain in patients undergoing removal of actinic keratoses. Design: Prospective split-face study comparing short aminolevulinic acid incubation times of 15 minutes followed by extended exposure (60 minutes) of continuous blue light versus conventional aminolevulinic acid photodynamic therapy. Prospective assessment of pain in patients undergoing in-office “painless” aminolevulinic acid photodynamic therapy. Setting: Clinical practice office. Participants: Three patients with actinic keratoses participated in the split-face study and 101 in the pain assessment study. Measurements: Evaluations in the split-face study included removal of actinic keratoses, skin temperature, and pain measured on a 10-point visual analog scale. Pain was assessed using the visual analog scale in the pain assessment study. Results: In the split-face study, in-office “painless” aminolevulinic acid photodynamic therapy resulted in a 52-percent reduction in lesions versus 44 percent for conventional aminolevulinic acid photodynamic therapy. Maximum pain scores of in-office “painless” aminolevulinic acid photodynamic therapy were all 0 at each time point, and the average score for conventional aminolevulinic acid photodynamic therapy was 7. Baseline skin temperatures increased from a baseline of 29 to 32°C to 34 to 35°C by minute 10 of blue light activation on both sides of the face. Results from the pain assessment study indicated no or minimal (scores 0-2) pain in nearly all patients who received in-office “painless” aminolevulinic acid photodynamic therapy as monotherapy or in combination with 5-fluoruacil or imiquimod used as pretreatments. Conclusions: In-office “painless” aminolevulinic acid photodynamic therapy appears to be effective for removing actinic keratoses and is associated with little or no pain

  6. Hormonal component of tumor photodynamic therapy response

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush

    2008-02-01

    The involvement of adrenal glucocorticoid hormones in the response of the treatment of solid tumors by photodynamic therapy (PDT) comes from the induction of acute phase response by this modality. This adrenal gland activity is orchestrated through the engagement of the hypothalamic-pituitary-adrenal hormonal axis incited by stress signals emanating from the PDT-treated tumor. Glucocorticoid hormone activity engendered within the context of PDT-induced acute phase response performs multiple important functions; among other involvements they beget acute phase reactant production, systemic neutrophil mobilization, and control the production of inflammation-modulating and immunoregulatory proteins.

  7. Flexible textile light diffuser for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Selm, Barbel; Camenzind, Martin

    2005-03-01

    In this article a new medical application is introduced using textile production techniques to deliver a defined radiation dose. The advantage for photodynamic therapy (PDT) is that a flat luminous textile structure can homogeneously illuminate unequal body surfaces. The optical properties of this two-dimensional luminous pad are characterized with a set of bench-scale tests. In vitro investigations on petri dishes with cultivated cells and first clinical tests on animal patients are promising. In addition first measurement results are presented together with an outlook to future developments.

  8. Acceleration Of Wound Healing Ny Photodynamic Therapy

    SciTech Connect

    Hasan, Tayyaba; Hamblin, Michael R.; Trauner, Kenneth

    2000-08-22

    Disclosed is a method for accelerating wound healing in a mammal. The method includes identifying an unhealed wound site or partially-healed wound site in a mammal; administering a photosensitizer to the mammal; waiting for a time period wherein the photosensitizer reaches an effective tissue concentration at the wound site; and photoactivating the photosensitizer at the wound site. The dose of photodynamic therapy is selected to stimulate the production of one or more growth factor by cells at the wound site, without causing tissue destruction.

  9. Photodynamic therapy and anti-tumour immunity

    PubMed Central

    Castano, Ana P.; Mroz, Pawel; Hamblin, Michael R.

    2010-01-01

    Photodynamic therapy (PDT) uses non-toxic photosensitizers and harmless visible light in combination with oxygen to produce cytotoxic reactive oxygen species that kill malignant cells by apoptosis and/or necrosis, shut down the tumour microvasculature and stimulate the host immune system. In contrast to surgery, radiotherapy and chemotherapy that are mostly immunosuppressive, PDT causes acute inflammation, expression of heat-shock proteins, invasion and infiltration of the tumour by leukocytes, and might increase the presentation of tumour-derived antigens to T cells. PMID:16794636

  10. Photodynamic dosimetry in the treatment of periodontitis

    NASA Astrophysics Data System (ADS)

    Andersen, Roger C.; Loebel, Nicolas G.; Andersen, Dane M.

    2009-06-01

    Photodynamic therapy has been demonstrated to effectively kill human periopathogens in vitro. However, the translation of in vitro work to in vivo clinical efficacy has been difficult due to the number of variables present in any given patient. Parameters such as photosensitizer concentration, duration of light therapy and amount of light delivered to the target tissue all play a role in the dose response of PDT in vivo. In this 121 patient study we kept all parameters the same except for light dose which was delivered at either 150 mW or 220 mW. This clearly demonstrated the clinical benefits of a higher light dose in the treatment of periodontitis.

  11. Photodynamic Therapy Treatment to Enhance Fracture Healing

    DTIC Science & Technology

    2013-06-01

    Military  Health  System Research Symposium (MHSRS);    13.‐ 16. August 2012 in Fort Lauderdale, FL, USA       The  Effect  of Photodynamic Therapy (PDT...ORGANIZATION: Sunnybrook Health Sciences Centre Toronto, ON, Canada M4N 3M5 REPORT DATE...Sunnybrook Health Sciences Centre 8. PERFORMING ORGANIZATION REPORT NUMBER Toronto, ON, Canada M4N 3M5

  12. Semiconductor quantum dots for photodynamic therapy.

    PubMed

    Samia, Anna C S; Chen, Xiaobo; Burda, Clemens

    2003-12-24

    The applicability of semiconductor QDs in photodynamic therapy (PDT) was evaluated by studying the interaction between CdSe QDs with a known silicon phthalocyanine PDT photosensitizer, Pc4. The study revealed that the QDs could be used to sensitize the PDT agent through a fluorescence resonance energy transfer (FRET) mechanism, or interact directly with molecular oxygen via a triplet energy-transfer process (TET). Both mechanisms result in the generation of reactive singlet oxygen species that can be used for PDT cancer therapy.

  13. Photosensitizer and light diffusion through dentin in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Nogueira, Ana C.; Graciano, Ariane X.; Nagata, Juliana Y.; Fujimaki, Mitsue; Terada, Raquel S. S.; Bento, Antonio C.; Astrath, Nelson G. C.; Baesso, Mauro L.

    2013-05-01

    Photodynamic therapy has been considered a potential antimicrobial modality against oral infections, including dental caries. A model to estimate the penetration of both photosensitizers and light through human dentin, a factor of interest in photodynamic therapy, is proposed. The photoacoustic spectroscopy technique was used to evaluate in vitro dentin permeability of three different photosensitizers. Using the dentin optical absorption and scattering coefficients, it was possible to propose a semi-quantitative model predicting both photosensitizer and light doses within dentin. The graphic illustrations obtained provided guidelines that may be useful in photodynamic therapy protocols used as antimicrobial tools in caries lesions.

  14. Photodynamic impact on the epiphyseal plates.

    PubMed

    Kurchenko, S; Shashko, A; Dudin, M; Mikhailov, V; Netylko, G; Ashmarov, V

    2012-01-01

    This study was carried out to prove the possibility of inhibition of long bones epiphyseal plates activity with photodynamic impact. Comparative analysis of the Chlorin E6 accumulation with transcutaneous and intraperitoneal administration mode, carried out on 175 laboratory mice showed the drug accumulates selectively in the epiphyseal plates of long bones, regardless of the mode of administration. 15 mice (males and females) at the age of active grownig were subjected to the single laser radiation impact on the knee joints area: 5 ones with transcutaneous Chlorine E6 administration, another 5 ones with intraperitoneal administration and the rest 5 without the drug. Histological samples of 15 experimental mice epiphyseal plates were examined by light microscopy, compared with 10 intact control mice. Influence of the laser radiation without administration of Chlorin E6 leads to intracellular swelling of epiphyseal plates chondrocytes. Influence of the laser radiation after transcutaneous or intraperitoneal injection of Chlorine E6 reduces significantly the total number of epiphyseal plates chondrocytes, without reducing the proportion of terminally-differentiated chondrocytes. Thus, the photodynamic impact inhibits the activity of epiphyseal plates of the mice.

  15. Photonic metallic nanostructures in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Fierascu, R. C.; Dumitriu, Irina

    2009-01-01

    Plasmons are resonant modes that involve the interaction between free charges and light. Nanoparticle-based photonic explorers have been developed for photodynamic therapy (PDT). PDT has been widely used in both oncological (e.g., tumors) and nononcological (e.g., age-related macular degeneration, localized infection, and nonmalignant skin conditions) applications. Three primary components are involved in PDT: light, a photosensitizing drug, and oxygen. The photosensitizer adsorbs light energy, which it then transfers to molecular oxygen to create an activated form of oxygen called singlet oxygen. The singlet oxygen is a cytotoxic agent and reacts rapidly with cellular components to cause damage that ultimately leads to cell death and tumor destruction. The changed topography of the film surface after deposition is caused by a local material transport and a material separation between formed particles (probably AgNO3) and an embedding polymer matrix as chitosan. This paper focuses on the current use of injectable in situ Au/(Ag)/chitosan hydrogels in cancer photodynamic treatment. Formulation protocols for their cytotoxic properties, their effect on cell growth in vitro and inhibition of tumor growth in vivo using mouse models, are discussed.

  16. Photodynamic inactivation of oropharyngeal Candida strains.

    PubMed

    Postigo, Agustina; Bulacio, Lucía; Sortino, Maximiliano

    2014-09-25

    Oropharyngeal candidiasis (OPC) is an infection frequent in immunocompromised patients. Photodynamic therapy is an alternative to conventional treatments, based on the utilization of compounds that inhibit or kill microorganisms only under the effect of light, process known as Photodynamic Inactivation (PDI). In the present study, PDI of Candida spp. by the natural product α-terthienyl (α-T) was investigated following the guidelines of CLSI M27-A3, under UV-A light irradiation. The optimal values of two variables, exposure irradiation time (ET) and distance to the irradiation source (DIS) were established by employing Design Expert Software (DES). For this purpose, a panel of Candida strains isolated from OPC (C. albicans, C. tropicalis, C. parapsilosis and C. krusei) was employed and optimal values were 5 min (ET) and between 6.06 and 6.43 cm (DIS) with a desirability factor of 0.989. α-T plus UV-A light in the optimal conditions caused a complete reduction in viable cells in 5 min which was demonstrated by viable cells reduction assays and confocal microscopy after vital staining (propidium iodide/fluorescein diacetate). The germ tube formation of C. albicans was inhibited by α-T at sub-inhibitory concentrations. Results showed that α-T plus UV-A light could constitute an alternative for OPC treatments at the optimal conditions determined here.

  17. Role of multidrug resistance in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Diddens, Heyke C.

    1992-06-01

    Multidrug resistance in cancer chemotherapy is a well established phenomenon. One of the most common phenotypical changes in acquired or intrinsic multidrug resistance in human tumor cells is the overexpression of the mdrl gene product P-glycoprotein, which acts as an active efflux pump. Increased levels of P-glycoprotein are associated with resistance to a variety of anticancer drugs commonly used in tumor chemotherapy like anthracyclins, vinca- alcaloids, epipodophyllotoxins or actinomycin D. We investigated the efficacy or photodynamic therapy in the treatment of tumor cells expressing the multidrug resistance phenotype. Our data show that multidrug resistant cells are highly cross resistant to the phototoxic stain rhodamine 123 but exhibit only low degrees of cross resistance (2 - 3 -folds) to the photosensitizers Photosan-3, Clorin-2, methylene blue and meso-tetra (4- sulfonatophenyl) porphine (TPPS4). Resistance is associated with a decrease in intracellular accumulation of the photosensitizer. Verapamil, a membrane active compound known to enhance drug sensitivity in multidrug resistant cells by inhibition of P-glycoprotein, also increases phototoxicity in multidrug resistant cells. Our results imply that tumors expressing the multidrug resistance phenotype might fail to respond to photochemotherapy with rhodamine 123. On the other hand, multidrug resistance may not play an important role in photodynamic therapy with Photosan-3, Chlorin-2, methylene blue or TPPS4.

  18. Treatment of ichthyophthiriasis with photodynamically active chlorophyllin.

    PubMed

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P R

    2016-04-01

    Water-soluble chlorophyll (chlorophyllin) exerts pronounced photodynamic activity on fish parasites. In order to determine its potential as a remedy against ectoparasites in fish carps were incubated in water with defined concentrations of chlorophyllin. The main focus of the experiments was on the ciliate Ichthyophthirius multifiliis (Fouquet) which is responsible for considerable losses in livestock in aquaculture. As malachite green, which in the past efficiently cured infected fishes, is banned because of its possible carcinogenicity; no effective remedy is presently available in aquaculture to treat ichthyophthiriasis. Using chlorophyllin, the number of trophonts was significantly reduced (more than 50 %) after 3 h incubation of infested fish at 2 and 4 mg/L and subsequent irradiation with simulated solar radiation. The lack of reinfection after light treatment indicates that also the remaining parasites have lost their multiplication capacity. In the controls (no chlorophyllin and no light, light but no chlorophyllin, or chlorophyllin but no light), no reduction of the I. multifiliis infection was observed. We propose that chlorophyllin (or other photodynamic substances) is a possible effective countermeasure against I. multifiliis and other ectoparasites in aquaculture.

  19. Fighting fish parasites with photodynamically active chlorophyllin.

    PubMed

    Häder, D-P; Schmidl, J; Hilbig, R; Oberle, M; Wedekind, H; Richter, P

    2016-06-01

    Water-soluble chlorophyll (chlorophyllin) was used in a phototoxic reaction against a number of fish ectoparasites such as Ichtyobodo, Dactylogyrus, Trichodina, and Argulus. Chlorophyllin is applied to the water at concentrations of several micrograms per milliliter for a predefined incubation time, and afterwards, the parasites are exposed to simulated solar radiation. Application in the dark caused only little damage to the parasites; likewise, light exposure without the addition of the photosensitizer was ineffective. In Ichthyobodo, 2 μg/mL proved sufficient with subsequent simulated solar radiation to almost quantitatively kill the parasites, while in Dactylogyrus, a concentration of about 6 μg/mL was necessary. The LD50 value for this parasite was 1.02 μg/mL. Trichodina could be almost completely eliminated at 2 μg/mL. Only in the parasitic crustacean Argulus, no killing could be achieved by a photodynamic reaction using chlorophyllin. Chlorophyllin is non-toxic, biodegradable, and can be produced at low cost. Therefore, we propose that chlorophyllin (or other photodynamic substances) are a possible effective countermeasure against several ectoparasites in ponds and aquaculture since chemical remedies are either forbidden and/or ineffective.

  20. Photodynamic-induced inactivation of Propionibacterium acnes

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Teschke, M.; Eick, Stephen G.; Pfister, W.; Meyer, Herbert; Halbhuber, Karl-Juergen

    1998-05-01

    We report on photodynamically induced inactivation of the skin bacterium Propionibacterium acnes (P. acnes) using endogenous as well as exogenous photosensitizers and red light sources. P. acnes is involved in the pathogenesis of the skin disease acne vulgaris. The skin bacterium is able to synthesize the metal-free fluorescent porphyrins protoporphyrin IX (PP) and coproporphyrin (CP) as shown by in situ spectrally-resolved detection of natural autofluorescence of human skin and bacteria colonies. These naturally occurring intracellular porphyrins act as efficient endogenous photosensitizers. Inactivation of P. acnes suspensions was achieved by irradiation with He-Ne laser light in the red spectral region (632.8 nm). We monitored the photodynamically-induced death of single bacteria using a fluorescent viability kit in combination with confocal laser scanning microscopy. In addition, the photo-induced inactivation was calculated by CFU (colony forming units) determination. We found 633 nm-induced inactivation (60 mW, 0.12 cm2 exposure area, 1 hour irradiation) of 72% in the case of non-incubated bacteria based on the destructive effect of singlet oxygen produced by red light excited endogenous porphyrins and subsequent energy transfer to molecular oxygen. In order to achieve a nearly complete inactivation within one exposure procedure, the exogenous photosensitizer Methylene Blue (Mb) was added. Far red exposure of Mb-labeled bacteria using a krypton ion laser at 647 nm and 676 nm resulted in 99% inactivation.

  1. Potential new photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ho, Yau-Kwan; Pandey, Ravindra K.; Sumlin, Adam B.; Missert, Joseph R.; Bellnier, David A.; Dougherty, Thomas J.

    1990-07-01

    In continuation of the effort to search for an ideal photosensitizer, two groups of potential new photosensitizers were synthesized and investigated for their photodynamic actions against tumors in mice. These were derivatives of methyl pheophorbide-a and of silicon naphthalocyanine. Of the former group, the 2 (1-0--hexyl) ethyl-desvinyl--methyl pheophorbide-a, or }IEDP, was the most active sensitizer. HEDP could be readily produced in large quantities and showed an optimum photodynamic action at 665 mu where it absorbs strongly. Also HEDP was cleared from the mouse skin within 4 days after administration, thus possibly alleviating the long-term phototoxic side-effects observed in Photofrin-based therapy. Of the second group of photosensitizers, the bis (dimethyl hydroxypropylsiloxy) silicon naphthalocyanine (HPSiNc) , and the corresponding acetoxy derivative (APSiNc) were of particular interest. At a drug-light dose of 1.0 mg/kg-135 J/cm2 (delivered by a laser at 772 nm), they showed antitumor activities comparable to that of PhotofrinTM. Further studies on these photosensitizers are warranted.

  2. Nanoparticle Based Photodynamic Therapy for Cancer

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2006-10-01

    This presentation describes research into a new approach to cancer treatment through a combination of radiation and photodynamic therapy. Under this concept, scintillation or persistent luminescence nanoparticles with attached photosensitizers, such as porphyrins, are used as an in vivo agent for photodynamic therapy. The nanoparticle PDT agents are delivered to the treatment site. Upon exposure to ionizing radiation such as X-rays, the nanoparticles emit scintillation or luminescence, which in turn activates the photosensitizers; as a consequence, singlet oxygen (^1O2) is produced. Studies have shown that ^1O2 can be effective in killing cancer cells. The innovation described in this study involves the use of in vivo luminescent nanoparticles so that an external light source is not required to support PDT. Consequently, application of the therapy can be more localized and the potential of damage to healthy cells is reduced. This new modality will provide an efficient, low-cost approach to PDT while still offering the benefits of augmented radiation therapy at lower doses.

  3. Drug Carrier for Photodynamic Cancer Therapy

    PubMed Central

    Debele, Tilahun Ayane; Peng, Sydney; Tsai, Hsieh-Chih

    2015-01-01

    Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0) to an excited singlet state (S1–Sn), followed by intersystem crossing to an excited triplet state (T1). The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer. PMID:26389879

  4. Photodynamic Therapy in Non-Gastrointestinal Thoracic Malignancies.

    PubMed

    Kidane, Biniam; Hirpara, Dhruvin; Yasufuku, Kazuhiro

    2016-01-21

    Photodynamic therapy has a role in the management of early and late thoracic malignancies. It can be used to facilitate minimally-invasive treatment of early endobronchial tumours and also to palliate obstructive and bleeding effects of advanced endobronchial tumours. Photodynamic therapy has been used as a means of downsizing tumours to allow for resection, as well as reducing the extent of resection necessary. It has also been used successfully for minimally-invasive management of local recurrences, which is especially valuable for patients who are not eligible for radiation therapy. Photodynamic therapy has also shown promising results in mesothelioma and pleural-based metastatic disease. As new generation photosensitizers are being developed and tested and methodological issues continue to be addressed, the role of photodynamic therapy in thoracic malignancies continues to evolve.

  5. Photodynamic action of protoporphyrin IX derivatives on Trichophyton rubrum*

    PubMed Central

    Ramos, Rogério Rodrigo; Kozusny-Andreani, Dora Inês; Fernandes, Adjaci Uchôa; Baptista, Mauricio da Silva

    2016-01-01

    BACKGROUND Dermatophytes are filamentous keratinophilic fungi. Trichophyton rubrum is a prevalent infectious agent in tineas and other skin diseases. Drug therapy is considered to be limited in the treatment of such infections, mainly due to low accessibility of the drug to the tissue attacked and development of antifungal resistance in these microorganisms. In this context, Photodynamic Therapy is presented as an alternative. OBJECTIVE Evaluate, in vitro, the photodynamic activity of four derivatives of Protoporphyrin IX by irradiation with LED 400 nm in T. rubrum. METHOD Assays were subjected to irradiation by twelve cycles of ten minutes at five minute intervals. RESULT Photodynamic action appeared as effective with total elimination of UFCs from the second irradiation cycle. CONCLUSION Studies show that the photodynamic activity on Trichophyton rubrum relates to a suitable embodiment of the photosensitizer, which can be maximized by functionalization of peripheral groups of the porphyrinic ring. PMID:27192510

  6. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  7. Photodynamic Therapy in Non-Gastrointestinal Thoracic Malignancies

    PubMed Central

    Kidane, Biniam; Hirpara, Dhruvin; Yasufuku, Kazuhiro

    2016-01-01

    Photodynamic therapy has a role in the management of early and late thoracic malignancies. It can be used to facilitate minimally-invasive treatment of early endobronchial tumours and also to palliate obstructive and bleeding effects of advanced endobronchial tumours. Photodynamic therapy has been used as a means of downsizing tumours to allow for resection, as well as reducing the extent of resection necessary. It has also been used successfully for minimally-invasive management of local recurrences, which is especially valuable for patients who are not eligible for radiation therapy. Photodynamic therapy has also shown promising results in mesothelioma and pleural-based metastatic disease. As new generation photosensitizers are being developed and tested and methodological issues continue to be addressed, the role of photodynamic therapy in thoracic malignancies continues to evolve. PMID:26805818

  8. Photodynamic Cancer Therapy—Recent Advances

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2011-09-01

    The basic principle of the photodynamic effect was discovered over a hundred years ago leading to the pioneering work on PDT in Europe. It was only during the 1980s, however, when "photoradiation therapy" was investigated as a possible treatment modality for cancer. Photodynamic therapy (PDT) is a photochemotherapeutic process which requires the use of a photosensitizer (PS) that, upon entry into a cancer cell is targeted by laser irradiation to initiate a series of events that contribute to cell death. PSs are light-sensitive dyes activated by a light source at a specific wavelength and can be classified as first or second generation PSs based on its origin and synthetic pathway. The principle of PS activation lies in a photochemical reaction resulting from excitation of the PS producing singlet oxygen which in turn reacts and damages cell organelles and biomolecules required for cell function and ultimately leading to cell destruction. Several first and second generation PSs have been studied in several different cancer types in the quest to optimize treatment. PSs including haematoporphyrin derivative (HpD), aminolevulinic acid (ALA), chlorins, bacteriochlorins, phthalocyanines, naphthalocyanines, pheophorbiedes and purpurins all require selective uptake and retention by cancer cells prior to activation by a light source and subsequent cell death induction. Photodynamic diagnosis (PDD) is based on the fluorescence effect exhibited by PSs upon irradiation and is often used concurrently with PDT to detect and locate tumours. Both laser and light emitting diodes (LED) have been used for PDT depending on the location of the tumour. Internal cancers more often require the use of laser light delivery using fibre optics as delivery system while external PDT often make use of LEDs. Normal cells have a lower uptake of the PS in comparison to tumour cells, however the acute cytotoxic effect of the compound on the recovery rate of normal cells is not known. Subcellular

  9. A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms.

    PubMed

    Kiesslich, Tobias; Gollmer, Anita; Maisch, Tim; Berneburg, Mark; Plaetzer, Kristjan

    2013-01-01

    In vitro research performed on eukaryotic or prokaryotic cell cultures usually represents the initial step for characterization of a novel photosensitizer (PS) intended for application in photodynamic therapy (PDT) of cancer or photodynamic inactivation (PDI) of microorganisms. Although many experimental steps of PS testing make use of the wide spectrum of methods readily employed in cell biology, special aspects of working with photoactive substances, such as the autofluorescence of the PS molecule or the requirement of light protection, need to be considered when performing in vitro experiments in PDT/PDI. This tutorial represents a comprehensive collection of operative instructions, by which, based on photochemical and photophysical properties of a PS, its uptake into cells, the intracellular localization and photodynamic action in both tumor cells and microorganisms novel photoactive molecules may be characterized for their suitability for PDT/PDI. Furthermore, it shall stimulate the efforts to expand the convincing benefits of photodynamic therapy and photodynamic inactivation within both established and new fields of applications and motivate scientists of all disciplines to get involved in photodynamic research.

  10. A Comprehensive Tutorial on In Vitro Characterization of New Photosensitizers for Photodynamic Antitumor Therapy and Photodynamic Inactivation of Microorganisms

    PubMed Central

    Maisch, Tim; Berneburg, Mark; Plaetzer, Kristjan

    2013-01-01

    In vitro research performed on eukaryotic or prokaryotic cell cultures usually represents the initial step for characterization of a novel photosensitizer (PS) intended for application in photodynamic therapy (PDT) of cancer or photodynamic inactivation (PDI) of microorganisms. Although many experimental steps of PS testing make use of the wide spectrum of methods readily employed in cell biology, special aspects of working with photoactive substances, such as the autofluorescence of the PS molecule or the requirement of light protection, need to be considered when performing in vitro experiments in PDT/PDI. This tutorial represents a comprehensive collection of operative instructions, by which, based on photochemical and photophysical properties of a PS, its uptake into cells, the intracellular localization and photodynamic action in both tumor cells and microorganisms novel photoactive molecules may be characterized for their suitability for PDT/PDI. Furthermore, it shall stimulate the efforts to expand the convincing benefits of photodynamic therapy and photodynamic inactivation within both established and new fields of applications and motivate scientists of all disciplines to get involved in photodynamic research. PMID:23762860

  11. [New light on skin photodynamic therapy].

    PubMed

    Kuonen, François; Gaide, Olivier

    2014-04-02

    Photodynamic therapy (PDT) relies on the cellular toxicity of an exogenous porphyrin that is activated by light rays. Its specificity depends on its cellular uptake, which is typically high in cells with a high metabolism, such as cancer cells and several microbial pathogens. Both the diffusion of the substrate and the penetration of the light in the tissue limit its efficiency to the first few millimeters of the skin. This explains why this technique is used for the treatment of superficial skin cancers (actinic keratosis and basal cell carcinomas), but also for selected skin inflammatory diseases (psoriasis) or infections (leishmaniosis). However, at the bedside, the limitations of PDT are rather the complexity and the pain associated with the treatment. Herein, we present the new developments, in particular concerning the new light sources, which make PDT a better option for our patients.

  12. Photodynamic therapy: superficial and interstitial illumination

    NASA Astrophysics Data System (ADS)

    Svanberg, Katarina; Bendsoe, Niels; Axelsson, Johan; Andersson-Engels, Stefan; Svanberg, Sune

    2010-07-01

    Photodynamic therapy (PDT) is reviewed using the treatment of skin tumors as an example of superficial lesions and prostate cancer as an example of deep-lying lesions requiring interstitial intervention. These two applications are among the most commonly studied in oncological PDT, and illustrate well the different challenges facing the two modalities of PDT-superficial and interstitial. They thus serve as good examples to illustrate the entire field of PDT in oncology. PDT is discussed based on the Lund University group's over 20 yr of experience in the field. In particular, the interplay between optical diagnostics and dosimetry and the delivery of the therapeutic light dose are highlighted. An interactive multiple-fiber interstitial procedure to deliver the required therapeutic dose based on the assessment of light fluence rate and sensitizer concentration and oxygen level throughout the tumor is presented.

  13. Interstitial Photodynamic Therapy—A Focused Review

    PubMed Central

    Shafirstein, Gal; Bellnier, David; Oakley, Emily; Hamilton, Sasheen; Potasek, Mary; Beeson, Karl; Parilov, Evgueni

    2017-01-01

    Multiple clinical studies have shown that interstitial photodynamic therapy (I-PDT) is a promising modality in the treatment of locally-advanced cancerous tumors. However, the utilization of I-PDT has been limited to several centers. The objective of this focused review is to highlight the different approaches employed to administer I-PDT with photosensitizers that are either approved or in clinical studies for the treatment of prostate cancer, pancreatic cancer, head and neck cancer, and brain cancer. Our review suggests that I-PDT is a promising treatment in patients with large-volume or thick tumors. Image-based treatment planning and real-time dosimetry are required to optimize and further advance the utilization of I-PDT. In addition, pre- and post-imaging using computed tomography (CT) with contrast may be utilized to assess the response. PMID:28125024

  14. The role of photodynamic therapy (PDT) physics

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2008-01-01

    Photodynamic therapy (PDT) is an emerging treatment modality that employs the photochemical interaction of three components: light, photosensitizer, and oxygen. Tremendous progress has been made in the last 2 decades in new technical development of all components as well as understanding of the biophysical mechanism of PDT. The authors will review the current state of art in PDT research, with an emphasis in PDT physics. They foresee a merge of current separate areas of research in light production and delivery, PDT dosimetry, multimodality imaging, new photosensitizer development, and PDT biology into interdisciplinary combination of two to three areas. Ultimately, they strongly believe that all these categories of research will be linked to develop an integrated model for real-time dosimetry and treatment planning based on biological response. PMID:18697538

  15. Monitoring photodynamic therapy with photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shao, Peng; Chapman, David W.; Moore, Ronald B.; Zemp, Roger J.

    2015-10-01

    We present our work on examining the feasibility of monitoring photodynamic therapy (PDT)-induced vasculature change with acoustic-resolution photoacoustic microscopy (PAM). Verteporfin, an FDA-approved photosensitizer for clinical PDT, was utilized. With a 60-μm-resolution PAM system, we demonstrated the capability of PAM to monitor PDT-induced vasculature variations in a chick chorioallantoic membrane model with topical application and in a rat ear with intravenous injection of the photosensitizer. We also showed oxygen saturation change in target blood vessels due to PDT. Success of the present approach may potentially lead to the application of PAM imaging in evaluating PDT efficacy, guiding treatment, and predicting responders from nonresponders.

  16. Photodynamic therapy as an antifungal treatment

    PubMed Central

    LIANG, YI; LU, LI-MING; CHEN, YONG; LIN, YOU-KUN

    2016-01-01

    Photodynamic therapy (PDT) involves the systemic or topical application of a photosensitizer (PS), alongside the selective illumination of the target lesion with light of an appropriate wavelength, in order to promote localized oxidative photodamage and subsequent cell death. Numerous studies have demonstrated that PDT is highly effective in the destruction of fungi in vitro. The mechanism underlying the effects of PDT results from the photons of visible light of an appropriate wavelength interacting with the intracellular molecules of the PS. Reactive species are produced as a result of the oxidative stress caused by the interaction between the visible light and the biological tissue. At present, no antifungal treatment based on PDT has been licensed. However, antifungal PDT is emerging as an area of interest for research. PMID:27347012

  17. PHOTODYNAMIC THERAPY OF CANCER: AN UPDATE

    PubMed Central

    Agostinis, Patrizia; Berg, Kristian; Cengel, Keith A.; Foster, Thomas H.; Girotti, Albert W.; Gollnick, Sandra O.; Hahn, Stephen M.; Hamblin, Michael R.; Juzeniene, Asta; Kessel, David; Korbelik, Mladen; Moan, Johan; Mroz, Pawel; Nowis, Dominika; Piette, Jacques; Wilson, Brian C.; Golab, Jakub

    2011-01-01

    Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative particularly in early-stage tumors. It can prolong survival in inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. PMID:21617154

  18. Scope of photodynamic therapy in periodontics.

    PubMed

    Kumar, Vivek; Sinha, Jolly; Verma, Neelu; Nayan, Kamal; Saimbi, C S; Tripathi, Amitandra K

    2015-01-01

    Periodontal disease results from inflammation of the supporting structure of the teeth and in response to chronic infection caused by various periodontopathic bacteria. The mechanical removal of this biofilm and adjunctive use of antibacterial disinfectants and antibiotics have been the conventional methods of periodontal therapy. However, the removal of plaque and the reduction in the number of infectious organisms can be impaired in sites with difficult access. Photodynamic therapy (PDT) is a powerful laser-initiated photochemical reaction, involving the use of a photoactive dye (photosensitizer) activated by light of a specific wavelength in the presence of oxygen. Application of PDT in periodontics such as pocket debridement, gingivitis, and aggressive periodontitis continue to evolve into a mature clinical treatment modality and is considered as a promising novel approach for eradicating pathogenic bacteria in periodontitis.

  19. Photosensitizers mediated photodynamic inactivation against virus particles.

    PubMed

    Sobotta, Lukasz; Skupin-Mrugalska, Paulina; Mielcarek, Jadwiga; Goslinski, Tomasz; Balzarini, Jan

    2015-01-01

    Viruses cause many diseases in humans from the rather innocent common cold to more serious or chronic, life-threatening infections. The long-term side effects, sometimes low effectiveness of standard pharmacotherapy and the emergence of drug resistance require a search for new alternative or complementary antiviral therapeutic approaches. One new approach to inactivate microorganisms is photodynamic antimicrobial chemotherapy (PACT). PACT has evolved as a potential method to inactivate viruses. The great challenge for PACT is to develop a methodology enabling the effective inactivation of viruses while leaving the host cells as untouched as possible. This review aims to provide some main directions of antiviral PACT, taking into account different photosensitizers, which have been widely investigated as potential antiviral agents. In addition, several aspects concerning PACT as a tool to assure viral inactivation in human blood products will be addressed.

  20. Photodynamic therapy in dermatology: history and horizons.

    PubMed

    Taub, Amy Forman

    2004-01-01

    Photodynamic therapy (PDT) uses a photosensitizer, light, and molecular oxygen to selectively kill cells. When localized in the target tissue, the photosensitizer is activated by light to produce oxygen intermediates that destroy target tissue cells. The easy access of skin to light-based therapy has led dermatologists to apply PDT to cutaneous disorders. In dermatology, PDT has been most successful in treating actinic keratoses, basal cell carcinoma, and Bowen's disease. The introduction of aminolevulinic acid, which does not make patients susceptible to phototoxicity for extended periods, has reduced morbidity associated with PDT. This has led to new interest in PDT not only for nonmelanoma skin cancer and premalignant lesions but also in the treatment of acne and as an adjuvant to photorejuvenation procedures. This review examines the historical roots of PDT and the research evaluating different light and laser sources as well as reports on new horizons for PDT in dermatology.

  1. Photodynamic therapy for malignant pleural mesothelioma.

    PubMed

    Friedberg, Joseph S

    2012-10-01

    Surgery is the treatment option most likely to be associated with prolonged remission in patients with malignant pleural mesothelioma. However, it remains investigational and must always be combined with other modalities to treat the microscopic disease that remains after the most aggressive operations. Improvements in quality of life for appropriate patients with this rare yet incurable cancer may be obtained with less drastic lung-sparing surgical procedures along with intraoperative use of photodynamic therapy (PDT). Very encouraging survival results have been obtained with the combination of surgery and PDT, which requires the well-orchestrated collaborative effort of an extensive team of professionals, from thoracic surgeons and radiation oncologists to basic science researchers. Multi-institutional trials are necessary to duplicate these early findings and shed more light on the tumor-directed immune response of this surgically based multimodal treatment.

  2. Intraoperative photodynamic therapy for larynx carcinomas

    NASA Astrophysics Data System (ADS)

    Loukatch, Erwin V.; Latyshevska, Galina; Fekeshgazi, Ishtvan V.

    1995-05-01

    We made an experimental and clinical researches to examine Intraoperative Photodynamic Therapy (IPT) as a method to prevent the recidives of tumors. In experimental researches on models with radio-inducated fibrosarcomas and Erlich carcinomas of mice the best method of IPT was worked out. The therapeutic effect was studied also on patients with laryngeal cancer. In researches on C3H mice the antirecidive effect of IPT established with local administration of methylene blue and Ar-laser. We found that IPT (He-Ne laser combined with methylene blue administration) was endured by patients with laryngeal cancers without problems. We got good results of treatment 42 patients with laryngeal cancers with middle localization during three years with using IPT method. This can show the perspectives of using this method in treatment of other ENT-oncological diseases.

  3. Immunosuppressive effects of silicon phthalocyanine photodynamic therapy.

    PubMed

    Reddan, J C; Anderson, C Y; Xu, H; Hrabovsky, S; Freye, K; Fairchild, R; Tubesing, K A; Elmets, C A

    1999-07-01

    The purpose of this study was to determine if silicon phthalocyanine 4 (Pc 4), a second-generation photosensitizer being evaluated for the photodynamic therapy (PDT) of solid tumors, was immunosuppressive. Mice treated with Pc 4 PDT 3 days before dinitrofluorobenzene sensitization showed significant suppression of their cell-mediated immune response when compared to mice that were not exposed to PDT. The response was dose dependent, required both Pc 4 and light and occurred at a skin site remote from that exposed to the laser. The immunosuppression could not be reversed by in vivo pre-treatment of mice with antibodies to tumor necrosis factor-alpha or interleukin-10. These results provide evidence that induction of cell-mediated immunity is suppressed after Pc 4 PDT. Strategies that prevent PDT-mediated immunosuppression may therefore enhance the efficacy of this therapeutic modality.

  4. Feasibility of chemiluminescence as photodynamic therapy dosimetor

    NASA Astrophysics Data System (ADS)

    Qin, Yanfang; Xing, Da; Zhong, Xueyun; Zhou, Jin; Luo, Shiming; Chen, Qun

    2006-09-01

    Photodynamic therapy (PDT) utilizes light energy of a proper wavelength to activate a pre-administered photosensitizer in a target tissue to achieve a localized treatment effect. Current treatment protocol of photodynamic therapy (PDT) is defined by empirical values such as irradiation light fluence, fluence rate and the amount of administered photosensitizer. It is well known that Singlet oxygen is the most important cytotoxic agent responsible for PDT biological effects. An in situ monitoring of singlet oxygen production during PDT would provide a more accurate dosimeter for PDT. The presented study has investigated the feasibility of using Fhioresceinyl Cypridina Luciferin Analog (FCLA), a singlet oxygen specific chemiluminescence (CL) probe, as a dosimetric tool for PDT. Raji lymphoma cell suspensions were sensitized with Photofrin (R) of various concentrations and irradiated with 635 nm laser light at different fluence rates. FCLA-CL from singlet oxygen produced by the treatment was measured, in real time, with a photon multiplier tube (PMT) system, and linked to the cytotoxicity resulting from the treatment. We have observed that the CL intensity of FCLA is dependent on the PDT treatment parameters. After each PDT treatment and CL measurement, the irradiated cells were evaluated by MIT assay for their Viability. The results show that the cell viability is highly related to the accumulated CL. With 10 II quencher, we confirmed that the CL was mainly related to PDT produced 10 II The results suggest that the FCLA-CL system can be an effective means in measuring PDT 1O II production and may provide an alternative dosimetry technique for PDT.

  5. 22 CFR 502.4 - Media or organization one-time requests for broadcast quality agency program materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Media or organization one-time requests for... GOVERNORS DOMESTIC REQUESTS FOR BROADCASTING BOARD OF GOVERNORS PROGRAM MATERIALS § 502.4 Media or... provide a broadcast-quality copy of Agency program materials to media entities, educational...

  6. Mitochondria-targeting for improved photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ngen, Ethel J.

    Photodynamic therapy (PDT) is an emerging cancer therapeutic modality, with great potential to selectively treat surface cancers, thus minimizing systemic side effects. In this dissertation, two approaches to deliver photosensitizers to mitochondria were investigated: 1) Reducing photosensitizer sizes to improve endocytosis and lysosomal localization. Upon irradiation the photosensitizers would then produce singlet oxygen which could rupture the lysosomal membrane releasing the lysosomally trapped photosensitizers to the cytosol, from where they could relocalize to mitochondria by passive diffusion (photochemical internalization). 2) Using delocalized lipophilic cationic dyes (DLCs) to exploit membrane potential differences between the cytoplasm and mitochondria in delivering photosensitizers to mitochondria. To investigate the effects of steric hindrance on mitochondrial localization and photodynamic response, a series of eight thiaporphyrins were studied. Two new thiaporphyrin analogues 6 and 8 with reduced steric hindrance at the 10- and 15- meso positions were studied in comparison to 5,20-diphenyl-10,15-bis[4 (carboxymethyleneoxy)-phenyl]-21,23-dithiaporphyrin 1, previously validated as a potential second generation photosensitizer. Although 6 showed an extraordinarily high uptake (7.6 times higher than 1), it was less potent than 1 (IC 50 = 0.18 muM versus 0.13 muM) even though they both showed similar sub-cellular localization patterns. This low potency was attributed to its high aggregation tendency in aqueous media (4 times higher than 1), which might have affected its ability to generate singlet oxygen in vitro . 8 on the other hand showed an even lower potency than 6 (2.28 vs 0.18 muM). However this was attributed to its low cellular uptake (20 times less than 6) and inefficient generation of singlet oxygen. Overall, although the structural modifications did improve the cellular uptake of 6, 6 was still less potent than the lead photosensitizers 1. Thus

  7. Comparison microbial killing efficacy between sonodynamic therapy and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Drantantiyas, Nike Dwi Grevika; Astuti, Suryani Dyah; Nasution, Aulia M. T.

    2016-11-01

    Biofilm is a way used by bacteria to survive from their environmental conditions by forming colony of bacteria. Specific characteristic in biofilm formation is the availability of matrix layer, known as extracellular polymer substance. Treatment using antibiotics may lead bacteria to be to resistant. Other treatments to reduce microbial, like biofilm, can be performed by using photodynamic therapy. Successful of this kind of therapy is induced by penetration of light and photosensitizer into target cells. The sonodynamic therapy offers greater penetrating capability into tissues. This research aimed to use sonodynamic therapy in reducing biofilm. Moreover, it compares also the killing efficacy of photodynamic therapy, sonodynamic therapy, and the combination of both therapeutic schemes (known as sono-photodynamic) to achieve higher microbial killing efficacy. Samples used are Staphylococcus aureus biofilm. Treatments were divided into 4 groups, i.e. group under ultrasound treatment with variation of 5 power levels, group of light treatment with exposure of 75s, group of combined ultrasound-light with variation of ultrasound power levels, and group of combined lightultrasound with variation of ultrasound power levels. Results obtained for each treatment, expressed in % efficacy of log CFU/mL, showed that the treatment of photo-sonodynamic provides greater killing efficacy in comparison to either sonodynamic and sono-photodynamic. The photo-sonodynamic shows also greater efficacy to photodynamic. So combination of light-ultrasound (photo-sonodynamic) can effectively kill microbial biofilm. The combined therapy will provide even better efficacy using exogenous photosensitizer.

  8. Graphene-based nanovehicles for photodynamic medical therapy

    PubMed Central

    Li, Yan; Dong, Haiqing; Li, Yongyong; Shi, Donglu

    2015-01-01

    Graphene and its derivatives such as graphene oxide (GO) have been widely explored as promising drug delivery vehicles for improved cancer treatment. In this review, we focus on their applications in photodynamic therapy. The large specific surface area of GO facilitates efficient loading of the photosensitizers and biological molecules via various surface functional groups. By incorporation of targeting ligands or activatable agents responsive to specific biological stimulations, smart nanovehicles are established, enabling tumor-triggering release or tumor-selective accumulation of photosensitizer for effective therapy with minimum side effects. Graphene-based nanosystems have been shown to improve the stability, bioavailability, and photodynamic efficiency of organic photosensitizer molecules. They have also been shown to behave as electron sinks for enhanced visible-light photodynamic activities. Owing to its intrinsic near infrared absorption properties, GO can be designed to combine both photodynamic and photothermal hyperthermia for optimum therapeutic efficiency. Critical issues and future aspects of photodynamic therapy research are addressed in this review. PMID:25848263

  9. Effects of Methane-Rich Saline on the Capability of One-Time Exhaustive Exercise in Male SD Rats

    PubMed Central

    Xin, Lei; Sun, Xuejun; Lou, Shujie

    2016-01-01

    Purpose To explore the effects of methane-rich saline (CH4 saline) on the capability of one-time exhaustive exercise in male SD rats. Methods Thirty rats were equally divided into to three groups at random: control group (C), placebo group (P) and methane saline group (M). Rats in M group underwent intraperitoneal injection of CH4 saline, and the other two groups simultaneously underwent intraperitoneal injection of normal saline. Then, the exercise capability of rats was tested through one-time exhaustive treadmill exercise except C group. Exercise time and body weight were recorded before and after one-time exhaustive exercise. After exhaustive exercise, the blood and gastrocnemius samples were collected from all rats to detect biochemical parameters in different methods. Results It was found that the treadmill running time was significantly longer in rats treated with CH4 saline. At the same time, CH4 saline reduced the elevation of LD and UN in blood caused by one-time exhaustive exercise. The low level of blood glucose induced by exhaustive exercise was also normalized by CH4 saline. Also CH4 saline lowered the level of CK in plasma. Furthermore, this research indicated that CH4 saline markedly increased the volume of T-AOC in plasma and alleviated the peak of TNF-α in both plasma and gastrocnemius. From H&E staining, CH4 saline effectively improved exercise-induced structural damage in gastrocnemius. Conclusions CH4 saline could enhance exercise capacity in male SD rats through increase of glucose aerobic oxidation, improvement of metabolic clearance and decrease of exhaustive exercise-induced gastrocnemius injury. PMID:26942576

  10. Broad and narrow personality traits as markers of one-time and repeated suicide attempts: A population-based study

    PubMed Central

    Brezo, Jelena; Paris, Joel; Hébert, Martine; Vitaro, Frank; Tremblay, Richard; Turecki, Gustavo

    2008-01-01

    Background Studying personality traits with the potential to differentiate between individuals engaging in suicide attempts of different degrees of severity could help us to understand the processes underlying the link of personality and nonfatal suicidal behaviours and to identify at-risk groups. One approach may be to examine whether narrow, i.e., lower-order personality traits may be more useful than their underlying, broad personality trait dimensions. Methods We investigated qualitative and quantitative differences in broad and narrow personality traits between one-time and repeated suicide attempters in a longitudinal, population-based sample of young French Canadian adults using two multivariate regression models. Results One broad (Compulsivity: OR = 2.0; 95% CI 1.2–3.5) and one narrow personality trait (anxiousness: OR = 1.1; 95% CI 1.01–1.1) differentiated between individuals with histories of repeated and one-time suicide attempts. Affective instability [(OR = 1.1; 95% CI 1.04–1.1)] and anxiousness [(OR = .92; 95% CI .88–.95)], on the other hand, differentiated between nonattempters and one-time suicide attempters. Conclusion Emotional and cognitive dysregulation and associated behavioural manifestations may be associated with suicide attempts of different severity. While findings associated with narrow traits may be easier to interpret and link to existing sociobiological theories, larger effect sizes associated with broad traits such as Compulsivity may be better suited to objectives with a more clinical focus. PMID:18325111

  11. Charge dependent photodynamic activity of alanine based zinc phthalocyanines.

    PubMed

    Wang, Ao; Li, Yejing; Zhou, Lin; Yuan, Linxin; Lu, Shan; Lin, Yun; Zhou, Jiahong; Wei, Shaohua

    2014-12-01

    In this paper, to minimize the effects of different structure, three alanine-based zinc phthalocyanines (Pcs) of differing charges were engineered and synthesized with the same basic structure. On this premise, the relationship between nature of charge and photodynamic activity was studied. Besides, further verification and explanation of some inconsistent results were also carried out. The results showed that charge can influence the aggregation state, singlet oxygen generation ability and cellular uptake of Pcs, thereby affecting their photodynamic activity. In addition, the biomolecules inside cells may interact with Pcs of differing charges, which can also influence the aggregation state and singlet oxygen generation of the Pcs, and then influence the relationship between nature of charge and photodynamic activity.

  12. Optical delivery and monitoring of photodynamic therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Weersink, Robert A.; Bogaards, Arjun; Gertner, Mark; Davidson, Sean; Zhang, Kai; Netchev, George; Giewercer, David J.; Trachtenberg, John; Wilson, Brian C.

    2004-10-01

    Photodynamic therapy of recurrent prostate cancer is currently undergoing Phase II clinical trials with the vascular targeting drug TOOKAD. Proper PDT dosage requires sound estimates of the light fluence and drug concentration throughout the organ. The treatment requires multiple diffusing light delivery fibers placed in position according to a light dose treatment plan under ultrasound guidance. Fluence rate is monitored by multiple sensor fibers placed throughout the organ and in sensitive organs near the prostate. The combination of multiple light delivery and fluence sensor fibers is used to estimate the optical properties of the tissue and to provide a general fluence map throughout the organ. This fluence map is then used to estimate extent of photodynamic dose. Optical spectroscopy is used to monitor drug pharmacokinetics in the organ and blood hemodynamics within the organ. Further development of these delivery and monitoring techniques will permit full online monitoring of the treatment that will enable real-time patient-specific delivery of photodynamic therapy.

  13. Influence of bacterial interactions on the susceptibility to photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Upadya, M. H.; Tegos, G.; Hamblin, M.; Kishen, A.

    2009-06-01

    Photodynamic therapy has emerged as a possible supplement to the existing protocols for endodontic disinfection. Microbes are known to gain significant ecological advantage when they survive as coaggregates and biofilms in an infected tissue. Such microbial coaggregates and biofilms have been confirmed to play a key role in the pathogenicity of many infections. So far, not many studies have correlated the efficacy of antimicrobial photodynamic inactivation (APDI) to the different modes of bacterial growth. This study aims to evaluate the APDI of 3 strains of Enterococcus faecalis in planktonic phase, in a co-aggregated suspension and in a 4-day old biofilm. The results showed that the biofilm mode of growth offered the greatest resistance to APDI and the inclusion of an efflux pump inhibitor significantly increased the APDI of biofilm bacteria. From this study, we conclude that APDI of bacteria in biofilms is the most challenging and that the use of bacterial efflux pump inhibitors enhances its photodynamic antibiofilm efficacy.

  14. [Photophysical properties and photodynamic activity of nanostructured aluminium phthalocyanines].

    PubMed

    Udartseva, O O; Lobanov, A V; Andeeva, E R; Dmitrieva, G S; Mel'nikov, M Ia; Buravkova, L B

    2014-01-01

    We developed water-soluble supramolecular complexes of aluminium phthalocyanine based on mesoporous silica nanoparticles and polyvinylpirrolidone containing rare photoactive nanoaggregates. Radiative lifetimes, extinction coefficients and energy of electronic transitions of isolated and associated metal phthalocyanine complexes were calculated. Nontoxic concentrations of synthesized nanocomposite photosensibilizers were in vitro determined. In present study we compared photodynamic treatment efficacy using different modifications of aluminium phthalocyanine (Photosens®, AlPc-nSiO2 and AlPc-PVP). Mesenchymal stromal cells were used as a model for photodynamic treatment. Intracellular accumulation of aluminium phthalocyanine based on mesoporous silica nanoparticles AlPc-nSiO2 was the most efficient. Illumination of phthalocyanine-loaded cells led to reactive oxygen species generation and subsequent apoptotic cell death. Silica nanoparticles provided a significant decrease of effective phthalocyanine concentration and enhanced cytotoxicity of photodynamic treatment.

  15. Photodynamic therapy for malignant pleural mesothelioma: the future of treatment?

    PubMed

    Friedberg, Joseph S

    2011-02-01

    Malignant pleural mesothelioma is a deadly incurable cancer, with a median survival of approximately 9 months. The best available chemotherapy, arguably the standard of care, only yields a 40% response rate and an 11-week extension in median survival. Surgery, the modality most likely to be associated with prolonged remission, remains investigational and must always be combined with other modalities in an effort to treat the microscopic disease that will remain even after the most aggressive operations. One such modality, photodynamic therapy, is a light-based cancer treatment that has features making it particularly well suited as a component of a surgery-based multimodal treatment plan. Utilizing intraoperative photodynamic therapy has enabled development of a less drastic surgical procedure that is also yielding some encouraging survival results. A unique aspect of photodynamic therapy is its stimulation of a tumor-directed immune response, a feature that offers promise for designing future treatments.

  16. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy

    PubMed Central

    Wang, Geoffrey D.; Nguyen, Ha T.; Chen, Hongmin; Cox, Phillip B.; Wang, Lianchun; Nagata, Koichi; Hao, Zhonglin; Wang, Andrew; Li, Zibo; Xie, Jin

    2016-01-01

    Conventional photodynamic therapy (PDT)'s clinical application is limited by depth of penetration by light. To address the issue, we have recently developed X-ray induced photodynamic therapy (X-PDT) which utilizes X-ray as an energy source to activate a PDT process. In addition to breaking the shallow tissue penetration dogma, our studies found more efficient tumor cell killing with X-PDT than with radiotherapy (RT) alone. The mechanisms behind the cytotoxicity, however, have not been elucidated. In the present study, we investigate the mechanisms of action of X-PDT on cancer cells. Our results demonstrate that X-PDT is more than just a PDT derivative but is essentially a PDT and RT combination. The two modalities target different cellular components (cell membrane and DNA, respectively), leading to enhanced therapy effects. As a result, X-PDT not only reduces short-term viability of cancer cells but also their clonogenecity in the long-run. From this perspective, X-PDT can also be viewed as a unique radiosensitizing method, and as such it affords clear advantages over RT in tumor therapy, especially for radioresistant cells. This is demonstrated not only in vitro but also in vivo with H1299 tumors that were either subcutaneously inoculated or implanted into the lung of mice. These findings and advances are of great importance to the developments of X-PDT as a novel treatment modality against cancer. PMID:27877235

  17. Mreg Activity in Tumor Response to Photodynamic Therapy and Photodynamic Therapy-Generated Cancer Vaccines

    PubMed Central

    Korbelik, Mladen; Banáth, Judith; Zhang, Wei

    2016-01-01

    Myeloid regulatory cells (Mregs) are, together with regulatory T cells (Tregs), a dominant effector population responsible for restriction of the duration and strength of antitumor immune response. Photodynamic therapy (PDT) and cancer vaccines generated by PDT are modalities whose effectiveness in tumor destruction is closely dependent on the associated antitumor immune response. The present study investigated whether the immunodepletion of granulocytic Mregs in host mice by anti-GR1 antibody would improve the response of tumors to PDT or PDT vaccines in these animals. Anti-GR1 administration immediately after Temoporfin-PDT of mouse SCCVII tumors abrogated curative effect of PDT. The opposite effect, increasing PDT-mediated tumor cure-rates was attained by delaying anti-GR1 treatment to 1 h post PDT. With PDT vaccines, multiple anti-GR1 administrations (days 0, 4, and 8 post vaccination) improved the therapy response with SCCVII tumors. The results with PDT suggest that neutrophils (boosting antitumor effect of this therapy) that are engaged immediately after photodynamic light treatment are within one hour replaced with a different myeloid population, presumably Mregs that hampers the therapy-mediated antitumor effect. Anti-GR1 antibody, when used with optimal timing, can improve the efficacy of both PDT of tumors in situ and PDT-generated cancer vaccines. PMID:27754452

  18. Photodynamic therapy of cervical intraepithelial neoplasia using hexaminolevulinate and methylaminolevulinate

    NASA Astrophysics Data System (ADS)

    Soergel, Philipp; Staboulidou, Ismini; Hertel, Herrmann; Schippert, Cordula; Hillemanns, Peter

    2009-06-01

    Cervical intraepithelial neoplasia (CIN) is the precursor of invasive cervical cancer. Previous studies indicated that photodynamic therapy (PDT) represents an effective treatment modality in CIN. In 28 patients with CIN 1 - 3, 1 - 2 cycles of PDT were conducted using hexaminolevulinate (HAL) or methylaminolevulinate (MAL) and a special light delivery system. After 6 months, biopsies were obtained to assess response. The overall response rate for complete or partial response was 65%. Photodynamic therapy using new ALA esters is effective and may offer unique advantages in the therapy of CIN.

  19. Photodynamic therapy for polypoidal choroidal vasculopathy secondary to choroidal nevus

    PubMed Central

    Wong, James G; Lai, Xin Jie; Sarafian, Richard Y; Wong, Hon Seng; Smith, Jeremy B

    2017-01-01

    We report a case of a Caucasian female who developed active polypoidal choroidal vasculopathy (PCV) at the edge of a stable choroidal nevus and was successfully treated with verteporfin photodynamic therapy. No active polyp was detectable on indocyanine green angiography 2 years after treatment, and good vision was maintained. Indocyanine green angiography is a useful investigation to diagnose PCV and may be underutilized. Unlike treatment of choroidal neovascularization secondary to choroidal nevus, management of PCV secondary to nevus may not require intravitreal anti-vascular endothelial growth factor therapy. Photodynamic monotherapy may be an effective treatment of secondary PCV. PMID:28243154

  20. Combination immunotherapy and photodynamic therapy for cancer

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; Castano, Ana P.; Mroz, Pawel

    2006-02-01

    Cancer is a leading cause of death among modern people largely due to metastatic disease. The ideal cancer treatment should target both the primary tumor and the metastases with minimal toxicity towards normal tissue. This is best accomplished by priming the body's immune system to recognize the tumor antigens so that after the primary tumor is destroyed, distant metastases will also be eradicated. Photodynamic therapy (PDT) involves the IV administration of photosensitizers followed by illumination of the tumor with red light producing reactive oxygen species leading to vascular shutdown and tumor cell death. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, generation of tumor-specific antigens, and induction of heat-shock proteins. Combination regimens using PDT and immunostimulating treatments are likely to even further enhance post-PDT immunity. These immunostimulants are likely to include products derived from pathogenic microorganisms that are effectively recognized by Toll-like receptors and lead to upregulation of transcription factors for cytokines and inflammatory mediators. The following cascade of events causes activation of macrophages, dendritic and natural killer cells. Exogenous cytokine administration can be another way to increase PDT-induced immunity as well as treatment with a low dose of cyclophosphamide that selectively reduces T-regulatory cells. Although so far these combination therapies have only been used in animal models, their use in clinical trials should receive careful consideration.

  1. Photodynamic therapy of breast cancer with photosense

    NASA Astrophysics Data System (ADS)

    Vakoulovskaya, Elena G.; Shental, Victor V.; Oumnova, Loubov V.; Vorozhcsov, Georgiu N.

    2003-06-01

    Photodynamic Therapy (PDT) using photosensitizer Photosense (PS) in dose 0.5 mg per kg of body weight have been provided in 24 patients with breast cancer. In 22 patients with T1-T2N0M0 primary tumor was treated as the preoperative treatment, radical mastectomy has been fulfilled 7-10 days after PDT with subsequent histological examination. 2 patients had recurrencies of breast cancer with lymph node metastases after radiotherapy. Fluorescent diagnostics of tumor, accumulation of PS in tumor, adjacent tissue, skin before and during PDT was fulfilled with spectranalyzer LESA-01. We used semiconductive laser for PDT - λ = 672+2nm, P=1,5 W, interstitial irradiation 2-24 hours after PS injection has been done in light dose 150-200 J/cm3, 1-3 irradiations with interval 24-48 hours and total light dose 400-600 J/cm3 depending mostly of size and fluorescent data. Partial regression of tumor with pathomorphosis of 2-4 degrees has been found in 19 cases. Our experience shows pronounced efficacy of PDT for treating breast cancer as preoperative modality and as palliation in cases of recurrencies.

