Immune Responses in Rhinovirus-Induced Asthma Exacerbations.
Steinke, John W; Borish, Larry
2016-11-01
Acute asthma exacerbations are responsible for urgent care visits and hospitalizations; they interfere with school and work productivity, thereby driving much of the morbidity and mortality associated with asthma. Approximately 80 to 85 % of asthma exacerbations in children, adolescents, and less frequently adults are associated with viral upper respiratory tract viral infections, and rhinovirus (RV) accounts for ∼60-70 % of these virus-associated exacerbations. Evidence suggests that it is not the virus itself but the nature of the immune response to RV that drives this untoward response. In particular, evidence supports the concept that RV acts to exacerbate an ongoing allergic inflammatory response to environmental allergens present at the time of the infection. The interaction of the ongoing IgE- and T cell-mediated response to allergen superimposed on the innate and adaptive immune responses to the virus and how this leads to triggering of an asthma exacerbation is discussed.
Novel Concepts for HIV Vaccine Vector Design.
Alayo, Quazim A; Provine, Nicholas M; Penaloza-MacMaster, Pablo
2017-01-01
The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.
Immunotherapy in Gynecologic Cancers: Are We There Yet?
Pakish, Janelle B; Jazaeri, Amir A
2017-08-24
Immune-targeted therapies have demonstrated durable responses in many tumor types with limited treatment options and poor overall prognosis. This has led to enthusiasm for expanding such therapies to other tumor types including gynecologic malignancies. The use of immunotherapy in gynecologic malignancies is in the early stages and is an active area of ongoing clinical research. Both cancer vaccines and immune checkpoint inhibitor therapy continue to be extensively studied in gynecologic malignancies. Immune checkpoint inhibitors, in particular, hold promising potential in specific subsets of endometrial cancer that express microsatellite instability. The key to successful treatment with immunotherapy involves identification of the subgroup of patients that will derive benefit. The number of ongoing trials in cervical, ovarian, and endometrial cancer will help to recognize these patients and make treatment more directed. Additionally, a number of studies are combining immunotherapy with standard treatment options and will help to determine combinations that will enhance responses to standard therapy. Overall, there is much enthusiasm for immunotherapy approaches in gynecologic malignancies. However, the emerging data shows that with the exception of microsatellite unstable tumors, the use of single-agent immune checkpoint inhibitors is associated with response rates of 10-15%. More effective and likely combinatorial approaches are needed and will be informed by the findings of ongoing trials.
Bartelt, Luther A.; Bolick, David T.; Kolling, Glynis L.; Zaenker, Edna I.; Lara, Ana M.; Noronha, Francisco Jose; Cowardin, Carrie A.; Moore, John H.; Turner, Jerrold R.; Warren, Cirle A.; Buck, Gregory A.; Guerrant, Richard L.
2016-01-01
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. PMID:27467505
Commensal Gut-Derived Anaerobes as Novel Therapy for Inflammatory Autoimmune Diseases
2011-05-01
treatment of arthritis. Treatment of mice with P. histicola as probiotics and therapy are ongoing. In vitro study showed that treatment of mice with P...histicola in CII-immunized mice led to suppression of antigen-specific immune response and reduction in production of inflammatory cytokines. Our data...effect of Prevotella on antigen specific immune response and production of pro-inflammatory cytokines by antigen specific T-cells. Mice were fed
Barcia, Carlos; Gerdes, Christian; Xiong, Wei-Dong; Thomas, Clare E.; Liu, Chunyan; Kroeger, Kurt M.; Castro, Maria G.; Lowenstein, Pedro R.
2007-01-01
First-generation adenovirus can be engineered with powerful promoters to drive expression of therapeutic transgenes. Numerous clinical trials for glioblastoma multiforme using first generation adenoviral vectors have either been performed or are ongoing, including an ongoing, Phase III, multicenter trial in Europe and Israel (Ark Therapeutics, Inc.). Although in the absence of anti-adenovirus immune responses expression in the brain lasts 6–18 months, systemic infection with adenovirus induces immune responses that inhibit dramatically therapeutic transgene expression from first generation adenoviral vectors, thus, potentially compromising therapeutic efficacy. Here, we show evidence of an immunization threshold for the dose that generates an immune response strong enough to eliminate transgene expression from the CNS. For the systemic immunization to eliminate transgene expression from the brain, ≥1 × 107 infectious units (iu) of adenovirus need to be used as immunogen. Furthermore, this immune response eliminates >90% of transgene expression from 1 × 107–1 × 10³ iu of vector injected into the striatum 60 days earlier. Importantly, elimination of transgene expression is independent of the nature of the promoter that drives transgene expression and is accompanied by brain infiltration of CD8+ T cells and macrophages. In conclusion, once the threshold for systemic immunization (i.e. 1 × 107 iu) is crossed, the immune response eliminates transgene expression by >90% even from brains that receive as little as 1000 iu of adenoviral vectors, independently of the type of promoter that drives expression. PMID:18084640
Tumor-derived vaccines containing CD200 inhibit immune activation: implications for immunotherapy.
Xiong, Zhengming; Ampudia-Mesias, Elisabet; Shaver, Rob; Horbinski, Craig M; Moertel, Christopher L; Olin, Michael R
2016-09-01
There are over 400 ongoing clinical trials using tumor-derived vaccines. This approach is especially attractive for many types of brain tumors, including glioblastoma, yet so far the clinical response is highly variable. One contributor to poor response is CD200, which acts as a checkpoint blockade, inducing immune tolerance. We demonstrate that, in response to vaccination, glioma-derived CD200 suppresses the anti-tumor immune response. In contrast, a CD200 peptide inhibitor that activates antigen-presenting cells overcomes immune tolerance. The addition of the CD200 inhibitor significantly increased leukocyte infiltration into the vaccine site, cytokine and chemokine production, and cytolytic activity. Our data therefore suggest that CD200 suppresses the immune system's response to vaccines, and that blocking CD200 could improve the efficacy of cancer immunotherapy.
Nanomaterials in the Context of Type 2 Immune Responses—Fears and Potentials
Himly, Martin; Mills-Goodlet, Robert; Geppert, Mark; Duschl, Albert
2017-01-01
The type 2 immune response is an adaptive immune program involved in defense against parasites, detoxification, and wound healing, but is predominantly known for its pathophysiological effects, manifesting as allergic disease. Engineered nanoparticles (NPs) are non-self entities that, to our knowledge, do not stimulate detrimental type 2 responses directly, but have the potential to modulate ongoing reactions in various ways, including the delivery of substances aiming at providing a therapeutic benefit. We review, here, the state of knowledge concerning the interaction of NPs with type 2 immune responses and highlight their potential as a multifunctional platform for therapeutic intervention. PMID:28487697
Rebuilding immunity with Remune.
Whitfield, L
1998-01-01
Remune, an immune response therapy composed of inactivated HIV, is designed to enhance the immune system's ability to recognize and kill HIV proteins. Developed by Dr. Jonas Salk, researchers hope Remune's actions can alter the course of HIV infection and slow disease progression. Remune has gained Food and Drug Administration (FDA) approval to enter the critical Phase III trial stage. Two clinical trials are tracking Remune's immunogenicity (ability to provoke an immune response), its immunogenicity relative to dose level, and its effect on viral load. An ongoing trial, approved in February of 1996, enrolled 2,500 patients at 74 sites. The manufacturer, Immune Response Corporation (IRC), announced earlier this year that treatment with Remune induces an immune response to HIV that cross-reacts with different strains of the virus. This immune response is crucial for developing an effective worldwide treatment. Remune decreases levels of tumor necrosis factor alpha (TNF-a). IRC recently began a Phase I clinical trial in Great Britain that combines Remune with a protease inhibitor, two antiviral nucleoside analogues, and Interleukin-2. The trial is designed to determine the role that the drug may play in restoring immune response.
Chandawarkar, Rajiv Y; Wagh, Mihir S; Kovalchin, Joseph T; Srivastava, Pramod
2004-04-01
Immunization with heat-shock protein (HSP) gp96 elicits protective immunity to the cancer or virus-infected cells from which it is derived. Low doses of gp96 generate immunity, while doses 10 times the immunizing dose do not. We show here that injection of high doses of gp96 generates CD4(+) T cells that down-regulate a variety of ongoing immune responses. Immunization with high doses of gp96 prevents myelin basic protein- or proteolipid protein-induced autoimmune encephalomyelitis in SJL mice and the onset of diabetes in non-obese diabetic mice. The suppression of immune response can be adoptively transferred with CD4(+) cells and does not partition with the CD25 phenotype. The immunomodulatory properties of gp96 (and possibly other HSP) may be used for antigen-specific activation or suppression of cellular immune responses. The latter may form the basis for novel immunotherapies for autoimmune diseases.
Yersinia vs. host Immunity: how a pathogen evades or triggers a protective response
Chung, Lawton K.; Bliska, James B.
2015-01-01
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. PMID:26638030
Effects of BRAF mutations and BRAF inhibition on immune responses to melanoma
Ilieva, Kristina M.; Correa, Isabel; Josephs, Debra H.; Karagiannis, Panagiotis; Egbuniwe, Isioma U.; Cafferkey, Michiala J.; Spicer, James F.; Harries, Mark; Nestle, Frank O.; Lacy, Katie E.; Karagiannis, Sophia N.
2014-01-01
Malignant melanoma is associated with poor clinical prognosis; however, novel molecular and immune therapies are now improving patient outcomes. Almost 50% of melanomas harbor targetable activating mutations of BRAF which promote RAS-RAF-MEK-ERK pathway activation and melanoma proliferation. Recent evidence also indicates that melanomas bearing mutant BRAF may also have altered immune responses, suggesting additional avenues for treatment of this patient group. The small molecule inhibitors selective for mutant BRAF induce significant but short-lived clinical responses in a proportion of patients, but also lead to immune stimulatory bystander events, which then subside with the emergence of resistance to inhibition. Simultaneous BRAF and MEK inhibition, and especially combination of BRAF inhibitors with new immunotherapies such as checkpoint blockade antibodies, may further enhance immune activation, or counteract immunosuppressive signals. Pre-clinical evaluation and ongoing clinical trials should provide novel insights into the role of immunity in the therapy of BRAF-mutant melanoma. PMID:25385327
Yersinia versus host immunity: how a pathogen evades or triggers a protective response.
Chung, Lawton K; Bliska, James B
2016-02-01
The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sensing Danger: Key to Activating Plant Immunity.
Gust, Andrea A; Pruitt, Rory; Nürnberger, Thorsten
2017-09-01
In both plants and animals, defense against pathogens relies on a complex surveillance system for signs of danger. Danger signals may originate from the infectious agent or from the host itself. Immunogenic plant host factors can be roughly divided into two categories: molecules which are passively released upon cell damage ('classical' damage-associated molecular patterns, DAMPs), and peptides which are processed and/or secreted upon infection to modulate the immune response (phytocytokines). We highlight the ongoing challenge to understand how plants sense various danger signals and integrate this information to produce an appropriate immune response to diverse challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regulatory T Cells in Autoimmune and Viral Chronic Hepatitis
Lapierre, Pascal; Lamarre, Alain
2015-01-01
In both autoimmune liver disease and chronic viral hepatitis, the injury results from an immune-mediated cytotoxic T cell response to liver cells. As such, it is not surprising that CD4+ regulatory T cells, a key regulatory population of T cells able to curb immune responses, could be involved in both autoimmune hepatitis and chronic viral hepatitis. The liver can induce the conversion of naïve CD4+ T cells to CD4+ regulatory T cells and induce tolerance to locally expressed antigens. This tolerance mechanism is carefully regulated in physiological conditions but any imbalance could be pathological. An overly tolerant immune response can lead to chronic infections while an overreactive and unbridled immune response can lead to autoimmune hepatitis. With the recent advent of monoclonal antibodies able to target regulatory T cells (daclizumab) and improve immune responses and several ongoing clinical trials analysing the impact of regulatory T cell infusion on autoimmune liver disease or liver transplant tolerance, modulation of immunological tolerance through CD4+ regulatory T cells could be a key element of future immunotherapies for several liver diseases allowing restoring the balance between proper immune responses and tolerance. PMID:26106627
BIOMATERIAL STRATEGIES FOR IMMUNOMODULATION
Hotaling, Nathan A.; Tang, Li; Irvine, Darrell J.; Babensee, Julia E.
2016-01-01
Strategies to enhance, suppress, or qualitatively shape the immune response are of importance for diverse biomedical applications, such as the development of new vaccines, treatments for autoimmune diseases and allergies, strategies for regenerative medicine, and immunotherapies for cancer. However, the intricate cellular and molecular signals regulating the immune system are major hurdles to predictably manipulating the immune response and developing safe and effective therapies. To meet this challenge, biomaterials are being developed that control how, where, and when immune cells are stimulated in vivo, and that can finely control their differentiation in vitro. We review recent advances in the field of biomaterials for immunomodulation, focusing particularly on designing biomaterials to provide controlled immunostimulation, targeting drugs and vaccines to lymphoid organs, and serving as scaffolds to organize immune cells and emulate lymphoid tissues. These ongoing efforts highlight the many ways in which biomaterials can be brought to bear to engineer the immune system. PMID:26421896
Local and systemic tumor immune dynamics
NASA Astrophysics Data System (ADS)
Enderling, Heiko
Tumor-associated antigens, stress proteins, and danger-associated molecular patterns are endogenous immune adjuvants that can both initiate and continually stimulate an immune response against a tumor. In retaliation, tumors can hijack intrinsic immune regulatory programs that are intended to prevent autoimmune disease, thereby facilitating continued growth despite the activated antitumor immune response. In metastatic disease, this ongoing tumor-immune battle occurs at each site. Adding an additional layer of complexity, T cells activated at one tumor site can cycle through the blood circulation system and extravasate in a different anatomic location to surveil a distant metastasis. We propose a mathematical modeling framework that incorporates the trafficking of activated T cells between metastatic sites. We extend an ordinary differential equation model of tumor-immune system interactions to multiple metastatic sites. Immune cells are activated in response to tumor burden and tumor cell death, and are recruited from tumor sites elsewhere in the body. A model of T cell trafficking throughout the circulatory system can inform the tumor-immune interaction model about the systemic distribution and arrival of T cells at specific tumor sites. Model simulations suggest that metastases not only contribute to immune surveillance, but also that this contribution varies between metastatic sites. Such information may ultimately help harness the synergy of focal therapy with the immune system to control metastatic disease.
Chronobiology and the treatment of rheumatoid arthritis.
Cutolo, Maurizio
2012-05-01
As circadian rhythms and biological signaling occur in a complex network with cyclical 24-h period interactions (chronobiology) between the central and the autonomic nervous systems, the endocrine glands and the immune system, this review will explore the involvement of this emerging network in the disease pathophysiology and management. Recent advances regarding nocturnal hormones such as melatonin and prolactin that activate the nighttime immune response, and the successive rise of cortisol that dowregulates the ongoing immune reactivity very early in the morning, will be discussed within the circadian neuroendocrine immune network. In addition, the role of sleep and the daily distribution of body energy, which are important factors for the homoeostatic regulation of circadian physiological/pathological processes of the immune network will be reviewed.In chronic immune/inflammatory conditions such as rheumatoid arthritis (RA), stiffness and functional disability are evident in the early morning hours as under the chronic stress of the disease the nighttime adrenal cortisol production becomes insufficient to inhibit ongoing nocturnal immune/inflammatory activity. Currently, the most advanced approach to optimizing the risk-benefit ratio for long-term glucocorticoid treatment in RA seems to be low-dose chronotherapy with modified nighttime release prednisone (release at 3 a.m.). A similar chronotherapeutical approach could also be effective with disease-modifying antirheumatic drugs such as methotrexate.
Role of Innate Immunity in Neonatal Infection
Cuenca, Alex G; Wynn, James L; Moldawer, Lyle L; Levy, Ofer
2014-01-01
Newborns are at increased risk of infection due to genetic, epigenetic, and environmental factors. Herein we examine the roles of the neonatal innate immune system in host defense against bacterial and viral infections. Full-term newborns express a distinct innate immune system biased towards TH2/TH17-polarizing and anti-inflammatory cytokine production with relative impairment in TH1-polarizing cytokine production that leaves them particularly vulnerable to infection with intracellular pathogens. In addition to these distinct features, preterm newborns also have fragile skin, impaired TH17-polarizing cytokine production and deficient expression of complement and of antimicrobial proteins and peptides (APPs) that likely contribute to susceptibility to pyogenic bacteria. Ongoing research is identifying APPs, including bacterial/permeability-increasing protein and lactoferrin, as well as pattern recognition receptor (PRR) agonists that may serve to enhance protective newborn and infant immune responses as stand alone immune response modifiers or vaccine adjuvants. PMID:23297181
Alavi, Yasaman; Elgar, Mark Adrian; Jones, Therésa Melanie
2017-07-01
Facultative parthenogenetic species, in which females can alternate between sex and parthenogenesis, are useful models to investigate the costs and benefits of sex and parthenogenesis, an ongoing issue in biology. The necessary empirical studies comparing the outcomes of alternative reproductive modes on life history traits are rare and focus mainly on traits directly associated with reproductive fitness. Immune function determines the ability of individuals to defend themselves against injury and disease and is therefore likely to have a significant impact on fitness. Here, we used the facultatively parthenogenetic Australian phasmatid, Extatosoma tiaratum, to investigate the effect of both maternal and offspring mode of conception (sexual or parthenogenetic) on offspring immune function (haemocyte concentration, lytic activity and phenoloxidase activity). We show that when parthenogenesis persists beyond one generation, it has negative effects on immune response in terms of haemocyte concentration and lytic activity. Phenoloxidase activity positively correlates with the level of microsatellite heterozygosity. Moreover, immune response decreases across consecutive sampling weeks, suggesting there are physiological constraints with respect to mounting immune responses in close time intervals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immune Impact Induced by PROSTVAC (PSA-TRICOM), a Therapeutic Vaccine for Prostate Cancer
Gulley, James L.; Madan, Ravi A.; Tsang, Kwong Y.; Jochems, Caroline; Marté, Jennifer L.; Farsaci, Benedetto; Tucker, Jo A.; Hodge, James W.; Liewehr, David J.; Steinberg, Seth M.; Heery, Christopher R.; Schlom, Jeffrey
2013-01-01
PSA-TRICOM (PROSTVAC) is a novel vector-based vaccine designed to generate a robust immune response against prostate-specific antigen (PSA)–expressing tumor cells. The purpose of this report is to present an overview of both published studies and new data in the evaluation of immune responses to the PSA-TRICOM vaccine platform, currently in phase III testing. Of 104 patients tested for T-cell responses, 57% (59/104) demonstrated a ≥ 2-fold increase in PSA-specific T cells 4 weeks after vaccine (median 5-fold increase) compared with pre-vaccine, and 68% (19/28) of patients tested mounted post-vaccine immune responses to tumor-associated antigens not present in the vaccine (antigen-spreading). The PSA-specific immune responses observed 28 days after vaccine (i.e., likely memory cells) are quantitatively similar to the levels of circulating T cells specific for influenza seen in the same patients. Measurements of systemic immune response to PSA may underestimate the true therapeutic immune response (as this does not account for cells that have trafficked to the tumor) and does not include antigen-spreading. Furthermore, while the entire PSA gene is the vaccine, only one epitope of PSA is evaluated in the T-cell responses. Since this therapeutic vaccine is directed at generating a cellular/Th1 immune response (T-cell costimulatory molecules and use of a viral vector), it is not surprising that < 0.6% of patients (2/349) tested have evidence of PSA antibody-induction following vaccine. This suggests that post-vaccine PSA kinetics were not affected by PSA antibodies. An ongoing phase III study will evaluate the systemic immune responses and correlation with clinical outcomes. PMID:24778277
MBCP - Approach - Immunotherapy | Center for Cancer Research
Immunotherapy CCR investigators pioneered the use of the tuberculosis vaccine—Bacillus Calmette-Guerin (BCG)—in the treatment of bladder cancer. In cases where the tumor burden is not too high and direct contact can be made with the urothelium surface of the bladder, BCG application appears to elicit an immune response that attacks the tumor as well as the attenuated virus. Ongoing clinical trials focusing on enhancing the patient’s immune system are listed below.
The role of immune dysfunction in the pathophysiology of autism
Onore, Charity; Careaga, Milo; Ashwood, Paul
2012-01-01
Autism spectrum disorders (ASD) are a complex group of neurodevelopmental disorders encompassing impairments in communication, social interactions and restricted stereotypical behaviors. Although a link between altered immune responses and ASD was first recognized nearly 40 years ago, only recently has new evidence started to shed light on the complex multifaceted relationship between immune dysfunction and behavior in ASD. Neurobiological research in ASD has highlighted pathways involved in neural development, synapse plasticity, structural brain abnormalities, cognition and behavior. At the same time, several lines of evidence point to altered immune dysfunction in ASD that directly impacts some or all these neurological processes. Extensive alterations in immune function have now been described in both children and adults with ASD, including ongoing inflammation in brain specimens, elevated pro-inflammatory cytokine profiles in the CSF and blood, increased presence of brain-specific auto-antibodies and altered immune cell function. Furthermore, these dysfunctional immune responses are associated with increased impairments in behaviors characteristic of core features of ASD, in particular, deficits in social interactions and communication. This accumulating evidence suggests that immune processes play a key role in the pathophysiology of ASD. This review will discuss the current state of our knowledge of immune dysfunction in ASD, how these findings may impact on underlying neuro-immune mechanisms and implicate potential areas where the manipulation of the immune response could have an impact on behavior and immunity in ASD. PMID:21906670
Zika virus vaccines: immune response, current status, and future challenges.
Richner, Justin M; Diamond, Michael S
2018-05-09
Zika virus (ZIKV) is the most recent mosquito-transmitted virus to cause a global health crisis following its entrance into a naïve population in the Western Hemisphere. Once the ZIKV outbreak began investigators rapidly established small and large animal models of pathogenesis, developed a number candidate vaccines using different platforms, and defined mechanisms of protection. In this review, we characterize the adaptive immune response elicited by ZIKV infections and vaccines, the status of ongoing clinical trials in humans, and discuss future challenges within the field. Copyright © 2018 Elsevier Ltd. All rights reserved.
A dendritic cell-stromal axis maintains immune responses in lymph nodes
Kumar, Varsha; Dasoveanu, Dragos C.; Chyou, Susan; Tzeng, Te-Chen; Rozo, Cristina; Liang, Yong; Stohl, William; Fu, Yang-Xin; Ruddle, Nancy; Lu, Theresa T.
2015-01-01
Summary Within secondary lymphoid tissues, stromal reticular cells support lymphocyte function, and targeting reticular cells is a potential strategy for controlling pathogenic lymphocytes in disease. However, the mechanisms that regulate reticular cell function are not well understood. Here we found that during an immune response in lymph nodes, dendritic cells (DCs) maintain reticular cell survival in multiple compartments. DC-derived lymphotoxin beta receptor (LTβR) ligands were critical mediators, and LTβR signaling on reticular cells mediated cell survival by modulating podoplanin (PDPN). PDPN modulated integrin-mediated cell adhesion, which maintained cell survival. This DC-stromal axis maintained lymphocyte survival and the ongoing immune response. Our findings provide insight into the functions of DCs, LTβR, and PDPN and delineate a DC-stromal axis that can potentially be targeted in autoimmune or lymphoproliferative diseases. PMID:25902483
Immune checkpoint blockade: the role of PD-1-PD-L axis in lymphoid malignancies
Ilcus, Cristina; Bagacean, Cristina; Tempescul, Adrian; Popescu, Cristian; Parvu, Andrada; Cenariu, Mihai; Bocsan, Corina; Zdrenghea, Mihnea
2017-01-01
The co-inhibitory receptor programmed cell death (PD)-1, expressed by immune effector cells, is credited with a protective role for normal tissue during immune responses, by limiting the extent of effector activation. Its presently known ligands, programmed death ligands (PD-Ls) 1 and 2, are expressed by a variety of cells including cancer cells, suggesting a role for these molecules as an immune evasion mechanism. Blocking of the PD-1-PD-L signaling axis has recently been shown to be effective and was clinically approved in relapsed/refractory tumors such as malignant melanoma and lung cancer, but also classical Hodgkin’s lymphoma. A plethora of trials exploring PD-1 blockade in cancer are ongoing. Here, we review the role of PD-1 signaling in lymphoid malignancies, and the latest results of trials investigating PD-1 or PD-L1 blocking agents in this group of diseases. Early phase studies proved very promising, leading to the clinical approval of a PD-1 blocking agent in Hodgkin’s lymphoma, and Phase III clinical studies are either planned or ongoing in most lymphoid malignancies. PMID:28496333
Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.
2012-01-01
White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.
Immune checkpoint inhibitors in small cell lung cancer.
Pakkala, Suchita; Owonikoko, Taofeek K
2018-02-01
Small cell lung cancer (SCLC) is a rapidly progressive cancer that often debilitates patients within months of detection and quickly becomes refractory to the limited options of therapy. While SCLC is not generally considered an immunogenic tumor, clinical experience suggests that patients with robust immune response manifesting as paraneoplastic syndrome are more likely to present with limited stage of the disease and tend to have a better prognosis. Monoclonal antibodies targeting critical negative regulators of immune response, so called immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death 1 (PD-1) have expanded the application of immune-based therapies to increasing number of advanced stage cancers. These agents overcome the inhibitory immune signals leading to a heightened immune response against cancer cells. These immune checkpoint inhibitors have established efficacy leading to regulatory approval for their use in many cancer types including non-small cell lung cancer (NSCLC). Evaluation of the CTLA-4 inhibitor, ipilimumab and PD-1 inhibitors, nivolumab and pembrolizumab in SCLC have shown encouraging signal but definitive studies are still ongoing. In this review, we discuss the rationale behind the use of checkpoint inhibitors in SCLC, contextualize the results of early trials of immunotherapy agents in SCLC and project the future evolution of this strategy.
Carbone, Javier
2016-01-01
Abstract The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection. PMID:26900990
Carbone, Javier
2016-03-01
The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection.
Treatment of experimental myasthenia gravis with total lymphoid irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Silva, S.; Blum, J.E.; McIntosh, K.R.
1988-07-01
Total lymphoid irradiation (TLI) has been reported to be effective in the immunosuppressive treatment of certain human and experimental autoimmune disorders. We have investigated the effects of TLI in Lewis rats with experimental autoimmune myasthenia gravis (EAMG) produced by immunization with purified torpedo acetylcholine receptor (AChR). The radiation is given in 17 divided fractions of 200 rad each, and nonlymphoid tissues are protected by lead shielding. This technique suppresses the immune system, while minimizing side effects, and permits the repopulation of the immune system by the patient's own bone marrow cells. Our results show that TLI treatment completely prevented themore » primary antibody response to immunization with torpedo AChR, it rapidly abolished the ongoing antibody response in established EAMG, and it suppressed the secondary (anamnestic) response to a boost of AChR. No EAMG animals died during TLI treatment, compared with six control animals that died of EAMG. TLI produces powerful and prompt immunosuppression and may eventually prove useful in the treatment of refractory human myasthenia gravis.« less
Combined short-term immunotherapy for experimental autoimmune myasthenia gravis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestronk, A.; Drachman, D.B.; Teoh, R.
1983-08-01
A therapeutic strategy was designed to eliminate the humoral immune response to acetylcholine receptor (AChR) in ongoing experimental autoimmune myasthenia gravis (EAMG). Rats with EAMG were treated with a protocol consisting of three components: (1) A single high dose of cyclophosphamide (200 mg/kg) was used to produce a rapid and sustained fall in the anti-AChR antibody levels by preferential destruction of antibody-producing B-lymphocytes. ''Memory'' lymphocytes were not eliminated by cyclophosphamide. (2) Irradiation (600 rads) was used to eliminate the ''memory'' cells. It eliminated the anamnestic response to a challenge with the antigen AChR. (3) Bone marrow transplantation was used tomore » repopulate the hematopoietic system after the otherwise lethal dose of cyclophosphamide. We used bone marrow from syngeneic rats with active EAMG to simulate an autologous transplant. Rats with EAMG treated with this combined protocol showed a prompt and sustained fall in the anti-AChR antibody levels and had no anamnestic response to a challenge with AChR. Thus, an affected animal's own marrow could be stored and used later for repopulation after cyclophosphamide-irradiation treatment. This treatment eliminates the animal's ongoing immune responses and reconstitutes the immune system in its original state. The success of this approach suggests that, if their safety could be established, similar ''curative'' strategies might be developed for the treatment of patients with severe antibody-mediated autoimmune disorders, such as myasthenia gravis.« less
New generation humanized mice for virus research: Comparative aspects and future prospects
Akkina, Ramesh
2014-01-01
Work with human specific viruses will greatly benefit from the use of an in vivo system that provides human target cells and tissues in a physiological setting. In this regard humanized mice (hu-Mice) have played an important role in our understanding of viral pathogenesis and testing of therapeutic strategies. Limitations with earlier versions of hu-Mice that lacked a functioning human immune system are currently being overcome. The new generation hu-Mouse models are capable of multilineage human hematopoiesis and generate T cells, B cells, macrophages and dendritic cells required for an adaptive human immune response. Now any human specific pathogen that can infect humanized mice can be studied in the context of ongoing infection and immune responses. Two leading humanized mouse models are currently employed: the hu-HSC model is created by transplantation of human hematopoietic stem cells (HSC), whereas the BLT mouse model is prepared by transplantation of human fetal liver, thymus and HSC. A number of human specific viruses such as HIV-1, dengue, EBV and HCV are being studied intensively in these systems. Both models permit infection by mucosal routes with viruses such as HIV-1 thus allowing transmission prevention studies. Cellular and humoral immune responses are seen in both the models. While there is efficient antigen specific IgM production, IgG responses are suboptimal due to inefficient immunoglobulin class switching. With the maturation of T cells occurring in the autologous human thymus, BLT mice permit human HLA restricted T cell responses in contrast to hu-HSC mice. However, the strength of the immune responses needs further improvement in both models to reach the levels seen in humans. The scope of hu-Mice use is further broadened by transplantation of additional tissues like human liver thus permitting immunopathogenesis studies on hepatotropic viruses such as HCV. Numerous studies that encompass antivirals, gene therapy, viral evolution, and the generation of human monoclonal antibodies have been conducted with promising results in these mice. For further improvement of the new hu-Mouse models, ongoing work is focused on generating new strains of immunodeficient mice transgenic for human HLA molecules to strengthen immune responses and human cytokines and growth factors to improve human cell reconstitution and their homeostatic maintenance. PMID:23217612
Cimetidine as a novel adjunctive treatment for early stage Lyme disease.