  2. Photodynamic therapy of malignant mesothelioma of pleura

    NASA Astrophysics Data System (ADS)

    Warloe, Trond; Heyerdahl, Helen; Peng, Qian; Hoie, J.; Normann, E.; Solheim, O.; Moan, Johan; Giercksky, Karl-Erik

    1995-03-01

    Nine patients with malignant pleural mesothelioma underwent extensive surgery followed by intra-operative photodynamic therapy. Two mg/kg Photofrin was given 48 hours prior to surgery. The thoracic cavity and eventual remaining lung were exposed to 15 - 30 Joules/cm2 of 630 nm laser light. Tumor tissue was analyzed by microscopic photometrical techniques. Five patients with mixed or epithelioid tumors with fluorescence intensity > 100 gray level/pixel seemed to benefit from the given therapy. One patient was free of disease 18 months after treatment. Two patients were treated for metastasis after 12 months with no sign of intrathoracic recurrence. Both are still alive, one without further sign of disease 32 months after initial treatment. Two patients presented generalized disease after 9 and 13 months and intrathoracic recurrence several months later. Two patients with poorly differentiated tumors and 2 patients with moderate to highly differentiated tumors, but with fluorescence intensity < 100 gray level/pixel, presented recurrences after 4 months. PDT-efficiency seems to be predicted by the intensity and distribution of drug-induced fluorescence in tumor tissue. PDT may enhance the possibility to achieve complete local tumor control after excision. Multimodal therapeutic approach of local and systemic disease seems mandatory to further improve survival.

  3. Corneal endothelial glutathione after photodynamic change

    SciTech Connect

    Hull, D.S.; Riley, M.V.; Csukas, S.; Green, K.

    1982-03-01

    Rabbit corneal endothelial cells perfused with 5 X 10(-6)M rose bengal and exposed to incandescent light demonstrated no alteration of either total of or percent oxidized glutathione after 1 hr. Addition of 5400 U/ml catalase to the perfusing solution had no effect on total glutathione levels but caused a marked reduction in percent oxidized glutathione in corneas exposed to light as well as in those not exposed to light. Substitution of sucrose for glucose in the perfusing solution had no effect on total or percent oxidized glutathione. Perfusion of rabbit corneal endothelium with 0.5 mM chlorpromazine and exposure to ultraviolet (UV) light resulted in no change in total glutathione content. A marked reduction in percent oxidized glutathione occurred, however, in corneas perfused with 0.5 mM chlorpromazine both in the presence and absence of UV light. It is concluded that photodynamically induced swelling of corneas is not the result of a failure of the glutathione redox system.

  4. Photodynamic therapy monitoring with optical coherence angiography

    NASA Astrophysics Data System (ADS)

    Sirotkina, M. A.; Matveev, L. A.; Shirmanova, M. V.; Zaitsev, V. Y.; Buyanova, N. L.; Elagin, V. V.; Gelikonov, G. V.; Kuznetsov, S. S.; Kiseleva, E. B.; Moiseev, A. A.; Gamayunov, S. V.; Zagaynova, E. V.; Feldchtein, F. I.; Vitkin, A.; Gladkova, N. D.

    2017-02-01

    Photodynamic therapy (PDT) is a promising modern approach for cancer therapy with low normal tissue toxicity. This study was focused on a vascular-targeting Chlorine E6 mediated PDT. A new angiographic imaging approach known as M-mode-like optical coherence angiography (MML-OCA) was able to sensitively detect PDT-induced microvascular alterations in the mouse ear tumour model CT26. Histological analysis showed that the main mechanisms of vascular PDT was thrombosis of blood vessels and hemorrhage, which agrees with angiographic imaging by MML-OCA. Relationship between MML-OCA-detected early microvascular damage post PDT (within 24 hours) and tumour regression/regrowth was confirmed by histology. The advantages of MML-OCA such as direct image acquisition, fast processing, robust and affordable system opto-electronics, and label-free high contrast 3D visualization of the microvasculature suggest attractive possibilities of this method in practical clinical monitoring of cancer therapies with microvascular involvement.

  5. PDT Dose Dosimeter for Pleural Photodynamic Therapy

    PubMed Central

    Kim, Michele M.; Darafsheh, Arash; Ahmad, Mahmoud; Finlay, Jarod C.; Zhu, Timothy C.

    2016-01-01

    PDT dose is the product of the photosensitizer concentration and the light fluence in the target tissue. For improved dosimetry during plural photodynamic therapy (PDT), a PDT dose dosimeter was developed to measure both the light fluence and the photosensitizer concentration simultaneously in the same treatment location. Light fluence and spectral data were rigorously compared to other methods of measurement (e.g. photodiode, multi-fiber spectroscopy contact probe) to assess the accuracy of the measurements as well as their uncertainty. Photosensitizer concentration was obtained by measuring the fluorescence of the sensitizer excited by the treatment light. Fluence rate based on the intensity of the laser spectrum was compared to the data obtained by direct measurement of fluence rate by a fiber-coupled photodiode. Phantom studies were done to obtain an optical property correction for the fluorescence signal. Measurements were performed in patients treated Photofrin for different locations in the pleural cavity. Multiple sites were measured to investigate the heterogeneity of the cavity and to provide cross-validation via relative dosimetry. This novel method will allow for accurate real-time determination of delivered PDT dose and improved PDT dosimetry. PMID:27053825

  6. Photodynamic antibacterial effect of graphene quantum dots.

    PubMed

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD.

  7. Advances in photodynamic therapy assisted by electroporation.

    PubMed

    Kotulska, Malgorzata; Kulbacka, Julita; Saczko, Jolanta

    2013-03-01

    Low invasive therapies of cancer are directed toward the methods that target selectively on carcinoma cells. Photodynamic therapy (PDT) is a therapeutic modality in which combination of a photosensitizer, light, and oxygen renders reactive oxygen species (ROS) which cause damage to a tumor tissue. Each of these factors is not toxic in itself and the effect of therapy results from high uptake of a photosensitizer by carcinoma cells and directed tumor irradiation by light. Realization of the therapy depends on efficient transport of the photosensitizer across the membrane and intracellular accumulation of the drug. Depending on the treatment conditions and the uptake mechanism, sensitizers can potentially reach different intracellular concentrations and different cellular effects can be triggered. Transport efficacy can be significantly augmented by applying electric pulses to plasma membrane, which opens transient non-selective hydrophilic nanopores as additional pathways across lipid membranes. Electroporation (EP) has been utilized to facilitate drug uptake in electrochemotherapy (ECT) and has been tested in combination with PDT. In the review, we described effects of PDT and electrophotodynamic therapy (EPDT) on carcinoma and healthy cells, studied in vitro and vivo. The comparison of different drugs has been applied to tests considering the enhancement of their cytotoxicity, selectivity, and additional effects caused by electroporation.

  8. Optical dosimetry for interstitial photodynamic therapy

    SciTech Connect

    Arnfield, M.R.; Tulip, J.; Chetner, M.; McPhee, M.S. )

    1989-07-01

    An approach to photodynamic treatment of tumors is the interstitial implantation of fiber optic light sources. Dosimetry is critical in identifying regions of low light intensity in the tumor which may prevent tumor cure. We describe a numerical technique for calculating light distributions within tumors, from multiple fiber optic sources. The method was tested using four translucent plastic needles, which were placed in a 0.94 X 0.94 cm grid pattern within excised Dunning R3327-AT rat prostate tumors. A cylindrical diffusing fiber tip, illuminated by 630 nm dye laser light was placed within one needle and a miniature light detector was placed within another. The average penetration depth in the tumor region between the two needles was calculated from the optical power measured by the detector, using a modified diffusion theory. Repeating the procedure for each pair of needles revealed significant variations in penetration depth within individual tumors. Average values of penetration depth, absorption coefficient, scattering coefficient, and mean scattering cosine were 0.282 cm, 0.469 cm-1, 250 cm-1 and 0.964, respectively. Calculated light distributions from four cylindrical sources in tumors gave reasonable agreement with direct light measurements using fiber optic probes.

  9. Guidelines for topical photodynamic therapy: update.

    PubMed

    Morton, C A; McKenna, K E; Rhodes, L E

    2008-12-01

    Multicentre randomized controlled studies now demonstrate high efficacy of topical photodynamic therapy (PDT) for actinic keratoses, Bowen's disease (BD) and superficial basal cell carcinoma (BCC), and efficacy in thin nodular BCC, while confirming the superiority of cosmetic outcome over standard therapies. Long-term follow-up studies are also now available, indicating that PDT has recurrence rates equivalent to other standard therapies in BD and superficial BCC, but with lower sustained efficacy than surgery in nodular BCC. In contrast, current evidence does not support the use of topical PDT for squamous cell carcinoma. PDT can reduce the number of new lesions developing in patients at high risk of skin cancer and may have a role as a preventive therapy. Case reports and small series attest to the potential of PDT in a wide range of inflammatory/infective dermatoses, although recent studies indicate insufficient evidence to support its use in psoriasis. There is an accumulating evidence base for the use of PDT in acne, while detailed study of an optimized protocol is still required. In addition to high-quality treatment site cosmesis, several studies observe improvements in aspects of photoageing. Management of treatment-related pain/discomfort is a challenge in a minority of patients, and the modality is otherwise well tolerated. Long-term studies provide reassurance over the safety of repeated use of PDT.

  10. Photodynamic therapy (PDT) as a biological modifier

    NASA Astrophysics Data System (ADS)

    Obochi, Modestus; Tao, Jing-Song; Hunt, David W. C.; Levy, Julia G.

    1996-04-01

    The capacity of photosensitizers and light to ablate cancerous tissues and unwanted neovasculature constitutes the classical application of photodynamic therapy (PDT). Cell death results from either necrotic or apoptotic processes. The use of photosensitizers and light at doses which do not cause death has been found to affect changes in certain cell populations which profoundly effect their expression of cell surface molecules and secretion of cytokines, thereby altering the functional attributes of the treated cells. Cells of the immune system and the skin may be sensitive to modulation by 'sub-lethal PDT.' Ongoing studies have been conducted to assess, at the molecular level, changes in both lymphocytes and epidermal cells (EC) caused by treatment with low levels of benzoporphyrin derivative monoacid ring A (BPD) (a photosensitizer currently in clinical trials for cancer, psoriasis, endometriosis and age-related macular degeneration) and light. Treatment of skin with BPD and light, at levels which significantly enhanced the length of murine skin allograft acceptance, have been found to down-regulate the expression of Langerhans cell (LC) surface antigen molecules [major histocompatibility complex (MHC) class II and intracellular adhesion molecule (ICAM)-1] and the formation of some cytokines (tumor necrosis factor-alpha (TNF- (alpha) ).

  11. Photodynamic inactivation of pathogens causing infectious keratitis

    NASA Astrophysics Data System (ADS)

    Simon, Carole; Wolf, G.; Walther, M.; Winkler, K.; Finke, M.; Hüttenberger, D.; Bischoff, Markus; Seitz, B.; Cullum, J.; Foth, H.-J.

    2014-03-01

    The increasing prevalence of antibiotic resistance requires new approaches also for the treatment of infectious keratitis. Photodynamic Inactivation (PDI) using the photosensitizer (PS) Chlorin e6 (Ce6) was investigated as an alternative to antibiotic treatment. An in-vitro cornea model was established using porcine eyes. The uptake of Ce6 by bacteria and the diffusion of the PS in the individual layers of corneal tissue were investigated by fluorescence. After removal of the cornea's epithelium Ce6-concentrations < 1 mM were sufficient to reach a penetration depth of 500 μm. Liquid cultures of microorganisms were irradiated using a specially constructed illumination chamber made of Spectralon(R) (reflectance: 99 %), which was equipped with high power light emitting diodes (λ = 670 nm). Clinical isolates of Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) from keratitis patients were tested in liquid culture against different concentrations of Ce6 (1 - 512 μM) using 10 minutes irradiation (E = 18 J/cm2 ). This demonstrated that a complete inactivation of the pathogen strains were feasible whereby SA was slightly more susceptible than PA. 3909 mutants of the Keio collection of Escherichia coli (E.coli) were screened for potential resistance factors. The sensitive mutants can be grouped into three categories: transport mutants, mutants in lipopolysaccharide synthesis and mutants in the bacterial SOS-response. In conclusion PDI is seen as a promising therapy concept for infectious keratitis.

  12. Integrating spheres for improved skin photodynamic therapy.

    PubMed

    Glennie, Diana L; Farrell, Thomas J; Hayward, Joseph E; Patterson, Michael S

    2010-01-01

    The prescribed radiant exposures for photodynamic therapy (PDT) of superficial skin cancers are chosen empirically to maximize the success of the treatment while minimizing adverse reactions for the majority of patients. They do not take into account the wide range of tissue optical properties for human skin, contributing to relatively low treatment success rates. Additionally, treatment times can be unnecessarily long for large treatment areas if the laser power is not sufficient. Both of these concerns can be addressed by the incorporation of an integrating sphere into the irradiation apparatus. The light fluence rate can be increased by as much as 100%, depending on the tissue optical properties. This improvement can be determined in advance of treatment by measuring the reflectance from the tissue through a side port on the integrating sphere, allowing for patient-specific treatment times. The sphere is also effective at improving beam flatness, and reducing the penumbra, creating a more uniform light field. The side port reflectance measurements are also related to the tissue transport albedo, enabling an approximation of the penetration depth, which is useful for real-time light dosimetry.

  13. Tissue temperature monitoring during interstitial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Svensson, Jenny; Johansson, Ann; Svanberg, Katarina; Andersson-Engels, Stefan

    2005-04-01

    During δ-aminolevulinic acid (ALA) based Interstitial Photodynamic Therapy (IPDT) a high light fluence rate is present close to the source fibers. This might induce an unintentional tissue temperature increase of importance for the treatment outcome. In a previous study, we have observed, that the absorption in the tissue increases during the treatment. A system to measure the local tissue temperature at the source fibers during IPDT on tissue phantoms is presented. The temperature was measured by acquiring the fluorescence from small Cr3+-doped crystals attached to the tip of the illumination fiber used in an IPDT-system. The fluorescence of the Alexandrite crystal used is temperature dependent. A ratio of the intensity of the fluorescence was formed between two different wavelength bands in the red region. The system was calibrated by immersing the fibers in an Intralipid solution placed in a temperature controlled oven. Measurements were then performed by placing the fibers interstitially in a pork chop as a tissue phantom. Measurements were also performed superficially on skin on a volunteer. A treatment was conducted for 10 minutes, and the fluorescence was measured each minute during the illumination. The fluorescence yielded the temperature at the fiber tip through the calibration curve. The measurements indicate a temperature increase of a few degrees during the simulated treatment.

  14. Photodynamic therapy monitoring with optical coherence angiography

    PubMed Central

    Sirotkina, M. A.; Matveev, L. A.; Shirmanova, M. V.; Zaitsev, V. Y.; Buyanova, N. L.; Elagin, V. V.; Gelikonov, G. V.; Kuznetsov, S. S.; Kiseleva, E. B.; Moiseev, A. A.; Gamayunov, S. V.; Zagaynova, E. V.; Feldchtein, F. I.; Vitkin, A.; Gladkova, N. D.

    2017-01-01

    Photodynamic therapy (PDT) is a promising modern approach for cancer therapy with low normal tissue toxicity. This study was focused on a vascular-targeting Chlorine E6 mediated PDT. A new angiographic imaging approach known as M-mode-like optical coherence angiography (MML-OCA) was able to sensitively detect PDT-induced microvascular alterations in the mouse ear tumour model CT26. Histological analysis showed that the main mechanisms of vascular PDT was thrombosis of blood vessels and hemorrhage, which agrees with angiographic imaging by MML-OCA. Relationship between MML-OCA-detected early microvascular damage post PDT (within 24 hours) and tumour regression/regrowth was confirmed by histology. The advantages of MML-OCA such as direct image acquisition, fast processing, robust and affordable system opto-electronics, and label-free high contrast 3D visualization of the microvasculature suggest attractive possibilities of this method in practical clinical monitoring of cancer therapies with microvascular involvement. PMID:28148963

  15. Photodynamic inactivation of verrucae vulgares. II.

    PubMed

    Veien, N K; Genner, J; Brodthagen, H; Wettermark, G

    1977-01-01

    Photodynamic inactivation therapy, consisting of a double-blind, paired comparison treatment schedule, was used in treating 56 patients for recalcitrant, symmetrical verrucae vulgares. 0.1% proflavine in 100% dimethylsulphoxide (DMSO) and 0.1% neutral red in 100% DMSO were used as active dyes, and 1% picric acid in 100% DMSO and 1% color ruber in 100% DMSO and 1% color ruber in 100% DMSO served as corresponding placebos. A Westinghouse sunlamp and black light were used to irradiate the warts dyed with proflavine and its placebo, and the warts dyed with neutral red and its placebo were irradiated with an ordinary light bulb (Osram 588597). 50 patients completed the treatment. 10 of the 27 patients treated with proflavine and 10 of the 23 patients treated with neutral red were cured by the end of an 8 week period, with the warts disappearing simultaneously from the actively as well as the placebo-treated side. Complement fixing antibodies against wart virus were detected in one of the cured patients and 2 who were treatment failures.

  16. Pecularities of clinical photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Stranadko, Eugeny P.; Skobelkin, Oleg K.; Litvin, Grigory D.; Astrakhankina, Tamara A.

    1996-01-01

    The analysis of the results of photodynamic therapy (PDT) for treating malignant neoplasms of the skin, mammary glands, tongue, oral mucous, lower lip, larynx, lungs, urinary bladder rectum and other locations has been made. During 1992 - 1995 478 tumoral foci in 125 patients have been treated with PDT. All patients were previously treated with conventional techniques without effect or they were not treated due to contraindications either because of severe accompanying diseases or because of old age. A part of the patients had PDT because of recurrences or intradermal metastases in 1 - 2 years after surgical, radial or combined treatment. Two home-made preparations were used as photosensitizers: Photohem (hematoporphyrine derivative) and Photosense (aluminum sulfonated phthalocyanine). Light sources were: the argon pumped dye laser (`Innova-200', `Coherent') and home-made laser devices: copper-vapor laser-pumped dye laser (`Yakhroma-2', Frjazino), gas-discharge unit `Ksenon' (wavelength 630 nm), gold-vapor laser (wavelength 627.8 nm) for Photohem; while for Photosense sessions we used solid-state laser on ittrium aluminate `Poljus-1' (wavelength 670 nm). Up to now we have follow-up control data within 2 months and 3 years. Positive effect of PDT was seen in 92% of patients including complete regression of tumors in 66.4% and partial in 25.6%. Currently, this new perspective technique of treating malignant neoplasms is successfully being used in Russia; new photosensitizers and light sources for PDT and fluorescent tumor diagnostics are being developed as well.

  17. 5-ALA based photodynamic management of glioblastoma

    NASA Astrophysics Data System (ADS)

    Rühm, Adrian; Stepp, Herbert; Beyer, Wolfgang; Hennig, Georg; Pongratz, Thomas; Sroka, Ronald; Schnell, Oliver; Tonn, Jörg-Christian; Kreth, Friedrich-Wilhelm

    2014-03-01

    Objective: Improvement of the clinical outcome of glioblastoma (GBM) patients by employment of fluorescence and photosensitization on the basis of 5-aminolevulinic acid (5-ALA) induced protoporphyrin IX (PpIX). Methods: In this report the focus is laid on the use of tumor selective PpIX fluorescence for stereotactic biopsy sampling and intra-operative treatment monitoring. In addition, our current concept for treatment planning is presented. For stereotactic interstitial photodynamic therapy (iPDT), radial diffusers were implanted into the contrast enhancing tumor volume. Spectroscopic measurements of laser light transmission and fluorescence between adjacent fibers were performed prior, during and post PDT. Results: PpIX concentrations in primary glioblastoma tissue show high intra- and inter-patient variability, but are usually sufficient for an effective PDT. During individual treatment attempts with 5-ALA based GBM-iPDT, transmission and fluorescence measurements between radial diffusers gave the following results: 1. In some cases, transmission after PDT is considerably reduced compared to the value before PDT, which may be attributable to a depletion of oxygenated hemoglobin and/or diffuse bleeding. 2. PpIX fluorescence is efficiently photobleached during PDT in all cases. Conclusion: iPDT with assessment of PpIX fluorescence and photobleaching is a promising treatment option. Individualization of treatment parameters appears to bear a potential to further improve clinical outcomes.

  18. Variables in photodynamic therapy for Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Jones, Linda R.; Preyer, Norris W.; Buchanan, Jane; Reynolds, Daryl M.; Wolfsen, Herbert C.; Wallace, Michael B.; Gill, Kanwar R. S.

    2009-06-01

    Photodynamic therapy with porfimer sodium (PS) is a treatment option for high grade dysplasia associated with Barrett's esophagus. This study sought to investigate the optical properties of Barrett's dysplasia that may be useful in light dosimetry planning and to determine the effect of PS on tissue absorption and scattering. Fiber optic reflectance spectra were collected before and 48 hours after administration of 2 mg/kg PS. Mucosal biopsies were collected at the same locations. According to Monte Carlo analysis, the fiber optic probe sampled only the mucosal layer. A mathematical fit of the reflectance spectra was performed as a function of blood volume fraction, oxygen saturation and scattering. The average calculated blood volume was 100% higher in Barrett's tissue than normal esophageal tissue. The average scattering slope from 620 to 750 nm was 26% higher for Barrett's dysplasia than normal esophageal tissue, indicating an increase in the size of scattering particles. The difference in the scattering amplitude was not statistically significant, suggesting no significant increase in the number of scattering particles. PS tissue content was determined with extraction methods. Changes in the scattering slope due to PS sensitization were observed; however they were not proportional to the extracted PS concentration.

  19. Photodynamic therapy: a promising alternative in oncology

    NASA Astrophysics Data System (ADS)

    Nelius, Thomas; de Riese, Werner T. W.; Filleur, Stephanie

    2004-07-01

    Photodynamic Therapy (PDT) is a treatment modality that is based on the administration of a photosensitizer and the following application of light in a wavelength range matching the absorption spectrum of the photosensitizer. Ideally the photosensitizer retains in the tumor tissue more than in normal tissue and thus allows targeted destruction of cancerous tissue. The use of PDT is slowly being accepted as a standard treatment for certain types of cancer. This includes mainly treatment strategies with only palliative intentions (obstructive esophageal cancer and advanced lung cancer) while for certain malignant conditions new applications exists that are already intended for cure (e.g. early stage of lung cancer). The main advantage of PDT is that the treatment can be repeated multiple times safely without major side effects. PDT can be safely combined with already established treatment options like surgery, chemotherapy or radiotherapy. A disadvantage of PDT is the only localized effect of the therapy, which usually cannot significantly alter the outcome of a systemic disease. In this paper we review the history of PDT as well as current clinical applications in oncology and future directions.

  20. Photodynamic Antimicrobial Polymers for Infection Control

    PubMed Central

    McCoy, Colin P.; O’Neil, Edward J.; Cowley, John F.; Carson, Louise; De Baróid, Áine T.; Gdowski, Greg T.; Gorman, Sean P.; Jones, David S.

    2014-01-01

    Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting. PMID:25250740

  1. Photodynamic Therapy for Infections: Clinical Applications

    PubMed Central

    Kharkwal, Gitika B.; Sharma, Sulbha K.; Huang, Ying-Ying; Dai, Tianhong; Hamblin, Michael R.

    2012-01-01

    Background and Objective Photodynamic therapy (PDT) was discovered over 100 years ago by its ability to kill various microorganisms when the appropriate dye and light were combined in the presence of oxygen. However it is only in relatively recent times that PDT has been studied as a treatment for various types of localized infections. This resurgence of interest has been partly motivated by the alarming increase in drug resistance amongst bacteria and other pathogens. This review will focus on the clinical applications of antimicrobial PDT. Study Design/Materials and Methods The published peer-reviewed literature was reviewed between 1960 and 2011. Results The basics of antimicrobial PDT are discussed. Clinical applications of antimicrobial PDT to localized viral infections caused by herpes and papilloma viruses, and nonviral dermatological infections such as acne and other yeast, fungal and bacterial skin infections are covered. PDT has been used to treat bacterial infections in brain abscesses and non-healing ulcers. PDT for dental infections including periodontitis and endodontics has been well studied. PDT has also been used for cutaneous Leishmaniasis. Clinical trials of PDT and blue light alone therapy for gastric Helicobacter pylori infection are also covered. Conclusion As yet clinical PDT for infections has been mainly in the field of dermatology using 5-aminolevulanic acid and in dentistry using phenothiazinium dyes. We expect more to see applications of PDT to more challenging infections using advanced antimicrobial photosensitizers targeted to microbial cells in the years to come. PMID:22057503

  2. Photodynamic therapy of recurrent cerebral glioma

    NASA Astrophysics Data System (ADS)

    Zhu, Shu-Gan; Wu, Si-En; Chen, Zong-Qian; Sun, Wei

    1993-03-01

    Photodynamic therapy (PDT) was performed on 11 cases of recurrent cerebral glioma, including 3 cases of recurrent glioblastoma, 7 of recurrent anaplastic astrocytoma, and 1 recurrent ependymoma. Hematoporphyrin derivative (HPD) was administered intravenously at a dose of 4 - 7 mg/kg 5 - 24 hours before the operation. All patients underwent a craniotomy with a nearly radical excision of the tumor following which the tumor bed was irradiated with 630 nm laser light emitting either an argon pumped dye laser or frequency double YAG pumped dye laser for 30 to 80 minutes with a total dose of 50 J/cm2 (n equals 1), 100 J/cm2 (n equals 2), 200 J/cm2 (n equals 7), and 300 J/cm2 (n equals 1). The temperature was kept below 37 degree(s)C by irrigation. Two patients underwent postoperative radiotherapy. There was no evidence of increased cerebral edema, and no other toxicity by the therapy. All patients were discharged from the hospital within 15 days after surgery. We conclude that PDT using 4 - 7 mg/kg of HPD and 630 nm light with a dose of up to 300 J/cm2 can be used as an adjuvant therapy with no additional complications. Adjuvant PDT in the treatment of recurrent glioma is better than simple surgery.

  3. Estimating the Cost-Effectiveness of One-Time Screening and Treatment for Hepatitis C in Korea

    PubMed Central

    Kim, Do Young; Han, Kwang-Hyub; Jun, Byungyool; Kim, Tae Hyun; Park, Sohee; Ward, Thomas; Webster, Samantha; McEwan, Phil

    2017-01-01

    Background and Aims This study aims to investigate the cost-effectiveness of a one-time hepatitis C virus (HCV) screening and treatment program in South Korea where hepatitis B virus (HBV) prevails, in people aged 40–70, compared to current practice (no screening). Methods A published Markov model was used in conjunction with a screening and treatment decision tree to model patient cohorts, aged 40–49, 50–59 and 60–69 years, distributed across chronic hepatitis C (CHC) and compensated cirrhosis (CC) health states (82.5% and 17.5%, respectively). Based on a published seroepidemiology study, HCV prevalence was estimated at 0.60%, 0.80% and 1.53%, respectively. An estimated 71.7% of the population was screened. Post-diagnosis, 39.4% of patients were treated with a newly available all-oral direct-acting antiviral (DAA) regimen over 5 years. Published rates of sustained virologic response, disease management costs, transition rates and utilities were utilised. Results Screening resulted in the identification of 43,635 previously undiagnosed patients across all cohorts. One-time HCV screening and treatment was estimated to be cost-effective across all cohorts; predicted incremental cost-effectiveness ratios ranged from $5,714 to $8,889 per quality-adjusted life year gained. Incremental costs associated with screening, treatment and disease management ranged from $156.47 to $181.85 million USD; lifetime costs-offsets associated with the avoidance of end stage liver disease complications ranged from $51.47 to $57.48 million USD. Conclusions One-time HCV screening and treatment in South Korean people aged 40–70 is likely to be highly cost-effective compared to the current practice of no screening. PMID:28060834

  4. Low-voltage-operated organic one-time programmable memory using printed organic thin-film transistors and antifuse capacitors.

    PubMed

    Jung, Soon-Won; Na, Bock Soon; Park, Chan Woo; Koo, Jae Bon

    2014-11-01

    We demonstrate an organic one-time programmable memory cell formed entirely at plastic-compatible temperatures. All the processes are performed at below 130 degrees C. Our memory cell consists of a printed organic transistor and an organic capacitor. Inkjet-printed organic transistors are fabricated by using high-k polymer dielectric blends comprising poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) for low-voltage operation. P(NDI2OD-T2) transistors have a high field-effect mobility of 0.2 cm2/Vs and a low operation gate voltage of less than 10 V. The operation voltage effectively decreases owing to the high permittivity of the P(VDF-TrFE):PMMA blended film. The data in the memory cell are programmed by electrically breaking the organic capacitor. The organic capacitor acts like an antifuse capacitor, because it is initially open, and it becomes permanently short-circuited by applying a high voltage. The organic memory cells are programmed with 4 V, and they are read out with 2 V. The memory data are read out by sensing the current in the memory cell. The printed organic one-time programmable memory is suitable for applications storing small amount of data, such as low-cost radio-frequency identification (RFID) tag.

  5. How to reuse a one-time pad and other notes on authentication, encryption, and protection of quantum information

    NASA Astrophysics Data System (ADS)

    Oppenheim, Jonathan; Horodecki, Michał

    2005-10-01

    Quantum information is a valuable resource which can be encrypted in order to protect it. We consider the size of the one-time pad that is needed to protect quantum information in a number of cases. The situation is dramatically different from the classical case: we prove that one can recycle the one-time pad without compromising security. The protocol for recycling relies on detecting whether eavesdropping has occurred, and further relies on the fact that information contained in the encrypted quantum state cannot be fully accessed. We prove the security of recycling rates when authentication of quantum states is accepted, and when it is rejected. We note that recycling schemes respect a general law of cryptography which we introduce relating the size of private keys, sent qubits, and encrypted messages. We discuss applications for encryption of quantum information in light of the resources needed for teleportation. Potential uses include the protection of resources such as entanglement and the memory of quantum computers. We also introduce another application: encrypted secret sharing and find that one can even reuse the private key that is used to encrypt a classical message. In a number of cases, one finds that the amount of private key needed for authentication or protection is smaller than in the general case.

  6. How to reuse a one-time pad and other notes on authentication, encryption, and protection of quantum information

    SciTech Connect

    Oppenheim, Jonathan; Horodecki, Michal

    2005-10-15

    Quantum information is a valuable resource which can be encrypted in order to protect it. We consider the size of the one-time pad that is needed to protect quantum information in a number of cases. The situation is dramatically different from the classical case: we prove that one can recycle the one-time pad without compromising security. The protocol for recycling relies on detecting whether eavesdropping has occurred, and further relies on the fact that information contained in the encrypted quantum state cannot be fully accessed. We prove the security of recycling rates when authentication of quantum states is accepted, and when it is rejected. We note that recycling schemes respect a general law of cryptography which we introduce relating the size of private keys, sent qubits, and encrypted messages. We discuss applications for encryption of quantum information in light of the resources needed for teleportation. Potential uses include the protection of resources such as entanglement and the memory of quantum computers. We also introduce another application: encrypted secret sharing and find that one can even reuse the private key that is used to encrypt a classical message. In a number of cases, one finds that the amount of private key needed for authentication or protection is smaller than in the general case.

  7. Validating the performance of one-time decomposition for fMRI analysis using ICA with automatic target generation process.

    PubMed

    Yao, Shengnan; Zeng, Weiming; Wang, Nizhuan; Chen, Lei

    2013-07-01

    Independent component analysis (ICA) has been proven to be effective for functional magnetic resonance imaging (fMRI) data analysis. However, ICA decomposition requires to optimize the unmixing matrix iteratively whose initial values are generated randomly. Thus the randomness of the initialization leads to different ICA decomposition results. Therefore, just one-time decomposition for fMRI data analysis is not usually reliable. Under this circumstance, several methods about repeated decompositions with ICA (RDICA) were proposed to reveal the stability of ICA decomposition. Although utilizing RDICA has achieved satisfying results in validating the performance of ICA decomposition, RDICA cost much computing time. To mitigate the problem, in this paper, we propose a method, named ATGP-ICA, to do the fMRI data analysis. This method generates fixed initial values with automatic target generation process (ATGP) instead of being produced randomly. We performed experimental tests on both hybrid data and fMRI data to indicate the effectiveness of the new method and made a performance comparison of the traditional one-time decomposition with ICA (ODICA), RDICA and ATGP-ICA. The proposed method demonstrated that it not only could eliminate the randomness of ICA decomposition, but also could save much computing time compared to RDICA. Furthermore, the ROC (Receiver Operating Characteristic) power analysis also denoted the better signal reconstruction performance of ATGP-ICA than that of RDICA.

  8. Suppression of cucurbit scab on cucumber leaves by photodynamic dyes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to test the ability of the photodynamic dyes bengal rose, toluidine blue, and methylene blue, to protect systemically cucumber plants from cucurbit scab. At the stage of one true leaf, water or aqueous solutions of the dyes were applied to the leaf as droplets. When the se...

  9. Photodynamic therapy by in situ nonlinear photon conversion

    NASA Astrophysics Data System (ADS)

    Kachynski, A. V.; Pliss, A.; Kuzmin, A. N.; Ohulchanskyy, T. Y.; Baev, A.; Qu, J.; Prasad, P. N.

    2014-06-01

    In photodynamic therapy, light is absorbed by a therapy agent (photosensitizer) to generate reactive oxygen, which then locally kills diseased cells. Here, we report a new form of photodynamic therapy in which nonlinear optical interactions of near-infrared laser radiation with a biological medium in situ produce light that falls within the absorption band of the photosensitizer. The use of near-infrared radiation, followed by upconversion to visible or ultraviolet light, provides deep tissue penetration, thus overcoming a major hurdle in treatment. By modelling and experiment, we demonstrate activation of a known photosensitizer, chlorin e6, by in situ nonlinear optical upconversion of near-infrared laser radiation using second-harmonic generation in collagen and four-wave mixing, including coherent anti-Stokes Raman scattering, produced by cellular biomolecules. The introduction of coherent anti-Stokes Raman scattering/four-wave mixing to photodynamic therapy in vitro increases the efficiency by a factor of two compared to two-photon photodynamic therapy alone, while second-harmonic generation provides a fivefold increase.

  10. Laser effect in photodynamic therapy of tumors

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Brezoi, Dragos-Viorel; Neagu, Monica; Manda, Gina; Constantin, Carolina

    2007-03-01

    Photodynamic therapy is a method that provides a reasonable alternative to other treatment modalities for patients with certain cancers, and in some cases may be the preferred treatment. The therapy implies the intravenous administration of a light-sensitive substance, the photosensitizer. The used sensitizer must absorb at long wavelength. For these purposes, the carbon dioxide laser, He-Ne and the argon laser are particularly suitable. In this study we evaluate in vitro the cytotoxic activity of three synthesized metallo-phthalocyanines with absorption bands in the red part of the spectrum: zinc-di-sulphonated phthalocyanine (ZnS IIPc), zinc-tri-sulphonated phthalocyanine (ZnS 3Pc) and zinc-tetrasulphonated phthalocyanine (ZnS 4Pc). Some cellular models have been used in this paper, in order to optimize the conditions of this method, as we are presenting in this paper (LSR-SF(SR) - transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin; LSCC-SF(Mc29) - transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, MCF-7 cell line (human breast adenocarcinoma) derived from a patient with metastatic breast cancer, 8-MG-BA - glioblastoma multiforme 8-MG-BA, K562 - lymphoblastic human cell line, LLC-WRC 256 - Walker epithelial carcinoma. Activation of these photosensitizers retained in the cancerous cells, by red light emitted from a He-Ne laser at λ= 632.8 nm laser system, or by a diode laser emitting at 672 nm, produces a photochemical reaction that results in the selective destruction of tumor cells.

  11. Photodynamic Therapy for Malignant Brain Tumors.

    PubMed

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  12. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.

  13. Animal models for photodynamic therapy (PDT)

    PubMed Central

    Silva, Zenildo Santos; Bussadori, Sandra Kalil; Fernandes, Kristianne Porta Santos; Huang, Ying-Ying; Hamblin, Michael R.

    2015-01-01

    Photodynamic therapy (PDT) employs non-toxic dyes called photosensitizers (PSs), which absorb visible light to give the excited singlet state, followed by the long-lived triplet state that can undergo photochemistry. In the presence of ambient oxygen, reactive oxygen species (ROS), such as singlet oxygen and hydroxyl radicals are formed that are able to kill cancer cells, inactivate microbial pathogens and destroy unwanted tissue. Although there are already several clinically approved PSs for various disease indications, many studies around the world are using animal models to investigate the further utility of PDT. The present review will cover the main groups of animal models that have been described in the literature. Cancer comprises the single biggest group of models including syngeneic mouse/rat tumours that can either be subcutaneous or orthotopic and allow the study of anti-tumour immune response; human tumours that need to be implanted in immunosuppressed hosts; carcinogen-induced tumours; and mice that have been genetically engineered to develop cancer (often by pathways similar to those in patients). Infections are the second biggest class of animal models and the anatomical sites include wounds, burns, oral cavity, ears, eyes, nose etc. Responsible pathogens can include Gram-positive and Gram-negative bacteria, fungi, viruses and parasites. A smaller and diverse group of miscellaneous animal models have been reported that allow PDT to be tested in ophthalmology, atherosclerosis, atrial fibrillation, dermatology and wound healing. Successful studies using animal models of PDT are blazing the trail for tomorrow's clinical approvals. PMID:26415497

  14. Photodynamic therapy for the treatment of non-small cell lung cancer

    PubMed Central

    Simone, Charles B; Friedberg, Joseph S; Glatstein, Eli; Stevenson, James P; Sterman, Daniel H; Hahn, Stephen M; Cengel, Keith A

    2012-01-01

    Photodynamic therapy is increasingly being utilized to treat thoracic malignancies. For patients with early-stage non-small cell lung cancer, photodynamic therapy is primarily employed as an endobronchial therapy to definitely treat endobronchial, roentgenographically occult, or synchronous primary carcinomas. As definitive monotherapy, photodynamic therapy is most effective in treating bronchoscopically visible lung cancers ≤1 cm with no extracartilaginous invasion. For patients with advanced-stage non-small cell lung cancer, photodynamic therapy can be used to palliate obstructing endobronchial lesions, as a component of definitive multi-modality therapy, or to increase operability or reduce the extent of operation required. A review of the available medical literature detailing all published studies utilizing photodynamic therapy to treat at least 10 patients with non-small cell lung cancer is performed, and treatment recommendations and summaries for photodynamic therapy applications are described. PMID:22295169

  15. Photodynamic therapy for the treatment of non-small cell lung cancer.

    PubMed

    Simone, Charles B; Friedberg, Joseph S; Glatstein, Eli; Stevenson, James P; Sterman, Daniel H; Hahn, Stephen M; Cengel, Keith A

    2012-02-01

    Photodynamic therapy is increasingly being utilized to treat thoracic malignancies. For patients with early-stage non-small cell lung cancer, photodynamic therapy is primarily employed as an endobronchial therapy to definitely treat endobronchial, roentgenographically occult, or synchronous primary carcinomas. As definitive monotherapy, photodynamic therapy is most effective in treating bronchoscopically visible lung cancers ≤1 cm with no extracartilaginous invasion. For patients with advanced-stage non-small cell lung cancer, photodynamic therapy can be used to palliate obstructing endobronchial lesions, as a component of definitive multi-modality therapy, or to increase operability or reduce the extent of operation required. A review of the available medical literature detailing all published studies utilizing photodynamic therapy to treat at least 10 patients with non-small cell lung cancer is performed, and treatment recommendations and summaries for photodynamic therapy applications are described.

  16. Information verification cryptosystem using one-time keys based on double random phase encoding and public-key cryptography

    NASA Astrophysics Data System (ADS)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-08-01

    A novel image encryption system based on double random phase encoding (DRPE) and RSA public-key algorithm is proposed. The main characteristic of the system is that each encryption process produces a new decryption key (even for the same plaintext), thus the encryption system conforms to the feature of the one-time pad (OTP) cryptography. The other characteristic of the system is the use of fingerprint key. Only with the rightful authorization will the true decryption be obtained, otherwise the decryption will result in noisy images. So the proposed system can be used to determine whether the ciphertext is falsified by attackers. In addition, the system conforms to the basic agreement of asymmetric cryptosystem (ACS) due to the combination with the RSA public-key algorithm. The simulation results show that the encryption scheme has high robustness against the existing attacks.

  17. Photons for Therapy: Targeted Photodynamic Therapy for Infected and Contaminated Wounds

    DTIC Science & Technology

    2004-09-01

    RTO-MP-HFM-109 30 - 1 Photons for Therapy : Targeted Photodynamic Therapy for Infected and Contaminated Wounds Michael R Hamblin Faten Gad...unknown antibiotic susceptibility. Rationale: Previously workers have used photodynamic therapy to kill bacteria in vitro, but the use of this approach...play in preventing and treating infection in combat wounds. 1.0 INTRODUCTION Photodynamic therapy (PDT) is a therapy for cancer and other diseases

  18. Enhancement of selectivity for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Bedwell, Joanne

    Photodynamic Therapy (PDT) is a technique for producing localised tissue damage with low power light following prior administration of a photosensitising drug. The promise of PDT has been based on the selective retention of photosensitisers by tumours, but this aspect has been over-emphasised with a maximum ratio of photosensitiser concentration of 3:1, tumour to normal, for extracranial tumours and current drugs. This makes selective tumour necrosis difficult to achieve. This thesis explores ways in which selectivity may be improved. Aluminium sulphonated phthalocyanine (AlSPc) has better photochemical properties than the widely used HpD and Photofrin II, but has the same tumour selectivity, although the ratio was improved marginally using its disulphonated component. However, when used in conjunction with the radioprotective drug W7, in a rat colon cancer model, tumour necrosis was the same as without W7 while there was no damage to adjacent normal colon. A radical new approach is to give 5-aminolaevulinic acid (ALA) which induces endogenous production of the photosensitiser protoporphyrin IX. This improves selectivity in the rat colon cancer to 6:1 (tumour to normal mucosa), but also sensitises the mucosa selectively compared with the underlying muscle (10:1), giving a tumour to muscle ratio of 60:1. This has enormous potential for treating small tumours or areas of dysplasia in a range of hollow organs. ALA also has the major advantages of a short optimum drug to light time (typically 4-6 hours), short duration of skin sensitivity (approximately 24 hours) and it can be given orally with minimal systemic toxicity. This work has also shown in vitro that PDT with AlSPc sensitisation can kill helicohacter pylori at doses unlikely to affect gastric mucosa. In conclusion, by careful choice of photosensitising agents and treatment regimes, it is possible to limit PDT effects to abnormal tissues, and even if there is some normal tissue damage, in most cases, this heals

  19. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    PubMed

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  20. Cryptanalysis and improvement of quantum broadcast communication and authentication protocol with a quantum one-time pad

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu

    2016-08-01

    The security of quantum broadcast communication (QBC) and authentication protocol based on Greenberger-Horne-Zeilinger (GHZ) state and quantum one-time pad is analyzed. It is shown that there are some security issues in this protocol. Firstly, an external eavesdropper can take the intercept-measure-resend attack strategy to eavesdrop on 0.369 bit of every bit of the identity string of each receiver without being detected. Meanwhile, 0.524 bit of every bit of the secret message can be eavesdropped on without being detected. Secondly, an inner receiver can take the intercept-measure-resend attack strategy to eavesdrop on half of the identity string of the other’s definitely without being checked. In addition, an alternative attack called the CNOT-operation attack is discussed. As for the multi-party QBC protocol, the attack efficiency increases with the increase of the number of users. Finally, the QBC protocol is improved to a secure one. Project supported by the National Natural Science Foundation of China (Grant Nos. 61502101 and 61170321), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140651), the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20110092110024), and the Project Funded by PAPD and CICAEET.

  1. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography

    PubMed Central

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d’Ischia, Marco

    2015-01-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system. PMID:26246999

  2. One time intranasal vaccination with a modified vaccinia Tiantan strain MVTT(ZCI) protects animals against pathogenic viral challenge.

    PubMed

    Yu, Wenbo; Fang, Qing; Zhu, Weijun; Wang, Haibo; Tien, Po; Zhang, Linqi; Chen, Zhiwei

    2010-02-25

    To combat variola virus in bioterrorist attacks, it is desirable to develop a noninvasive vaccine. Based on the vaccinia Tiantan (VTT) strain, which was historically used to eradicate the smallpox in China, we generated a modified VTT (MVTT(ZCI)) by removing the hemagglutinin gene and an 11,944bp genomic region from HindIII fragment C2L to F3L. MVTT(ZCI) was characterized for its host cell range in vitro and preclinical safety and efficacy profiles in mice. Despite replication-competency in some cell lines, unlike VTT, MVTT(ZCI) did not cause death after intracranial injection or body weight loss after intranasal inoculation. MVTT(ZCI) did not replicate in mouse brain and was safe in immunodeficient mice. MVTT(ZCI) induced neutralizing antibodies via the intranasal route of immunization. One time intranasal immunization protected animals from the challenge of the pathogenic vaccinia WR strain. This study established proof-of-concept that the attenuated replicating MVTT(ZCI) may serve as a safe noninvasive smallpox vaccine candidate.

  3. Immune Response Following Photodynamic Therapy For Bladder Cancer

    NASA Astrophysics Data System (ADS)

    Raymond K.

    1989-06-01

    This study was undertaken to determine if photodynamic therapy (PDT) produces an immunologic response in patients treated for bladder cancer. Gamma interferon, interleukin 1-beta, interleukin 2 and tumor necrosis factor-alpha were assayed in the urine of four patients treated with photodynamic therapy for bladder cancer, in seven patients undergoing transurethral procedures, and in five healthy control subjects. Quantifiable concentrations of all cytokines, except gamma interferon, were measured in urine samples from the PDT patients treated with the highest light energies, while no urinary cytokines were found in the PDT patient who received the lowest light energy or in the control subjects. These findings suggest that a local immunologic response may occur following PDT for bladder cancer. Such an immunologic response activated by PDT may be an additional mechanism involved in bladder tumor destruction.

  4. Anticancer photodynamic therapy based on the use of a microsystem

    NASA Astrophysics Data System (ADS)

    Jastrzebska, E.; Bulka, N.; Zukowski, K.; Chudy, M.; Brzozka, Z.; Dybko, A.

    2015-07-01

    The paper presents the evaluation of photodynamic therapy (PDT) procedures with an application of a microsystem. Two cell lines were used in the experiments, i.e. human lung carcinoma - A549 and normal human fetal lung fibroblast MRC5. Mono-, coculture and mixed cultures were performed in a microsystem at the same time. The microsystem consisted of a concentration gradient generator (CGG) which generates different concentrations of a photosensitizer, and a set of microchambers for cells. The microchambers were linked by microchannels of various length in order to allow cells migration and in this way cocultures were created. Transparent materials were used for the chip manufacture, i.e. glass and poly(dimethylsiloxane). A high power LED was used to test photodynamic therapy effectiveness in the microsystem.

  5. Towards image-guided photodynamic therapy of Glioblastoma

    NASA Astrophysics Data System (ADS)

    Mallidi, Srivalleesha; Huang, Huang-Chiao; Liu, Joyce; Mai, Zhiming; Hasan, Tayyaba

    2013-03-01

    Glioblastoma (GBM) is an aggressive cancer with dismal survival rates and few new treatment options. Fluorescence guided resection of GBM followed by photodynamic therapy (PDT) has shown promise in several chemo- or radiotherapy non-responsive GBM treatments clinically. PDT is an emerging light and photosensitizer (PS) mediated cytotoxic method. However, as with other therapeutic modalities, the outcomes are variable largely due to the nonpersonalization of dose parameters. The variability can be attributed to the differences in heterogeneous photosensitizer accumulation in tumors. Building upon our previous findings on utilizing PS fluorescence for designing tumor-specific PDT dose, we explore the use of photoacoustic imaging, a technique that provides contrast based on the tissue optical absorption properties, to obtain 3D information on the tumoral photosensitizer accumulation. The findings of this study will form the basis for customized photodynamic therapy for glioblastoma and have the potential to serve as a platform for treatment of other cancers.

  6. Photodynamic therapy: novel third-generation photosensitizers one step closer?

    PubMed

    Josefsen, L B; Boyle, R W

    2008-05-01

    Photodynamic sensitizers are drugs activated by light of a specific wavelength and are used in the photodynamic therapy (PDT) of certain diseases. Second- and third-generation photosensitizers with improved PDT properties are now under investigation. In this issue of the British Journal of Pharmacology, Leung et al. have described the synthesis and investigation of a second-generation photosensitizer (BAM-SiPc) targeted towards the cells of HepG2 and HT29 tumours. BAM-SiPc is selectively functionalized with bis-amino groups and has demonstrated potent PDT activity in a small animal model. However, it also exhibited non-selective distribution and accumulation in multiple animal (small mouse) organs and tissue. These issues highlight the importance and need for good biodistribution and localization properties for an efficacious photosensitizer. The lack of tumour specificity may have a significant impact on the potential BAM-SiPc has in clinical PDT.

  7. First experience of application of photodynamic therapy in keratoplasty

    NASA Astrophysics Data System (ADS)

    Fyodorov, Svyatoslav N.; Kopayeva, V. G.; Andreev, Yu. V.; Stranadko, Eugeny P.; Ponomariov, G. V.

    1996-12-01

    Vascular effect of photodynamic therapy has been studied in patients with corneal neovascularized transplant in 10 cases. THe injection of photoheme intravenously were made with subsequent irradiation by light of argon-pumped dye laser with light density of 150-300 mW/cm2 for 10-15 minutes. Energy density consisted 150-300 J/cm2. In all the cases at the time of irradiation the aggregated blood flow was appeared followed by blood flow stasis. In post- operative period the vessels disintegrated into separate fragments which disappeared completely after 10-15 days. Taking into account the data of light microscope, the disappearance of the vessels took place as a result of the vascular endothelium lysis along the vascular walls. The vessel alteration study presented in this paper, may also serve to specify the mechanism of photodynamic destruction of neovascularized stroma of tumor.

  8. Tumor vasculature targeted photodynamic therapy for enhanced delivery of nanoparticles.

    PubMed

    Zhen, Zipeng; Tang, Wei; Chuang, Yen-Jun; Todd, Trever; Zhang, Weizhong; Lin, Xin; Niu, Gang; Liu, Gang; Wang, Lianchun; Pan, Zhengwei; Chen, Xiaoyuan; Xie, Jin

    2014-06-24

    Delivery of nanoparticle drugs to tumors relies heavily on the enhanced permeability and retention (EPR) effect. While many consider the effect to be equally effective on all tumors, it varies drastically among the tumors' origins, stages, and organs, owing much to differences in vessel leakiness. Suboptimal EPR effect represents a major problem in the translation of nanomedicine to the clinic. In the present study, we introduce a photodynamic therapy (PDT)-based EPR enhancement technology. The method uses RGD-modified ferritin (RFRT) as "smart" carriers that site-specifically deliver (1)O2 to the tumor endothelium. The photodynamic stimulus can cause permeabilized tumor vessels that facilitate extravasation of nanoparticles at the sites. The method has proven to be safe, selective, and effective. Increased tumor uptake was observed with a wide range of nanoparticles by as much as 20.08-fold. It is expected that the methodology can find wide applications in the area of nanomedicine.

  9. New sensitizers and rapid monitoring of their photodynamic activity

    NASA Astrophysics Data System (ADS)

    Torshina, Nadezgda L.; Posypanova, Anna M.; Volkova, Anna I.

    1996-04-01

    At present, there are lots and lots of chemical compounds that are, to a certain extent, photodynamically active. Therefore, the task of carrying out the expressive screening of such compounds has been raised sharply enough. The primary screening in vitro of compounds, with the help of biological liquids, is notable for quickness and cheapness at the same time, it is possible to determine the comparative characteristics of compounds by their photodynamical activity. Decomposition of albumins of a mixture of photosensitizer and biological liquid when irradiating with light is the basis of this method. Efficiency of decomposition of components of biological liquids is determined using biochemical reactions (e.g., those for determining the total albumins or blood hemoglobin). Subsequently, with a sufficient efficiency of a photosensitizer, it will be possible to carry out a study in vivo, with the purpose of establishing accumulation of preparations in tumor.

  10. Effect of a local, one time, low-dose injection of zoledronic acid on titanium implant osseointegration in ovariectomized rats

    PubMed Central

    Ying, Gao; Bo, Lian; Yanjun, Jiao; Lina, Wu

    2016-01-01

    Introduction Local application of bisphosphonates has been proven to be safer than systemic administration to promote implant fixation. The objective of this study was to introduce such a simple, convenient and efficient method to enhance titanium (Ti) implant osseointegration in ovariectomized (OVX) rats. Material and methods Twenty female Sprague-Dawley rats sequentially underwent bilateral ovariectomy and tibia implantation, and injection of 30 µg/implant zoledronic acid (ZOL) at the site of implantation was performed. At the end of the study, the tibiae, mandibles, femurs and vertebrae were harvested for dual energy X-ray absorptiometry, histology and micro-computed tomography examination. Results Ovariectomized rats showed poor bone density, bone mass and trabecular microstructure. OVX + ZOL rats were characterized by significantly improved peri-implant bone area (1.72-fold), bone contact (2.30-fold), bone mineral density (1.57-fold) and bone mineral content (1.67-fold), as well as moderately increased bone volume to total volume ratio (1.34-fold), percentage osteointegration (1.54-fold), connectivity density (1.45-fold), and trabecular number (1.43-fold), but decreased trabecular separation (57.69%) when compared with the control levels (p < 0.05). No histological signs of jaw osteonecrosis were observed in the rats treated with ZOL, and there was no significant difference between the OVX group and OVX + ZOL group in the bone mass of the mandible, femur and 5th lumbar vertebra (p > 0.05). In addition, the overproduction of osteoporosis-induced advanced glycation end-products (AGEs) was completely prevented by local treatment with 30 µg/implant ZOL. Conclusions A local, one time, low-dose injection of ZOL at the site of implantation is able to promote the osseointegration of Ti implants following postmenopausal osteoporosis, and this action may be partly mediated by inhibition of the osteoporosis-induced AGE overproduction in the bone marrow. PMID:27695483

  11. Simultaneous two-photon excitation of photodynamic therapy agents

    SciTech Connect

    Wachter, E.A.; Fisher, W.G. |; Partridge, W.P.; Dees, H.C.; Petersen, M.G.

    1998-01-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type 1 and type 2 photodynamic therapy (PDT) agents are examined.

  12. Photodynamic action on some pathogenic microorganisms of oral cavity

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Ilya S.; Tuchin, Valery V.

    2001-10-01

    The work is devoted to an analysis of pre-clinical and clinical experiments on photodynamic action of HeNe laser radiation in aggregate with a cation thiazinium dye Methylene Blue (MB) on a mix of pathogenic and conditionally pathogenic aerobic bacteria being activators of pyoinflammatory diseases of oral cavity. Concentration of photosensitizes at which there is no own bactericidal influence on dying microflora, and parameters of influence at which the efficiency of irradiated microflora defeat reaches 99 % are determined.

  13. Photodynamic action on some pathogenic microorganisms of oral cavity

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Ilya S.; Tuchin, Valery V.; Ivanov, Krill I.; Shoub, Gennady M.

    2001-04-01

    We have studied photodynamic action of He-Ne laser radiation on cultures of Staphylococcus (strain 209 P), Streptococcus anhaemolyticus, and total microflora of dental deposit been sensitized by methylene blue. The concentration of the dye was varied from 0.001% to 0.1%, radiation power density was 100 divided by 2300 mW/cm2. Irradiated strain was put into thermostat for 48 hours and the number of colonies was counted and analyzed.

  14. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy.

    PubMed

    Zhuang, Xiaoxi; Ma, Xiaowei; Xue, Xiangdong; Jiang, Qiao; Song, Linlin; Dai, Luru; Zhang, Chunqiu; Jin, Shubin; Yang, Keni; Ding, Baoquan; Wang, Paul C; Liang, Xing-Jie

    2016-03-22

    Photodynamic therapy (PDT) offers an alternative for cancer treatment by using ultraviolet or visible light in the presence of a photosensitizer and molecular oxygen, which can produce highly reactive oxygen species that ultimately leading to the ablation of tumor cells by multifactorial mechanisms. However, this technique is limited by the penetration depth of incident light, the hypoxic environment of solid tumors, and the vulnerability of photobleaching reduces the efficiency of many imaging agents. In this work, we reported a cellular level dual-functional imaging and PDT nanosystem BMEPC-loaded DNA origami for photodynamic therapy with high efficiency and stable photoreactive property. The carbazole derivative BMEPC is a one- and two-photon imaging agent and photosensitizer with large two-photon absorption cross section, which can be fully excited by near-infrared light, and is also capable of destroying targets under anaerobic condition by generating reactive intermediates of Type I photodynamic reactions. However, the application of BMEPC was restricted by its poor solubility in aqueous environment and its aggregation caused quenching. We observed BMEPC-loaded DNA origami effectively reduced the photobleaching of BMEPC within cells. Upon binding to DNA origami, the intramolecular rotation of BMEPC became proper restricted, which intensify fluorescence emission and radicals production when being excited. After the BMEPC-loaded DNA origami are taken up by tumor cells, upon irradiation, BMEPC could generate free radicals and be released due to DNA photocleavage as well as the following partially degradation. Apoptosis was then induced by the generation of free radicals. This functional nanosystem provides an insight into the design of photosensitizer-loaded DNA origami for effective intracellular imaging and photodynamic therapy.

  15. Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation

    NASA Astrophysics Data System (ADS)

    Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.

    2003-09-01

    The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.