Shemenski, Justin
2016-04-09
Lyme disease, caused by the spirochete Borrelia burgdorferi (Bb), is the most common vector-borne illness in the United States. It is a complex disease which may affect the skin, joints, heart, eyes, and central nervous system. Prompt diagnosis and treatment is curative in most instances. However, a significant percentage of patients experience ongoing symptoms after treatment. Currently, there is much controversy regarding the diagnosis, pathophysiology, and treatment of Lyme disease. Pathogen persistence despite treatment lies at the heart of this debate. Many believe that the ongoing symptoms are due to factors such as autoimmunity or permanent damage that is incurred during the active infection. However, there is an emerging school of thought that states that ongoing symptoms are due to a persistent infection that is able to survive both the immune response and antibiotic therapy. Numerous studies have shown that Bb can indeed persist within the host despite treatment and several mechanisms have been proposed to explain Bb's persistence capabilities. These include: polymorphism, antigenic variance, biofilm formation, persister cells, and immunomodulation. There is evidence that Bb is able to alter cytokine profiles within the host which may allow the organism to survive the immune response. This immunomodulation follows a pattern of T-helper 1 (TH1) suppression in favor of T-helper 2 (TH2) processes. In contrast, it has been shown that the optimal immune response to Bb infection involves an early, robust TH1 response and a later conversion to TH2 dominance once the infection is controlled or cleared. It has been proposed that a reconstitution of proper immune-competency in the infected host may improve clinical outcomes in Lyme disease. Cimetidine (CIM) is an over-the-counter histamine-2 (H2) antagonist that is primarily used to lower acid secretions in the stomach. T-regulatory (Treg) cells also possess the H2 receptor, which has spurred interest in CIM as a potential immunomodulator. CIM therapy has been shown to increase levels of the TH1 associated cytokines IL-12, TNF-α, and IFN-γ while decreasing levels of the TH2 associated cytokine IL-10. The author proposes a novel theory that CIM therapy during early Bb infection may promote a more appropriate immune response and increase the utility of antibiotic therapy during early stage Lyme disease, thus improving clinical outcomes of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Yong-Jae; Wang, Pengfei; Navarro-Villalobos, Mauricio; Rohde, Bridget D.; Derryberry, JohnMark; Gin, David Y.
2008-01-01
QS-21 is one of the most promising new adjuvants for immune response potentiation and dose-sparing in vaccine therapy given its exceedingly high level of potency and its favorable toxicity profile. Melanoma, breast cancer, small cell lung cancer, prostate cancer, HIV-1, and malaria are among the numerous maladies targeted in more than 80 recent and ongoing vaccine therapy clinical trials involving QS-21 as a critical adjuvant component for immune response augmentation. QS-21 is a natural product immunostimulatory adjuvant, eliciting both T-cell- and antibody-mediated immune responses with microgram doses. Herein is reported the synthesis of QS-21Aapi in a highly modular strategy, applying novel glycosylation methodologies to a convergent construction of the potent saponin immunostimulant. The chemical synthesis of QS-21 offers unique opportunities to probe its mode of biological action through the preparation of otherwise unattainable nonnatural saponin analogues. PMID:16953631
Checkpoint Inhibition in Hodgkin Lymphoma - a Review.
Bröckelmann, Paul J; Engert, Andreas
2017-01-01
Physiological immune checkpoint pathways are important to regulate self-tolerance, limit immune reactions, and moderate autoimmunity. Various cancers are commonly exploiting these mechanisms to evade the host immune system by restraining a durable, efficient anti-tumor immune response. Immune checkpoints include, but are not limited to, the programmed death 1 (PD1) and the cytotoxic T-lymphocyte-associated protein-4 (CTLA4) axis, which are both druggable by monoclonal antibodies referred to as checkpoint inhibitors (CIs). To date, the anti-PD1 antibodies nivolumab and pembrolizumab are approved for relapsed or refractory classical Hodgkin lymphoma (cHL) due to high response rates with a favorable yet distinct safety profile, and other agents are under investigation. This review summarizes the available preclinical and clinical data including the toxicity and efficacy of different CIs in cHL. It also provides future perspectives based on ongoing clinical trials, potentially synergistic combinatory approaches, and their fit in the therapeutic landscape in cHL. © 2017 S. Karger GmbH, Freiburg.
[Immune checkpoints inhibitors: Recent data from ASCO's meeting 2017 and perspectives].
Kfoury, Maria; Disdero, Valentine; Vicier, Cécilé; Le Saux, Olivia; Gougis, Paul; Sajous, Christophe; Vignot, Stéphane
2018-06-19
Immune checkpoint inhibitors anti-PD-1, anti-PD-L1 and anti-CTLA-4 have been in development in several indications and have changed the face of cancer patients' management. Cancer immunotherapy was central in ASCO's meeting 2017. The identification of patients who could benefit most from immune checkpoint inhibitors is essential. The predictive value of PD-L1 status remains insufficient to select patients who could respond to immunotherapy. An extended search for new biomarkers predictive of response (INF-γ, mutational load) is ongoing, in order to better select responders. Immune checkpoint inhibitors have mainly been developed as monotherapy. However, the low response rate, between 10 and 30%, and the occurrence of resistance, contributes to the increment of new therapeutic strategies. This review summarizes the results of combination trials of two immune checkpoint inhibitors, combination of immunotherapy with conventional chemotherapy, radiotherapy or targeted therapies active on the oncogenic addiction pathway. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Lambracht-Washington, Doris; Fu, Min; Frost, Pat; Rosenberg, Roger N
2017-04-26
Aggregated amyloid-β peptide 1-42 (Aβ42), derived from the cellular amyloid precursor protein, is one of the pathological hallmarks of Alzheimer's disease (AD). Although active immunization against Aβ42 peptide was successful in AD mouse models and led to removal of plaques and improved memory, a similar clinical trial in humans (Aβ42 peptide immunization with QS-21 adjuvant) was stopped in phase II, when 6% of the treated patients developed encephalitis. Currently ongoing passive immunizations with the injection of preformed monoclonal antibodies against different epitopes within the Aβ 1-42 peptide, which do not lead to activation of the immune system, have shown some effects in slowing AD pathology. Active DNA Aβ42 immunizations administered with the gene gun into the skin are noninflammatory because they activate a different T-cell population (Th2) with different cytokine responses eliciting a different humoral immune response. We present our findings in rhesus macaques that underwent the DNA Aβ42 immunization via gene gun delivery into the skin. Six rhesus monkeys received two different doses of a DNA Aβ42 trimer vaccine. The humoral immune response was analyzed from blood throughout the study, and cellular immune responses were determined in peripheral blood mononuclear cells (PBMCs) after three and six immunizations. DNA Aβ42 trimer immunization led to high titer antibody responses in the nonhuman primate (NHP) model. Antibodies generated in the rhesus monkeys following DNA Aβ42 immunization detected amyloid plaques consisting of human Aβ42 peptide in the brain of the triple-transgenic AD mouse model. T-cell responses showed no interferon (IFN)-γ- and interleukin (IL)-17-producing cells from PBMCs in Enzyme-Linked ImmunoSpot assays after three immunization time points. At six immunization time points, IFN-γ- and IL-17-producing cells were found in immunized animals as well as in control animals and were thus considered nonspecific and not due to the immunization regimen. IFN-γ and IL-17 secretion in response to Aβ42 peptide restimulation became undetectable after a 3-month rest period. Intradermal DNA Aβ42 immunization delivered with the gene gun produces a high antibody response in NHPs and is highly likely to be effective and safe in a clinical AD prevention trial in patients.
Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.
2013-01-01
Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.
Nombela, Ivan; Carrion, Aurora; Puente-Marin, Sara; Chico, Verónica; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria del Mar
2017-01-01
Background: Some fish viruses, such as piscine orthoreovirus and infectious salmon anemia virus, target red blood cells (RBCs), replicate inside them and induce an immune response. However, the roles of RBCs in the context of infectious pancreatic necrosis virus (IPNV) infection have not been studied yet. Methods: Ex vivo rainbow trout RBCs were obtained from peripheral blood, Ficoll purified and exposed to IPNV in order to analyze infectivity and immune response using RT-qPCR, immune fluorescence imaging, flow cytometry and western-blotting techniques. Results: IPNV could not infect RBCs; however, IPNV increased the expression of the INF1-related genes ifn-1, pkr and mx genes. Moreover, conditioned media from IPNV-exposed RBCs conferred protection against IPNV infection in CHSE-214 fish cell line. Conclusions: Despite not being infected, rainbow trout RBCs could respond to IPNV with increased expression of antiviral genes. Fish RBCs could be considered as mediators of the antiviral response and therefore targets of new strategies against fish viral infections. Further research is ongoing to completely understand the molecular mechanism that triggers this antiviral response in rainbow trout RBCs. PMID:29333244
Nombela, Ivan; Carrion, Aurora; Puente-Marin, Sara; Chico, Verónica; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria Del Mar
2017-01-01
Background : Some fish viruses, such as piscine orthoreovirus and infectious salmon anemia virus, target red blood cells (RBCs), replicate inside them and induce an immune response. However, the roles of RBCs in the context of infectious pancreatic necrosis virus (IPNV) infection have not been studied yet. Methods : Ex vivo rainbow trout RBCs were obtained from peripheral blood, Ficoll purified and exposed to IPNV in order to analyze infectivity and immune response using RT-qPCR, immune fluorescence imaging, flow cytometry and western-blotting techniques. Results : IPNV could not infect RBCs; however, IPNV increased the expression of the INF1-related genes ifn-1 , pkr and mx genes. Moreover, conditioned media from IPNV-exposed RBCs conferred protection against IPNV infection in CHSE-214 fish cell line. Conclusions : Despite not being infected, rainbow trout RBCs could respond to IPNV with increased expression of antiviral genes. Fish RBCs could be considered as mediators of the antiviral response and therefore targets of new strategies against fish viral infections. Further research is ongoing to completely understand the molecular mechanism that triggers this antiviral response in rainbow trout RBCs.
Reiman, Jennifer M; Kumar, Sanjai; Rodriguez, Ingrid B; Gnidehou, Sedami; Ito, Koichi; Stanisic, Danielle I; Lee, Moses; McPhun, Virginia; Majam, Victoria; Willemsen, Nicole M; Batzloff, Michael R; Raja, Amber I; Dooley, Brad; Hoffman, Stephen L; Yanow, Stephanie K; Good, Michael F
2018-01-01
Blood stage malaria parasites attenuated with seco-cyclopropyl pyrrolo indole (CPI) analogues induce robust immunity in mice to homologous and heterologous malaria parasites and are being considered for the development of a human vaccine. However, it is not understood how attenuated parasites induce immunity. We showed that following vaccination, parasite DNA persisted in blood for several months, raising the possibility that ongoing immune stimulation may be critical. However, parasites were not seen microscopically beyond 24 h postvaccination. We aimed to provide a mechanistic understanding of immune induction. Mice were vaccinated with chemically attenuated Plasmodium chabaudi parasites. PCR and adoptive transfer studies were used to determine the presence of parasites and antigen in vivo . In other experiments, Plasmodium falciparum parasitised red blood cells were attenuated in vitro and RNA and antigen expression studied. We show that blood transferred from vaccinated mice into naïve mice activates T cells and induces complete protective immunity in the recipient mice strongly suggesting that there is persistence of parasite antigen postvaccination. This is supported by the presence of parasite RNA in vaccinated mice and both RNA and antigen expression in P. falciparum cultures treated with CPI drugs in vitro . In addition, drugs that block parasite growth also prevent the induction of immunity in vaccinated mice, indicating that some growth of attenuated parasites is required for immune induction. Attenuated parasites persist at submicroscopic levels in the blood of mice postvaccination with the ability to activate T cells and induce ongoing protective immune responses.
Guy, Bruno; Barrere, Beatrice; Malinowski, Claire; Saville, Melanie; Teyssou, Remy; Lang, Jean
2011-09-23
Dengue vaccine development has reached a major milestone with the initiation, in 2010, of the first phase III clinical trial to investigate the Sanofi Pasteur CYD tetravalent dengue vaccine (TDV). The CYD TDV candidate is composed of four recombinant, live, attenuated vaccines (CYD-1-4) based on a yellow fever vaccine 17D (YFV 17D) backbone, each expressing the pre-membrane and envelope genes of one of the four dengue virus serotypes. The vaccine is genetically and phenotypically stable, non-hepatotropic, less neurovirulent than YFV 17D, and does not infect mosquitoes by the oral route. In vitro and in vivo preclinical studies showed that CYD TDV induces controlled stimulation of human dendritic cells, and significant immune responses in monkeys. Scale up and industrialization are being conducted in parallel with preclinical and clinical development to fulfill the needs of phase II/III trials, and to anticipate and facilitate supply and access to vaccine in the countries where the dengue disease burden makes it an urgent public health priority. The vaccine has now been administered to more than 6000 children and adults from dengue endemic and non-endemic areas and no safety concerns have arisen in any of the completed or ongoing trials. A three-dose vaccination regimen induces an immune response against all four serotypes in the large majority of vaccinees. Preexisting flavivirus immunity favors quicker and higher immune responses to CYD TDV, without adversely effecting clinical safety or increasing vaccine viremia. The observed level and nature of the cellular immune responses in humans are consistent with the good safety and immunogenicity profile of the vaccine. Preliminary results of an ongoing, proof-of-concept efficacy and large scale safety study in Thai children are expected by the end of 2012. Here we discuss the different steps and challenges of developing CYD TDV, from research to industrialization, and summarize some of the challenges to the successful introduction of a dengue vaccine into immunization programs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Plant immunity: unravelling the complexity of plant responses to biotic stresses.
Miller, Robert Neil Gerard; Costa Alves, Gabriel Sergio; Van Sluys, Marie-Anne
2017-03-01
Plants are constantly exposed to evolving pathogens and pests, with crop losses representing a considerable threat to global food security. As pathogen evolution can overcome disease resistance that is conferred by individual plant resistance genes, an enhanced understanding of the plant immune system is necessary for the long-term development of effective disease management strategies. Current research is rapidly advancing our understanding of the plant innate immune system, with this multidisciplinary subject area reflected in the content of the 18 papers in this Special Issue. Advances in specific areas of plant innate immunity are highlighted in this issue, with focus on molecular interactions occurring between plant hosts and viruses, bacteria, phytoplasmas, oomycetes, fungi, nematodes and insect pests. We provide a focus on research across multiple areas related to pathogen sensing and plant immune response. Topics covered are categorized as follows: binding proteins in plant immunity; cytokinin phytohormones in plant growth and immunity; plant-virus interactions; plant-phytoplasma interactions; plant-fungus interactions; plant-nematode interactions; plant immunity in Citrus; plant peptides and volatiles; and assimilate dynamics in source/sink metabolism. Although knowledge of the plant immune system remains incomplete, the considerable ongoing scientific progress into pathogen sensing and plant immune response mechanisms suggests far reaching implications for the development of durable disease resistance against pathogens and pests. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Emerging Functions of Regulatory T Cells in Tissue Homeostasis
Sharma, Amit; Rudra, Dipayan
2018-01-01
CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses. PMID:29887862
The Use of Synthetic Carriers in Malaria Vaccine Design
Powles, Liam; Xiang, Sue D.; Selomulya, Cordelia; Plebanski, Magdalena
2015-01-01
Malaria vaccine research has been ongoing since the 1980s with limited success. However, recent improvements in our understanding of the immune responses required to combat each stage of infection will allow for intelligent design of both antigens and their associated delivery vaccine vehicles/vectors. Synthetic carriers (also known as vectors) are usually particulate and have multiple properties, which can be varied to control how an associated vaccine interacts with the host, and consequently how the immune response develops. This review comprehensively analyzes both historical and recent studies in which synthetic carriers are used to deliver malaria vaccines. Furthermore, the requirements for a synthetic carrier, such as size, charge, and surface chemistry are reviewed in order to understand the design of effective particle-based vaccines against malaria, as well as providing general insights. Synthetic carriers have the ability to alter and direct the immune response, and a better control of particle properties will facilitate improved vaccine design in the near future. PMID:26529028
Immune checkpoint inhibitors for metastatic bladder cancer.
Massari, Francesco; Di Nunno, Vincenzo; Cubelli, Marta; Santoni, Matteo; Fiorentino, Michelangelo; Montironi, Rodolfo; Cheng, Liang; Lopez-Beltran, Anto; Battelli, Nicola; Ardizzoni, Andrea
2018-03-01
Chemotherapy has represented the standard therapy for unresectable or metastatic urothelial carcinoma for more than 20 years. The growing knowledge of the interaction between tumour and immune system has led to the advent of new classes of drugs, the immune-checkpoints inhibitors, which are intended to change the current scenario. To date, immunotherapy is able to improve the overall responses and survival. Moreover, thanks to its safety profile immune-checkpoint inhibitors could be proposed also to patients unfit for standard chemotherapy. No doubts that these agents have started a revolution expected for years, but despite this encouraging results it appears clear that not all subjects respond to these agents and requiring the development of reliable predictive response factors able to isolate patients who can more benefit from these treatments as well as new strategies aimed to improve immunotherapy clinical outcome. In this review we describe the active or ongoing clinical trials involving Programmed Death Ligand 1 (PD-L1), Programmed Death receptor 1 (PD-1) and Cytotoxic-T Lymphocyte Antigen 4 (CTLA 4) inhibitors in urothelial carcinoma focusing our attention on the developing new immune-agents and combination strategies with immune-checkpoint inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
As part of our ongoing program to expand reagents available for research in cattle, we developed a monoclonal antibody (mAb) to bovine IL-17A, a multifunctional cytokine centrally involved in regulating innate and adaptive immune responses. Initial comparative studies demonstrated the mAb recognizes...
Adnan, Sama; Reeves, R Keith; Gillis, Jacqueline; Wong, Fay E; Yu, Yi; Camp, Jeremy V; Li, Qingsheng; Connole, Michelle; Li, Yuan; Piatak, Michael; Lifson, Jeffrey D; Li, Wenjun; Keele, Brandon F; Kozlowski, Pamela A; Desrosiers, Ronald C; Haase, Ashley T; Johnson, R Paul
2016-12-01
Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination.
The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.
Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J
2017-04-01
Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.
Modeling the dynamics of oral poliovirus vaccine cessation.
Thompson, Kimberly M; Duintjer Tebbens, Radboud J
2014-11-01
Oral poliovirus vaccine (OPV) results in an ongoing burden of poliomyelitis due to vaccine-associated paralytic poliomyelitis and circulating vaccine-derived polioviruses (cVDPVs). This motivates globally coordinated OPV cessation after wild poliovirus eradication. We modeled poliovirus transmission and OPV evolution to characterize the interaction between population immunity, OPV-related virus prevalence, and the emergence of cVDPVs after OPV cessation. We explored strategies to prevent and manage cVDPVs for countries that currently use OPV for immunization and characterized cVDPV emergence risks and OPV use for outbreak response. Continued intense supplemental immunization activities until OPV cessation represent the best strategy to prevent cVDPV emergence after OPV cessation in areas with insufficient routine immunization coverage. Policy makers must actively manage population immunity before OPV cessation to prevent cVDPVs and aggressively respond if prevention fails. Sufficiently aggressive response with OPV to interrupt transmission of the cVDPV outbreak virus will lead to die-out of OPV-related viruses used for response in the outbreak population. Further analyses should consider the risk of exportation to other populations of the outbreak virus and any OPV used for outbreak response. OPV cessation can successfully eliminate all circulating live polioviruses in a population. The polio end game requires active risk management. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard
2018-02-01
Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vitamin D-Regulated MicroRNAs: Are They Protective Factors against Dengue Virus Infection?
Arboleda, John F.; Urcuqui-Inchima, Silvio
2016-01-01
Over the last few years, an increasing body of evidence has highlighted the critical participation of vitamin D in the regulation of proinflammatory responses and protection against many infectious pathogens, including viruses. The activity of vitamin D is associated with microRNAs, which are fine tuners of immune activation pathways and provide novel mechanisms to avoid the damage that arises from excessive inflammatory responses. Severe symptoms of an ongoing dengue virus infection and disease are strongly related to highly altered production of proinflammatory mediators, suggesting impairment in homeostatic mechanisms that control the host's immune response. Here, we discuss the possible implications of emerging studies anticipating the biological effects of vitamin D and microRNAs during the inflammatory response, and we attempt to extrapolate these findings to dengue virus infection and to their potential use for disease management strategies. PMID:27293435
Avelumab: a new standard for treating metastatic Merkel cell carcinoma.
Baker, Mairead; Cordes, Lisa; Brownell, Isaac
2018-04-01
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Although MCC is chemosensitive, responses to traditional chemotherapeutic agents are not durable. Avelumab, a novel anti-PD-L1 immune checkpoint inhibitor, recently became the first FDA-approved agent for the treatment of metastatic MCC and represents a new option to improve patient survival. Areas covered: This article presents an overview of MCC and summarizes the development of avelumab in the treatment of metastatic MCC. Preclinical studies, phase 1 and phase 2 clinical trials, and the safety profile of avelumab are reviewed. Future perspectives and ongoing studies are also discussed. Expert commentary: Avelumab demonstrated rapid and durable responses and a manageable safety profile in the treatment of metastatic MCC. Patient outcomes are favorable when compared to historical responses to standard chemotherapy. Ongoing clinical trials will continue to characterize avelumab and its optimal use in MCC therapy.
Gjini, Erida; Brito, Patricia H.
2016-01-01
Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. We use mathematical modelling of within-host infection dynamics to study the interplay between pathogen-dependent host immune responses and antibiotic treatment. We compare classical (fixed dose and duration) and adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection outcomes such as time to clearance, immunopathology, host immunization, and selection of resistant bacteria. Our analysis and simulations uncover effective treatment strategies that promote synergy between the host immune system and the antimicrobial drug in clearing infection. Both in classical and adaptive treatment, we quantify how treatment timing and the strength of the immune response determine the success of moderate therapies. We explain key parameters and dimensions, where an adaptive regime differs from classical treatment, bringing new insight into the ongoing debate of resistance management. Emphasizing the sensitivity of treatment outcomes to the balance between external antibiotic intervention and endogenous natural defenses, our study calls for more empirical attention to host immunity processes. PMID:27078624
Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis
Palmer, Clovis S.; Cherry, Catherine L.; Sada-Ovalle, Isabel; Singh, Amit; Crowe, Suzanne M.
2016-01-01
Activation of the immune system occurs in response to the recognition of foreign antigens and receipt of optimal stimulatory signals by immune cells, a process that requires energy. Energy is also needed to support cellular growth, differentiation, proliferation, and effector functions of immune cells. In HIV-infected individuals, persistent viral replication, together with inflammatory stimuli contributes to chronic immune activation and oxidative stress. These conditions remain even in subjects with sustained virologic suppression on antiretroviral therapy. Here we highlight recent studies demonstrating the importance of metabolic pathways, particularly those involving glucose metabolism, in differentiation and maintenance of the activation states of T cells and monocytes. We also discuss how changes in the metabolic status of these cells may contribute to ongoing immune activation and inflammation in HIV- infected persons and how this may contribute to disease progression, establishment and persistence of the HIV reservoir, and the development of co-morbidities. We provide evidence that other viruses such as Epstein–Barr and Flu virus also disrupt the metabolic machinery of their host cells. Finally, we discuss how redox signaling mediated by oxidative stress may regulate metabolic responses in T cells and monocytes during HIV infection. PMID:27211546
Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.
De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe
2017-06-01
Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mucosal immunity in HIV controllers: the right place at the right time.
Shacklett, Barbara L; Ferre, April L
2011-05-01
The phenomenon of long-term nonprogression in HIV infection has been recognized for some time, and the ability of rare individuals, designated 'elite controllers', to control HIV in the absence of therapy is the focus of numerous ongoing studies. This review focuses on studies of HIV-specific immune responses in mucosal tissues as a potential correlate of immune control, with an emphasis on recently published work. Genetic studies have implicated a role for elements localized to the major histocompatibility complex (MHC) on chromosome 6 in the immune control of HIV infection. In parallel, functional studies have strongly implicated MHC class I-restricted, CD8+ T-cell responses as a major contributor to elite control. In addition, the localization of HIV-specific CD8+ and CD4+ T cells with respect to the major sites of virus replication in the body may be critical in determining clinical outcome. Recent findings suggest that MHC class I-restricted, CD8+ T cells are a major component of immune control in 'elite controllers'. In addition, the presence of these effector cells at or near critical viral reservoirs, such as mucosal tissues, may be critical in determining their effectiveness at limiting viral replication and dissemination.
High levels of type 2 cytokine-producing cells in chronic fatigue syndrome.
Skowera, A; Cleare, A; Blair, D; Bevis, L; Wessely, S C; Peakman, M
2004-02-01
The aetiology of chronic fatigue syndrome (CFS) is not known. However, it has been suggested that CFS may be associated with underlying immune activation resulting in a Th2-type response. We measured intracellular production of interferon (IFN)-gamma and interleukin (IL)-2; type 1 cytokines), IL-4 (type 2) and IL-10 (regulatory) by both polyclonally stimulated and non-stimulated CD4 and CD8 lymphocytes from patients with CFS and control subjects by flow cytometry. After polyclonal activation we found evidence of a significant bias towards Th2- and Tc2-type immune responses in CFS compared to controls. In contrast, levels of IFN-gamma, IL-2 and IL-10-producing cells were similar in both study groups. Non-stimulated cultures revealed significantly higher levels of T cells producing IFN-gamma or IL-4 in CFS patients. Concluding, we show evidence for an effector memory cell bias towards type 2 responsiveness in patients with CFS, as well as ongoing type 0 immune activation in unstimulated cultures of peripheral blood cells.
High levels of type 2 cytokine-producing cells in chronic fatigue syndrome
SKOWERA, A; CLEARE, A; BLAIR, D; BEVIS, L; WESSELY, S C; PEAKMAN, M
2004-01-01
The aetiology of chronic fatigue syndrome (CFS) is not known. However, it has been suggested that CFS may be associated with underlying immune activation resulting in a Th2-type response. We measured intracellular production of interferon (IFN)-γ and interleukin (IL)-2; type 1 cytokines), IL-4 (type 2) and IL-10 (regulatory) by both polyclonally stimulated and non-stimulated CD4 and CD8 lymphocytes from patients with CFS and control subjects by flow cytometry. After polyclonal activation we found evidence of a significant bias towards Th2- and Tc2-type immune responses in CFS compared to controls. In contrast, levels of IFN-γ, IL-2 and IL-10-producing cells were similar in both study groups. Non-stimulated cultures revealed significantly higher levels of T cells producing IFN-γ or IL-4 in CFS patients. Concluding, we show evidence for an effector memory cell bias towards type 2 responsiveness in patients with CFS, as well as ongoing type 0 immune activation in unstimulated cultures of peripheral blood cells. PMID:14738459
Polarization of immune responses in fish: The 'macrophages first' point of view.