  16. Structure-photodynamic activity relationships of substituted zinc trisulfophthalocyanines.

    PubMed

    Cauchon, Nicole; Tian, Hongjian; Langlois, Réjean; La Madeleine, Carole; Martin, Stephane; Ali, Hasrat; Hunting, Darel; van Lier, Johan E

    2005-01-01

    To identify optimal features of metalated sulfophthalocyanine dyes for their use as photosensitizers in the photodynamic therapy of cancer, we synthesized a series of alkynyl-substituted trisulfonated phthalocyanines and compared their amphiphilic properties to a number of parameters related to their photodynamic potency. Varying the length of the substituted alkynyl side-chain modulates the hydrophobic/hydrophilic properties of the dyes providing a linear relationship between their n-octanol/water partition coefficients and retention times on reversed-phase HPLC. Aggregate formation of the dyes in aqueous solution increased with increasing hydrophobicity while monomer formation was favored by the addition of serum proteins or organic solvent. Trisulfonated zinc phthalocyanines bearing hexynyl and nonynyl substituents exhibited high cellular uptake with strong localization at the mitochondrial membranes, which coincided with effective photocytotoxicity toward EMT-6 murine mammary tumor cells. Further increase in the length of the alkynyl chains (dodecynyl, hexadecynyl) did not improve their phototoxicity, likely resulting from extensive aggregation of the dyes in aqueous medium and reduced cell uptake. Aggregation was evident from shifts in the electronic spectra and reduced capacity to generate singlet oxygen. When monomerized through the addition of Cremophor EL all sulfonated zinc phthalocyanines gave similar singlet oxygen yields. Accordingly, differences in the tendency of the dyes to aggregate do not appear to be a determining factor in their photodynamic potency. Our results confirm that the latter in particular relates to their amphiphilic properties, which facilitate cell uptake and intracellular localization at photosensitive sites such as the mitochondria. Combined, these factors play a significant role in the overall photodynamic potency of the dyes.

  17. The impact of absorbed photons on antimicrobial photodynamic efficacy

    PubMed Central

    Cieplik, Fabian; Pummer, Andreas; Regensburger, Johannes; Hiller, Karl-Anton; Späth, Andreas; Tabenski, Laura; Buchalla, Wolfgang; Maisch, Tim

    2015-01-01

    Due to increasing resistance of pathogens toward standard antimicrobial procedures, alternative approaches that are capable of inactivating pathogens are necessary in support of regular modalities. In this instance, the photodynamic inactivation of bacteria (PIB) may be a promising alternative. For clinical application of PIB it is essential to ensure appropriate comparison of given photosensitizer (PS)-light source systems, which is complicated by distinct absorption and emission characteristics of given PS and their corresponding light sources, respectively. Consequently, in the present study two strategies for adjustment of irradiation parameters were evaluated: (i) matching energy doses applied by respective light sources (common practice) and (ii) by development and application of a formula for adjusting the numbers of photons absorbed by PS upon irradiation by their corresponding light sources. Since according to the photodynamic principle one PS molecule is excited by the absorption of one photon, this formula allows comparison of photodynamic efficacy of distinct PS per excited molecule. In light of this, the antimicrobial photodynamic efficacy of recently developed PS SAPYR was compared to that of clinical standard PS Methylene Blue (MB) regarding inactivation of monospecies biofilms formed by Enterococcus faecalis and Actinomyces naeslundii whereby evaluating both adjustment strategies. PIB with SAPYR exhibited CFU-reductions of 5.1 log10 and 6.5 log10 against E. faecalis and A. naeslundii, respectively, which is declared as a disinfectant efficacy. In contrast, the effect of PIB with MB was smaller when the applied energy dose was adjusted compared to SAPYR (CFU-reductions of 3.4 log10 and 4.2 log10 against E. faecalis and A. naeslundii), or there was even no effect at all when the number of absorbed photons was adjusted compared to SAPYR. Since adjusting the numbers of absorbed photons is the more precise and adequate method from a photophysical point

  18. Photodynamic Therapy Plus Chemotherapy Compared with Photodynamic Therapy Alone in Hilar Nonresectable Cholangiocarcinoma

    PubMed Central

    Wentrup, Robert; Winkelmann, Nicola; Mitroshkin, Andrey; Prager, Matthias; Voderholzer, Winfried; Schachschal, Guido; Jürgensen, Christian; Büning, Carsten

    2016-01-01

    Background/Aims Standard treatments are not available for hilar nonresectable cholangiocarcinoma (NCC). It is unknown whether combination therapy of photodynamic therapy (PDT) plus systemic chemotherapy is superior to PDT alone. Methods We retrospectively reviewed 68 patients with hilar NCC treated with either PDT plus chemotherapy (PTD-C) or PDT monotherapy (PDT-M). The primary endpoint was the mean overall survival rate. Secondary endpoints included the 1-year survival rate, risk of cholangitic complications, and outcomes, which were evaluated according to the chemotherapy protocol. Results More than 90% of the study population had advanced hilar NCC Bismuth type III or IV. In the PDT-M group (n=35), the mean survival time was 374 days compared with 520 days in the PDT-C group (n=33, p=0.021). The 1-year survival rate was significantly higher in the PDT-C group compared with the PDT-M group (88% vs 58%, p=0.001) with a significant reduction of mortality (hazard ratio, 0.20; 95% confidence interval, 0.07 to 0.58; p=0.003). Gemcitabine monotherapy resulted in a shorter survival time compared with the gemcitabine combination therapy (mean, 395 days vs 566 days; p=0.09). Cholangitic complications were observed at a similar frequency in the PDT-C and PDT-M groups. Conclusions Combining repeated PDT with a gemcitabine-based combination therapy might offer a significant survival benefit in patients with hilar NCC. PMID:26814610

  19. Photodynamic control of human pathogenic parasites in aquatic ecosystems using chlorophyllin and pheophorbid as photodynamic substances.

    PubMed

    Wohllebe, S; Richter, R; Richter, P; Häder, D P

    2009-02-01

    When used at low concentrations and added to the water body, water-soluble chlorophyllin (resulting from chlorophyll after removal of the phytol) and pheophorbid (produced from chlorophyllin by acidification) are able to kill mosquito larvae and other small animals within a few hours under exposure of solar radiation. Under laboratory conditions, the use of chlorophyllin/pheophorbid as photodynamic substances for pest control in water bodies promises to be not only effective and ecologically beneficial but also cheap. The LD50 (50% of mortality in the tested organisms) value in Culex sp. larvae was about 6.88 mg/l, in Chaoborus sp. larvae about 24.18 mg/l, and in Daphnia 0.55 mg/l. The LD50 values determined for pheophorbid were 8.44 mg/l in Culex, 1.05 mg/l in Chaoborus, and 0.45 mg/l in Daphnia, respectively. In some cases, chlorophyllin and pheophorbid were also found to be (less) active in darkness. The results presented in this paper show that chlorophyllin is about a factor of 100 more effective than methylene blue or hematoporphyrine, which were tested earlier for the same purpose. It is also much cheaper and, as a substance found in every green plant, it is 100% biodegradable.

  20. Photodynamic therapy for the treatment of buccal candidiasis in rats.

    PubMed

    Junqueira, Juliana Campos; Martins, Joyce da Silva; Faria, Raquel Lourdes; Colombo, Carlos Eduardo Dias; Jorge, Antonio Olavo Cardoso

    2009-11-01

    The study objective was to evaluate the effects of photodynamic therapy on buccal candidiasis in rats. After experimental candidiasis had been induced on the tongue dorsum, 72 rats were distributed into four groups according to treatment: treated with laser and methylene blue photosensitizer (L+P+); treated only with laser (L+P-); treated only with photosensitizer (L--P+); not treated with laser or photosensitizer (L-P-). The rats were killed immediately, 1 day, or 5 days after treatment, for microscopic analysis of the tongue dorsum. Observation verified that the photodynamic therapy group (L+P+) exhibited fewer epithelial alterations and a lower chronic inflammatory response than the L-P- group. The group L+P- presented more intense epithelial alterations and chronic inflammatory response than the remaining groups. The L-P+ group showed tissue lesions similar to those of the L-P- group. In conclusion, rats treated with photodynamic therapy developed more discrete candidiasis lesions than did the remaining groups.

  1. Nanotechnology-Based Photodynamic Therapy: Concepts, Advances, and Perspectives.

    PubMed

    Garg, Tarun; Jain, Nitin K; Rath, Goutam; Goyal, Amit Kumar

    2015-01-01

    Photodynamic therapy (PDT) is a photoactive process that uses the combination of photosensitizers (PSs) and specific wavelengths of light for the treatment of solid tumors and other diseases. PDT received increased attention after regulatory approval of several photosensitizing drugs and light applicators worldwide. With the advent of newer PSs, the role of PDT in the treatment of cancer and other diseases has been revolutionized. In addition, various targeting strategies developed for site-specific delivery of PSs will be helpful for avoiding phototoxicity to normal tissues. Receptor-mediated targeted PDT approaches using nanocarriers offer the opportunity of enhancing photodynamic efficiency by directly targeting diseased cells and tissues. At present, clinical application of PDT is well established in medicine and surgery. Successfully used in dermatology, urology, gastroenterology, and neurosurgery, PDT has also seen much progress in basic sciences and clinical photodynamics in recent years. Currently, the use of PDT is just beginning, and more research must be performed to prove its therapeutic efficacy. However, nontoxic compounds involved in PDT provide a certain hope that it will evolve to be an effective mechanism for combating chronic diseases.

  2. Effects of telomerase expression on photodynamic therapy of Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Wang, Kenneth K.; Anderson, Marlys; Buttar, Navtej; WongKeeSong, Louis-Michel; Borkenhagen, Lynn; Lutzke, Lori

    2003-06-01

    Photodynamic therapy has been applied to Barrett's esophagus and has been shown in prospective randomized studies to eliminate dysplasia as well as decrease the occurrence of cancer. However, the therapy isnot always effective and there are issues with residual areas of Barrett's mucosa despite therapy. There has not been a good explanation for these residual areas and they seem to imply that there may exist a biological mechanisms by which these cells may be resistant to photodynamic therapy. It was our aim to determine if known abnormalities in Barrett's mucosa could be correlated with the lack of response of some of these tissues. We examined the tissue from mulitpel patients who had resonse to therapy as well as those who did not respond. We assessed the tissue for p53 mutations, inactivatino of p16, ploidy status, cell proliferation, telomerase activity, and degree of dysplasia. Interestingly, the only genetic marker than was found to be correlated with lack of reonse was p53 and telomerase activity. This suggests that cells that have lost mechanisms for cell death such as apoptosis or telomere shortengin may be more resistant to photodynamic therapy. In this study, we examined patients before and after PDT for telomerase activity.

  3. Protoporphyrin IX fluorescence for enhanced photodynamic diagnosis and photodynamic therapy in murine models of skin and breast cancer

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore Reddy

    Protoporphyrin IX (PpIX) is a photosensitizing agent derived from aminolevulinic acid. PpIX accumulates specifically within target cancer cells, where it fluoresces and produces cytotoxic reactive oxygen species. Our aims were to employ PpIX fluorescence to detect squamous cell carcinoma (SCC) of the skin (Photodynamic diagnosis, PDD), and to improve treatment efficacy (Photodynamic therapy, PDT) for basal cell carcinoma (BCC) and cutaneous breast cancer. Hyperspectral imaging and a spectrometer based dosimeter system were used to detect very early SCC in UVB-irradiated murine skin, using PpIX fluorescence. Regarding PDT, we showed that low non-toxic doses of vitamin D, given before ALA application, increase tumor specific PpIX accumulation and sensitize BCC and breast cancer cells to ALA-PDT. These optical imaging methods and the combination therapy regimen (vitamin D and ALA-PDT) are promising tools for effective management of skin and breast cancer.

  4. Studies of lipid peroxidation of rat blood after in vivo photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Navolokin, Nikita A.; Nikitina, Victoria V.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Tuchin, Valery V.

    2011-10-01

    Lipid peroxidation (LP) of blood serum of laboratory animals after in vivo photodynamic treatment was investigated. To determine changes in LP the standard colorimetric test OXYSTAT was used. The results indicate an increase in the intensity of free radical generation in tissues induced by photodynamic treatment.

  5. Studies of lipid peroxidation of rat blood after in vivo photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Navolokin, Nikita A.; Nikitina, Victoria V.; Bucharskaya, Alla B.; Maslyakova, Galina N.; Tuchin, Valery V.

    2012-03-01

    Lipid peroxidation (LP) of blood serum of laboratory animals after in vivo photodynamic treatment was investigated. To determine changes in LP the standard colorimetric test OXYSTAT was used. The results indicate an increase in the intensity of free radical generation in tissues induced by photodynamic treatment.

  6. Photodynamic therapy potentiates the paracrine endothelial stimulation by colorectal cancer

    NASA Astrophysics Data System (ADS)

    Lamberti, María Julia; Florencia Pansa, María; Emanuel Vera, Renzo; Belén Rumie Vittar, Natalia; Rivarola, Viviana Alicia

    2014-11-01

    Colorectal cancer (CRC) is the third most common cancer and the third leading cause of cancer death worldwide. Recurrence is a major problem and is often the ultimate cause of death. In this context, the tumor microenvironment influences tumor progression and is considered as a new essential feature that clearly impacts on treatment outcome, and must therefore be taken into consideration. Photodynamic therapy (PDT), oxygen, light and drug-dependent, is a novel treatment modality when CRC patients are inoperable. Tumor vasculature and parenchyma cells are both potential targets of PDT damage modulating tumor-stroma interactions. In biological activity assessment in photodynamic research, three-dimensional (3D) cultures are essential to integrate biomechanical, biochemical, and biophysical properties that better predict the outcome of oxygen- and drug-dependent medical therapies. Therefore, the objective of this study was to investigate the antitumor effect of methyl 5-aminolevulinic acid-PDT using a light emitting diode for the treatment of CRC cells in a scenario that mimics targeted tissue complexity, providing a potential bridge for the gap between 2D cultures and animal models. Since photodynamic intervention of the tumor microenvironment can effectively modulate the tumor-stroma interaction, it was proposed to characterize the endothelial response to CRC paracrine communication, if one of these two populations is photosensitized. In conclusion, we demonstrated that the dialogue between endothelial and tumor populations when subjected to lethal PDT conditions induces an increase in angiogenic phenotype, and we think that it should be carefully considered for the development of PDT therapeutic protocols.

  7. Efficient Photodynamic Therapy on Human Retinoblastoma Cell Lines

    PubMed Central

    Walther, Jan; Schastak, Stanislas; Dukic-Stefanovic, Sladjana; Wiedemann, Peter; Neuhaus, Jochen; Claudepierre, Thomas

    2014-01-01

    Photodynamic therapy (PDT) has shown to be a promising technique to treat various forms of malignant neoplasia. The photodynamic eradication of the tumor cells is achieved by applying a photosensitizer either locally or systemically and following local activation through irradiation of the tumor mass with light of a specific wavelength after a certain time of incubation. Due to preferential accumulation of the photosensitizer in tumor cells, this procedure allows a selective inactivation of the malignant tumor while sparing the surrounding tissue to the greatest extent. These features and requirements make the PDT an attractive therapeutic option for the treatment of retinoblastoma, especially when surgical enucleation is a curative option. This extreme solution is still in use in case of tumours that are resistant to conventional chemotherapy or handled too late due to poor access to medical care in less advanced country. In this study we initially conducted in-vitro investigations of the new cationic water-soluble photo sensitizer tetrahydroporphyrin-tetratosylat (THPTS) regarding its photodynamic effect on human Rb-1 and Y79 retinoblastoma cells. We were able to show, that neither the incubation with THPTS without following illumination, nor the sole illumination showed a considerable effect on the proliferation of the retinoblastoma cells, whereas the incubation with THPTS combined with following illumination led to a maximal cytotoxic effect on the tumor cells. Moreover the phototoxicity was lower in normal primary cells from retinal pigmented epithelium demonstrating a higher phototoxic effect of THPTS in cancer cells than in this normal retinal cell type. The results at hand form an encouraging foundation for further in-vivo studies on the therapeutic potential of this promising photosensitizer for the eyeball and vision preserving as well as potentially curative therapy of retinoblastoma. PMID:24498108

  8. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica.

    PubMed

    Al-Qahtani, Ahmed; Alkahtani, Saad; Kolli, Bala; Tripathi, Pankaj; Dutta, Sujoy; Al-Kahtane, Abdullah A; Jiang, Xiong-Jie; Ng, Dennis K P; Chang, Kwang Poo

    2016-04-01

    Photodynamic inactivation ofLeishmaniaspp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency againstLeishmania tropicapromastigotes and axenic amastigotesin vitro The uptake of these PCs by bothLeishmaniastages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation ofLeishmaniaspp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitizedLeishmania tropicastrains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm(-2) Quantitative fluorescence assays based on the loss of GFP/CFSE from liveLeishmania tropicashowed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay.Leishmania tropicastrains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation ofLeishmaniaspp. for use as vaccines or vaccine carriers.

  9. Aminophthalocyanine-Mediated Photodynamic Inactivation of Leishmania tropica

    PubMed Central

    Al-Qahtani, Ahmed; Alkahtani, Saad; Kolli, Bala; Tripathi, Pankaj; Dutta, Sujoy; Al-Kahtane, Abdullah A.; Jiang, Xiong-Jie; Ng, Dennis K. P.

    2016-01-01

    Photodynamic inactivation of Leishmania spp. requires the cellular uptake of photosensitizers, e.g., endocytosis of silicon(IV)-phthalocyanines (PC) axially substituted with bulky ligands. We report here that when substituted with amino-containing ligands, the PCs (PC1 and PC2) were endocytosed and displayed improved potency against Leishmania tropica promastigotes and axenic amastigotes in vitro. The uptake of these PCs by both Leishmania stages followed saturation kinetics, as expected. Sensitive assays were developed for assessing the photodynamic inactivation of Leishmania spp. by rendering them fluorescent in two ways: transfecting promastigotes to express green fluorescent protein (GFP) and loading them with carboxyfluorescein succinimidyl ester (CFSE). PC-sensitized Leishmania tropica strains were seen microscopically to lose their motility, structural integrity, and GFP/CFSE fluorescence after exposure to red light (wavelength, ∼650 nm) at a fluence of 1 to 2 J cm−2. Quantitative fluorescence assays based on the loss of GFP/CFSE from live Leishmania tropica showed that PC1 and PC2 dose dependently sensitized both stages for photoinactivation, consistent with the results of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay. Leishmania tropica strains are >100 times more sensitive than their host cells or macrophages to PC1- and PC2-mediated photoinactivation, judging from the estimated 50% effective concentrations (EC50s) of these cells. Axial substitution of the PC with amino groups instead of other ligands appears to increase its leishmanial photolytic activity by up to 40-fold. PC1 and PC2 are thus potentially useful for photodynamic therapy of leishmaniasis and for oxidative photoinactivation of Leishmania spp. for use as vaccines or vaccine carriers. PMID:26824938

  10. Three-dimensional illumination procedure for photodynamic therapy of dermatology

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya

    2014-09-01

    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  11. Photodynamic therapy with laser scanning mode of tumor irradiation

    NASA Astrophysics Data System (ADS)

    Chepurna, Oksana; Shton, Irina; Kholin, Vladimir; Voytsehovich, Valerii; Popov, Viacheslav; Pavlov, Sergii; Gamaleia, Nikolai; Wójcik, Waldemar; Zhassandykyzy, Maral

    2015-12-01

    In this study we propose a new version of photodynamic therapy performed by laser scanning. The method consists in tumor treatment by a light beam of a small cross section which incrementally moves through the chosen area with a defined delay at each point and repetitively re-scans a zone starting from the initial position. Experimental evaluation of the method in vitro on murine tumor model showed that despite the dose, applied by scanning irradiation mode, was 400 times lower, the tumor inhibition rate conceded to attained with continuous irradiation mode by only 20%.

  12. THE PHOTODYNAMIC ACTION OF EOSIN AND ERYTHROSIN UPON SNAKE VENOM

    PubMed Central

    Noguchi, Hideyo

    1906-01-01

    Since the hæmolysins of the several venoms respond differently to photodynamic action, they may be regarded as possessing different chemical constitutions. As regards stability, cobra hæmolysin ranks first, daboia second, and Crotalus third. The toxicity of all the venoms is more or less diminished by eosin and erythrosin in sunlight. This reduction in toxicity depends upon chemical changes, of more or less profound nature, taking place in certain of the active principles of the venom. The more stabile the predominant active principles the less the reduction in toxicity, and vice versa. Venom-neurotoxins are highly resistant to photodynamic action, venom-hæmolysins are less resistant, while the hæmorrhagin and thrombokinase of Crotalus and daboia venoms exhibit weak powers of resistance to their action. Hence it follows that while cobra venom remained almost unaltered, rattlesnake and daboia venoms were greatly reduced in toxicity when mixed with the fluorescent dyes and exposed to sunlight. There is an interesting parallel between the action of eosin and erythrosin upon the different venoms and their reactions to other injurious agencies. For example, the hæmolysins of cobra and daboia venoms are more heat resistant than the hæmolysin of Crotalus venom, and the former are less injured by the dyes than the latter. The neurotoxin of the former venoms is also more heat stabile than that of the rattlesnake, and the same relative degree of resistance holds for this substance and the anilines. Just as the hæmorrhagin of rattlesnake venom and the thrombokinase of daboia venom are destroyed by a temperature of 75° C., so are they readily inactivated by the photo dynamic substances employed. The globulin-precipitating and blood corpuscle-protecting principle of cobra venom is relatively thermostabile and in contradistinction to the immunity-precipitins it is also unaffected by eosin and erythrosin. This study of the action of photodynamic substances upon snake

  13. Synthesis, bioanalysis and biodistribution of photosensitizer conjugates for photodynamic therapy

    PubMed Central

    Denis, Tyler GSt; Hamblin, Michael R

    2013-01-01

    Photodynamic therapy (PDT) was discovered in 1900 by Raab, and has since emerged as a promising tool for treating diseases characterized by unwanted cells or hyperproliferating tissue (e.g., cancer or infectious disease). PDT consists of the light excitation of a photosensitizer (PS) in the presence of O2 to yield highly reactive oxygen species. In recent years, PDT has been improved by the synthesis of targeted bioconjugates between monoclonal antibodies and PS, and by investigating PS biodistribution and PD. Here, we provide a comprehensive review of major developments in PS-immunoconjugate-based PDT and the bioanalysis of these agents, with a specific emphasis on anticancer and antimicrobial PDT. PMID:23641699

  14. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  15. Photodynamic therapy (PDT) of cancer: from local to systemic treatment.

    PubMed

    Dąbrowski, Janusz M; Arnaut, Luis G

    2015-10-01

    Photodynamic therapy (PDT) requires a medical device, a photosensitizing drug and adequate use of both to trigger biological mechanisms that can rapidly destroy the primary tumour and provide long-lasting protection against metastasis. We present a multidisciplinary view of the issues raised by the development of PDT. We show how spectroscopy, photophysics, photochemistry and pharmacokinetics of photosensitizers determine the mechanism of cell death and clinical protocols. Various examples of combinations with chemotherapies and immunotherapies illustrate the opportunities to potentiate the outcome of PDT. Particular emphasis is given to the mechanisms that can be exploited to establish PDT as a systemic treatment of solid tumours and metastatic disease.

  16. Photodynamic Therapy Using Endogenous Photosensitization for Gastrointestinal Tumors

    PubMed Central

    Webber, John; Kessel, David; Fromm, David

    1997-01-01

    Photodynamic therapy (PDT) is a novel approach in the treatment of carcinomas of the gastrointestinal tract. This review defines PDT, discusses means of photosensitization and considers the mechanisms by which PDT causes cell death of the target tissue while at the same time avoid damage to normal tissues. Additional considerations include the time of PDT application, activation of the photosensitizer, effectiveness and toxicity of PDT, potential need for additional modalities of treatment and concludes with application of PDT principals to the early detection of malignancy. Data regarding the long term effectiveness of PDT for digestive tract adenocarcinomas are lacking because this field is still in its infancy.

  17. Spectroscopic evaluation of photodynamic therapy of the intraperitoneal cavity

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.; Sandell, Julia L.; Zhu, Timothy C.; Lewis, Robert; Cengel, Keith A.; Hahn, Stephen M.

    2010-02-01

    We present the results of spectroscopic measurements of diffuse reflectance and fluorescence before and after photodynamic therapy of healthy canine peritoneal cavity. Animals were treated intra-operatively after iv injection of the benzoporphyrin derivative (BPD). The small bowel was treated using a uniform light field projected by a microlens-tipped fiber. The cavity was then filled with scattering medium and the remaining organs were treated using a moving diffuser. Diffuse reflectance and fluorescence measurements were made using a multi-fiber optical probe positioned on the surface of various tissues within the cavity before and after illumination. The measured data were analyzed to quantify hemoglobin concentration and oxygenation and sensitizer concentration.

  18. Spectroscopic evaluation of photodynamic therapy of the intraperitoneal cavity

    PubMed Central

    Finlay, Jarod C.; Sandell, Julia L.; Zhu, Timothy C.; Lewis, Robert; Cengel, Keith A.; Hahn, Stephen M.

    2015-01-01

    We present the results of spectroscopic measurements of diffuse reflectance and fluorescence before and after photodynamic therapy of healthy canine peritoneal cavity. Animals were treated intra-operatively after iv injection of the benzoporphyrin derivative (BPD). The small bowel was treated using a uniform light field projected by a microlenstipped fiber. The cavity was then filled with scattering medium and the remaining organs were treated using a moving diffuser. Diffuse reflectance and fluorescence measurements were made using a multi-fiber optical probe positioned on the surface of various tissues within the cavity before and after illumination. The measured data were analyzed to quantify hemoglobin concentration and oxygenation and sensitizer concentration. PMID:26028798

  19. On molecular mechanism of the photodynamic therapy of tumors

    NASA Astrophysics Data System (ADS)

    Mostovnikov, Vasili A.; Mostovnikova, Galina R.; Plavski, Vitali Y.; Tretjakov, S. A.

    1995-01-01

    In this work we present the experimental results indicating that the photodestruction (inactivation) of glycolysis enzymes located in mitochondria and responsible for the energy providing of malignant tumors, could serve as a possible molecular mechanism of a photodynamic therapy of cancer. The formation of complexes between the glycolysis enzymes and sensitizer favors can lead to an effective photodestruction of the former [in the experiments lactate dehydrogenase (LDH), pyruvate kinase (PK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and water-soluble tetra(carboxiphenyl)porphyrine [T(CP)P] (the analogue of coprorphyrin) were used as photosensitizer.

  20. HpD Photobiology And Photodynamic Therapy Of Bladder Carcinoma

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Wei

    1988-02-01

    Bladder carcinoma is considered one of the most favorable targets for the application of photodynamic therapy (PDT) due to the accessibility of the bladder for light delivery. Examination of the bladder and surgical procedures are routinely performed by the insertion of an optical instrument called cystoscope through the urethra. Thus, the treatment of bladder cancer by PDT can be conducted through the cystoscope with minimal invasion. However, to achieve optimal results from this treatment, one must consider both the structure of the bladder and the nature of the carcinoma.

  1. [Gorlin syndrome: photodynamic therapy, as a useful adjunct to surgery].

    PubMed

    Huguier, V; Wierzbicka-Hainaut, E; Fray, J; Guillet, G; Dagrégorio, G

    2012-04-01

    Gorlin syndrome, also called nevoid basal cell carcinoma syndrome, is well known by dermatologists. Since its onset, 10 years ago, photodynamic therapy has found new applications and is now currently used to cure single or multiple basal cell carcinomas, with good results and without residual scars. We recall some of the basic principles of this technique, as well as its indications in Gorlin syndrome, which we illustrate with one case. Plastic surgeons must consider this relatively new technique, developed by dermatologists, as a useful adjunct to surgery in the management of Gorlin syndrome.

  2. Nicotinamide augments the survival and incidence of apoptosis in glioma cells following photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Modi, Nayan; Wilson, Brian C.

    2004-10-01

    The ability to customize photodynamic therapy (PDT) parameters with regards to timing and dosing of administered drug and light can be beneficial in determining target specificity and mode of cell death. Sustained, low level PDT or metronomic PDT (mPDT) may afford enhanced apoptotic cell death. This is of particular importance when considering PDT for the treatment of brain tumors as unlike apoptosis, necrotic cell death often leads to inflammation with increased intracranial pressure. The ability, therefore, to 'fine tune' PDT in favour of apoptosis is paramount. We have studied both acute (one time treatment) PDT (aPDT) and mPDT delivery strategies in combination with nicotinamide (NA) in an attempt to maximize the number of tumor cells dieing by apoptosis. Using several different glioma cell lines (9L, U87-MG and CNS-1) we now confirm that NA provides a dose-dependent (0.1-0.5 mM) increase in apoptotic cells following d-aminolevulinic acid-mediated aPDT or mPDT. Furthermore, using the 9L cell line stably transfected with the luciferase gene, NA was shown to delay the depletion of bioluminscence signal in aPDT and mPDT treated cells, inferring that adenosine triphosphate levels are maintained for longer following NA treatment. NA has previously been reported as promoting neuronal and vascular cell survival in normal brain following a number of neurological insults in which reactive oxygen species are implicated including, stroke, Alzheimer's disease and toxin-induced lesions. It is likely that the effects of NA reflect its capacity as an antioxidant as well as its ability to inhibit poly (adenosine diphosphate-ribose) polymerase-mediated depletion of ATP. Our results indicate that NA may prove therapeutically advantageous when used in combination with PDT treatment of brain tumors.

  3. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics.

    PubMed

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed.

  4. Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.

    PubMed

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-02-23

    The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.

  5. Metal nanoparticles amplify photodynamic effect on skin cells in vitro

    NASA Astrophysics Data System (ADS)

    Bauer, Brigitte; Chen, Si; Käll, Mikael; Gunnarsson, Linda; Ericson, Marica B.

    2011-03-01

    We report on an investigation aimed to increase the efficiency of photodynamic therapy (PDT) through the influence of localized surface plasmon resonances (LSPR's) in metal nanoparticles. PDT is based on photosensitizers that generate singlet oxygen at the tumour site upon exposure to visible light. Although PDT is a well-established treatment for skin cancer, a major drawback is the low quantum yield for singlet-oxygen production. This motivates the development of novel methods that enhance singlet oxygen generation during treatment. In this context, we study the photodynamic effect on cultured human skin cells in the presence or absence of gold nanoparticles with well established LSPR and field-enhancement properties. The cultured skin cells were exposed to protoporphyrin IX and gold nanoparticles and subsequently illuminated with red light. We investigated the differences in cell viability by tuning different parameters, such as incubation time and light dose. In order to find optimal parameters for specific targeting of tumour cells, we compared normal human epidermal keratinocytes with a human squamous skin cancer cell line. The study indicates significantly enhanced cell death in the presence of nanoparticles and important differences in treatment efficiency between normal and tumour cells. These results are thus promising and clearly motivate further development of nanoparticle enhanced clinical PDT treatment.

  6. Merocyanine-540 mediated photodynamic effects on Staphylococcus epidermidis biofilms

    NASA Astrophysics Data System (ADS)

    Sbarra, Maria Sonia; Di Poto, Antonella; Saino, Enrica; Visai, Livia; Minzioni, Paolo; Bragheri, Francesca; Cristiani, Ilaria

    2009-07-01

    Staphylococci are important causes of nosocomial and medical-device-related infections. Their virulence is attributed to the elaboration of biofilms that protect the organisms from immune system clearance and to increased resistance to phagocytosis and antibiotics. Photodynamic treatment (PDT) has been proposed as an alternative approach for the inactivation of bacteria in biofilms. In this study, we evaluated the antimicrobial activity of merocyanine 540 (MC 540), a photosensitizing dye that is used for purging malignant cells from autologous bone marrow grafts, against Staphylococcus epidermidis biofilms. We evaluated the effect of the combined photodynamic action of MC 540 and 532 nm laser on the viability and structure of biofilms of two Staphylococcus epidermidis strains. Significant inactivation of cells was observed in the biofilms treated with MC-540 and then exposed to laser radiation. Furthermore we found that the PDT effect, on both types of cells, was significantly dependent on both the light-dose and on the impinging lightintensity. Disruption of PDT-treated biofilm was confirmed by scanning electron microscopy (SEM).

  7. Pulmonary decontamination for photodynamic inactivation with extracorporeal illumination

    NASA Astrophysics Data System (ADS)

    Geralde, Mariana C.; Leite, Ilaiáli S.; Inada, Natalia M.; Grecco, Clóvis; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Infectious pneumonia is a major cause of morbidity and mortality, despite advances in diagnostics and therapeutics in pulmonary infections. One of the major difficulties associated with the infection comes from the high rate of antibiotic resistant microorganisms, claiming for the use of alternative techniques with high efficiency and low cost. The photodynamic inactivation (PDI) is emerging as one of the great possibilities in this area, once its action is oxidative, not allowing microorganism develops resistance against the treatment. PDI for decontamination pulmonary has potential for treatment or creating better conditions for the action of antibiotics. In this study, we are developing a device to implement PDI for the treatment of lung diseases with extracorporeal illumination. To validate our theory, we performed measurements in liquid phantom to simulate light penetration in biological tissues at various fluency rates, the temperature was monitored in a body of hairless mice and the measurements of light transmittance in this same animal model. A diode laser emitting at 810 nm in continuous mode was used. Our results show 70% of leakage at 0.5 mm of thickness in phantom model. The mouse body temperature variation was 5.4 °C and was observed light transmittance through its chest. These results are suggesting the possible application of the extracorporeal illumination using infrared light source. Based on these findings, further studies about photodynamic inactivation will be performed in animal model using indocyanine green and bacteriochlorin as photosensitizers. The pulmonary infection will be induced with Streptococcus pneumoniae and Klebsiella pneumoniae.

  8. Targeted photodynamic therapy for infected wounds in mice

    NASA Astrophysics Data System (ADS)

    Hamblin, Michael R.; O'Donnell, David A.; Zahra, Touqir; Contag, Christopher H.; McManus, Albert T.; Hasan, Tayyaba

    2002-06-01

    Although many workers have used photodynamic therapy to kill bacteria in vitro, the use of this approach has seldom been reported in vivo in animal models of infection. We report on the use of a targeted polycationic photosensitizer conjugate between poly-L-lysine and chlorin(e6) that can penetrate the Gram (-) outer membrane together with red laser light to kill Escherichia coli and Pseudomonas aeruginosa infecting excisional wounds in mice. We used genetically engineered luminescent bacteria that allowed the infection to be imaged in mouse wounds using a sensitive CCD camera. Wounds were infected with 5x106 bacteria, followed by application of the conjugate in solution and illumination. There was a light-dose dependent loss of luminescence as measured by image analysis in the wound treated with conjugate and light, not seen in control wounds. This strain of E coli is non-invasive and the infection in untreated wounds spontaneously resolved in a few days and all wounds healed equally well showing the photodynamic treatment did not damage the host tissue. P aeruginosa is highly invasive and mice with untreated or control wounds all died while 90% of PDT treated mice survived. PDT may have a role to play in the rapid treatment of infected wounds in view of the worldwide rise in antibiotic resistance.

  9. Upconversion Nanoparticles for Photodynamic Therapy and Other Cancer Therapeutics

    PubMed Central

    Wang, Chao; Cheng, Liang; Liu, Zhuang

    2013-01-01

    Photodynamic therapy (PDT) is a non-invasive treatment modality for a variety of diseases including cancer. PDT based on upconversion nanoparticles (UCNPs) has received much attention in recent years. Under near-infrared (NIR) light excitation, UCNPs are able to emit high-energy visible light, which can activate surrounding photosensitizer (PS) molecules to produce singlet oxygen and kill cancer cells. Owing to the high tissue penetration ability of NIR light, NIR-excited UCNPs can be used to activate PS molecules in much deeper tissues compared to traditional PDT induced by visible or ultraviolet (UV) light. In addition to the application of UCNPs as an energy donor in PDT, via similar mechanisms, they could also be used for the NIR light-triggered drug release or activation of 'caged' imaging or therapeutic molecules. In this review, we will summarize the latest progresses regarding the applications of UCNPs for photodynamic therapy, NIR triggered drug and gene delivery, as well as several other UCNP-based cancer therapeutic approaches. The future prospects and challenges in this emerging field will be also discussed. PMID:23650479

  10. Fluorescence Imaging and Photodynamic Therapy of Skin Cancer

    NASA Astrophysics Data System (ADS)

    Rosen, Arne; Ericsson, Marica; Grapengiesser, Sofia; Gudmundson, Fredrik; Larko, Olle; Mölne, Lena; Stenquist, Bo; Ternesten, Annika; Wennberg, Ann-Marie

    2000-03-01

    Fluorescence Imaging and Photodynamic Therapy of Skin Cancer Photodynamic therapy has become an interesting alternative to conventional therapy of skin cancer as basal cell carcinoma, BCC. Delta-aminolevulinic acid, ALA, is a precursor in the biosynthesis of protoporphyrin IX, Ph IX, which accumulates to a large extent in tumor tissue. We have compared in vivo Ph IX, fluorescence with the extent of BCC on the face, trunk and thigh etc determined by histological mapping in a number of lesions. A non-laser-based set-up (1) was used to record the fluorescence images. The time for application of ALA was varied to optimize the uptake and the contrast in fluorescence between tumor attached and healthy skin. In more than 50 correlation between the fluorescence imaging and histological pattern. The contrast in fluorescence between tumor and healthy skin seems to be highr for older patients. Work is in progress to develope routines for optimization of the contrast. 1. A-M Wennberg et al, Acta Derm Venereol(Stockh) 1999, 79:54-61.

  11. Photodynamic research at Baylor University Medical Center Dallas, Texas

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.; Matthews, James Lester; Sogandares-Bernal, Franklin M.; Aronoff, Billie L.; Judy, Millard M.

    1993-03-01

    We received our first CO2 laser at Baylor University Medical Center in December 1974, following a trip to Israel in January of that year. Discussion with the customs office of the propriety of charging an 18% import tax lasted for nine months. We lost that argument. Baylor has been using lasers of many types for many procedures since that time. About ten years ago, through the kindness of Tom Dougherty and Roswell Park, we started working with photodynamic therapy, first with hematoporphyrin I and later with dihematoporphyrin ether (II). In February 1984, we were invited to a conference at Los Alamos, New Mexico, U.S.A. on medical applications of the free electron laser as part of the Star Wars Program. A grant application from Baylor was approved that November, but funding did not start for many months. This funding contributed to the development of a new research center as part of Baylor Research Institute. Many of the projects investigated at Baylor dealt with applications of the free electron laser (FEL), after it became available. A staff was assembled and many projects are still ongoing. I would like to outline those which are in some way related to photodynamic therapy.

  12. Treatment of spontaneously occurring veterinary tumors with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Legendre, Alfred; Sneed, Rick E.; Overholt, Bergein F.

    1992-06-01

    Chloroaluminum phthalocyanine tetrasulfonate was administered intravenously (1.0 mg/kg) to client owned cats and a dog with spontaneously occurring squamous cell carcinoma of head and neck. Light was delivered 48 hours post injection of the photosensitizer. An argon- pumped dye-laser was used to illuminate the lesions with 675 nm light delivered through a microlens fiber and/or a cylindrical diffuser. The light dose was 100 J/cm2 superficially or 300 J/cm interstitially. Eleven photodynamic therapy treatments in seven cats and one dog were performed. Two cats received a second treatment in approximately sixty days after the initial treatment. The superficial dose of light was increased to 200 J/cm2 for the second treatment. While the longest follow-up is twelve months, the responses are encouraging. The dog had a complete response. Among the cats, three showed complete response, three showed partial response and one showed no response. One cat expired two days post treatment. It is early to evaluate the response in two cats that received second treatments. Photodynamic therapy with chloroaluminum phthalocyanine tetrasulfonate was effective in treating squamous cell carcinoma in pet animals.

  13. Photodynamic inactivation of contaminated blood with Staphylococcus aureus

    NASA Astrophysics Data System (ADS)

    Corrêa, Thaila Q.; Inada, Natalia M.; Pratavieira, Sebastião.; Blanco, Kate C.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    The presence of bacteria in the bloodstream can trigger a serious systemic inflammation and lead to sepsis that cause septic shock and death. Studies have shown an increase in the incidence of sepsis over the years and it is mainly due to the increased resistance of microorganisms to antibiotics, since these drugs are still sold and used improperly. The bacterial contamination of blood is also a risk to blood transfusions. Thus, bacteria inactivation in blood is being studied in order to increase the security of the blood supply. The purpose of this study was to decontaminate the blood using the photodynamic inactivation (PDI). Human blood samples in the presence of Photogem® were illuminated at an intensity of 30 mW/cm2, and light doses of 10 and 15 J/cm2. Blood counts were carried out for the quantitative evaluation and blood smears were prepared for qualitative and morphological evaluation by microscopy. The results showed normal viability values for the blood cells analyzed. The light doses showed minimal morphological changes in the membrane of red blood cells, but the irradiation in the presence of the photosensitizer caused hemolysis in red blood cells at the higher concentrations of the photosensitizer. Experiments with Staphylococcus aureus, one of the responsible of sepsis, showed 7 logs10 of photodynamic inactivation with 50 μg/mL and 15 J/cm2 and 1 log10 of this microorganism in a co-culture with blood.

  14. Photodynamic evaluation of tetracarboxy-phthalocyanines in model systems.

    PubMed

    Alonso, Lais; Sampaio, Renato N; Souza, Thalita F M; Silva, Rodrigo C; Neto, Newton M Barbosa; Ribeiro, Anderson O; Alonso, Antonio; Gonçalves, Pablo J

    2016-08-01

    The present work reports the synthesis, photophysical and photochemical characterization and photodynamic evaluation of zinc, aluminum and metal free-base tetracarboxy-phthalocyanines (ZnPc, AlPc and FbPc, respectively). To evaluate the possible application of phthalocyanines as a potential photosensitizer the photophysical and photochemical characterization were performed using aqueous (phosphate-buffered solution, PBS) and organic (dimethyl sulfoxide, DMSO) solvents. The relative lipophilicity of the compounds was estimated by the octanol-water partition coefficient and the photodynamic activity evaluated through the photooxidation of a protein and photohemolysis. The photooxidation rate constants (k) were obtained and the hemolytic potential was evaluated by the maximum percentage of hemolysis achieved (Hmax) and the time (t50) to reach 50% of the Hmax. Although these phthalocyanines are all hydrophilic and possess very low affinity for membranes (log PO/W=-2.0), they led to significant photooxidation of bovine serum albumin (BSA) and photohemolysis. Our results show that ZnPc was the most efficient photosensitizer, followed by AlPc and FbPc; this order is the same as the order of the triplet and singlet oxygen quantum yields (ZnPc>AlPc>FbPc). Furthermore, together, the triplet, fluorescence and singlet oxygen quantum yields of zinc tetracarboxy-phthalocyanines suggest their potential for use in theranostic applications, which simultaneously combines photodiagnosis and phototherapy.

  15. Phthalocyanines And Their Sulfonated Derivatives As Photosensitizers In Photodynamic Therapy.

    NASA Astrophysics Data System (ADS)

    Riesz, Peter; Krishna, C. Murali

    1988-02-01

    Photodynamic therapy (PDT) of human tumors with hematoporphyrin derivative (HpD) has achieved encouraging results. However, HpD is a complex mixture whose composition varies in different preparations and with time of storage. The future promise of PDT for cancer treatment depends on the development of new chemically defined sensitizers which absorb more strongly than HpD in the 600-800 nm region. A shift to higher wavelengths is desirable since it allows increased light penetration in human tissues. In vivo, these sensitizers should be non-toxic, localize selectively in tumors and generate cytotoxic species upon illumination with a high quantum yield. These damaging species may be singlet oxygen (1O2) produced by the transfer of energy from the triplet state of the sensitizer to oxygen (Type II) or superoxide anion radicals formed by electron transfer to oxygen or substrate radicals generated by electron or hydrogen transfer directly from the sensitizer (Type I). The recent work of several groups indicating that phthalocyanines and their water soluble derivatives are promising candidates for PDT is reviewed. The photophysics, photochemistry, photosensitized killing of cultured mammalian cells and the use for in vivo photodynamic therapy of phthalocyanines is outlined. Our studies of the post-illumination photohemolysis of human red blood cells as a model system for membrane photomodification sensitized by phthalocyanine sulfonates are consistent with the predominant role of 1O2 as the damaging species.

  16. Active and passive control of zinc phthalocyanine photodynamics.

    PubMed

    Sharma, Divya; Huijser, Annemarie; Savolainen, Janne; Steen, Gerwin; Herek, Jennifer L

    2013-01-01

    In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of both of these control experiments is the same: to enhance the yield of the functional pathway and to minimize loss channels. The aim of the active control experiments is to increase the intersystem crossing yield in ZnPc, which is important for application in photodynamic therapy (PDT). Pulse shaping allowed an improvement in triplet to singlet ratio of 15% as compared to a transform-limited pulse. This effect is ascribed to a control mechanism that utilizes multiphoton pathways to higher-lying states from where intersystem crossing is more likely to occur. The passive control experiments are performed on ZnPc derivatives deposited onto TiO2, serving as a model system of a dye-sensitized solar cell (DSSC). Modification of the anchoring ligand of the molecular structure resulted in an increased rate for electron injection into TiO2 and slower back electron transfer, improving the DSSC efficiency.

  17. Computer model for photodynamic therapy of the prostate

    NASA Astrophysics Data System (ADS)

    Jankun, Jerzy; Zaim, Amjad; Jankun-Kelly, Monika; Keck, Rick W.; Selman, Steven H.

    2000-05-01

    Photodynamic therapy (PDT) is an emerging minimally invasive treatment that can be employed in many human diseases including prostate cancer. This treatment of human prostate cancer depends on the localization of a drug (photosensitizer) into the prostate. The photosensitizer is activated by high- energy laser light and the active drug destroys cancerous tissue. The success of PDT depends on precise placement of light diffusers in the prostate. Since the prostate is irregular in shape, with different dimensions, a transurethral light delivery that is circular in distribution cannot be used in most cases of carcinoma of the prostate. Sources of light and their spatial distribution must be tailored to each individual patient. More uniform, therapeutic light distribution can be achieved by interstitial light irradiation. In this case, the light is delivered by diffusers placed within the substance of the prostate parallel to the urethra at a distance optimized to deliver adequate levels of light and to create the desired photodynamic effect. For this reason, we are developing a computer program that can calculate the distribution of energy depending on the number of light sources placed in the prostate, their position in the gland, the dimension of the prostate, and the attenuation coefficient. A patient's three-dimensional prostate model is built based on ultrasound images. Then the program is being designated to predict the best set of parameters and position of light diffusers in space, displays them in graphical form or in numerical form. The program is amenable for interfacing with robotic treatment systems.

  18. Predicting photodynamic therapy efficacy with photoacoustic imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mallidi, Srivalleesha; Mai, Zhiming; Khan, Amjad P.; Hasan, Tayyaba

    2016-03-01

    Photodynamic therapy (PDT) is a photochemistry based cytotoxic technique that imparts cellular damage via excitation of a photosensitizer with drug-specific wavelength of light. The dose at the treatment site for type II PDT is determined by three factors: photosensitizer (PS) concentration, oxygenation status and delivered light irradiance. Most of the FDA approved photosensitizers in their triplet-excited state generate cytotoxic species by reacting with the ground state oxygen that is available in the surrounding environment. Given the inter- and intra-subject variability in the uptake of the photosensitizer and the distribution of oxygen in the tumor, understanding the interplay between these dose parameters could aid in determining photodynamic therapy efficacy. Previously several studies have discussed the interplay between the dose parameters using shown point measurements and 2D imaging systems. Using various subcutaneous and orthotopic mouse models we will demonstrate the utility of a non-invasive non-ionizing photoacoustic imaging modality to determine efficacy and predict treatment response in Benzoporphyrin derivative (BPD) or Aminolevulinic acid (ALA) based PDT. We further compare the predictive capability of photoacoustic imaging with the more predominantly used fluorescence imaging and immunohistochemistry techniques.

  19. Photodynamic therapy: a review of applications in neurooncology and neuropathology

    NASA Astrophysics Data System (ADS)

    Uzdensky, Anatoly B.; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Marya; Rudkovskii, Mikhail; Sharifulina, Svetlana

    2015-06-01

    Photodynamic therapy (PDT) effect is a promising adjuvant modality for diagnosis and treatment of brain cancer. It is of importance that the bright fluorescence of most photosensitizers provides visualization of brain tumors. This is successfully used for fluorescence-guided tumor resection according to the principle "to see and to treat." Non-oncologic application of PDT effect for induction of photothrombotic infarct of the brain tissue is a well-controlled and reproducible stroke model, in which a local brain lesion is produced in the predetermined brain area. Since normal neurons and glial cells may also be damaged by PDT and this can lead to unwanted neurological consequences, PDT effects on normal neurons and glial cells should be comprehensively studied. We overviewed the current literature data on the PDT effect on a range of signaling and epigenetic proteins that control various cell functions, survival, necrosis, and apoptosis. We hypothesize that using cell-specific inhibitors or activators of some signaling proteins, one can selectively protect normal neurons and glia, and simultaneously exacerbate photodynamic damage of malignant gliomas.

  20. Hematoporphyrin derivative uptake and photodynamic therapy in pancreatic carcinoma

    SciTech Connect

    Schroder, T.; Chen, I.W.; Sperling, M.; Bell, R.H. Jr.; Brackett, K.; Joffe, S.N.

    1988-05-01

    Little information is currently available concerning the uptake of porphyrins by pancreatic tumors, or the effect of photodynamic therapy (PDT) on pancreatic cancer. In Syrian golden hamsters (n = 33), the organ distribution of /sup 125/I-labeled dihematoporphyrin ether (DHE) was studied in a pancreatic cancer model. In the same animal model the effect of PDT was studied using a gold vapor laser for energy delivery 3 hr after the injection of DHE (n = 7). DHE was 2.4 times more concentrated in the pancreatic tumor than in the nontumorous pancreas at 3 hr. Simultaneously there was a considerable accumulation of DHE in the surrounding gastrointestinal tract, causing perforation of the duodenum and jejunum with resultant death in four (57%) animals after PDT. Photodynamic therapy caused extensive tumor necrosis without any obvious effect on the nontumor-bearing pancreas. Damage to the surrounding tissue in the hamster indicates that precautions should be taken if PDT is to be used clinically in pancreatic cancer. Intratumoral injection of DHE may give higher drug concentrations with greater specificity for tumor treatment.

  1. Effects of photodynamic action on respiration in nonphosphorylating mitochondria.

    PubMed

    Salet, C; Moreno, G; Ricchelli, F

    1998-10-15

    We have studied the effects of singlet oxygen produced by photodynamic action on respiration in nonphosphorylating mitochondria (state 4). Isolated rat liver mitochondria were incubated with 3 microM hematoporphyrin and irradiated at 365 nm with a fluence rate of 25 W/m2. After short durations of irradiation, state 4 respiration with beta-hydroxybutyrate as substrate increases while respiration with succinate is negligibly affected. When mitochondria have been uncoupled with carbonylcyanide-p-trifluoromethoxyphenyl hydrazone before irradiation, no change occurs in beta-hydroxybutyrate-driven respiration, while succinate-driven respiration strongly decreases. Stimulation of state 4 NADH respiration cannot be explained by slippage of the NADH ubiquinone oxidoreductase because the stoichiometry of the redox pump was found insensitive to photodynamic action. In the light of the metabolite theory for linear enzymatic chains applied to state 4 respiration (Brand et al., Biochem. J. 255, 535-539, 1988), these results suggest that stimulation of NADH respiration is simply due to an increase of membrane leaks which occurs after irradiation. In the case of succinate-driven respiration, a strong inhibition of succinate dehydrogenase activity has been demonstrated after irradiation. It can be suggested that this inhibition introduces a negative control coefficient over state 4 respiration, counterbalancing the effects due to leakage.

  2. Simultaneous two-photon excitation of photodynamic therapy agents

    NASA Astrophysics Data System (ADS)

    Wachter, Eric A.; Partridge, W. P., Jr.; Fisher, Walter G.; Dees, Craig; Petersen, Mark G.

    1998-07-01

    The spectroscopic and photochemical properties of several photosensitive compounds are compared using conventional single-photon excitation (SPE) and simultaneous two-photon excitation (TPE). TPE is achieved using a mode-locked titanium:sapphire laser, the near infrared output of which allows direct promotion of non-resonant TPE. Excitation spectra and excited state properties of both type I and type II photodynamic therapy (PDT) agents are examined. In general, while SPE and TPE selection rules may be somewhat different, the excited state photochemical properties are equivalent for both modes of excitation. In vitro promotion of a two-photon photodynamic effect is demonstrated using bacterial and human breast cancer models. These results suggest that use of TPE may be beneficial for PDT, since the technique allows replacement of visible or ultraviolet excitation with non- damaging near infrared light. Further, a comparison of possible excitation sources for TPE indicates that the titanium:sapphire laser is exceptionally well suited for non- linear excitation of PDT agents in biological systems due to its extremely short pulse width and high repetition rate; these features combine to effect efficient PDT activation with minimal potential for non-specific biological damage.

  3. Optical Imaging, Photodynamic Therapy and Optically-Triggered Combination Treatments

    PubMed Central

    Hasan, Tayyaba

    2015-01-01

    Optical imaging is becoming increasingly promising for real-time image-guided resections and combined with photodynamic therapy (PDT), a photochemistry-based treatment modality, optical approaches can be intrinsically “theranostic”. Challenges in PDT include precise light delivery, dosimetry and photosensitizer tumor localization to establish tumor selectivity, and like all other modalities, incomplete treatment and subsequent activation of molecular escape pathways are often attributable to tumor heterogeneity. Key advances in molecular imaging, target-activatable photosensitizers and optically active nanoparticles that provide both cytotoxicity and a drug release mechanism, have opened exciting avenues to meet these challenges. The focus of the review is optical imaging in the context of PDT but the general principles presented are applicable to many of the conventional approaches to cancer management. We highlight the role of optical imaging in providing structural, functional and molecular information regarding photodynamic mechanisms of action, thereby advancing PDT and PDT-based combination therapies of cancer. These advances represent a PDT renaissance with increasing applications of clinical PDT as a frontline cancer therapy working in concert with fluorescence-guided surgery, chemotherapy and radiation. PMID:26049699

  4. Dual imaging-guided photothermal/photodynamic therapy using micelles

    PubMed Central

    Guo, Miao; Mao, Huajian; Li, Yanli; Zhu, Aijun; He, Hui; Yang, Hong; Wang, Yangyun; Tian, Xin; Ge, Cuicui; Peng, Qiaoli; Wang, Xiaoyong; Yang, Xiangliang; Chen, Xiaoyuan; Liu, Gang; Chen, Huabing

    2015-01-01

    We report a type of photosensitizer (PS)-loaded micelles integrating cyanine dye as potential theranostic micelles for precise anatomical tumor localization via dual photoacoustic (PA)/near-infrared fluorescent (NIRF) imaging modalities, and simultaneously superior cancer therapy via sequential synergistic photothermal therapy (PTT)/photodynamic therapy (PDT). The micelles exhibit enhanced photostability, cell internalization and tumor accumulation. The dual NIRF/PA imaging modalities of the micelles cause the high imaging contrast and spatial resolution of tumors, which provide precise anatomical localization of the tumor and its inner vasculature for guiding PTT/PDT treatments. Moreover, the micelles can generate severe photothermal damage on cancer cells and destabilization of the lysosomes upon PTT photo-irradiation, which subsequently facilitate synergistic photodynamic injury via PS under PDT treatment. The sequential treatments of PTT/PDT trigger the enhanced cytoplasmic delivery of PS, which contributes to the synergistic anticancer efficacy of PS. Our strategy provides a dual-modal cancer imaging with high imaging contrast and spatial resolution, and subsequent therapeutic synergy of PTT/PDT for potential multimodal theranostic application. PMID:24613048

  5. Photodynamic therapy for circumscribed choroidal haemangioma: a case report.

    PubMed

    Bhatt, Chirag; Bandyopadhyay, Samir Kumar; Chatterjee, P K; Paul, R C; Bagchi, S C; Chatterjee, Arkendu

    2011-10-01

    Choroidal haemangioma is a benign tumour with visual acuity diminution due to subretinal fluid accumulation. There are many modalities of treatment of this visually disabling syndrome, some of them being argon laser photocoagulation, cryotherapy, external beam irradiation, proton beam radiotherapy, episcleral plaque radiotherapy and transpupillary thermotherapy. Another new modality of treatment with remarkable success rate is photodynamic therapy. In this modality a photosensitiser is injected intravenously followed by irradiation of a specific wave length for a specified time period. The photosensitiser concentrates within the vascular channels and after irradiation these channels are irreversibly obliterated. A 62 years old female patient of choroidal haemangioma, who presented in eye outpatient department was treated with the standard protocol used for photodynamic therapy. On follow-up of this patient it was found that there was improvement in the visual acuity from 6/12 in the left eye (affected eye) to 6/9. Not only was there an improvement in the visual acuity but there was anatomical improvement too as was evident by regressed cystoid macular oedema and circumscribed choroidal haemangioma. After six months of follow-up there was no leakage of dye with digital fluorescein angiography and indocyanine green.

  6. The photosensitizer talaporfinum caused microvascular embolization for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Liming; Aizawa, Katsuo

    2005-07-01

    Photodynamic therapy (PDT) has been evolving rapidly in the recent years. A second-generation Photosensitizer mono-1-aspartyl chlorine 6 (Talaporfin / Npe6 / ME2906, Japan Meiji Seika, Ltd.) has been sanctified for the lung cancer clinical PDT by the Japan Ministry of Health, Labor and Welfare. In this paper, Talaporfin was injected to the implant cancer of a mouse a Talaporfin dose of 5mg/kg through intravenous. After 6 hours, the fluorescence images of the mouse were observed with a microscope and a 664 nm diode laser. Effects of therapy were clarified using the different irradiation energies of the laser (50, 100, 200 J/cm2). Both in plasma and in cancer, the concentrations of Talaporfin were analyzed using High Performance Liquid Chromatography (HPLC). Authors find that the higher concentrations of Talaporfin in plasma, the better PDD effect. It is experimentally verified that local microvascular embolisms in the cancer are formed for photodynamic therapy after the Talaporfin injection and the laser irradiation.

  7. Nanostructured Polymeric Micelles Carrying Xanthene Dyes for Photodynamic Evaluation.

    PubMed

    de Freitas, Camila Fabiano; Pellosi, Diogo Silva; Estevão, Bianca Martins; Calori, Italo Rodrigo; Tsubone, Tayana Mazin; Politi, Mário José; Caetano, Wilker; Hioka, Noboru

    2016-11-01

    It was evaluated the properties of the xanthene dyes Erythrosin B, Eosin Y and theirs Methyl, Butyl and Decyl ester derivatives as possible photosensitizers (PS) for photodynamic treatments. The more hydrophobic dyes self-aggregate in water/ethanol solutions above 70% water (vol/vol) in the mixture. In buffered water, these PS were encapsulated in Pluronic polymeric surfactants of P-123 and F-127 by two methodologies: direct addition and the thin-film solid dispersion methods. The thin-film solid method provided formulations with higher stabilities besides effective encapsulation of the PS as monomers. Size measurements demonstrated that Pluronic forms self-assembled micelles with uniform size, which present slightly negative surface potential and a spherical form detected by TEM microscopy. The ester length modulates xanthene localization in the micelle, which is deeper with the increase in the alkyl chain. Moreover, some PS are distributed into two populations: one on the corona micelle interface shell (PEO layer) and the other into the core (PPO region). Although all PS formulations show high singlet oxygen quantum yield, promising results were obtained for Erythrosin B esters with the hydrophobic P-123, which ensures their potential as drug for clinical photodynamic applications.

  8. Fast elimination of onychomycosis by hematoporphyrin derivative-photodynamic therapy.

    PubMed

    Silva, Ana Paula da; Kurachi, Cristina; Bagnato, Vanderlei Salvador; Inada, Natalia Mayumi

    2013-09-01

    Onychomycosis is a fungal nail disease and is one of the major onychopathy worldwide. Topical or oral antifungal therapies are used to treat this disease, but often they are inefficient and oral medications can even cause several side effects. Photodynamic therapy (PDT) is a well established technique and hence, may represent an alternative non invasive technique for the treatment of onychomycosis. In this work, we present a case of onychomycosis that was completely cured by using the porphyrin-photodynamic therapy. A 59-year-old patient, who had two nails with onychomycosis (the right and the left hallux, with more than thirty and ten years, respectively) caused by fungi was treated once a week for a period of six weeks. The nails were first treated and prepared by a specialist. An hour after the photosensitization, the nail was illuminated using a light source based on light emitting diodes (LEDs) in the red wavelength (630 nm, at a total dose of 54 J/cm(2)).

  9. Zinc phthalocyanine-conjugated with bovine serum albumin mediated photodynamic therapy of human larynx carcinoma

    NASA Astrophysics Data System (ADS)

    Silva, E. P. O.; Santos, E. D.; Gonçalves, C. S.; Cardoso, M. A. G.; Soares, C. P.; Beltrame, M., Jr.

    2016-10-01

    Phthalocyanines, which are classified as second-generation photosensitizers, have advantageous photophysical properties, and extensive studies have demonstrated their potential applications in photodynamic therapy. The present work describes the preparation of a new zinc phthalocyanine conjugated to bovine serum albumin (compound 4a) and its photodynamic efficiency in human larynx-carcinoma cells (HEp-2 cells). The unconjugated precursor (compound 4) was also studied. Compounds 4 and 4a penetrated efficiently into the cell, exhibiting cytoplasmic localization, and showed no cytotoxicity in the dark. However, high photodynamic activities were observed in HEp-2 cells after treatments with 5 µM photosensitizers and 4.5 J cm-2 light. These conditions were sufficient to decrease the cell viability to 57.93% and 32.75% for compounds 4 and 4a, respectively. The present results demonstrated high photodynamic efficiency of zinc phthalocyanine conjugated with bovine serum albumin in destroying the larynx-carcinoma cells.

  10. Self-Monitoring Artificial Red Cells with Sufficient Oxygen Supply for Enhanced Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Luo, Zhenyu; Zheng, Mingbin; Zhao, Pengfei; Chen, Ze; Siu, Fungming; Gong, Ping; Gao, Guanhui; Sheng, Zonghai; Zheng, Cuifang; Ma, Yifan; Cai, Lintao

    2016-03-01

    Photodynamic therapy has been increasingly applied in clinical cancer treatments. However, native hypoxic tumoural microenvironment and lacking oxygen supply are the major barriers hindering photodynamic reactions. To solve this problem, we have developed biomimetic artificial red cells by loading complexes of oxygen-carrier (hemoglobin) and photosensitizer (indocyanine green) for boosted photodynamic strategy. Such nanosystem provides a coupling structure with stable self-oxygen supply and acting as an ideal fluorescent/photoacoustic imaging probe, dynamically monitoring the nanoparticle biodistribution and the treatment of PDT. Upon exposure to near-infrared laser, the remote-triggered photosensitizer generates massive cytotoxic reactive oxygen species (ROS) with sufficient oxygen supply. Importantly, hemoglobin is simultaneously oxidized into the more active and resident ferryl-hemoglobin leading to persistent cytotoxicity. ROS and ferryl-hemoglobin synergistically trigger the oxidative damage of xenograft tumour resulting in complete suppression. The artificial red cells with self-monitoring and boosted photodynamic efficacy could serve as a versatile theranostic platform.

  11. Electrochemical microsensor system for cancer research on photodynamic therapy in vitro

    NASA Astrophysics Data System (ADS)

    Marzioch, J.; Kieninger, J.; Sandvik, J. A.; Pettersen, E. O.; Peng, Q.; Urban, G.

    2016-10-01

    An electrochemical microsensor system to investigate photodynamic therapy of cancer cells in vitro was developed and applied to monitor the cellular respiration during and after photodynamic therapy. The redox activity and therefore influence of the photodynamic drug on the sensor performance was investigated by electrochemical characterization. It was shown, that appropriate operation conditions avoid cross-sensitivity of the sensors to the drug itself. The presented system features a cell culture chamber equipped with microsensors and a laser source to photodynamically treat the cells while simultaneous monitoring of metabolic parameter in situ. Additionally, the optical setup allows to read back fluorescence signals from the photosensitizer itself or other marker molecules parallel to the microsensor readings.

  12. In vitro study for photodynamic therapy using Fotolon in glioma treatment

    NASA Astrophysics Data System (ADS)

    Abdel Hamid, Sara; Zimmermann, Wolfgang; Huettenberger, Dirk; Wittig, Rainer; Abdel Kader, Mahmoud; Stepp, Herbert

    2015-07-01

    Several forms of Chlorin e6 and its derivatives are reported as efficient photosensitizers (PS) studied in Photodynamic Therapy (PDT) for oncologic applications. Fotolon® is a pure form of Chlorin e6 trisodium salt developed by Apocare Pharma.

  13. Photodynamic Inactivation of Antigenic Determinants of Single-Stranded DNA Bacteriophage φX174

    PubMed Central

    Khan, Narayan C.; Poddar, Ramendra K.

    1974-01-01

    Bacteriophage φX174 when photodynamically inactivated (i.e., when rendered unable to produce plaques as a result of exposure to visible light in air in the presence of proflavine) progressively lost their capacity to bind efficiently with homologous antiserum. Such loss of serum-blocking power was evident with heat-inactivated but not with UV-irradiated phage. The ability of the phages to adsorb to host cells, however, remained practically unaltered even after photodynamic inactivation. It thus appears that photodynamic damages in the so-called “jacket” component of the φX174 coat proteins are partly responsible for the loss of plaque-forming ability, whereas the “spikes” are either poor antigens or insensitive to photodynamic treatment. PMID:4132921

  14. Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis.

    PubMed

    Ogura, Shun-Ichiro; Hagiya, Yuichiro; Tabata, Kenji; Kamachi, Toshiaki; Okura, Ichiro

    2012-01-01

    Photodynamic therapy (PDT) and photodynamic diagnosis of cancer are widely used in clinical fields. These are performed using photosensitizers. Many metalloporphyrin-related compounds have been developed as photosensitizers for use in PDT, and these tumor localization ability have been improved in recent research. Moreover, the precursor of porphyrin 5-aminolevulinic acid is used in fluorescence diagnosis using its tumor localization ability. In this review, these applications of photosensitizers in cancer therapy and diagnosis are summarized.

  15. Device for fluorescent control and photodynamic therapy of age-related macula degeneration

    NASA Astrophysics Data System (ADS)

    Loschenov, Victor B.; Meerovich, Gennadii A.; Budzinskaya, M. V.; Ermakova, N. A.; Shevchik, S. A.; Kharnas, Sergey S.

    2004-07-01

    Age-related macula degeneration (AMD) is a wide spread disease the appearance of which leads to poor eyesight and blindness. A method of treatment is not determined until today. Traditional methods, such as laser coagulation and surgical operations are rather traumatic for eye and often bring to complications. That's why recently a photodynamic method of AMD treatment is studied. Based on photodynamic occlusion of choroidal neovascularization (CNV) with minimal injury to overlying neurosensory retina what increases the efficiency.

  16. Aluminium hydroxide tetra-3-phenylthiophthalocyanine as new photosensitizer for photodynamic therapy and fluorescent diagnostics

    NASA Astrophysics Data System (ADS)

    Meerovich, I. G.; Smirnova, Z. S.; Oborotova, N. A.; Lukyanets, E. A.; Meerovich, G. A.; Derkacheva, V. M.; Polozkova, A. P.; Kubasova, I. Y.; Baryshnikov, A. Y.

    2005-08-01

    This work is devoted to investigation of possibility to use the liposomal form of aluminium hydroxide tetra-3-phenylthiophthalocyanine as photosensitizer of near-infrared range. Aluminium hydroxide tetra-3-phenylthiophthalocyanine has shown high selectivity of accumulation in tumor comparing to normal tissue of mice as well as high photodynamic efficiency on mice bearing Erlich tumor (ELD) and lympholeucosis P-388. This compozition can be used to develop new effective photosensitizer for photodynamic therapy and fluorescent diagnostics.

  17. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae.

    PubMed

    Bornhütter, Tobias; Pohl, Judith; Fischer, Christian; Saltsman, Irena; Mahammed, Atif; Gross, Zeev; Röder, Beate

    2016-04-13

    Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  18. Quantum dot-folic acid conjugates as potential photosensitizers in photodynamic therapy of cancer.

    PubMed

    Morosini, Vincent; Bastogne, Thierry; Frochot, Céline; Schneider, Raphaël; François, Aurélie; Guillemin, François; Barberi-Heyob, Muriel

    2011-05-01

    This study examined the in vitro potential of bioconjugated quantum dots (QDs) as photosensitizers for photodynamic therapy (PDT). According to our previous approaches using photosensitizers, folic acid appears to be an optimal targeting ligand for selective delivery of attached therapeutic agents to cancer tissues. We synthesized hydrophilic near infrared emitting CdTe(S)-type QDs conjugated with folic acid using different spacers. Photodynamic efficiency of QDs conjugated or not with folic acid was evaluated on KB cells, acting as a positive control due to their overexpression of FR-α, and HT-29 cells lacking FR-α, as negative control. A design of experiments was suggested as a rational solution to evaluate the impacts of each experimental factor (QD type and concentration, light fluence and excitation wavelength, time of contact before irradiation and cell phenotype). We demonstrated that, for concentrations lower than 10 nM, QDs displayed practically no cytotoxic effect without light exposure for both cell lines. Whereas QDs at 2.1 nM displayed a weak photodynamic activity, a concentration of 8 nM significantly enhanced the photodynamic efficiency characterized by a light dose-dependent response. A statistically significant difference in photodynamic efficiency between KB and HT-29 cells was evidenced in the case of folic acid-conjugated QDs. Optimal conditions led to an enhanced photocytotoxicity response, allowing us to validate the ability of QDs to generate a photodynamic effect and of folic acid-conjugated QDs for targeted PDT.

  19. 5 CFR 843.203 - Eligibility for a one-time payment upon death of an employee, separated employee, or retiree if...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Eligibility for a one-time payment upon... Section 843.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...

  20. 5 CFR 843.204 - Eligibility for a one-time payment upon death of an employee, separated employee, or retiree if...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 2 2011-01-01 2011-01-01 false Eligibility for a one-time payment upon... Section 843.204 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...

  1. 5 CFR 843.204 - Eligibility for a one-time payment upon death of an employee, separated employee, or retiree if...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Eligibility for a one-time payment upon... Section 843.204 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...

  2. 5 CFR 843.203 - Eligibility for a one-time payment upon death of an employee, separated employee, or retiree if...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Eligibility for a one-time payment upon... Section 843.203 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT (CONTINUED) CIVIL SERVICE REGULATIONS (CONTINUED) FEDERAL EMPLOYEES RETIREMENT SYSTEM-DEATH BENEFITS AND EMPLOYEE REFUNDS...

  3. One-time ray-tracing optimization method and its application to the design of an illuminator for a tube photo-bioreactor.

    PubMed

    Chu, Shu-Chun; Yang, Hai-Li; Liao, Yi-Hong; Wu, Hong-Yu; Wang, Chi

    2014-03-10

    This study details a one-time ray-tracing optimization method for the optimization of LED illumination systems [S.-C. Chu and H.-L. Yang, "One-time ray-tracing method for the optimization of illumination system," in Proceedings of International Conference on Optics in Precision Engineering and Nanotechnology (icOPEN, 2013), 87692M]. This method optimizes the performance of illumination systems by modifying the light source's radiant intensity distribution with a freeform lens, instead of modifying the illumination system structure. Because illumination system structures are unchanged in the design process, a designer can avoid the common problems faced when designing illumination systems, i.e., the repeated and time-consuming ray-tracing process when optimizing the illumination system parameters. The easy approaches of the proposed optimization method to sample the target illumination areas and to divide the light source radiant intensity distribution make the proposed method can be applied to both direct-lit and non-direct-lit illumination systems. To demonstrate the proposed method, this study designs an illuminator for a tube photo-bioreactor using the proposed one-time ray-tracing method. A comparison shows that in the designing of the photo-bioreactor, tracing all rays one time requires about 13 hours, while optimizing the light source's radiant intensity distribution requires only about twenty minutes. The considerable reduction in the ray-tracing time shows that the proposed method is a fast and effective way to design illumination systems.

  4. 5 CFR 839.1122 - Does receipt of a one-time payment of retirement contributions as a death benefit prevent me from...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Does receipt of a one-time payment of retirement contributions as a death benefit prevent me from electing CSRS Offset? 839.1122 Section 839.1122... contributions as a death benefit prevent me from electing CSRS Offset? You may still elect CSRS Offset...

  5. Photodynamic dye adsorption and release performance of natural zeolite

    PubMed Central

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-01-01

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment. PMID:28361968

  6. Photodynamic Detection of Peritoneal Metastases Using 5-Aminolevulinic Acid (ALA)

    PubMed Central

    Yonemura, Yutaka; Endo, Yoshio; Canbay, Emel; Liu, Yang; Ishibashi, Haruaki; Mizumoto, Akiyoshi; Hirano, Masamitu; Imazato, Yuuki; Takao, Nobuyuki; Ichinose, Masumi; Noguchi, Kousuke; Li, Yan; Wakama, Satoshi; Yamada, Kazuhiro; Hatano, Koutarou; Shintani, Hiroshi; Yoshitake, Hiroyuki; Ogura, Shun-ichiro

    2017-01-01

    In the past, peritoneal metastasis (PM) was considered as a terminal stage of cancer. From the early 1990s, however, a new comprehensive treatment consisting of cytoreductive surgery and perioperative chemotherapy has been established to improve long-term survival for selected patients with PM. Among prognostic indicators after the treatment, completeness of cytoreduction is the most independent predictors of survival. However, peritoneal recurrence is a main cause of recurrence, even after complete cytoreduction. As a cause of peritoneal recurrence, small PM may be overlooked at the time of cytoreductive surgery (CRS), therefore, development of a new method to detect small PM is desired. Recently, photodynamic diagnosis (PDD) was developed for detection of PM. The objectives of this review were to evaluate whether PDD using 5-aminolevulinic acid (ALA) could improve detection of small PM. PMID:28257041

  7. On the Origin of Photodynamic activity of Perylene Quinone Framework

    NASA Astrophysics Data System (ADS)

    Parida, Dibyajyoti; Pancharatna, Pattath D.; Balakrishnarajan, Musiri M.

    2016-10-01

    The basic skeleton of perylenequinone is surprisingly ubiquitous in several naturally occurring pigments, such as Hypocrellins, Cercosporin, etc. to name a few. Several of these molecules and their derivatives are also experimentally characterized as potent candidates for photodynamic therapy and are predicted to be aiding the formation singlet Oxygen. Theoretical calculations that unravel the mystery behind the perylenequinone motif in these bio-molecules. Perylenequinone framework has a unique frontier MOs that aid in facile intersystem crossing of the π-π* excitation. The resulting triplet state remarkably resists phosphorescence that presumably leads to high quantum yield of singlet oxygen production. The excitation assisted change in the nature of conjugation and the attendant out-of-plane distortion of the perylene framework is found to be the general characteristic of all these systems and the substituents at the bay region favourably assist the excited state behavior as shown by time dependent/ independent DFT calculations.

  8. Antimicrobial Photodynamic Therapy for Methicillin-Resistant Staphylococcus aureus Infection

    PubMed Central

    Fu, Xiu-jun; Fang, Yong; Yao, Min

    2013-01-01

    Nowadays methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common multidrug resistant bacteria both in hospitals and in the community. In the last two decades, there has been growing concern about the increasing resistance to MRSA of the most potent antibiotic glycopeptides. MRSA infection poses a serious problem for physicians and their patients. Photosensitizer-mediated antimicrobial photodynamic therapy (PDT) appears to be a promising and innovative approach for treating multidrug resistant infection. In spite of encouraging reports of the use of antimicrobial PDT to inactivate MRSA in large in vitro studies, there are only few in vivo studies. Therefore, applying PDT in the clinic for MRSA infection is still a long way off. PMID:23555074

  9. Photodynamic Therapy for Non-Melanoma Skin Cancers

    PubMed Central

    Cohen, Diana K.; Lee, Peter K.

    2016-01-01

    Non-melanoma skin cancer (NMSC) is traditionally treated with surgical excision. Non-surgical methods such as cryotherapy and topical chemotherapeutics, amongst other treatments, are other options. Actinic keratosis (AKs) are considered precancerous lesions that eventually may progress to squamous cell carcinoma (SCC). Photodynamic therapy (PDT) offers an effective treatment for AKs, and is also effective for superficial basal cell carcinoma (BCC). Nodular BCC and Bowen’s disease (SCC in situ) have shown acceptable response rates with PDT, although recurrence rates are higher for these two NMSC subtypes. Methylaminolevulinate (MAL) PDT is a more effective treatment option than 5-aminolevulinic acid (ALA) PDT for nodular BCC. Several studies have shown that PDT results in superior cosmetic outcomes compared to surgical treatment. PDT is overall well-tolerated, with pain being the most common side effect. PMID:27782043

  10. Advanced optical techniques for monitoring dosimetric parameters in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Buhong; Qiu, Zhihai; Huang, Zheng

    2012-12-01

    Photodynamic therapy (PDT) is based on the generation of highly reactive singlet oxygen through interactions of photosensitizer, light and molecular oxygen. PDT has become a clinically approved, minimally invasive therapeutic modality for a wide variety of malignant and nonmalignant diseases. The main dosimetric parameters for predicting the PDT efficacy include the delivered light dose, the quantification and photobleaching of the administrated photosensitizer, the tissue oxygen concentration, the amount of singlet oxygen generation and the resulting biological responses. This review article presents the emerging optical techniques that in use or under development for monitoring dosimetric parameters during PDT treatment. Moreover, the main challenges in developing real-time and noninvasive optical techniques for monitoring dosimetric parameters in PDT will be described.

  11. Photodynamic activity of plant extracts from Sarawak, Borneo.

    PubMed

    Jong, Wan Wui; Tan, Pei Jean; Kamarulzaman, Fadzly Adzhar; Mejin, Michele; Lim, Diana; Ang, Ida; Naming, Margarita; Yeo, Tiong Chia; Ho, Anthony Siong Hock; Teo, Soo Hwang; Lee, Hong Boon

    2013-08-01

    Photodynamic therapy (PDT) is a medical treatment that involves the irradiation of an administered photosensitizing drug with light of a particular wavelength to activate the photosensitizer to kill abnormal cells. To date, only a small number of photosensitizers have been clinically approved for PDT, and researchers continue to look for new molecules that have more desirable properties for clinical applications. Natural products have long been important sources of pharmaceuticals, and there is a great potential for discovery of novel chemotypes from under-explored biodiversities in the world. The objective of this study is to mine the terrestrial plants in Sarawak, Borneo Island, for new photosensitizers for PDT. In a screening program from 2004 to 2008, we prepared and studied 2,400 extracts from 888 plants for their photosensitizing activities. This report details the bioprospecting process, preparation and testing of extracts, analysis of the active samples, fractionation of four samples, and isolation and characterization of photosensitizers.

  12. [Photodynamic therapy in dermatology, a new therapeutic tool].

    PubMed

    Salomon, Denis

    2005-04-20

    Photodynamic therapy is a treatment aimed at to destroy pathological tissues. The therapeutical effect is obtained by the joint action of a photosensitizer and exposure to a mono or polychromatic light. The selectivity of PDT is based on the concentration of the photosensitizer in cells distinct from normal tissue due to their metabolic or proliferative state. The wave length of the excitation light is adapted to the absorption spectrum of the photosensitizer. The photochemical reaction induced by the energy of photons will produce hydroxyls radicals and oxygen singulet which will generate alterations ending up in cell necrosis or apoptosis. The main indications of PDT are the treatment of precancerous lesions and superficial skin carcinoma. Nevertheless, the therapeutical field of PDT is very large.

  13. Photodynamic therapy of head and neck cancer with different sensitizers

    NASA Astrophysics Data System (ADS)

    Vakoulovskaya, Elena G.; Shental, Victor V.; Abdoullin, N. A.; Kuvshinov, Yury P.; Tabolinovskaia, T. D.; Edinak, N. J.; Poddubny, Boris K.; Kondratjeva, T. T.; Meerovich, Gennadii A.; Stratonnikov, Alexander A.; Linkov, Kirill G.; Agafonov, Valery V.

    1997-12-01

    This paper deals with the results of clinical trials for sulfated aluminum phthalocyanine (PHS) (Photosens, Russia; Photogeme (PG) in Russia. The results of photodynamic therapy (PDT) of head and neck tumors (HNT), side effects and ways of their correction and prevention, as well as possibility to work out less toxic regimes of PDT with photosense, choice of laser and type of irradiation are discussed. PDT have been provided in 79 patients with different head and neck tumors. Efficacy of PDT depended on tumor size and its histological type. Undesirable changes in plasma content of antioxidants by means of high pressure liquid chromatography (HLPC) have been found in patients after PHS injection. Influence of short-term and long-term supplementation with beta-carotene and vitamin E on this parameters are discussed.

  14. Nanosized ZSM-5 will improve photodynamic therapy using Methylene blue.

    PubMed

    Kariminezhad, H; Habibi, M; Mirzababayi, N

    2015-07-01

    Nowadays, nanotechnology is growing to improve Photodynamic Therapy and reduce its side effects. In this research, the synthesized co-polymeric Zeolite Secony Mobile-5 (ZSM-5) was employed to modify Methylene Blue (MB) for these reasons. UV-Visible, FTIR, XRD analysis and SEM images were used to investigate obtained nanostructure. The crystal size for these nanostructures were determined 75 nm and maximum adsorption capacity of MB in the nanostructure was estimated 111 (mg g(-1)). Also, the role of Polyethylene Glycol (PEG) was studied as a capable non-toxic polymeric coating to overcome biological barriers. Moreover, potential of singlet oxygen production of the synthesized nanostructure was compared with MB and ZSM-5 nanoparticles control samples. Synthesized nanodrugs show impressive light induced singlet oxygen production efficiency.

  15. TransOral Robotic Photodynamic Therapy for the Oropharynx

    PubMed Central

    Quon, Harry; Finlay, Jarod; Cengel, Keith; Zhu, Timothy; O’Malley, Bert; Weinstein, Gregory

    2015-01-01

    Photodynamic therapy (PDT) has been used for head and neck carcinomas with little experience in the oropharynx due to technical challenges in achieving adequate exposure. We present the case of a patient with a second right tonsil carcinoma following previous treatment with transoral robotic surgery (TORS) and postoperative chemoradiation for a left tonsil carcinoma. Repeat TORS for the right tonsil carcinoma reviewed multiple positive surgical margins. The power output from the robotic camera was modified to facilitate safe intraoperative three dimensional visualization of the tumor bed. The robotic arms facilitated clear exposure of the tonsil and tongue base with stable administration of the fluence. Real-time measurements confirmed stable photobleaching with augmentation of the prescribed light fluence secondary to light scatter in the oropharynx. We report a potential new role using TORS for exposure and accurate PDT in the oropharynx. PMID:21333937

  16. Photodynamic therapy-driven induction of suicide cytosine deaminase gene.

    PubMed

    Bil, Jacek; Wlodarski, Pawel; Winiarska, Magdalena; Kurzaj, Zuzanna; Issat, Tadeusz; Jozkowicz, Alicja; Wegiel, Barbara; Dulak, Jozef; Golab, Jakub

    2010-04-28

    Photodynamic therapy (PDT) of tumors is associated with induction of hypoxia that results in activation of hypoxia-inducible factors (HIFs). Several observations indicate that increased HIFs transcriptional activity in tumor cells is associated with cytoprotective responses that limit cytotoxic effectiveness of PDT. Therefore, we decided to examine whether this cytoprotective mechanism could be intentionally used for designing more efficient tumor cell cytotoxicity. To this end we transfected tumor cells with a plasmid vector carrying a suicide cytosine deaminase gene driven by a promoter containing hypoxia response elements (HRE). The presence of such a genetic molecular beacon rendered tumor cells sensitive to cytotoxic effects of a non-toxic prodrug 5-fluorocytosine (5-FC). The results of this study provides a proof of concept that inducible cytoprotective mechanisms can be exploited to render tumor cells more susceptible to cytotoxic effects of prodrugs activated by products of suicide genes.

  17. Physical and mathematical modeling of antimicrobial photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Bürgermeister, Lisa; López, Fernando Romero; Schulz, Wolfgang

    2014-07-01

    Antimicrobial photodynamic therapy (aPDT) is a promising method to treat local bacterial infections. The therapy is painless and does not cause bacterial resistances. However, there are gaps in understanding the dynamics of the processes, especially in periodontal treatment. This work describes the advances in fundamental physical and mathematical modeling of aPDT used for interpretation of experimental evidence. The result is a two-dimensional model of aPDT in a dental pocket phantom model. In this model, the propagation of laser light and the kinetics of the chemical reactions are described as coupled processes. The laser light induces the chemical processes depending on its intensity. As a consequence of the chemical processes, the local optical properties and distribution of laser light change as well as the reaction rates. The mathematical description of these coupled processes will help to develop treatment protocols and is the first step toward an inline feedback system for aPDT users.

  18. Bioluminescence-Activated Deep-Tissue Photodynamic Therapy of Cancer

    PubMed Central

    Kim, Yi Rang; Kim, Seonghoon; Choi, Jin Woo; Choi, Sung Yong; Lee, Sang-Hee; Kim, Homin; Hahn, Sei Kwang; Koh, Gou Young; Yun, Seok Hyun

    2015-01-01

    Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm2 for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT. PMID:26000054

  19. Enhancing antibiofilm efficacy in antimicrobial photodynamic therapy: effect of microbubbles

    NASA Astrophysics Data System (ADS)

    Kishen, Anil; George, Saji

    2013-02-01

    In this study, we tested the hypothesis that a microbubble containing photosensitizer when activated with light would enable comprehensive disinfection of bacterial biofilms in infected root dentin by antimicrobial photodynamic therapy (APDT). Experiments were conducted in two stages. In the stage-1, microbubble containing photosensitizing formulation was tested for its photochemical properties. In the stage-2, the efficacy of microbubble containing photosensitizing formulation was tested on in vitro infected root canal model, developed with monospecies biofilm models of Enterococcus faecalis on root dentin substrate. The findings from this study showed that the microbubble containing photosensitizing formulation was overall the most effective formulation for photooxidation, generation of singlet oxygen, and in disinfecting the biofilm bacteria in the infected root canal model. This modified photosensitizing formulation will have potential advantages in eliminating bacterial biofilms from infected root dentin.

  20. Bioluminescence-activated deep-tissue photodynamic therapy of cancer.

    PubMed

    Kim, Yi Rang; Kim, Seonghoon; Choi, Jin Woo; Choi, Sung Yong; Lee, Sang-Hee; Kim, Homin; Hahn, Sei Kwang; Koh, Gou Young; Yun, Seok Hyun

    2015-01-01

    Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm(2) for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT.

  1. [History of photodynamic therapy--past, present and future].

    PubMed

    Kato, H

    1996-01-01

    Photodynamic therapy is achieved by a photodynamic reaction which is induced by excitation of photosensitizer exposed to light. This phenomenon was first reported by Raab et al in 1990. In 1960 Lipson et al reported hematoporphyrin derivative (HpD) by treating hematoporphyrin chloride with hydrochloric acid and sulfuric acid. The development of HpD established the basis of today's photodynamic therapy (PDT). Dougherty reported the treatment of skin tumors by PDT first with an argon dye laser in 1978. The author and his colleagues began basic studies of this treatment using HpD supplied by Dougherty and argon dye laser in canine lung cancer in 1978. These studies confirmed the effectiveness and safety of the method. Bronchofiberscopic PDT for early stage central type squamous cell carcinoma was performed by the authors in 1980 for the first time in the world and complete cure was obtained. Since then PDT has been attracted much attention. The photosensitizer and the laser with a specific wavelength are the key point of PDT. Photofrin, a porfimer sodium (Japan Lederle Co. Ltd., Tokyo, Japan) and excimer dye laser (Hamamatsu Photonics Co. Ltd., Hamamatsu, Japan) obtained governmental approval for clinical use in Japan in 1994, which is equivalent to FDA approval in the US. This method is now used clinically in Canada for certain indications and the Netherlands. In the US it is only approved for compassionate use in cancer of the esophagus. A total of more than 3,000 tumors in the various organs have been treated by PDT so far in 32 countries. The most frequently treated organ is the lung, with 808 cases. A phase II clinical study of PDT for early stage cancer cases of the lung, esophagus, stomach, cervix and urinary bladder was performed in 15 institutions from 1989 to early 1992. The results showed that PDT can successfully treat more than at least 50% of patients with early stage cancer cancer that would otherwise have to be treated by surgery and this means that

  2. 5-ALA-assisted photodynamic therapy in canine prostates

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Muschter, Rolf; Knuechel, Ruth; Steinbach, Pia; Perlmutter, Aaron P.; Martin, Thomas; Baumgartner, Reinhold

    1996-05-01

    Photodynamic therapy (PDT) and interstitial thermotherapy are well known treatment modalities in urology. The approach of this study is to combine both to achieve a selective treatment procedure for benign prostatic hyperplasia (BPH) and prostate carcinoma. Measurements of thy in-vivo pharmacokinetics of 5-ALA induced porphyrins by means of fiber assisted ratiofluorometry showed a maximum fluorescence intensity at time intervals of 3 - 4 h post administration. Fluorescence microscopy at that time showed bright fluorescence in epithelial cells while in the stroma fluorescence could not be observed. Interstitial PDT using a 635-nm dye laser with an irradiation of 50 J/cm2 resulted in a nonthermic hemorrhagic lesion. The lesion size did not change significantly when an irradiation of 100 J/cm2 was used. The usefulness of PDT for treating BPH as well as prostate carcinoma has to be proven in further studies.

  3. Photodynamic therapy in the management of acne: an update.

    PubMed

    Elsaie, Mohamed L; Choudhary, Sonal

    2010-09-01

    Acne, one of the most common dermatological diseases, is characterized by inflammatory and noninflammatory lesions that may progress to scars. Starting from pubertal age groups, it can affect adults in the age group 35-40 or more. The conventional therapies for treatment of acne are facing roadblocks because of the antibiotic resistance developing against Propionibacterium acnes. This has led to trying new therapies, of which photodynamic therapy (PDT) seems to be the one under intensive study. Promising results have been observed with PDT use in acne treatment, but it still has some more way to go to acquire the FDA approval for use in acne treatment. This is a review of the literature of use of PDT in treatment of acne, providing a starting point for dermatologists seeking to treat their patients with acne safely and effectively with this new method.

  4. Photodynamic therapy of Cervical Intraepithelial Neoplasia (CIN) high grade

    NASA Astrophysics Data System (ADS)

    Carbinatto, Fernanda M.; Inada, Natalia M.; Lombardi, Welington; da Silva, Eduardo V.; Belotto, Renata; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-02-01

    Cervical intraepithelial neoplasia (CIN) is the precursor of invasive cervical cancer and associated with human papillomavirus (HPV) infection. Photodynamic therapy (PDT) is a technique that has been used for the treatment of tumors. PDT is based on the accumulation of a photosensitizer in target cells that will generate cytotoxic reactive oxygen species upon illumination, inducing the death of abnormal tissue and PDT with less damaging to normal tissues than surgery, radiation, or chemotherapy and seems to be a promising alternative procedure for CIN treatment. The CIN high grades (II and III) presents potential indications for PDT due the success of PDT for CIN low grade treatment. The patients with CIN high grade that were treated with new clinic protocol shows lesion regression to CIN low grade 60 days after the treatment. The new clinical protocol using for treatment of CIN high grade shows great potential to become a public health technique.

  5. Photodynamic properties of vital dyes for vitreoretinal surgery.

    PubMed

    Brockmann, Tobias; Steger, Claudia; Dawczynski, Jens

    2012-01-01

    The purpose of this study was to evaluate photodynamic properties of indocyanine green (ICG), brilliant blue G (BBG) and trypan blue (TB) as currently used vital dyes for chromovitrectomy. Under consideration of intraoperative illumination intensities and dye concentrations, a simulative in vitro investigation was set up. Therefore, standardized dilutions of original ICG, BBG and TB vials were irradiated at a wavelength of 366 nm with an intensity of 14 µW/cm2 between 0 and 48 h. After this, all samples were measured spectroscopically in a 220- to 750-nm bandwidth. Analyzing the vital dyes over the time course, an exponential photolysis was observed for ICG, whereas BBG and TB presented photostable properties. Regarding ICG, 5% of the concentration was degraded to toxic metabolites every 20 min. For this reason, our study provides evidence that intraocular dye concentrations and modern endoillumination systems alone cannot fully prevent ICG photodegradation.

  6. Photodynamic therapy as an innovative treatment for malignant pleural mesothelioma.

    PubMed

    Friedberg, Joseph S

    2009-01-01

    Photodynamic therapy (PDT) of the pleura is an experimental treatment aimed at eradicating residual microscopic disease after macroscopic complete resection of malignant pleural mesothelioma (MPM) by means of intracavitary administration. A light-based treatment, PDT consists of 3 components: a nontoxic photosensitizing compound, oxygen, and visible light. The treatment is FDA-approved for several oncological targets, but remains experimental for MPM. PDT can be combined with lung-sparing pleurectomy and decortication and does not preclude other treatments such as adjuvant chemotherapy and/or radiation therapy. Additionally, PDT appears to bolster an immunologic effect by rendering the cancer cells that have been destroyed by the light-activated photosensitizer more presentable to the immune system. Local control and survival rates have been sufficiently rewarding to merit ongoing development of this combination of surgical technique and PDT.

  7. TOPICAL REVIEW: The physics, biophysics and technology of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wilson, Brian C.; Patterson, Michael S.

    2008-05-01

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components—light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.

  8. Photodynamic Detection of Peritoneal Metastases Using 5-Aminolevulinic Acid (ALA).

    PubMed

    Yonemura, Yutaka; Endo, Yoshio; Canbay, Emel; Liu, Yang; Ishibashi, Haruaki; Mizumoto, Akiyoshi; Hirano, Masamitu; Imazato, Yuuki; Takao, Nobuyuki; Ichinose, Masumi; Noguchi, Kousuke; Li, Yan; Wakama, Satoshi; Yamada, Kazuhiro; Hatano, Koutarou; Shintani, Hiroshi; Yoshitake, Hiroyuki; Ogura, Shun-Ichiro

    2017-03-01

    In the past, peritoneal metastasis (PM) was considered as a terminal stage of cancer. From the early 1990s, however, a new comprehensive treatment consisting of cytoreductive surgery and perioperative chemotherapy has been established to improve long-term survival for selected patients with PM. Among prognostic indicators after the treatment, completeness of cytoreduction is the most independent predictors of survival. However, peritoneal recurrence is a main cause of recurrence, even after complete cytoreduction. As a cause of peritoneal recurrence, small PM may be overlooked at the time of cytoreductive surgery (CRS), therefore, development of a new method to detect small PM is desired. Recently, photodynamic diagnosis (PDD) was developed for detection of PM. The objectives of this review were to evaluate whether PDD using 5-aminolevulinic acid (ALA) could improve detection of small PM.

  9. Photodynamic dye adsorption and release performance of natural zeolite.

    PubMed

    Hovhannisyan, Vladimir; Dong, Chen-Yuan; Chen, Shean-Jen

    2017-03-31

    Clinoptilolite type of zeolite (CZ) is a promising material for biomedicine and pharmaceutics due to its non-toxicity, thermal stability, expanded surface area, and exceptional ability to adsorb various atoms and organic molecules into micropores. Using multiphoton microscopy, we demonstrated that individual CZ particles produce two-photon excited luminescence and second harmonic generation signal at femtosecond laser excitation, and adsorb photo-dynamically active dyes such as hypericin and methylene blue. Furthermore, the release of hypericin from CZ pores in the presence of biomolecules is shown, and CZ can be considered as an effective material for drug delivery and controlled release in biological systems. The results may open new perspectives in application of CZ in biomedical imaging, and introducing of the optical approaches into the clinical environment.

  10. Blue laser system for photo-dynamic therapy

    NASA Astrophysics Data System (ADS)

    Dabu, R.; Carstocea, B.; Blanaru, C.; Pacala, O.; Stratan, A.; Ursu, D.; Stegaru, F.

    2007-03-01

    A blue laser system for eye diseases (age related macular degeneration, sub-retinal neo-vascularisation in myopia and presumed ocular histoplasmosis syndrome - POHS) photo-dynamic therapy, based on riboflavin as photosensitive substance, has been developed. A CW diode laser at 445 nm wavelength was coupled through an opto-mechanical system to the viewing path of a bio-microscope. The laser beam power in the irradiated area is adjustable between 1 mW and 40 mW, in a spot of 3-5 mm diameter. The irradiation time can be programmed in the range of 1-19 minutes. Currently, the laser system is under clinic tests.

  11. Current evidence and applications of photodynamic therapy in dermatology

    PubMed Central

    Wan, Marilyn T; Lin, Jennifer Y

    2014-01-01

    In photodynamic therapy (PDT) a photosensitizer – a molecule that is activated by light – is administered and exposed to a light source. This leads both to destruction of cells targeted by the particular type of photosensitizer, and immunomodulation. Given the ease with which photosensitizers and light can be delivered to the skin, it should come as no surprise that PDT is an increasingly utilized therapeutic in dermatology. PDT is used commonly to treat precancerous cells, sun-damaged skin, and acne. It has reportedly also been used to treat other conditions including inflammatory disorders and cutaneous infections. This review discusses the principles behind how PDT is used in dermatology, as well as evidence for current applications of PDT. PMID:24899818

  12. Photodynamic therapy of cancer with the photosensitizer PHOTOGEM

    NASA Astrophysics Data System (ADS)

    Sokolov, Victor V.; Chissov, Valery I.; Filonenko, E. V.; Sukhin, Garry M.; Yakubovskaya, Raisa I.; Belous, T. A.; Zharkova, Natalia N.; Kozlov, Dmitrij N.; Smirnov, V. V.

    1995-01-01

    The first clinical trials of photodynamic therapy (PDT) in Russia were started in P. A. Hertzen Moscow Research Oncology Institute in October of 1992. Up to now, 61 patients with primary or recurrent malignant tumors of the larynx (3), trachea (1), bronchus (11), nose (1), mouth (3), esophagus (12), vagina and uterine cervix (3), bladder (2), skin (6), and cutaneous and subcutaneous metastases of breast cancer and melanomas (6) have been treated by PDT with the photosensitizer Photogem. At least partial tumor response was observed in all of the cases, but complete remission indicating no evident tumors has been reached in 51% of the cases. Among 29 patients with early and first stage cancer 14 patients had multifocal tumors. Complete remission of tumors in this group reached 86%.

  13. Photodynamic therapy for the treatment of actinic cheilitis.

    PubMed

    Kodama, Makiko; Watanabe, Daisuke; Akita, Yoichi; Tamada, Yasuhiko; Matsumoto, Yoshinari

    2007-10-01

    Although actinic cheilitis is a common disease, it should be treated carefully because it can undergo malignant transformation. We report a case of actinic cheilitis treated with photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA), with satisfactory outcome in both clinical and pathological aspects. Actinic cheilitis is a pathologic condition affecting mainly the lower lip caused by long-term exposure of the lips to the UV radiation in sunlight. Analogous to actinic keratosis of the skin, actinic cheilitis is considered as a precancerous lesion and it may develop into squamous cell carcinoma. We report a case of actinic cheilitis treated with PDT using ALA, with satisfactory outcome in both clinical and pathological aspects.

  14. Photodynamic therapy: treatment of choice for actinic cheilitis?

    PubMed

    Rossi, R; Assad, G Bani; Buggiani, G; Lotti, T

    2008-01-01

    The major therapeutic approaches (5-fluorouracil, imiquimod, vermilionectomy, and CO(2) Laser ablation) for actinic cheilitis are aimed at avoiding and preventing a malignant transformation into invasive squamous cell carcinoma via destruction/removal of the damaged epithelium. Recently, photodynamic therapy (PDT) has been introduced as a therapeutic modality for epithelial skin tumors, with good efficacy/safety profile and good cosmetic results. Regarding actinic cheilitis, PDT could be considered a new therapeutic option? The target of our study was to evaluate the efficacy and tolerability of PDT in actinic cheilitis, using a methyl-ester of aminolevulinic acid (MAL) as topical photosensitizing agent and controlled the effects of the therapy for a 30-month follow-up period. MAL-PDT seems to be the ideal treatment for actinic cheilitis and other actinic keratosis, especially on exposed parts such as the face, joining tolerability and clinical efficacy with an excellent cosmetic outcome.

  15. Fat tissue staining and photodynamic/photothermal effects

    NASA Astrophysics Data System (ADS)

    Tuchin, Valery V.; Altshuler, Gregory B.; Yanina, Irina Yu.; Kochubey, Vyacheslav I.; Simonenko, Georgy V.

    2010-02-01

    Cellulite is considered as a disease of the subcutaneous fat layer that appears mostly in women and consists of changes in fat cell accumulation together with disturbed lymphatic drainage, affecting the external appearance of the skin. The photodynamic and selective photothermal treatments may provide reduction the volume of regional or sitespecific accumulations of subcutaneous adipose tissue on the cellular level. We hypothesize that light irradiation of stained fat tissue at selected temperature leads to fat cell lypolytic activity (the enhancement of lipolysis of cell triglycerides due to expression of lipase activity and cell release of free fat acids (FFAs) due to temporal cell membrane porosity), and cell killing due to apoptosis caused by the induced fat cell stress and/or limited cell necrosis.

  16. Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kempa, Marta; Kozub, Patrycja; Kimball, Joseph; Rojkiewicz, Marcin; Kuś, Piotr; Gryczyński, Zugmunt; Ratuszna, Alicja

    2015-07-01

    This research evaluated the suitability of synthetic photosensitizers for their use as potential photosensitizers in photodynamic therapy using steady state and time-resolved spectroscopic techniques. Four tetraphenylporphyrin derivatives were studied in ethanol and dimethyl sulfoxide. The spectroscopic properties namely electronic absorption and emission spectra, ability to generate singlet oxygen, lifetimes of the triplet state, as well as their fluorescence quantum yield were determined. Also time-correlated single photon counting method was used to precisely determine fluorescence lifetimes for all four compounds. Tested compounds exhibit high generation of singlet oxygen, low generation of fluorescence and they are chemical stable during irradiation. The studies show that the tested porphyrins satisfy the conditions of a potential drug in terms of physicochemical properties.

  17. The bystander effect in photodynamic inactivation of cells.

    PubMed

    Dahle, J; Bagdonas, S; Kaalhus, O; Olsen, G; Steen, H B; Moan, J

    2000-07-26

    Treatment of MDCK II cells with the lipophilic photosensitizer tetra(3-hydroxyphenyl)porphyrin and light was found to induce a rapid apoptotic response in a large fraction of the cells. Furthermore, the distribution of apoptotic cells in microcolonies of eight cells was found to be different from the binomial distribution, indicating that the cells are not inactivated independently, but that a bystander effect is involved in cell killing by photodynamic treatment. The observation of a bystander effect disagrees with the common view that cells are inactivated only by direct damage and indicates that communication between cells in a colony plays a role in photosensitized induction of apoptosis. The degree of bystander effect was higher for cells dying by necrosis than for cell dying by apoptosis.

  18. Effects of verteporfin-mediated photodynamic therapy on endothelial cells

    NASA Astrophysics Data System (ADS)

    Kraus, Daniel; Chen, Bin

    2015-03-01

    Photodynamic therapy (PDT) is a treatment modality in which cytotoxic reactive oxygen species are generated from oxygen and other biological molecules when a photosensitizer is activated by light. PDT has been approved for the treatment of cancers and age-related macular degeneration (AMD) due to its effectiveness in cell killing and manageable normal tissue complications. In this study, we characterized the effects of verteporfin-PDT on SVEC mouse endothelial cells and determined its underlying cell death mechanisms. We found that verteporfin was primarily localized in mitochondria and endoplasmic reticulum (ER) in SVEC cells. Light treatment of photosensitized SVEC cells induced a rapid onset of cell apoptosis. In addition to significant structural damages to mitochondria and ER, verteporfin-PDT caused substantial degradation of ER signaling molecules, suggesting ER stress. These results demonstrate that verteporfin-PDT triggered SVEC cell apoptosis by both mitochondrial and ER stress pathways. Results from this study may lead to novel therapeutic approaches to enhance PDT outcome.

  19. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles

    PubMed Central

    Bucharskaya, Alla; Maslyakova, Galina; Terentyuk, Georgy; Yakunin, Alexander; Avetisyan, Yuri; Bibikova, Olga; Tuchina, Elena; Khlebtsov, Boris; Khlebtsov, Nikolai; Tuchin, Valery

    2016-01-01

    Gold nanoparticles (AuNPs) of different size and shape are widely used as photosensitizers for cancer diagnostics and plasmonic photothermal (PPT)/photodynamic (PDT) therapy, as nanocarriers for drug delivery and laser-mediated pathogen killing, even the underlying mechanisms of treatment effects remain poorly understood. There is a need in analyzing and improving the ways to increase accumulation of AuNP in tumors and other crucial steps in interaction of AuNPs with laser light and tissues. In this review, we summarize our recent theoretical, experimental, and pre-clinical results on light activated interaction of AuNPs with tissues and cells. Specifically, we discuss a combined PPT/PDT treatment of tumors and killing of pathogen bacteria with gold-based nanocomposites and atomic clusters, cell optoporation, and theoretical simulations of nanoparticle-mediated laser heating of tissues and cells. PMID:27517913

  20. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  1. Antifungal effect of TONS504-photodynamic therapy on Malassezia furfur.

    PubMed

    Takahashi, Hidetoshi; Nakajima, Susumu; Sakata, Isao; Iizuka, Hajime

    2014-10-01

    Numerous reports indicate therapeutic efficacy of photodynamic therapy (PDT) against skin tumors, acne and for skin rejuvenation. However, few reports exist regarding its efficacy for fungal skin diseases. In order to determine the antifungal effect, PDT was applied on Malassezia furfur. M. furfur was cultured in the presence of a novel cationic photosensitizer, TONS504, and was irradiated with a 670-nm diode laser. TONS504-PDT showed a significant antifungal effect against M. furfur. The effect was irradiation dose- and TONS504 concentration-dependent and the maximal effect was observed at 100 J/cm2 and 1 μg/mL, respectively. In conclusion, TONS504-PDT showed antifungal effect against M. furfur in vitro, and may be a new therapeutic modality for M. furfur-related skin disorders.

  2. Cationic porphycenes as potential photosensitizers for antimicrobial photodynamic therapy

    PubMed Central

    Ragàs, Xavier; Sánchez-García, David; Ruiz-González, Rubén; Dai, Tianhong; Agut, Montserrat; Hamblin, Michael R.; Nonell, Santi

    2010-01-01

    Structures of typical photosensitizers used in antimicrobial photodynamic therapy are based on porphyrins, phthalocyanines and phenothiazinium salts, with cationic charges at physiological pH values. However derivatives of the porphycene macrocycle (a structural isomer of porphyrin) have barely been investigated as antimicrobial agents. Therefore, we report the synthesis of the first tricationic water-soluble porphycene and its basic photochemical properties. We successfully tested it for in vitro photoinactivation of different Gram-positive and Gram-negative bacteria, as well as a fungal species (Candida) in a drug-dose and light-dose dependent manner. We also used the cationic porphycene in vivo to treat an infection model comprising mouse 3rd degree burns infected with a bioluminescent methicillin-resistant Staphylococcus aureus strain. There was a 2.6-log10 reduction (p < 0.001) of the bacterial bioluminescence for the PDT-treated group after irradiation with 180 J·cm-2 of red light. PMID:20936792

  3. Photodynamic therapy in dermatology: past, present, and future

    NASA Astrophysics Data System (ADS)

    Darlenski, Razvigor; Fluhr, Joachim W.

    2013-06-01

    Photodynamic therapy (PDT) is a noninvasive therapeutic method first introduced in the field of dermatology. It is mainly used for the treatment of precancerous and superficial malignant skin tumors. Today PDT finds new applications not only for nononcologic dermatoses but also in the field of other medical specialties such as otorhinolaryngology, ophthalmology, neurology, gastroenterology, and urology. We are witnessing a broadening of the spectrum of skin diseases that are treated by PDT. Since its introduction, PDT protocol has evolved significantly in terms of increasing method efficacy and patient safety. In this era of evidence-based medicine, it is expected that much effort will be put into creating a worldwide accepted consensus on PDT. A review on the current knowledge of PDT is given, and the historical basis of the method's evolution since its introduction in the 1900s is presented. At the end, future challenges of PDT are focused on discussing gaps that exist for research in the field.

  4. Photodynamic therapy in the treatment of subfoveal choroidal neovascularisation.

    PubMed

    Harding, S

    2001-06-01

    Subfoveal choroidal neovascularisation (CNV) is a major cause of visual disability, with age-related macular degeneration (AMD) the commonest cause. Confluent laser to CNV significantly reduces severe visual loss but the profound visual loss after treatment of subfoveal lesions and the high recurrence rate has meant its restriction to extrafoveal lesions. Developed initially as a treatment for cancers, photodynamic therapy (PDT) has been shown to successfully close CNV in the eye. Large international randomised placebo-controlled studies of the safety and efficacy of PDT with verteporfin are under way. The Treatment of Age-related Macular Degeneration with Photodynamic Therapy (TAP) study has demonstrated a reduction of visual loss in treated patients with any classic CNV. Subgroup analysis showed a greater benefit in predominantly classic lesions (p < 0.001, NNT: 3.6), increasing further for lesions with no occult component, roughly equivalent to pure classic (p < 0.01, NNT: 2.2) A significant benefit at 12 months has been shown in patients with CNV secondary to myopia in the Verteporfin in AMD (VIP) trial, but no benefit in pure occult lesions. Further research is required to establish cost-effectiveness and appropriate referral patterns in the UK and optimise treatment strategies. Further data are awaited from TAP/VIP. At present verteporfin PDT is indicated in eyes with subfoveal predominantly classic CNV secondary to AMD with visual acuity of 6/60 or better and lesions < 5,400 microm in diameter. Juxtafoveal lesions meeting the above criteria and CNV secondary to pathological myopia should also be considered for treatment. The efficacy of treatment of larger lesions, juxtapapillary CNV, occult/no classic with high-risk characteristics (HRC) and CNV from other causes remains unclear. The treatment of minimally classic lesions and those with occult/no classic without HRC is not indicated.

  5. Therapeutic effects of topical 5-aminolevulinic acid photodynamic therapy

    PubMed Central

    Hu, Yin-E; Dai, Shu-Fang; Wang, Bin; Qu, Wei; Gao, Jun-Ling

    2016-01-01

    Objective: To evaluate the therapeutic effects of combined 5-aminolevulinic acid (ALA) and photodynamic therapy (PDT) on genital warts and the safety. Methods: One hundred ten patients with genital warts who were treated in our hospital from June 2013 to October 2014 were selected. The warts and affected parts were disinfected with benzalkonium bromide solution, and the warts were covered with absorbent cotton that had already been added freshly prepared 20% ALA solution, packaged and fixed. Then they were wet-dressed in dark, into which ALA solution was added according to the proportion of 5:3:2 every 30 minutes for three consecutive hours. Afterwards, the warts were illuminated by using photodynamic laser apparatus. The clinical outcomes, adverse reactions and recurrence rates were observed. Results: Genital warts were relieved in 107 out of the 110 cases (cure rate: 97.3%). Male patients had significantly better treatment outcomes at the urethral orifice than those in other affected parts. In the 107 patients, the cure rate of male patients was 98.8%, and they were cured after being treated four times. In contrast, female patients, who were cured after 5 times of treatment, had the cure rate of 91.7%. Their cure rates were similar (χ2=0, P>0.05), but the males were cured after significantly fewer times of treatment than the females (t=-7.432, P<0.05). Five patients suffered from mild tingling or burning sensation upon dressing at the urethral orifice, and the others were all free from systemic adverse reactions. After illumination, a small portion of the patients had mildly red, swelling, painful affected parts, with mild edema that almost disappeared within three days. Three patients relapsed at the urethral orifice and were then cured after further treatment. Conclusion: ALA-PDT can treat genital warts safely with high cure rate and low recurrence rate, particularly working for those of males at the urethral orifice. PMID:27648048

  6. Dendritic nanoconjugates of photosensitizer for targeted photodynamic therapy.

    PubMed

    Yuan, Ahu; Yang, Bing; Wu, Jinhui; Hu, Yiqiao; Ming, Xin

    2015-07-01

    Application of photodynamic therapy for treating cancers has been restrained by suboptimal delivery of photosensitizers to cancer cells. Nanoparticle (NP)-based delivery has become an important strategy to improve tumor delivery of photosensitizers; however, the success is still limited. One problem for many NPs is poor penetration into tumors, and thus the photokilling is not complete. We aimed to use chemical conjugation method to engineer small NPs for superior cancer cell uptake and tumor penetration. Thus, Chlorin e6 (Ce6) was covalently conjugated to PAMAM dendrimer (generation 7.0) that was also modified by tumor-targeting RGD peptide. With multiple Ce6 molecules in a single nanoconjugate molecule, the resultant targeted nanoconjugates showed uniform and monodispersed size distribution with a diameter of 28 nm. The singlet oxygen generation efficiency and fluorescence intensity of the nanoconjugates in aqueous media were significantly higher than free Ce6. Targeted nanoconjugates demonstrated approximately 16-fold enhancement in receptor-specific cellular delivery of Ce6 into integrin-expressing A375 cells compared to free Ce6 and thus were able to cause massive cell killing at low nanomolar concentrations under photo-irradiation. In contrast, they did not cause significant toxicity up to 2 μM in dark. Due to their small size, the targeted nanoconjugates could penetrate deeply into tumor spheroids and produced strong photo-toxicity in this 3-D tumor model. As a result of their great cellular delivery, small size, and lack of dark cytotoxicity, the nanoconjugates may provide an effective tool for targeted photodynamic therapy of solid tumors.

  7. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    PubMed Central

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  8. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  9. Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments.

    PubMed

    Garland, Martin J; Cassidy, Corona M; Woolfson, David; Donnelly, Ryan F

    2009-07-01

    Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) are techniques that combine the effects of visible light irradiation with subsequent biochemical events that arise from the presence of a photosensitizing drug (possessing no dark toxicity) to cause destruction of selected cells. Despite its still widespread clinical use, Photofrin(®) has several drawbacks that limit its general clinical use. Consequently, there has been extensive research into the design of improved alternative photosensitizers aimed at overcoming these drawbacks. While there are many review articles on the subject of PDT and PACT, these have focused on the photosensitizers that have been used clinically, with little emphasis placed on how the chemical aspects of the molecule can affect their efficacy as PDT agents. Indeed, many of the PDT/PACT agents used clinically may not even be the most appropriate within a given class. As such, this review aims to provide a better understanding of the factors that have been investigated, while aiming at improving the efficacy of a molecule intended to be used as a photosensitizer. Recent publications, spanning the last 5 years, concerning the design, synthesis and clinical usage of photosensitizers for application in PDT and PACT are reviewed, including 5-aminolevulinic acid, porphyrins, chlorins, bacteriochlorins, texaphyrins, phthalocyanines and porphycenes. It has been shown that there are many important considerations when designing a potential PDT/PACT agent, including the influence of added groups on the lipophilicity of the molecule, the positioning and nature of these added groups within the molecule, the presence of a central metal ion and the number of charges that the molecule possesses. The extensive ongoing research within the field has led to the identification of a number of potential lead molecules for application in PDT/PACT. The development of the second-generation photosensitizers, possessing shorter periods of

  10. Comparative photodynamic therapy study using two phthalocyanine derivatives

    PubMed Central

    YSLAS, EDITH INÉS; MILLA, LAURA NATALIA; ROMANINI, SILVIA; DURANTINI, EDGARDO NÉSTOR; BERTUZZI, MABEL; RIVAROLA, VIVIANA ALICIA

    2010-01-01

    In the present study, a comparative photodynamic therapy (PDT) study was performed using the phthalocyanine derivatives, ZnPc(OCH3)4 and ZnPc(CF3)4, in a mouse tumor model, under identical experimental procedures. We studied the ablation of tumors induced by PDT. The end-point was to compare the photodynamic efficacy of ZnPc(OCH3)4 and ZnPc(CF3)4. ZnPc(OCH3)4 and ZnPc(CF3)4 were administered intraperitoneally at a dose of 0.2 mg/kg body weight. The injections of drugs were carried out in Balb/c mice bearing subcutaneously inoculated LM2 mouse mammary adenocarcinoma. Histological examination and serum biochemical parameters were used to evaluate hepatic and renal toxicity and function. Phototherapeutic studies were achieved employing a light intensity of 210 J/cm2. After PDT, tumoral regression analyses were carried out, and the degree of tumor cell death was measured utilizing the vital stain Evan’s blue. In this pilot study, we revealed that the cytotoxic effect of ZnPc(OCH3)4 after PDT led to a higher success rate compared to ZnPc(CF3)4-PDT when both were intraperitoneally injectioned. Both phthalocynanine derivatives were able to induce ablation in the tumors. In summary, these results demonstrate the feasibility of ZnPc(OCH3)4- or ZnPc(CF3)4-PDT and its potential as a treatment for small tumors. PMID:22993594

  11. Glucose modulates antimicrobial photodynamic inactivation of Candida albicans in biofilms.

    PubMed

    Suzuki, Luis Cláudio; Kato, Ilka Tiemy; Prates, Renato Araujo; Sabino, Caetano Padial; Yoshimura, Tania Mateus; Silva, Tamires Oliveira; Ribeiro, Martha Simões

    2017-03-01

    Candida albicans biofilm is a main cause of infections associated with medical devices such as catheters, contact lens and artificial joint prosthesis. The current treatment comprises antifungal chemotherapy that presents low success rates. Photodynamic inactivation (PDI) involves the combination of a photosensitizing compound (PS) and light to generate oxidative stress that has demonstrated effective antimicrobial activity against a broad-spectrum of pathogens, including C. albicans. This fungus senses glucose inducing an upregulation of membrane transporters that can facilitate PS uptake into the cell. The aim of this study was to evaluate the effects of glucose on methylene blue (MB) uptake and its influence on PDI efficiency when combined to a red LED with central wavelength at λ=660nm. C. albicans biofilms were grown on hydrogel disks. Prior to PDI assays, MB uptake tests were performed with and without glucose-sensitization. In this system, the optimum PS administration was determined as 500μM of MB in contact with the biofilm during 30min before irradiation. Irradiation was performed during 3, 6, 9, 12, 15 and 18min with irradiance of 127.3mW/cm(2). Our results showed that glucose was able to increase MB uptake in C. albicans cells. In addition, PDI without glucose showed a higher viability reduction until 6min; after 9min, glucose group demonstrated a significant decrease in cell viability when compared to glucose-free group. Taken together, our data suggest that glucose is capable to enhance MB uptake and modulate photodynamic inactivation of C. albicans biofilm.