Wiegertjes, Geert F; Wentzel, Annelieke S; Spaink, Herman P; Elks, Philip M; Fink, Inge R
2016-01-01
In this review, we support taking polarized immune responses in teleost fish from a 'macrophage first' point of view, a hypothesis that reverts the dichotomous T helper (TH)1 and TH2 driving forces by building on the idea of conservation of innate immune responses in lower vertebrates. It is plausible that the initial trigger for macrophage polarization into M1 (inflammation) or M2 (healing) could rely only on sensing microbial/parasite infection or other innate danger signals, without the influence of adaptive immunity. Given the long and ongoing debate on the presence/absence of a typical TH1 cytokine environment and, in particular, TH2 cytokine environment in fish immune responses, it stands out that the presence of macrophages with polarized phenotypes, alike M1 and M2, have been relatively easy to demonstrate for fish. We summarize in short present knowledge in teleost fish on those cytokines considered most critical to the dichotomous development of TH1/M1 and TH2/M2 polarization, in particular, but not exclusively, interferon-γ and interleukin (IL)-4/IL-13. We review, in more detail, polarization of fish immune responses taken from the macrophage point of view for which we adopted the simple nomenclature of M1 and M2. We discuss inducible nitric oxide synthase, or NOS-2, as a reliable M1 marker and arginase-2 as a reliable M2 marker for teleost fish and discuss the value of these macrophage markers for the generation of zebrafish reporter lines to study M1/M2 polarization in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
Immunizing children who fear and resist needles: is it a problem for nurses?
Ives, Mary; Melrose, Sherri
2010-01-01
Despite increasing evidence that immunization procedures can be stressful for children, little is known about what the experience of immunizing frightened and needle-resistant children can be like for nurses. This article presents findings from a qualitative research project designed to explore public health nurses' feelings toward immunizing needle-resistant children. A constructivist theoretical perspective and an action research approach framed the study. Data sources included two survey questions and audio-recorded transcribed data from three focus groups. Participants included 35 public health nurses from five different health units in one Canadian province. The data were analyzed for themes and were confirmed with participants through ongoing member checking. The following four overarching themes were identified and are used to explain and describe significant features of the immunization experience that were stressful and problematic for nurses: (a) nurses experience stress when immunizing children who fear and resist needle injection; (b) the strength of child resistance and some adult behavior creates an ethical dilemma for nurses; (c) some adult responses make immunizing difficult and unsafe; and (d) resources to help nurses cope with these situations are inconsistent.
Chakarov, Svetoslav; Fazilleau, Nicolas
2015-01-01
Flow cytometry is a valuable technology used in immunology to characterize and enumerate the different cell subpopulations specific for a nonself-antigen in the context of an ongoing immune response. Among them, follicular helper T cells are the cognate regulators of B cells in secondary lymphoid tissues. Thus, tracking them is of high interest especially in the context of protein vaccination. For this purpose, transgenic antigen-receptor mouse models have been largely used. It is now clear that transgenic models are not always the best means to study the dynamics of the immune response since they can modify the response. In this chapter, we describe how to track endogenous antigen-specific follicular helper T cells by flow cytometry after protein vaccination in nonmodified wild-type animals, which ultimately provides a comprehensive way to enumerate, characterize, and isolate these particular cells in vivo.
Ocular immunology in equine recurrent uveitis.
Deeg, Cornelia A
2008-09-01
Equine recurrent uveitis (ERU) is a disease with high prevalence and relevance for the equine population, since it results in blindness. Over the last decade, important advancements have been made in our understanding of the underlying immune responses in this disease. ERU is mediated by an autoaggressive Th1 response directed against several retinal proteins. Interphotoreceptor-retinoid binding protein (IRBP) and cellular retinaldehyde-binding protein (CRALBP) are capable to induce ERU-like disease in experimental horses, with the unique possibility to activate relapses in a well-defined manner. Further, proteomic evidence now suggests that retinal Mueller glial cells (RMG) may play a fatal role in uveitic disease progression by directly triggering inflammation processes through the expression and secretion of interferon-gamma. Ongoing relapses in blind eyes can be associated with stable expression of the major autoantigens in ERU retinas. This review briefly summarizes the most significant developments in uveitis immune response research.
Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain.
Santoro, Antonietta; Spinelli, Chiara Carmela; Martucciello, Stefania; Nori, Stefania Lucia; Capunzo, Mario; Puca, Annibale Alessandro; Ciaglia, Elena
2018-03-01
Ongoing studies evidence cellular senescence in undifferentiated and specialized cells from tissues of all ages. Although it is believed that senescence plays a wider role in several stress responses in the mature age, its participation in certain physiological and pathological processes throughout life is coming to light. The "senescence machinery" has been observed in all brain cell populations, including components of innate immunity (e.g., microglia and astrocytes). As the beneficial versus detrimental implications of senescence is an open question, we aimed to analyze the contribution of immune responses in regulatory mechanisms governing its distinct functions in healthy (development, organogenesis, danger patrolling events) and diseased brain (glioma, neuroinflammation, neurodeneration), and the putative connection between cellular and molecular events governing the 2 states. Particularly this review offers new insights into the complex roles of senescence both as a chronological event as age advances, and as a molecular mechanism of brain homeostasis through the important contribution of innate immune responses and their crosstalk with neighboring cells in brain parenchyma. We also highlight the impact of the recently described glymphatic system and brain lymphatic vasculature in the interplay between peripheral and central immune surveillance and its potential implication during aging. This will open new ways to understand brain development, its deterioration during aging, and the occurrence of several oncological and neurodegenerative diseases. ©2018 Society for Leukocyte Biology.
The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity
Workman, Alan D.; Palmer, James N.; Adappa, Nithin D.
2016-01-01
Over the past several years, taste receptors have emerged as key players in the regulation of innate immune defenses in the mammalian respiratory tract. Several cell types in the airway, including ciliated epithelial cells, solitary chemosensory cells, and bronchial smooth muscle cells, all display chemoresponsive properties that utilize taste receptors. A variety of bitter products secreted by microbes are detected with resultant downstream inflammation, increased mucous clearance, antimicrobial peptide secretion, and direct bacterial killing. Genetic variation of bitter taste receptors also appears to play a role in the susceptibility to infection in respiratory disease states, including that of chronic rhinosinusitis. Ongoing taste receptor research may yield new therapeutics that harness innate immune defenses in the respiratory tract and may offer alternatives to antibiotic treatment. The present review discusses taste receptor-protective responses and analyzes the role these receptors play in mediating airway immune function. PMID:26492878
Parkinson's disease and systemic inflammation.
Ferrari, Carina C; Tarelli, Rodolfo
2011-02-22
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the "primed" microglia into an "active" state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.
Acute stress promotes post-injury brain regeneration in fish.
Sinyakov, Michael S; Haimovich, Amihai; Avtalion, Ramy R
2017-12-01
The central nervous system and the immune system, the two major players in homeostasis, operate in the ongoing bidirectional interaction. Stress is the third player that exerts strong effect on these two 'supersystems'; yet, its impact is studied much less. In this work employing carp model, we studied the influence of preliminary stress on neural and immune networks involved in post-injury brain regeneration. The relevant in vivo models of air-exposure stress and precisely directed cerebellum injury have been developed. Neuronal regeneration was evaluated by using specific tracers of cell proliferation and differentiation. Involvement of immune networks was accessed by monitoring the expression of selected T cells markers. Contrast difference between acute and chronic stress manifested in the fact that chronically stressed fish did not survive the brain injury. Neuronal regeneration appeared as a biphasic process whereas involvement of immune system proceeded as a monophasic route. In stressed fish, immune response was fast and accompanied or even preceded neuronal regeneration. In unstressed subjects, immune response took place on the second phase of neuronal regeneration. These findings imply an intrinsic regulatory impact of acute stress on neuronal and immune factors involved in post-injury brain regeneration. Stress activates both neuronal and immune defense mechanisms and thus contributes to faster regeneration. In this context, paradoxically, acute preliminary stress might be considered a distinct asset in speeding up the following post-injury brain regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Lowenstein, P R; Castro, M G
2016-01-01
Malignant brain tumors are one of the most lethal cancers. They originate from glial cells which infiltrate throughout the brain. Current standard of care involves surgical resection, radiotherapy, and chemotherapy; median survival is currently ~14-20 months postdiagnosis. Given that the brain immune system is deficient in priming systemic immune responses to glioma antigens, we proposed to reconstitute the brain immune system to achieve immunological priming from within the brain. Two adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1-derived thymidine kinase which converts ganciclovir into a compound only cytotoxic to dividing glioma cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine that attracts dendritic cells to the brain. HSV-1/ganciclovir killing of tumor cells releases tumor antigens that are taken up by dendritic cells within the brain tumor microenvironment. Tumor killing also releases HMGB1, an endogenous TLR2 agonist that activates dendritic cells. HMGB1-activated dendritic cells, loaded with glioma antigens, migrate to cervical lymph nodes to stimulate a systemic CD8+ T cells cytotoxic immune response against glioma. This immune response is specific to glioma tumors, induces immunological memory, and does neither cause brain toxicity nor autoimmune responses. An IND was granted by the FDA on 4/7/2011. A Phase I, first in person trial, to test whether reengineering the brain immune system is potentially therapeutic is ongoing. © 2016 Elsevier Inc. All rights reserved.
Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K.; Vitalone, Matthew J.; Chen, Rong; Butte, Atul J.; Salvatierra, Oscar; Sarwal, Minnie M.
2015-01-01
The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy. PMID:21881554
Naesens, Maarten; Khatri, Purvesh; Li, Li; Sigdel, Tara K; Vitalone, Matthew J; Chen, Rong; Butte, Atul J; Salvatierra, Oscar; Sarwal, Minnie M
2011-12-01
The degree of progressive chronic histological damage is associated with long-term renal allograft survival. In order to identify promising molecular targets for timely intervention, we examined renal allograft protocol and indication biopsies from 120 low-risk pediatric and adolescent recipients by whole-genome microarray expression profiling. In data-driven analysis, we found a highly regulated pattern of adaptive and innate immune gene expression that correlated with established or ongoing histological chronic injury, and also with development of future chronic histological damage, even in histologically pristine kidneys. Hence, histologically unrecognized immunological injury at a molecular level sets the stage for the development of chronic tissue injury, while the same molecular response is accentuated during established and worsening chronic allograft damage. Irrespective of the hypothesized immune or nonimmune trigger for chronic allograft injury, a highly orchestrated regulation of innate and adaptive immune responses was found in the graft at the molecular level. This occurred months before histologic lesions appear, and quantitatively below the diagnostic threshold of classic T-cell or antibody-mediated rejection. Thus, measurement of specific immune gene expression in protocol biopsies may be warranted to predict the development of subsequent chronic injury in histologically quiescent grafts and as a means to titrate immunosuppressive therapy.
Chakera, A; Bennett, S; Lawrence, S; Morteau, O; Mason, P D; O'Callaghan, C A; Cornall, R J
2011-01-01
Infection with the polyoma virus BK (BKV) is a major cause of morbidity following renal transplantation. Limited understanding of the anti-viral immune response has prevented the design of a strategy that balances treatment with the preservation of graft function. The proven utility of interferon-gamma enzyme-linked immunospot (ELISPOT) assays to measure T cell responses in immunocompetent hosts was the basis for trying to develop a rational approach to the management of BKV following renal transplantation. In a sample of transplant recipients and healthy controls, comparisons were made between T cell responses to the complete panel of BKV antigens, the Epstein–Barr virus (EBV) antigens, BZLF1 and EBNA1, and the mitogen phytohaemagglutinin (PHA). Correlations between responses to individual antigens and immunosuppressive regimens were also analysed. Antigen-specific T cell responses were a specific indicator of recent or ongoing recovery from BKV infection (P < 0·05), with responses to different BKV antigens being highly heterogeneous. Significant BKV immunity was undetectable in transplant patients with persistent viral replication or no history of BKV reactivation. Responses to EBV antigens and mitogen were reduced in patients with BKV reactivation, but these differences were not statistically significant. The T cell response to BKV antigens is a useful and specific guide to recovery from BKV reactivation in renal transplant recipients, provided that the full range of antigenic responses is measured. PMID:21671906
Parkinson's Disease and Systemic Inflammation
Ferrari, Carina C.; Tarelli, Rodolfo
2011-01-01
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862
The Pathogenesis of Autoimmune Liver Disease.
Arndtz, Katherine; Hirschfield, Gideon M
Autoimmune liver disease (AILD) encompasses 3 main distinct clinical diseases: autoimmune hepatitis, primary biliary cholangitis (formally known as cirrhosis, PBC) and primary sclerosing cholangitis (PSC). These conditions are an important, yet under-appreciated cause of patient morbidity and mortality with ongoing unmet needs for further research and clinical advances. There is observational evidence for genetic predisposition, with all 3 conditions being more common in first degree relatives. AILD is associated with the presence of auto-antibodies and higher risks of other non-hepatic auto-immune conditions. Genetic risk association studies have identified HLA and non-HLA risk loci for the development of disease, with some HLA loci providing prognostic information. This re-enforces the concept that genetic predisposition to autoimmunity is important, likely in the context of environmental exposures. Such environmental triggers are unclear but relevant risks include smoking, drug and xenobiotic exposure as well as the complexities of the microbiome. There is evidence for a loss of immune tolerance to self-antigens playing a part in the development of these conditions. In particular the IL-2 and IL-12 regulatory pathways have been implicated in pre-disposing to an unopposed inflammatory response within the liver. Main immunological themes revolve around loss of immune tolerance leading to T-cell mediated injury, imbalance in the regulation of immune cells and defective immune response to foreign antigens. For PBC and PSC, there is then the added complexity of the consequences of cholestasis on hepato-biliary injury, immune regulation and liver fibrosis. Whilst specific disease causes and triggers are still lacking, AILD arises on the background of collective genetic and environmental risk, leading to chronic and abnormal hepato-biliary immune responses. Effective and more rational therapy will ultimately be developed when the multiple pathways to liver injury are better understood. © 2016 S. Karger AG, Basel.
MATERNAL INFECTION AND IMMUNE INVOLVEMENT IN AUTISM
Patterson, Paul H.
2011-01-01
Recent studies have highlighted a connection between infection during pregnancy and increased risk for autism in the offspring. Parallel studies of cerebral spinal fluid, blood, and postmortem brains reveal an ongoing, hyper-responsive inflammatory-like state in many young as well as adult autism subjects. There are also indications of gastrointestinal problems in at least a subset of autistic children. Work with animal models of the maternal infection risk factor indicate that aspects of brain and peripheral immune dysregulation can be begin during fetal development and be maintained through adulthood. The offspring of infected, or immune-activated dams also display cardinal behavioral features of autism, as well as neuropathology consistent with that seen in human autism. These rodent models are proving useful for the study of pathogenesis and gene-environment interaction, as well as for the exploration of potential therapeutic strategies. PMID:21482187
Anthrax vaccination strategies
Cybulski, Robert J.; Sanz, Patrick; O'Brien, Alison D.
2009-01-01
The biological attack conducted through the U.S. postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain U.S. Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine's reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies. PMID:19729034
Measurements of Immune Responses for Establishing Correlates of Vaccine Protection Against HIV
Burgers, Wendy A.; Manrique, Amapola; McKinnon, Lyle R.; Reynolds, Matthew R.; Rolland, Morgane; Blish, Catherine; Chege, Gerald K.; Curran, Rhonda; Fischer, William; Herrera, Carolina; Sather, D. Noah
2012-01-01
Abstract Well-defined correlates of protective immunity are an essential component of rational vaccine development. Despite years of basic science and three HIV vaccine efficacy trials, correlates of immunological protection from HIV infection remain undefined. In December 2010, a meeting of scientists engaged in basic and translational work toward developing HIV-1 vaccines was convened. The goal of this meeting was to discuss current opportunities and optimal approaches for defining correlates of protection, both for ongoing and future HIV-1 vaccine candidates; specific efforts were made to engage young scientists. We discuss here the highlights from the meeting regarding the progress made and the way forward for a protective HIV-1 vaccine. PMID:21861777
Gettinger, Scott N; Horn, Leora; Gandhi, Leena; Spigel, David R; Antonia, Scott J; Rizvi, Naiyer A; Powderly, John D; Heist, Rebecca S; Carvajal, Richard D; Jackman, David M; Sequist, Lecia V; Smith, David C; Leming, Philip; Carbone, David P; Pinder-Schenck, Mary C; Topalian, Suzanne L; Hodi, F Stephen; Sosman, Jeffrey A; Sznol, Mario; McDermott, David F; Pardoll, Drew M; Sankar, Vindira; Ahlers, Christoph M; Salvati, Mark; Wigginton, Jon M; Hellmann, Matthew D; Kollia, Georgia D; Gupta, Ashok K; Brahmer, Julie R
2015-06-20
Programmed death 1 is an immune checkpoint that suppresses antitumor immunity. Nivolumab, a fully human immunoglobulin G4 programmed death 1 immune checkpoint inhibitor antibody, was active and generally well tolerated in patients with advanced solid tumors treated in a phase I trial with expansion cohorts. We report overall survival (OS), response durability, and long-term safety in patients with non-small-cell lung cancer (NSCLC) receiving nivolumab in this trial. Patients (N = 129) with heavily pretreated advanced NSCLC received nivolumab 1, 3, or 10 mg/kg intravenously once every 2 weeks in 8-week cycles for up to 96 weeks. Tumor burden was assessed by RECIST (version 1.0) after each cycle. Median OS across doses was 9.9 months; 1-, 2-, and 3-year OS rates were 42%, 24%, and 18%, respectively, across doses and 56%, 42%, and 27%, respectively, at the 3-mg/kg dose (n = 37) chosen for further clinical development. Among 22 patients (17%) with objective responses, estimated median response duration was 17.0 months. An additional six patients (5%) had unconventional immune-pattern responses. Response rates were similar in squamous and nonsquamous NSCLC. Eighteen responding patients discontinued nivolumab for reasons other than progressive disease; nine (50%) of those had responses lasting > 9 months after their last dose. Grade 3 to 4 treatment-related adverse events occurred in 14% of patients. Three treatment-related deaths (2% of patients) occurred, each associated with pneumonitis. Nivolumab monotherapy produced durable responses and encouraging survival rates in patients with heavily pretreated NSCLC. Randomized clinical trials with nivolumab in advanced NSCLC are ongoing. © 2015 by American Society of Clinical Oncology.
Cox, Jonathan A.; Hiscox, Julian A.; Solomon, Tom; Ooi, Mong-How; Ng, Lisa F. P.
2017-01-01
Enterovirus 71 (EV71) is a global infectious disease that affects millions of people. The virus is the main etiological agent for hand, foot, and mouth disease with outbreaks and epidemics being reported globally. Infection can cause severe neurological, cardiac, and respiratory problems in children under the age of 5. Despite on-going efforts, little is known about the pathogenesis of EV71, how the host immune system responds to the virus and the molecular mechanisms behind these responses. Moreover, current animal models remain limited, because they do not recapitulate similar disease patterns and symptoms observed in humans. In this review the role of the host–viral interactions of EV71 are discussed together with the various models available to examine: how EV71 utilizes its proteins to cleave host factors and proteins, aiding virus replication; how EV71 uses its own viral proteins to disrupt host immune responses and aid in its immune evasion. These discoveries along with others, such as the EV71 crystal structure, have provided possible targets for treatment and drug interventions. PMID:29238324
Tournoy, K G; Hove, C; Grooten, J; Moerloose, K; Brusselle, G G; Joos, G F
2006-01-01
Non-specific anti-inflammatory medication is actually the treatment of choice for controlling the T-helper type 2 (Th-2) cell-driven airway inflammation in asthma. The induction of counterbalancing Th-1 cell clones, long considered a promising approach for immunotherapy, has failed to fulfil its promise because of potentially detrimental side-effects. This is therefore probably not a valid option for the treatment of asthma. With the increasing awareness that active immune mechanisms exist to control inflammatory responses, interest rises to investigate whether these can be exploited to control allergen-induced airway disease. The induction of antigen-specific T cells with suppressive characteristics (regulatory T cells) is therefore a potentially interesting approach. These regulatory T cells mediate tolerance in healthy, non-atopic individuals and have the potential of becoming an effective means of preventing allergen-induced airway inflammation and possibly of suppressing ongoing allergic immune responses. Here we review the available knowledge about allergen-induced suppressive immunity obtained from animal models taking into account the different developmental stages of allergic airway disease.
Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry
Kim, Jeong-Ki; Kayali, Ghazi; Walker, David; Forrest, Heather L.; Ellebedy, Ali H.; Griffin, Yolanda S.; Rubrum, Adam; Bahgat, Mahmoud M.; Kutkat, M. A.; Ali, M. A. A.; Aldridge, Jerry R.; Negovetich, Nicholas J.; Krauss, Scott; Webby, Richard J.; Webster, Robert G.
2010-01-01
In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled. PMID:20534457
Downey, Luke A.; Loftis, Jennifer M.
2014-01-01
Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes – increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. PMID:24485894
Downey, Luke A; Loftis, Jennifer M
2014-03-15
Central nervous system (CNS) damage associated with psychostimulant dependence may be an ongoing, degenerative process with adverse effects on neuropsychiatric function. However, the molecular mechanisms regarding how altered energy regulation affects immune response in the context of substance use disorders are not fully understood. This review summarizes the current evidence regarding the effects of psychostimulant [particularly 3,4-methylenedioxy-N-methylamphetamine (MDMA) and methamphetamine] exposure on brain energy regulation, immune response, and neuropsychiatric function. Importantly, the neuropsychiatric impairments (e.g., cognitive deficits, depression, and anxiety) that persist following abstinence are associated with poorer treatment outcomes - increased relapse rates, lower treatment retention rates, and reduced daily functioning. Qualifying the molecular changes within the CNS according to the exposure and use patterns of specifically abused substances should inform the development of new therapeutic approaches for addiction treatment. Published by Elsevier B.V.
Immune correlates of protection for dengue: State of the art and research agenda.
Katzelnick, Leah C; Harris, Eva
2017-08-24
Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ∼400 million infections and ∼100 million dengue cases each year. Factors that contribute to protection from and risk of dengue and severe dengue disease have been studied extensively but are still not fully understood. Results from Phase 3 vaccine efficacy trials have recently become available for one vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At the "Summit on Dengue Immune Correlates of Protection", held in Annecy, France, on March 8-9, 2016, dengue experts from diverse fields came together to discuss the current understanding of the immune response to and protection from DENV infection and disease, identify key unanswered questions, discuss data on immune correlates and plans for comparison of results across assays/consortia, and propose a research agenda for investigation of dengue immune correlates, all in the context of both natural infection studies and vaccine trials. Copyright © 2017.
Deshpande, Nandan P.; Man, Si Ming; Burgos-Portugal, Jose A.; Khattak, Faisal A.; Raftery, Mark J.; Wilkins, Marc R.; Mitchell, Hazel M.
2014-01-01
Pathogenic species within the genus Campylobacter are responsible for a considerable burden on global health. Campylobacter concisus is an emergent pathogen that plays a role in acute and chronic gastrointestinal disease. Despite ongoing research on Campylobacter virulence mechanisms, little is known regarding the immunological profile of the host response to Campylobacter infection. In this study, we describe a comprehensive global profile of innate immune responses to C. concisus infection in differentiated THP-1 macrophages infected with an adherent and invasive strain of C. concisus. Using RNA sequencing (RNA-seq), quantitative PCR (qPCR), mass spectrometry, and confocal microscopy, we observed differential expression of pattern recognition receptors and robust upregulation of DNA- and RNA-sensing molecules. In particular, we observed IFI16 inflammasome assembly in C. concisus-infected macrophages. Global profiling of the transcriptome revealed the significant regulation of a total of 8,343 transcripts upon infection with C. concisus, which included the activation of key inflammatory pathways involving CREB1, NF-κB, STAT, and interferon regulatory factor signaling. Thirteen microRNAs and 333 noncoding RNAs were significantly regulated upon infection, including MIR221, which has been associated with colorectal carcinogenesis. This study represents a major advance in our understanding of host recognition and innate immune responses to infection by C. concisus. PMID:25486993
Probiotics as an Immune Modulator.
Kang, Hye-Ji; Im, Sin-Hyeog
2015-01-01
Probiotics are nonpathogenic live microorganism that can provide a diverse health benefits on the host when consumed in adequate amounts. Probiotics are consumed in diverse ways including dairy product, food supplements and functional foods with specific health claims. Recently, many reports suggest that certain probiotic strains or multi strain mixture have potent immunomodulatory activity in diverse disorders including allergic asthma, atopic dermatitis and rheumatoid arthritis. However, underlying mechanism of action is still unclear and efficacy of probiotic administration is quite different depending on the type of strains and the amounts of doses. We and others have suggested that live probiotics or their metabolites could interact with diverse immune cells (antigen presenting cells and T cells) and confer them to have immunoregulatory functions. Through this interaction, probiotics could contribute to maintaining immune homeostasis by balancing pro-inflammatory and anti-inflammatory immune responses. However, the effect of probiotics in prevention or modulation of ongoing disease is quite diverse even within a same species. Therefore, identification of functional probiotics with specific immune regulatory property is a certainly important issue. Herein, we briefly review selection methods for immunomodulatory probiotic strains and the mechanism of action of probiotics in immune modulation.
Identifying and managing the adverse effects of immune checkpoint blockade
Winer, Arthur; Bodor, J. Nicholas
2018-01-01
Immunotherapy has revolutionized the field of oncology. By inhibiting the cytotoxic T-lymphocyte-associated protein (CTLA-4) and programmed death-1 (PD-1) immune checkpoint pathways, multiple studies have demonstrated greatly improved survival in locally advanced and metastatic cancers including melanoma, renal, lung, gastric, and hepatocellular carcinoma. Trials in other malignancies are ongoing, and undoubtedly the number of drugs in this space will grow beyond the six currently approved by the Food and Drug Administration. However, by altering the immune response to fight cancer, a new class of side effects has emerged known as immune-related adverse events (irAEs). These adverse events are due to overactivation of the immune system in almost any organ of the body, and can occur at any point along a patient’s treatment course. irAEs such as endocrinopathies (thyroiditis), colitis, and pneumonitis may occur more commonly. However, other organs such as the liver, heart, or brain may also be affected by immune overactivation and any of these side effects may become life threatening. This review presents an approach to promptly recognize and manage these toxicities, to hopefully minimize morbidity and mortality from irAEs. PMID:29593893
Newman, T A; Woolley, S T; Hughes, P M; Sibson, N R; Anthony, D C; Perry, V H
2001-11-01
Recent evidence has highlighted the fact that axon injury is an important component of multiple sclerosis pathology. The issue of whether a CNS antigen-specific immune response is required to produce axon injury remains unresolved. We investigated the extent and time course of axon injury in a rodent model of a delayed-type hypersensitivity (DTH) reaction directed against the mycobacterium bacille Calmette-Guérin (BCG). Using MRI, we determined whether the ongoing axon injury is restricted to the period during which the blood-brain barrier is compromised. DTH lesions were initiated in adult rats by intracerebral injection of heat-killed BCG followed by a peripheral challenge with BCG. Our findings demonstrate that a DTH reaction to a non-CNS antigen within a CNS white matter tract leads to axon injury. Ongoing axon injury persisted throughout the 3-month period studied and was not restricted to the period of blood-brain barrier breakdown, as detected by MRI enhancing lesions. We have previously demonstrated that matrix metalloproteinases (MMPs) are upregulated in multiple sclerosis plaques and DTH lesions. In this study we demonstrated that microinjection of activated MMPs into the cortical white matter results in axon injury. Our results show that axon injury, possibly mediated by MMPs, is immunologically non-specific and may continue behind an intact blood-brain barrier.
LAG-3 confers a competitive disadvantage upon antiviral CD8+ T cell responses1
Cook, Kevin D.; Whitmire, Jason K.
2016-01-01
Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8+ T cells during chronic virus infection and anti-tumor responses. However, the T cell response in LAG-3 deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8+ T cell responses. Our results indicate that LAG-3 expression by CD8+ T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison to LAG-3 deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8+ T cell responses. PMID:27206765
LAG-3 Confers a Competitive Disadvantage upon Antiviral CD8+ T Cell Responses.
Cook, Kevin D; Whitmire, Jason K
2016-07-01
Ongoing clinical trials are evaluating the benefits of systemic blockade of lymphocyte activation gene-3 (LAG-3) signals to improve immunity to tumors. Those studies are founded on the well-established inhibitory role of LAG-3 in regulating CD8(+) T cells during chronic virus infection and antitumor responses. However, the T cell response in LAG-3-deficient mice is similar in size and function to that in wild type animals, suggesting LAG-3 has nuanced immune-regulatory functions. We performed a series of adoptive transfer experiments in mice to better understand the T cell-intrinsic functions of LAG-3 in the regulation of CD8(+) T cell responses. Our results indicate that LAG-3 expression by CD8(+) T cells inhibits their competitive fitness and results in a slightly reduced rate of cell division in comparison with LAG-3-deficient cells. This cell-intrinsic effect of LAG-3 was consistent across both acute and chronic virus infections. These data show that LAG-3 directly modulates the size of the T cell response and support the use of LAG-3 blockade regimens to enhance CD8(+) T cell responses. Copyright © 2016 by The American Association of Immunologists, Inc.
A clinically parameterized mathematical model of Shigella immunity to inform vaccine design
Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.; Sztein, Marcelo B.
2018-01-01
We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella′s lipopolysaccharide (LPS) and O-membrane proteins (OMP) were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella′s LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1) the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine. PMID:29304144
A clinically parameterized mathematical model of Shigella immunity to inform vaccine design.
Davis, Courtney L; Wahid, Rezwanul; Toapanta, Franklin R; Simon, Jakub K; Sztein, Marcelo B
2018-01-01
We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella's lipopolysaccharide (LPS) and O-membrane proteins (OMP) were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella's LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1) the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine.
Avian Influenza Viruses, Inflammation, and CD8+ T Cell Immunity
Wang, Zhongfang; Loh, Liyen; Kedzierski, Lukasz; Kedzierska, Katherine
2016-01-01
Avian influenza viruses (AIVs) circulate naturally in wild aquatic birds, infect domestic poultry, and are capable of causing sporadic bird-to-human transmissions. AIVs capable of infecting humans include a highly pathogenic AIV H5N1, first detected in humans in 1997, and a low pathogenic AIV H7N9, reported in humans in 2013. Both H5N1 and H7N9 cause severe influenza disease in humans, manifested by acute respiratory distress syndrome, multi-organ failure, and high mortality rates of 60% and 35%, respectively. Ongoing circulation of H5N1 and H7N9 viruses in wild birds and poultry, and their ability to infect humans emphasizes their epidemic and pandemic potential and poses a public health threat. It is, thus, imperative to understand the host immune responses to the AIVs so we can control severe influenza disease caused by H5N1 or H7N9 and rationally design new immunotherapies and vaccines. This review summarizes our current knowledge on AIV epidemiology, disease symptoms, inflammatory processes underlying the AIV infection in humans, and recent studies on universal pre-existing CD8+ T cell immunity to AIVs. Immune responses driving the host recovery from AIV infection in patients hospitalized with severe influenza disease are also discussed. PMID:26973644
Sun, W; Adams, R N; Miagkov, A; Lu, Y; Juon, H-S; Drachman, D B
2012-10-15
Current immunotherapy of myasthenia gravis (MG) is often effective, but entails risks of infection and neoplasia. The "Guided Missile" strategy described here is designed to target and eliminate the individual's unique AChR-specific T cell repertoire, without otherwise interfering with the immune system. We genetically engineered dendritic cells to present AChR epitopes and simultaneously express Fas ligand in an ongoing EAMG model. In both in vitro and in vivo experiments, these engineered cells specifically killed AChR-responsive T cells without otherwise damaging the immune system. AChR antibodies were markedly reduced in the treated mice. Translation of this method to treat human MG is possible. Copyright © 2012 Elsevier B.V. All rights reserved.
Measles and Rubella Global Strategic Plan 2012-2020 midterm review.
Orenstein, W A; Hinman, A; Nkowane, B; Olive, J M; Reingold, A
2018-01-11
1. Measles eradication is the ultimate goal but it is premature to set a date for its accomplishment. Existing regional elimination goals should be vigorously pursued to enable setting a global target by 2020. 2. The basic strategic approaches articulated in the Global Measles and Rubella Strategic Plan 2012-2020 are valid to achieve the goals but have not been fully implemented (or not appropriately adapted to local situations). 3. The report recommends a shift from primary reliance on supplementary immunization activities (SIAs) to assure two doses of measles-containing vaccine (MCV) are delivered to the target population to primary reliance on ongoing services to assure administration of two doses of MCV. Regular high quality SIAs will still be necessary while ongoing services are being strengthened. 4. The report recommends a shift from primary reliance on coverage to measure progress to incorporating disease incidence as a major indicator. 5. The report recommends that the measles/rubella vaccination program be considered an indicator for the quality of the overall immunization program and that measles/rubella incidence and measles and rubella vaccination coverage be considered as primary indicators of immunization program performance. 6. Polio transition presents both risks and opportunities: risks should be minimized and opportunities maximized. 7. A school entry immunization check could contribute significantly to strengthening overall immunization services with assurance that recommended doses of measles and rubella vaccines as well as other vaccines have been delivered and providing those vaccines at that time if the child is un- or under-vaccinated. 8. Program decisions should increasingly be based on good quality data and appropriate analysis. 9. The incorporation of rubella vaccination into the immunization program needs to be accelerated - it should be accorded equivalent emphasis as measles. 10. Outbreak investigation and response are critical but the most important thing is to prevent outbreaks. Copyright © 2017 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
Natural Mosquito-Pathogen Hybrid IgG4 Antibodies in Vector-Borne Diseases: A Hypothesis.
Londono-Renteria, Berlin; Cardenas, Jenny C; Troupin, Andrea; Colpitts, Tonya M
2016-01-01
Chronic exposure to antigens may favor the production of IgG4 antibodies over other antibody types. Recent studies have shown that up to a 30% of normal human IgG4 is bi-specific and is able to recognize two antigens of different nature. A requirement for this specificity is the presence of both eliciting antigens in the same time and at the same place where the immune response is induced. During transmission of most vector-borne diseases, the pathogen is delivered to the vertebrate host along with the arthropod saliva during blood feeding and previous studies have shown the existence of IgG4 antibodies against mosquito salivary allergens. However, there is very little ongoing research or information available regarding IgG4 bi-specificity with regard to infectious disease, particularly during immune responses to vector-borne diseases, such as malaria, filariasis, or dengue virus infection. Here, we provide background information and present our hypothesis that IgG4 may not only be a useful tool to measure exposure to infected mosquito bites, but that these bi-specific antibodies may also play an important role in modulation of the immune response against malaria and other vector-borne diseases in endemic settings.
Pathogenesis of human immunodeficiency virus infection.
Levy, J A
1993-01-01
The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic. Images PMID:8464405
Bellino, S; Francavilla, V; Longo, O; Tripiciano, A; Paniccia, G; Arancio, A; Fiorelli, V; Scoglio, A; Collacchi, B; Campagna, M; Lazzarin, A; Tambussi, G; Din, C Tassan; Visintini, R; Narciso, P; Antinori, A; D'Offizi, G; Giulianelli, M; Carta, M; Di Carlo, A; Palamara, G; Giuliani, M; Laguardia, M E; Monini, P; Magnani, M; Ensoli, F; Ensoli, B
2009-09-01
The native HIV-1 Tat protein was chosen as vaccine candidate for phase I clinical trials in both uninfected (ClinicalTrials.gov identifier: NCT00529698) and infected volunteers (ClinicalTrials.gov identifier: NCT00505401). The rationale was based on the role of Tat in the natural infection and AIDS pathogenesis, on the association of Tat-specific immune responses with the asymptomatic stage and slow-progression rate as well as on its sequence conservation among HIV clades (http://www.hiv1tat-vaccines.info/). The parallel conduction in the same clinical centers of randomized, double blind, placebo-controlled phase I studies both in healthy, immunologically competent adults and in HIV-infected, clinically asymptomatic, individuals represents a unique occasion to compare the vaccine-induced immune response in both the preventive and therapeutic setting. In both studies, the same lot of the native Tat protein was administered 5 times, every four weeks, subcute (SC) with alum adjuvant or intradermic (ID), in the absence of adjuvant, at 7.5 microg, 15 microg or 30 microg doses, respectively. The primary and secondary endpoints of these studies were the safety and immunogenicity of the vaccine candidate, respectively. The study lasted 52 weeks and monitoring was conducted for on additional 3 years. The results of both studies indicated that the Tat vaccine is safe and well tolerated both locally and systemically and it is highly immunogenic at all the dosages and by both routes of administration. Vaccination with Tat induced a balanced immune response in uninfected and infected individuals. In particular, therapeutic immunization induced functional antibodies and partially reverted the marked Th1 polarization of anti-Tat immunity seen in natural infection, and elicited a more balanced Th1/Th2 immune response. Further, the number of CD4 T cells correlated positively with anti-Tat antibody titers. Based on these results, a phase II study is ongoing in infected drug-treated individuals (http://www.hiv1tat-vaccines.info/).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiniker, Susan M., E-mail: shiniker@stanford.edu; Reddy, Sunil A.; Maecker, Holden T.
Purpose: Local radiation therapy (RT) combined with systemic anti-cytotoxic T-lymphocyte–associated protein-4 immunotherapy may enhance induction of systemic antimelanoma immune responses. The primary objective of the present trial was to assess the safety and efficacy of combining ipilimumab with RT in patients with stage IV melanoma. The secondary objectives included laboratory assessment of induction of antimelanoma immune responses. Methods and Materials: In our prospective clinical trial, 22 patients with stage IV melanoma were treated with palliative RT and ipilimumab for 4 cycles. RT to 1 to 2 disease sites was initiated within 5 days after starting ipilimumab. Patients had ≥1 nonirradiated metastasismore » measuring ≥1.5 cm available for response assessment. Tumor imaging studies were obtained at baseline, 2 to 4 weeks after cycle 4 of ipilimumab, and every 3 months until progression. Laboratory immune response parameters were measured before and during treatment. Results: Combination therapy was well-tolerated without unexpected toxicities. Eleven patients (50.0%) experienced clinical benefit from therapy, including complete and partial responses and stable disease at median follow-up of 55 weeks. Three patients (27.3%) achieved an ongoing systemic complete response at a median follow-up of 55 weeks (range 32-65), and 3 (27.3%) had an initial partial response for a median of 40 weeks. Analysis of immune response data suggested a relationship between elevated CD8-activated T-cells and response. Conclusion: This is the second prospective clinical trial of treatment of metastatic melanoma using the combination of RT and systemic immunotherapy and the first using this sequence of therapy. The results from the present trial demonstrate that a subset of patients may benefit from combination therapy, arguing for continued clinical investigation of the use of RT combined with immunotherapy, including programmed cell death 1 inhibitors, which might have the potential to be even more effective in combination with RT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Loveren, H.; Rombout, P.J.; Wagenaar, S.S.
1988-07-01
We have investigated the effect of exposure to ozone on defense mechanisms to a respiratory infection with Listeria monocytogenes in the rat. For this purpose rats were continuously exposed to O/sub 3/ concentrations ranging from 0.25 to 2.0 mg/m3 for a period of 1 week. In this model defense to a respiratory infection with Listeria depends on acquired specific cellular immune responses, as well as on natural nonspecific defense mechanisms. The results confirm earlier findings that show that ozone exposure can suppress the capacity of macrophages to ingest and kill Listeria. Moreover, the results show that ozone can also havemore » a suppressive effect on the development of cellular immune responses to a respiratory Listeria infection, i.e., on T/B ratios in lung draining lymph nodes, delayed-type hypersensitivity responses to Listeria antigen, and lymphoproliferative responses in spleen and lung draining lymph nodes to Listeria antigen. The effects on the specific immune responses are especially overt if exposure to the oxidant gas occurs during an ongoing primary infection. The pathological lesions induced by a pulmonary Listeria monocytogenes infection were characterized by multifocal infiltrates of histiocytic and lymphoid cells. The foci sometimes had a granulomatous appearance. Moreover, the cellularity of the interstitial tissues was increased. In the lung many diffuse alveolar macrophages could be seen in the alveoli. Ozone exposure greatly increased the severity of the lung lesions and also of liver lesions resulting from the pulmonary infection. A prominent finding was the formation of granulomas in ozone-exposed and Listeria-infected rats.« less
Epstein-Barr virus infection induces lupus autoimmunity.
Harley, John B; James, Judith A
2006-01-01
Systemic lupus erythematosus (SLE or lupus) is a systemic autoimmune disease characterized by a constellation of varied clinical presentations, although the nearly universal presence of autoantibodies is a salient unifying feature. Ongoing research efforts focus on understanding the complex combination of genetic and environmental factors that lead to SLE in select individuals. Our previous work has demonstrated that years before diagnosis abnormal autoantibody responses are present in the sera of patients who will subsequently develop lupus and, further, that the initial targets of two of these key responses (anti-Sm B' and anti-60 kD Ro alone) have been identified for some patients. Indeed, our results suggest that the first lupus-specific autoantibodies arise from particular antibodies directed against Epstein-Barr virus Nuclear Antigen-1 (EBNA-1) and that infection with Epstein-Barr virus (EBV) is an environmental risk factor for lupus. The predicted sequence of events is normal immunity, followed by Epstein- Barr virus infection, the generation of anti-EBNA-1 antibodies, then followed by those particular anti-EBNA-1 antibodies that also bind lupus-specific autoantigens (Sm or Ro), followed by the development of more complex autoimmune responses, and, finally, culminating in clinical disease. Studies from others and those underway suggest that lupus patients have unusual immune responses to Epstein-Barr virus. In aggregate, these results are consistent with an immune response against Epstein-Barr virus being important in at least some patients for the initiation of lupus autoimmunity.
Antigen-Specific CD8+ T Cells and Protective Immunity to Tuberculosis
2017-01-01
The continuing HIV/AIDS epidemic and the spread of multi-drug resistant Mycobacterium tuberculosis has led to the perpetuation of the worldwide tuberculosis epidemic. While M. bovis BCG is widely used as a vaccine, it lacks efficacy in preventing pulmonary tuberculosis in adults [1]. To combat this ongoing scourge, vaccine development for tuberculosis is a global priority. Most infected individuals develop long-lived protective immunity, which controls and contains M. tuberculosis in a T cell-dependent manner. An effective T cells response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions, and evaluating whether vaccination can elicit these T cells subsets and induce protective immunity. CD4+ T cells are critical for resistance to M. tuberculosis in both humans and rodent models. CD4+ T cells are required to control the initial infection as well as to prevent recrudescence in both humans and mice [2]. While it is generally accepted that class II MHC-restricted CD4+ T cells are essential for immunity to tuberculosis, M. tuberculosis infection elicits CD8+ T cells responses in both people and in experimental animals. CD8+ T cells are also recruited to the lung during M. tuberculosis infection and are found in the granulomas of infected people. Thus, how CD8+ T cells contribute to overall immunity to tuberculosis and whether antigens recognized by CD8+ T cells would enhance the efficacy of vaccine strategies continue to be important questions. PMID:23468108
An Update on the Role of Immunotherapy and Vaccine Strategies for Primary Brain Tumors.
Neagu, Martha R; Reardon, David A
2015-11-01
Existing therapies for glioblastoma (GBM), the most common malignant primary brain tumor in adults, have fallen short of improving the dismal patient outcomes, with an average 14-16-month median overall survival. The biological complexity and adaptability of GBM, redundancy of dysregulated signaling pathways, and poor penetration of therapies through the blood-brain barrier contribute to poor therapeutic progress. The current standard of care for newly diagnosed GBM consists of maximal safe resection, followed by fractionated radiotherapy combined with concurrent temozolomide (TMZ) and 6-12 cycles of adjuvant TMZ. At progression, bevacizumab with or without additional chemotherapy is an option for salvage therapy. The recent FDA approval of sipuleucel-T for prostate cancer and ipilumimab, nivolumab, and pembrolizumab for select solid tumors and the ongoing trials showing clinical efficacy and response durability herald a new era of cancer treatment with the potential to change standard-of-care treatment across multiple cancers. The evaluation of various immunotherapeutics is advancing for GBM, putting into question the dogma of the CNS as an immuno-privileged site. While the field is yet young, both active immunotherapy involving vaccine strategies and cellular therapy as well as reversal of GBM-induced global immune-suppression through immune checkpoint blockade are showing promising results and revealing essential immunological insights regarding kinetics of the immune response, immune evasion, and correlative biomarkers. The future holds exciting promise in establishing new treatment options for GBM that harness the patients' own immune system by activating it with immune checkpoint inhibitors, providing specificity using vaccine therapy, and allowing for modulation and enhancement by combinatorial approaches.
The bifacial role of helminths in cancer: involvement of immune and non-immune mechanisms.
Oikonomopoulou, Katerina; Brinc, Davor; Hadjisavvas, Andreas; Christofi, Georgios; Kyriacou, Kyriacos; Diamandis, Eleftherios P
2014-06-01
Infectious agents have been associated with cancer due to activation of pro-carcinogenic inflammatory processes within their host. Several reports, however, indicate that specific pathogens may be able to elicit anti-tumor immune responses that can lead to protection from tumorigenesis or cancer regression. Amongst these "beneficial" pathogens are some helminthic parasites that have already been connected with prevention of autoimmune diseases and allergies, immune conditions increasingly associated with cancer. Even though helminths have co-existed with humans and their ancestors for millions of years, investigations of their impact on human (patho)physiology are relatively new and the functions of components that can explain the helminth bi-directional influence on carcinogenesis are not well understood. This review aims to discuss evidence for the helminth-induced immune, genetic, epigenetic, proteomic, hormonal and metabolic changes that may ultimately mediate the potential pro- or anti-carcinogenic role of helminths. This overview may serve future investigations in clarifying the tumorigenic role of the most common helminthic parasites. It may also inspire the development of anti-cancer regimens and vaccines, in parallel to ongoing efforts of using helminth-based components for the prevention and/or treatment of autoimmune diseases and allergies.
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
Powell, Joshua D.; Waters, Katrina M.
2017-01-01
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes. PMID:28604586
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Joshua D.; Waters, Katrina M.
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less
Influenza-Omics and the Host Response: Recent Advances and Future Prospects
Powell, Joshua D.; Waters, Katrina M.
2017-06-10
Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less
CpG DNA in the prevention and treatment of infections.
Dalpke, Alexander; Zimmermann, Stefan; Heeg, Klaus
2002-01-01
Microbial infection is sensed by Toll-like receptors (TLRs) on innate immune cells. Among the ten so far defined TLRs, TLR9 and its ligand are peculiar. TLR9 recognises bacterial DNA characterised by the abundance of unmethylated CpG dinucleotides, which distinguish bacterial DNA (CpG DNA) from mammalian DNA. Moreover, TLR9 shows a restricted cellular and subcellular pattern of expression. In contrast to other TLR agonists, CpG DNA is superior in activation of dendritic dells and induction of costimulatory cytokines such as interleukin (IL)-12 and IL-18. This qualifies CpG DNA as a Th1-promoting adjuvant. During infection, recognition of CpG DNA of intracellular pathogens skews and fine-tunes the ongoing immune response and induces long-lasting Th1 milieus. Thus, CpG DNA might play an important role in driving the immune system to a Th1 profile, preventing undesired Th2 milieus that might favour induction of allergic responses. Since CpG DNA can be synthesised with high purity and sequence fidelity, synthetic CpG DNA will become an important agent for Th1 instruction and be an effective adjuvant during vaccination.
Vacchelli, Erika; Aranda, Fernando; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo
2014-01-01
Accumulating evidence suggests that the clinical efficacy of selected anticancer drugs, including conventional chemotherapeutics as well as targeted anticancer agents, originates (at least in part) from their ability to elicit a novel or reinstate a pre-existing tumor-specific immune response. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). Cancer cells succumbing to ICD are de facto converted into an anticancer vaccine and as such elicit an adaptive immune response. Several common chemotherapeutics share the ability of triggering ICD, as demonstrated in vaccination experiments relying on immunocompetent mice and syngeneic cancer cells. A large number of ongoing clinical trials involve such ICD inducers, often (but not always) as they are part of the gold standard therapeutic approach against specific neoplasms. In this Trial Watch, we summarize the latest advances on the use of cyclophosphamide, doxorubicin, epirubicin, oxaliplatin, and mitoxantrone in cancer patients, discussing high-impact studies that have been published during the last 13 months as well as clinical trials that have been initiated in the same period to assess the antineoplastic profile of these immunogenic drugs as off-label therapeutic interventions. PMID:24800173
Lucas, Alexandra; Liu, Liying; Dai, Erbin; Bot, Ilze; Viswanathan, Kasinath; Munuswamy-Ramunujam, Ganesh; Davids, Jennifer A; Bartee, Mee Y; Richardson, Jakob; Christov, Alexander; Wang, Hao; Macaulay, Colin; Poznansky, Mark; Zhong, Robert; Miller, Leslie; Biessen, Erik; Richardson, Mary; Sullivan, Collin; Moyer, Richard; Hatton, Mark; Lomas, David A; McFadden, Grant
2009-01-01
Serine proteinase inhibitors, also called serpins, are an ancient grouping of proteins found in primitive organisms from bacteria, protozoa and horseshoe crabs and thus likely present at the time of the dinosaurs, up to all mammals living today. The innate or inflammatory immune system is also an ancient metazoan regulatory system, providing the first line of defense against infection or injury. The innate inflammatory defense response evolved long before acquired, antibody dependent immunity. Viruses have developed highly effective stratagems that undermine and block a wide variety of host inflammatory and immune responses. Some of the most potent of these immune modifying strategies utilize serpins that have also been developed over millions of years, including the hijacking by some viruses for defense against host immune attacks. Serpins represent up to 2-10 percent of circulating plasma proteins, regulating actions as wide ranging as thrombosis, inflammation, blood pressure control and even hormone transport. Targeting serpin-regulated immune or inflammatory pathways makes evolutionary sense for viral defense and many of these virus-derived inhibitory proteins have proven to be highly effective, working at very low concentrations--even down to the femptomolar to picomolar range. We are studying these viral anti-inflammatory proteins as a new class of immunomodulatory therapeutic agents derived from their native viral source. One such viral serpin, Serp-1 is now in clinical trial (conducted by VIRON Therapeutics, Inc.) for acute unstable coronary syndromes (unstable angina and small heart attacks), representing a 'first in class' therapeutic study. Several other viral serpins are also currently under investigation as anti-inflammatory or anti-immune therapeutics. This chapter describes these original studies and the ongoing analysis of viral serpins as a new class of virus-derived immunotherapeutic.
Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi
2017-10-01
Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.
Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin
2015-01-01
Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.
Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors.
Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L
2011-11-01
In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or co-opted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host.
Chemokines, costimulatory molecules and fusion proteins for the immunotherapy of solid tumors
Lechner, Melissa G; Russell, Sarah M; Bass, Rikki S; Epstein, Alan L
2011-01-01
In this article, the role of chemokines and costimulatory molecules in the immunotherapy of experimental murine solid tumors and immunotherapy used in ongoing clinical trials are presented. Chemokine networks regulate physiologic cell migration that may be disrupted to inhibit antitumor immune responses or coopted to promote tumor growth and metastasis in cancer. Recent studies highlight the potential use of chemokines in cancer immunotherapy to improve innate and adaptive cell interactions and to recruit immune effector cells into the tumor microenvironment. Another critical component of antitumor immune responses is antigen priming and activation of effector cells. Reciprocal expression and binding of costimulatory molecules and their ligands by antigen-presenting cells and naive lymphocytes ensures robust expansion, activity and survival of tumor-specific effector cells in vivo. Immunotherapy approaches using agonist antibodies or fusion proteins of immunomodulatory molecules significantly inhibit tumor growth and boost cell-mediated immunity. To localize immune stimulation to the tumor site, a series of fusion proteins consisting of a tumor-targeting monoclonal antibody directed against tumor necrosis and chemokines or costimulatory molecules were generated and tested in tumor-bearing mice. While several of these reagents were initially shown to have therapeutic value, combination therapies with methods to delete suppressor cells had the greatest effect on tumor growth. In conclusion, a key conclusion that has emerged from these studies is that successful immunotherapy will require both advanced methods of immunostimulation and the removal of immunosuppression in the host. PMID:22053884
Anti-amyloid beta to tau - based immunization: Developments in immunotherapy for Alzheimer disease.
Lambracht-Washington, Doris; Rosenberg, Roger N
2013-08-01
Immunotherapy might provide an effective treatment for Alzheimer disease (AD). A unique feature of AD immunotherapies is that an immune response against a self antigen needs to be elicited without causing adverse autoimmune reactions. Current research is focussed on two possible targets in this regard: One is the inhibition of accumulation and deposition of Amyloid beta 1-42 (Aβ42), which is one of the major peptides found in senile plaques and the second target is hyperphosphorylated tau, which forms neurofibrillary tangles inside the nerve cell and shows association with the progression of dementia. Mouse models have shown that immunotherapy targeting Aβ42 as well as tau with the respective anti-Aβ or anti-tau antibodies can provide significant improvements in these mice. While anti-Aβ immunotherapy (active and passive immunizations) is already in several stages of clinical trials, tau based immunizations have been analyzed only in mouse models. Recently, as a significant correlation of progression of dementia and levels of phoshorylated tau was found, high interest has again focussed on further development of tau based therapies. While Aβ immunotherapy might delay the onset of AD, immunotherapy targeting tau might provide benefits in later stages of this disease. And last but not least, targeting Aβ and tau simultaneously with immunotherapy might provide additional therapeutic effects as these two pathologies are likely synergistic; an approach which has not been tested yet. In this review, we will summarize animal models used to test possible therapies for AD, some of the facts about Aβ42 and tau biology, present on overview on halted, ongoing and upcoming clinical trials together with ongoing preclinical studies targeting tau or Aβ42.
Quinn, Michael; Erkes, Dan A; Snyder, Christopher M
2016-02-01
Cytomegalovirus (CMV) is a β-herpesvirus that infects most people in the world and is almost always asymptomatic in the healthy host. However, CMV persists for life, requiring continuous immune surveillance to prevent disease and thus, CMV is a frequent complication in immune compromised patients. Many groups have been exploring the potential for adoptive T-cell therapies to control CMV reactivation as well as the progression of solid tumors harboring CMV. In addition, CMV itself is being explored as a vaccine vector for eliciting potent T-cell responses. This review will discuss key features of the basic biology of CMV-specific T cells as well as highlighting unanswered questions and ongoing work in the development of T-cell-based immunotherapies to target CMV.
Dengue vaccines: recent developments, ongoing challenges and current candidates
McArthur, Monica A.; Sztein, Marcelo B.; Edelman, Robert
2013-01-01
Summary Dengue is among the most prevalent and important arbovirus diseases of humans. In order to effectively control this rapidly spreading disease, control of the vector mosquito and a safe and efficacious vaccine are critical. Despite considerable efforts, the development of a successful vaccine has remained elusive. Multiple factors have complicated the creation of a successful vaccine, not the least of which are the complex, immune-mediated responses against four antigenically distinct serotypes necessitating a tetravalent vaccine providing long lasting protective immunity. Despite the multiple impediments, there are currently many promising vaccine candidates in pre-clinical and clinical development. Here we review the recent advances in dengue virus vaccine development and briefly discuss the challenges associated with the use of these vaccines as a public health tool. PMID:23984962
Flavivirus RNAi suppression: decoding non-coding RNA.
Pijlman, Gorben P
2014-08-01
Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.
Innate immunity against HIV: a priority target for HIV prevention research.
Borrow, Persephone; Shattock, Robin J; Vyakarnam, Annapurna
2010-10-11
This review summarizes recent advances and current gaps in understanding of innate immunity to human immunodeficiency virus (HIV) infection, and identifies key scientific priorities to enable application of this knowledge to the development of novel prevention strategies (vaccines and microbicides). It builds on productive discussion and new data arising out of a workshop on innate immunity against HIV held at the European Commission in Brussels, together with recent observations from the literature.Increasing evidence suggests that innate responses are key determinants of the outcome of HIV infection, influencing critical events in the earliest stages of infection including the efficiency of mucosal HIV transmission, establishment of initial foci of infection and local virus replication/spread as well as virus dissemination, the ensuing acute burst of viral replication, and the persisting viral load established. They also impact on the subsequent level of ongoing viral replication and rate of disease progression. Modulation of innate immunity thus has the potential to constitute a powerful effector strategy to complement traditional approaches to HIV prophylaxis and therapy. Importantly, there is increasing evidence to suggest that many arms of the innate response play both protective and pathogenic roles in HIV infection. Consequently, understanding the contributions made by components of the host innate response to HIV acquisition/spread versus control is a critical pre-requisite for the employment of innate immunity in vaccine or microbicide design, so that appropriate responses can be targeted for up- or down-modulation. There is also an important need to understand the mechanisms via which innate responses are triggered and mediate their activity, and to define the structure-function relationships of individual innate factors, so that they can be selectively exploited or inhibited. Finally, strategies for achieving modulation of innate functions need to be developed and subjected to rigorous testing to ensure that they achieve the desired level of protection without stimulation of immunopathological effects. Priority areas are identified where there are opportunities to accelerate the translation of recent gains in understanding of innate immunity into the design of improved or novel vaccine and microbicide strategies against HIV infection.