  12. Phenylthio-substituted phthalocyanines as new photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Meerovich, Igor G.; Derkacheva, Valentina M.; Meerovich, Gennady A.; Oborotova, Natalia A.; Smirnova, Zoya S.; Polozkova, Alevtina P.; Kubasova, Irina Yu.; Lukyanets, Evgeny A.; Baryshnikov, Anatoly Yu.

    2007-02-01

    Current work is devoted to investigation of tetra-3-phenylthio-tetra-5-t-butylphthalocyanine [(PhS) 4(t-Bu) 4PcH II], aluminium hydroxyde tetra-3-phenylthiophthalocyanine [(PhS) 4PcAlOH] and zinc tetra-3-phenylthiophthalocyanine [(PhS) 4PcZn] as potential photosensitizers of near-infrared range. Investigations were performed on F I mice bearing Erlich tumor. Photosensitizers were administered intravenously in liposomal form at doses of 4-10 mg/kg. Dynamic and selectivity of sensitizers' accumulation in tumor were estimated in vivo from fluorescence and absorption spectra of sensitized tissue. Photosensitizers have shown high selectivity of accumulation in tumor comparing to normal tissue of mice. Maxima of selectivity for (PhS) 4(t-Bu) 4PcH II, (PhS) 4PcZn and (PhS) 4PcAlOH achieve the values up to 2.5:1, 5:1 and 8:1 respectively. All photosensitizers completely clear from the normal tissue in 7-8 days. For PDT investigations tumors were irradiated using 732 nm laser with power density of 100-500 mW/cm2 and light dose density up to 400 J/cm2. The photodynamic efficiency was estimated using the parameter of tumor growth inhibition (TGI). All photosensitizers had shown high photodynamic efficiency of relatively large tumors. PDT using (PhS) 4PcAlOH and (PhS) 4(t-Bu) 4PcH II caused pronounced TGI exceeding 80%. Using (PhS) 4PcZn caused moderate TGI of 60%. Investigations have shown that liposomal forms of phenylthiosubstituted phthalocyanine derivatives may be used to develop new efficient photosensitizers for PDT.

  13. Antimicrobial photodynamic therapy to kill Gram-negative bacteria.

    PubMed

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-08-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photo-stimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl₂. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT.

  14. The photodynamic antibacterial effects of silicon phthalocyanine (Pc) 4.

    PubMed

    Dimaano, Matthew L; Rozario, Chantal; Nerandzic, Michelle M; Donskey, Curtis J; Lam, Minh; Baron, Elma D

    2015-04-08

    The emergence of antibiotic-resistant strains in facultative anaerobic Gram-positive coccal bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), is a global health issue. Typically, MRSA strains are found associated with institutions like hospitals but recent data suggest that they are becoming more prevalent in community-acquired infections. It is thought that the incidence and prevalence of bacterial infections will continue to increase as (a) more frequent use of broad-spectrum antibiotics and immunosuppressive medications; (b) increased number of invasive medical procedures; and (c) higher incidence of neutropenia and HIV infections. Therefore, more optimal treatments, such as photodynamic therapy (PDT), are warranted. PDT requires the interaction of light, a photosensitizing agent, and molecular oxygen to induce cytotoxic effects. In this study, we investigated the efficacy and characterized the mechanism of cytotoxicity induced by photodynamic therapy sensitized by silicon phthalocyanine (Pc) 4 on (a) methicillin-sensitive Staphylococcus aureus (MSSA) (ATCC 25923); (b) community acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) (ATCC 43300); and (c) hospital acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) (PFGE type 300). Our data include confocal image analysis, which confirmed that Pc 4 is taken up by all S. aureus strains, and viable cell recovery assay, which showed that concentrations as low as 1.0 μM Pc 4 incubated for 3 h at 37 °C followed by light at 2.0 J/cm2 can reduce cell survival by 2-5 logs. These results are encouraging, but before PDT can be utilized as an alternative treatment for eradicating resistant strains, we must first characterize the mechanism of cell death that Pc 4-based PDT employs in eliminating these pathogens.

  15. The Photodynamic Antibacterial Effects of Silicon Phthalocyanine (Pc) 4

    PubMed Central

    Dimaano, Matthew L.; Rozario, Chantal; Nerandzic, Michelle M.; Donskey, Curtis J.; Lam, Minh; Baron, Elma D.

    2015-01-01

    The emergence of antibiotic-resistant strains in facultative anaerobic Gram-positive coccal bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), is a global health issue. Typically, MRSA strains are found associated with institutions like hospitals but recent data suggest that they are becoming more prevalent in community-acquired infections. It is thought that the incidence and prevalence of bacterial infections will continue to increase as (a) more frequent use of broad-spectrum antibiotics and immunosuppressive medications; (b) increased number of invasive medical procedures; and (c) higher incidence of neutropenia and HIV infections. Therefore, more optimal treatments, such as photodynamic therapy (PDT), are warranted. PDT requires the interaction of light, a photosensitizing agent, and molecular oxygen to induce cytotoxic effects. In this study, we investigated the efficacy and characterized the mechanism of cytotoxicity induced by photodynamic therapy sensitized by silicon phthalocyanine (Pc) 4 on (a) methicillin-sensitive Staphylococcus aureus (MSSA) (ATCC 25923); (b) community acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) (ATCC 43300); and (c) hospital acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) (PFGE type 300). Our data include confocal image analysis, which confirmed that Pc 4 is taken up by all S. aureus strains, and viable cell recovery assay, which showed that concentrations as low as 1.0 μM Pc 4 incubated for 3 h at 37 °C followed by light at 2.0 J/cm2 can reduce cell survival by 2–5 logs. These results are encouraging, but before PDT can be utilized as an alternative treatment for eradicating resistant strains, we must first characterize the mechanism of cell death that Pc 4-based PDT employs in eliminating these pathogens. PMID:25856680

  16. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  17. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2010-10-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  18. Universal financial protection through National Health Insurance: a stakeholder analysis of the proposed one-time premium payment policy in Ghana.

    PubMed

    Abiiro, Gilbert Abotisem; McIntyre, Di

    2013-05-01

    Extending coverage to the informal sector is a key challenge to achieving universal coverage through contributory health insurance schemes. Ghana introduced a mandatory National Health Insurance system in 2004 to provide financial protection for both the formal and informal sectors through a combination of taxes and annual premium payments. As part of its election promise in 2008, the current government (then in opposition) promised to make the payment of premiums 'one-time'. This has been a very controversial policy issue in Ghana. This study sought to contribute to assessing the feasibility of the proposed policy by exploring the understandings of various stakeholders on the policy, their interests or concerns, potential positions, power and influences on it, as well as the general prospects and challenges for its implementation. Data were gathered from a review of relevant documents in the public domain, 28 key informant interviews and six focus group discussions with key stakeholders in Accra and two other districts. The results show that there is a lot of confusion in stakeholders' understanding of the policy issue, and, because of the uncertainties surrounding it, most powerful stakeholders are yet to take clear positions on it. However, stakeholders raised concerns that revolved around issues such as: the meaning of a one-time premium within an insurance scheme context, the affordability of the one-time premium, financing sources and sustainability of the policy, as well as the likely impact of the policy on equity in access to health care. Policy-makers need to clearly explain the meaning of the one-time premium policy and how it will be funded, and critically consider the concerns raised by stakeholders before proceeding with further attempts to implement it. For other countries planning universal coverage reforms, it is important that the terminology of their reforms clearly reflects policy objectives.

  19. Photosensitizers and light sources for photodynamic therapy of the Bowen's disease.

    PubMed

    Calin, M A; Diaconeasa, A; Savastru, D; Tautan, M

    2011-04-01

    Bowen's disease is a neoplastic skin disease, known as squamous cell carcinoma in situ. The treatment options for Bowen's disease are: cryotherapy, curettage, surgery, topical therapy and radiotherapy. In the past recent years, photodynamic therapy was used as a new treatment method. The purpose of this paper is to summarize the results of clinical and research studies with respect to the photodynamic therapy of Bowen's disease. A search of three databases was conducted using specific keywords and explicit inclusion and exclusion criteria for the study of photosensitizers, light sources and their efficacy in photodynamic therapy of Bowen's disease. Two photosensitizers have been used mainly for photodynamic therapy of Bowen's disease therapy: δ-aminolevulinic acid and methyl aminolevulinate. These photosensitizers have been activated with both coherent (lasers) and non-coherent (lamps and LEDs) light sources. Fluence has been set in a large domain (10-240 J/cm(2)) and irradiance was 0.23-100 mW/cm(2). All these light sources have the same efficacy. The high response rates were obtained using methyl aminolevulinate and light emitting diode as light source. These results have demonstrated that photodynamic therapy using methyl aminolevulinate as photosensitizer could be considered as one of the first therapeutic options for Bowen' disease.

  20. Silylation improves the photodynamic activity of tetraphenylporphyrin derivatives in vitro and in vivo.

    PubMed

    Horiuchi, Hiroaki; Hosaka, Masahiro; Mashio, Hiroyuki; Terata, Motoki; Ishida, Shintaro; Kyushin, Soichiro; Okutsu, Tetsuo; Takeuchi, Toshiyuki; Hiratsuka, Hiroshi

    2014-05-12

    The effects of silyl and hydrophilic groups on the photodynamic properties of tetraphenylporphyrin (TPP) derivatives have been studied in vitro and in vivo. Silylation led to an improvement in the quantum yield of singlet oxygen sensitization for both sulfo and carboxy derivatives, although the silylation did not affect other photophysical properties. Silylation also improved the cellular uptake efficiency for both sulfo and carboxy derivatives, enhancing the in vitro photodynamic activity of the photosensitizer in U251 human glioma cells. The carboxy derivative (SiTPPC4 ) was found to show higher cellular uptake efficiency and in vitro photodynamic activity than the corresponding sulfo derivative (SiTPPS4 ), which indicates that the carboxy group is a more promising hydrophilic group than the sulfo group in the silylated porphyrin. SiTPPC4 was found to show high selective accumulation efficiency in tumors, although almost no tumor selectivity was observed for the nonsilylated porphyrin. The concentration of SiTPPC4 in tumors was 13 times higher than that in muscle 12 h after drug administration. We also studied tumor response after treatment and found that silylation enhanced in vivo photodynamic activity significantly. SiTPPC4 shows higher photodynamic activity than NPe6 with white light irradiation.

  1. Oxidative photodamage induced by photodynamic therapy with methoxyphenyl porphyrin derivatives in tumour-bearing rats.

    PubMed

    Daicoviciu, D; Filip, A; Ion, R M; Clichici, S; Decea, N; Muresan, A

    2011-01-01

    The oxidative effects of photodynamic therapy with 5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin (TMP) and Zn-5,10,15,20-tetrakis(4-methoxyphenyl) porphyrin (ZnTMP) were evaluated in Wistar rats subcutaneously inoculated with Walker 256 carcinoma. The animals were irradiated with red light (λ = 685 nm; D = 50 J/cm2; 15 min) 3 h after intra-peritoneal administration of 10 mg/kg body weight of porphyrins. The presence of free radicals in tumours after photodynamic therapy with TMP and ZnTMP revealed by chemiluminescence of luminol attained the highest level at 18 h after irradiation. Lipid peroxides measured as thiobarbituric-reactive substances and protein carbonyls, which are indices of oxidative effects produced on susceptible biomolecules, were significantly increased in tumour tissues of animals 24 h after photodynamic therapy. The levels of thiol groups and total antioxidant capacity in the tumours were decreased. The activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase were also increased in tumour tissues after photodynamic therapy. Increased levels of plasma lipid peroxides as well as changes in the levels of erythrocyte antioxidant enzyme activities suggest possible systemic effects of photodynamic therapy with TMP and ZnTMP.

  2. Expression of potentially lethal damage in Chinese hamster cells exposed to hematoporphyrin derivative photodynamic therapy.

    PubMed

    Gomer, C J; Rucker, N; Ferrario, A; Murphree, A L

    1986-07-01

    Experiments were performed to determine whether the expression and/or repair of potentially lethal damage could be observed in mammalian cells exposed to hemataporphyrin derivative (HPD) photodynamic therapy (PDT). Photodynamic therapy was combined with posttreatment protocols known to inhibit the repair of potentially lethal damage in cells treated with X-rays, ultraviolet radiation, or alkylating agents. Potentiation of lethal damage from photodynamic therapy was induced by hypothermia (4 degrees C) following short (1 h) or extended (16 h) HPD incubation conditions. Caffeine potentiated the lethal effects of PDT only when cells were incubated with HPD for extended time periods. However, 3-aminobenzamide had no effect on the cytotoxic actions of PDT following either short or extended HPD incubations. Recovery from potentially lethal damage expressed by posttreatment hypothermia was complete within 1 h, while recovery from potentially lethal damage expressed by posttreatment caffeine required time periods of up to 24 h. The lack of effect of 3-aminobenzamide on expression of potentially lethal damage following photodynamic therapy may be related to direct inhibition of adenosine diphosphoribose transferase by photodynamic therapy. These results indicate that the expression and repair of potentially lethal damage can be observed in cells treated with PDT and will vary as a function of porphyrin incubation conditions.

  3. Specific inhibition of the ABCG2 transporter could improve the efficacy of photodynamic therapy.

    PubMed

    Bebes, Attila; Nagy, Tünde; Bata-Csörgo, Zsuzsanna; Kemény, Lajos; Dobozy, Attila; Széll, Márta

    2011-11-03

    Photodynamic therapy is based on the selective accumulation of a photosensitizer in tumors, followed by destruction of the target tissue by a light source. Protoporphyrin IX, a well-known photosensitizer, was recently reported as an endogenous substrate for the multidrug transporter ABCG2. We investigated the role of ABCG2 protein in the porphyrin extrusion ability of keratinocytes, with regard to the impact of the specific inhibition of ABCG2 by a non-toxic fumitremorgin C analog, Ko-134, on photodynamic therapy efficacy. We studied the level of porphyrin accumulation in response to delta-aminolevulinic acid pretreatment in proliferating and highly differentiated HaCaT keratinocytes. An in vitro model of photodynamic therapy on HaCaT cells was established with a therapeutically approved narrow-bandwidth red-light source. The porphyrin extrusion ability of HaCaT cells proved to correlate with their ABCG2 expression which was higher in proliferating cells than in differentiated cells. Moreover, the specific inhibition of ABCG2 by Ko-134 enhanced the sensitivity of keratinocytes to photodynamic therapy in vitro. These results suggest that ABCG2 may serve as a target molecule via which to improve the photodynamic therapy of skin lesions: its inhibition by the non-toxic Ko-134 is a promising therapeutic modality.

  4. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy.

    PubMed

    Bhana, Saheel; O'Connor, Ryan; Johnson, Jermaine; Ziebarth, Jesse D; Henderson, Luke; Huang, Xiaohua

    2016-05-01

    Despite the advancement of photodynamic therapy and photothermal therapy, the ability to form compact nanocomplex for combined photodynamic and photothermal cancer therapy under a single near infrared irradiation remains limited. In this work, we prepared an integrated sub-100 nm nanosystem for simultaneous near infrared photodynamic and photothermal cancer therapy. The nanosystem was formed by adsorption of silicon 2,3-naphthalocyanine dihydroxide onto gold nanorod followed by covalent stabilization with alkylthiol linked polyethylene glycol. The effects of alkylthiol chain length on drug loading, release and cell killing efficacy were examined using 6-mercaptohexanoic acid, 11-mercaptoundecanoic acid and 16-mercaptohexadecanoic acid. We found that the loading efficiency of silicon 2,3-naphthalocyanine dihydroxide increased and the release rate decreased with the increase of the alkylthiol chain length. We demonstrated that the combined near infrared photodynamic and photothermal therapy using the silicon 2,3-naphthalocyanine dihydroxide-loaded gold nanorods exhibit superior efficacy in cancer cell destruction as compared to photodynamic therapy and photothermal therapy alone. The nanocomplex stabilized with 16-mercaptohexadecanoic acid linked polyethylene glycol provided highest cell killing efficiency as compared to those stabilized with the other two stabilizers under low drug dose. This new nanosystem has potential to completely eradicate tumors via noninvasive phototherapy, preventing tumor reoccurrence and metastasis.

  5. Investigation of photodynamic activity of water-soluble porphyrins in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.; Ghambaryan, Sona S.; Amelyan, Gayane V.; Ghazaryan, Robert K.; Arsenyan, Flora H.; Gyulkhandanyan, Aram G.

    2006-02-01

    Photodynamic therapy (PDT) is the method of photosensitized tumor treatment. It is based on the photosensitizer (PS) selective accumulation in tumors, its subsequent activation under the light influence and oxygen active form formation that results in tumor destruction. Photodynamic action of some new water-soluble porphyrins was investigated in our laboratory. Dose-dependent effect of these porphyrins was shown on PC-12 murine pheochromocytoma cell line. The results revealed that the efficiency of the investigated porphyrins decreased in the following way: TOEPyP (meso-tetra-(4-N-oxyethylpyridyl)porphyrin) > Zn-TOEPyP > Ag-TOEPyP. It was shown that TOEPyP possessed nearly the same photodynamic activity (LD50) as well-known photosensitizer chlorin e6. These porphyrins have also demonstrated quite high photodynamic activity in vivo. The results were obtained in the experiments on white mice with engrafted C-180 (Croker's sarcoma). Antitumor activity of these porphyrins in the dark was 30-40%, whereas photodynamic activity was 45-60%.

  6. Photodynamic therapy of non-melanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Ikram, M.; Khan, R. U.; Firdous, S.; Atif, M.; Nawaz, M.

    2011-02-01

    In this prospective study duly approved from Institutional Ethics Review Committee for research in medicine, PAEC General Hospital Islamabad, Pakistan, we investigate the efficacy, safety and tolerability along with cosmetic outcome of topical 5-aminolaevulinic acid photodynamic therapy for superficial nonmelanoma skin cancers (NMSCs) and their precursors. Patients with Histological diagnosis of NMSCs and their precursors were assessed for PDT, after photographic documentation of the lesions and written consent, underwent two (2) sessions of PDT in one month (4 weeks) according to standard protocol. A freshly prepared 20% 5-ALA in Unguentum base was applied under occlusive dressing for 4-6 h as Drug Light Interval (DLI) and irradiated with light of 630 nm wavelength from a diode laser at standard dose of 90 J/cm2. Approximately 11% patients reported pain during treatment which was managed in different simple ways. In our study we regularly followed up the patients for gross as well as histopathological response and recurrence free periods during median follow-up of 24 months. Regarding Basal cell carcinomas complete response was observed in 86.2% (25/29), partial response in 10.3% (3/29) and recurrence during first year in 3.5% (1/29) lesions. All the lesions which showed partial response or recurrence were nBCCs. Regarding Actinic Keratosis complete response was observed in 95.3% (20/21), partial response in 4.7% (1/21) while Bowen's disease showed 100% (2/2) results. 81.8% (9/11) Squamous Cell Carcinomas showed complete, 9% (1/11) partial response and 9% (1/11) presented with recurrence after 3 months. We observed excellent and good cosmetic results along with tumor clearance in our study. Treatment sessions were well tolerated with high level of patient's satisfaction and only minor side effects of pain during treatment sessions and inflammatory changes post photodynamic therapy were observed. We concluded that 5-ALA PDT is an effective and safe emerging

  7. Plasmonic Nanoparticle-based Hybrid Photosensitizers with Broadened Excitation Profile for Photodynamic Therapy of Cancer Cells

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Tang, Hong; Zhang, Peng

    2016-10-01

    Photodynamic therapy combining nanotechnology has shown great potential with improved therapeutic efficacy and fewer side effects. Ideal photosensitizers for cancer treatment should both have good singlet oxygen production capability and be excitable by light illuminations with deep tissue penetration. Here we report a type of hybrid photosensitizers consisting of plasmonic silver nanoparticles and photosensitizing molecules, where strong resonance coupling between the two leads to a broadened excitation profile and exceptionally high singlet oxygen production under both visible light and infrared light excitations. Our results indicate that the hybrid photosensitizers display low cytotoxicity without light illumination yet highly enhanced photodynamic inhibition efficacy against Hela cells under a broad spectrum of light illuminations including the near-infrared light, which has great implication in photodynamic therapy of deep-tissue cancers.

  8. Sensitized TiO2 nanocomposites through HMME linkage for photodynamic effects

    NASA Astrophysics Data System (ADS)

    He, Yu Lu; Wang, Sijia; Zhang, Luwei; Xin, Jing; Wang, Jing; Yao, Cuiping; Zhang, Zhenxi; Yang, Chih-Chung

    2016-12-01

    Although TiO2 can be used to effectively generate reactive oxygen species (ROS) for photodynamic application, its absorption in the ultraviolet range makes the excitation harmful to tissue. Based on the concept of a sensitized solar cell, TiO2 nanoparticles (NPs) are sensitized by linking with the photosensitizer, HMME, to form HMME nanocomposites (NCs) for demonstrating the photodynamic effects under the illumination of white light. The HMME NCs of different composition ratios are prepared for maximizing the generation of ROS and optimizing the inactivation effect of KB cells. The material characteristics and the ROS generation capability of the HMME NCs with the optimized combination ratio show their merits in a photodynamic process under white light irradiation. The application of such NCs to KB cell experiments results in a higher inactivation efficiency when compared to pure HMME of the same concentration.

  9. Luminol as in situ light source in meso-tetraphenylporphyrin-mediated photodynamic therapy.

    PubMed

    Huang, L; Chen, Ti-Chen; Lin, Feng-Huei

    2013-01-01

    The light sources used in current photodynamic therapy are mainly lasers or light emitting diodes, which are not suitable to treat large-volume tumors and those located in the inner body. To overcome the limitation, we propose an in situ light source to activate the photosensitizer and kill the cancer cells directly. In the present work, we use luminol as light source and meso-tetraphenylporphyrin as the photosensitizer. According to the results, cells incubated with meso-tetraphenylporphyrin, subsequently triggered by luminol, decreased significantly in assays including cell viability and cytotoxicity, while the other groups showed only minor differences. The flow cytometric and fluorescent microscopy analysis showed similar results as well. In the analysis of cell death pathway, cell shrinkage was noticed after photodynamic therapy treatment, which might refer to apoptosis. Briefly, we suggest that luminol is a promising light source in meso-tetraphenylporphyrin-mediated photodynamic therapy for its greater penetration depth and well matched emission wavelength.

  10. Photodynamic therapy as a treatment for esophageal squamous cell carcinoma in a dog.

    PubMed

    Jacobs, T M; Rosen, G M

    2000-01-01

    Intrathoracic esophageal squamous cell carcinoma was diagnosed by endoscopy in an 11-year-old, castrated male Labrador retriever with signs of regurgitation and weight loss. Photodynamic therapy with photofrin was administered three times under endoscopic guidance over a two-month period. A partial response to photodynamic therapy was supported by a reduction in tumor size (noted on serial endoscopic examinations) and by a return to oral alimentation. The dog was euthanized due to recurrent regurgitation and aspiration pneumonia nine months after the onset of therapy. Necropsy revealed marked local invasiveness and regional lymph node metastasis of the esophageal squamous cell carcinoma in addition to pneumonia. The application of photodynamic therapy in the treatment of canine esophageal squamous cell carcinoma is discussed and compared with the human literature.

  11. Photodynamic inactivation of microorganisms which cause pulmonary diseases with infrared light: an in vitro study

    NASA Astrophysics Data System (ADS)

    Leite, Ilaiáli S.; Geralde, Mariana C.; Salina, Ana C.; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.

    2014-03-01

    Lower respiratory infections are among the leading causes of death worldwide. In this study, it was evaluated the interaction of indocyanine green, a photosensitizer activated by infrared light, with alveolar macrophages and the effectiveness of the photodynamic therapy using this compound against Streptococcus pneumoniae . Initial experiments analyzed indocyanine green toxicity to alveolar macrophages in the dark with different drug concentrations and incubation times, and macrophage viability was obtained with the MTT method. The average of the results showed viability values below 90% for the two highest concentrations. Experiments with Streptococcus pneumoniae showed photodynamic inactivation with 10 μM indocyanine green solution. Further experiments with the bacteria in co-culture with AM will be conducted verifying the photodynamic inactivation effectiveness of the tested drug concentrations and incubation periods using infrared light.

  12. Plasmonic Nanoparticle-based Hybrid Photosensitizers with Broadened Excitation Profile for Photodynamic Therapy of Cancer Cells

    PubMed Central

    Wang, Peng; Tang, Hong; Zhang, Peng

    2016-01-01

    Photodynamic therapy combining nanotechnology has shown great potential with improved therapeutic efficacy and fewer side effects. Ideal photosensitizers for cancer treatment should both have good singlet oxygen production capability and be excitable by light illuminations with deep tissue penetration. Here we report a type of hybrid photosensitizers consisting of plasmonic silver nanoparticles and photosensitizing molecules, where strong resonance coupling between the two leads to a broadened excitation profile and exceptionally high singlet oxygen production under both visible light and infrared light excitations. Our results indicate that the hybrid photosensitizers display low cytotoxicity without light illumination yet highly enhanced photodynamic inhibition efficacy against Hela cells under a broad spectrum of light illuminations including the near-infrared light, which has great implication in photodynamic therapy of deep-tissue cancers. PMID:27725746

  13. In vitro and in vivo evaluation of hypericin for photodynamic therapy of equine sarcoids.

    PubMed

    Martens, A; de Moor, A; Waelkens, E; Merlevede, W; De Witte, P

    2000-01-01

    The therapeutic potential of the photodynamic compound, hypericin, in the treatment of equine sarcoids was evaluated. The in vitro cytotoxicity was assessed using three equine cell lines and the observed phototoxic effect was comparable to that on different highly sensitive human cell lines and significantly influenced by the energy density used although independent of the cell type. The in vivo antitumoural action of photodynamic therapy using hypericin was evaluated on three equine sarcoids in a donkey. Four intratumoural injections were given and the tumours were illuminated daily during 25 days. An 81% reduction in tumour volume was obtained at the end of therapy and 2 months later, a 90% reduction was observed. Further experimental work should be performed, but these results suggest that photodynamic therapy using hypericin has a potential for the non-invasive treatment of equine sarcoids.

  14. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects.

    PubMed

    Wang, Shunhao; Riedinger, Andreas; Li, Hongbo; Fu, Changhui; Liu, Huiyu; Li, Linlin; Liu, Tianlong; Tan, Longfei; Barthel, Markus J; Pugliese, Giammarino; De Donato, Francesco; Scotto D'Abbusco, Marco; Meng, Xianwei; Manna, Liberato; Meng, Huan; Pellegrino, Teresa

    2015-02-24

    Recently, plasmonic copper sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention as materials for photothermal therapy (PTT). Previous reports have correlated photoinduced cell death to the photothermal heat mechanism of these NCs, and no evidence of their photodynamic properties has been reported yet. Herein we have prepared physiologically stable near-infrared (NIR) plasmonic copper sulfide NCs and analyzed their photothermal and photodynamic properties, including therapeutic potential in cultured melanoma cells and a murine melanoma model. Interestingly, we observe that, besides a high PTT efficacy, these copper sulfide NCs additionally possess intrinsic NIR induced photodynamic activity, whereupon they generate high levels of reactive oxygen species. Furthermore, in vitro and in vivo acute toxic responses of copper sulfide NCs were also elicited. This study highlights a mechanism of NIR light induced cancer therapy, which could pave the way toward more effective nanotherapeutics.

  15. Photodynamic antimicrobial effects of bis-indole alkaloid indigo from Indigofera truxillensis Kunth (Leguminosae).

    PubMed

    Andreazza, Nathalia Luiza; de Lourenço, Caroline C; Stefanello, Maria Élida Alves; Atvars, Teresa Dib Zambon; Salvador, Marcos José

    2015-05-01

    Multidrug-resistant microbial infections represent an exponentially growing problem affecting communities worldwide. Photodynamic therapy is a promising treatment based on the combination of light, oxygen, and a photosensitizer that leads to reactive oxygen species production, such as superoxide (type I mechanism) and singlet oxygen (type II mechanism) that cause massive oxidative damage and consequently the host cell death. Indigofera genus has gained considerable interest due its mutagenic, cytotoxic, and genotoxic activity. Therefore, this study was undertaken to investigate the effect of crude extracts, alkaloidal fraction, and isolated substance derived from Indigofera truxillensis in photodynamic antimicrobial chemotherapy on the viability of bacteria and yeast and evaluation of mechanisms involved. Our results showed that all samples resulted in microbial photoactivation in subinhibitory concentration, with indigo alkaloid presenting a predominant photodynamic action through type I mechanism. The use of CaCl2 and MgCl2 as cell permeabilizing additives also increased gram-negative bacteria susceptibility to indigo.

  16. Blame it on the alcohol: the influence of alcohol consumption during adolescence, the transition to adulthood, and young adulthood on one-time sexual hookups.

    PubMed

    Johnson, Matthew David; Chen, Jiawen

    2015-01-01

    Using public-use data from the National Longitudinal Study of Adolescent Health (n = 3,733) and the life-span developmental perspective, the current study sought to determine whether global reports of alcohol use, binge drinking, and drunkenness are best represented as indicators of a latent alcohol consumption construct during adolescence, the transition to adulthood, and young adulthood. We also examined the predictive power of alcohol consumption during each developmental period on the total number of one-time sexual hookups reported in young adulthood. A confirmatory factor analysis revealed alcohol use, binge drinking, and drunkenness are consistent indicators of a latent alcohol consumption variable over time, although the mean levels of the indicators were significantly lower during adolescence. Structural equation modeling analyses found alcohol consumption during the transition to adulthood and young adulthood predicted one-time sexual hookups in young adulthood, but alcohol consumption during the transition to adulthood exhibited the strongest association with hooking up. Implications for research, theory, and practice are discussed.

  17. Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation.

    PubMed

    Han, Hwa Seung; Choi, Ki Young; Lee, Hansang; Lee, Minchang; An, Jae Yoon; Shin, Sol; Kwon, Seunglee; Lee, Doo Sung; Park, Jae Hyung

    2016-12-27

    Optically active nanomaterials have shown great promise as a nanomedicine platform for photothermal or photodynamic cancer therapies. Herein, we report a gold-nanoclustered hyaluronan nanoassembly (GNc-HyNA) for photothermally boosted photodynamic tumor ablation. Unlike other supramolecular gold constructs based on gold nanoparticle building blocks, this system utilizes the nanoassembly of amphiphilic hyaluronan conjugates as a drug carrier for a hydrophobic photodynamic therapy agent verteporfin, a polymeric reducing agent, and an organic nanoscaffold upon which gold can grow. Gold nanoclusters were selectively installed on the outer shell of the hyaluronan nanoassembly, forming a gold shell. Given the dual protection effect by the hyaluronan self-assembly as well as by the inorganic gold shell, verteporfin-encapsulated GNc-HyNA (Vp-GNc-HyNA) exhibited outstanding stability in the bloodstream. Interestingly, the fluorescence and photodynamic properties of Vp-GNc-HyNA were considerably quenched due to the gold nanoclusters covering the surface of the nanoassemblies; however, photothermal activation by 808 nm laser irradiation induced a significant increase in temperature, which empowered the PDT effect of Vp-GNc-HyNA. Furthermore, fluorescence and photodynamic effects were recovered far more rapidly in cancer cells due to certain intracellular enzymes, particularly hyaluronidases and glutathione. Vp-GNc-HyNA exerted a great potential to treat tumors both in vitro and in vivo. Tumors were completely ablated with a 100% survival rate and complete skin regeneration over the 50 days following Vp-GNc-HyNA treatment in an orthotopic breast tumor model. Our results suggest that photothermally boosted photodynamic therapy using Vp-GNc-HyNA can offer a potent therapeutic means to eradicate tumors.

  18. Photosensitizer anchored gold nanorods for targeted combinational photothermal and photodynamic therapy.

    PubMed

    Tham, Huijun Phoebe; Chen, Hongzhong; Tan, Yu Hui; Qu, Qiuyu; Sreejith, Sivaramapanicker; Zhao, Lingzhi; Venkatraman, Subbu S; Zhao, Yanli

    2016-07-07

    Silylated zinc phthalocyanine (ZnPc) was anchored onto silica-coated gold nanorods (AuNR) with retained local surface plasmon resonance (LSPR). Independent LSPR and singlet oxygen production of anchored ZnPc enhance the photothermal and photodynamic efficacy of the obtained AuNR-Si-ZnPc under NIR light excitation. AuNR-Si-ZnPc was further grafted with hyaluronic acid (HA). Since HA has selective targeting capability to CD44 antigens, the final hybrid could target cancer cells directly for synergistic photothermal and photodynamic therapy.

  19. Contrast enhanced-magnetic resonance imaging as a surrogate to map verteporfin delivery in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bryant, Amber; Gunn, Jason R.; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2013-12-01

    The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation (r=0.57) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas cancer.

  20. Rethinking of photodynamic therapy on cerebral glioma: the difficult of necrotic tissue exclusion and its sequence

    NASA Astrophysics Data System (ADS)

    Qiu, Yongming; Lu, Zhaofeng; Liu, Zhe; Luo, Qi-Zhong

    2005-07-01

    The photodynamic therapy of cerebral gliomas is one kind of adjunctive therapy after operative tumor removal. But it is not widely accepted until now. We report two cases of failure treatment in our totally consecutive ten patients treated with this method and analyse the cause of the poor outcome. Unlike the uninary system and digest system, the difficult of necrotic tumor or brain tissue exclusion in the brain is marked and resulted in poor result. Our view is that the problem of massive necrotic tumor tissue exclusion which is the wish of therapist and the key of achieving good result might limit the further application of photodynamic therapy on cerebral gliomas.

  1. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy.

    PubMed

    Yaghini, Elnaz; Seifalian, Alexander M; MacRobert, Alexander J

    2009-04-01

    Semiconductor quantum dots have received considerable interest in recent years as a result of their unique optical properties, leading to many applications in biology. This review examines their potential for photosensitization in photodynamic therapy compared with, and in combination with, conventional photosensitizing organic dyes. Photodynamic therapy is used for treating a range of malignant tumors and certain non-malignant pathologies, and conventional photosensitizers are based on organic dyes that are efficient generators of cytotoxic reactive oxygen species. By exploiting the unique optical properties of quantum dots, the conjugation of quantum dots with photosensitizers and targeting agents could provide a new class of versatile multifunctional nanoparticles for both diagnostic imaging and therapeutic applications.

  2. Analysis of superficial fluorescence patterns in nonmelanoma skin cancer during photodynamic therapy by a dosimetric model

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Arce-Diego, J. L.

    2016-03-01

    In this work the superficial fluorescence patterns in different nonmelanoma skin cancers and their photodynamic treatment response are analysed by a fluorescence based dosimetric model. Results show differences of even more than 50% in the fluorescence patterns as photodynamic therapy progresses depending on the malignant tissue type. They demonstrate the great relevance of the biological media as an additional dosimetric factor and contribute to the development of a future customized therapy with the assistance of dosimetric tools to interpret the fluorescence images obtained during the treatment monitoring and the differential photodiagnosis.

  3. meso-Acetoxymethyl BODIPY dyes for photodynamic therapy: improved photostability of singlet oxygen photosensitizers.

    PubMed

    Lincoln, R; Durantini, A M; Greene, L E; Martínez, S R; Knox, R; Becerra, M C; Cosa, G

    2017-02-15

    We report two BODIPY based photosensitizers (Br2BOAc and I2BOAc) featuring an acetoxymethyl substituent at the meso-position. These photosensitizers show improved photostability against singlet oxygen, when compared to a BODIPY photosensitizer lacking the acetoxymethyl group. Both compounds were evaluated for photodynamic therapy against HeLa cells and photodynamic inactivation against E. coli bacteria. We show that the compounds readily embed in the lipid membranes of HeLa cervical cancer cells and efficiently induced light-dependent apoptosis at nanomolar concentration. Also, both compounds showed a substantial degree of photoinactivation of E. coli bacteria when used at low micromolar concentrations.

  4. Model for monitoring the process of photodynamic therapy in patients

    NASA Astrophysics Data System (ADS)

    Yoshida, Takato O.; Kohno, Eiji; Sakurai, Takashi; Hirano, Toru; Yamamoto, Seiji; Terakawa, Susumu

    2005-07-01

    The photodynamic therapy (PDT) on tumors is quite effective and widely applied but usually carried out without an immediate evaluation of results. We measured the tumor fluorescence in mice with a fiber probe connected to a linear array spectral analyzer (PMA-11, Hamamatsu Photonics). The spectrum showed a transient change in fluorescence color from red to green during Photofrin○R-mediated PDT. In order to examine the source of green fluorescence, the mitochondria were accessed under a Nipkow disk-scanning confocal microscope in the HeLa cell in culture after labeling them with a red fluorescent protein (DsRed1-mito) and staining the cell with Photofrin○R (Axcan Scandipharm). Changes in fluorescence color from red to green were observed in the area of mitochondria upon their swelling during irradiation. This finding in vitro provided clear evidence that the change in fluorescence color from red to green observed in vivo was due to the mitochondrial destruction associated with the cell-death by PDT. This technique of spectral monitoring in tumor may be useful for detection of the cell-death signal during PDT in patients.

  5. Clinical and experimental results of photodynamic therapy in neurosurgery

    NASA Astrophysics Data System (ADS)

    Kostron, Herwig; Hochleitner, B. W.; Obwegeser, Alois; Seiwald, M.

    1995-03-01

    Since 1984, 58 patients bearing malignant brain tumors were treated 70 times with photodynamic treatment (PDT). The patient population consisted of 11 primary glioblastoma WHO grade IV, 39 recurrent glioblastomas, 3 malignant meningiomas, 3 recurrent melanomas, and 2 metastasis of carcinomas. The patients were sensitized with hematoporphyrin derivative (HPD) 2.5 mg/bodyweight 24 - 48 hours prior to craniotomy and tumor resection. The light-irradiation was performed by an Argon pumped dye laser (Aurora M) superficially and/or interstitially at a dose ranging up to 250 J/cm2. The median survival of primary glioblastomas was 19 months and for recurrent glioblastomas 7 months, respectively. Malignant meningiomas, as well as melanomas, did not benefit from PDT, whereas one patient with a metastasis of an adenocarcinoma is still recurrence free since 18 months, the other recurred after 6 months. HPD extractions of the tumor revealed significantly different concentrations among the various tumors, but also between identical histologies. The survival, however, did not correlate with the HPD concentration in the tumor. PDT prolongs median survival of primary glioblastomas significantly, and doubles the survival of recurrent high grade gliomas. Furthermore the treatment of recurrent low grade gliomas and metastasis to the brain are promising indications for PDT.

  6. Effects of vascular targeting photodynamic therapy on lymphatic tumor metastasis

    NASA Astrophysics Data System (ADS)

    Fateye, B.; He, C.; Chen, B.

    2009-06-01

    Vascular targeting photodynamic therapy (vPDT) is currently in clinical trial for prostate cancer (PCa) treatment. In order to study the effect of vPDT on tumor metastasis, GFP-PC3 or PC-3 xenografts were treated with verteporfin (BPD) PDT. Vascular function was assessed by ultrasound imaging; lymph node and lung metastasis were assessed by fluorescence imaging. vPDT significantly reduced tumor blood flow within 30minutes to 2 hours of treatment. Sub-curative treatment resulted in re-perfusion within 2 weeks of treatment and increased lymph node metastasis. With curative doses, no metastasis was observed. In order to identify cellular or matrix factors and cytokines implicated, conditioned medium from BPD PDTtreated endothelial cells was incubated with PC3 cells in vitro. Tumor cell proliferation and migration was assessed. By immunoblotting, we evaluated the change in mediators of intracellular signaling or that may determine changes in tumor phenotype. Low sub-curative dose (200ng/ml BPD) of endothelial cells was associated with ~15% greater migration in PC3 cells when compared with control. This dose was also associated with sustained activation of Akt at Ser 473, an upstream effector in the Akt/ mTOR pathway that has been correlated with Gleason scores in PCa and with survival and metastasis in vitro and in vivo. In conclusion, the study implicates efficacy of PDT of endothelial cells as an important determinant of its consequences on adjacent tumor proliferation and metastasis.

  7. A robotic multi-channel platform for interstitial photodynamic therapy

    PubMed Central

    Sharikova, Anna V.; Finlay, Jarod C.; Dimofte, Andreea; Zhu, Timothy C.

    2015-01-01

    A custom-made robotic multichannel platform for interstitial photodynamic therapy (PDT) and diffuse optical tomography (DOT) was developed and tested in a phantom experiment. The system, which was compatible with the operating room (OR) environment, had 16 channels for independent positioning of light sources and/or isotropic detectors in separate catheters. Each channel’s motor had an optical encoder for position feedback, with resolution of 1.5 mm, and a maximum speed of 5 cm/s. Automatic calibration of detector positions was implemented using an optical diode beam that defined the starting position of each motor, and by means of feedback algorithms controlling individual channels. As a result, the accuracy of zero position of 0.1 mm for all channels was achieved. We have also employed scanning procedures where detectors automatically covered the appropriate range around source positions. Thus, total scan time for a typical optical properties (OP) measurement throughout the phantom was about 1.5 minutes with point sources. The OP were determined based on the measured light fluence rates. These enhancements allow a tremendous improvement of treatment quality for a bulk tumor compared to the systems employed in previous clinical trials. PMID:25914794

  8. Cationic porphyrin derivatives for application in photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Prack McCormick, Bárbara P.; Florencia Pansa, M.; Milla Sanabria, Laura N.; Carvalho, Carla M. B.; Faustino, M. Amparo F.; Neves, Maria Graça P. M. S.; Cavaleiro, José A. S.; Rumie Vittar, Natalia B.; Rivarola, Viviana A.

    2014-04-01

    Current studies in photodynamic therapy (PDT) against cancer are focused on the development of new photosensitizers (PSs), with higher phototoxic action. The aim of this study was to compare the therapeutic efficiency of tri-cationic meso-substituted porphyrin derivatives (Tri-Py+-Me-PF, Tri-Py+-Me-Ph, Tri-Py+-Me-CO2Me and Tri-Py+-Me-CO2H) with the well-known tetra-cationic T4PM. The phototoxic action of these derivatives was assessed in human colon adenocarcinoma cells by cell viability, intracellular localization and nuclear morphology analysis. In the experimental conditions used we determined that after light activation -PF, -Ph and -CO2Me cause a more significant decline of cell viability compared to -CO2H and T4PM. These results suggest that the nature of the peripheral substituent influences the extent of cell photodamage. Moreover, we have demonstrated that PS concentration, physicochemical properties and further light activation determine the PDT response. All porphyrins were clearly localized as a punctuated pattern in the cytoplasm of the cells, and the PDT scheme resulted in apoptotic cell death after 3 h post-PDT. The tri-cationic porphyrin derivatives Tri-Py+-Me-PF, Tri-Py+-Me-Ph and Tri-Py+-Me-CO2Me showed a promising ability, making them good photosensitizer candidates for oncological PDT.

  9. Photodynamic therapy and fluorescent diagnostics of breast cancer

    NASA Astrophysics Data System (ADS)

    Vakulovskaya, Elena G.; Letyagin, Victor P.; Umnova, Loubov V.; Vorozhcsov, Georgiu N.; Philinov, Victor

    2004-06-01

    Photodynamic Therapy (PDT) and fluorescent diagnostics (FD) using Photosense have been provided in 26 patients with breast cancer (BC) and in 108 patients with skin metastases of BC. In 22 patients with T1-T2N0M0 primary tumor PDT was preoperative treatment, with radical mastectomy 7-10 days after PDT. 4 patients had residual tumor after radiotherapy. FD was fulfilled with spectranalyser. We used semiconductive laser for PDT-λ=672+2nm, P=1,5 W, interstitial irradiation 2-24 hours after PS injection in light dose 150-200 J/cm3 in patients with primary tumor and multiple surface irradiations (1-4) with interval 24-48 hours and total light dose 400-600 J/cm2 for metastases. Partial regression of tumor with pathomorphosis of 2-4 degree has been found in 23 cases in first group. Treating metastases we had overall response rate of 86,9% with complete response (CR) in 51,5% and partial response in 35,4%. In a year after PDT in 52 patients with CR we had CR in 36,6%, local recurrences in 23,1%, progression (distant [lung or bone] metastasis) in 40,4% of cases. Our experience show pronounced efficacy of FD for detecting tumor borders and PDT for treating BC as preoperative modality and as palliation in cases of recurrencies.

  10. Optimization of photodynamic therapy with chlorins for chest malignancies

    NASA Astrophysics Data System (ADS)

    Ris, Hans-Beat; Giger, Andreas; Im Hof, Vinzenz; Althaus, Ulrich; Altermatt, Hans J.

    1996-01-01

    Photodynamic therapy (PDT) following surgical tumor resection is leading to improved local tumor control and might be useful for selected intrathoracic malignancies. However, optimal tumor selectivity of PDT is mandatory to avoid injury of adjacent normal tissues. (1) PDT was applied on human tumor xenografts (malignant mesothelioma, squamous cell carcinoma of the neck, adenocarcinoma of the colon). M-tetrahydroxyphenylchlorin (mTHPC) and polyethylene glycol-derived mTHPC (MD-mTHPC) were administered i.p. The tumor and normal tissue of the hind leg were irradiated with 652 nm laser-light. Drug and light doses and drug-light intervals were varied. The extent of necrosis was assessed histologically. (2) Intrathoracic PDT was performed in minipigs with drug-light doses optimized in nude mice. After administration of the sensitizers i.v., intrathoracic structures were irradiated and analyzed histologically. The tumor selectivity of PDT increased in the xenograft model by: (1) choosing an appropriate drug light interval; (2) decreasing the drug dose while increasing the light dose; and (3) applying MD-mTHPC instead of mTHPC. In the minipig model, the extent of injury of intrathoracic structures was equally related to modulation of treatment conditions. The modification of chlorins and the modulation of the drug-light conditions improved the tissue selectivity of PDT. Nevertheless, further methodological optimizations are prerequisites for clinical use of PDT, especially for intraoperative application in thoracic surgery.

  11. Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins.

    PubMed

    Gomes, Maria C; Woranovicz-Barreira, Sandra M; Faustino, Maria A F; Fernandes, Rosa; Neves, Maria G P M S; Tomé, Augusto C; Gomes, Newton C M; Almeida, Adelaide; Cavaleiro, José A S; Cunha, Angela; Tomé, João P C

    2011-11-01

    This work reports the photophysical and biological evaluation of five cationic porphyrins as photosensitizers (PS) for the photodynamic inactivation (PDI) of Penicillium chrysogenum conidia. Two different cationic porphyrin groups were synthesized from 5,10,15,20-tetrakis(4-pyridyl)porphyrin and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin. The photostability and singlet oxygen generation studies showed that these molecules are photostable and efficient singlet oxygen generators. PDI experiments of P. chrysogenum conidia conducted with 50 μmol L(-1) of photosensitiser under white light at a fluence rate of 200 mW cm(-2) over 20 min showed that the most effective PS caused a 4.1 log reduction in the concentration of viable conidia. The present results show that porphyrins 1a and 1b are more efficient PSs than porphyrin 2a while porphyrins 1c and 2b show no inactivation of P. chrysogenum. It is also clear that the effectiveness of the molecule as PS for antifungal PDI is strongly related with the porphyrin substituent groups, and consequently their solubility in physiological media. The average amount of PS adsorbed per viable conidium was a determining factor in the photoinactivation efficiency and varied between the different studied PSs. Cationic PSs 1a and 1b might be promising anti-fungal PDI agents with potential applications in phytosanitation, biofilm control, bioremediation, and wastewater treatment.

  12. Nanobody-photosensitizer conjugates for targeted photodynamic therapy.

    PubMed

    Heukers, Raimond; van Bergen en Henegouwen, Paul M P; Oliveira, Sabrina

    2014-10-01

    Photodynamic therapy (PDT) induces cell death through light activation of a photosensitizer (PS). Targeted delivery of PS via monoclonal antibodies has improved tumor selectivity. However, these conjugates have long half-lives, leading to relatively long photosensitivity in patients. In an attempt to target PS specifically to tumors and to accelerate PS clearance, we have developed new conjugates consisting of nanobodies (NB) targeting the epidermal growth factor receptor (EGFR) and a traceable PS (IRDye700DX). These fluorescent conjugates allow the distinction of cell lines with different expression levels of EGFR. Results show that these conjugates specifically induce cell death of EGFR overexpressing cells in low nanomolar concentrations, while PS alone or the NB-PS conjugates in the absence of light induce no toxicity. Delivery of PS using internalizing biparatopic NB-PS conjugates results in even more pronounced phototoxicities. Altogether, EGFR-targeted NB-PS conjugates are specific and potent, enabling the combination of molecular imaging with cancer therapy. From the clinical editor: This study investigates the role of EGFR targeting nanobodies to deliver traceable photosensitizers to cancer molecules for therapeutic exploitation and concomitant imaging. Altogether, EGFR-targeted NB-PS conjugates combine molecular imaging with cancer therapy, the method is specific and potent, paving the way to clinical application of this technology.

  13. Photodynamic inactivation of Gram-positive bacteria employing natural resources.

    PubMed

    Mamone, L; Di Venosa, G; Gándara, L; Sáenz, D; Vallecorsa, P; Schickinger, S; Rossetti, M V; Batlle, A; Buzzola, F; Casas, A

    2014-04-05

    The aim of this paper was to investigate a collection of plant extracts from Argentina as a source of new natural photosensitizers (PS) to be used in Photodynamic Inactivation (PDI) of bacteria. A collection of plants were screened for phototoxicity upon the Gram-positive species Staphylococcus epidermidis. Three extracts turned out to be photoactive: Solanum verbascifolium flower, Tecoma stans flower and Cissus verticillata root. Upon exposure to a light dose of 55J/cm(2), they induced 4, 2 and 3logs decrease in bacterial survival, respectively. Photochemical characterisation of S. verbascifolium extract was carried out. PDI reaction was dependent mainly on singlet oxygen and to a lesser extent, on hydroxyl radicals, through type II and I reactions. Photodegradation experiments revealed that the active principle of the extract was not particularly photolabile. It is noticeable that S. verbascifolium -PDI was more efficient under sunlight as compared to artificial light (total eradication vs. 4 logs decrease upon 120min of sunlight). The balance between oxidant and antioxidant compounds is likely to be masking or unmasking potential PS of plant extracts, but employing the crude extract, the level of photoactivity of S. verbascifolium is similar to some artificial PS upon exposure to sunlight, demonstrating that natural resources can be employed in PDI of bacteria.

  14. Development of Photodynamic Antimicrobial Chemotherapy (PACT) for Clostridium difficile

    PubMed Central

    Pye, Hayley; Kohoutova, Darina; Mosse, Charles A.; Yahioglu, Gokhan; Stamati, Ioanna; Deonarain, Mahendra; Battah, Sinan; Ready, Derren; Allan, Elaine; Mullany, Peter; Lovat, Laurence B.

    2015-01-01

    Background Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudo membranous colitis in the developed world. The aim of this study was to explore whether Photodynamic Antimicrobial Chemotherapy (PACT) could be used as a novel approach to treating C. difficile infections. Methods PACT utilises the ability of light-activated photosensitisers (PS) to produce reactive oxygen species (ROS) such as free radical species and singlet oxygen, which are lethal to cells. We screened thirteen PS against C. difficile planktonic cells, biofilm and germinating spores in vitro, and cytotoxicity of effective compounds was tested on the colorectal adenocarcinoma cell-line HT-29. Results Three PS were able to kill 99.9% of bacteria in both aerobic and anaerobic conditions, both in the planktonic state and in a biofilm, after exposure to red laser light (0.2 J/cm2) without harming model colon cells. The applicability of PACT to eradicate C. difficile germinative spores indirectly was also shown, by first inducing germination with the bile salt taurocholate, followed by PACT. Conclusion This innovative and simple approach offers the prospect of a new antimicrobial therapy using light to treat C. difficile infection of the colon. PMID:26313448

  15. Safety assessment of oral photodynamic therapy in rats.

    PubMed

    Fontana, Carla R; Lerman, Mark A; Patel, Niraj; Grecco, Clovis; Costa, Carlos A de Souza; Amiji, Mansoor M; Bagnato, Vanderlei S; Soukos, Nikolaos S

    2013-02-01

    Photodynamic therapy (PDT) is based on the synergism of a photosensitive drug (a photosensitizer) and visible light to destroy target cells (e.g., malignant, premalignant, or bacterial cells). The aim of this study was to investigate the response of normal rat tongue mucosa to PDT following the topical application of hematoporphyrin derivative (Photogem®), Photodithazine®, methylene blue (MB), and poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with MB. One hundred and thirty three rats were randomly divided in various groups: the PDT groups were treated with the photosensitizers for 10 min followed by exposure to red light. Those in control groups received neither photosensitizer nor light, and they were subjected to light exposure alone or to photosensitizer alone. Fluorescent signals were obtained from tongue tissue immediately after the topical application of photosensitizers and 24 h following PDT. Histological changes were evaluated at baseline and at 1, 3, 7, and 15 days post-PDT treatment. Fluorescence was detected immediately after the application of the photosensitizers, but not 24 h following PDT. Histology revealed intact mucosa in all experimental groups at all evaluation time points. The results suggest that there is a therapeutic window where PDT with Photogem®, Photodithazine®, MB, and MB-loaded PLGA nanoparticles could safely target oral pathogenic bacteria without damaging normal oral tissue.

  16. Synthesis of folate receptor-targeted photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Fang, Yanyan; Wang, Xiaopu; Zou, Qianli; Zhao, Yuxia; Wu, Feipeng

    2014-11-01

    A series of amphiphilic benzylidene cycloalkanes ketone photosensitizers C1-C4 with or without folate receptor-targeted agent were designed and synthesized. Their photophysical properties and in vitro photodynamic therapy (PDT) effects were studied. The results showed that all compounds exhibited appropriate lipid-water partition coefficients and high reactive oxygen yields. The introduction of the folate receptor-targeted agent had no obvious influence on the basic photophysical & photochemical properties of C2 and C4 compared to those of their corresponding prototype compounds (C1 and C3). In vitro studies were carried out using MCF-7 cells (FR+), Hela cells (FR+) and A549 cells (FR-), which represented different levels of folate receptor (FR) expression. All of C1-C4 showed low dark toxicity and superior PDT effects compared with the clinical drug PSD-007 (a mixture of porphyrins). What's more, folate receptor-targeted photosensitizers (C2 and C4) achieved higher accumulation and more excellent PDT effects in MCF-7 cells (FR+) and Hela cells (FR+) than photosensitizers (C1 and C3) without folate receptor-targeted agent and PSD-007. The photocytotoxicity of these photosensitizers showed no obvious differences in A549 cells (FR-).

  17. New stable synthetic bacteriochlorins for photodynamic therapy of melanoma

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Huang, Ying-Ying; Janjua, Sahar; Zhiyentayev, Timur; Ruzié, Christian; Borbas, K. Eszter; Fan, Dazhong; Krayer, Michael; Balasubramanian, Thiagarajan; Yang, Eun Kyung; Kee, Hooi Ling; Holten, Dewey; Lindsey, Jonathan S.; Hamblin, Michael R.

    2009-06-01

    Photodynamic therapy (PDT) has been successfully used to treat many malignancies, and has afforded highly encouraging results in skin cancers such as basal cell carcinoma. However, pigmented melanoma remains a notable exception from the range of tumors treated by PDT largely due to the fact that melanin has high absorption of light in wavelength regions where most clinically approved photosensitizers (PS) absorb light (600-690 nm). Moreover, melanoma cells sequester exogenous molecules including photosensitizers inside melanosomes. The aforementioned drawbacks of the clinically used PS have motivated us to search for new classes of PS with improved spectral properties, such as bacteriochlorins (BC) to be used in PDT of melanoma. To overcome the PDT-resistance mechanisms of melanoma, particularly the high optical absorption of melanin, three near-infrared (NIR) absorbing synthetic stable BC were used in PDT treatment of melanoma. Dose and fluence dependent cell killing, intracellular localization (particularly in melanosomes), and correlation between the melanin level and cell death were examined. Intracellular melanosomes are ruptured after illumination as shown by electron microscopy. The best in vitro performing BC were tested upon delivery in micellar nanoparticles against a mouse pigmented melanoma. Two of the BC were effective at significantly lower concentrations (<0.5 μM) than common photosensitizers in present use.

  18. Viability for the conjugate use of electrosurgery and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rego-Filho, Francisco G.; Vieira, Edson; Kurachi, Cristina; Bagnato, Vanderlei S.; de Araujo, Maria T.

    2011-07-01

    Photodynamic Therapy (PDT) is a technique for destroying tumor cells with little harm to surrounding healthy tissue. However, the light wavelength has limited penetration in the tissue, making the association of a surgical procedure needed for larger lesions. Electrosurgery (ES) is a recommended excision technique, but the optical properties of the tissue damaged by ES and its influence on PDT procedure are unknown. Twelve rats (Wistar) composed the animal model of four groups (ES, PDT, ES+PS+Light, PS+ES+Light), evaluating different orders of conjugation via fluorescence, imaging and necrosis depth. First histopathological analysis has shown a highly modified surface of tissue (integral structure loss and dehydration shrinkage), protein denaturation, accompanied by bleeding and inflammatory damage. Fluorescence imaging showed strong scattering of light at the surface of modified tissue, which may cause higher losses of light on the surface. Fluorescence spectra showed different photosensitizer emissions for distinct operation modes. The different tissue composition can also induce changes on absorption and scattering properties, influencing the light penetration. The study showed significant necrosis formation beyond the limits of electrosurgery damage, making possible the conjugate use of ES and PDT.