Pillet, S; Racine, T; Nfon, C; Di Lenardo, T Z; Babiuk, S; Ward, B J; Kobinger, G P; Landry, N
2015-11-17
In March 2013, the Chinese Centre for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A H7N9 virus. Infection with this virus often caused severe pneumonia and acute respiratory distress syndrome resulting in a case fatality rate >35%. The risk of pandemic highlighted, once again, the need for a more rapid and scalable vaccine response capability. Here, we describe the rapid (19 days) development of a plant-derived VLP vaccine based on the hemagglutinin sequence of influenza H7N9 A/Hangzhou/1/2013. The immunogenicity of the H7 VLP vaccine was assessed in mice and ferrets after one or two intramuscular dose(s) with and without adjuvant (alum or GLA-SE™). In ferrets, we also measured H7-specific cell-mediated immunity. The mice and ferrets were then challenged with H7N9 A/Anhui/1/2013 influenza virus. A single immunization with the adjuvanted vaccine elicited a strong humoral response and protected mice against an otherwise lethal challenge. Two doses of unadjuvanted vaccine significantly increased humoral response and resulted in 100% protection with significant reduction of clinical signs leading to nearly asymptomatic infections. In ferrets, a single immunization with the alum-adjuvanted H7 VLP vaccine induced strong humoral and CMI responses with antigen-specific activation of CD3(+) T cells. Compared to animals injected with placebo, ferrets vaccinated with alum-adjuvanted vaccine displayed no weight loss during the challenge. Moreover, the vaccination significantly reduced the viral load in lungs and nasal washes 3 days after the infection. This candidate plant-made H7 vaccine therefore induced protective responses after either one adjuvanted or two unadjuvanted doses. Studies are currently ongoing to better characterize the immune response elicited by the plant-derived VLP vaccines. Regardless, these data are very promising for the rapid production of an immunogenic and protective vaccine against this potentially pandemic virus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cohort Profile: The Ecuador Life (ECUAVIDA) study in Esmeraldas Province, Ecuador
Cooper, Philip J; Chico, Martha E; Platts-Mills, Thomas AE; Rodrigues, Laura C; Strachan, David P; Barreto, Mauricio L
2015-01-01
The ECUAVIDA birth cohort is studying the impact of exposures to soil-transmitted helminth (STH) parasites and early-life microbial exposures on the development of atopy, allergic diseases and immune responses in childhood. A total of 2404 newborns were recruited between 2006 and 2009 in a public hospital serving the rural district of Quininde, Esmeraldas Province, in a tropical region of coastal Ecuador. Detailed measurements were done around the time of the birth, at 7 and 13 months and at 2 and 3 years, and data collection is ongoing at 5 and 8 years. Data being collected include questionnaires for: sociodemographic, lifestyle, psychosocial (at 4–6 years only) and dietary (at 6–7 years only) factors; childhood morbidity and clinical outcomes; stool samples for parasites; blood samples for DNA, measurements of vaccine responses and other measures of immune function/inflammation; and anthropometrics. Allergen skin prick test reactivity is done from 2 years and measures of airway function and inflammation at 8 years. PMID:24990475
Childhood immunization: one HMO's experience in benchmarking and improving plan performance.
Keitel, C
1995-01-01
In 1994, Health Net initiated a childhood immunization campaign and research project to improve health plan member immunization rates by motivating and educating parents of children 20-32 months old as to the importance of fully immunizing their child. The findings indicate that 88 percent of those parents with children who were not fully immunized believed their child had been fully immunized by age two. This lack of awareness may explain the unreliability of self-reported immunization status. Future immunization campaigns must include ongoing member reminder systems, educate members as to the immunization schedule, and must take into consideration the barriers, real and perceived, that block full immunization.
Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications
Imam, Jahangir; Singh, Puneet K.; Shukla, Pratyoosh
2016-01-01
Deciphering plant–microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various ‘omics’ tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant–microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses. PMID:27725809
Shindiapina, Polina; Alinari, Lapo
2018-04-01
Immune evasion is a critical mechanism of malignant cell survival, and relies in part on molecular signaling through the programmed cell death 1 (PD-1)/PD-1 ligand (PD-L1) axis that contributes to T cell exhaustion. Immune modulatory therapy with monoclonal antibodies against PD-1 designed to enhance antitumor immune response have shown promise in the treatment of advanced solid tumors and hematologic malignancies. Classical Hodgkin's lymphoma (cHL), a unique B cell malignancy characterized by an extensive but ineffective immune cell infiltrate surrounding a small number of tumor cells, has shown significant response to anti-PD-1 directed therapy. The anti-PD-1 monoclonal antibodies nivolumab and pembrolizumab have shown similarly remarkable activity in relapsed/refractory cHL and have been approved by the Food and Drug Administration for treatment of this disease. In this article we review the rationale of targeting the PD-1/PD-L1 axis in cHL and the pharmacology of pembrolizumab, and summarize the data on activity and safety profile of this agent in the treatment of relapsed/refractory cHL. We also discuss the potential benefits and pitfalls of using PD-1 blockade in the setting of allogeneic stem-cell transplantation, and summarize ongoing prospective trials of single-agent pembrolizumab and combination strategies as well as future directions.
Shindiapina, Polina; Alinari, Lapo
2018-01-01
Immune evasion is a critical mechanism of malignant cell survival, and relies in part on molecular signaling through the programmed cell death 1 (PD-1)/PD-1 ligand (PD-L1) axis that contributes to T cell exhaustion. Immune modulatory therapy with monoclonal antibodies against PD-1 designed to enhance antitumor immune response have shown promise in the treatment of advanced solid tumors and hematologic malignancies. Classical Hodgkin’s lymphoma (cHL), a unique B cell malignancy characterized by an extensive but ineffective immune cell infiltrate surrounding a small number of tumor cells, has shown significant response to anti-PD-1 directed therapy. The anti-PD-1 monoclonal antibodies nivolumab and pembrolizumab have shown similarly remarkable activity in relapsed/refractory cHL and have been approved by the Food and Drug Administration for treatment of this disease. In this article we review the rationale of targeting the PD-1/PD-L1 axis in cHL and the pharmacology of pembrolizumab, and summarize the data on activity and safety profile of this agent in the treatment of relapsed/refractory cHL. We also discuss the potential benefits and pitfalls of using PD-1 blockade in the setting of allogeneic stem-cell transplantation, and summarize ongoing prospective trials of single-agent pembrolizumab and combination strategies as well as future directions. PMID:29623180
McGuire, Erin P; Fong, Youyi; Toote, Christopher; Cunningham, Coleen K; McFarland, Elizabeth J; Borkowsky, William; Barnett, Susan; Itell, Hannah L; Kumar, Amit; Gray, Glenda; McElrath, M Julianna; Tomaras, Georgia D; Permar, Sallie R; Fouda, Genevieve G
2018-01-01
In the RV144 vaccine trial, IgG responses against the HIV envelope variable loops 1 and 2 (V1V2) were associated with decreased HIV acquisition risk. We previously reported that infants immunized with an MF59-adjuvanted rgp120 vaccine developed higher-magnitude anti-V1V2 IgG responses than adult RV144 vaccinees. To determine whether the robust antibody response in infants is due to differences in vaccine regimens or to inherent differences between the adult and infant immune systems, we compared Env-specific IgG responses in adults and infants immunized with the same MF59- and alum-adjuvanted HIV envelope vaccines. At peak immunogenicity, the magnitudes of the gp120- and V1V2-specific IgG responses were comparable between adults and infants immunized with the alum/MNrgp120 vaccine (gp120 median fluorescence intensities [FIs] in infants = 7,118 and in adults = 11,510, P = 0.070; V1V2 median MFIs of 512 [infants] and 804 [adults], P = 0.50), whereas infants immunized with the MF59/SF-2 rgp120 vaccine had higher-magnitude antibody levels than adults (gp120 median FIs of 15,509 [infants] and 2,290 [adults], P < 0.001; V1V2 median FIs of 23,926 [infants] and 1,538 [adults]; P < 0.001). Six months after peak immunogenicity, infants maintained higher levels Env-specific IgG than adults. Anti-V1V2 IgG3 antibodies that were associated with decreased HIV-1 risk in RV144 vaccinees were present in 43% of MF59/rgp120-vaccinated infants but only in 12% of the vaccinated adults ( P = 0.0018). Finally, in contrast to the rare vaccine-elicited Env-specific IgA in infants, rgp120 vaccine-elicited Env-specific IgA was frequently detected in adults. Our results suggest that vaccine adjuvants differently modulate gp120-specific antibody responses in adults and infants and that infants can robustly respond to HIV Env immunization. IMPORTANCE More than 150,000 pediatric HIV infections occur yearly, despite the availability of antiretroviral prophylaxis. A pediatric HIV vaccine could reduce the number of these ongoing infant infections and also prime for long-term immunity prior to sexual debut. We previously reported that immunization of infants with an MF59-adjuvanted recombinant gp120 vaccine induced higher-magnitude, potentially protective anti-V1V2 IgG responses than in adult vaccinees receiving the moderately effective RV144 vaccine. In the present study, we demonstrate that the robust response observed in infants is not due to differences in vaccine regimen or vaccine dose between adults and infants. Our results suggest that HIV vaccine adjuvants may differentially modulate immune responses in adults and infants, highlighting the need to conduct vaccine trials in pediatric populations. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel, Benjamin; Fiebig, Uwe; Hohn, Oliver
Although safety concerns preclude the use of live attenuated HIV vaccines in humans, they provide a useful system for identifying the elusive correlates of protective immunity in the SIV/macaque animal model. However, a number of pieces of evidence suggest that protection may result from prior occupancy of susceptible target cells by the vaccine virus rather than the immune response. To address this, we developed a Nef-deletion variant of an RT-SHIV whose active replication could be shut off by treatment with RT-inhibitors. Groups of macaques were inoculated with the ∆Nef-RT-SHIV and immune responses allowed to develop before antiretroviral treatment and subsequentmore » challenge with wild-type SIVmac239. Vaccinated animals either resisted infection fully or significantly controlled the subsequent viremia. However, there was no difference between animals undergoing replication of the vaccine virus and those without. This strongly suggests that competition for available target cells does not play a role in protection. - Highlights: • A Nef-deleted RT-SHIV was used as a live attenuated vaccine in macaques. • Vaccine virus replication was shut down to investigate its role in protection. • Ongoing vaccine virus replication did not appear to be necessary for protection. • An analysis of T- and B-cell responses failed to identify a correlate of protection.« less
Palmer, Clovis S; Palchaudhuri, Riya; Albargy, Hassan; Abdel-Mohsen, Mohamed; Crowe, Suzanne M
2018-01-01
An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals.
Immune Checkpoint Inhibition in Hepatocellular Carcinoma: Basics and Ongoing Clinical Trials.
Kudo, Masatoshi
2017-01-01
Clinical trials of antibodies targeting the immune checkpoint inhibitors programmed cell death 1 (PD-1), programmed cell death ligand 1 (PD-L1), or cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) for the treatment of advanced hepatocellular carcinoma (HCC) are ongoing. Expansion cohorts of a phase I/II trial of the anti-PD-1 antibody nivolumab in advanced HCC showed favorable results. Two phase III studies are currently ongoing: a comparison of nivolumab and sorafenib in the first-line setting for advanced HCC, and a comparison of the anti-PD-1 antibody pembrolizumab and a placebo in the second-line setting for patients with advanced HCC who progressed on sorafenib therapy. The combination of anti-PD-1/PD-L1 and anti-CTLA-4 antibodies is being evaluated in other phase I/II trials, and the results suggest that an anti-PD-1 antibody combined with locoregional therapy or other molecular targeted agents is an effective treatment strategy for HCC. Immune checkpoint inhibitors may therefore open new doors to the treatment of HCC. © 2017 S. Karger AG, Basel.
Cord blood versus age 5 mononuclear cell proliferation on IgE and asthma
2010-01-01
Background Fetal immune responses following exposure of mothers to allergens during pregnancy may influence the subsequent risk of childhood asthma. However, the association of allergen-induced cord blood mononuclear cell (CBMC) proliferation and cytokine production with later allergic immune responses and asthma has been controversial. Our objective was to compare indoor allergen-induced CBMC with age 5 peripheral blood mononuclear cell (PBMC) proliferation and determine which may be associated with age 5 allergic immune responses and asthma in an inner city cohort. Methods As part of an ongoing cohort study of the Columbia Center for Children's Environmental Health (CCCEH), CBMCs and age 5 PBMCs were cultured with cockroach, mouse, and dust mite protein extracts. CBMC proliferation and cytokine (IL-5 and IFN-γ) responses, and age 5 PBMC proliferation responses, were compared to anti-cockroach, anti-mouse, and anti-dust mite IgE levels, wheeze, cough, eczema and asthma. Results Correlations between CBMC and age 5 PBMC proliferation in response to cockroach, mouse, and dust mite antigens were nonsignificant. Cockroach-, mouse-, and dust mite-induced CBMC proliferation and cytokine responses were not associated with allergen-specific IgE at ages 2, 3, and 5, or with asthma and eczema at age 5. However, after adjusting for potential confounders, age 5 cockroach-induced PBMC proliferation was associated with anti-cockroach IgE, total IgE, and asthma (p < 0.05). Conclusion In contrast to allergen-induced CBMC proliferation, age 5 cockroach-induced PBMC proliferation was associated with age 5 specific and total IgE, and asthma, in an inner-city cohort where cockroach allergens are prevalent and exposure can be high. PMID:20684781
Russian vaccines against especially dangerous bacterial pathogens
Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L
2014-01-01
In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506
Wu, Junjie; Waxman, David J.
2014-01-01
Metronomic cyclophosphamide (CPA) treatment activates robust innate anti-tumor immunity and induces major regression of large, implanted brain tumor xenografts when administered on an intermittent, every 6-day schedule, but not on a daily low-dose or a maximum-tolerated dose CPA schedule. Here, we used an implanted GL261 glioma model to compare five intermittent metronomic CPA schedules to elucidate the kinetics and schedule dependence of innate immune cell recruitment and tumor regression. Tumor-recruited natural killer cells induced by two every 6-day treatment cycles were significantly ablated one day after a third CPA treatment, but largely recovered several days later. Natural killer and other tumor-infiltrating innate immune cells peaked 12 days after the last CPA treatment on the every 6-day schedule, suggesting that drug-free intervals longer than 6 days may show increased efficacy. Metronomic CPA treatments spaced 9 or 12 days apart, or on an alternating 6 and 9 day schedule, induced extensive tumor regression, similar to the 6-day schedule, however, the tumor-infiltrating natural killer cell responses were not sustained, leading to rapid resumption of tumor regrowth after day 24, despite ongoing metronomic CPA treatment. Increasing the CPA dose prolonged the period of tumor regression on the every 9-day schedule, but natural killer cell activation was markedly decreased. Thus, while several intermittent metronomic CPA treatment schedules can activate innate immune cell recruitment leading to major tumor regression, sustained immune and anti-tumor responses are only achieved on the 6-day schedule. However, even with this schedule, some tumors eventually relapse, indicating a need for further improvements in immunogenic metronomic therapies. PMID:25069038
Shalev, Amit; Benarroch, Fortunato; Goltser-Dubner, Tanya; Canetti, Laura; Saloner, Chen; Roichman, Asael; Cohen, Haim; Galili-Weisstub, Esti; Segman, Ronen
2018-06-27
Long-term immune alterations have been proposed to play a mechanistic role in posttraumatic stress disorder (PTSD) as well as in its associated increase in medical morbidity and mortality. Better characterization of altered immune function may help identify diagnostic and prognostic biomarkers and potentially targets for preventive intervention. As part of an ongoing study, we conducted a preliminary case-control comparison of resting immune inflammatory profiles between terror victims treated in childhood at the emergency department over the previous decade, who developed chronic PTSD upon long-term follow-up, and healthy controls. Our preliminary results in a subsample of this ongoing study support and extend elevated resting levels of granulocyte colony-stimulating factor, interleukin-4, and regulated on activation, normal T cell expressed and secreted in childhood onset chronic PTSD. Chronic immune alterations may participate in inflammatory activation and signal to the CNS through the neurovascular unit, as well as modulate the neuroendocrine axis. Better characterization and understanding of these preliminary findings may point to diagnostic and prognostic biomarkers and potentially elucidate mechanistic involvement of immune activation in PTSD. © 2018 S. Karger AG, Basel.
Massive plasmablast response elicited in the acute phase of hantavirus pulmonary syndrome.
García, Marina; Iglesias, Ayelén; Landoni, Verónica I; Bellomo, Carla; Bruno, Agostina; Córdoba, María Teresa; Balboa, Luciana; Fernández, Gabriela C; Sasiain, María Del Carmen; Martínez, Valeria P; Schierloh, Pablo
2017-05-01
Beside its key diagnostic value, the humoral immune response is thought to play a protective role in hantavirus pulmonary syndrome. However, little is known about the cell source of these antibodies during ongoing human infection. Herein we characterized B-cell subsets circulating in Andes-virus-infected patients. A notable potent plasmablast (PB) response that increased 100-fold over the baseline levels was observed around 1 week after the onset of symptoms. These PB present a CD3 neg CD19 low CD20 neg CD38 hi CD27 hi CD138 +/- IgA +/- surface phenotype together with the presence of cytoplasmic functional immunoglobulins. They are large lymphocytes (lymphoblasts) morphologically coincident with the 'immunoblast-like' cells that have been previously described during blood cytology examinations of hantavirus-infected patients. Immunoreactivity analysis of white blood cell lysates suggests that some circulating PB are virus-specific but we also observed a significant increase of reactivity against virus-unrelated antigens, which suggests a possible bystander effect by polyclonal B-cell activation. The presence of this large and transient PB response raises the question as to whether these cells might have a protective or pathological role during the ongoing hantavirus pulmonary syndrome and suggest their practical application as a diagnostic/prognostic biomarker. © 2017 John Wiley & Sons Ltd.
Molecular approaches to epidemiology and clinical aspects of malaria.
Brown, G V; Beck, H P; Molyneux, M; Marsh, K
2000-10-01
Malaria is a problem of global importance, responsible for 1-2 million deaths per year, mainly in African children, as well as considerable morbidity manifested as severe anaemia and encephalopathy in young children. Fundamental to the development of new tools for malaria control in humans is an increased understanding of key features of malaria infection, such as the diversity of outcome in different individuals, the understanding of different manifestations of the disease and of the mechanisms of immunity that allow clinical protection in the face of ongoing low-grade infection (concomitant immunity or premunition). Here, Graham Brown and colleagues review some of the ways in which molecular approaches might be used to increase our understanding of the epidemiology and clinical manifestations of malaria, as discussed at the Molecular Approaches to Malaria conference (MAM2000), Lorne, Australia, 2-5 February 2000.
Strategies for Enhanced Crop Resistance to Insect Pests.
Douglas, Angela E
2018-04-29
Insect pests are responsible for substantial crop losses worldwide through direct damage and transmission of plant diseases, and novel approaches that complement or replace broad-spectrum chemical insecticides will facilitate the sustainable intensification of food production in the coming decades. Multiple strategies for improved crop resistance to insect pests, especially strategies relating to plant secondary metabolism and immunity and microbiome science, are becoming available. Recent advances in metabolic engineering of plant secondary chemistry offer the promise of specific toxicity or deterrence to insect pests; improved understanding of plant immunity against insects provides routes to optimize plant defenses against insects; and the microbiomes of insect pests can be exploited, either as a target or as a vehicle for delivery of insecticidal agents. Implementation of these advances will be facilitated by ongoing advances in plant breeding and genetic technologies.
Secure VM for Monitoring Industrial Process Controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K
2011-01-01
In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicatedmore » host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.« less
Advancing Cancer Therapy with Present and Emerging Immuno-Oncology Approaches
Kamta, Jeff; Chaar, Maher; Ande, Anusha; Altomare, Deborah A.; Ait-Oudhia, Sihem
2017-01-01
Immuno-oncology (I-O) is a young and growing field on the frontier of cancer therapy. Contrary to cancer therapies that directly target malignant cells, I-O therapies stimulate the body’s immune system to target and attack the tumor, which is otherwise invisible to, or inhibiting the immune response. To this end, several methods have been developed: First, passive therapies that enable T-cells to fight the tumor without direct manipulation, typically through binding and modifying the intracellular signaling of surface receptors. Checkpoint inhibitors, perhaps the most well known of I-O therapies; are an example of such. These are monoclonal antibodies that block binding of the tumor cell at receptors that inactivate the T-cell. A variety of small molecules can achieve the same effect by affecting metabolic or signaling pathways to boost the immune response or prevent its attenuation. Drugs originally formulated for unrelated disease states are now being used to treat cancer under the I-O approach. Second, active therapies which often involve direct manipulations that occur in vitro and once introduced to the patient will directly attack the tumor. Adoptive cell transfer is the oldest of these methods. It involves the removal of T-cells from the body, which are then expanded and genetically modified for specificity toward tumor-associated antigens (TAAs), and then reintroduced to the patient. A similar approach is taken with cancer vaccines, where TAAs are identified and reintroduced with adjuvants to stimulate an immune response, sometimes in the context of antigen-presenting cells or viral vectors. Oncolytic viruses are genetically modified natural viruses for selectivity toward tumor cells. The resulting cytotoxicity has the potential to elicit an immune response that furthers tumor cell killing. A final active approach is bi-specific T-cell engagers. These modified antibodies act to link a T-cell and tumor cell through surface receptors and thereby forcibly generate immune recognition. The therapies in each of these subfields are all still very new and ongoing clinical trials could provide even further additions. The full therapeutic potential of the aforementioned therapies, alone or in combination, has yet to be realized, but holds great promise for the future of cancer treatment. PMID:28459041
Atezolizumab for the treatment of colorectal cancer: the latest evidence and clinical potential.
Tapia Rico, Gonzalo; Price, Timothy J
2018-04-01
Atezolizumab is a fully humanized, engineered monoclonal antibody that specifically targets PD-L1, key molecule in the cancer-immunity pathway. Atezolizumab is currently approved for the treatment of metastatic non-small-cell lung cancer and advanced urothelial carcinomas. Areas covered: In this review, we will present the available data supporting the efficacy of atezolizumab for the treatment of metastatic colorectal cancer (mCRC). We will also provide an update on the ongoing/future clinical trials evaluating the role of atezolizumab for the treatment of CRC in different settings (alone or in combination with other checkpoint inhibitors and/or targeted therapies). So far, a small subgroup of mCRC (those with deficiency in mismatch repair - dMMR) appears to benefit significantly from checkpoint inhibitors. As expected, further research is needed to develop biomarkers, effective therapeutic strategies and novel combinations to overcome immune escape resistance and achieve better responses with minimal toxicities. Expert opinion: Interim analyses from ongoing early-phase studies in mCRC have shown encouraging activity of atezolizumab in combination with chemotherapy and/or targeted therapies, especially with MEK inhibitor cobimetinib. Within the next few years, this PD-L1 checkpoint inhibitor will likely be included as one of the treatment options for CRC, at least for patients with dMMR.
Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Estepa, Amparo; Ortega-Villaizan, Maria Del Mar
2017-01-01
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1 ) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail.
The multi-faceted role of allergen exposure to the local airway mucosa.
Golebski, K; Röschmann, K I L; Toppila-Salmi, S; Hammad, H; Lambrecht, B N; Renkonen, R; Fokkens, W J; van Drunen, C M
2013-02-01
Airway epithelial cells are the first to encounter aeroallergens and therefore have recently become an interesting target of many studies investigating their involvement in the modulation of allergic inflammatory responses. Disruption of a passive structural barrier composed of epithelial cells by intrinsic proteolytic activity of allergens may facilitate allergen penetration into local tissues and additionally affect chronic and ongoing inflammatory processes in respiratory tissues. Furthermore, the ability of rhinoviruses to disrupt and interfere with epithelial tight junctions may alter the barrier integrity and enable a passive passage of inhaled allergens through the airway epithelium. On the other hand, epithelial cells are no longer considered to act only as a physical barrier toward inhaled allergens, but also to actively contribute to airway inflammation by detecting and responding to environmental factors. Epithelial cells can produce mediators, which may affect the recruitment and activation of more specialized immune cells to the local tissue and also create a microenvironment in which these activated immune cells may function and propagate the inflammatory processes. This review presents the dual role of epithelium acting as a passive and active barrier when encountering an inhaled allergen and how this double role contributes to the start of local immune responses. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Advances and hope for perinatal HIV remission and cure in children and adolescents.
Rainwater-Lovett, Kaitlin; Uprety, Priyanka; Persaud, Deborah
2016-02-01
The known timing of HIV infection in perinatal transmission, combined with the capacity for early antiretroviral therapy (ART) initiation and immune reconstitution, can provide unique insights into HIV persistence. The scientific basis for a pediatric-specific research agenda aimed at HIV remission and cure is discussed. Accumulating evidence supports a favorable biomarker profile for immunotherapeutic interventions in early treated, perinatally infected individuals. HIV DNA concentrations in infected cells of early treated infants decrease over the first few years of life and, after more than 10 years of ART, the overwhelming majority of noninduced proviral genomes are replication-deficient. With early ART initiation, approximately half of perinatally infected individuals become seronegative. Studies of untreated infants and vaccine trials indicate that infected infants can generate HIV-specific humoral responses. Taken together, this evidence suggests that early treatment results in low levels of replication-competent provirus, an absence of HIV-specific immunity, and the capacity to generate immune responses to potential immunotherapeutic interventions. Perinatally HIV-infected individuals require lifelong ART because of the prompt establishment of viral latency in long-lived resting memory CD4 T cells that rekindle viremia upon treatment cessation. However, intense research efforts are ongoing to perturb HIV latency toward reservoir clearance for virologic remission and cure in which perinatally infected individuals can discontinue ART.
Gridelli, Cesare; Ascierto, Paolo A; Barberis, Massimo C P; Felip, Enriqueta; Garon, Edward B; O'brien, Mary; Senan, Suresh; Casaluce, Francesca; Sgambato, Assunta; Papadimitrakopoulou, Vali; De Marinis, Filippo
2016-12-01
The potential long term survival gain, related to immune adaptability and memory, the potential activity across multiple tumour types through targeting the immune system, and the opportunity for combinations offered by the unique mechanism of actions and safety profile of these new agents, all support the role of immunotherapy in the cancer treatment pathway or paradigm. Areas covered: The authors discuss the recent advances in the understanding of immunology and antitumor immune responses that have led to the development of new immunotherapies, including monoclonal antibodies that inhibit immune checkpoint pathways, such as Programmed Death-1 (PD-1) and Cytotoxic T-Lymphocyte-Associated Antigen 4 (CTLA-4). Currently, two PD-1 inhibitors are available in clinical practice for treatment of advanced non-small cell lung cancer (NSCLC): nivolumab and pembrolizumab. Expert opinion: Ongoing research will dictate future strategies, including the potential incorporation of immunotherapy in stage dependent treatment settings (early stage locally advanced disease and first line therapy for metastatic disease). Immunotherapy combinations are promising avenues, and careful selection of patients, doses of each agent and information supporting strategies (i.e. concomitant or sequential) is still needed.
Slike, Bonnie M; Creegan, Matthew; Marovich, Mary; Ngauy, Viseth
2017-01-01
Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5-10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10-20 years post vaccination. This contrasted with a comparator group of adults, ages 35-49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112-3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program.
Slike, Bonnie M.; Creegan, Matthew
2017-01-01
Modified Vaccinia virus has been shown to be a safe and immunogenic vector platform for delivery of HIV vaccines. Use of this vector is of particular importance to the military, with the implementation of a large scale smallpox vaccination campaign in 2002 in active duty and key civilian personnel in response to potential bioterrorist activities. Humoral immunity to smallpox vaccination was previously shown to be long lasting (up to 75 years) and protective. However, using vaccinia-vectored vaccine delivery for other diseases on a background of anti-vector antibodies (i.e. pre-existing immunity) may limit their use as a vaccine platform, especially in the military. In this pilot study, we examined the durability of vaccinia antibody responses in adult primary vaccinees in a healthy military population using a standard ELISA assay and a novel dendritic cell neutralization assay. We found binding and neutralizing antibody (NAb) responses to vaccinia waned after 5–10 years in a group of 475 active duty military, born after 1972, who were vaccinated as adults with Dryvax®. These responses decreased from a geometric mean titer (GMT) of 250 to baseline (<20) after 10–20 years post vaccination. This contrasted with a comparator group of adults, ages 35–49, who were vaccinated with Dryvax® as children. In the childhood vaccinees, titers persisted for >30 years with a GMT of 210 (range 112–3234). This data suggests limited durability of antibody responses in adult vaccinees compared to those vaccinated in childhood and further that adult vaccinia recipients may benefit similarly from receipt of a vaccinia based vaccine as those who are vaccinia naïve. Our findings may have implications for the smallpox vaccination schedule and support the ongoing development of this promising viral vector in a military vaccination program. PMID:28046039
Galluzzi, Lorenzo; Senovilla, Laura; Vacchelli, Erika; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido
2012-01-01
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy. PMID:23170259
Liu, Fengliang; Fan, Xiuzhen; Auclair, Sarah; Ferguson, Monique; Sun, Jiaren; Soong, Lynn; Hou, Wei; Redfield, Robert R.; Birx, Deborah L.; Ratto-Kim, Silvia; Robb, Merlin L.; Kim, Jerome H.; Michael, Nelson L.; Hu, Haitao
2016-01-01
Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. PMID:27280548
Engineering Vaccines to Reprogram Immunity against Head and Neck Cancer.
Tan, Y S; Sansanaphongpricha, K; Prince, M E P; Sun, D; Wolf, G T; Lei, Y L
2018-06-01
The recent Food and Drug Administration's approval of monoclonal antibodies targeting immune checkpoint receptors (ICRs) for recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) offers exciting promise to improve patient outcome and reduce morbidities. A favorable response to ICR blockade relies on an extensive collection of preexisting tumor-specific T cells in the tumor microenvironment (TME). ICR blockade reinvigorates exhausted CD8 + T cells and enhances immune killing. However, resistance to ICR blockade is observed in about 85% of patients with HNSCC, therefore highlighting the importance of characterizing the mechanisms underlying HNSCC immune escape and exploring combinatorial strategies to sensitize hypoimmunogenic cold HNSCC to ICR inhibition. Cancer vaccines are designed to bypass the cold TME and directly deliver cancer antigens to antigen-presenting cells (APCs); these vaccines epitomize a priming strategy to synergize with ICR inhibitors. Cancer cells are ineffective antigen presenters, and poor APC infiltration as well as the M2-like polarization in the TME further dampens antigen uptake and processing, both of which render ineffective innate and adaptive immune detection. Cancer vaccines directly activate APC and expand the tumor-specific T-cell repertoire. In addition, cancer vaccines often contain an adjuvant, which further improves APC function, promotes epitope spreading, and augments host intrinsic antitumor immunity. Thus, the vaccine-induced immune priming generates a pool of effectors whose function can be enhanced by ICR inhibitors. In this review, we summarize the major HNSCC immune evasion strategies, the ongoing effort toward improving HNSCC vaccines, and the current challenges limiting the efficacy of cancer vaccines.
United States Army Medical Materiel Development Activity - 1989
1990-01-31
physicians to treat diseases such as Korean Hemorrhagic Fever and Lassa Fever. * J-5 Human Monoclonal Antibody is secreted by cultured hybridomas that were...volunteer studies involving a collaborative effort between WRAIR and the Swiss Serum and Vaccine Institute (SSVI). s Lassa Fever Immune Plasma is an...immune globulin used to treat Lassa fever infections. The collection of human immune plasma in Africa is an ongoing contract effort. USANRIID performs
Regulatory T Lymphocytes in Periodontitis: A Translational View
2018-01-01
Periodontitis is a chronic immuno-inflammatory disease in which the disruption of the balance between host and microbiota interactions is key to the onset and progression of the disease. The immune homeostasis associated with periodontal health requires a regulated immuno-inflammatory response, during which the presence of regulatory T cells (Tregs) is essential to ensure a controlled response that minimizes collateral tissue damage. Since Tregs modulate both innate and adaptive immunity, pathological conditions that may resolve by the acquisition of immuno-tolerance, such as periodontitis, may benefit by the use of Treg immunotherapy. In recent years, many strategies have been proposed to take advantage of the immuno-suppressive capabilities of Tregs as immunotherapy, including the ex vivo and in vivo manipulation of the Treg compartment. Ongoing research in both basic and translational studies let us gain a better understanding of the diversity of Treg subsets, their phenotypic plasticity, and suppressive functions, which can be used as a substrate for new immunotherapies. Certainly, as our knowledge of Treg biology increases, we will be capable to develop new therapies designed to enhance the stability and function of Tregs during periodontitis.
Smart, Joanne M; Horak, Elisabeth; Kemp, Andrew S; Robertson, Colin F; Tang, Mimi L K
2002-09-01
Atopic disease is associated with skewing of immune responses away from a T(H)1 toward a T(H)2 profile. Previous studies have implicated this cytokine imbalance in the development of disease. However, it is not known whether normalization of this imbalance is conversely associated with disease resolution. To further delineate the role of reduced T(H)1 and increased T(H)2 cytokine production in the pathogenesis of atopic disease and to determine whether disease resolution is associated with alteration of cytokine profiles, we investigated cytokine responses in a cohort of adult patients with asthma followed from childhood. A cohort of wheezy children and control subjects aged 7 to 10 years were recruited from 1964 to 1967. Subjects were reevaluated every 7 years to monitor the outcome of childhood asthma. At the 42-year follow-up, 89 subjects from this cohort were evaluated for mitogen and house dust mite (HDM)-induced T(H)1 (IFN-gamma) and T(H)2 (IL-4, IL-5, and IL-13) cytokine responses. Cytokine responses were compared in patients with ongoing asthma, patients with resolved asthma, and control subjects. Patients with severe ongoing asthma had significantly reduced HDM-induced IFN-gamma production compared with that of control subjects and patients with resolved asthma. In contrast, HDM-induced IFN-gamma production in patients with resolved asthma was equivalent to that seen in control subjects. Patients with ongoing and resolved asthma produced significantly higher levels of IL-5 in response to HDM compared with that seen in control subjects, with levels being equivalent in patients with active and resolved asthma. HDM-induced IL-13 production was significantly increased in the patients with resolved asthma when compared with that seen in the control subjects. PHA-induced cytokine responses did not parallel HDM-induced responses. Patients with persistent and severe atopic asthma have a reduced HDM-induced T(H)1 response, whereas those with resolved asthma do not. This suggests that reduced HDM-induced IFN-gamma production might be an important factor contributing to ongoing severe asthma and that normalization of allergen-induced T(H)1 responses might be important for disease resolution. The finding that all subjects with a history of asthma displayed increased HDM-induced T(H)2 (IL-5 and IL-13) cytokine responses, irrespective of the presence or absence of asthma, suggests that increased T(H)2 responses reflect the presence of the atopic state per se rather than being specifically linked to asthma.
Morris, Van K; Salem, Mohamed E; Nimeiri, Halla; Iqbal, Syma; Singh, Preet; Ciombor, Kristen; Polite, Blase; Deming, Dustin; Chan, Emily; Wade, James L; Xiao, Lianchun; Bekaii-Saab, Tanios; Vence, Luis; Blando, Jorge; Mahvash, Armeen; Foo, Wai Chin; Ohaji, Chimela; Pasia, Manolo; Bland, Gail; Ohinata, Aki; Rogers, Jane; Mehdizadeh, Amir; Banks, Kimberly; Lanman, Richard; Wolff, Robert A; Streicher, Howard; Allison, James; Sharma, Padmanee; Eng, Cathy
2017-04-01
Squamous cell carcinoma of the anal canal (SCCA) is a rare malignancy associated with infection by human papillomavirus (HPV). No consensus treatment approach exists for the treatment of metastatic disease. Because intratumoral HPV oncoproteins upregulate immune checkpoint proteins such as PD-1 to evade immune-mediated cytotoxicity, we did a trial of the anti-PD-1 antibody nivolumab for patients with metastatic SCCA. We did this single-arm, multicentre, phase 2 trial at ten academic centres in the USA. We enrolled patients with treatment-refractory metastatic SCCA, who were given nivolumab every 2 weeks (3 mg/kg). The primary endpoint was response according to Response Evaluation Criteria in Solid Tumors, version 1.1, in the intention-to-treat population. At the time of data cutoff, the study was ongoing, with patients continuing to receive treatment. The study is registered with ClinicalTrials.gov, number NCT02314169. We screened 39 patients, of whom 37 were enrolled and received at least one dose of nivolumab. Among the 37 patients, nine (24% [95% CI 15-33]) had responses. There were two complete responses and seven partial responses. Grade 3 adverse events were anaemia (n=2), fatigue (n=1), rash (n=1), and hypothyroidism (n=1). No serious adverse events were reported. To our knowledge, this is the first completed phase 2 trial of immunotherapy for SCCA. Nivolumab is well tolerated and effective as a monotherapy for patients with metastatic SCCA. Immune checkpoint blockade appears to be a promising approach for patients with this orphan disease. National Cancer Institute/Cancer Therapy Evaluation Program, the HPV and Anal Cancer Foundation, the E B Anal Cancer Fund, The University of Texas MD Anderson Moon Shots Program, and an anonymous philanthropic donor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morris, Van K; Salem, Mohamed E; Nimeiri, Halla; Iqbal, Syma; Singh, Preet; Ciombor, Kristen; Polite, Blase; Deming, Dustin; Chan, Emily; Wade, James L; Xiao, Lianchun; Bekaii-Saab, Prof Tanios; Vence, Luis; Blando, Jorge; Mahvash, Armeen; Foo, Wai Chin; Ohaji, Chimela; Pasia, Manolo; Bland, Gail; Ohinata, Aki; Rogers, Jane; Mehdizadeh, Amir; Banks, Kimberly; Lanman, Richard; Wolff, Robert A; Streicher, Howard; Allison, Prof James; Sharma, Prof Padmanee; Eng, Prof Cathy
2018-01-01
Summary Background Squamous cell carcinoma of the anal canal (SCCA) is a rare malignancy associated with infection by human papillomavirus (HPV). No consensus treatment approach exists for the treatment of metastatic disease. Because intratumoral HPV oncoproteins upregulate immune checkpoint proteins such as PD-1 to evade immune-mediated cytotoxicity, we did a trial of the anti-PD-1 antibody nivolumab for patients with metastatic SCCA. Methods We did this single-arm, multicentre, phase 2 trial at ten academic centres in the USA. We enrolled patients with treatment-refractory metastatic SCCA, who were given nivolumab every 2 weeks (3 mg/kg). The primary endpoint was response according to Response Evaluation Criteria in Solid Tumors, version 1.1, in the intention-to-treat population. At the time of data cutoff, the study was ongoing, with patients continuing to receive treatment. The study is registered with ClinicalTrials.gov, number NCT02314169. Findings We screened 39 patients, of whom 37 were enrolled and received at least one dose of nivolumab. Among the 37 patients, nine (24% [95% CI 15–33]) had responses. There were two complete responses and seven partial responses. Grade 3 adverse events were anaemia (n=2), fatigue (n=1), rash (n=1), and hypothyroidism (n=1). No serious adverse events were reported. Interpretation To our knowledge, this is the first completed phase 2 trial of immunotherapy for SCCA. Nivolumab is well tolerated and effective as a monotherapy for patients with metastatic SCCA. Immune checkpoint blockade appears to be a promising approach for patients with this orphan disease. Funding National Cancer Institute/Cancer Therapy Evaluation Program, the HPV and Anal Cancer Foundation, the E B Anal Cancer Fund, The University of Texas MD Anderson Moon Shots Program, and an anonymous philanthropic donor. PMID:28223062
Murine Visceral Leishmaniasis: IgM and Polyclonal B-Cell Activation Lead to Disease Exacerbation
Deak, Eszter; Jayakumar, Asha; Wing Cho, Ka; Goldsmith-Pestana, Karen; Dondji, Blaise; Lambris, John D.; McMahon-Pratt, Diane
2010-01-01
In visceral leishmaniasis, the draining lymph node (DLN) is the initial site for colonization and establishment of infection after intradermal transmission by the sand fly vector; however, little is known about the developing immune response within this site. Using an intradermal infection model, which allows for parasite visceralization, we have examined the ongoing immune responses in the DLN of BALB/c mice infected with L. infantum. Although not unexpected, at early times post-infection there is a marked B cell expansion in the DLN, which persists throughout infection. However, the characteristics of this response were of interest; as early as day 7 post-infection, polyclonal antibodies (TNP, OVA, chromatin) were observed and the levels appeared comparable to the specific anti-leishmania response. Although B-cell-deficient JHD BALB/c mice are relatively resistant to infection, neither B-cell-derived IL-10 nor B-cell antigen presentation appear to be primarily responsible for the elevated parasitemia. However, passive transfer and reconstitution of JHD BALB/c with secretory immunoglobulins, (IgM or IgG; specific or non-specific immune complexes) results in increased susceptibility to L. infantum infection. Further, JHD BALB/c mice transgenetically reconstituted to secrete IgM demonstrated exacerbated disease in comparison to wild type BALB/c mice as early as 2 days post-infection. Evidence suggests that complement activation (generation of C5a) and signaling via the C5aR (CD88) is related to the disease exacerbation caused by IgM rather than cytokine levels (IL-10 or IFN-γ). Overall these studies indicate that polyclonal B cell activation, which is known to be associated with human visceral leishmaniasis, is an early and intrinsic characteristic of disease and may represent a target for therapeutic intervention. PMID:20213734
Immunotherapy targeting immune check-point(s) in brain metastases.
Di Giacomo, Anna Maria; Valente, Monica; Covre, Alessia; Danielli, Riccardo; Maio, Michele
2017-08-01
Immunotherapy with monoclonal antibodies (mAb) directed to different immune check-point(s) is showing a significant clinical impact in a growing number of human tumors of different histotype, both in terms of disease response and long-term survival patients. In this rapidly changing scenario, treatment of brain metastases remains an high unmeet medical need, and the efficacy of immunotherapy in these highly dismal clinical setting remains to be largely demonstrated. Nevertheless, up-coming observations are beginning to suggest a clinical potential of cancer immunotherapy also in brain metastases, regardless the underlying tumor histotype. These observations remain to be validated in larger clinical trials eventually designed also to address the efficacy of therapeutic mAb to immune check-point(s) within multimodality therapies for brain metastases. Noteworthy, the initial proofs of efficacy on immunotherapy in central nervous system metastases are already fostering clinical trials investigating its therapeutic potential also in primary brain tumors. We here review ongoing immunotherapeutic approaches to brain metastases and primary brain tumors, and the foreseeable strategies to overcome their main biologic hurdles and clinical challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advances in immunotherapy for the treatment of glioblastoma.
Tivnan, Amanda; Heilinger, Tatjana; Lavelle, Ed C; Prehn, Jochen H M
2017-01-01
Glioblastoma (GBM) is an aggressive brain tumour, associated with extremely poor prognosis and although there have been therapeutic advances, treatment options remain limited. This review focuses on the use of immunotherapy, harnessing the power of the host's immune system to reject cancer cells. Key challenges in glioma specific immunotherapy as with many other cancers are the limited immunogenicity of the cancer cells and the immunosuppressive environment of the tumour. Although specific antigens have been identified in several cancers; brain tumours, such as GBM, are considered poorly immunogenic. However, as detailed in this review, strategies aimed at circumventing these challenges are showing promise for GBM treatment; including identification of glioma specific antigens and endogenous immune cell activation in an attempt to overcome the immunosuppressive environment which is associated with GBM tumours. An up-to-date summary of current Phase I/II and ongoing Phase III GBM immunotherapy clinical trials is provided in addition to insights into promising preclinical approaches which are focused predominantly on increased induction of Type 1 helper T cell (T h 1) immune responses within patients.
The History of Ecoimmunology and Its Integration with Disease Ecology
Brock, Patrick M.; Murdock, Courtney C.; Martin, Lynn B.
2014-01-01
Ecoimmunology is an example of how fruitful integrative approaches to biology can be. Since its emergence, ecoimmunology has sparked constructive debate on a wide range of topics, from the molecular mechanics of immune responses to the role of immunity in shaping the evolution of life histories. To complement the symposium Methods and Mechanisms in Ecoimmunology and commemorate the inception of the Division of Ecoimmunology and Disease Ecology within the Society for Integrative and Comparative Biology, we appraise the origins of ecoimmunology, with a focus on its continuing and valuable integration with disease ecology. Arguably, the greatest contribution of ecoimmunology to wider biology has been the establishment of immunity as an integral part of organismal biology, one that may be regulated to maximize fitness in the context of costs, constraints, and complex interactions. We discuss historical impediments and ongoing progress in ecoimmunology, in particular the thorny issue of what ecoimmunologists should, should not, or cannot measure, and what novel contributions ecoimmunologists have made to the understanding of host–parasite interactions. Finally, we highlight some areas to which ecoimmunology is likely to contribute in the near future. PMID:24838746
Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy.
Xin, Gang; Schauder, David M; Zander, Ryan; Cui, Weiguo
2017-09-01
The recent tremendous successes in clinical trials take cancer immunotherapy into a new era and have attracted major attention from both academia and industry. Among the variety of immunotherapy strategies developed to boost patients' own immune systems to fight against malignant cells, the pathogen-based and adoptive cell transfer therapies have shown the most promise for treating multiple types of cancer. Pathogen-based therapies could either break the immune tolerance to enhance the effectiveness of cancer vaccines or directly infect and kill cancer cells. Adoptive cell transfer can induce a strong durable antitumor response, with recent advances including engineering dual specificity into T cells to recognize multiple antigens and improving the metabolic fitness of transferred cells. In this review, we focus on the recent prospects in these two areas and summarize some ongoing studies that represent potential advancements for anticancer immunotherapy, including testing combinations of these two strategies.
Progress and Challenges Associated with the Development of Ricin Toxin Subunit Vaccines
Vance, David J.; Mantis, Nicholas J.
2016-01-01
Summary The past several years have seen major advances in the development of a safe and efficacious ricin toxin vaccine, including the completion of two Phase I clinical trials with two different recombinant A subunit (RTA)-based vaccines: RiVax™ and RVEc™ adsorbed to aluminum salt adjuvant, as well as a non-human primate study demonstrating that parenteral immunization with RiVax elicits a serum antibody response that was sufficient to protect against a lethal dose aerosolized ricin exposure. One of the major obstacles moving forward is assessing vaccine efficacy in humans, when neither ricin-specific serum IgG endpoint titers nor toxin-neutralizing antibody levels are accepted as definitive predictors of protective immunity. In this review we summarize ongoing efforts to leverage recent advances in our understanding of RTA-antibody interactions at the structural level to develop novel assays to predict vaccine efficacy in humans. PMID:26998662
Progress and challenges associated with the development of ricin toxin subunit vaccines.
Vance, David J; Mantis, Nicholas J
2016-09-01
The past several years have seen major advances in the development of a safe and efficacious ricin toxin vaccine, including the completion of two Phase I clinical trials with two different recombinant A subunit (RTA)-based vaccines: RiVax™ and RVEc™ adsorbed to aluminum salt adjuvant, as well as a non-human primate study demonstrating that parenteral immunization with RiVax elicits a serum antibody response that was sufficient to protect against a lethal dose aerosolized ricin exposure. One of the major obstacles moving forward is assessing vaccine efficacy in humans, when neither ricin-specific serum IgG endpoint titers nor toxin-neutralizing antibody levels are accepted as definitive predictors of protective immunity. In this review we summarize ongoing efforts to leverage recent advances in our understanding of RTA-antibody interactions at the structural level to develop novel assays to predict vaccine efficacy in humans.
Macrophages: development and tissue specialization.
Varol, Chen; Mildner, Alexander; Jung, Steffen
2015-01-01
Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.
Conventional and Non-Conventional Drosophila Toll Signaling
Lindsay, Scott A.; Wasserman, Steven A.
2013-01-01
The discovery of Toll in Drosophila and of the remarkable conservation in pathway composition and organization catalyzed a transformation in our understanding of innate immune recognition and response. At the center of that picture is a cascade of interactions in which specific microbial cues activate Toll receptors, which then transmit signals driving transcription factor nuclear localization and activity. Experiments gave substance to the vision of pattern recognition receptors, linked phenomena in development, gene regulation, and immunity into a coherent whole, and revealed a rich set of variations for identifying non-self and responding effectively. More recently, research in Drosophila has illuminated the positive and negative regulation of Toll activation, the organization of signaling events at and beneath membranes, the sorting of information flow, and the existence of non-conventional signaling via Toll-related receptors. Here, we provide an overview of the Toll pathway of flies and highlight these ongoing realms of research. PMID:23632253
Lyke, Kirsten E; Ishizuka, Andrew S; Berry, Andrea A; Chakravarty, Sumana; DeZure, Adam; Enama, Mary E; James, Eric R; Billingsley, Peter F; Gunasekera, Anusha; Manoj, Anita; Li, Minglin; Ruben, Adam J; Li, Tao; Eappen, Abraham G; Stafford, Richard E; Kc, Natasha; Murshedkar, Tooba; Mendoza, Floreliz H; Gordon, Ingelise J; Zephir, Kathryn L; Holman, LaSonji A; Plummer, Sarah H; Hendel, Cynthia S; Novik, Laura; Costner, Pamela J M; Saunders, Jamie G; Berkowitz, Nina M; Flynn, Barbara J; Nason, Martha C; Garver, Lindsay S; Laurens, Matthew B; Plowe, Christopher V; Richie, Thomas L; Graham, Barney S; Roederer, Mario; Sim, B Kim Lee; Ledgerwood, Julie E; Hoffman, Stephen L; Seder, Robert A
2017-03-07
A live-attenuated malaria vaccine, Plasmodium falciparum sporozoite vaccine (PfSPZ Vaccine), confers sterile protection against controlled human malaria infection (CHMI) with Plasmodium falciparum (Pf) parasites homologous to the vaccine strain up to 14 mo after final vaccination. No injectable malaria vaccine has demonstrated long-term protection against CHMI using Pf parasites heterologous to the vaccine strain. Here, we conducted an open-label trial with PfSPZ Vaccine at a dose of 9.0 × 10 5 PfSPZ administered i.v. three times at 8-wk intervals to 15 malaria-naive adults. After CHMI with homologous Pf parasites 19 wk after final immunization, nine (64%) of 14 (95% CI, 35-87%) vaccinated volunteers remained without parasitemia compared with none of six nonvaccinated controls ( P = 0.012). Of the nine nonparasitemic subjects, six underwent repeat CHMI with heterologous Pf7G8 parasites 33 wk after final immunization. Five (83%) of six (95% CI, 36-99%) remained without parasitemia compared with none of six nonvaccinated controls. PfSPZ-specific T-cell and antibody responses were detected in all vaccine recipients. Cytokine production by T cells from vaccinated subjects after in vitro stimulation with homologous (NF54) or heterologous (7G8) PfSPZ were highly correlated. Interestingly, PfSPZ-specific T-cell responses in the blood peaked after the first immunization and were not enhanced by subsequent immunizations. Collectively, these data suggest durable protection against homologous and heterologous Pf parasites can be achieved with PfSPZ Vaccine. Ongoing studies will determine whether protective efficacy can be enhanced by additional alterations in the vaccine dose and number of immunizations.
Calabrò, Luana; Morra, Aldo; Giannarelli, Diana; Amato, Giovanni; D'Incecco, Armida; Covre, Alessia; Lewis, Arthur; Rebelatto, Marlon C; Danielli, Riccardo; Altomonte, Maresa; Di Giacomo, Anna Maria; Maio, Michele
2018-05-14
Tremelimumab, an anti-CTLA4 monoclonal antibody, initially showed good activity when used alone in patients with mesothelioma, but did not improve the overall survival of patients who failed on first-line or second-line chemotherapy compared with placebo in the DETERMINE study. We aimed to investigate the efficacy and safety of first-line or second-line tremelimumab combined with durvalumab, an anti-PD-L1 monoclonal antibody, in patients with malignant mesothelioma. In this open-label, non-randomised, phase 2 trial, patients with unresectable pleural or peritoneal mesothelioma received intravenous tremelimumab (1 mg/kg bodyweight) and durvalumab (20 mg/kg bodyweight) every 4 weeks for four doses, followed by maintenance intravenous durvalumab at the same dose and schedule for nine doses. The primary endpoint was the proportion of patients with an immune-related objective response according to the immune-related modified Response Evaluation Criteria in Solid Tumors (RECIST; for pleural mesothelioma) or immune-related RECIST version 1.1 (for peritoneal mesothelioma). The primary analysis was done by intention to treat, whereas the safety analysis included patients who received at least one dose of study drug. This trial is registered with the European Clinical Trials Database, number 2015-001995-23, and ClinicalTrials.gov, number NCT02588131, and is ongoing but no longer recruiting patients. From Oct 30, 2015, to Oct 12, 2016, 40 patients with mesothelioma were enrolled and received at least one dose each of tremelimumab and durvalumab. Patients were followed-up for a median of 19·2 months (IQR 13·8-20·5). 11 (28%) of 40 patients had an immune-related objective response (all partial responses; confirmed in ten patients), with a median response duration of 16·1 months (IQR 11·5-20·5). 26 (65%) patients had immune-related disease control and 25 (63%) had disease control. Median immune-related progression-free survival was 8·0 months (95% CI 6·7-9·3), median progression-free survival was 5·7 months (1·7-9·7), and median overall survival was 16·6 months (13·1-20·1). Baseline tumour PD-L1 expression did not correlate with the proportion of patients who had an immune-related objective response or immune-related disease control, with immune-related progression-free survival, or with overall survival. 30 (75%) patients experienced treatment-related adverse events of any grade, of whom seven (18%) had grade 3-4 treatment-related adverse events. Treatment-related toxicity was generally manageable and reversible with protocol guidelines. The combination of tremelimumab and durvalumab appeared active, with a good safety profile in patients with mesothelioma, warranting further exploration. Network Italiano per la Bioterapia dei Tumori Foundation, Associazione Italiana per la Ricerca sul Cancro, AstraZeneca, and Istituto Toscano Tumori. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rosenberg, Jonathan E.; Hoffman-Censits, Jean; Powles, Tom; van der Heijden, Michiel S.; Balar, Arjun V.; Necchi, Andrea; Dawson, Nancy; O’Donnell, Peter H.; Balmanoukian, Ani; Loriot, Yohann; Srinivas, Sandy; Retz, Margitta M.; Grivas, Petros; Joseph, Richard W.; Galsky, Matthew D.; Fleming, Mark T.; Petrylak, Daniel P.; Perez-Gracia, Jose Luis; Burris, Howard A.; Castellano, Daniel; Canil, Christina; Bellmunt, Joaquim; Bajorin, Dean; Nickles, Dorothee; Bourgon, Richard; Frampton, Garrett M.; Cui, Na; Mariathasan, Sanjeev; Abidoye, Oyewale; Fine, Gregg D.; Dreicer, Robert
2017-01-01
Summary Background Patients with metastatic urothelial carcinoma have limited treatment options after failure of platinum-based chemotherapy. This multicenter, single-arm phase 2 trial evaluated atezolizumab, an engineered humanized IgG1 monoclonal antibody that binds selectively to programmed death–ligand 1 (PD-L1), in this population. Methods Three hundred and ten patients received atezolizumab (1200 mg, every 3 weeks). PD-L1 expression on tumor-infiltrating immune cells (IC) was prospectively assessed by immunohistochemistry. The co-primary endpoints were the objective response rate by RECIST v1.1 and immune modified RECIST. A hierarchical testing procedure was used to test whether the objective response rate was significantly higher than the historical control of 10% at alpha level of 0·05. Exploratory analyses included assessing the association between The Cancer Genome Atlas (TCGA) molecular subtypes, CD8+ T cell infiltration, mutation load, and clinical outcomes. Findings By independent review, objective response rates were 26% (95% CI 18 to 36) in the IC2/3 group, 18% (95% CI 13 to 24) in the IC1/2/3 group and 15% (95% CI 11 to 19) in all patients. With a median follow-up of 11·7 months, ongoing responses were observed in 84% of responders. The median duration of response was not reached (range 2·0*, 13·7* months, *censored). The median overall survival was 11·4 months (95% CI 9·0 to not estimable) in the IC2/3 group, 8·8 months (95% CI 7·1 to 10·6) in the IC1/2/3, and 7·9 months (95% CI 6·6 to 9·3) in all patients. Grade 3–4 related treatment-related adverse events occurred in 16% and grade 3–4 immune-mediated adverse events occurred in 5% of treated patients. Exploratory analyses showed TCGA subtypes and mutation load to be independently predictive for response to atezolizumab. Interpretation Atezolizumab demonstrated durable activity and good tolerability in this population. PD-L1 expression on immune cells was associated with response. This is the first report to show the association of TCGA subtypes with response to immune checkpoint inhibition and demonstrate the importance of mutation load as a biomarker of response to this class of agents in advanced urothelial carcinoma. Funding F. Hoffmann-La Roche Ltd. PMID:26952546
Kawamura, Koji; Yamazaki, Rie; Akahoshi, Yu; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Terasako-Saito, Kiriko; Kimura, Shun-ichi; Kikuchi, Misato; Nakasone, Hideki; Kanda, Junya; Kako, Shinichi; Tanihara, Aki; Nishida, Junji; Kanda, Yoshinobu
2015-03-01
Previous studies have shown that most patients lose immunity to measles, mumps, and rubella (MMR) during long-term follow-up after allogeneic hematopoietic stem cell transplantation (HSCT), and immunizations against them have been investigated. However, these previous studies mainly targeted pediatric patients and information in adult patients is still insufficient. We evaluated the immunity to MMR in 45 adult allogeneic HSCT patients. None of these patients received vaccination after HSCT. The seropositive rates at six years after allogeneic HSCT were estimated to be less than 44% for measles, less than 10% for mumps, and less than 36% for rubella. Thirteen of the 16 female patients who were 16-39 years old were negative or equivocal for rubella. Patients who developed grade II-IV acute graft-versus-host disease tended to become seronegative for measles and rubella at two years after HSCT, although the difference was not statistically significant. This study showed that most adult patients lost immunity to MMR after allogeneic HSCT. Although we did not evaluate the safety and efficacy of vaccination in this study, most HSCT guidelines recommend vaccination for HSCT recipients without active chronic graft-versus-host disease or ongoing immunosuppressive therapy at 24 months after HSCT. Immunization against rubella is especially important for female patients of reproductive age. Further studies will be necessary to evaluate the effect of vaccination on the antibody response in adult allogeneic HSCT recipients.