  19. Photodynamic therapy for the prevention of restenosis after angioplasty

    NASA Astrophysics Data System (ADS)

    Asahara, Takayuki; Usui, Mikio; Amemiya, Takashi; Oike, Yasuhisa; Shiraishi, Hiromori; Miyagi, Manabu; Nakajima, Hitoshi; Kato, Tomitsugu; Naito, Yuichi; Ibukiyama, Chiharu

    1993-06-01

    The purpose of this study was to evaluate whether photodynamic therapy (PDT) can destroy the proliferating smooth muscle cells and therefore suppress the occurrence of restenosis after angioplasty. PDT following administration of hematoporphyrin derivatives (HpD) 24 hours before irradiation was performed on 30 rabbits immediately (0D), 3 days (3D), 1 week (1W) and 2 weeks (2W) after balloon injury. HpD accumulation of each group was investigated simultaneously. Irradiation of 27 J/10 mm2 from an Hg-Xe flash lamp light transmitted through an 800 micrometers quartz fiber with a diffusing tip was used. All rabbits were sacrificed 4 weeks after balloon injury. The results were expressed in terms of intima:media thickness ratio at the site of fiber contact (I/M) and intima:media area ratio of the cross section (IA/MA). Inhibition of intimal thickening evaluated on the basis of the I/M ratio was recognized in the 3D-, 1W-, and 2W-PDT group. The most effective photoradiation was at the 1W-PDT (I/M equals 0.78 +/- 0.67), but in 2W-PDT intimal necrosis resulting in a small amount of thickness was observed with less media necrosis. ThreeD and 0D PDT effects reduced with media necrosis. We conclude that PDT after angioplasty would be an ideal preventional therapy of restenosis.

  20. Preventing restenosis in atherosclerotic miniswine with photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Hsiang, York N.; Crespo, M. T.; To, Eleanor C.; Sobeh, Mohammed S.; Greenwald, Stephen E.; Bower, Robert D.

    1995-05-01

    The purpose of this study was to determine whether the addition of Photodynamic Therapy (PDT) using the photosensitizer Photofrin* (P*) following balloon angioplasty (BA) could prevent restenosis in an atherosclerotic animal model. Bilateral iliac atherosclerosis was created in 21 Yucatan miniswine. Six weeks later, P* 2.5 mg/kg was given IV 24 hours prior to BA (4 mm X 20 mm, 1 inflation). Following BA, swine were randomly allocated to receive PDT via a fiberoptic probe with laser energy or the same probe without laser energy. The fiberoptic probe had a 1 cm cylindrical diffusing tip and was passed co-axially through a custom catheter to ensure central location of the probe. A continuous wave argon ion-pumped dye laser tuned to 630 nm was used to provide a fluence of 100 J/cm2. Four weeks later, swine were sacrificed and vessels perfusion-fixed in-situ with glutaraldehyde and analyzed by ocular micrometry. Five occlusions occurred, all in the PDT + BA group. Percentage intimal thickness (mean +/- SD) was 51.0 +/- 29.5 in the BA group and 71.2 +/- 35.2 in the BA + PDT group (p equals 0.21). These results suggest that the addition of PDT following BA does not prevent restenosis.

  1. Photodynamic therapy for melanoma: efficacy and immunologic effects

    NASA Astrophysics Data System (ADS)

    Avci, Pinar; Gupta, Gaurav K.; Kawakubo, Masayoshi; Hamblin, Michael R.

    2014-02-01

    Malignant melanoma is one of the fastest growing cancers and if it cannot be completely surgically removed the prognosis is bleak. Melanomas are known to be particularly resistant to both chemotherapy and radiotherapy. Various types of immunotherapy have however been investigated with mixed reports of success. Photodynamic therapy (PDT) has also been tested against melanoma, again with mixed effects as the melanin pigment is thought to act as both an optical shield and as an antioxidant. We have been investigating PDT against malignant melanoma in mouse models. We have compared B16F10 melanoma syngenic to C57BL/6 mice and S91 Cloudman melanoma syngenic to DBA2 mice. We have tested the hypothesis that S91 will respond better than B16 because of higher expression of immunocritical molecules such as MHC-1, tyrosinase, tyrosinase related protein-2 gp100, and intercellular adhesion molecule-1. Some of these molecules can act as tumor rejection antigens that can be recognized by antigen-specific cytotoxic CD8 T cells that have been stimulated by PDT. Moreover it is possible that DBA2 mice are intrinsically better able to mount an anti-tumor immune response than C57BL/6 mice. We are also studying intratumoral injection of photosensitzers such as benzoporphyrin monoacid ring A and comparing this route with the more usual route of intravenous administration.

  2. Combination of photodynamic therapy and immunotherapy - evolving role in dermatology

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Wang, Hong-Wei; Huang, Zheng

    2008-02-01

    Photodynamic therapy (PDT) is a promising treatment modality. It offers alternative options in the treatment of cancer and vascular diseases. In cancer treatment, PDT has been used primarily for localized superficial or endoluminal malignant and premalignant conditions. More recently, its application has also been expanded to solid tumors. However, its antitumor efficacy remains debatable and its acceptance still variable. Pre-clinical studies demonstrate that, in addition to the primary local cytotoxicity, PDT might induce secondary host immune responses, which may further enhance PDT's therapeutic effects on primary tumor as well as metastasis. Therefore, PDT-induced local and systemic antitumor immune response might play an important role in successful control of malignant diseases. Furthermore, PDT's antitumor efficacy might also be enhanced through an effective immunoadjuvant or immunomodulator. Our recent clinical data also indicate that improved clinical outcomes can be obtained by a combination of PDT and immunomodulation therapy for the treatment of pre-malignant skin diseases. For instance, the combination of topical ALA-PDT and Imiquimod is effective for the treatment of genital bowenoid papulosis. This presentation will also report our preliminary data in developing combination approaches of PDT and immunotherapy for actinic keratosis (AK), basal cell carcinomas (BCCs) and Bowen's disease.

  3. New approaches to photodynamic therapy of tumors with Al phthalocyanine

    NASA Astrophysics Data System (ADS)

    Vakoulovskaya, Elena G.; Chental, V. V.; Kuvshinov, Yury P.; Poddubny, Boris K.

    1999-12-01

    The aim of the study was to determine the efficacy of photodynamic therapy (PDT) of tumors of different localization and histology with new photosensitizer aluminum sulfonated phthalocyanine (Photosense, Russia). PDT have been provided in 106 patients with different tumors. The initial dose (2.0 - 2.5 mg/kg) of PHS was significantly reduced till 0.5 - 0.8 mg/kg during clinical trials because of phototoxicity. The results of PDT, side effects and ways of their correction and prevention, as well as possibility to work out less toxic regimes of PDT with photosense, choice of laser and type of irradiation are discussed. Efficacy of PDT depended on tumor size and it's histological type. Using low doses of PHS we've reduced the phototoxicity of sensitizer with the same direct effectiveness of treatment. Undesirable changes in plasma content of antioxidants by means of high pressure liquid chromatography have been found in patients after PHS injection. Influence of short-term and long-term supplementation with beta- carotene and vitamin E on this parameters are discussed.

  4. Photodynamic therapy of cancer. Basic principles and applications.

    PubMed

    Juarranz, Angeles; Jaén, Pedro; Sanz-Rodríguez, Francisco; Cuevas, Jesús; González, Salvador

    2008-03-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic modality approved for clinical treatment of several types of cancer and non-oncological disorders. In PDT, a compound with photosensitising properties (photosensitiser, PS) is selectively accumulated in malignant tissues. The subsequent activation of the PS by visible light, preferentially in the red region of the visible spectrum (lambda>or=600 nm), where tissues are more permeable to light, generates reactive oxygen species, mainly singlet oxygen ((1)O(2)), responsible for cytotoxicity of neoplastic cells and tumour regression. There are three main mechanisms described by which (1)O(2) contributes to the destruction of tumours by PDT: direct cellular damage, vascular shutdown and activation of immune response against tumour cells. The advantages of PDT over other conventional cancer treatments are its low systemic toxicity and its ability to selectively destroy tumours accessible to light. Therefore, PDT is being used for the treatment of endoscopically accessible tumours such as lung, bladder, gastrointestinal and gynaecological neoplasms, and also in dermatology for the treatment of non-melanoma skin cancers (basal cell carcinoma) and precancerous diseases (actinic keratosis). Photofrin, ALA and its ester derivatives are the main compounds used in clinical trials, though newer and more efficient PSs are being evaluated nowadays.

  5. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death.

    PubMed

    Bacellar, Isabel O L; Tsubone, Tayana M; Pavani, Christiane; Baptista, Mauricio S

    2015-08-31

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

  6. Photonanomedicine: a convergence of photodynamic therapy and nanotechnology

    NASA Astrophysics Data System (ADS)

    Obaid, Girgis; Broekgaarden, Mans; Bulin, Anne-Laure; Huang, Huang-Chiao; Kuriakose, Jerrin; Liu, Joyce; Hasan, Tayyaba

    2016-06-01

    As clinical nanomedicine has emerged over the past two decades, phototherapeutic advancements using nanotechnology have also evolved and impacted disease management. Because of unique features attributable to the light activation process of molecules, photonanomedicine (PNM) holds significant promise as a personalized, image-guided therapeutic approach for cancer and non-cancer pathologies. The convergence of advanced photochemical therapies such as photodynamic therapy (PDT) and imaging modalities with sophisticated nanotechnologies is enabling the ongoing evolution of fundamental PNM formulations, such as Visudyne®, into progressive forward-looking platforms that integrate theranostics (therapeutics and diagnostics), molecular selectivity, the spatiotemporally controlled release of synergistic therapeutics, along with regulated, sustained drug dosing. Considering that the envisioned goal of these integrated platforms is proving to be realistic, this review will discuss how PNM has evolved over the years as a preclinical and clinical amalgamation of nanotechnology with PDT. The encouraging investigations that emphasize the potent synergy between photochemistry and nanotherapeutics, in addition to the growing realization of the value of these multi-faceted theranostic nanoplatforms, will assist in driving PNM formulations into mainstream oncological clinical practice as a necessary tool in the medical armamentarium.

  7. Usefulness of Photodynamic Therapy in the Management of Onychomycosis.

    PubMed

    Robres, P; Aspiroz, C; Rezusta, A; Gilaberte, Y

    2015-12-01

    Onychomycosis, or fungal infection of the nails, is one of the most prevalent fungal diseases in the general population. Treatment is of limited effectiveness, tedious, and must be administered for long periods. Furthermore, systemic antifungal agents are associated with adverse effects. Photodynamic therapy (PDT) may prove to be a viable alternative in the treatment of superficial skin infections, including onychomycosis. We review articles relating to the usefulness of PDT in onychomycosis in both in vitro and in vivo settings and discuss the potential and limitations of various photosensitizing agents. In vivo, methylene blue and 5-aminolevulinic acid have led to cure rates in 80% and 43% of cases, respectively, at 12 months. Finally, based on data in the literature and our own experience, we propose a protocol of 3 PDT sessions, separated by an interval of 1 or 2 weeks, using methyl aminolevulinate 16% as a photosensitizing agent and red light (λ=630 nm, 37 J.cm(-2)). Each session is preceded by the topical application of urea 40% over several days. Clinical trials are needed to optimize PDT protocols and to identify those patients who will benefit most from this treatment.

  8. Photodynamic therapy for locally advanced pancreatic cancer: early clinical results

    NASA Astrophysics Data System (ADS)

    Sandanayake, N. S.; Huggett, M. T.; Bown, S. G.; Pogue, B. W.; Hasan, T.; Pereira, S. P.

    2010-02-01

    Pancreatic adenocarcinoma ranks as the fourth most common cause of cancer death in the USA. Patients usually present late with advanced disease, limiting attempted curative surgery to 10% of cases. Overall prognosis is poor with one-year survival rates of less than 10% with palliative chemotherapy and/or radiotherapy. Given these dismal results, a minimally invasive treatment capable of local destruction of tumor tissue with low morbidity may have a place in the treatment of this disease. In this paper we review the preclinical photodynamic therapy (PDT) studies which have shown that it is possible to achieve a zone of necrosis in normal pancreas and implanted tumour tissue. Side effects of treatment and evidence of a potential survival advantage are discussed. We describe the only published clinical study of pancreatic interstitial PDT, which was carried out by our group (Bown et al Gut 2002), in 16 patients with unresectable locally advanced pancreatic adenocarcinoma. All patients had evidence of tumor necrosis on follow-up imaging, with a median survival from diagnosis of 12.5 months. Finally, we outline a phase I dose-escalation study of verteporfin single fibre PDT followed by standard gemcitabine chemotherapy which our group is currently undertaking in patients with locally advanced pancreatic cancer. Randomized controlled studies are also planned.

  9. Porphyrins in photodynamic therapy - a search for ideal photosensitizers.

    PubMed

    Pushpan, S K; Venkatraman, S; Anand, V G; Sankar, J; Parmeswaran, D; Ganesan, S; Chandrashekar, T K

    2002-03-01

    The utility of light as a therapeutic agent can be traced back over thousands of years when it was used in Ancient Egypt, India and China to treat a variety of skin diseases like psoriasis, vitiligo, rickets, cancer and psychosis. The isolation of porphyrins and their inherent tumor localizing properties coupled with its ability to generate reactive singlet oxygen when activated by light of particular wavelength which in turn results in cytotoxicity led to the emergence of a new modality namely, photodynamic therapy (PDT) as a therapeutic tool. The higher degree of selectivity offered by this modality and fewer side effects when compared to chemotherapy and radiotherapy has prompted the researchers around the globe to generate new photosensitizers. Porphyrins and expanded porphyrins are one class of molecules under intense investigation due to their photosensitizing ability for PDT application. Expanded porphyrins result from the expansion of the phi electron conjugation by increasing the number of heterocyclic rings or bridging carbons of the existing porphyrin framework. These chromophores show strong absorptions in the red region (650-800 nm) compared to that of normal 18phi porphyrins. The strong absorption of light by a water soluble nontoxic photosensitizing molecule in the therapeutic window resulting in maximum penetration of light into the tissues coupled with high singlet oxygen production will conceptualize an ideal photosensitizer. This review highlights various porphyrinoid sensitizers reported till date and their photosensitizing ability both in vitro and in vivo studies. Furthermore, the urgent need for developing ideal photosensitizer for PDT will also be highlighted.

  10. Chemical modification of normal tissue damage induced by photodynamic therapy.

    PubMed Central

    Sigdestad, C. P.; Fingar, V. H.; Wieman, T. J.; Lindberg, R. D.

    1996-01-01

    One of the limitations of successful use of photodynamic therapy (PDT) employing porphyrins is the acute and long-term cutaneous photosensitivity. This paper describes results of experiments designed to test the effects of two radiation protective agents (WR-2721, 500 mg kg-1 or WR-3689, 700 mg kg-1) on murine skin damage induced by PDT. C3H mice were shaved and depilated three days prior to injection with the photosensitiser, Photofrin (5 or 10 mg kg-1). Twenty-four hours later, the mice were injected intraperitoneally with a protector 30 min prior to Argon dye laser (630 nm) exposure. The skin response was followed for two weeks post irradiation using an arbitrary response scale. A light dose response as well as a drug dose response was obtained. The results indicate that both protectors reduced the skin response to PDT, however WR-2721 was demonstrated to be the most effective. The effect of the protectors on vascular stasis after PDT was determined using a fluorescein dye exclusion assay. In mice treated with Photofrin (5 mg kg-1), and 630 nm light (180 J cm-2) pretreatment with either WR-2721 or WR-3689 resulted in significant protection of the vascular effects of PDT. These studies document the ability of the phosphorothioate class of radiation protective agents to reduce the effects of light on photosensitized skin. They do so in a drug dose-dependent fashion with maximum protection at the highest drug doses. PMID:8763855

  11. Application of long-circulating liposomes to cancer photodynamic therapy.

    PubMed

    Oku, N; Saito, N; Namba, Y; Tsukada, H; Dolphin, D; Okada, S

    1997-06-01

    Photodynamic therapy (PDT) as a cancer treatment is notable for its quite low side effects in comparison with those of chemotherapy and radiotherapy. However, the accumulation of porphyrin derivatives used in PDT into tumor tissues is rather low. Since long-circulating liposomes are known to accumulate passively into tumor tissues, we liposomalized a porphyrin derivative, benzoporphyrin derivative monoacid ring A (BPD-MA), and used these liposomes to investigate the usefulness of PDT for tumor-bearing mice. BPD-MA was liposomalized into glucuronate-modified liposomes, which are known to be long-circulating. These liposomes were injected i.v. into Balb/c mice bearing Meth A sarcoma, and tumor regression and survival time were monitored after irradiation with laser light. Tumor regression and complete curing of tumor (80% cure rate by the treatment with 6 mg/kg BPD-MA) were observed when long circulating liposomalized BPD-MA was injected and laser-irradiated. In contrast, only a 20% cure rate was obtained when the animals were treated with BPD-MA solution or BPD-MA entrapped in conventional liposomes. These results suggest that a long-circulating liposomal formulation of photo-sensitive agents is useful for PDT.

  12. Necrosis prediction of photodynamic therapy applied to skin disorders

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Romanov, O. G.; López-Escobar, M.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2009-02-01

    The great selectivity and the lack of side effects of Photodynamic Therapy make it more advantageous than radiotherapy or chemotherapy. The application of PDT to skin diseases is particularly appropriate, due to the accessibility of this tissue. Common disorders like nonmelanoma skin cancer, that includes basocelullar or squamous cell carcinomas, can be treated with PDT. Conventional procedures, like surgery or radiotherapy, are not so efficient and do not, in general, obtain the same favourable results. PDT in dermatology medical praxis uses fixed protocols depending on the photosensitizer and the optical source used. These protocols are usually provided by the photosensitizer laboratory, and every lesion is treated with the same parameters. In this work we present a photo-chemical model of PDT applied to skin disorders treated with topical photosensitizers. Optical propagation inside the tissue is calculated by means of a 3D diffusion equation, solved via a finite difference numerical method. The photosensitizer degradation or photobleaching is taken into account, as the drug looses efficiency with the irradiation time. With these data the necrosis area is estimated, so this model could be used as a predictive tool to adjust the optical power and exposition time for the particular disease under treatment.

  13. Photodynamic therapy for lung cancer and malignant pleural mesothelioma.

    PubMed

    Simone, Charles B; Cengel, Keith A

    2014-12-01

    Photodynamic therapy (PDT) is a form of non-ionizing radiation therapy that uses a drug, called a photosensitizer, combined with light to produce singlet oxygen ((1)O2) that can exert anti-cancer activity through apoptotic, necrotic, or autophagic tumor cell death. PDT is increasingly being used to treat thoracic malignancies. For early-stage non-small cell lung cancer (NSCLC), PDT is primarily employed as an endobronchial therapy to definitively treat endobronchial or roentgenographically occult tumors. Similarly, patients with multiple primary lung cancers may be definitively treated with PDT. For advanced or metastatic NSCLC and small cell lung cancer (SCLC), PDT is primarily employed to palliate symptoms from obstructing endobronchial lesions causing airway compromise or hemoptysis. PDT can be used in advanced NSCLC to attempt to increase operability or to reduce the extent of operation intervention required, and selectively to treat pleural dissemination intraoperatively following macroscopically complete surgical resection. Intraoperative PDT can be safely combined with macroscopically complete surgical resection and other treatment modalities for malignant pleural mesothelioma (MPM) to improve local control and prolong survival. This report reviews the mechanism of and rationale for using PDT to treat thoracic malignancies, details prospective and major retrospectives studies of PDT to treat NSCLC, SCLC, and MPM, and describes improvements in and future roles and directions of PDT.

  14. Photodynamic Therapy for Lung Cancer and Malignant Pleural Mesothelioma

    PubMed Central

    Simone, Charles B.; Cengel, Keith A.

    2014-01-01

    Photodynamic therapy (PDT) is a form of non-ionizing radiation therapy that uses a drug, called a photosensitizer, combined with light to produce singlet oxygen (1O2) that can exert anti-cancer activity through apoptotic, necrotic, or autophagic tumor cell death. PDT is increasingly being used to treat thoracic malignancies. For early-stage non-small cell lung cancer (NSCLC), PDT is primarily employed as an endobronchial therapy to definitively treat endobronchial or roentgenographically occult tumors. Similarly, patients with multiple primary lung cancers may be definitively treated with PDT. For advanced or metastatic NSCLC and small cell lung cancer (SCLC), PDT is primarily employed to palliate symptoms from obstructing endobronchial lesions causing airway compromise or hemoptysis. PDT can be used in advanced NSCLC to attempt to increase operability or to reduce the extent of operation required, and selectively to treat pleural dissemination intraoperatively following macroscopically complete surgical resection. Intraoperative PDT can be safely combined with macroscopically complete surgical resection and other treatment modalities for malignant pleural mesothelioma (MPM) to improve local control and prolong survival. This report reviews the mechanism of and rationale for using PDT to treat thoracic malignancies, details prospective and major retrospectives studies of PDT to treat NSCLC, SCLC, and MPM, and describes improvements in and future roles and directions of PDT. PMID:25499640

  15. Photodynamic therapy in thoracic oncology: a single institution experience

    NASA Astrophysics Data System (ADS)

    Luketich, James D.; Fernando, Hiran C.; Christie, Neil A.; Litle, Virginia R.; Ferson, Peter F.; Buenaventura, Percival O.

    2001-04-01

    We have performed 800 photodynamic therapy (PDT) treatments in over 300 patients at the University of Pittsburgh since 1996. Over 150 patients have undergone PDT for palliation of dysphagia for esophageal cancer. Of the first 77 dysphagia improved in 90.8% with a mean dysphagia-free interval of 80 days. An expandable metal stent was required for extrinsic compression in 19 patients. We have treated 14 high-risk patients with early esophageal cancer or Barrett's high-grade dysplasia for curative intent. At a median follow-up of 12.8 months eight remain free of cancer. Over 100 patients have undergone PDT for lung cancer. Sixty-two patients received 77 courses for palliation. Thirty-five patients were treated for non-massive hemoptysis with resolution in 90%. Forty-four patients were treated for dyspnea with improvement in 59%. A subset of seven high-risk patients with early lung cancer were treated with curative intent. A complete response was seen in 7/10 lesions at a mean follow-up of 30 months. PDT offers good palliation for both advanced esophageal and lung cancer. The role of PDT for curative intent needs further investigation in protocol settings. In our preliminary experience we have treated a small number of non-surgical, high-risk patients with a reasonable success rate.

  16. Measurement of photodynamic therapy drug concentrations in a tissue

    SciTech Connect

    Mourant, J.; Biglo, I.; Johnson, T.

    1996-09-01

    This is the final report of a one-year laboratory-directed research and development project at the Los Alamos National Laboratory (LANL). Photodynamic therapy (PDT) is an experimental treatment modality for cancer in which a photoactive molecule with an affinity for tumors in administered to the patient, then excited by light. Photoactivation creates singlet oxygen consequently killing the tissue. Knowledge of the concentration of the photoactive compound in the tissue is necessary for proper light dosimetry during PDT. Presently, the control of light application is problematic. If too much light is applied, damage to the surrounding tissue will occur. If insufficient light is applied, the targeted tissue volume will remain viable. The ideal implementation of PDT would use a feedback system for light delivery that incorporates the optical properties of the tissue and knowledge of the concentration of the photoactive compound. This project sought to develop a method for measuring photosensitizer concentrations in tissue phantoms that will lead to a noninvasive, endoscopically compatible, in vivo method of measuring PST drug concentrations.

  17. Effect of photodynamic therapy with verteporfin on tumor blood flow

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Pogue, Brian W.; Goodwin, Isak A.; O'Hara, Julia A.; Wilmot, Carmen M.; Hutchins, John E.; Hoopes, P. J.; Hasan, Tayyaba

    2003-06-01

    The success of photodynamic therapy with verteporfin is partially determined by the pharmacokinetic distribution of the sensitizer at the time of treatment. In this study tumor blood flow changes in the RIF-1 murine tumor model and tumor resopnse using the regrowth assay were measured, comparing two different intervals between drug and light administration. Blood flow measurements were taken with a laser Doppler system monitoring continuously over 1 hour and periodically up to 6 hours after treatment. Treatment after the longer interval caused significantly less flow decrease, to only 50% of the initial flow in 6 h. Hoechst staining of functional tumor vasculature confirmed the primary vascular damage and the decrease in tumor perfusion. The regrowth rate of tumors after the longer time interval, the regrowth rate was not signifincalty different from that of the control, indicating that only the 15-min interval group caused serious damage to the vascular bed of the tumor. These studies support the hypothesis that temporal pharmacokinetic changes in the photosensitizer distribution between the tumor parenchyma and blood vessels can significantly alter the mechanism of tumor targeting during therapy.

  18. Effects of fluence rate on cytoxicity during photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Sitnik, Theresa M.; Henderson, Barbara W.

    1997-05-01

    Production of 1O2 during PDT may be limited as a consequence of tissue oxygen depletion by the photodynamic process. This may in turn limit cytotoxicity during PDT. One possible way of controlling oxygen consumption during treatment is through modification of fluence rate. We have studied the impact of fluence rate on tumor oxygenation and direct PDT cytotoxicity using the RIF murine tumor and the photosensitizer Photofrin. Both fluence rates caused an acute decrease in tumor pO2 to severely hypoxic levels. With 150 mW/cm2 light median pO2 remained low during prolonged exposure, while with 30 mW/cm2 light median pO2 values recovered to above control levels. When tumors treated with 135 J/cm2 at each fluence rate were tested for cell survival in a clonogenic assay, 30 mW/cm2 significantly decreased both cell clonogenicity and plating efficiency compared to light-only controls. Slight but insignificant decreases were found with 150 mW/cm2. During in vitro PDT the fluence rate of light delivery had no effect on cell survival. In summary, we have found that low fluence rate improves tumor oxygenation and direct cell effects during PDT.

  19. Mycoplasma Removal from Cell Culture Using Antimicrobial Photodynamic Therapy

    PubMed Central

    Hasebe, Akira; Ishikawa, Isao; Shamsul, Haque M.; Ohtani, Makoto; Segawa, Taku; Saeki, Ayumi; Tanizume, Naoho; Oouchi, Manabu; Okagami, Yoshihide; Okano, Teruo

    2013-01-01

    Abstract Objective: The objective of this research was to determine the effectiveness of antimicrobial photodynamic therapy (aPDT) in the removal of mycoplasmas from contaminated cells. Background data: Mycoplasmas often contaminate cell cultures. The cell-contaminating mycoplasmas are removed by antibiotics, but the use of antibiotics usually induces antibiotic-resistant bacteria. aPDT is expected to be a possible alternative to antibiotic treatments for suppressing infections. Materials and Methods: Mycoplasma salivarium (Ms)-infected human embryonic kidney (HEK) 293 cells were irradiated using a red light-emitting diode (LED) in the presence of methylene blue (MB) as a photosensitizer. The Ms viable count was determined using culture on agar plates or using a mycoplasma detection kit. Results: aPDT performed using red LED irradiation was effective in decreasing live Ms in the presence of MB without damaging the HEK293 cells. aPDT removed live Ms from the infected cells after washing the cells with sterilized phosphate-buffered saline (PBS) to decrease the initial number of live Ms before aPDT. Conclusions: This study suggests that aPDT could remove mycoplasmas from contaminated cells. PMID:23402393

  20. Polymeric micelles encapsulating photosensitizer: structure/photodynamic therapy efficiency relation.

    PubMed

    Gibot, Laure; Lemelle, Arnaud; Till, Ugo; Moukarzel, Béatrice; Mingotaud, Anne-Françoise; Pimienta, Véronique; Saint-Aguet, Pascale; Rols, Marie-Pierre; Gaucher, Mireille; Violleau, Frédéric; Chassenieux, Christophe; Vicendo, Patricia

    2014-04-14

    Various polymeric micelles were formed from amphiphilic block copolymers, namely, poly(ethyleneoxide-b-ε-caprolactone), poly(ethyleneoxide-b-d,l-lactide), and poly(ethyleneoxide-b-styrene). The micelles were characterized by static and dynamic light scattering, electron microscopy, and asymmetrical flow field-flow fractionation. They all displayed a similar size close to 20 nm. The influence of the chemical structure of the block copolymers on the stability upon dilution of the polymeric micelles was investigated to assess their relevance as carriers for nanomedicine. In the same manner, the stability upon aging was assessed by FRET experiments under various experimental conditions (alone or in the presence of blood proteins). In all cases, a good stability over 48 h for all systems was encountered, with PDLLA copolymer-based systems being the first to release their load slowly. The cytotoxicity and photocytotoxicity of the carriers were examined with or without their load. Lastly, the photodynamic activity was assessed in the presence of pheophorbide a as photosensitizer on 2D and 3D tumor cell culture models, which revealed activity differences between the 2D and 3D systems.

  1. Core-shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy.

    PubMed

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-05

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  2. Porphyrin-laser photodynamic induction of focal brain necrosis

    SciTech Connect

    Stroop, W.G.; Battles, E.J.; Townsend, J.J.; Schaefer, D.C.; Baringer, J.R.; Straight, R.C. )

    1989-09-01

    A noninvasive photodynamic method has been developed to produce focal brain necrosis using porphyrin activated in vivo with laser light. After peripheral injection of the photosensitive porphyrin derivative, Photofrin I, mice were irradiated on the posterior lateral aspect of the head through the intact depilated scalp with 632 nm argon-dye laser light. Animals were studied at one, two and seven days after irradiation. Blood-brain barrier damage was detected by the intravenous injection of Evans blue, horseradish peroxidase and heterologous immunoglobulins. At one and two days after irradiation, the lesions were characterized by extravasation of immunoglobulin and Evans blue, and by edema, ischemia and infiltration by monocytes. On the seventh day after irradiation, the lesion was smaller than it had been two days after irradiation, and had reactive changes at its edges and coagulative necrosis at its center. Extravasation of Evans blue and immunoglobulin was markedly reduced by the seventh day after irradiation, but uptake of horseradish peroxidase by macrophages located at the periphery of the lesion was evident.

  3. Five years experience of photodynamic therapy with new chlorin photosensitizer

    NASA Astrophysics Data System (ADS)

    Privalov, Valery A.; Lappa, Alexander V.; Kochneva, Elena V.

    2005-08-01

    Clinical results of photodynamic therapy (PDT) with a novel natural second generation chlorin-type photosensitizer "Radachlorin", mainly consisting of sodium chlorine e6, are presented. This sensitizer possesses a number of advantages over sensitizers of hematoporphyrin and phthalocyanine types. In particular, Radachlorin is excreted from organism much faster (in 1-2 days), as a result the problem of patient light hypersensitivity for a few months is non-actual for Radachlorin. As light source there was used a 662 nm diode laser specially designed for PDT with Radachlorin. The 5 year clinical results of PDT application to 89 patients with different malignant tumors are summarized and analysed. It is shown in particular that PDT with Radachlorin is a radical high efficient method for treatment of basal cell carcinoma of skin. At intravenous introduction in drug dose 0.5 mg/kg with light fluence 300-350 J/cm2 or in dose 1 mg/kg with fluence 200-250 J/cm2 the method gives full recovery in almost 100% cases with excellent cosmetic effect. The method was successfully combined with surgical operations, laser ablations, radio- and chemotherapy. Preoperative and intraoperative PDT favors improvement of results in complex treatment of malignant tumors. The method has a potential as palliative measure; in a number of incurable cases it allowed us to achieve recanalization of obturated hollow organs, eliminate the inflammatory complications, and as a result to improve life quality.

  4. Photodynamic Therapy and the Development of Metal-Based Photosensitisers

    PubMed Central

    Josefsen, Leanne B.; Boyle, Ross W.

    2008-01-01

    Photodynamic therapy (PDT) is a treatment modality that has been used in the successful treatment of a number of diseases and disorders, including age-related macular degeneration (AMD), psoriasis, and certain cancers. PDT uses a combination of a selectively localised light-sensitive drug (known as a photosensitiser) and light of an appropriate wavelength. The light-activated form of the drug reacts with molecular oxygen to produce reactive oxygen species (ROS) and radicals; in a biological environment these toxic species can interact with cellular constituents causing biochemical disruption to the cell. If the homeostasis of the cell is altered significantly then the cell enters the process of cell death. The first photosensitiser to gain regulatory approval for clinical PDT was Photofrin. Unfortunately, Photofrin has a number of associated disadvantages, particularly pro-longed patient photosensitivity. To try and overcome these disadvantages second and third generation photosensitisers have been developed and investigated. This Review highlights the key photosensitisers investigated, with particular attention paid to the metallated and non-metallated cyclic tetrapyrrolic derivatives that have been studied in vitro and in vivo; those which have entered clinical trials; and those that are currently in use in the clinic for PDT. PMID:18815617

  5. Targeting Epigenetic Processes in Photodynamic Therapy-Induced Anticancer Immunity

    PubMed Central

    Wachowska, Malgorzata; Muchowicz, Angelika; Golab, Jakub

    2015-01-01

    Photodynamic therapy (PDT) of cancer is an approved therapeutic procedure that generates oxidative stress leading to cell death of tumor and stromal cells. Cell death resulting from oxidative damage to intracellular components leads to the release of damage-associated molecular patterns (DAMPs) that trigger robust inflammatory response and creates local conditions for effective sampling of tumor-associated antigens (TAA) by antigen-presenting cells. The latter can trigger development of TAA-specific adaptive immune response. However, due to a number of mechanisms, including epigenetic regulation of TAA expression, tumor cells evade immune recognition. Therefore, numerous approaches are being developed to combine PDT with immunotherapies to allow development of systemic immunity. In this review, we describe immunoregulatory mechanisms of epigenetic treatments that were shown to restore the expression of epigenetically silenced or down-regulated major histocompatibility complex molecules as well as TAA. We also discuss the results of our recent studies showing that epigenetic treatments based on administration of methyltransferase inhibitors in combination with PDT can release effective mechanisms leading to development of antitumor immunity and potentiated antitumor effects. PMID:26284197

  6. Photodynamic therapy improves the ultraviolet-irradiated hairless mice skin

    NASA Astrophysics Data System (ADS)

    Jorge, Ana Elisa S.; Hamblin, Michael R.; Parizotto, Nivaldo A.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Chronic exposure to ultraviolet (UV) sunlight causes premature skin aging. In light of this fact, photodynamic therapy (PDT) is an emerging modality for treating cancer and other skin conditions, however its response on photoaged skin has not been fully illustrated by means of histopathology. For this reason, the aim of this study was analyze whether PDT can play a role on a mouse model of photoaging. Hence, SKH-1 hairless mice were randomly allocated in two groups, UV and UV/PDT. The mice were daily exposed to an UV light source (280-400 nm: peak at 350 nm) for 8 weeks followed by a single PDT session using 20% 5-aminolevulinic acid (ALA) topically. After the proper photosensitizer accumulation within the tissue, a non-coherent red (635 nm) light was performed and, after 14 days, skin samples were excised and processed for light microscopy, and their sections were stained with hematoxylin-eosin (HE) and Masson's Trichrome. As a result, we observed a substantial epidermal thickening and an improvement in dermal collagen density by deposition of new collagen fibers on UV/PDT group. These findings strongly indicate epidermal and dermal restoration, and consequently skin restoration. In conclusion, this study provides suitable evidences that PDT improves the UV-irradiated hairless mice skin, supporting this technique as an efficient treatment for photoaged skin.

  7. Stimulation of anti-tumor immunity by photodynamic therapy

    PubMed Central

    Mroz, Pawel; Hashmi, Javad T; Huang, Ying-Ying; Lange, Norbert; Hamblin, Michael R

    2011-01-01

    Photodynamic therapy (PDT) is a rapidly developing cancer treatment that utilizes the combination of nontoxic dyes and harmless visible light to destroy tumors by generating reactive oxygen species. PDT produces tumor-cell destruction in the context of acute inflammation that acts as a ‘danger signal’ to the innate immune system. Activation of the innate immune system increases the priming of tumor-specific T lymphocytes that have the ability to recognize and destroy distant tumor cells and, in addition, lead to the development of an immune memory that can combat recurrence of the cancer at a later point in time. PDT may be also successfully combined with immunomodulating strategies that are capable of overcoming or bypassing the escape mechanisms employed by the progressing tumor to evade immune attack. This article will cover the role of the immune response in PDT anti-tumor effectiveness. It will highlight the milestones in the development of PDT-mediated anti-tumor immunity and emphasize the combination strategies that may improve this therapy. PMID:21162652

  8. Photodynamic therapy induced vascular damage: an overview of experimental PDT

    NASA Astrophysics Data System (ADS)

    Wang, W.; Moriyama, L. T.; Bagnato, V. S.

    2013-02-01

    Photodynamic therapy (PDT) has been developed as one of the most important therapeutic options in the treatment of cancer and other diseases. By resorting to the photosensitizer and light, which convert oxygen into cytotoxic reactive oxygen species (ROS), PDT will induce vascular damage and direct tumor cell killing. Another consequence of PDT is the microvascular stasis, which results in hypoxia and further produces tumor regression. To improve the treatment with PDT, three promising strategies are currently attracting much interest: (1) the combination of PDT and anti-angiogenesis agents, which more effectively prevent the proliferation of endothelial cells and the formation of new blood vessels; (2) the nanoparticle-assisted delivery of photosensitizer, which makes the photosensitizer more localized in tumor sites and thus renders minimal damage to the normal tissues; (3) the application of intravascular PDT, which can avoid the loss of energy during the transmission and expose the target area directly. Here we aim to review the important findings on vascular damage by PDT on mice. The combination of PDT with other approaches as well as its effect on cancer photomedicine are also reviewed.

  9. The role of photodynamic therapy in overcoming cancer drug resistance

    PubMed Central

    Spring, Bryan Q.; Rizvi, Imran; Xu, Nan; Hasan, Tayyaba

    2015-01-01

    Many modalities of cancer therapy induce mechanisms of treatment resistance and escape pathways during chronic treatments, including photodynamic therapy (PDT). It is conceivable that resistance induced by one treatment might be overcome by another treatment. Emerging evidence suggests that the unique mechanisms of tumor cell and microenvironment damage produced by PDT could be utilized to overcome cancer drug resistance, to mitigate the compensatory induction of survival pathways and even to re-sensitize resistant cells to standard therapies. Approaches that capture the unique features of PDT, therefore, offer promising factors for increasing the efficacy of a broad range of therapeutic modalities. Here, we highlight key preclinical findings utilizing PDT to overcome classical drug resistance or escape pathways and thus enhance the efficacy of many pharmaceuticals, possibly explaining the clinical observations of the PDT response to otherwise treatment-resistant diseases. With the development of nanotechnology, it is possible that light activation may be used not only to damage and sensitize tumors but also to enable controlled drug release to inhibit escape pathways that may lead to resistance or cell proliferation. PMID:25856800

  10. Photodynamic therapy for the treatment of nonmelanomatous cutaneous malignancies.

    PubMed

    Allison, R R; Mang, T S; Wilson, B D

    1998-06-01

    Photodynamic therapy (PDT) is a modality whose concept is not new to dermatologists. PDT has gained regulatory approval in the United States for the treatment of esophageal and lung malignancies. The field has grown over the last decade, and now phase II/III clinical trials using second generation drugs for the treatment of nonmelanoma skin cancers, palliation of metastases to the skin, and Kaposi's sarcomas have been introduced. These new sensitizers tend to reduce the one side effect of PDT, namely persistent generalized cutaneous photosensitivity. PDT has shown efficacy in (1) patients who have failed conventional therapies, and for whom local treatment options are limited (2) patients in whom surgery would result in cosmetic disfigurement, and (3) patients prone to developing multiple lesions as in Gorlins syndrome. Dosimetry is based on well-understood treatment matrices that have optimized light delivery with known photosensitizer administrations. The advantages of PDT for cutaneous malignancies include the ability to treat numerous lesions in one setting, in a noninvasive manner without any apparent concern for the development of carcinogenicity.

  11. Photodynamic therapy of oral Candida infection in a mouse model.

    PubMed

    Freire, Fernanda; Ferraresi, Cleber; Jorge, Antonio Olavo C; Hamblin, Michael R

    2016-06-01

    Species of the fungal genus Candida, can cause oral candidiasis especially in immunosuppressed patients. Many studies have investigated the use of photodynamic therapy (PDT) to kill fungi in vitro, but this approach has seldom been reported in animal models of infection. This study investigated the effects of PDT on Candida albicans as biofilms grown in vitro and also in an immunosuppressed mouse model of oral candidiasis infection. We used a luciferase-expressing strain that allowed non-invasive monitoring of the infection by bioluminescence imaging. The phenothiazinium salts, methylene blue (MB) and new methylene blue (NMB) were used as photosensitizers (PS), combined or not with potassium iodide (KI), and red laser (660nm) at four different light doses (10J, 20J, 40J and 60J). The best in vitro log reduction of CFU/ml on biofilm grown cells was: MB plus KI with 40J (2.31 log; p<0.001); and NMB without KI with 60J (1.77 log; p<0.001). These conditions were chosen for treating the in vivo model of oral Candida infection. After 5days of treatment the disease was practically eradicated, especially using MB plus KI with 40J. This study suggests that KI can potentiate PDT of fungal infection using MB (but not NMB) and could be a promising new approach for the treatment of oral candidiasis.

  12. Fluorescence guided evaluation of photodynamic therapy as acne treatment

    NASA Astrophysics Data System (ADS)

    Ericson, Marica B.; Horfelt, Camilla; Cheng, Elaine; Larsson, Frida; Larko, Olle; Wennberg, Ann-Marie

    2005-08-01

    Photodynamic therapy (PDT) is an attractive alternative treatment for patients with acne because of its efficiency and few side effects. Propionibacterium acnes (P.acnes) are bacteria present in the skin, which produce endogenous porphyrins that act as photosensitisers. In addition, application of aminolaevulinic acid or its methyl ester (mALA) results in increased accumulation of porphyrins in the pilosebaceous units. This makes it possible to treat acne with PDT. This initial study investigates the possibility of fluorescence imaging as assessment tool in adjunct to PDT of patients with acne. Twenty-four patients with acne on the cheeks have been treated with PDT with and without mALA. Fluorescence images have been obtained before and after treatment. The clinical acne score was assessed as base line before PDT, and at every follow up visit. Additionally the amount of P.acnes was determined. The clinical evaluation showed a general improvement of acne, even though no difference between treatment with and without mALA was observed. By performing texture analysis and multivariate data analsysis on the fluorescence images, the extracted texture features were found to correlate with the corresponding clinical assessment (67%) and amount of P.acnes (72%). The analysis showed that features describing the highly fluorescent pores could be related to the clinical assessment. This result suggests that fluorescence imaging can be used as an objective assessment of acne, but further improvement of the technique is possible, for example by including colour images.

  13. Combined laser and photodynamic treatment in extensive purulent wounds

    NASA Astrophysics Data System (ADS)

    Solovieva, A. B.; Tolstih, P. I.; Melik-Nubarov, N. S.; Zhientaev, T. M.; Kuleshov, I. G.; Glagolev, N. N.; Ivanov, A. V.; Karahanov, G. I.; Tolstih, M. P.; Timashev, P. S.

    2010-05-01

    Recently, photodynamic therapy (PDT) has been used for the treatment of festering wounds and trophic ulcers. An important advantage of PDT is its ability to affect bacterial cultures that are resistant to antibiotics. However the use of PDT alone does not usually guarantee a stable antiseptic effect and cannot prevent an external infection of wounds and burns. In this work attention is focused on the healing of the extensive soft tissues wounds with combined laser therapy (LT) and PDT treatment. At the first stage of this process festering tissues (for example spacious purulent wounds with area more than 100 cm2) were illuminated with high-energy laser beam (with power 20 W) in continues routine. The second stage involves “softer” PDT affect, which along with the completion stages of destruction pathological cells, stimulating the process of wound granulation and epithelization. Also, according to our previous results, photosensitizer (photoditazin) is introduced inside the wound with different amphiphilic polymers for increasing the PDT efficacy.

  14. Photodynamic therapy for pancreatic and biliary tract carcinoma

    NASA Astrophysics Data System (ADS)

    Pereira, Stephen P.

    2009-02-01

    Patients with non-resectable pancreatic and biliary tract cancer (cholangiocarcinoma and gallbladder cancer) have a dismal outlook with conventional palliative therapies, with a median survival of 3-9 months and a 5 year survival of less than 3%. Surgery is the only curative treatment but is appropriate in less than 20% of cases, and even then is associated with a 5-year survival of less than 30%. Although most applications of photodynamic therapy (PDT) in gastroenterology have been on lesions of the luminal gut, there is increasing experimental and clinical evidence for its efficacy in cancers of the pancreas and biliary tract. Our group has carried out the only clinical study of PDT in pancreatic carcinoma reported to date, and showed that PDT is feasible for local debulking of pancreatic cancer. PDT has also been used with palliative intent in patients with unresectable cholangiocarcinoma, with patients treated with stenting plus PDT reporting improvements in cholestasis, quality of life and survival compared with historical or randomized controls treated with stenting alone. Further controlled studies are needed to establish the influence of PDT and chemotherapy on the survival and quality of life of patients with pancreatic and biliary tract carcinoma.

  15. Photodynamic Therapy and Skin Appendage Disorders: A Review

    PubMed Central

    Megna, Matteo; Fabbrocini, Gabriella; Marasca, Claudio; Monfrecola, Giuseppe

    2017-01-01

    Photodynamic therapy (PDT) is a noninvasive treatment that utilizes light treatment along with application of a photosensitizing agent. In dermatology, PDT is commonly used and approved for the treatment of oncological conditions such as actinic keratosis, Bowen disease and superficial basal cell carcinoma. In the last 2 decades however, PDT has also been used for the treatment of several nonneoplastic dermatological diseases. The present review summarizes published data on PDT application in skin appendage disorders. Our literature review shows that: (a) PDT may be a suitable treatment for acne, folliculitis decalvans, hidradenitis suppurativa, nail diseases, and sebaceous hyperplasia; (b) there is a lack of agreement on PDT features (type, concentrations and incubation period of used substances, number and frequency of PDT sessions, optimal parameters of light sources, and patient characteristics [e.g., failure to previous treatments, disease severity, body surface area involved, etc.] which should guide PDT use in these diseases); (c) further research is needed to establish international guidelines helping dermatologists to choose PDT for the right patient at the right time. PMID:28232927

  16. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    PubMed Central

    Bacellar, Isabel O. L.; Tsubone, Tayana M.; Pavani, Christiane; Baptista, Mauricio S.

    2015-01-01

    Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research. PMID:26334268

  17. Quantification of reactive oxygen species for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Tan, Zou; Zhang, Jinde; Lin, Lisheng; Li, Buhong

    2016-10-01

    Photodynamic therapy (PDT) is an effective therapeutic modality that uses a light source to activate light-sensitive photosensitizers to treat both oncologic and nononcological indications. Photosensitizers are excited to the long-lived triplet state, and they react with biomolecules via type I or II mechanism resulted in cell death and tumor necrosis. Free radicals and radical ions are formed by electron transfer reactions (type I), which rapidly react with oxygen leading to the production of reactive oxygen species (ROS), including superoxide ions, hydroxyl radicals and hydrogen peroxide. Singlet molecular oxygen is produced in a Type II reaction, in which the excited singlet state of the photosensitizer generated upon photon absorption by the ground-state photosensitizer molecule undergoes intersystem crossing to a long-lived triplet state. In this talk, the fundmental mechanisms and detection techniques for ROS generation in PDT will be introduced. In particular, the quantification of singlet oxygen generation for pre-clinical application will be highlighted, which plays an essential role in the establishment of robust singlet oxygen-mediated PDT dosimetry.

  18. Core - shell upconversion nanoparticle - semiconductor heterostructures for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Dou, Qing Qing; Rengaramchandran, Adith; Selvan, Subramanian Tamil; Paulmurugan, Ramasamy; Zhang, Yong

    2015-02-01

    Core-shell nanoparticles (CSNPs) with diverse chemical compositions have been attracting greater attention in recent years. However, it has been a challenge to develop CSNPs with different crystal structures due to the lattice mismatch of the nanocrystals. Here we report a rational design of core-shell heterostructure consisting of NaYF4:Yb,Tm upconversion nanoparticle (UCN) as the core and ZnO semiconductor as the shell for potential application in photodynamic therapy (PDT). The core-shell architecture (confirmed by TEM and STEM) enables for improving the loading efficiency of photosensitizer (ZnO) as the semiconductor is directly coated on the UCN core. Importantly, UCN acts as a transducer to sensitize ZnO and trigger the generation of cytotoxic reactive oxygen species (ROS) to induce cancer cell death. We also present a firefly luciferase (FLuc) reporter gene based molecular biosensor (ARE-FLuc) to measure the antioxidant signaling response activated in cells during the release of ROS in response to the exposure of CSNPs under 980 nm NIR light. The breast cancer cells (MDA-MB-231 and 4T1) exposed to CSNPs showed significant release of ROS as measured by aminophenyl fluorescein (APF) and ARE-FLuc luciferase assays, and ~45% cancer cell death as measured by MTT assay, when illuminated with 980 nm NIR light.

  19. Stimulation of the host immune response by photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Gollnick, Sandra O.; Kabingu, Edith; Kousis, Philaretos C.; Henderson, Barbara W.

    2004-07-01

    The tumor response to photodynamic therapy (PDT) involves a complex interplay between direct cytotoxicity to the tumor cells and secondary damage as a result of the effects of PDT on the vasculature and stimulation of the host inflammatory response. Pre-clinical and clinical studies have suggested that the combination of direct and indirect effects of PDT culminate in an activation of host anti-tumor immune responses. We have begun to examine the direct effects of PDT on tumor immunogenicity and have made the novel discovery that PDT treatment of tumor cells in vitro enhances tumor cell immunogenicity. We have further demonstrated that the increase in tumor cell immunogenicity by PDT can be correlated with the ability of PDT-generated tumor cell lysates to stimulate dendritic cell maturation and activation. The mechanisms by which PDT is able to enhance tumor cell immunogenicity and stimulate dendritic cell maturation and activation is unclear, however our finding suggest that alterations in tumor immunogenicity correlate with enhanced release of dendritic cell stimulating factors such as heat shock proteins.

  20. Photodynamic therapy and immune response in tumor-bearing mice

    NASA Astrophysics Data System (ADS)

    Canti, Gianfranco L.; Cubeddu, Rinaldo; Taroni, Paola; Valentini, Gianluca

    1999-06-01

    Since immune response of the host is important in the control of tumor growth and spreading, and the Photodynamic therapy (PDT) is able to increase the antitumor immunity, in our laboratory we examine the effect of PDT on immune compartment of tumor bearing mice. Lymphocytes and macrophages collected from tumor bearing mice pretreated with PDT are cytotoxic in vitro and in vivo against the parental tumor lines, in contrast the same immune cells population collected from tumor bearing mice pretreated only with laser light are unable to lyse the parental tumor cells. In adoptive immunotherapy experiments, treatment of mice bearing MS-2 tumor with adoptive transfer of immune lymphocytes collected from mice pretreated with PDT is able to significantly increase the survival time; in contrast the lymphocytes collected from mice pretreated only with laser light were not able to modify the survival time suggesting that the laser treatment alone did not increase the immune response of the host. In conclusion these results demonstrate that the PDT induce a strong immune response on the host and the stimulated lymphocytes generated could be used for an adoptive immunotherapy approach; moreover laser treatment alone (thermal effect) is unable to modulate the immune response of the host.

  1. Novel LED array used for photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Daly, Steven R.; Zheng, Frank; Krouse, Mike; Guo, Zihong; Mahoney, Paula; McIlroy, Brian W.

    2003-07-01

    Light Sciences Corporation has developed a novel LED array that was designed and manufactured to treat large bulky tumors. We describe our LED design process, culminating in the manufacture of a flexible silicone catheter currently under investigation in a Phase 1 clinical trial. The performance characteristics of the wire-bonded die to a flexible polyimide substrate forming a linear array are discussed. The LED array consists of 100 die arranged asymmetrically on the substrate with 50 LED's on either side producing up to 60mW total optical power at 38°C (500mA) over a spectral bandwidth 645-670nm FWHM. The LED's are encapsulated within biocompatible silicon for interstitial placement within the treatment tissue. The effect of time, temperature and humidity on the device performance was investigated. Optical power ranged from -2.5% to +0.5% of the normalized original power over 50 hours in 100% RH within the control group. Over a temperature range of 35°C to 50°C the optical power decreased at a rate of 0.56% per °C. Preliminary non-clinical experiments carried out in normal swine muscle demonstrate a significant treatment zone and are consistent with threshold models for photodynamic effect.

  2. Structural evolution of the methane cation in subfemtosecond photodynamics

    NASA Astrophysics Data System (ADS)

    Mondal, T.; Varandas, A. J. C.

    2015-07-01

    An ab initio quantum dynamics study has been performed to explore the structural rearrangement of ground state CH 4+ in subfemtosecond resolved photodynamics. The method utilizes time-dependent wave-packet propagation on the X ˜ 2 T 2 electronic manifold of the title cation in full dimensionality, including nonadiabatic coupling of the three electronic sheets. Good agreement is obtained with recent experiments [Baker et al., Science 312, 424 (2006)] which use high-order harmonic generation to probe the attosecond proton dynamics. The novel results provide direct theoretical support of the observations while unravelling the underlying details. With the geometrical changes obtained by calculating the expectation values of the nuclear coordinates as a function of time, the structural evolution is predicted to begin through activation of the totally symmetric a1 and doubly degenerate e modes. While the former retains the original Td symmetry of the cation, the Jahn-Teller active e mode conducts it to a D2d structure. At ˜1.85 fs, the intermediate D2d structure is further predicted to rearrange to local C2v minimum geometry via Jahn-Teller active bending vibrations of t2 symmetry.

  3. Photodynamic therapy induces an immune response against a bacterial pathogen

    PubMed Central

    Huang, Ying-Ying; Tanaka, Masamitsu; Vecchio, Daniela; Garcia-Diaz, Maria; Chang, Julie; Morimoto, Yuji; Hamblin, Michael R

    2012-01-01

    Photodynamic therapy (PDT) employs the triple combination of photosensitizers, visible light and ambient oxygen. When PDT is used for cancer, it has been observed that both arms of the host immune system (innate and adaptive) are activated. When PDT is used for infectious disease, however, it has been assumed that the direct antimicrobial PDT effect dominates. Murine arthritis caused by methicillin-resistant Staphylococcus aureus in the knee failed to respond to PDT with intravenously injected Photofrin®. PDT with intra-articular Photofrin produced a biphasic dose response that killed bacteria without destroying host neutrophils. Methylene blue was the optimum photosensitizer to kill bacteria while preserving neutrophils. We used bioluminescence imaging to noninvasively monitor murine bacterial arthritis and found that PDT with intra-articular methylene blue was not only effective, but when used before infection, could protect the mice against a subsequent bacterial challenge. The data emphasize the importance of considering the host immune response in PDT for infectious disease. PMID:22882222

  4. Absence of bacterial resistance following repeat exposure to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Pedigo, Lisa A.; Gibbs, Aaron J.; Scott, Robert J.; Street, Cale N.

    2009-06-01

    The prevalence of antibiotic resistant bacteria necessitates exploration of alternative approaches to treat hospital and community acquired infections. The aim of this study was to determine whether bacterial pathogens develop resistance to antimicrobial photodynamic therapy (aPDT) during repeated sub-lethal challenge. Antibiotic sensitive and resistant strains of S. aureus and antibiotic sensitive E. coli were subjected to repeat PDT treatments using a methylene blue photosensitizer formulation and 670 nm illumination from a non-thermal diode laser. Parameters were adjusted such that kills were <100% so that surviving colonies could be passaged for subsequent exposures. With each repeat, kills were compared to those using non-exposed cultures of the same strain. Oxacillin resistance was induced in S. aureus using a disc diffusion method. For each experiment, "virgin" and "repeat" cultures were exposed to methylene blue at 0.01% w/v and illuminated with an energy dose of 20.6 J/cm2. No significant difference in killing of E. coli (repeat vs. virgin culture) was observed through 11 repeat exposures. Similar results were seen using MSSA and MRSA, wherein kill rate did not significantly differ from control over 25 repeat exposures. In contrast, complete oxacillin resistance could be generated in S. aureus over a limited number of exposures. PDT is effective in the eradication of pathogens including antibiotic resistance strains. Furthermore, repeated sub-lethal exposure does not induce resistance to subsequent PDT treatments. The absence of resistance formation represents a significant advantage of PDT over traditional antibiotics.

  5. Pheophorbides as photosensitizers for the photodynamic therapy of tumors

    NASA Astrophysics Data System (ADS)

    Tanielian, Charles; Wolff, Christian; Kobayashi, Masami

    1995-01-01

    Quantum yields for formation of singlet molecular oxygen have been measured for sodium pheophorbides (Na-Phdes) a and b in aqueous and non-aqueous media. Measurements have been made for both steady-state and pulsed laser excitation with the resultant singlet molecular oxygen being detected by photo-oxygenation reactions or time-resolved luminescence spectroscopy, respectively. Singlet oxygen production sensitized by Na-Phdes a or b is insignificant in aqueous media but occurs with a good efficiency in organic solvents. Plasmid DNA is efficiently photocleaved by Na-Phdes a and b in the absence of oxygen as well as in the presence of oxygen. Fluorescence microscopic observation shows a rapid incorporation of Na-Phde a into nuclei, mitochondria, and lysosome of human oral mucosa cells. In contrast Na-Phde b is incorporated only into the plasma membrane. The photodynamic activity of these pigments in living tissues is probably determined by the monomeric pigment molecules formed in hydrophobic cellular structures.

  6. Cell death mechanisms vary with photodynamic therapy dose and photosensitizer

    NASA Astrophysics Data System (ADS)

    He, Jin; Oleinick, Nancy L.

    1995-03-01

    Mouse lymphoma L5178Y-R cells respond to photodynamic therapy (PDT) by undergoing rapid apoptosis, which is induced by PDT-activated signal transduction initiating in the damaged cellular membranes. To relate the level of PDT damage and photosensitizer to the mechanism of cell death, apoptosis has been detected by agarose gel electrophoresis of fragmented DNA and quantified by flow cytometry of cells after staining with Hoechst33342 and propidium iodide, a technique which can distinguish between live, apoptotic, and necrotic cells. When the silicon phthalocyanine Pc 4 or Pc 12 served as photosensitizer, lethal doses (as defined by clonogenic assay) of PDT induced apoptosis in essentially all cells, whereas supralethal doses prevented the characteristic degradation of DNA into oligonucleosomal fragments. In contrast with aluminum phthalocyanine (AlPc) cells died by apoptosis after all doses studied. It appears that high PDT doses with Pc 4 or Pc 12 damage enzymes needed to carry out the program of apoptosis; the absence of this effect with AlPc suggests either a different intracellular location or different photocytotoxic mechanism for the two photosensitizers.