Coates, Ellen A; Waisbord, Silvio; Awale, Jitendra; Solomon, Roma; Dey, Rina
2013-01-01
ABSTRACT In Uttar Pradesh, India, in response to low routine immunization coverage and ongoing poliovirus circulation, a network of U.S.-based CORE Group member and local nongovernmental organizations partnered with UNICEF, creating the Social Mobilization Network (SMNet). The SMNet's goal was to improve access and reduce family and community resistance to vaccination. The partners trained thousands of mobilizers from high-risk communities to visit households, promote government-run child immunization services, track children's immunization history and encourage vaccination of children missing scheduled vaccinations, and mobilize local opinion leaders. Creative behavior change activities and materials promoted vaccination awareness and safety, household hygiene, sanitation, home diarrheal-disease control, and breastfeeding. Program decision-makers at all levels used household-level data that were aggregated at community and district levels, and senior staff provided rapid feedback and regular capacity-building supervision to field staff. Use of routine project data and targeted research findings offered insights into and informed innovative approaches to overcoming community concerns impacting immunization coverage. While the SMNet worked in the highest-risk, poorly served communities, data suggest that the immunization coverage in SMNet communities was often higher than overall coverage in the district. The partners' organizational and resource differences and complementary technical strengths posed both opportunities and challenges; overcoming them enhanced the partnership's success and contributions. PMID:25276518
Rothschild, Uta; Muller, Laurent; Lechner, Axel; Schlösser, Hans A; Beutner, Dirk; Läubli, Heinz; Zippelius, Alfred; Rothschild, Sacha I
2018-05-14
Head and neck squamous cell carcinoma (HNSCC) is a frequent tumour arising from multiple anatomical subsites in the head and neck region. The treatment for early-stage disease is generally single modality, either surgery or radiotherapy. The treatment for locally advanced tumours is multimodal. For recurrent/metastatic HNSCC palliative chemotherapy is standard of care. The prognosis is limited and novel treatment approaches are urgently needed. HNSCC evades immune responses through multiple resistance mechanisms. HNSCC is particularly characterised by an immunosuppressive environment which includes the release of immunosuppressive factors, activation, expansion of immune cells with inhibitory activity and decreased tumour immunogenicity. An in-depth understanding of these mechanisms led to rational design of immunotherapeutic approaches and clinical trials. Currently, only immune checkpoint inhibitors, namely monoclonal antibodies targeting the immune inhibitory receptor programmed cell death 1 (PD-1) and its ligand PD-L1 have proven clinical efficacy in randomised phase III trials. The PD-1 inhibitor nivolumab is the only drug approved for platinum-refractory recurrent/metastatic HNSCC. However, many more immunotherapeutic treatment options are currently under investigation. Ongoing trials are investigating immunotherapeutic approaches also in the curative setting and combination therapies using different immunotherapeutic approaches. This review article summarises current knowledge of the role of the immune system in the development and progression of HNSCC, and provides a comprehensive overview on the development of immunotherapeutic approaches.
Thakur, Aneesh; Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Rose, Fabrice; Andersen, Peter; Christensen, Dennis; Foged, Camilla
2018-05-31
Liquid vaccine dosage forms have limited stability and require refrigeration during their manufacture, distribution and storage. In contrast, solid vaccine dosage forms, produced by for example spray drying, offer improved storage stability and reduced dependence on cold-chain facilities. This is advantageous for mass immunization campaigns for global public health threats, e.g., tuberculosis (TB), and offers cheaper vaccine distribution. The multistage subunit vaccine antigen H56, which is a fusion protein of the Mycobacterium tuberculosis (Mtb) antigens Ag85B, ESAT-6, and Rv2660, has been shown to confer protective efficacy against active TB before and after Mtb exposure in preclinical models, and it is currently undergoing clinical phase 2a testing. In several studies, including a recent study comparing multiple clinically relevant vaccine adjuvants, the T helper type 1 (Th1)/Th17-inducing adjuvant CAF01 was the most efficacious adjuvant for H56 to stimulate protective immunity against Mtb. With the long-term goal of designing a thermostable and self-administrable dry powder vaccine based on H56 and CAF01 for inhalation, we compared H56 spray-dried with CAF01 with the non-spray-dried H56/CAF01 vaccine with respect to their ability to induce systemic Th1, Th17 and humoral responses after subcutaneous immunization. Here we show that spray drying of the H56/CAF01 vaccine results in preserved antigenic epitope recognition and adjuvant activity of CAF01, and the spray-dried, reconstituted vaccine induces antigen-specific Th1, Th17 and humoral immune responses, which are comparable to those stimulated by the non-spray-dried H56/CAF01 vaccine. In addition, the spray-dried and reconstituted H56/CAF01 vaccine promotes similar polyfunctional CD4 + T-cell responses as the non-spray-dried vaccine. Thus, our study provides proof-of-concept that spray drying of the subunit vaccine H56/CAF01 preserves vaccine-induced humoral and cell-mediated immune responses. These results support our ongoing efforts to develop a thermostable, dry powder-based TB vaccine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Immune mediators in the brain and peripheral tissues in autism spectrum disorder
Estes, Myka L.; McAllister, A. Kimberley
2017-01-01
Increasing evidence points to a central role for immune dysregulation in autism spectrum disorder (ASD). Several ASD risk genes encode components of the immune system and many maternal immune system-related risk factors — including autoimmunity, infection and fetal reactive antibodies — are associated with ASD. In addition, there is evidence of ongoing immune dysregulation in individuals with ASD and animal models of this disorder. Recently, several molecular signalling pathways have been identified that link immune activation to ASD phenotypes, including pathways downstream of cytokines, hepatocyte growth factor receptor (MET), MHCI molecules, microglia and complement factors. These findings indicate that the immune system is a point of convergence for various ASD-related genetic and environmental risk factors. PMID:26189694
Spreading of multiple epidemics with cross immunization.
Uekermann, Florian; Sneppen, Kim
2012-09-01
Pathogen-host relationships are the result of an ongoing coevolutionary race where the immune system of the host attempts to eliminate the pathogen, while the successful pathogen mutates to become invisible for the host's immune system. We here propose a minimal pathogen-host evolution model that takes into account cross immunization and allows for evolution of a spatially heterogeneous immune status of a population of hosts. With only the mutation rate as a determining parameter, the model allows us to produce an evolutionary tree of diseases which is highly branched, but hardly ever splits into separate long-lived trunks. Side branches remain short lived and seldom diverge to the extent of losing all cross immunizations.
Ančicová, L; Dugovičová, V; Briestenská, K; Kostolanský, F; Varečková, E; Mistríková, J
Based on our previous results, which confirmed the role of latent gammaherpesvirus infection in alteration of immune homeostasis, we studied the influence of simultaneous infection with gammaherpes and influenza viruses on selected parameters of innate immunity, particularly on the subpopulations of peripheral blood cell leukocytes. The aim was to analyze changes of differential blood cell count of BALB/c mice persistently infected with murine gammaherpesvirus 68 (MHV-68) and subsequently co-infected with influenza A virus (IAV), in comparison to mice infected with MHV-68 or with IAV only. Our results showed that ongoing gammaherpesvirus latency in mice caused a decreased number of leukocytes after acute infection with IAV in comparison to a single acute IAV infection. However, increased proportion of neutrophils was measured in peripheral blood of IAV- infected and co-infected mice. Dual infection had no effect on the proportion of monocytes or basophilic and eosinophilic granulocytes. The number of atypical lymphocytes, usually accompanying the persistent infection with MHV-68, decreased in co-infected mice as a consequence of the acute infection with IAV. Persistent infection with gammaherpesvirus may thus modulate the host immune response to influenza A virus and the acute IAV infection can influence the immune homeostasis established by latent MHV-68 infection.
Meza, Beatriz; Ascencio, Felipe; Sierra-Beltrán, Arturo Pedro; Torres, Javier; Angulo, Carlos
2017-04-01
Helicobacter pylori have colonized the gastric mucosa of half of the population worldwide. This bacterium is classified as a definitive type I carcinogen by the World Health Organization and no effective vaccine has been found against it yet. Thus, a logical and rational vaccine design against H. pylori is necessary. Because of its tremendous complexity and elicited immune responses, the vaccine design should considered multiple antigens to enhance immune-protection, involved in the different stages of pathogenesis besides inducing a specific immune response by B- and T-cell multi-epitopes. In this study, emphasis was placed on the design of a new unique vaccine named CTB-multiHp. In silico techniques were used to design a chimeric construct consisting of cholera toxin B subunit fused to multi-epitope of urease B (residue 148-158, 188-198), cytotoxin-associated gene A (residue 584-602), neutrophil activating protein (residue 4-28), vacuolating cytotoxin gene A (residue 63-81), H. pylori adhesine A (residue77-99), heat shock protein A (residue 32-54) and gamma glutamyl transpeptidase (residue 271-293). The tertiary structure and features of the vaccine were analyzed. The chimeric protein was expressed in Escherichia coli BL21 and the serology analyses indicated that the CTB-multiHp protein produced exhibit immune-reactivity. The results showed that CTB-multiHp could be a good vaccine candidate against H. pylori. Ongoing studies will evaluate the effects of CTB-multiHp against H. pylori infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Moguche, Albanus O.; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P.; Dinh, Crystal; Higdon, Lauren E.; Cambier, C.J.; Sissons, James R.; Gallegos, Alena M.; Fink, Pamela J.
2015-01-01
Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1+ cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1+ cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. PMID:25918344
Tumor Mutational Burden Guides Therapy in a Treatment Refractory POLE-Mutant Uterine Carcinosarcoma.
Bhangoo, Munveer S; Boasberg, Peter; Mehta, Pareen; Elvin, Julia A; Ali, Siraj M; Wu, Winnie; Klempner, Samuel J
2018-05-01
Gynecologic carcinosarcomas, previously known as malignant mixed Müllerian tumors, are uncommon malignancies that demonstrate an aggressive biology and lack a standard therapeutic approach. Molecular analyses have revealed recurrent alterations in chromatin remodeling genes, but clinical support for therapeutic significance is lacking. We prospectively identified a patient with refractory uterine carcinosarcoma whose tumor was subject to molecular profiling at diagnosis and again at radiographic progression. Initial molecular testing did not assess tumor mutational burden, DNA polymerase ɛ ( POLE ), or microsatellite status. After the failure of several lines of chemotherapy, comprehensive genomic profiling of a repeat biopsy identified two missense mutations of the exonuclease domain of POLE (P286R and T323A). Tumor mutational burden was elevated (169 mutations per DNA megabase), consistent with an ultramutator phenotype. As seen in previously reported POLE -endometrioid cases, our patient harbored alterations in PIK3CA , ARID1A , and PTEN and was microsatellite stable, with appreciable tumor-infiltrating lymphocytes. She achieved an ongoing durable response with pembrolizumab. This is the first report of programmed cell death protein 1 response in uterine carcinosarcoma. Uterine carcinosarcoma is an uncommon and aggressive histologic variant of endometrial carcinoma with a poor prognosis.Inactivating DNA polymerase ɛ ( POLE ) mutations have been associated with high tumor mutational burden (TMB) and response to immune checkpoint inhibition.To the authors' knowledge, this is the first report of response to immune checkpoint inhibitor therapy in a patient with uterine carcinosarcoma.This case further supports expanding genomic profiling to include assessment of tumor mutational burden across tumor types, given the potential for immune checkpoint inhibitor therapy in TMB-high tumors. © AlphaMed Press 2018.
Use of m-Health in polio eradication and other immunization activities in developing countries.
Kim, Sara S; Patel, Manish; Hinman, Alan
2017-03-07
Reaching the children that are chronically missed by routine immunization services has been a key pillar of success in achieving progress toward polio eradication. The rapid advancement and accessibility of mobile technology ("mHealth") in low and lower middle income countries provides an important opportunity to apply novel, innovative approaches to provide vaccine services. We sought to document the use and effectiveness of mHealth in immunization programs in low and lower middle income countries. We particularly focused on mHealth approaches used in polio eradication efforts by the Global Polio Eradication Initiative (GPEI) to leverage the knowledge and lessons learned that may be relevant for enhancing ongoing immunization services. In June 2016, the electronic database PubMed was searched for peer reviewed studies that focused on efforts to improve immunization programs (both ongoing immunization services and supplemental immunization activities or campaigns) through mobile technology in low and lower middle income countries. The search yielded 317 papers of which 25 met the inclusion criteria. One additional article was included from the hand searching process. mHealth was used for reminder and recall, monitoring and surveillance, vaccine acceptance, and campaign strategic planning. Mobile phones were the most common mobile device used. Of the 26 studies, 21 of 26 studies (80.8%) reported that mHealth improved immunization efforts. mHealth interventions can effectively enhance immunization services in low and lower middle income countries. With the growing capacity and access to mobile technology, mHealth can be a powerful and sustainable tool for enhancing the reach and impact of vaccine programs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soria, Francesco; Beleni, Andrea I; D'Andrea, David; Resch, Irene; Gust, Kilian M; Gontero, Paolo; Shariat, Shahrokh F
2018-03-16
A small subset of patients treated with immune checkpoint inhibitors manifest atypical patterns of response, the so-called pseudoprogression (PP) and hyperprogression (HP). Their prevalence in urothelial (UC) and renal cancer (RCC) remains, to date, mostly uninvestigated. Therefore, we aimed to provide a summary of the current knowledge about PP and HP during immune checkpoint inhibitor therapy in UC and RCC patients. A systematic medline/pubmed © literature search was performed. The atypical patterns of response to systemic immunotherapy were reviewed. Endpoints were PP and HP in UC and RCC. Tumors respond differently to immunotherapy compared to systemic chemotherapy. To evaluate response to immunotherapy, new guidelines (iRECIST) have been developed. To date, no studies focused on PP in UC and RCC, and the only way to evaluate its role is to take patients who respond to treatment beyond progression as surrogate for pseudoprogressors. PP seems to occur in a non-negligible rate of UC and RCC (from 1.5 to 17% and from 5 to 15%, respectively). The concept of HP, defined as a rapid progression after treatment, just took the first steps, and therefore, data from ongoing trials are awaited to elucidate its impact in genitourinary cancers. PP and HP are not uncommon entities in UC and RCC patients, treated with PD-1/PD-L1 inhibitors. Further investigation is warranted to define which patients are likely to experience PP and could benefit from treatment beyond progression and which ones will instead rapidly experience progression despite treatment and should, therefore, avoid systemic immunotherapy.
Host-mediated impairment of parasite maturation during blood-stage Plasmodium infection
Khoury, David S.; Cromer, Deborah; Akter, Jasmin; Sebina, Ismail; Elliott, Trish; Thomas, Bryce S.; Soon, Megan S. F.; James, Kylie R.; Best, Shannon E.; Haque, Ashraful; Davenport, Miles P.
2017-01-01
Severe malaria and associated high parasite burdens occur more frequently in humans lacking robust adaptive immunity to Plasmodium falciparum. Nevertheless, the host may partly control blood-stage parasite numbers while adaptive immunity is gradually established. Parasite control has typically been attributed to enhanced removal of parasites by the host, although in vivo quantification of this phenomenon remains challenging. We used a unique in vivo approach to determine the fate of a single cohort of semisynchronous, Plasmodium berghei ANKA- or Plasmodium yoelii 17XNL-parasitized red blood cells (pRBCs) after transfusion into naive or acutely infected mice. As previously shown, acutely infected mice, with ongoing splenic and systemic inflammatory responses, controlled parasite population growth more effectively than naive controls. Surprisingly, however, this was not associated with accelerated removal of pRBCs from circulation. Instead, transfused pRBCs remained in circulation longer in acutely infected mice. Flow cytometric assessment and mathematical modeling of intraerythrocytic parasite development revealed an unexpected and substantial slowing of parasite maturation in acutely infected mice, extending the life cycle from 24 h to 40 h. Importantly, impaired parasite maturation was the major contributor to control of parasite growth in acutely infected mice. Moreover, by performing the same experiments in rag1−/− mice, which lack T and B cells and mount weak inflammatory responses, we revealed that impaired parasite maturation is largely dependent upon the host response to infection. Thus, impairment of parasite maturation represents a host-mediated, immune system-dependent mechanism for limiting parasite population growth during the early stages of an acute blood-stage Plasmodium infection. PMID:28673996
Vigneswaran, Yalini; Han, Huifang; De Loera, Roberto; Wen, Yi; Zhang, Xing; Sun, Tao; Mora-Solano, Carolina; Collier, Joel H
2016-08-01
Biomaterials used in the context of tissue engineering or wound repair are commonly designed to be "nonimmunogenic." However, previously it has been observed that self-assembled peptide nanofiber materials are noninflammatory despite their immunogenicity, suggesting that they may be appropriate for use in wound-healing contexts. To test this hypothesis, mice were immunized with epitope-containing peptide self-assemblies until they maintained high antibody titers against the material, then gels of the same peptide assemblies were applied within full-thickness dermal wounds. In three different murine dermal-wounding models with different baseline healing rates, even significantly immunogenic peptide assemblies did not delay healing. Conversely, adjuvanted peptide assemblies, while raising similar antibody titers to unadjuvanted assemblies, did delay wound healing. Analysis of the healing wounds indicated that compared to adjuvanted peptide assemblies, the unadjuvanted assemblies exhibited a progression of the dominant T-cell subset from CD4(+) to CD8(+) cells in the wound, and CD4(+) cell populations displayed a more Th2-slanted response. These findings illustrate an example of a significant antibiomaterial adaptive immune response that does not adversely affect wound healing despite ongoing antibody production. This material would thus be considered "immunologically compatible" in this specific context rather than "nonimmunogenic," a designation that is expected to apply to a range of other protein- and peptide-based biomaterials in wound-healing and tissue-engineering applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1853-1862, 2016. © 2016 Wiley Periodicals, Inc.
Kapetanovic, Meliha C; Kristensen, Lars-Erik; Saxne, Tore; Aktas, Teodora; Mörner, Andreas; Geborek, Pierre
2014-01-02
An adjuvanted pandemic H1N1 influenza (pH1N1) vaccine (Pandemrix) was reported as highly immunogenic resulting in seroconversion in 77 to 94% of adults after administration of a single dose. The aim of the study was to investigate the impact of different anti-rheumatic treatments on antibody response to pH1N1 vaccination in patients with rheumatoid arthritis (RA) and spondylarthropathy (SpA). Patients with arthritis (n = 291; mean age 57 years, 64% women) participated. Hemagglutination inhibition (HI) assay was performed on blood samples drawn before and after a mean (SD) of 8.3 (4) months following vaccination. A positive immune response i.e. seroconversion was defined as negative prevaccination serum and postvaccination HI titer ≥40 or a ≥4-fold increase in HI titer. All patients were divided into predefined groups based on diagnosis (RA or SpA) and ongoing treatment: methotrexate (MTX), anti-tumor necrosis factor (anti-TNF) as monotherapy, MTX combined with anti-TNF, other biologics (abatacept, rituximab, tocilizumab) and non-steroidal anti-inflammatory drugs (NSAIDs)/analgesics. Predictors of positive immune response were studied using logistic regression analysis. The percentage of patients with positive immune response in the different treatment groups was: 1. RA on MTX 42%; 2. RA on anti-TNF monotherapy 53%; 3. RA on anti-TNF + MTX 43%; 4. RA on other biologics (abatacept 20%, rituximab 10% and tocilizumab 50%); 5. SpA on anti-TNF monotherapy 76%; 6. SpA on anti-TNF + MTX 47%; and 7. SpA on NSAIDs/analgesics 59%. RA patients on rituximab had significantly lower (P < 0.001) and SpA on anti-TNF monotherapy significantly better response rates compared to other treatment groups (P 0.001 to 0.033). Higher age (P < 0.001) predicted impaired immune response. Antibody titers 3 to 6 months after vaccination was generally lower compared to those within the first 3 months but no further decrease in titers were observed 6 to 22 months after vaccination. Rituximab treatment severely reduced antibody response to pH1N1 influenza vaccine. The other treatment groups showed acceptable antibody responses. Protective antibody titers could be detected up to 22 months after vaccination in the current patient population, with the exception of rituximab treated patients.
A Hepatocellular Carcinoma Case in a Patient Who had Immunity to Hepatitis B Virus Earlier.
Ates, Ihsan; Kaplan, Mustafa; Demirci, Selim; Altiparmak, Emin
2016-01-01
Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Hepatitis B virus infection is one of the most important etilogical factors of HCC. In this case report, a patient with HCC previously infected and having ongoing immunity against hepatitis B virus will be discussed. Ates I, Kaplan M, Demirci S, Altiparmak E. A Hepatocellular Carcinoma Case in a Patient Who had Immunity to Hepatitis B Virus Earlier. Euroasian J Hepato-Gastroenterol 2016;6(1):82-83.
Chromosomal instability drives metastasis through a cytosolic DNA response.
Bakhoum, Samuel F; Ngo, Bryan; Laughney, Ashley M; Cavallo, Julie-Ann; Murphy, Charles J; Ly, Peter; Shah, Pragya; Sriram, Roshan K; Watkins, Thomas B K; Taunk, Neil K; Duran, Mercedes; Pauli, Chantal; Shaw, Christine; Chadalavada, Kalyani; Rajasekhar, Vinagolu K; Genovese, Giulio; Venkatesan, Subramanian; Birkbak, Nicolai J; McGranahan, Nicholas; Lundquist, Mark; LaPlant, Quincey; Healey, John H; Elemento, Olivier; Chung, Christine H; Lee, Nancy Y; Imielenski, Marcin; Nanjangud, Gouri; Pe'er, Dana; Cleveland, Don W; Powell, Simon N; Lammerding, Jan; Swanton, Charles; Cantley, Lewis C
2018-01-25
Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.
Xu, Melody J; Wu, Susan; Daud, Adil I; Yu, Siegrid S; Yom, Sue S
2018-05-30
Patients with metastatic Merkel cell carcinoma (mMCC) who experience disease progression on immunotherapy have limited additional standard options. Given evidence of synergism between radiation therapy (RT) and immunotherapy, two patients progressing on PD-1 inhibition were referred for short-course RT. Two patients were found to have progressive mMCC on PD-1 inhibitor therapy and were treated with single-fraction palliative RT. Both patients were observed to have local control at irradiated regions, as well as durable abscopal response at unirradiated, out-of-field, sites of metastatic disease. Short-course RT is a compelling strategy that could be a means to augment response in patients with mMCC who show progression on immune checkpoint blockade. Ongoing clinical trials are investigating the relationship between RT and immunotherapy in mMCC.
The genetic predisposition and the interplay of host genetics and gut microbiome in Crohn disease.
Jianzhong, Hu
2014-12-01
Extensive genetic studies have identified more than 140 loci predisposing to Crohn disease (CD). Several major CD susceptibility genes have been shown to impair biological function with regard to immune response to recognizing and clearance of bacterial infection. Recent human microbiome studies suggest that the gut microbiome composition is differentiated in carriers of many risk variants of major CD susceptibility genes. This interplay between host genetics and its associated gut microbiome may play an essential role in the pathogenesis of CD. The ongoing microbiome research is aimed to investigate the detailed host genetics-microbiome interacting mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.
Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J.; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria del Mar
2018-01-01
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail. PMID:29527292
Iñigo-Figueroa, Gemma; Méndez-Estrada, Rosa O.; Quihui-Cota, Luis; Velásquez-Contreras, Carlos A.; Garibay-Escobar, Adriana; Canett-Romero, Rafael; Astiazarán-García, Humberto
2013-01-01
Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA), low-zinc (ZnL), high-zinc (ZnH) and supplemented-zinc (ZnS) diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days). Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS) than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection. PMID:24002196
Koskimaa, Hanna-Mari; Paaso, Anna E; Welters, Marij J P; Grénman, Seija E; Syrjänen, Kari J; van der Burg, Sjoerd H; Syrjänen, Stina M
2014-02-13
Human papillomavirus (HPV) infection has traditionally been regarded as a sexually transmitted disease (STD), but recent evidence implicates that an infected mother can transmit HPV to her newborn during pregnancy, at delivery, perinatal period or later. Given the lack of any studies on HPV-specific immune responses in children, we conducted HPV16-specific cell-mediated immune (CMI) monitoring of the mother-child pairs with known oral and genital HPV follow-up (FU) data since the delivery. In the Finnish Family HPV Study, 10 out of 331 mothers developed incident cervical intraepithelial neoplasia (CIN) during their 14-year FU. Our hypothesis according to the common dogma is that there is no HPV16 specific immune response in offspring of the CIN mother as she/he has not started the sexual life yet. We used overlapping 30-35 mer peptides covering the entire HPV16 E2, E6 and E7 protein sequences. Assays for lymphocyte proliferation capacity, cytokine production and HPV16-specific Foxp3 + CD25 + CD4+ regulatory T-cells were performed. HPV16-specific proliferative T-cell responses were broader in children than in their mothers. Nine of 10 children had responses against both E2 peptide pools compared to only 4 of the 10 mothers. Six of the 10 children and only 2 mothers displayed reactivity to E6 and/or E7. The cytokine levels of IL-2 (p = 0.023) and IL-5 (p = 0.028) induced by all peptide pools, were also higher among children than their mothers. The children of the mothers with incident CIN3 had significantly higher IFN-γ (p = 0.032) and TNF-α (p = 0.008) levels than other children. Our study is the first to show that also children could have HPV-specific immunity. These data indicate that the children have circulating HPV16-specific memory T-cells which might have been induced by previous HPV16 exposure or ongoing HPV 16 infection.
McDermott, David F; Sosman, Jeffrey A; Sznol, Mario; Massard, Christophe; Gordon, Michael S; Hamid, Omid; Powderly, John D; Infante, Jeffrey R; Fassò, Marcella; Wang, Yan V; Zou, Wei; Hegde, Priti S; Fine, Gregg D; Powles, Thomas
2016-03-10
The objective was to determine the safety and clinical activity of atezolizumab (MPDL3280A), a humanized programmed death-ligand 1 (PD-L1) antibody, in renal cell carcinoma (RCC). Exploratory biomarkers were analyzed and associated with outcomes. Seventy patients with metastatic RCC, including clear cell (ccRCC; n = 63) and non-clear cell (ncc; n = 7) histologies, received atezolizumab intravenously every 3 weeks. PD-L1 expression was scored at four diagnostic levels (0/1/2/3) that were based on PD-L1 staining on tumor cells and tumor-infiltrating immune cells (IC) with the SP142 assay. Primary end points were safety and toxicity; secondary end points assessed clinical activity per Response Evaluation Criteria in Solid Tumors version 1.1 and immune-related response criteria. Plasma and tissue were analyzed for potential biomarkers of atezolizumab response. Grade 3 treatment-related and immune-mediated adverse events occurred in 17% and 4% of patients, respectively, and there were no grade 4 or 5 events. Sixty-three patients with ccRCC were evaluable for overall survival (median, 28.9 months; 95% CI, 20.0 months to not reached) and progression-free survival (median, 5.6 months; 95% CI, 3.9 to 8.2 months), and 62 patients were evaluable for objective response rate (ORR; 15%; 95% CI, 7% to 26%). ORR was evaluated on the basis of PD-L1 IC expression (IC1/2/3: n = 33; 18%; 95% CI, 7% to 35%; and IC0: n = 22; 9%; 95% CI, 1% to 29%). The ORR for patients with Fuhrman grade 4 and/or sarcomatoid histology was 22% (n = 18; 95% CI, 6% to 48%). Decreases in circulating plasma markers and acute-phase proteins and an increased baseline effector T-cell-to-regulatory T-cell gene expression ratio correlated with response to atezolizumab. Atezolizumab demonstrated a manageable safety profile and promising antitumor activity in patients with metastatic RCC. Correlative studies identified potential predictive and pharmacodynamic biomarkers. These results have guided ongoing studies and combinations with atezolizumab in RCC. © 2016 by American Society of Clinical Oncology.
Kao, Damian; Lai, Alvina G; Stamataki, Evangelia; Rosic, Silvana; Konstantinides, Nikolaos; Jarvis, Erin; Di Donfrancesco, Alessia; Pouchkina-Stancheva, Natalia; Sémon, Marie; Grillo, Marco; Bruce, Heather; Kumar, Suyash; Siwanowicz, Igor; Le, Andy; Lemire, Andrew; Eisen, Michael B; Extavour, Cassandra; Browne, William E; Wolff, Carsten; Averof, Michalis; Patel, Nipam H; Sarkies, Peter; Pavlopoulos, Anastasios; Aboobaker, Aziz
2016-01-01
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source. DOI: http://dx.doi.org/10.7554/eLife.20062.001 PMID:27849518
Kao, Damian; Lai, Alvina G; Stamataki, Evangelia; Rosic, Silvana; Konstantinides, Nikolaos; Jarvis, Erin; Di Donfrancesco, Alessia; Pouchkina-Stancheva, Natalia; Sémon, Marie; Grillo, Marco; Bruce, Heather; Kumar, Suyash; Siwanowicz, Igor; Le, Andy; Lemire, Andrew; Eisen, Michael B; Extavour, Cassandra; Browne, William E; Wolff, Carsten; Averof, Michalis; Patel, Nipam H; Sarkies, Peter; Pavlopoulos, Anastasios; Aboobaker, Aziz
2016-11-16
The amphipod crustacean Parhyale hawaiensis is a blossoming model system for studies of developmental mechanisms and more recently regeneration. We have sequenced the genome allowing annotation of all key signaling pathways, transcription factors, and non-coding RNAs that will enhance ongoing functional studies. Parhyale is a member of the Malacostraca clade, which includes crustacean food crop species. We analysed the immunity related genes of Parhyale as an important comparative system for these species, where immunity related aquaculture problems have increased as farming has intensified. We also find that Parhyale and other species within Multicrustacea contain the enzyme sets necessary to perform lignocellulose digestion ('wood eating'), suggesting this ability may predate the diversification of this lineage. Our data provide an essential resource for further development of Parhyale as an experimental model. The first malacostracan genome will underpin ongoing comparative work in food crop species and research investigating lignocellulose as an energy source.