  7. Photodynamic therapy with Pc 4 induces apoptosis of Candida albicans.

    PubMed

    Lam, Minh; Jou, Paul C; Lattif, Ali A; Lee, Yoojin; Malbasa, Christi L; Mukherjee, Pranab K; Oleinick, Nancy L; Ghannoum, Mahmoud A; Cooper, Kevin D; Baron, Elma D

    2011-01-01

    The high prevalence of drug resistance necessitates the development of novel antifungal agents against infections caused by opportunistic fungal pathogens, such as Candida albicans. Elucidation of apoptosis in yeast-like fungi may provide a basis for future therapies. In mammalian cells, photodynamic therapy (PDT) has been demonstrated to generate reactive oxygen species, leading to immediate oxidative modifications of biological molecules and resulting in apoptotic cell death. In this report, we assess the in vitro cytotoxicity and mechanism of PDT, using the photosensitizer Pc 4, in planktonic C. albicans. Confocal image analysis confirmed that Pc 4 localizes to cytosolic organelles, including mitochondria. A colony formation assay showed that 1.0 μM Pc 4 followed by light at 2.0 J cm(-2) reduced cell survival by 4 logs. XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide) assay revealed that Pc 4-PDT impaired fungal metabolic activity, which was confirmed using the FUN-1 (2-chloro-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenylquinolinium iodide) fluorescence probe. Furthermore, we observed changes in nuclear morphology characteristic of apoptosis, which were substantiated by increased externalization of phosphatidylserine and DNA fragmentation following Pc 4-PDT. These data indicate that Pc 4-PDT can induce apoptosis in C. albicans. Therefore, a better understanding of the process will be helpful, as PDT may become a useful treatment option for candidiasis.

  8. Photodynamic Therapy and Non-Melanoma Skin Cancer

    PubMed Central

    Griffin, Liezel L.; Lear, John T.

    2016-01-01

    Non-melanoma skin cancer (NMSC) is the most common malignancy among the Caucasian population. Photodynamic therapy (PDT) is gaining popularity for the treatment of basal cell carcinoma (BCC), Bowen’s disease (BD) and actinic keratosis (AK). A topical or systemic exogenous photosensitiser, results in selective uptake by malignant cells. Protoporphyrin IX (PpIX) is produced then activated by the introduction of a light source. Daylight-mediated MAL (methyl aminolaevulinate) PDT for AKs has the advantage of decreased pain and better patient tolerance. PDT is an effective treatment for superficial BCC, BD and both individual and field treatment of AKs. Excellent cosmesis can be achieved with high patient satisfaction. Variable results have been reported for nodular BCC, with improved outcomes following pretreatment and repeated PDT cycles. The more aggressive basisquamous, morphoeic infiltrating subtypes of BCC and invasive squamous cell carcinoma (SCC) are not suitable for PDT. Prevention of “field cancerization” in organ transplant recipients on long-term immunosuppression and patients with Gorlin syndrome (naevoid basal cell carcinoma syndrome) is a promising development. The optimisation of PDT techniques with improved photosensitiser delivery to target tissues, new generation photosensitisers and novel light sources may expand the future role of PDT in NMSC management. PMID:27782094

  9. Advance in Photosensitizers and Light Delivery for Photodynamic Therapy

    PubMed Central

    Yoon, Il; Li, Jia Zhu

    2013-01-01

    The brief history of photodynamic therapy (PDT) research has been focused on photosensitizers (PSs) and light delivery was introduced recently. The appropriate PSs were developed from the first generation PS Photofrin (QLT) to the second (chlorins or bacteriochlorins derivatives) and third (conjugated PSs on carrier) generations PSs to overcome undesired disadvantages, and to increase selective tumor accumulation and excellent targeting. For the synthesis of new chlorin PSs chlorophyll a is isolated from natural plants or algae, and converted to methyl pheophorbide a (MPa) as an important starting material for further synthesis. MPa has various active functional groups easily modified for the preparation of different kinds of PSs, such as methyl pyropheophorbide a, purpurin-18, purpurinimide, and chlorin e6 derivatives. Combination therapy, such as chemotherapy and photothermal therapy with PDT, is shortly described here. Advanced light delivery system is shown to establish successful clinical applications of PDT. Phtodynamic efficiency of the PSs with light delivery was investigated in vitro and/or in vivo. PMID:23423543

  10. [Temperature regime of biological tissue under photodynamic therapy].

    PubMed

    Barun, V V; Ivanov, A P

    2012-01-01

    An analytical model is proposed to calculate heating of human skin cover under laser light action of photodynamic therapy. A photosensitizer of "Fotolon" is taken as an example. Temperatures of skin surface and of deep dermis regions are studied as a function of time under pulsed and stationary irradiation of skin surface at the wavelength of 665 nm corresponding to the maximum of the photosensitizer absorption band. It is shown that, under the action of a short light pulse, the photosensitizer can lead to an essential temperature rise of dermis due to a considerable increase in its absorption coefficient. However, this rise does not destruct tissue cells because of the short action. Under stationary irradiation, the photosensitizer concentration has a low effect on the temperature regime of tissue. This is related with the specific features in heating of the medium by red light, where the main thermal process in skin is heat transfer over tissue volume from epidermis having a substantially larger absorption coefficient than that of dermis in the said spectral range. The role of blood perfusion in dermis and its effect on the temperature regime of tissue are evaluated.

  11. Staged versus One-Time Complete Revascularization with Percutaneous Coronary Intervention in STEMI Patients with Multivessel Disease: A Systematic Review and Meta-Analysis

    PubMed Central

    Xu, Qingqing; Chen, Xiaomin

    2017-01-01

    Introduction In patients with acute ST-elevation myocardial infarction (STEMI), the preferred intervention is percutaneous coronary intervention (PCI).Whether staged PCI (S-PCI) or one-time complete PCI (MV-PCI) is more beneficial and safer in terms of treating the non-culprit vessel during the primary PCI procedure is unclear. We performed a meta-analysis of all randomized and non-randomized controlled trials comparing S-PCI with MV-PCI in patients with acute STEMI and MVD. Methods Studies of STEMI with multivessel disease receiving primary PCI were searched in PUBMED, EMBASE and The Cochrane Register of Controlled Trials from January 2004 to December 2014. The primary end points were long-term rates of major adverse cardiovascular events and their components—mortality, reinfarction, and target-vessel revascularization. Data were combined using a fixed-effects model. Results Of 507 citations, 10 studies (4 randomized, 6 nonrandomized; 820 patients, 562 staged PCI and 347 one-time, complete multi-vessel PCI) were included. S-PCI compared to MV-PCI significantly reduced mortality both long-term (OR 0.44, 95% CI 0.29–0.66, P<0.0001, I2 = 0%) and short-term (OR 0.23, 95% CI 0.1–0.51, P = 0.0003, I2 = 0%). There was a trend toward reduced risk of MACE with s-PCI compared with MV-PCI (OR 0.83, 0.62–1.12, P = 0.22, I2 = 0%). No difference between S-PCI and MV-PCI was observed in reinfarction (OR 0.97, 0.61–1.55, P = 0.91, I2 = 0%), or target vessel revascularization (OR1.17, 95% CI 0.81–1.69, P = 0.40, I2 = 8%). Conclusions The staged strategy for non-culprit lesions improved short- and long-term survival and should remain the standard approach to primary PCI in patients with STEMI; one-time complete multivessel PCI may be associated with greater mortality risk. However, additional large, randomized trials are required to confirm the optimal timing of a staged procedure on the non-culprit vessel in STEMI. PMID:28107455

  12. Rational assembly of a biointerfaced core@shell nanocomplex towards selective and highly efficient synergistic photothermal/photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Qin, Chenchen; Fei, Jinbo; Wang, Anhe; Yang, Yang; Li, Junbai

    2015-11-01

    To optimize synergistic cancer therapy, we rationally assemble an inorganic-organic nanocomplex using a folate-modified lipid bilayer spread on photosensitizer-entrapped mesoporous silica nanoparticle (MSN) coated gold nanorods (AuNRs). In this hybrid bioconjugate, the large specific surface area and pore size of AuNR@MSN guarantee a high loading capacity of small photosensitive molecules. The modification with selective mixed liposomes on the surface of AuNR@MSN enables faster cellular internalization and enhancement of endocytosis. Under one-time NIR two-photon illumination, AuNR-mediated hyperthermia can kill cancer cells directly. Meanwhile, the loaded photosensitizer, hypocrellin B, generates two kinds of reactive oxygen species (ROS) to induce cell apoptosis. Remarkably, hyperthermia can improve the yield of ROS. After intravenous injection of this bioconjugate into female BALB/c nude mice followed by laser irradiation (808 nm, 1.3 W cm-2, 6 min), the tumor growth is suppressed completely. The tumors are not recurrent within the observation time (19 days), and the normal or main organs are not obviously pathological. Thus, such a simplified and selective cancer treatment, combining photothermal and photodynamic therapy in a synergistic manner, provides outstanding efficiency in vivo. This nanocomplex with well-defined core@shell nanostructures integrated with a two-photon technique holds great promise to improve cancer phototherapy with a high efficiency in the clinic.To optimize synergistic cancer therapy, we rationally assemble an inorganic-organic nanocomplex using a folate-modified lipid bilayer spread on photosensitizer-entrapped mesoporous silica nanoparticle (MSN) coated gold nanorods (AuNRs). In this hybrid bioconjugate, the large specific surface area and pore size of AuNR@MSN guarantee a high loading capacity of small photosensitive molecules. The modification with selective mixed liposomes on the surface of AuNR@MSN enables faster cellular

  13. In vitro evaluation of photodynamic therapy using curcumin on Leishmania major and Leishmania braziliensis.

    PubMed

    Pinto, Juliana Guerra; Fontana, Letícia Correa; de Oliveira, Marco Antonio; Kurachi, Cristina; Raniero, Leandro José; Ferreira-Strixino, Juliana

    2016-07-01

    Cutaneous leishmaniasis is an infectious disease caused by the Leishmania protozoan. The conventional treatment is long-lasting and aggressive, in addition to causing harmful effect. Photodynamic therapy has emerged as a promising alternative treatment, which allows local administration with fewer side effects. This study investigated the photodynamic activity of curcumin on Leishmania major and Leishmania braziliensis promastigote. Both species were submitted to incubation with curcumin in serial dilutions from 500 μg/ml up to 7.8 μg/ml. Control groups were kept in the dark while PDT groups received a fluency of 10 J/cm(2) at 450 nm. Mitochondrial activity was assessed by MTT assay 18 h after light treatment, and viability was measured by Trypan blue dye exclusion test. Morphological alterations were observed by Giemsa staining. Confocal microscopy showed the uptake of curcumin by both tested Leishmania species. Mitochondrial activity was inconclusive to determine viability; however, Trypan blue test was able to show that curcumin photodynamic treatment had a significant effect on viability of parasites. The morphology of promastigotes was highly affected by the photodynamic therapy. These results indicated that curcumin may be a promising alternative photosensitizer, because it presents no toxicity in the dark; however, further tests in co-culture with macrophages and other species of Leishmania should be conducted to determine better conditions before in vivo tests are performed.

  14. Application of benzo[a]phenoxazinium chlorides in Antimicrobial Photodynamic Therapy of Candida albicans biofilms.

    PubMed

    Lopes, Marisa; Alves, Carlos Tiago; Rama Raju, B; Gonçalves, M Sameiro T; Coutinho, Paulo J G; Henriques, Mariana; Belo, Isabel

    2014-12-01

    The use of Antimicrobial Photodynamic Therapy (APDT) as a new approach to treat localized Candida infections is an emerging and promising field nowadays. The aim of this study was to verify the efficacy of photodynamic therapy using two new benzo[a]phenoxazinium photosensitizers against Candida albicans biofilms: N-(5-(3-hydroxypropylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSc) and N-(5-(11-hydroxyundecylamino)-10-methyl-9H-benzo[a]phenoxazin-9-ylidene)ethanaminium chloride (FSd). The photodynamic activity of dyes against C. albicans biofilms was evaluated by incubating biofilms with dyes in the range of 100-300 μM for 3 or 18 h followed by illumination at 12 or 36 J cm(-2), using a xenon arc lamp (600 ± 2 nm). A total photoinactivation of C. albicans biofilm cells was achieved using 300 μM of FSc with 18 h of incubation, followed by illumination at 36 J cm(-2). Contrarily, FSd had insignificant effect on biofilms inactivation by APDT. The higher uptake of FSc than FSd dye by biofilms during the dark incubation may explain the greater photodynamic effectiveness achieved with FSc. The results obtained stresses out the FSc-mediated APDT potential use to treat C. albicans infections.

  15. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters.

    PubMed

    Wu, Juan; Hou, Wei; Cao, Binbin; Zuo, Tao; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2015-09-01

    Norovirus (NoV) is one of the most important seafood- and water-borne viruses, and is a major cause of acute gastroenteritis outbreaks. In the present study we investigated the effect of curcumin as a sensitizer to photodynamic treatment both in buffer and in oysters against murine norovirus 1 (MNV-1), a surrogate of NoV. MNV-1 cultured in buffer and MNV-1 bio-accumulated in oysters were irradiated with a novel LED light source with a wavelength of 470nm and an energy of 3.6J/cm(2). Inactivation of MNV-1 was investigated by plaque assays. After virus was extracted from the gut of oysters treated over a range of curcumin concentrations, the ultrastructural morphology of the virus was observed using electron microscopy, and the integrity of viral nucleic acids and stability of viral capsid proteins were also determined. Results showed that the infectivity of MNV-1 was significantly inhibited by 1-3logPFU/ml, with significant damage to viral nucleic acids in a curcumin dose-dependent manner after photodynamic activation. Virus morphology was altered after the photodynamic treatment with curcumin, presumably due to the change of the viral capsid protein structures. The data suggest that treatment of oysters with photodynamic activation of curcumin is a potentially efficacious and cost-effective method to inactivate food-borne NoV. Further studies are necessary to evaluate the toxicology of this approach in detail and perform sensory evaluation of the treated product.

  16. Photodynamic therapy for palpebral and conjunctival proliferative vascular tumors: clinical case report.

    PubMed

    Sanchez, Carlos Gustavo; Caballero Chávez, Yolanda V; Plazola, Sara

    2009-01-01

    Photodynamic therapy (PDT) has been widely used in ophthalmology for the treatment of diverse pathologies, but no experience has been reported in the handling of patients with palpebral vascular and conjunctive malformations with PDT, we describe the case of one patient with a palpebral proliferative vascular tumor, treated successfully using the PDT as a new treatment alternative.

  17. The Antimicrobial Photodynamic Therapy in the Treatment of Peri-Implantitis

    PubMed Central

    Libotte, Fabrizio; Sabatini, Silvia; Grassi, Felice Roberto

    2016-01-01

    Introduction. The aim of this study is to demonstrate the effectiveness of addition of the antimicrobial photodynamic therapy to the conventional approach in the treatment of peri-implantitis. Materials and Methods. Forty patients were randomly assigned to test or control groups. Patients were assessed at baseline and at six (T1), twelve (T2), and twenty-four (T3) weeks recording plaque index (PlI), probing pocket depth (PPD), and bleeding on probing (BOP); control group received conventional periodontal therapy, while test group received photodynamic therapy in addition to it. Result. Test group showed a 70% reduction in the plaque index values and a 60% reduction in PD values compared to the baseline. BOP and suppuration were not detectable. Control group showed a significative reduction in plaque index and PD. Discussion. Laser therapy has some advantages in comparison to traditional therapy, with faster and greater healing of the wound. Conclusion. Test group showed after 24 weeks a better value in terms of PPD, BOP, and PlI, with an average pocket depth value of 2 mm, if compared with control group (3 mm). Our results suggest that antimicrobial photodynamic therapy with diode laser and phenothiazine chloride represents a reliable adjunctive treatment to conventional therapy. Photodynamic therapy should, however, be considered a coadjuvant in the treatment of peri-implantitis associated with mechanical (scaling) and surgical (grafts) treatments. PMID:27429618

  18. Photodynamic effects of haematoporphyrin derivative on DNA repair in murine L929 fibroblasts.

    PubMed Central

    Boegheim, J P; Dubbelman, T M; Mullenders, L H; Van Steveninck, J

    1987-01-01

    Illumination with red light of murine L929 fibroblasts that had been sensitized with haematoporphyrin derivative caused DNA single-strand breaks after a lag time of about 20 min, as revealed by alkaline elution. The cells appeared not to be capable of recovering from this damage. The photodynamic effect of haematoporphyrin derivative on DNA repair was assessed by monitoring the repair kinetics of DNA damage induced by either X-rays, u.v. light (254 nm) or methyl methanesulphonate treatment subsequent to a non-DNA-damaging photodynamic treatment with haematoporphyrin derivative. On 'post-incubation', the normally rapid repair of X-ray-induced DNA strand breaks did not occur, whereas with u.v. light and methyl methanesulphonate treatment after photodynamic treatment prolonged post-incubation resulted in an increase in the number of strand breaks rather than the normally observed decrease. This clearly shows that, after a photodynamic treatment with haematoporphyrin derivative that itself did not cause strand breaks, excision repair in L929 cells is severely inhibited at a stage beyond the incision step. PMID:2965572

  19. Photodynamic therapy for treatment of AIDS-related mucocutaneous Kaposi's sarcoma (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Schweitzer, Vanessa G.

    1992-06-01

    Since 1975, Phase I/II studies have demonstrated the successfulness of hematoporphyrin derivative photodynamic therapy (PDT) in the treatment of various malignancies of the skin, eye, bladder, lung, and head and neck. Moreover, in 1981 two cases of traditional Western cutaneous Kaposi's sarcoma (TKS) have been treated with photodynamic therapy with both early and late complete response. To date, attempts to cure and palliation of the more aggressive AIDS-related oral Kaposi's sarcoma with conventional radiation, chemotherapy or immunotherapy, or surgical excision have been limited and often associated with debilitating mucositis and further immunosuppression. Certain aspects of photodynamic therapy may be efficacious for treatment of mucocutaneous Kaposi's sarcoma: (1) the selective retention of hematoporphyrin derivative by neoplastic lesions (endothelial cell tumors); (2) a tumor- specific cytotoxic agent (i.e., free oxygen radical); (3) absence of systemic toxicity from immunosuppression; (4) the potential for retreatment without increasing side effects; and (5) porphyrin-mediated photoinactivation of enveloped viruses. Herein presented are seven cases of AIDS-related KS (EKS) with diffuse, superficial, and nodular mucocutaneous lesions treated with dihematoporphyrin derivative and photodynamic therapy with subsequent dramatic early partial and complete responses.

  20. A Simple Experiment to Show Photodynamic Inactivation of Bacteria on Surfaces

    ERIC Educational Resources Information Center

    Caminos, Daniel A.; Durantini, Edgardo N.

    2007-01-01

    New suitable approaches were investigated to visualize the photodynamic inactivation (PDI) of bacteria immobilized on agar surfaces. The PDI capacities of a cationic photosensitizer (5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl)porphyrin) and an anionic photosensitizer (5,10,15,20-tetra(4-sulfonatophenyl)porphyrin) were analyzed on a typical…

  1. Antimicrobial photodynamic therapy: an effective alternative approach to control fungal infections

    PubMed Central

    Baltazar, Ludmila M.; Ray, Anjana; Santos, Daniel A.; Cisalpino, Patrícia S.; Friedman, Adam J.; Nosanchuk, Joshua D.

    2015-01-01

    Skin mycoses are caused mainly by dermatophytes, which are fungal species that primarily infect areas rich in keratin such as hair, nails, and skin. Significantly, there are increasing rates of antimicrobial resistance among dermatophytes, especially for Trichophyton rubrum, the most frequent etiologic agent worldwide. Hence, investigators have been developing new therapeutic approaches, including photodynamic treatment. Photodynamic therapy (PDT) utilizes a photosensitive substance activated by a light source of a specific wavelength. The photoactivation induces cascades of photochemicals and photobiological events that cause irreversible changes in the exposed cells. Although photodynamic approaches are well established experimentally for the treatment of certain cutaneous infections, there is limited information about its mechanism of action for specific pathogens as well as the risks to healthy tissues. In this work, we have conducted a comprehensive review of the current knowledge of PDT as it specifically applies to fungal diseases. The data to date suggests that photodynamic treatment approaches hold great promise for combating certain fungal pathogens, particularly dermatophytes. PMID:25821448

  2. Antimicrobial Photodynamic Therapy to treat chemotherapy-induced oral lesions: Report of three cases.

    PubMed

    Rocha, Breno Amaral; Melo Filho, Mário Rodrigues; Simões, Alyne

    2016-03-01

    The development of Angular Cheilitis and the reactivation of Herpes Simplex Virus, could be related to a decrease in the resistance of the immune system in the infected host, being common in cancer patients receiving antineoplastic chemotherapy. The objective of the present manuscript is to report Antimicrobial Photodynamic Therapy as a treatment of infected oral lesions of patients submitted to chemotherapy.

  3. Own Experience in Treatment of Patients with Penile Cancer Using Photodynamic Therapy

    PubMed Central

    Filonenko, Elena; Kaprin, Andrey; Alekseev, Boris; Urlova, Antonina

    2015-01-01

    Penile cancer is a rare pathology. For penile cancer surgical treatment, radiotherapy, chemotherapy, and combined modality treatment are available. Because of great importance of this organ for mental condition of patient, the development of organ-preserving methods allowing to minimize impact on patient's quality of life without compromising of oncological results is desirable. In the Center of Laser and Photodynamic diagnosis and treatment of tumors in P.A. Herzen Moscow Cancer Research Institute the methods of photodynamic therapy in patients with penile cancer have been developed. From 2011 to 2013 the treatment was conducted in 11 patients with precancer and cancer of penile. The average age was 56.6. According to morphological diagnosis photodynamic therapy (PDT) was performed using two methods. One method included topical application of agent for PDT and the second intravenous administration of photosensitizer. For topical application alasens was used and for intravenous injection we applied radachlorine. All patients had no complications. Complete regression was achieved in 9 patients, and partial regression in 2. Thus, the results showed that photodynamic therapy for penile cancer stage Tis-1N0M0 permits performing organ-preserving treatment with satisfactory oncological results and no impairment of patient's quality of life. PMID:25834812

  4. The successful off-label use of photodynamic therapy for classic porokeratosis of Mibelli: case report.

    PubMed

    Giuliodori, Katia; Campanati, Anna; Ganzetti, Giulia; Conocchiari, Luca; Cataldi, Ivana; Simonetti, Oriana; Giangiacomi, Mirella; Offidani, Annamaria

    2011-01-01

    Porokeratosis of Mibelli is an uncommon chronic disorder of epidermal keratinization that should be treated because it can undergo malignant change into epithelial tumors on the lesions. At the moment, it represents a therapeutic challenge for dermatologists because of the lack of standardized guidelines about the treatment. Herein, we report a case of classic porokeratosis of Mibelli treated with photodynamic therapy successfully.

  5. Photodynamic therapy for Barrett's esophagus: effect of steroid therapy on stricture formation

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Haydek, John M.; Lee, Sharon G.

    1999-07-01

    The primary goal of this study was to investigate whether the use of oral steroids would reduce the incidence of stricture formation after balloon photodynamic therapy in patients with dysplasia and early caner in Barrett's esophagus. The effect of other treatment parameters such as light dose and multiple treatments were also investigated.

  6. Photodynamic therapy using light-emitting diodes for the treatment of viral warts.

    PubMed

    Ohtsuki, Akiko; Hasegawa, Toshio; Hirasawa, Yusuke; Tsuchihashi, Hitoshi; Ikeda, Shigaku

    2009-10-01

    Photodynamic therapy with topical 5-aminolevulinic acid is an effective and safe treatment for actinic keratosis and superficial non-melanoma skin cancer. Further, some studies have reported good efficacy when using photodynamic therapy to treat viral warts. The light-emitting diode is an incoherent, narrow-spectrum light source. The purpose of this study is to evaluate the efficacy of photodynamic therapy using a light-emitting diode for viral warts. Six patients with a total of 41 foot and hand warts were recruited in this study. They were treated with 20% 5-aminolevulinic acid cream under occlusion for 5 h. Thereafter, the treated area was irradiated with the light from a red light-emitting diode (633 +/- 6 nm) with a dose of 126 J/cm(2). This treatment was repeated at 2- or 3-week intervals. The rate of improvement observed in patients was 68.3%. The adverse effects included mild to moderate pain and erythema, which was well-tolerated by all six patients. No patients withdrew from the study due to the adverse effects. Photodynamic therapy with topical 5-aminolevulinic acid using the light from a red light-emitting diode has the advantage of non-invasiveness, minimal associated adverse reactions, and production of good results in a significant proportion of cases: therefore, it is an alternative treatment for recalcitrant viral warts.

  7. Allergic contact dermatitis to methyl aminolevulinate after photodynamic therapy in 9 patients.

    PubMed

    Hohwy, Thomas; Andersen, Klaus Ejner; Sølvsten, Henrik; Sommerlund, Mette

    2007-11-01

    This report describes 9 patients who developed allergic contact dermatitis to methyl aminolevulinate used for photodynamic therapy (PDT). The risk of developing contact allergy to methyl aminolevulinate in PDT treated patients was calculated to 1% after an average of 7 treatments (range 2-21).

  8. Allergic contact dermatitis to methyl aminolevulinate (Metvix) cream used in photodynamic therapy.

    PubMed

    Harries, Matthew J; Street, Gill; Gilmour, Elizabeth; Rhodes, Lesley E; Beck, Michael H

    2007-02-01

    Topical photodynamic therapy (PDT) is increasingly used in the treatment of superficial skin malignancies including actinic keratosis, Bowen's disease and superficial basal cell carcinoma. Contact allergy to the prodrug is rarely reported. We report a case of allergic contact dermatitis to methyl aminolevulinate cream used in PDT.

  9. 5-aminolevulinic acid in photodynamic diagnosis and therapy of urological malignancies

    NASA Astrophysics Data System (ADS)

    Nelius, Thomas; de Riese, Werner T. W.

    2003-06-01

    Completeness and certainty of tumor detection are very important issues in clinical oncology. Recent technological developments in ultrasound, radiologic and magnetic resonance imaging diagnostics are very promising, but could not improve the detection rate of early stage malignancies. One of the most promising new approaches is the use of 5-aminolevulinic acid, a potent photosensitizer, in photodynamic diagnosis and therapy. 5-aminolevulinic acid is meanwhile a well-established tool in the photodynamic diagnosis of bladder cancer. It has been shown to improve the sensitivity of detection of superficial tumors and carcinoma in situ, which enables to reduce the risk of tumor recurrence related to undetected lesions or incomplete transurethral resection of the primary lesions. The use of 5-aminolevulinic acid is steadily expanding in diagnostics of urological malignancies. First clinical results are now reported in detection of urethral and ureteral lesions as well as in urine fluorescence cytology. Furthermore, due to the selective accumulation in transitional cell carcinoma of the bladder, 5-aminolevulinic acid may be an ideal candidate for photodynamic therapy in superficial bladder cancer. Summarizing the data of multiple clinical trials, 5-aminolevulinic acid is a promising agent in photodynamic diagnostics and treatment of superficial bladder cancer.

  10. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy.

    PubMed

    Zeng, Leli; Kuang, Shi; Li, Guanying; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2017-02-07

    A glutathione (GSH)-activatable ruthenium(ii)-azo photosensitizer was prepared. The complex had low toxicity towards cells under dark conditions. It exhibited excellent phototoxicity under two-photon excitation (810 nm) and thus was developed as a two-photon photodynamic anticancer agent for cancer therapy.

  11. New design of textile light diffusers for photodynamic therapy.

    PubMed

    Cochrane, Cédric; Mordon, Serge R; Lesage, Jean Claude; Koncar, Vladan

    2013-04-01

    A homogeneous and reproducible fluence delivery rate during clinical photodynamic therapy (PDT) plays a determinant role in preventing under- or overtreatment. PDT applied in dermatology has been carried out with a wide variety of light sources delivering a broad range of more or less adapted light doses. Due to the complexities of the human anatomy, these light sources do not in fact deliver a uniform light distribution to the skin. Therefore, the development of flexible light sources would considerably improve the homogeneity of light delivery. The integration of plastic optical fiber (POF) into textile structures could offer an interesting alternative. In this article, a textile light diffuser (TLD) has been developed using POF and Polyester yarns. Predetermined POF macrobending leads to side emission of light when the critical angle is exceeded. Therefore, a specific pattern based on different satin weaves has been developed in order to improve light emission homogeneity and to correct the decrease of side emitted radiation intensity along POF. The prototyped fabrics (approximately 100 cm(2): 5×20 cm) were woven using a hand loom, then both ends of the POF were coupled to a laser diode (5 W, 635 nm). The fluence rate (mW/ cm(2)) and the homogeneity of light delivery by the TLD were evaluated. Temperature evolution, as a function of time, was controlled with an infrared thermographic camera. When using a power source of 5 W, the fluence rate of the TLD was 18±2.5 mw/cm(2). Due to the high efficiency of the TLD, the optical losses were very low. The TLD temperature elevation was 0.6 °C after 10 min of illumination. Our TLD meets the basic requirements for PDT: homogeneous light distribution and flexibility. It also proves that large (500 cm(2)) textile light diffusers adapted to skin, but also to peritoneal or pleural cavity, PDTs can be easily produced by textile manufacturing processes.

  12. Target cell specific antibody-based photosensitizers for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka

    2011-03-01

    In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (<6%) was observed in all treatments of the HER2- cell line (BALB/3T3) and in treatments the HER2+ cell line (3T3/HER2) with light or trastuzumab only. There was significant light-induced cell death in HER2 expressing cells using Tra-TAM (3% dead without light, 20% at 50 J/cm2, 46% at 100 J/cm2) and Tra-Rho6G (5% dead without light, 22% at 50 J/cm2, 46% at 100 J/cm2). No efficacy was observed in treatment with Tra-RhoB, which was also non-specifically taken up by BALB/3T3 cells and which had weaker PS-antibody interactions (as demonstrated by visualization of protein and fluorescence on SDS-PAGE).

  13. Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy.

    PubMed

    Kuzyniak, Weronika; Ermilov, Eugeny A; Atilla, Devrim; Gürek, Ayşe Gül; Nitzsche, Bianca; Derkow, Katja; Hoffmann, Björn; Steinemann, Gustav; Ahsen, Vefa; Höpfner, Michael

    2016-03-01

    Photodynamic therapy (PDT) has emerged as an effective and minimally invasive treatment option for several diseases, including some forms of cancer. However, several drawbacks of the approved photosensitizers (PS), such as insufficient light absorption at therapeutically relevant wavelengths hampered the clinical effectiveness of PDT. Phthalocyanines (Pc) are interesting PS-candidates with a strong light absorption in the favourable red spectral region and a high quantum yield of cancer cell destroying singlet oxygen generation. Here, we evaluated the suitability of tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine (ZnPc) as novel PS for PDT. ZnPc-induced phototoxicity, induction of apoptosis as well as cell cycle arresting effects was studied in the human gastrointestinal cancer cell lines of different origin. Photoactivation of ZnPc-pretreated (1-10 μM) cancer cells was achieved by illumination with a broad band white light source (400-700 nm) at a power density of 10 J/cm(2). Photoactivation of ZnPc-loaded cells revealed strong phototoxic effects, leading to a dose-dependent decrease of cancer cell proliferation of up to almost 100%, the induction of apoptosis and a G1-phase arrest of the cell cycle, which was associated with decrease in cyclin D1 expression. By contrast, ZnPc-treatment without illumination did not induce any cytotoxicity, apoptosis, cell cycle arrest or decreased cell growth. Antiangiogenic effects of ZnPc-PDT were investigated in vivo by performing CAM assays, which revealed a marked degradation of blood vessels and the capillary plexus of the chorioallantoic membrane of fertilized chicken eggs. Based on our data we think that ZnPc may be a promising novel photosensitizer for innovative PDT.

  14. Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2011-09-01

    Photodynamic Therapy (PDT) is an optical treatment modality that allows malignant tissue destruction. It is based on the administration of a photosensitizer and the posterior irradiation by an optical source. Photosensitizer molecules absorb the excitation light photons triggering a series of photochemical reactions in the presence of oxygen in the target tissue. During such interactions it is produced the de-excitation of the photosensitizer molecules in the singlet excited state which return to their minimum energy state by emitting fluorescence photons. These days, there are fixed clinical PDT protocols that make use of a particular optical dose and photosensitizer amount. However treatment response varies among patients and the type of pathology. In order to adjust an optimal dosimetry, the development of accurate predictive models plays an important role. The photosensitizer fluorescence can be used to estimate the degradation of the photoactive agent and as an implicit dosimetric measurement during treatment. However it is complex to know the fluorescence dependence with the depth in the tumor from observed fluorescence in the pathology surface. We present a first approach to predict the photosensitizer fluorescence dependence with depth during the PDT treatment applied to a skin disease commonly treated in the dermatological clinical practice. The obtained results permit us to know the photosensitizer temporal fluorescence evolution in different points of the tumor sample during the photochemical reactions involved in PDT with a predictive purpose related to the treatment evolution. The model presented also takes into account the distribution of a topical photosensitizer, the propagation of light in a biological media and the subsequent photochemical interactions between light and tissue. This implies that different parameters related with the photosensitizer distribution or the optical source characteristics could be adjusted to provide a specific treatment

  15. Photosensitizer fluorescence emission during photodynamic therapy applied to dermatological diseases

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2012-02-01

    Photodynamic Therapy (PDT) is an optical treatment modality that allows malignant tissue destruction. It is based on the administration of a photosensitizer and the posterior irradiation by an optical source. Photosensitizer molecules absorb the excitation light photons triggering a series of photochemical reactions in the presence of oxygen in the target tissue. During such interactions it is produced the de-excitation of the photosensitizer molecules in the singlet excited state which return to their minimum energy state by emitting fluorescence photons. These days, there are fixed clinical PDT protocols that make use of a particular optical dose and photosensitizer amount. However treatment response varies among patients and the type of pathology. In order to adjust an optimal dosimetry, the development of accurate predictive models plays an important role. The photosensitizer fluorescence can be used to estimate the degradation of the photoactive agent and as an implicit dosimetric measurement during treatment. However it is complex to know the fluorescence dependence with the depth in the tumor from observed fluorescence in the pathology surface. We present a first approach to predict the photosensitizer fluorescence dependence with depth during the PDT treatment applied to a skin disease commonly treated in the dermatological clinical practice. The obtained results permit us to know the photosensitizer temporal fluorescence evolution in different points of the tumor sample during the photochemical reactions involved in PDT with a predictive purpose related to the treatment evolution. The model presented also takes into account the distribution of a topical photosensitizer, the propagation of light in a biological media and the subsequent photochemical interactions between light and tissue. This implies that different parameters related with the photosensitizer distribution or the optical source characteristics could be adjusted to provide a specific treatment

  16. Nanophotonic ensembles for targeted multi-photon photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Spangler, Charles W.; Meng, Fanqing; Gong, Aijun; Drobizhev, Mikhail A.; Karotki, Aliaksandr; Rebane, Aleksander, II

    2004-06-01

    There has been a dramatic increase in the application of new technologies for the treatment of cancerous tumors over the past decade, but for the most part, the treatment of most tumors still involves some combination of invasive surgery, chemotherapy and radiation treatments. Photodynamic therapy (PDT), which involves the activation of an administered compound with laser light followed by a series of events leading to programmed cell death of the tumor, has been proposed as a noninvasive alternative treatment to replace the standard surgery/chemotherapy/radiation protocol. However, currently approved PDT agents operate in the Visible portion of the spectrum, and laser light in this region cannot penetrate the skin more than a few millimeters. Two-photon irradiation using more highly penetrating Near-infrared (NIR) light in the tissue transparency window (700-1000 nm) has been proposed for the treatment of subcutaneous tumors, but most porphyrins exhibit extremely small two-photon cross-sections. Classical PDT also suffers from the lengthy time necessary for accumulation at the tumor site, a relative lack of discrimination between healthy and diseased tissue, particularly at the tumor margins, and difficulty in clearing from the system in a reasonable amount of time. We have recently discovered a new design paradigm for porphyrins with greatly enhanced two-photon cross-sections, and are now proposing a nano-ensemble that would also incorporate small molecule targeting agents, and possibly one-photon NIR imaging agents along with these porphyrins in one therapeutic agent. Thus these ensembles would incorporate targeting/imaging/PDT functions in one therapeutic agent, and hold the promise of single-session outpatient treatment of a large variety of subcutaneous tumors.

  17. Canine treatment with SnET2 for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Frazier, Donita L.; Milligan, Andrew J.; Vo-Dinh, Tuan; Morgan, Alan R.; Overholt, Bergein F.

    1990-07-01

    Photodynamic therapy is a treatment technique that utilizes the photoactived species of a drug to destroy tumor tissue. To be successful, the drug must localize in tumor tissue preferentially over normal tissue and must be activated by light of a specific wavelength. Currently the only drug to be approved for clinical use is Heinatoporphyrin Derivative (HpD) although a series of new drugs are being developed for use in the near future. One of the drugs belongs to a class called purpurins which display absorp-' tions between 630-711 nm. Along with several other investigators, we are currently exploring the characteristics of a specific purpurin (SnET2) in normal and tumorous canine tissue. The use of this compound has demonstrated increased tumor control rates in spontaneous dog tumors. Preliminary pharmacokinetic studies have been performed on 6 normal beagle dogs. SnET2 (2 mg/kg) was injected intravenously over 10 minutes and blood was collected at 5, 15, 30, 45 minutes and at 1, 2, 4, 8, 12 and 24 hours following administration for determination of drug concentration and calculation of pharinacokinetic parameters. Skin biopsies were collected at 1, 4, 8, 12 and 24 hours. Dogs were euthanized at 24 hours and tissues (liver, kidney muscle, esophagus, stomach, duodenum, jejunum, ileura, colon, adrenal gland, thyroid, heart, lung, urinary bladder, prostate, pancreas, eye, brain) were collected for drug raeasurement. Drug was shown to persist in liver and kidney for a prolonged period of time coiapared to other tissues. Knowledge of the pharmacokinetic properties of the drug will greatly add to the ability to treat patients with effective protocols.

  18. A PSMA-targeted theranostic agent for photodynamic therapy.

    PubMed

    Chen, Ying; Chatterjee, Samit; Lisok, Ala; Minn, Il; Pullambhatla, Mrudula; Wharram, Bryan; Wang, Yuchuan; Jin, Jiefu; Bhujwalla, Zaver M; Nimmagadda, Sridhar; Mease, Ronnie C; Pomper, Martin G

    2017-02-01

    Prostate-specific membrane antigen (PSMA) is over-expressed in the epithelium of prostate cancer and in the neovasculature of many non-prostate solid tumors. PSMA has been increasingly used as a target for cancer imaging and therapy. Here we describe a low-molecular-weight theranostic photosensitizer, YC-9, for PSMA-targeted optical imaging and photodynamic therapy (PDT). YC-9 was synthesized by conjugating IRDye700DX N-hydroxysuccinimide (NHS) ester with a PSMA targeting Lys-Glu urea through a lysine-suberate linker in suitable yield. Optical imaging in vivo demonstrated PSMA-specific tumor uptake of YC-9 with rapid clearance from non-target tissues. PSMA-specific cell kill was demonstrated with YC-9in vitro through PDT in PSMA(+) PC3-PIP and PSMA(-) PC3-flu cells. In vivo PDT in mice bearing PSMA(+) PC3-PIP tumors at 4h post-injection of YC-9 (A total of four PDT sessions were performed, 48h apart) resulted in significant tumor growth delay, while tumors in control groups continued to grow. PDT with YC-9 significantly increased the median survival of the PSMA(+) PC3-PIP tumor mice (56.5days) compared to control groups [23.5-30.0days, including untreated, light alone, YC-9 alone (without light) and non-targeted IRDye700DX PDT treatment groups], without noticeable toxicity at the doses used. This study proves in principle that YC-9 is a promising therapeutic agent for targeted PDT of PSMA-expressing tissues, such as prostate tumors, and may also be useful against non-prostate tumors by virtue of neovascular PSMA expression.

  19. Radical Pleurectomy and Intraoperative Photodynamic Therapy for Malignant Pleural Mesothelioma

    PubMed Central

    Friedberg, Joseph S.; Culligan, Melissa J.; Mick, Rosemarie; Stevenson, James; Hahn, Stephen M.; Sterman, Daniel; Punekar, Salman; Glatstein, Eli; Cengel, Keith

    2015-01-01

    Background Radical pleurectomy (RP) for mesothelioma is often considered either technically infeasible or an operation limited to patients who would not tolerate a pneumonectomy. The purpose of this study was to review our experience using RP and intraoperative photodynamic therapy (PDT) for mesothelioma. Methods 38 patients (42–81 years) underwent RP-PDT. 35/38 (92%) patients also received systemic therapy. Standard statistical techniques were employed for analysis. Results 37/38 (97%) patients had Stage III/IV (AJCC) cancer and 7/38 (18%) patients had nonepithelial subtypes. Macroscopic complete resection was achieved in 37/38 (97%) patients. There was one postoperative mortality (stroke). At a median follow-up of 34.4 months, the median survival was 31.7 months for all 38 patients, 41.2 months for the 31/38 (82%) epithelial patients and 6.8 months for the 7/38 (18%) nonepithelial patients. The median progression free survivals were 9.6, 15.1 and 4.8 months, respectively. The median and progression free survivals for the 20/31 (64%) epithelial patients with N2 disease were 31.7 and 15.1 months, respectively. Conclusions It was possible to achieve a macroscopic complete resection utilizing lung-sparing surgery in 97% of these stage III/IV patients. The survival we observed with this approach was unusually long for the epithelial subtype patients but, interestingly, the progression free survival was not. The reason for this prolonged survival in spite of recurrence is not clear, but is potentially related to preservation of the lung and/or some PDT-induced effect. We conclude that the results of this lung-sparing approach are safe, encouraging and warrant further investigation. PMID:22541196

  20. Photodynamic Treatment of Tumor with Bacteria Expressing KillerRed

    PubMed Central

    Yan, Libo; Kanada, Masamitsu; Zhang, Jinyan; Okazaki, Shigetoshi; Terakawa, Susumu

    2015-01-01

    Photodynamic therapy (PDT) is a cancer treatment modality in which a photosensitizing dye is administered and exposed to light to kill tumor cells via the production of reactive oxygen species (ROS). A fundamental obstacle for PDT is the low specificity for staining solid tumors with dyes. Recently, a tumor targeting system guided by anaerobic bacteria was proposed for tumor imaging and treatment. Here, we explore the feasibility of the genetically encoded photosensitizer KillerRed, which is expressed in Escherichia coli, to treat tumors. Using nitroblue tetrazolium (NBT), we detected a lengthy ROS diffusion from the bodies of KillerRed-expressing bacteria in vitro, which demonstrated the feasibility of using bacteria to eradicate cells in their surroundings. In nude mice, Escherichia coli (E. coli) expressing KillerRed (KR-E. coli) were subcutaneously injected into xenografts comprising CNE2 cells, a human nasopharyngeal carcinoma cell line, and HeLa cells, a human cervical carcinoma cell line. KR-E. coli seemed to proliferate rapidly in the tumors as observed under an imaging system. When the intensity of fluorescence increased and the fluorescent area became as large as the tumor one day after KR-E. coli injection, the KR-E. coli-bearing tumor was irradiated with an orange light (λ = 540 − 580 nm). In all cases, the tumors became necrotic the next day and were completely eliminated in a few days. No necrosis was observed after the irradiation of tumors injected with a vehicle solution or a vehicle carrying the E. coli without KillerRed. In successfully treated mice, no tumor recurrence was observed for more than two months. E. coli genetically engineered for KillerRed expression are highly promising for the diagnosis and treatment of tumors when the use of bacteria in patients is cleared for infection safety. PMID:26213989

  1. Low dose mTHPC photodynamic therapy for cholangiocarcinoma

    NASA Astrophysics Data System (ADS)

    Stepp, Herbert; Kniebühler, Gesa; Pongratz, Thomas; Betz, Christian S.; Göke, Burkhard; Sroka, Ronald; Schirra, Jörg

    2013-06-01

    Objective: Demonstration of whether a low dose of mTHPC (temoporfin , Foscan) is sufficient to induce an efficient clinical response in palliative PDT of non-resectable cholangiocarcinoma (CC), while showing a low side effect profile as compared to the standard Photofrin PDT. Materials and Methods: 13 patients (14 treatment sessions) with non-resectable CC were treated with stenting and PDT (3 mg Foscan per treatment, 0.032-0.063 mg/kg body weight, 652 nm, 50 J/cm). Fluorescence measurements were performed with a single bare fiber for 5/13 patients prior to PDT at the tumor site to determine the fluorescence contrast. For another 7/13 patients, long-term fluorescence-kinetics were measured on the oral mucosa to determine the time of maximal relative fluorescence intensity. Results: Foscan fluorescence could clearly be identified spectroscopically as early as 20 hours after administration. It was not significantly different between lesion and normal tissue within the bile duct. Fluorescence kinetics assessed at the oral mucosa were highest at 72-96 hours after administration. The DLI was therefore extended from 20 hours to approx. 70 hours for the last 5 patients treated. The treatment effect was promising with a median survival of 11 months for the higher grade tumors (Bismuth types III and IV). Local side effects occurred in one patient (pancreatitis), systemic side effects were much reduced compared to prior experience with Photofrin. Conclusion: Combined stenting and photodynamic therapy (PDT) performed with a low dose of Foscan results in comparable survival times relative to standard Photofrin PDT, while lowering the risk of side effects significantly.

  2. Phthalocyanine-assisted photodynamic inactivation of pathogenic microorganisms

    NASA Astrophysics Data System (ADS)

    Mantareva, Vanya; Angelov, Ivan; Borissova, Ekaterina; Avramov, Latchezar; Kussovski, Vesselin

    2007-03-01

    The phthalocyanine zinc(II) and aluminum (III) complexes were studied to photoinactivate the bacterial strains, Staphylococcus aureus, methacillin-sensitive and methacillin-resistant, Pseudomonas aeruginosa and one yeast Candida albicans. The binding of phthalocyanines to bacteria and fungi cells was evaluated by the means of laserinduced fluorescence technique. The fluorescent spectra of dyes (650 - 800 nm) after direct excitation (635 nm) were measured as follows: 1. for the aqua supernatants obtained after 10 min cell incubation with the respected phthalocyanines (1.6 μmol.l -1), 2. for the washed from the unbound dye cells, and 3. for the organic extracts from the three times washed cells. Fluorescent intensities at the emission maximum (~690 nm) were compared to the spectra of the phthalocyanines in organic solutions. The phthalocyanines uptake data for bacteria and fungi were determined at different cell densities. Nevertheless the better fluorescence properties of AlPc (fluorescent quantum yield of 0.4 towards 0.3 for ZnPcs) the lower drug accumulation in microorganisms was obtained. PDI results indicated an intensive lowering of the bacterial survival of both strains of S. aureus treated with cationic ZnPcMe followed by the anionic ZnPcS, at irradiance of 100 mW cm -2 and fluence rate of 60 J cm -2. More resistant to phototreatment P. aeruginosa and morphologically complicated yeast C. albicans were successfully inactivated only with cationic ZnPcMe. These data indicate the promising future application of cationic phthalocyanine in photodynamic inactivation of pathogenic microorganisms.

  3. Interstitial photodynamic therapy for the prostate: a canine feasibility study

    NASA Astrophysics Data System (ADS)

    Shetty, Sugandh D.; Sirls, Larry T.; Chen, Qun; Hetzel, Fred W.; Cerny, Joseph C.

    1996-05-01

    Prior to a possible clinical application of photodynamic therapy (PDT) for prostatic diseases such as benign prostatic hyperplasia and prostate cancer, optical properties of the prostate gland need to be studied. The specific objectives of this study were (1) to determine the light penetration depth, (2) to document the photosensitizer levels in the prostate, and (3) to document the lesion size after PDT. Sixteen dogs were injected with Photofrin II (1, 3 and 5 mg/kg) 24 hrs prior to laser application. After laparotomy and exposure of prostate, monochromatic light (630 nm, via an argon pumped dye laser) was applied through an isotropic fiber at 100 mw for a total dose of 400 joules. Continuous light fluence and temperature were documented. Prostates were harvested at 1 week and examined histologically for the lesion size. Four sham dogs were treated without Photofrin II. At Photofrin doses of 1, 3 and 5 mg/kg the mean prostatic Photofrin levels were 1.78 plus or minus 0.33, 1.47 plus or minus 0.08 and 1.95 plus or minus 0.44 (mu) gm/ml. The mean light penetration depths were 2.08, 1.37 and 1.64 mm respectively. Photofrin dose escalation (1, 3 and 5 mg/kg) increased the lesion size to radius of 4.1 plus or minus 0.9 mm, 4.4 plus or minus 0.8 mm and 6.3 plus or minus 0.9 mm. There were no lesions seen in sham dogs. These results demonstrate that light penetration in prostate is consistent and therapeutic levels of photosensitizer are achieved in prostatic tissue. Moreover, increasing size of the lesions were documented with dose escalation.

  4. Pentamethylpyrromethene boron difluoride complexes in human ovarian cancer photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Morgan, Lee R.; Chaudhuri, Aulena; Gillen, Laura E.; Boyer, Joseph H.; Wolford, Lionel T.

    1990-07-01

    Quasiaromatic heterocycles (QAM) such as substituted 1 , 3 , 5 , 7 , 8-pentamethylpyrromethene boron difluorides (PMP-BF2) and - (dimethoxyphosphinylmethyl, methyl) bimane have been evaluated for their abilities to produce cellular toxicities when used in photodynamic therapy (PDT) for ovarian cancer. The most active QAH tested to date has been the disodiuxn salt of PMP-2,6-disulfonate--BF2 (PMPDS-BF2). Human ovarian cancer cells from fifteen different patients have been grown in culture. Cells were obtained from biopsy material and grown in RPMI medium with 10% FBA plus penicillin and streptomycin. Cells were harvested and as single cell suspensions exposed to PMP-BF2 complexes or bimanes in concentrations of 0.004-0.4 ug/106 cells/ml of medium. Initially the cells were exposed to the chemicals for 30 minutes in a 5% CO2 incubator (37°C) with gentle shaking. The cells were washed with plain RPMI medium, then resuspended in the enriched RPMI medium and exposed to a sunlamp for 10-20 minutes. Cells were then allowed to grow in an soft agar culture media at 37°C (5% C02) for 14 days. When compared to controls (only light or only chemicals) there was 100% inhibition of all cellular growth for PMPDSBF2 at the 0.4 ug/mi concentrations. There was variations in concentrations of the chemical needed to produce 100% inhibition when the 15 different ovarian cancer cell specimens were compared at all concentrations. PMP-BF2 complexes are characterized by extremely high extinction coefficients, superior laser activity and little if any triplet-triplet absorption. The biamanes share these properties however are less active in ovarian cancer cell The lasing properties of PMP-BF2, and bimanes will be compared to their PDT effectiveness.

  5. Photodynamic therapy for localized infections – state of the art

    PubMed Central

    Dai, Tianhong; Huang, Ying-Ying; Hamblin, Michael R

    2009-01-01

    Photodynamic therapy (PDT) was discovered over one hundred years ago by observing the killing of microorganisms when harmless dyes and visible light were combined in vitro. Since then it has primarily been developed as a treatment for cancer, ophthalmologic disorders and in dermatology. However in recent years interest in the antimicrobial effects of PDT has revived and it has been proposed as a therapy for a large variety of localized infections. This revival of interest has largely been driven by the inexorable increase in drug resistance amongst many classes of pathogen. Advantages of PDT include equal killing effectiveness regardless of antibiotic resistance, and a lack of induction of PDT resistance. Disadvantages include the cessation of the antimicrobial effect when the light is turned off, and less than perfect selectivity for microbial cells over host tissue. This review will cover the use of PDT to kill or inactivate pathogens in ex vivo tissues and in biological materials such as blood. PDT has been successfully used to kill pathogens and even to save life in several animal models of localized infections such as surface wounds, burns, oral sites, abscesses and the middle ear. A large number of clinical studies of PDT for viral papillomatosis lesions and for acne refer to its anti-microbial effect, but it is unclear how important this microbial killing is to the overall therapeutic outcome. PDT for periodontitis is a rapidly growing clinical application and other dental applications are under investigation. PDT is being clinically studied for other dermatological infections such as leishmaniasis and mycobacteria. Antimicrobial PDT will become more important in the future as antibiotic resistance is only expected to continue to increase. PMID:19932449

  6. Photodynamic therapy of cancer: five-year clinical experience

    NASA Astrophysics Data System (ADS)

    Stranadko, Eugeny P.; Skobelkin, Oleg K.; Vorozhtsov, Georgy N.; Mironov, Andrei F.; Beshleul, Stanislav E.; Markitchev, Nikolai A.; Riabov, Michail V.

    1997-12-01

    The results of application of photodynamic therapy (PDT) for treatment of malignant tumors of skin, breasts, tongue, oral mucose, lower lip, larynx, stomach, bladder, rectum and other localizations were assessed. In 1992 - 1997 more than 1200 tumoral foci in 288 patients have been treated with PDT. Most of the patients have been taken for PDT for tumoral recurrences or intradermal metastases after surgery, gamma- therapy or combined treatment. A certain number of patients had not been treated before due to severe accompanying diseases or old age. Russian photosensitizers Photoheme in dosage 1.0 - 5.0 mg/kg body weight, and Photosense in dosage 0.5 - 1.5 mg/kg body weight were used. Laser irradiation was performed using Coherent 'Innova-200' and Russian laser devices: copper vapor-pumped dye laser (wavelength 630 nm, output power -- 5 W), gold-vapor lasers (wavelength 628 nm, output power -- 2 W), solid-state laser (wavelength 670 nm, output power -- 2 W). In several cases non-laser light emitting devices have been employed. Up to date we possess the follow-up data in term from 2 months to 5 years. Therapeutic effect took place in 94.4% of the cases, including complete tumor resorption in 56.2% and partial resorption in 38.2% of the cases. The results of PDT application for treating malignant tumors allow one to estimate PDT as an adequate technique and in some tumor localizations PDT might become a method of choice. This new promising technique of cancer treatment is successfully applied in Russia. New photosensitizers and sources of light for PDT and fluorescent diagnostics are being developed.

  7. Two-photon excitation photodynamic therapy with Photofrin

    NASA Astrophysics Data System (ADS)

    Karotki, Aliaksandr; Khurana, Mamta; Lepock, James R.; Wilson, Brian C.

    2005-09-01

    Photodynamic therapy (PDT) based on simultaneous two-photon (2-γ) excitation has a potential advantage of highly targeted treatment by means of nonlinear localized photosensitizer excitation. One of the possible applications of 2-γ PDT is a treatment of exodus age-related macular degeneration where highly targeted excitation of photosensitizer in neovasculature is vital for reducing collateral damage to healthy surrounding tissue. To investigate effect of 2-γ PDT Photofrin was used as an archetypal photosensitizer. First, 2-γ absorption properties of Photofrin in the 750 - 900 nm excitation wavelength range were investigated. It was shown that above 800 nm 2-γ interaction was dominant mode of excitation. The 2-γ cross section of Photofrin was rather small and varied between 5 and 10 GM (1 GM = 10-50 cm4s/photon) in this wavelength range. Next, endothelial cells treated with Photofrin were used to model initial effect of 2-γ PDT on neovasculature. Ultrashort laser pulses provided by mode-locked Ti:sapphire laser (pulse duration at the sample 300 fs, repetition rate 90 MHz, mean laser power 10 mW, excitation wavelength 850 nm) were used for the excitation of the photosensitizer. Before 2-γ excitation of the Photofrin cells formed a single continuous sheet at the bottom of the well. The tightly focused laser light was scanned repeatedly over the cell layer. After irradiation the cell layer of the control cells stayed intact while cells treated with photofrin became clearly disrupted. The light doses required were high (6300 Jcm(-2) for ~ 50% killing), but 2-γ cytotoxicity was unequivocally demonstrated.

  8. Stimulation of dendritic cells enhances immune response after photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Castano, Ana P.; Hamblin, Michael R.

    2009-02-01

    Photodynamic therapy (PDT) involves the administration of photosensitizers followed by illumination of the primary tumor with red light producing reactive oxygen species that cause vascular shutdown and tumor cell necrosis and apoptosis. Anti-tumor immunity is stimulated after PDT due to the acute inflammatory response, priming of the immune system to recognize tumor-associated antigens (TAA). The induction of specific CD8+ Tlymphocyte cells that recognize major histocompatibility complex class I (MHC-I) restricted epitopes of TAAs is a highly desirable goal in cancer therapy. The PDT killed tumor cells may be phagocytosed by dendritic cells (DC) that then migrate to draining lymph nodes and prime naÃve T-cells that recognize TAA epitopes. This process is however, often sub-optimal, in part due to tumor-induced DC dysfunction. Instead of DC that can become mature and activated and have a potent antigen-presenting and immune stimulating phenotype, immature dendritic cells (iDC) are often found in tumors and are part of an immunosuppressive milieu including regulatory T-cells and immunosuppressive cytokines such as TGF-beta and IL10. We here report on the use of a potent DC activating agent, an oligonucleotide (ODN) that contains a non-methylated CpG motif and acts as an agonist of toll like receptor (TLR) 9. TLR activation is a danger signal to notify the immune system of the presence of invading pathogens. CpG-ODN (but not scrambled non-CpG ODN) increased bone-marrow DC activation after exposure to PDT-killed tumor cells, and significantly increased tumor response to PDT and mouse survival after peri-tumoral administration. CpG may be a valuable immunoadjuvant to PDT especially for tumors that produce DC dysfunction.

  9. Photodynamic therapy: a new antimicrobial approach to infectious disease?

    PubMed Central

    Hasan, Tayyaba

    2011-01-01

    Photodynamic therapy (PDT) employs a non-toxic dye, termed a photosensitizer (PS), and low intensity visible light which, in the presence of oxygen, combine to produce cytotoxic species. PDT has the advantage of dual selectivity, in that the PS can be targeted to its destination cell or tissue and, in addition, the illumination can be spatially directed to the lesion. PDT has previously been used to kill pathogenic microorganisms in vitro, but its use to treat infections in animal models or patients has not, as yet, been much developed. It is known that Gram-(−) bacteria are resistant to PDT with many commonly used PS that will readily lead to phototoxicity in Gram-(+) species, and that PS bearing a cationic charge or the use of agents that increase the permeability of the outer membrane will increase the efficacy of killing Gram-(−) organisms. All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naïve strains, and that bacteria will not readily develop resistance to PDT. Treatment of localized infections with PDT requires selectivity of the PS for microbes over host cells, delivery of the PS into the infected area and the ability to effectively illuminate the lesion. Recently, there have been reports of PDT used to treat infections in selected animal models and some clinical trials: mainly for viral lesions, but also for acne, gastric infection by Helicobacter pylori and brain abcesses. Possible future clinical applications include infections in wounds and burns, rapidly spreading and intractable soft-tissue infections and abscesses, infections in body cavities such as the mouth, ear, nasal sinus, bladder and stomach, and surface infections of the cornea and skin. PMID:15122361

  10. Adjuvant photodynamic therapy in surgical management of cerebral tumors

    NASA Astrophysics Data System (ADS)

    Chen, Zong-Qian; Wu, Si-En; Zhu, Shu-Gan

    1993-03-01

    We have performed high dose photoradiation therapy in patients with cerebral tumors. Twenty-seven patients had gliomas, two had metastatic cancer of the brain, one had malignant meningioma. Hematoporphyrin derivative was administered intravenously. All patients underwent a craniotomy with a radical or partial excision of the tumor. There was no evidence of increased cerebral edema and other toxicity from the therapy, and all patients were discharged from the hospital within 15 days after surgery. On the basis of animal experiments our institute started using photodynamic therapy (PDT) as an adjuvant measure to the operative therapy in 30 cases of cerebral tumors. Ten of these patients were excluded from this group because of the short postoperative following time. Here, the details of our experiences are presented as follows: 106 of C6 type glioma cell strain were implanted into the frontal lobe of a Chinese hamster. Fourteen days later intracranial gliomas developed, which were larger than 4 mm in diameter, HpD in a dosage of 4 mg/kg was injected into the tail vein of the animals. The fluorescence was seen 5 minutes later. The diagnostic laser used was He-Ca (Hc-type 15A, made at Shanghai Laser Institute) with a wavelength of 441.6 nm, power of 30 mw. The fluorescence reached its peak point 24 hours later, and the normal tissue can be identified by the lack of fluorescence. Then, the tumor tissue was further radiated with an Ar laser (made in Nanjing Electronic Factory, type 360), pumped dye-laser (made in Changchun Optic Machinery Institute, type 901) with a wavelength of 630 nm, and an energy density of more than 200 Joules/cm2, which might get the tumor cells destroyed selectively. The effect of photoradiation may reach as deep as 4 - 7 mm into the brain tissue without cerebral edema or necrosis.

  11. Phthalocyanine-labeled LDL for tumor imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Hui; Marotta, Diane; Kim, Soungkyoo; Chance, Britton; Glickson, Jerry D.; Busch, Theresa M.; Zheng, Gang

    2005-01-01

    Current limitation of both near-infrared (NIR) tumor imaging and photodynamic therapy (PDT) is their lack of sufficient tumor-to-tissue contrast due to the relatively non-specific nature of delivering dye to the tumor, which has led to false negatives for NIR imaging and inadequate therapeutic ratio for PDT. Hence, agents targeting "cancer signatures", i.e. molecules that accumulate selectively in cancer cells, are particular attractive. One of these signatures is low-density-lipoprotein receptor (LDLR), which is overexpressed in many tumors. We have developed pyropheophorbide cholesterol oleate reconstituted LDL as a LDLR-targeting photosensitizer (PS) and demonstrated its LDLR-mediated uptake in vitro and in vivo. To improve the labeling efficiency for achieving high probe/protein ratio, tetra-t-butyl silicon phthalocyanine bearing two oleate moieties at its axial positions, (tBu)4SiPcBOA, was designed and synthesized. This compound was designed to 1) prevent the PS aggregation; 2) improve the PS solubility in non-polar solvent; and 3) maximize the PS binding to LDL phospholipid monolayer. Using this novel strategy, (tBu)4SiPcBOA was reconstituted into LDL (r-SiPcBOA-LDL) with a very high payload (500:1 molar ratio). In addition, (tBu)4SiPcBOA reconstituted acetylated LDL (r-SiPcBOA)-AcLDL with similar payload was also prepared. Since Ac-LDL cannot bind to LDLR, (r-SiPcBOA)-AcLDL can serve as the negative control to evaluate LDLR targeting specificity. For biological evaluation of these new agents, confocal microscopy and in vitro PDT protocols were performed using LDLR-overexpressing human hepatoblastoma G2 (HepG2) tumor model. These studies suggest that LDL serves as a delivery vehicle to bring large amount of the NIR/PDT agents selectively to tumor cells overexpressing LDLR.

  12. Photodynamic decontamination of foodstuff from Staphylococcus aureus based on novel formulations of curcumin.

    PubMed

    Tortik, Nicole; Spaeth, Andreas; Plaetzer, Kristjan

    2014-10-01

    Increasing antibiotic resistance is one of the world's greatest health problems. The food chain is an important factor in the transfer of resistant germs from animals to humans. This study focuses on photodynamic inactivation (PDI), employing curcumin bound to polyvinylpyrrolidone (PVP-C) and NovaSol®-curcumin as photosensitizers, as potent tool for the decontamination of cucumber, pepper and chicken meat from Staphylococcus aureus (serving as the model for methicillin-resistant S. aureus, MRSA). Both curcumin and PVP have been approved as food additives, consequently exhibiting excellent biocompatibility. Vegetables and meat were contaminated with S. aureus and sprinkled with PVP-C and NovaSol®-curcumin at concentrations of 50 and 100 μM, respectively. Illumination was performed immediately using visible light (435 nm, 9.4 mW cm(-2), 33.8 J cm(-2)). The PDI efficiency was determined by quantitative analyses of colony forming units 24 h post illumination. Additionally, the long-term effects of the photodynamic inactivation on cucumbers were investigated by quantitative analyses of the viable bacterial fraction after 24 and 48 h. Photodynamic inactivation of S. aureus revealed a mean reduction of 2.6 log10 (99.8%) for cucumbers, 2.5 log10 (99.7%) for pepper and 1.7 log10 (98%) for chicken meat relative to control samples. The bactericidal effect compared to controls seems to last for at least 48 h. Furthermore, no visible changes of the exterior appearance of foodstuff after photodynamic decontamination were observed. Photodynamic inactivation may therefore constitute a safe, economic and effective decontamination technique, which is harmless to health and not noticeable to consumers.

  13. Cryptanalysis of Controlled Quantum Secure Direct Communication and Authentication Protocol Based on Five-Particle Cluster State and Quantum One-Time Pad

    NASA Astrophysics Data System (ADS)

    Liu, Zhihao; Chen, Hanwu; Liu, Wenjie

    2016-10-01

    A new attack strategy, the so-called intercept-selectively-measure-resend attack is put forward. It shows that there are some security issues in the controlled quantum secure direct communication (CQSDC) and authentication protocol based on five-particle cluster states and quantum one-time pad. Firstly, an eavesdropper (Eve) can use this attack to eavesdrop on 0.656 bit of every bit of the identity string of the receiver and 1.406 bits of every couple of the corresponding bits of the secret message without being detected. Also, she can eavesdrop on 0.311 bit of every bit of the identity string of the controller. Secondly, the receiver can also take this attack to obtain 1.311 bits of every couple of the corresponding bits of the secret message without the permission of the controller, which is not allowed in the CQSDC protocols. In fact, there is another security issue in this protocol, that is, one half of the information about the secret is leaked out unconsciously. In addition, an alternative attack strategy which is called as the selective-CNOT-operation attack strategy to attack this protocol is discussed.

  14. Apoptosis triggered by pyropheophorbide-α methyl ester-mediated photodynamic therapy in a giant cell tumor in bone

    NASA Astrophysics Data System (ADS)

    Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.

    2014-06-01

    A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.

  15. Correction: Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Correction for `Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy' by Kyoung Sub Kim, et al., Nanoscale, 2016, DOI: 10.1039/c6nr02273a.

  16. Comparison of membrane-protective activity of antioxidants quercetine and Gratiola Officinalis L. extract under conditions of photodynamic haemolysis

    NASA Astrophysics Data System (ADS)

    Tkachenko, N. V.; Bykova, E. V.; Pravdin, A. B.; Navolokin, N. A.; Polukonova, N. V.; Bucharskaya, A. B.; Mudrak, D. A.; Prilepskii, A. Y.

    2016-04-01

    In the present work the effectiveness of antioxidants quercetine (a pure chemical) and Gratiola officinalis extract, which is obtained by a new method of extraction from plant material, is investigated on the model of photodynamic haemolysis that is a rather convenient method to monitor the rate of cell membranes oxidative destruction. The effect of these antioxidants on the rate of photodynamic haemolysis is considered as a measure of membranoprotective efficiency.

  17. Selectively lighting up two-photon photodynamic activity in mitochondria with AIE-active iridium(iii) complexes.

    PubMed

    Liu, Jiangping; Jin, Chengzhi; Yuan, Bo; Liu, Xingguo; Chen, Yu; Ji, Liangnian; Chao, Hui

    2017-02-07

    Herein a series of mitochondria-targeted AIE (aggregation-induced emission)-active Ir(iii) complexes were designed to selectively exert one-/two-photon photodynamic activities in mitochondria to address the issues which current PDT are confronted with (i.e., shallow penetration depth of routinely used irradiation; systematic toxicity associated with effective drug concentration; concentration-quenched photodynamic activity at the target, etc.).

  18. Formation of β-(1,3-1,6)-d-glucan-complexed [70]fullerene and its photodynamic activity towards macrophages.

    PubMed

    Ikeda, Atsushi; Akiyama, Motofusa; Sugikawa, Kouta; Koumoto, Kazuya; Kashijima, Yuta; Li, Jiawei; Suzuki, Toshio; Nagasaki, Takeshi

    2017-03-01

    [70]Fullerene was dissolved in water by complexation with β-1,3-glucan using a mechanochemical high-speed vibration milling apparatus. The photodynamic activity of β-1,3-glucan-complexed C70 was highly dependent on the expression level of dectin-1 on the cell surfaces of macrophages. The photodynamic activity increased as a result of a synergistic effect between β-1,3-glucan-complexed 1'-acetoxychavicol acetate and the C70 complex.

  19. Exposing cells to H2O2: a quantitative comparison between continuous low-dose and one-time high-dose treatments.

    PubMed

    Sobotta, Mirko C; Barata, Ana G; Schmidt, Ulrich; Mueller, Sebastian; Millonig, Gunda; Dick, Tobias P

    2013-07-01

    Most studies investigating the influence of H2O2 on cells in culture apply nonphysiological concentrations over nonphysiological time periods (i.e., a one-time bolus that is metabolized in minutes). As an alternative, the glucose oxidase/catalase (GOX/CAT) system allows application of physiologically relevant H2O2 concentrations (300nM-10µM) over physiologically relevant time periods (up to 24h). Recent findings suggest that bolus and GOX/CAT treatments can lead to opposing cellular responses, thus warranting a quantitative comparison between the two approaches. First, we established a reaction-diffusion model that can predict the behavior of the GOX/CAT system with spatiotemporal resolution, thus aiding selection of optimal experimental conditions for its application. Measurements of H2O2 concentration in the cellular supernatant with the luminol/hypochlorite system were consistent with the predictions of the model. Second, we compared the impact of bolus and GOX/CAT treatments on cytosolic H2O2 levels over time. Intracellular H2O2 was monitored by the response of the thiol peroxidase Prx2 and the H2O2 sensor roGFP2-Orp1. We found that Prx2 rapidly and reversibly responds to submicromolar H2O2 levels and accurately reflects kinetic competition with cellular catalase. Our measurements reveal fundamental differences in the dynamic response of cellular H2O2 concentrations following either bolus or GOX/CAT treatments. Thus, different, or even opposing, biological outcomes from differing means of H2O2 delivery may be expected. Cellular responses induced by bolus treatment may not occur under GOX/CAT conditions, and vice versa.

  20. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  1. A rationale for treating leg length discrepancy using photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Johnson, Crystal; Diab, Mohammed; Wilson, Brian C.; Burch, Shane

    2005-09-01

    This study investigates the use of photodynamic therapy (PDT) in regulating bone development with a view to its potential role in treating Juvenile leg length discrepancy (LLD). Transgenic mice expressing the luciferase firefly gene upon activation of a promoter sequence specific to the vascular endothelial growth factor (VEGF) gene were subject to benzoporphyrin derivative monoacid (BPD-MA)-mediated PDT in the right, tibial epiphyseal growth plate at the age of 3 weeks. BPD-MA was administered intracardially (2mg/kg) followed 10 mins later by a laser light (690 +/- 5 nm) at a range of doses (5-27J, 50 mW output) delivered either as a single or repeat regimen (x2-3). Contra-lateral legs served as no-light controls. Further controls included animals that received light treatment in the absence of photosensitizer or no treatment. Mice were imaged for VEGF related bioluminescence (photons/sec/steradian) at t= 0, 24, 48, 72 h and 1-4 weeks post PDT. FaxitronTM x-ray images provided accurate assessment of bone morphometry. Upon sacrifice, the tibia and femur of the treated and untreated limbs were harvested, imaged and measured again and prepared for histology. A number of animals were sacrificed at 24 h post PDT to allow immunohistochemical staining for CD31, VEGF and hypoxia-inducible factor (HIF-1 alpha) within the bone. PDT-treated (10 J, x2) mice displayed enhanced bioluminescence at the treatment site (and ear nick) for up to 4 weeks post treatment while control mice were bioluminescent at the ear-nick site only. Repeat regimens provided greater shortening of the limb than the corresponding single treatment. PDT-treated limbs were shorter by 3-4 mm on average as compared to the contra lateral and light only controls (10 J, x2). Immunohistochemistry confirmed the enhanced expression VEGF and CD31 at 4 weeks post-treatment although no increase in HIF-1α was evident at either 24 h or 4 weeks post PDT treatment. Results confirm the utility of PDT to provide localized

  2. Multifunctional gold nanoparticles for photodynamic therapy of cancer

    NASA Astrophysics Data System (ADS)

    Khaing Oo, Maung Kyaw

    As an important and growing branch of photomedicine, photodynamic therapy (PDT) is being increasingly employed in clinical applications particularly for the treatment of skin cancer. This dissertation focuses on the synthesis, characterization and deployment of gold nanoparticles for enhanced PDT of fibrosarcoma cancer cells. We have developed robust strategies and methods in fabrication of gold nanoparticles with positively- and negatively-tethered surface charges by photo-reduction of gold chloride salt using branched polyethyleneimine and sodium citrate respectively. An optimal concentration window of gold salt has been established to yield the most stable and monodispersed gold nanoparticles. 5-aminolevulinic acid (5-ALA), a photosensitizing precursor, has been successfully conjugated on to positively charged gold nanoparticles through electrostatic interactions. The 5-ALA/gold nanoparticle conjugates are biocompatible and have shown to be preferably taken up by cancer cells. Subsequent light irradiation results in the generation of reactive oxygen species (ROS) in cancer cells, leading to their destruction without adverse effects on normal fibroblasts. We have demonstrated for the first time that gold nanoparticles can enhance PDT efficacy by 50% compared to the treatment with 5-ALA alone. Collected evidence has strongly suggested that this enhancement stems from the elevated formation of ROS via the strongly localized electric field of gold nanoparticles. Through single cell imaging using surface-enhanced Raman scattering enabled by the very same gold nanoparticles, we have shown that multifunctionality of gold nanoparticles can be harvested concurrently for biomedical applications in general and for PDT in specific. In other words, gold nanoparticles can be used not only for targeted drug delivery and field-enhanced ROS formation, but also for monitoring cell destructions during PDT. Finally, our COMSOL Multiphysics simulation of the size-dependent electric

  3. Photodynamic actinometry using microencapsulates: concepts and developmental approach

    NASA Astrophysics Data System (ADS)

    Bisland, Stuart K.; Austin, James; Wilson, Brian C.; Lilge, Lothar D.

    2003-12-01

    This study describes the development of novel, fluorescent-based actinometer encapsulates as a means of discerning volumetric Photodynamic therapy (PDT) dosimetry relative to the incident light and reactive oxygen species (ROS) production. PDT relies on three main ingredients; oxygen, light and photo-activatable commpounds, although, the PDT response is definately contingent on the site and level of ROS generation. Providing a localized, in situ measurement of luminance and ROS generation is therefore critical when deciphering targetd photodynamci therapy (PDT) protocols in vivo. Toward this end, alginate-poly-L-lysine-alginate encapsulates were made using ionotropic gelation of sodium alginate droplets ranging from 75 to 200 μm in diameter. Two candidate dyes, ADS680WS (ADS) and R-phycoerythrin (RPE) were chosen based on photochemistry, chemical stabilty and sensitivity to changing pH and oxygen environments. Alginate beads were constructed with ADS conjugated to the inside and RPE attached to the outside layer. The production of ROS was initiated either chemically using increasing concentrations of potassium perchromate or photochemically using tetra-sulphonated aluminium phosphorescence (AlPcS4). The generation of singlet oxygen was confirmed by the presence of a phosphorescence peak at 1270 nm. The resulting photodegradation and subsequent decrease in fluorescence of RPE was found to correlate very closely (p<0.001) with increasing perchromate or fluence respectively. This effect was independent of pH (6.5-8) and could be inhibited using sodium azide. RPA was not susceptible to photobleaching with light alone (675 nm; 150 J/cm2). Meanwhile, ADS680WS, which absorbs light at 670-690 nm, showed a direct correlation between diminished fluorescence (photobleaching) and incident fluence (675 nm; 0-100 J/cm2). This effect was independent of fluence rate (10-40 mW/cm2). We propose that actinometer encapsulates may prove useful for implanting into potential target

  4. Optimization of light dosimetry for photodynamic therapy of Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Phan, Mary N.; Overholt, Bergein F.; Haydek, John M.

    2004-06-01

    Background and Objective: Photodynamic therapy (PDT) may be used for ablation of high grade dysplasia and/or early cancer (HGD/T1) in Barrett's esophagus. A complication of PDT is esophageal stricture. The objective of this study was to find the lowest light dose to potentially reduce the incidence of strictures while effectively ablating HGD/T1. Materials and Methods: Patients (n=113) with HGD/T1 received an intravenous injection of porfimer sodium (2 mg/kg). Three days later, laser light (630 nm) was delivered using a cylindrical diffuser inserted in a 20 mm.diameter PDT balloon. Patients were treated at light doses of 115 J/cm, 105 J/cm, 95 J/cm and 85 J/cm. The efficacy was determined by four quadrant biopsies of the treated area three months after PDT. The formation of stricture was determined by the incidence of dysphagia and the need for esophageal dilation. Strictures were considered mild if they required less than 6 dilations, and severe if 6 or more dilations were required. Efficacy and incidence of strictures were tabulated as a function of light dose. Results: Using 115 J/cm, there were 17% of patients with residual HGD/T1 after one treatment. However, when the light doses of 105 J/cm, 95 J/cm and 85 J/cm were used, the residual HGD/T1 after one PDT session was increased to 33%, 30%, and 32% respectively. The overall incidence of strictures (mild and severe) was not correlated to the light dose. However, the incidence of severe strictures was directly proportional to the light dose. Using the light dose of 115 J/cm, 15.3% of patients developed severe strictures compared to about 5% in the groups of patients who received the lower light doses. Conclusions: Decreasing the light dose below 115 J/cm doubled the rate of residual HGD/T1 after one treatment while reducing the incidence of severe strictures to one-third of cases from 115 J/cm. The results may be used to evaluate the risks and benefits of different light doses.

  5. Optical Dosimetry and Treatment Planning for Photodynamic Therapy

    NASA Astrophysics Data System (ADS)

    Baran, Timothy M.

    Accurate dosimetry and treatment planning for photodynamic therapy (PDT) require knowledge of tissue optical properties and models of light propagation. We present techniques, based on reflectance and fluorescence spectroscopy, to examine these problems using analytical approximations and Monte Carlo (MC) simulations. We begin with studies that monitored PDT in mouse models using reflectance and fluorescence spectroscopy. In the first, spectroscopy informed the optimization of treatment parameters for methylene blue PDT, with dependencies on injection vehicle, drug-light interval, and fluence found. In the second, fluorescence photobleaching during Pc 4 PDT was examined for correlation to tumor response. Irradiance-dependent photobleaching was demonstrated, but was not predictive of tumor response. Next we outline the graphics processing unit enhanced MC model that was used to simulate light propagation in tissue. We demonstrate a number of source models that were used in subsequent experiments. We then focus on the recovery of optical properties from diffuse reflectance measurements by examining two studies. In the first study, diffuse reflectance measurements were made at the surface of human kidneys to extract optical properties, which were then used in MC simulations of interstitial PDT. We found that the optical properties measured make PDT feasible in human kidneys. We then examined the interstitial recovery of optical properties using a custom optical probe. This recovery was based on a MC model of the probe used, with a mean error of 6.5% in the determination of absorption. We examined fluorescence detection by cylindrical diffusing fibers using a MC model. This model predicted heterogeneous fluorescence detection, which was verified experimentally. Recovery of intrinsic fluorescence from point, interstitial measurements was demonstrated. This technique did not require a prori knowledge of the tissue optical properties, and was used to determine these

  6. Urea enhances the photodynamic efficiency of methylene blue.

    PubMed

    Nuñez, Silvia C; Yoshimura, Tania M; Ribeiro, Martha S; Junqueira, Helena C; Maciel, Cleiton; Coutinho-Neto, Maurício D; Baptista, Maurício S

    2015-09-01

    Methylene blue (MB) is a well-known photosensitizer used mostly for antimicrobial photodynamic therapy (APDT). MB tends to aggregate, interfering negatively with its singlet oxygen generation, because MB aggregates lean towards electron transfer reactions, instead of energy transfer with oxygen. In order to avoid MB aggregation we tested the effect of urea, which destabilizes solute-solute interactions. The antimicrobial efficiency of MB (30 μM) either in water or in 2M aqueous urea solution was tested against a fungus (Candida albicans). Samples were kept in the dark and irradiation was performed with a light emitting diode (λ = 645 nm). Without urea, 9 min of irradiation was needed to achieve complete microbial eradication. In urea solution, complete eradication was obtained with 6 min illumination (light energy of 14.4 J). The higher efficiency of MB/urea solution was correlated with a smaller concentration of dimers, even in the presence of the microorganisms. Monomer to dimer concentration ratios were extracted from the absorption spectra of MB solutions measured as a function of MB concentration at different temperatures and at different concentrations of sodium chloride and urea. Dimerization equilibrium decreased by 3 and 6 times in 1 and 2M urea, respectively, and increased by a factor of 6 in 1M sodium chloride. The destabilization of aggregates by urea seems to be applied to other photosensitizers, since urea also destabilized aggregation of Meso-tetra(4-n-methyl-pyridyl)porphyrin, which is a positively charged porphyrin. We showed that urea destabilizes MB aggregates mainly by causing a decrease in the enthalpic gain of dimerization, which was exactly the opposite of the effect of sodium chloride. In order to understand this phenomenon at the molecular level, we computed the free energy for the dimer association process (ΔG(dimer)) in aqueous solution as well as its enthalpic component in aqueous and in aqueous/urea solutions by molecular dynamics

  7. Photodynamic action of palmatine hydrochloride on colon adenocarcinoma HT-29 cells.

    PubMed

    Wu, Juan; Xiao, Qicai; Zhang, Na; Xue, Changhu; Leung, Albert Wingnang; Zhang, Hongwei; Xu, Chuanshan; Tang, Qing-Juan

    2016-09-01

    Palmatine hydrochloride (PaH) is a natural active compound from a traditional Chinese medicine (TCM). The present study aims to evaluate the effect of PaH as a new photosensitizer on colon adenocarcinoma HT-29 cells upon light irradiation. Firstly, the absorption and fluorescence spectra of PaH were measured using a UV-vis spectrophotometer and RF-1500PC spectrophotometer, respectively. Singlet oxygen ((1)O2) production of PaH was determined using 1, 3-diphenylisobenzofuran (DPBF). Dark toxicity of PaH was estimated using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cellular uptake of PaH in HT-29 cells was detected at different time intervals. Subellular localization of PaH in HT-29 cells was observed using confocal laser fluorescence microscopy. For photodynamic treatment, HT-29 cells were incubated with PaH and then irradiated by visible light (470nm) from a LED light source. Photocytotoxicity was investigated 24h after photodynamic treatment using MTT assay. Cell apoptosis was observed 18h after photodynamic treatment using a flow cytometry with Annexin V/PI staining. Results showed that PaH has an absorption peak in the visible region from 400nm to 500nm and a fluorescence emission peak at 406nm with an excitation wavelength of 365nm. PaH was activated by the 470nm visible light from a LED light source to produce (1)O2. Dark toxicity showed that PaH alone treatment had no cytotoxicity to HT-29 cancer cells and NIH-3T3 normal cells after incubation for 24h. After incubation for 40min, the cellular uptake of PaH reached to the maximum and PaH was located in mitochondria. Photodynamic treatment of PaH demonstrated a significant photocytotoxicity on HT-29 cells. The rate of cell death increased significantly in a PaH concentration-dependent and light dose-dependent manner. Further evaluation revealed that the early and late apoptotic rate of HT-29 cells increased remarkably up to 21.54% and 5.39% after photodynamic treatment of

  8. A photodynamic pathway to apoptosis and necrosis induced by dimethyl tetrahydroxyhelianthrone and hypericin in leukaemic cells: possible relevance to photodynamic therapy

    PubMed Central

    Lavie, G; Kaplinsky, C; Toren, A; Aizman, I; Meruelo, D; Mazur, Y; Mandel, M

    1999-01-01

    The mechanism of cell death induction by dimethyl tetrahydroxyhelianthrone (DTHe), a new second-generation photodynamic sensitizer, is analysed in human leukaemic cell lines in comparison with the structurally related hypericin. DTHe has a broad range of light spectrum absorption that enables effective utilization of polychromatic light. Photosensitization of HL-60 cells with low doses of DTHe (0.65 μM DTHe and 7.2 J cm−2 light energy) induced rapid apoptosis of ≥90% of the cells. At doses ≥2 μM, dying cells assumed morphological necrosis with perinucleolar condensation of chromatin in HL-60 and K-562 cell lines. Although nuclear fragmentation that is characteristic to apoptosis was prevented, DNA digestion to oligonucleosomes proceeded unhindered. Such incomplete apoptosis was more prevalent with the related analogue hypericin throughout most doses of photosensitization. Despite hypericin being a stronger photosensitizer, DTHe exhibited advantageous phototoxic properties to tumour cells, initiating apoptosis at concentrations about threefold lower than hypericin. Photosensitization of the cells induced dissociation of the nuclear envelope, releasing lamins into the cytosol. DTHe also differed from hypericin in effects exerted on the nuclear lamina, causing release of an 86-kDa lamin protein into the cytosol that was unique to DTHe. Within the nucleus, nuclear envelope lamin B underwent covalent polymerization, which did not affect apoptotic nuclear fragmentation at low doses of DTHe. At higher doses, polymerization may have been extensive enough to prevent nuclear collapse. Hut-78, CD4+ cells were resistant to the photodynamically activated apoptotic pathway. Beyond the tolerated levels of photodynamic damage, these cells died exclusively via necrosis. Hut-78 cells overexpress Bcl-XL as well as a truncated Bcl-XL tr isoform that could contribute to the observed resistance to apoptosis. © Cancer Research Campaign PMID:10027308

  9. The potential of photodynamic therapy (PDT)-Experimental investigations and clinical use.

    PubMed

    Oniszczuk, Anna; Wojtunik-Kulesza, Karolina A; Oniszczuk, Tomasz; Kasprzak, Kamila

    2016-10-01

    Photodynamic therapy (PDT) is an intensively studied part of medicine based on free radicals. These reactive species, extremely harmful for whole human organism, are used for eradication numerous diseases. Specific structure of ill tissues causes accumulation free radicals inside them without attack remaining healthy tissues. A rapid development of medicine and scientific research has led to extension of PDT towards treatment many diseases such as cancer, herpes, acne and based on antimicrobials. The presented review article is focused on the aforementioned disorders with accurate analysis of the newest available scientific achievements. The discussed cases explicitly indicate on high efficacy of the therapy. In most cases, free radicals turned out to be solution of many afflictions. Photodynamic therapy can be considered as promising treatment with comparable effectiveness but without side effects characteristic for chemotherapy.

  10. Phthalocyanine-Biomolecule Conjugated Photosensitizers for Targeted Photodynamic Therapy and Imaging.

    PubMed

    Iqbal, Zafar; Chen, Jincan; Chen, Zhuo; Huang, Mingdong

    2015-01-01

    Photodynamic therapy (PDT) is now in clinical practice in many European and American countries as a minimally invasive therapeutic technique to treat oncologic malignancies and other nononcologic conditions. Phthalocyanines (Pcs) are gathering importance as effective photosensitizers in targeted PDT and imaging of tumors. The possibility of modification around the Pc macrocycle led the researchers to the synthesis of a diversity of photosensitizers with varied cell specificity, cellular internalization and localization, photodynamic cytotoxicity and excretion. Cellular targeting is the primary aspect of an ideal photosensitizer for targeting PDT. Therefore, Pcs have been structurally modified with a variety of biomolecules capable of recognizing the specific lesions. This review emphasizes the photocytotoxicity and the cellular uptakes of phthalocyanine photosensitizers conjugated with biomolecules including carbohydrates, nucleotides and protein constituents such as amino acids and peptides. In addition, the role of the Pc-biomolecule conjugates in imaging and antimicrobial chemotherapy has been discussed.

  11. Hematoporphyrin-derivative photodynamic in-vitro sensitivity testing for brain tumors

    NASA Astrophysics Data System (ADS)

    Plattner, Michael; Bernwick, Walter; Kostron, Herwig

    1993-03-01

    Brain tumors of various histologies were subjected to an in-vitro photodynamic-sensitivity test. The studies were performed on primary cultures of human glioblastomas, meningiomas, and ependymomas, which were exposed to increasing concentrations of hematoporphyrin derivative and 60 J/cm2 delivered by an argon-dye laser at 632 nm. A growth inhibition of 75% was demonstrated at a concentration of 25 (mu) g and 10 (mu) g HPD/ml medium for two different glioblastomas, respectively. A growth inhibition of 75% was observed in the ependymoma line at 10 and 50 (mu) g HPD/ml with and without light, respectively. The meningioma demonstrated a 75% inhibition already at (mu) g and 75 (mu) g/ml medium with and without light, respectively. These results demonstrate a significant difference in the response of brain tumors to photodynamic treatment (PDT). In vitro-PDT-assay should be taken into account if clinical application of PDT is considered.

  12. Curative effect of photodynamic therapy of pulse laser on cancer detected by computer

    NASA Astrophysics Data System (ADS)

    Sun, Xiuzhen

    1993-03-01

    The computer diagnosis apparatus for human diseases is used to detect the curative effect of photodynamic therapy (PDT). It directly takes the electric signals from auricular acupuncture points of patients turns the signals into data and displays the data on the screen. Comparing the data with the critical point, it gives out the diagnosis of the condition of the disease. If the signals are detected many times in the period of the photodynamic therapy, the change of the condition and the effect will be perceived. This provides scientific data for doctors' clinical diagnoses. The apparatus, combining computer and laser technology with Chinese traditional auricular diagnosis, has many advantages: quickness, preciseness, no injury, no pain, and no side effect. It can also store and print out cases. It's an ideal detector in the field of auricular acupuncture point diagnosis.

  13. Predictive model for photodynamic therapy with gold nanoparticles as vehicle for the photosensitizer delivery

    NASA Astrophysics Data System (ADS)

    Salas-García, I.; Fanjul-Vélez, F.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2013-06-01

    Photodynamic Therapy offers multiple advantages to treat nonmelanoma skin cancer compared to conventional treatment techniques such as surgery, radiotherapy or chemotherapy. Among these advantages are particularly relevant its noninvasive nature, the use of non ionizing radiation and its high selectivity. However the therapeutic efficiency of the current clinical protocol is not complete in all the patients and depends on the type of pathology. Emerging strategies to overcome its current shortcomings include the use of nanostructures that can act as carriers for conventional photosensitizers and improve the treatment selectivity and provide a controlled release of the photoactive agent. In this work, a model for photodynamic therapy combined with gold nanocarriers for a photosensitizer commonly used in dermatology is presented and applied to a basal cell carcinoma in order to predict the cytotoxic agent spatial and temporal evolution.

  14. Tracking the secondary photodynamics of the green/red cyanobacteriochrome RcaE from Fremyella diplosiphon

    NASA Astrophysics Data System (ADS)

    Chang, Che-Wei; Gottlieb, Sean M.; Rockwell, Nathan C.; Martin, Shelley S.; Lagarias, J. Clark; Larsen, Delmar S.

    2016-01-01

    Cyanobacteriochrome RcaE regulates Type III complementary chromatic adaption in the cyanobacterium Fremyella diplosiphon by photoswitching between a green-absorbing dark state (15ZPg) and red-absorbing photoproduct (15EPr). Ultrafast photodynamics of RcaE involve tautomerization of the bilin chromophore, inhomogeneity, and the generation of three primary photointermediates in the forward reaction (Lumi-Go, Lumi-Gr, and Lumi-Gf). The secondary photodynamics reported here show that only Lumi-Go evolves to 15EPr via spectrally similar Meta-Go1 and Meta-Go2 intermediates, with a protonation reaction occurring at the final step on the millisecond timescale. Reverse reaction dynamics were characterized and reveal an unusually long-lived Lumi-Rf photoproduct and a blue-shifted Meta-Ry intermediate.

  15. Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis.

    PubMed

    Baptista, M S; Wainwright, M

    2011-01-01

    A photodynamic effect occurs when photosensitiser molecules absorb light and dissipate the absorbed energy by transferring it to biological acceptors (usually oxygen), generating an excess of reactive species that are able to force cells into death pathways. Several tropical diseases present physiopathological aspects that are accessible to the application of a photosensitiser and local illumination. In addition, disease may be transmitted through infected blood donations, and many of the aetiological agents associated with tropical diseases have been shown to be susceptible to the photodynamic approach. However, there has been no systematic investigation of the application of photoantimicrobial agents in the various presentations, whether to human disease or to the disinfection of blood products or even as photo-insecticides. We aim in this review to report the advances in the photoantimicrobial approach that are beneficial to the field of anti-parasite therapy and also have the potential to facilitate the development of low-cost/high-efficiency protocols for underserved populations.

  16. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers

    PubMed Central

    Chang, Yulei; Li, Xiaodan; Zhang, Li; Xia, Lu; Liu, Xiaomin; Li, Cuixia; Zhang, Youlin; Tu, Langping; Xue, Bin; Zhao, Huiying; Zhang, Hong; Kong, Xianggui

    2017-01-01

    Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory efficacy. It is of vital importance for these nanophotosensitizers to reach specifically the organelles and to perform PDT with precise time control. To do so, we have in this work traced the dynamic subcellular distribution, especially in organelles such as lysosomes and mitochondria, of the poly(allylamine)-modified and dual-loaded nanophotosensitizers. The apoptosis of the cancer cells induced by PDT with the dependence of the distribution status of the nanophotosensitizers in organelles was obtained, which has provided an in-depth picture of intracellular trafficking of organelle-targeted nanophotosensitizers. Our results shall facilitate the improvement of nanotechnology assisted photodynamic therapy of cancers. PMID:28361967

  17. Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters

    PubMed Central

    Morgan, Nicole Y.; Kramer-Marek, Gabriela; Smith, Paul D.; Camphausen, Kevin; Capala, Jacek

    2011-01-01

    The recent demonstration of nanoscale scintillators has led to interest in the combination of radiation and photodynamic therapy. In this model, scintillating nanoparticles conjugated to photosensitizers and molecular targeting agents would enhance the targeting and improve the efficacy of radiotherapy and extend the application of photodynamic therapy to deeply seated tumors. In this study, we calculated the physical parameters required for these nanoparticle conjugates to deliver cytotoxic levels of singlet oxygen at therapeutic radiation doses, drawing on the published literature from several disparate fields. Although uncertainties remain, it appears that the light yield of the nanoscintillators, the efficiency of energy transfer to the photosensitizers, and the cellular uptake of the nano-particles all need to be fairly well optimized to observe a cytotoxic effect. Even so, the efficacy of the combination therapy will likely be restricted to X-ray energies below 300 keV, which limits the application to brachytherapy. PMID:19267550

  18. Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal.

    PubMed

    Neves, Pierre Adriano Moreno; Lima, Leonardo Abrantes; Rodrigues, Fernanda Cristina Nogueira; Leitão, Tarcisio Jorge; Ribeiro, Cecília Cláudia Costa

    2016-05-20

    This study was conducted to assess the clinical effect of photodynamic therapy (PDT) in the decontamination of the deep dentin of deciduous molars submitted to partial removal of carious tissue. After cavity preparation, dentin samples were taken from the pulp wall of nineteen deciduous molars before and after PDT application. Remaining dentin was treated with 0.01% methylene blue dye followed by irradiation with an InGaAlP diode laser (λ - 660 nm; 40 mW; 120 J/cm2; 120 s). Dentin samples were microbiologically assessed for the enumeration of total microorganisms, Lactobacillus spp. and mutans streptococci. There was no significant difference in the number of colony-forming units (CFU) for any of the microorganisms assessed (p > 0.05). Photodynamic therapy, using 0.01% methylene blue dye at a dosimetry of 120 J/cm2 would not be a viable clinical alternative to reduce bacterial contamination in deep dentin.

  19. Folic Acid-conjugated Graphene Oxide loaded with Photosensitizers for Targeting Photodynamic Therapy

    PubMed Central

    Huang, Peng; Xu, Cheng; Lin, Jing; Wang, Can; Wang, Xiansong; Zhang, Chunlei; Zhou, Xuejiao; Guo, Shouwu; Cui, Daxiang

    2011-01-01

    Photodynamic therapy (PDT) has emerged as an alternative and promising noninvasive treatment for cancer as well as non-cancer diseases, which involves the uptake of photosensitizers (PSs) by cancer cells followed by irradiation. The use of nanomaterials as carriers of PSs is a very promising approach to improve the development of PDT in clinical medicine. In this study, a novel folic acid-conjugated graphene oxide (GO) was strategically designed and prepared as targeting drug delivery system to achieve higher specificity. The second generation photosensitizer (PS) Chlorin e6 (Ce6) was effectively loaded into the system via hydrophobic interactions and π-π stacking. The nanocarriers can significantly increase the accumulation of Ce6 in tumor cells and lead to a remarkable photodynamic efficacy on MGC803 cells upon irradiation. These suggested that folic acid-conjugated GO loaded Ce6 had great potential as effective drug delivery system in targeting PDT. PMID:21562631

  20. Near Infrared Dye Conjugated Nanogels for Combined Photodynamic and Photothermal Therapies.

    PubMed

    Asadian-Birjand, Mazdak; Bergueiro, Julian; Wedepohl, Stefanie; Calderón, Marcelo

    2016-10-01

    There is a need for new and smart formulations that will help overcome the limitations of organic dyes used in photodynamic (PDT) and photothermal (PTT) therapy and significantly accelerate their clinical translation. Therefore the aim of this work was to create a responsive nanogel scaffold as a smart vehicle for dye administration. We developed a methodology that enables the conjugation of organic dyes to thermoresponsive nanogels and yields biocompatible, nanometer-sized products with low polydispersity. The potential of the dye-nanogel conjugate as a photothermal and photodynamic agent has been demonstrated by an in vitro evaluation with a model human carcinoma cell line. Additionally, confocal cell images showed their cellular uptake profile and their potential for bioimaging and intracellular drug delivery. These conjugates are a promising scaffold as a theranostic agents and will enable further applications in combination with controlled drug release.

  1. Effect of axial ligands on the molecular configurations, stability, reactivity, and photodynamic activities of silicon phthalocyanines.

    PubMed

    Luan, Liqiang; Ding, Lanlan; Shi, Jiawei; Fang, Wenjuan; Ni, Yuxing; Liu, Wei

    2014-12-01

    To demonstrate the effect of axial ligands on the structure-activity relationship, a series of axially substituted silicon phthalocyanines (SiPcs) have been synthesized with changes to the axial ligands. The reactivity of the axial ligand upon shielding by the phthalocyanine ring current, along with their stability, photophysical, and photodynamic therapy (PDT) activities were compared and evaluated for the first time. As revealed by single-crystal XRD analysis, rotation of the axial -OMe ligands was observed in SiPc 3, which resulted in two molecular configurations coexisting synchronously in both the solid and solution states and causing a split of the phthalocyanine α protons in the (1)H NMR spectra that is significantly different from all SiPcs reported so far. The remarkable photostability, good singlet oxygen quantum yield, and efficient in vitro photodynamic activity synergistically show that compound 3 is one of the most promising photosensitizers for PDT.

  2. Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy.

    PubMed

    Abbas, Manzar; Zou, Qianli; Li, Shukun; Yan, Xuehai

    2017-03-01

    Tremendous interest in self-assembly of peptides and proteins towards functional nanomaterials has been inspired by naturally evolving self-assembly in biological construction of multiple and sophisticated protein architectures in organisms. Self-assembled peptide and protein nanoarchitectures are excellent promising candidates for facilitating biomedical applications due to their advantages of structural, mechanical, and functional diversity and high biocompability and biodegradability. Here, this review focuses on the self-assembly of peptides and proteins for fabrication of phototherapeutic nanomaterials for antitumor photodynamic and photothermal therapy, with emphasis on building blocks, non-covalent interactions, strategies, and the nanoarchitectures of self-assembly. The exciting antitumor activities achieved by these phototherapeutic nanomaterials are also discussed in-depth, along with the relationships between their specific nanoarchitectures and their unique properties, providing an increased understanding of the role of peptide and protein self-assembly in improving the efficiency of photodynamic and photothermal therapy.

  3. Is the photobleaching signal a useful tool for dosimetry during photodynamic therapy?

    NASA Astrophysics Data System (ADS)

    Sroka, Ronald; Heinritz, H.; Heil, Peter; Ludwig, M.; Wessels, Jurina M.

    1994-03-01

    Photosensitizing drugs (e.g. porphyrins) are likely to be degraded upon irradiation. The mechanisms of photodegradation are complex. The photodegradation behavior of photosensitizers used in photodynamic therapy (PDT) could be used as a tool for dosimetry and for protecting adjacent tissue against photodynamic effects. The photobleaching behavior of (delta) -aminolevulinic acid induced porphyrins has been studied. The results of in vitro experiments (Protoporphyrin IX in organic solvent) and the in vivo tests (SSK2-fibrosarcoma on C3H-mice) have shown the bleaching rate to be dependent on the environment of the photosensitizer. During its photodegradation a chlorine-type photoproduct is formed. Its spectrometric detection reveals on signals proposed for dosimetry in PDT.

  4. Vaginal Speculum For Photodynamic Therapy And Method Of Using The Same

    DOEpatents

    Tadir, Yona; Berns, Michael W.; Monk, Brad J.; Profeta, Glen; Tromberg, Bruce J.

    1995-10-17

    An improved vaginal speculum for photodynamic therapy of intraepithelial tissue and in particular vaginal, cervical and vulvar neoplasia utilizes a precisely and accurately positionable optic fiber through which a predetermined dose of light in the range of 620 to 700 nanometers is delivered over a controlled area which has been previously treated with photodynamic therapeutic substances. In particular, the neoplastic area has been treated with hematoporphyrin derivatives and other photosensitizers which are selectively taken into the cancerous tissue. Exposure to the appropriate wavelength laser light photoactivates the absorbed hematoporphyrins causing the release of singlet oxygen which internally oxidizes and ultimately causes cell death. The fiber optic tip from which the laser light is transmitted is precisely positioned within the body cavity at a predetermined distance from the intraepithelial neoplasia in order to obtain the appropriate spot size and location to minimize damage to healthy tissue and maximize damage to the selectively impregnated cancerous tissue.

  5. Kinetics of tumor necrosis factor production by photodynamic-therapy-activated macrophages

    NASA Astrophysics Data System (ADS)

    Pass, Harvey I.; Evans, Steven; Perry, Roger; Matthews, Wilbert

    1990-07-01

    The ability of photodynamic therapy (PDT) to activate macrophages and produce cytokines, specifically tumor necrosis factor (TNF), is unknown. Three day thioglycolate elicited macrophages were incubated with 25 ug/mi Photofrin II (P11) for 2 hour, after which they were subjected to 630 nm light with fluences of 0-1800 J/m. The amount of TNF produced in the system as well as macrophage viability was measured 1, 3, 6, and 18 hours after POT. The level of TNF produced by the macrophages was significantly elevated over control levels 6 hours after POT and the absolute level of tumor necrosis factor production was influenced by the treatment energy and the resulting macrophage cytotoxicity. These data suggest that POT therapy induced cytotoxicity in vivo may be amplified by macrophage stimulation to secrete cytokines and these cytokines may also participate in other direct/indirect photodynamic therapy effects, i.e. immunosuppression, vascular effects.

  6. Induction of Endogenous Reactive Oxygen Species in Mitochondria by Fullerene-Based Photodynamic Therapy.

    PubMed

    Li, Qian; Liu, Chenguang; Li, Hongguang

    2016-06-01

    The production of ROS in mitochondria plays critical role in photodynamic therapy (PDT). The aim of this study was to investigate whether fullerene-based PDT can induce generation of additional endogenous ROS in mitochondria. Chitosan oligosaccharide grafted fullerene conjugate (CS-C60) was synthesized as a model water-soluble fullerene. The relationship among photodynamic cytotoxicity, intracellular ROS and CS-C60 amount demonstrated that low dose fullerene could induce generation of endogenous ROS in human malignant melanoma (A375) cells. Laser scanning microscope (LSM) image shows that considerable amount of endogenous ROS was generated in mitochondria even CS-C60 could not localize into mitochondria. Assay with rotenone shows that PDT-induced endogenous ROS was generated via electron transport chain (ETC).

  7. Photodynamic therapy (ALA-PDT) in the treatment of pathological states of the cornea

    NASA Astrophysics Data System (ADS)

    Switka-Wieclawska, Iwona; Kecik, Tadeusz; Kwasny, Miroslaw; Graczyk, Alfreda

    2003-10-01

    Each year an increasing amount of research is published on the use of photodynamic therapy in medicine. The most recent research has focused mostly on the use of photosensitizer called vertoporphyrin (Visudyne) is the treatment of subretinal neovascularization in age-related macular degeneration (AMD) or myopia, following a substantial amount of ophthalmology research mostly experimental on the application of the method in diagnosis and treatment of some eye tumors. In the Department of Ophthalmology of Polish Medical University in Warsaw, PDT was used as supplementary method in a selected group of patients with chronic virus ulcer of the cornea and keratopathies. During the treatment 5-aminolevulinic acid (5-ALA) was applied in ointment form as a photosensitizer activated with light wave of 633 nm. It appears, on the basis of the results obtained, that photodynamic therapy (ALA-PDT) may become in the future a valuable supplement to the methods being used at the present treating pathological states of the cornea.

  8. Comparison of 5-Aminolevulinic Acid Photodynamic Therapy and Clobetasol Propionate in Treatment of Vulvar Lichen Sclerosus.

    PubMed

    Shi, Lei; Miao, Fei; Zhang, Ling-Lin; Zhang, Guo-Long; Wang, Pei-Ru; Ji, Jie; Wang, Xiao-Jie; Huang, Zheng; Wang, Hong-Wei; Wang, Xiu-Li

    2016-06-15

    The aim of this study was to evaluate the effectiveness of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) for the treatment of vulvar lichen sclerosus (VLS) and compare its effectiveness with that of clobetasol propionate. Four sessions of topical photodynamic therapy (PDT) were administered at 2-week intervals (n = 20). Clobetasol propionate (0.05%) was used daily for 8 weeks (n = 20). The rate of complete response in the PDT group (14/20) was double that of the clobetasol propionate group (7/20) (p < 0.05, 2 = 4.912). Horizontal visual analogue scores indicated that PDT was more effective than clobetasol propionate. Pain intensity numeric rating scale values for PDT were between 3.05 and 4.45. One month after the final session of PDT, only one patient relapsed and all 7 patients in clobetasol propionate group relapsed. ALA-PDT is a well-tolerated and effective option for the treatment of VLS.

  9. Investigation of Water-Soluble X-ray Luminescence Nanoparticles for Photodynamic Activation

    SciTech Connect

    Liu, Yuanfang; Chen, Wei; Wang, Shaopeng; Joly, Alan G.

    2008-01-28

    In this letter, we report the synthesis of LaF3:Tb3+-MTCP (meso-Tetra(4-carboxyphenyl) porphine) nanoparticle conjugates and investigate the energy transfer as well as singlet oxygen generation following X-ray irradiation. Our observations indicate that LaF3:Tb3+-MTCP nanoparticle conjugates are efficient photodynamic agents that can be initiated by X-rays at a reasonably low dose. The addition of folic acid to facilitate targeting to folate receptors on tumor cells has no effect on the quantum yield of singlet oxygen in the nanoparticle-MTCP conjugates. Our pilot studies indicate that water-soluble scintillation nanoparticles can be potentially used to activate photodynamic therapy as a promising deep cancer treatment.

  10. Photodynamic therapy of nodular basal cell carcinoma with multifiber contact light delivery.

    PubMed

    Thompson, Marcelo Soto; Andersson-Engels, Stefan; Svanberg, Sune; Johansson, T; Palsson, Sara; Bendsoe, Niels; Derjabo, A; Kapostins, J; Stenram, Unne; Spigulis, J; Svanberg, Katarina

    2006-01-01

    To overcome the limited treatment depth of superficial photodynamic therapy we investigate interstitial light delivery. In the present work the treatment light was delivered using a system in which three or six clear-cut fibers were placed in direct contact with the tumor area. This placement was thought to represent a step toward general purpose interstitial PDT. Twelve nodular basal cell carcinomas were treated employing delta-aminolevulinic acid and 635 nm laser irradiation. Fluorescence measurements were performed monitoring the buildup and subsequent bleaching of the produced sensitizer protoporphyrin IX. The treatment efficacy, judged at a 28-month follow-up, showed a 100% complete response. Two punch excisions at 7 months converted two partial responses to complete responses. One patient failed to appear at all follow-up sessions. The outcome of the treatments was comparable to superficial photodynamic therapy in terms of histological, clinical, and cosmetic results.

  11. Spectral matching technology for light-emitting diode-based jaundice photodynamic therapy device

    NASA Astrophysics Data System (ADS)

    Gan, Ru-ting; Guo, Zhen-ning; Lin, Jie-ben

    2015-02-01

    The objective of this paper is to obtain the spectrum of light-emitting diode (LED)-based jaundice photodynamic therapy device (JPTD), the bilirubin absorption spectrum in vivo was regarded as target spectrum. According to the spectral constructing theory, a simple genetic algorithm as the spectral matching algorithm was first proposed in this study. The optimal combination ratios of LEDs were obtained, and the required LEDs number was then calculated. Meanwhile, the algorithm was compared with the existing spectral matching algorithms. The results show that this algorithm runs faster with higher efficiency, the switching time consumed is 2.06 s, and the fitting spectrum is very similar to the target spectrum with 98.15% matching degree. Thus, blue LED-based JPTD can replace traditional blue fluorescent tube, the spectral matching technology that has been put forward can be applied to the light source spectral matching for jaundice photodynamic therapy and other medical phototherapy.

  12. Targets and Mechanisms of Photodynamic Therapy in Lung Cancer Cells: A Brief Overview

    PubMed Central

    Chiaviello, Angela; Postiglione, Ilaria; Palumbo, Giuseppe

    2011-01-01

    Lung cancer remains one of the most common cancer-related causes of death. This type of cancer typically develops over a period of many years, and if detected at an early enough stage can be eliminated by a variety of treatments including photodynamic therapy (PDT). A critical discussion on the clinical applications of PDT in lung cancer is well outside the scope of the present report, which, in turn focuses on mechanistic and other aspects of the photodynamic action at a molecular and cellular level. The knowledge of these issues at pre-clinical levels is necessary to develop, check and adopt appropriate clinical protocols in the future. This report, besides providing general information, includes a brief overview of present experimental PDT and provides some non-exhaustive information on current strategies aimed at further improving the efficacy, especially in regard to lung cancer cells. PMID:24212652

  13. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  14. Synthesis and characterization of PLGA nanoparticles containing mixture of curcuminoids for optimization of photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Suzuki, Isabella L.; Inada, Natália M.; Marangoni, Valéria S.; Corrêa, Thaila Q.; Zucolotto, Valtencir; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    Because of excessive use of antibiotics there is a growth in the number of resistant strains. Due to this growth of multiresistant bacteria, the number of searches looking for alternatives antibacterial therapeutic has increased, and among them is the antimicrobial photodynamic therapy (aPDT) or photodynamic inactivation (PDI). The photodynamic inactivation involves the action of a photosensitizer (PS), activated by a specific wavelength, in the present of oxygen, resulting in cytotoxic effect. Natural curcumin, consists of a mixture of three curcuminoids: curcumin, demethoxycurcumin and bis-demethoxycurcumin. Curcumin has various pharmacological properties, however, has extremely low solubility in aqueous solutions, which difficult the use as therapeutic agent. The present study aims to develop polymeric PLGA nanoparticles containing curcuminoids to improve water solubility, increase bioavailability providing protection from degradation (chemistry and physics), and to verify the efficacy in photodynamic inactivation of microorganisms. The PLGA-CURC were synthesized by nanoprecipitation, resulting in two different systems, with an average size of 172 nm and 70% encapsulation efficiency for PLGA-CURC1, and 215 nm and 80% for PLGA-CURC2. Stability tests showed the polymer protected the curcuminoids against premature degradation. Microbiological tests in vitro with curcuminoids water solution and both suspension of PLGA-CURC were efficient in Gram-positive bacterium and fungus. However, the solution presented dark toxicity at high concentrations, unlike the nanoparticles. Thus, it was concluded that it was possible to let curcuminoids water soluble by encapsulation in PLGA nanoparticles, to ensure improved stability in aqueous medium (storage), and to inactivate bacteria and fungus.

  15. Real-time light dosimetry for intra-cavity photodynamic therapy: Application for pleural mesothelioma treatment.

    PubMed

    Betrouni, Nacim; Munck, Camille; Bensoltana, Wael; Baert, Grégory; Dewalle-Vignion, Anne-Sophie; Scherpereel, Arnaud; Mordon, Serge

    2017-02-22

    Complete and homogeneous illumination of the target is necessary for the success of a photodynamic therapy (PDT) procedure. In most applications, light dosimetry is done using detectors placed at strategic locations of the target. In this study we propose a novel approach based on the combination of light distribution modeling with spatial localization of the light applicator for real time estimation and display of the applied dose on medical images. The feasibility approach is demonstrated for intrapleural PDT of malignant pleural mesothelioma.

  16. Study of diffusion of indocyanine green as a photodynamic dye into skin using backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V.

    2014-07-01

    One of the lines of development of modern medicine is theranostics consisting in simultaneous diagnosis and laser treatment with the use of multifunctional agents such as fluorescent indocyanine green that has photodynamic and photothermal properties. Diffusion of indocyanine green dissolved in water and aqueous solutions of alcohols (glycerol, propylene glycol and ethanol) into the dermis is studied by using backscattering spectroscopy. The coefficients of the dye diffusion into the dermis are obtained for the first time by using these solvents.

  17. Photodynamic action of laser radiation and methylene blue on some opportunistic microorganisms of the oral cavity

    NASA Astrophysics Data System (ADS)

    Ivanov, Krill I.; Titorenko, Vladimir A.; Shoub, Gennady M.; Lepilin, Alexander V.; Ovchinnikov, Ilya S.; Mischenko, Oksana S.; Tuchin, Valery V.

    2000-03-01

    We have studied photodynamic action of He-Ne laser radiation on cultures of Staphylococcus (strain 209 P), Streptococcus anhaemolyticus, and total microflora of dental deposit been sensitized by methylene blue. The concentration of the dye was varied from 0.001% to 0.1%, radiation power density was 100 mW/cm2. Irradiated strain was put into thermostat for 24 hours, then the number of colonies was counted and analyzed.

  18. Two-photon excitation of porphyrin-functionalized porous silicon nanoparticles for photodynamic therapy.

    PubMed

    Secret, Emilie; Maynadier, Marie; Gallud, Audrey; Chaix, Arnaud; Bouffard, Elise; Gary-Bobo, Magali; Marcotte, Nathalie; Mongin, Olivier; El Cheikh, Khaled; Hugues, Vincent; Auffan, Mélanie; Frochot, Céline; Morère, Alain; Maillard, Philippe; Blanchard-Desce, Mireille; Sailor, Michael J; Garcia, Marcel; Durand, Jean-Olivier; Cunin, Frédérique

    2014-12-03

    Porous silicon nanoparticles (pSiNPs) act as a sensitizer for the 2-photon excitation of a pendant porphyrin using NIR laser light, for imaging and photodynamic therapy. Mannose-functionalized pSiNPs can be vectorized to MCF-7 human breast cancer cells through a mannose receptor-mediated endocytosis mechanism to provide a 3-fold enhancement of the 2-photon PDT effect.

  19. Photodynamic action of chlorin e6 on thymocyte plasmatic and mitochondrial membrane potentials

    NASA Astrophysics Data System (ADS)

    Gyulkhandanyan, Grigor V.

    2005-08-01

    Transmembrane potentials appear to be cell state sensitive characteristics and can give information about cell damage initial stage. Photodynamic action of the photosensitizer chlorin e6 on plasmatic and mitochondrial membrane potentials of the rat thymus lymphocytes was studied using voltage-sensitive dye rhodamine 6G. It has been revealed that mitochondrial membrane potential is more sensitive characteristic of membrane disfunction than plasmatic one at the cell photodamage.

  20. Enhanced photodynamic leishmanicidal activity of hydrophobic zinc phthalocyanine within archaeolipids containing liposomes

    PubMed Central

    Perez, Ana Paula; Casasco, Agustina; Schilrreff, Priscila; Defain Tesoriero, Maria Victoria; Duempelmann, Luc; Altube, Maria Julia; Higa, Leticia; Morilla, Maria Jose; Petray, Patricia; Romero, Eder L

    2014-01-01

    In this work, the in vitro anti-Leishmania activity of photodynamic liposomes made of soybean phosphatidylcholine, sodium cholate, total polar archaeolipids (TPAs) extracted from the hyperhalophile archaea Halorubrum tebenquichense and the photosensitizer zinc phthalocyanine (ZnPcAL) was compared to that of ultradeformable photodynamic liposomes lacking TPAs (ZnPcUDLs). We found that while ZnPcUDLs and ZnPcALs (130 nm mean diameter and −35 mV zeta potential) were innocuous against promastigotes, a low concentration (0.01 μM ZnPc and 7.6 μM phospholipids) of ZnPcALs irradiated at a very low-energy density (0.2 J/cm2) eliminated L. braziliensis amastigotes from J774 macrophages, without reducing the viability of the host cells. In such conditions, ZnPcALs were harmless for J774 macrophages, HaCaT keratinocytes, and bone marrow-derived dendritic cells. Therefore, topical photodynamic treatment would not likely affect skin-associated lymphoid tissue. ZnPcALs were extensively captured by macrophages, but ZnPcUDLs were not, leading to 2.5-fold increased intracellular delivery of ZnPc than with ZnPcUDLs. Despite mediating low levels of reactive oxygen species, the higher delivery of ZnPc and the multiple (caveolin- and clathrin-dependent plus phagocytic) intracellular pathway followed by ZnPc would have been the reason for the higher antiamastigote activity of ZnPcALs. The leishmanicidal activity of photodynamic liposomal ZnPc was improved by TPA-containing liposomes. PMID:25045264