Biologic effects of fenbendazole in rats and mice: a review.
Villar, David; Cray, Carolyn; Zaias, Julia; Altman, Norman H
2007-11-01
This review summarizes findings from toxicologic, carcinogenic, immunologic, and metabolic studies on fenbendazole (FBZ). Currently, FBZ is used to treat or prevent pinworm outbreaks in laboratory rodents. Because antiparasitic treatments usually are not part of experimental designs, interactions from the medication on the outcomes of ongoing experiments are a concern. At therapeutic levels, FBZ does not alter the total content of cytochromes P450 but does induce certain hepatic cytochrome P450 isoforms, namely 1A1, 1A2, and 2B1. Although expressed constitutively at low or undetectable levels, these isoforms particularly are known for bioactivating a number of procarcinogens. Lifetime studies in rats have shown that FBZ is not a carcinogen but that it may behave as a tumor promoter when given after certain initiators. Unlike in other animal species, FBZ treatment-associated myelosuppression has not been reported to occur in rodents. The few currently available immunologic studies in mice, including an autoimmune model, have not shown effects on selected immune responses. However, data from other animal species suggest that the ability of B and T lymphocytes to proliferate in the secondary immune response may be suppressed during treatment with FBZ.
Ecological impacts of the deepwater horizon oil spill: implications for immunotoxicity.
Barron, Mace G
2012-01-01
The Deepwater Horizon (DWH) oil spill was the largest environmental disaster and response effort in U.S. history, with nearly 800 million liters of crude oil spilled. Vast areas of the Gulf of Mexico were contaminated with oil, including deep-ocean communities and over 1,600 kilometers of shoreline. Multiple species of pelagic, tidal, and estuarine organisms; sea turtles; marine mammals; and birds were affected, and over 20 million hectares of the Gulf of Mexico were closed to fishing. Several large-scale field efforts were performed, including assessments of shoreline and wildlife oiling and of coastal waters and sediments. The assessment of injuries, damages, and restoration options for the DWH spill is ongoing. Although petroleum and the polycyclic aromatic hydrocarbon component of oils are known to affect the immune systems of aquatic organisms and wildlife, immunotoxicity is not typically assessed during oil spills and has not been a focus of the DHW assessment. The effects of oil spill contaminants on immune responses are variable and often exposure dependent, but immunotoxic effects seem likely from the DHW spill based on the reported effects of a variety of oils on both aquatic and wildlife species.
Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies.
Ni, Ming; Hoffmann, Jean-Marc; Schmitt, Michael; Schmitt, Anita
2016-09-01
Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).
Helminths and immunological tolerance.
Johnston, Chris J C; McSorley, Henry J; Anderton, Stephen M; Wigmore, Stephen J; Maizels, Rick M
2014-01-27
Current immunosuppression regimens for solid-organ transplantation have shown disappointing efficacy in the prevention of chronic allograft rejection and carry unacceptable risks including toxicity, neoplasia, and life-threatening infection. Achievement of immunological tolerance (long-term antigen unresponsiveness in an immunocompetent host) presents the exciting prospect of freedom from immunosuppression for transplant recipients. It is now 60 years since the first demonstration of immunological tolerance in animal models of transplantation, but translation into routine clinical practice remains elusive. Helminth parasites may provide novel strategies toward achieving this goal. Helminths are remarkably successful parasites: they currently infect more than one quarter of the world's population. It is now well established that the parasites' success is the result of active immunomodulation of their hosts' immune response. Although this primarily secures ongoing survival of the parasites, helminth-induced immunomodulation can also have a number of benefits for the host. Significant reductions in the prevalence of allergy and autoimmune conditions among helminth-infected populations are well recognized and there is now a significant body of evidence to suggest that harmful immune responses to alloantigens may be abrogated as well. Here, we review all existing studies of helminth infection and transplantation, explore the mechanisms involved, and discuss possible avenues for future translation to clinical practice.
The split personality of NKT cells in malignancy, autoimmune and allergic disorders
Subleski, Jeff J; Jiang, Qun; Weiss, Jonathan M; Wiltrout, Robert H
2011-01-01
NKT cells are a heterogeneous subset of specialized, self-reactive T cells, with innate and adaptive immune properties, which allow them to bridge innate and adaptive immunity and profoundly influence autoimmune and malignant disease outcomes. NKT cells mediate these activities through their ability to rapidly express pro- and anti-inflammatory cytokines that influence the type and magnitude of the immune response. Not only do NKT cells regulate the functions of other cell types, but experimental evidence has found NKT cell subsets can modulate the functions of other NKT subsets. Depending on underlying mechanisms, NKT cells can inhibit or exacerbate autoimmunity and malignancy, making them potential targets for disease intervention. NKT cells can respond to foreign and endogenous antigenic glycolipid signals that are expressed during pathogenic invasion or ongoing inflammation, respectively, allowing them to rapidly react to and influence a broad array of diseases. In this article we review the unique development and activation pathways of NKT cells and focus on how these attributes augment or exacerbate autoimmune disorders and malignancy. We also examine the growing evidence that NKT cells are involved in liver inflammatory conditions that can contribute to the development of malignancy. PMID:21995570
Immune checkpoint inhibitors in urothelial cancer: recent updates and future outlook.
Gopalakrishnan, Dharmesh; Koshkin, Vadim S; Ornstein, Moshe C; Papatsoris, Athanasios; Grivas, Petros
2018-01-01
Bladder cancer is the sixth most common cancer in the US and most tumors have urothelial (transitional cell) histology. Platinum-based chemotherapy has long been the standard of care in advanced disease, but long-term outcomes have largely remained poor. Since the peak incidence of bladder cancer is in the eighth decade of life and beyond, medical comorbidities may often limit the use of chemotherapy. Immune checkpoint inhibitors with their favorable toxicity profiles and notable antitumor activity have ushered in a new era in the treatment of advanced urothelial cancer (UC) with five agents targeting the PD-1/PD-L1 pathway being recently approved by the US Food and Drug administration. A plethora of clinical trials are ongoing in diverse disease settings, employing agents targeting PD-1/PD-L1 and related immune checkpoint pathways. While reactivating anti-tumor immunity, these agents may lead to a unique constellation of immune-related adverse events, which may warrant discontinuation of therapy and potential use of immunosuppression. Novel combinations with various treatment modalities and optimal sequencing of active therapies are being investigated in prospective clinical trials and retrospective registries. At the era of precision molecular medicine, and since patients do not respond uniformly to these agents, there is a growing need for identification and validation of biomarkers that can accurately predict treatment response and assist in patient selection. This review discusses current updates and future directions of immunotherapy in advanced UC.
Schröder, J M; Reich, K; Kabashima, K; Liu, F T; Romani, N; Metz, M; Kerstan, A; Lee, P H A; Loser, K; Schön, M P; Maurer, M; Stoitzner, P; Beissert, S; Tokura, Y; Gallo, R L
2006-11-01
Our views of the skin immunity theatre are undergoing constant change. These not only reflect paradigm shifts in general immunology and skin biology, but also have profound clinical implications, which call for strategic changes in dermatological therapy. Nowhere can this be witnessed at a greater level of instructiveness and fascination than when addressing the question posed by this new Controversies feature. Thus, after a very long period of dominance by T cells and Langerhans cells as 'lead actors' on the skin immunity stage, the lowly keratinocyte has recently made an astounding theatrical appearance as a key protagonist of the innate skin immunity system, which may control even acquired skin immune responses. Further enhancing dramatic complexity and tension, the mast cell has entered as an additional actor claiming centre stage, and the epidermal Langerhans cell has slipped in a surprise appearance as the chief agent of immunotolerance. May you, esteemed reader, enjoy the spectacle offered here by selected immunodermatology authorities who double as 'stage managers' pushing their respective favourite actors into the limelight. You get everything you may expect from a good performance - complete with the impresario's overture that lures you into the theatre and sets the stage, competing divas, recently discovered new talents and even the critic's digest while the performance is still ongoing. By the time the curtain drops, you will have reached your own, independent conclusions on how to answer the title question of this play - at least for the time being...
(te noe' fo veer)If you have hepatitis B virus infection (HBV; an ongoing liver infection) and ... taking medications to treat HIV infection, your immune system may get stronger and begin to fight other ...
Heiser, Ryan A; Snyder, Christopher M; St Clair, James; Wysocki, Lawrence J
2011-07-01
A fundamental problem in immunoregulation is how CD4(+) T cells react to immunogenic peptides derived from the V region of the BCR that are created by somatic mechanisms, presented in MHC II, and amplified to abundance by B cell clonal expansion during immunity. BCR neo Ags open a potentially dangerous avenue of T cell help in violation of the principle of linked Ag recognition. To analyze this issue, we developed a murine adoptive transfer model using paired donor B cells and CD4 T cells specific for a BCR-derived peptide. BCR peptide-specific T cells aborted ongoing germinal center reactions and impeded the secondary immune response. Instead, they induced the B cells to differentiate into short-lived extrafollicular plasmablasts that secreted modest quantities of Ig. These results uncover an immunoregulatory process that restricts the memory pathway to B cells that communicate with CD4 T cells via exogenous foreign Ag.
Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne
2012-01-01
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Prevention of infection in children and adolescents with primary immunodeficiency disorders.
Papadopoulou-Alataki, Efimia; Hassan, Amel; Davies, E Graham
2012-12-01
Primary Immunodeficiency diseases (PIDs) are a heterogenous group of inherited disorders that may involve one or multiple components of the immune system. PIDs are uncommon, chronic and severe disorders, in which patients cannot mount a sufficiently protective immune response, leading to an increased susceptibility to infections. This review addresses the current practices for the prevention of infection in children and adolescents with PIDs, particular covering immunisations and antimicrobial prophylaxis. Over recent years, there have been major advances in molecular and cellular understanding in the field of PIDs. Many different disorders are recognised with variable spectra of infection susceptibility depending on the particular aspects of the immune response that are affected. Immunoglobulin prophylaxis is the mainstay of treatment for PIDs and provides passive protection. Prophylactic antimicrobials are efficacious in children and adolescents with predominant defects in primary T cell immunodeficiency diseases and phagocytic disorders, and also with predominant defects in antibody production. Prophylactic antibiotics are suggested for patients with antibody deficiency diseases if recurrent infections exceed three per year, if severe infections occur despite adequate immunoglobulin replacement and in hypogammaglobulinaemic patients who have bronchiectasis. Certain immunisations are effective in antibody deficiencies, T cell deficiencies, complement deficiencies and phagocytic disorders. There are remarkably few published data relating to clinical management aimed at preventing infectious complications in children and adolescents with PIDs. The cornerstones of the prevention of infection in most PID patients are: antimicrobial prophylaxis, appropriate vaccination, immunoglobulin replacement, for the more severe cases, and regular ongoing follow-up.
Principles of immunology and its nuances in the central nervous system.
Dunn, Gavin P; Okada, Hideho
2015-11-01
Cancer immunotherapy represents the biggest change in the cancer treatment landscape in the last several years. Indeed, the clinical successes in several cancer types have generated widespread enthusiasm that immune-based treatments may influence the management of patients with malignant brain tumors as well. A number of promising clinical trials in this area are currently ongoing in neuro-oncology, and a wave of additional efforts are sure to follow. However, the basic immunology underlying immunotherapy-and the nuances unique to the immunobiology in the central nervous system-is often not in the daily lexicon of the practicing neuro-oncologist and neurosurgeon. To this end, here we provide a timely and working overview of key principles of fundamental immunology as a pragmatic context for understanding where therapeutic efforts may act in the cellular dynamics of the immune response. Moreover, we review the issues of lymphatic drainage, antigen presentation, and the blood-brain barrier as considerations that are germane to thinking about immunity to tumors arising in the brain. Together, these topics will provide a foundation for the exciting efforts in immune-based treatments that will hopefully provide real benefit to brain tumor patients. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Shih, Andrew W; Sheppard, Jo-Ann I; Warkentin, Theodore E
2017-10-05
One of the standard distinctions between type 1 (non-immune) and type 2 (immune-mediated) heparin-induced thrombocytopenia (HIT) is the transience of thrombocytopenia: type 1 HIT is viewed as early-onset and transient thrombocytopenia, with platelet count recovery despite continuing heparin administration. In contrast, type 2 HIT is viewed as later-onset (i. e., 5 days or later) thrombocytopenia in which it is generally believed that platelet count recovery will not occur unless heparin is discontinued. However, older reports of type 2 HIT sometimes did include the unexpected observation that platelet counts could recover despite continued heparin administration, although without information provided regarding changes in HIT antibody levels in association with platelet count recovery. In recent years, some reports of type 2 HIT have confirmed the observation that platelet count recovery can occur despite continuing heparin administration, with serological evidence of waning levels of HIT antibodies ("seroreversion"). We now report two additional patient cases of type 2 HIT with platelet count recovery despite ongoing therapeutic-dose (1 case) or prophylactic-dose (1 case) heparin administration, in which we demonstrate concomitant waning of HIT antibody levels. We further review the literature describing this phenomenon of HIT antibody seroreversion and platelet count recovery despite continuing heparin administration. Our observations add to the concept that HIT represents a remarkably transient immune response, including sometimes even when heparin is continued.
Boyer, Jean D.; Robinson, Tara M.; Kutzler, Michele A.; Vansant, Gordon; Hokey, David A.; Kumar, Sanjeev; Parkinson, Rose; Wu, Ling; Sidhu, Maninder K.; Pavlakis, George N.; Felber, Barbara K.; Brown, Charles; Silvera, Peter; Lewis, Mark G.; Monforte, Joseph; Waldmann, Thomas A.; Eldridge, John; Weiner, David B.
2007-01-01
The cell-mediated immune profile induced by a recombinant DNA vaccine was assessed in the simian/HIV (SHIV) and macaque model. The vaccine strategy included coimmunization of a DNA-based vaccine alone or in combination with an optimized plasmid encoding macaque IL-15 (pmacIL-15). We observed strong induction of vaccine-specific IFN-γ-producing CD8+ and CD4+ effector T cells in the vaccination groups. Animals were subsequently challenged with 89.6p. The vaccine groups were protected from ongoing infection, and the IL-15 covaccinated group showed a more rapidly controlled infection than the group treated with DNA vaccine alone. Lymphocytes isolated from the group covaccinated with pmacIL-15 had higher cellular proliferative responses than lymphocytes isolated from the macaques that received SHIV DNA alone. Vaccine antigen activation of lymphocytes was also studied for a series of immunological molecules. Although mRNA for IFN-γ was up-regulated after antigen stimulation, the inflammatory molecules IL-8 and MMP-9 were down-regulated. These observed immune profiles are potentially reflective of the ability of the different groups to control SHIV replication. This study demonstrates that an optimized IL-15 immune adjuvant delivered with a DNA vaccine can impact the cellular immune profile in nonhuman primates and lead to enhanced suppression of viral replication. PMID:18000037
Progress toward measles elimination--Western Pacific Region, 2009-2012.
2013-06-07
In 2005, the World Health Organization (WHO) Regional Committee for the Western Pacific Region (WPR) resolved that WPR should aim to eliminate measles by 2012. The recommended measles elimination strategies in WPR include 1) achieving and maintaining high (≥95%) coverage with 2 doses of measles-containing vaccine (MCV) through routine immunization services and by implementing supplementary immunization activities (SIAs), when required; 2) conducting high-quality, case-based measles surveillance; 3) ensuring high-quality laboratory surveillance, with timely and accurate testing of specimens to confirm or discard suspected cases and detect measles virus for genotyping and molecular analysis; and 4) establishing and maintaining measles outbreak preparedness for rapid response and ensuring appropriate case management. This report updates the previous report and describes progress toward eliminating measles in WPR during 2009-2012. During this period, measles incidence reached a historic low, decreasing by 83%, from 34.0 to 5.9 cases per million population. However, to achieve measles elimination in WPR, additional efforts are needed to strengthen routine immunization services in countries and areas with <95% coverage with the routine first (MCV1) or second dose of MCV (MCV2), to introduce a MCV2 dose in the four remaining countries and areas that do not yet have a routine 2-dose MCV schedule, and to use SIAs to close immunity gaps among measles-susceptible populations in countries and areas that have ongoing measles virus transmission.
Something's fishy. [Marine epidemics may signal environmental threats from pollutants such as PCBs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raloff, J.
1994-07-02
Marine epidemics may signal environmental threats to the immune system of marine animals such as seals, dolphins and turtles. A number of studies are discussed in this article, with particular emphasis on an ongoing study which makes the connection between marine pollution and the decrease in immune system functioning in harbor seals. The effects on the whole marine ecosystem are discussed.
Pryke, Kara M.; Abraham, Jinu; Sali, Tina M.; Gall, Bryan J.; Archer, Iris; Liu, Andrew; Bambina, Shelly; Baird, Jason; Gough, Michael; Chakhtoura, Marita; Haddad, Elias K.; Kirby, Ilsa T.; Nilsen, Aaron; Streblow, Daniel N.; Hirsch, Alec J.; Smith, Jessica L.
2017-01-01
ABSTRACT The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity. PMID:28465426
Wang, Haiyang; Yu, Xiaoqing; Fan, Yun
2017-06-20
With the breakthroughs achieved of programmed death-1 (PD-1)/PD-L1 inhibitors monotherapy as first-line and second-line treatment in advanced non-small cell lung cancer (NSCLC), the treatment strategy is gradually evolving and optimizing. Immune combination therapy expands the benefit population and improves the curative effect. A series of randomized phase III trials are ongoing. In this review, we discuss the prospect and current situation of immune checkpoint inhibitors in first-line treatment in advanced NSCLC patients.
A Hepatocellular Carcinoma Case in a Patient Who had Immunity to Hepatitis B Virus Earlier
Kaplan, Mustafa; Demirci, Selim; Altiparmak, Emin
2016-01-01
ABSTRACT Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Hepatitis B virus infection is one of the most important etilogical factors of HCC. In this case report, a patient with HCC previously infected and having ongoing immunity against hepatitis B virus will be discussed. How to cite this article Ates I, Kaplan M, Demirci S, Altiparmak E. A Hepatocellular Carcinoma Case in a Patient Who had Immunity to Hepatitis B Virus Earlier. Euroasian J Hepato-Gastroenterol 2016;6(1):82-83. PMID:29201732
Wilson, Rhonda H.; Whitehead, Gregory S.; Nakano, Hideki; Free, Meghan E.; Kolls, Jay K.; Cook, Donald N.
2009-01-01
Rationale: In humans, immune responses to inhaled aeroallergens develop in the lung and draining lymph nodes. Many animal models of asthma bypass this route and instead use intraperitoneal injections of allergen using aluminum hydroxide as an adjuvant. Objectives: We investigated whether allergic sensitization through the airway elicits immune responses qualitatively different than those arising in the peritoneum. Methods: Mice were sensitized to allergen through the airway using low-dose LPS as an adjuvant, or through the peritoneum using aluminum hydroxide as an adjuvant. After a single allergen challenge, ELISA and flow cytometry were used to measure cytokines and leukocyte subsets. Invasive measurements of airway resistance were used to measure allergen-induced airway hyperreactivity (AHR). Measurements and Main Results: Sensitization through the peritoneum primed strong Th2 responses and eosinophilia, but not AHR, after a single allergen challenge. By contrast, allergic sensitization through the airway primed only modest Th2 responses, but strong Th17 responses. Th17 cells homed to the lung and released IL-17 into the airway on subsequent encounter with inhaled allergen. As a result, these mice developed IL-17–dependent airway neutrophilia and AHR. This AHR was neutrophil-dependent because it was abrogated in CXCR2-deficient mice and also in wild-type mice receiving a neutrophil-depleting antibody. Individually, neither IL-17 nor ongoing Th2 responses were sufficient to confer AHR, but together they acted synergistically to promote neutrophil recruitment, eosinophil recruitment and AHR. Conclusions: Allergic sensitization through the airway primes modest Th2 responses but strong Th17 responses that promote airway neutrophilia and acute AHR. These findings support a causal role for neutrophils in severe asthma. PMID:19661246
Majewska-Szczepanik, Monika; Askenase, Philip W.; Lobo, Francis M.; Marcińska, Katarzyna; Wen, Li; Szczepanik, Marian
2017-01-01
Background Subcutaneous allergen-specific immunotherapy is a standard route for the immunotherapy of allergic diseases. It modulates the course of allergy and can generate long-term remission. However, subcutaneous allergen-specific immunotherapy can also induce anaphylaxis in some patients, and therefore additional routes of administration should be investigated to improve the safety and tolerability of immunotherapy. Objective We sought to determine whether epicutaneous treatment with antigen in the presence of a Toll-like receptor 9 agonist can suppress TH2-mediated responses in an antigen-specific manner. Methods Epicutaneous immunization was performed by applying a skin patch soaked with ovalbumin (OVA) plus CpG, and its suppressor activity was determined by using the mouse model of atopic dermatitis. Finally, adoptive cell transfers were implemented to characterize the regulatory cells that are induced by epicutaneous immunization. Results Epicutaneous immunization with OVA and CpG reduces the production of OVA-specific IgE and increases the synthesis of OVA-specific IgG2a antibodies in an antigen-specific manner. Moreover, eosinophil peroxidase activity in the skin and production of IL-4, IL-5, IL-10, and IL-13 are suppressed. The observed reduction of IgE synthesis is transferable with T-cell receptor (TCR) αβ+CD4+CD25− cells, whereas IgG2a production is dependent on both TCRαβ+ and TCRγδ+ T cells. Further experiments show that the described phenomenon is myeloid differentiation primary response 88, IFN-γ, and IL-17A dependent. Finally, the results suggest that epicutaneous immunization with OVA and CpG decreases the synthesis of OVA-specific IgE and skin eosinophil peroxidase activity in mice with ongoing skin allergy. Conclusion Epicutaneous application of protein antigen in the presence of adjuvant could be an attractive needle-free and self-administered immunotherapy for allergic diseases. PMID:26810716
Chowdhury, P S; Chamoto, K; Honjo, T
2018-02-01
Programmed death 1 (PD-1) is an immune checkpoint molecule that negatively regulates T-cell immune function through the interaction with its ligand PD-L1. Blockage of this interaction unleashes the immune system to fight cancer. Immunotherapy using PD-1 blockade has led to a paradigm shift in the field of cancer drug discovery, owing to its durable effect against a wide variety of cancers with limited adverse effects. A brief history and development of PD-1 blockade, from the initial discovery of PD-1 to the recent clinical output of this therapy, have been summarized here. Despite its tremendous clinical success rate over other cancer treatments, PD-1 blockade has its own pitfall; a significant fraction of patients remains unresponsive to this therapy. The key to improve the PD-1 blockade therapy is the development of combination therapies. As this approach has garnered worldwide interest, here, we have summarized the recent trends in the development of PD-1 blockade-based combination therapies and the ongoing clinical trials. These include combinations with checkpoint inhibitors, radiation therapy, chemotherapy and several other existing cancer treatments. Importantly, FDA has approved PD-1 blockade agent to be used in combination with either CTLA-4 blockade or chemotherapy. Responsiveness to the PD-1 blockade therapy is affected by tumour and immune system-related factors. The role of the immune system, especially T cells, in determining the responsiveness has been poorly studied compared with those factors related to the tumour side. Energy metabolism has emerged as one of the important regulatory mechanisms for the function and differentiation of T cells. We have documented here the recent results regarding the augmentation of PD-1 blockade efficacy by augmenting mitochondrial energy metabolism of T cell. © 2017 The Association for the Publication of the Journal of Internal Medicine.
Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis
Saas, Philippe; Bonnefoy, Francis; Toussirot, Eric; Perruche, Sylvain
2017-01-01
Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft-versus-host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4+ T cells (Treg). Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA), methotrexate and tumor necrosis factor (TNF) inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA. PMID:29062314
Harnessing Apoptotic Cell Clearance to Treat Autoimmune Arthritis.
Saas, Philippe; Bonnefoy, Francis; Toussirot, Eric; Perruche, Sylvain
2017-01-01
Early-stage apoptotic cells possess immunomodulatory properties. Proper apoptotic cell clearance during homeostasis has been shown to limit subsequent immune responses. Based on these observations, early-stage apoptotic cell infusion has been used to prevent unwanted inflammatory responses in different experimental models of autoimmune diseases or transplantation. Moreover, this approach has been shown to be feasible without any toxicity in patients undergoing allogeneic hematopoietic cell transplantation to prevent graft- versus -host disease. However, whether early-stage apoptotic cell infusion can be used to treat ongoing inflammatory disorders has not been reported extensively. Recently, we have provided evidence that early-stage apoptotic cell infusion is able to control, at least transiently, ongoing collagen-induced arthritis. This beneficial therapeutic effect is associated with the modulation of antigen-presenting cell functions mainly of macrophages and plasmacytoid dendritic cells, as well as the induction of collagen-specific regulatory CD4 + T cells (Treg). Furthermore, the efficacy of this approach is not altered by the association with two standard treatments of rheumatoid arthritis (RA), methotrexate and tumor necrosis factor (TNF) inhibition. Here, in the light of these observations and recent data of the literature, we discuss the mechanisms of early-stage apoptotic cell infusion and how this therapeutic approach can be transposed to patients with RA.
Moguche, Albanus O; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P; Dinh, Crystal; Higdon, Lauren E; Cambier, C J; Sissons, James R; Gallegos, Alena M; Fink, Pamela J; Urdahl, Kevin B
2015-05-04
Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1(+) cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1(+) cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. © 2015 Moguche et al.
Ahluwalia, Neil; Shea, Barry S.
2014-01-01
Idiopathic pulmonary fibrosis (IPF) is a devastating disease, with a median survival as short as 3 years from the time of diagnosis and no pharmacological therapies yet approved by the U.S. Food and Drug Administration. To address the great unmet need for effective IPF therapy, a number of new drugs have recently been, or are now being, evaluated in clinical trials. The rationales for most of these therapeutic candidates are based on the current paradigm of IPF pathogenesis, in which recurrent injury to the alveolar epithelium is believed to drive aberrant wound healing responses, resulting in fibrosis rather than repair. Here we discuss drugs in recently completed or currently ongoing phase II and III IPF clinical trials in the context of their putative mechanisms of action and the aberrant repair processes they are believed to target: innate immune activation and polarization, fibroblast accumulation and myofibroblast differentiation, or extracellular matrix deposition and stiffening. Placed in this context, the positive results of recently completed trials of pirfenidone and nintedanib, and results that will come from ongoing trials of other agents, should provide valuable insights into the still-enigmatic pathogenesis of this disease, in addition to providing benefits to patients with IPF. PMID:25090037
Ferrante, Jason; Hunter, Margaret; Wellehan, James F.X.
2018-01-01
Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees (Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α, and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher (P<0.05) in manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.
Ferrante, Jason A; Hunter, Margaret E; Wellehan, James F X
2018-04-01
Cytokines have important roles in the mammalian response to viral and bacterial infections, trauma, and wound healing. Because of early cytokine production after physiologic stresses, the regulation of messenger RNA (mRNA) transcripts can be used to assess immunologic responses before changes in protein production. To detect and assess early immune changes in endangered Florida manatees ( Trichechus manatus latirostris), we developed and validated a panel of quantitative PCR assays to measure mRNA transcription levels for the cytokines interferon (IFN)-γ; interleukin (IL)-2, -6, and -10; tumor necrosis factor-α; and the housekeeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and β-actin (reference genes). Assays were successfully validated using blood samples from free-ranging, apparently healthy manatees from the east and west coasts of central Florida, US. No cytokine or housekeeping gene transcription levels were significantly different among age classes or sexes. However, the transcription levels for GAPDH, IL-2, IL-6, and IFN-γ were significantly higher ( P<0.05) in manatees from the east coast of Florida than they were from those from the west coast. We found IL-10 and β-actin to be consistent between sites and identified β-actin as a good candidate for use as a reference gene in future studies. Our assays can aid in the investigation of manatee immune response to physical trauma and novel or ongoing environmental stressors.
Flies, Andrew S.; Lyons, A. Bruce; Corcoran, Lynn M.; Papenfuss, Anthony T.; Murphy, James M.; Knowles, Graeme W.; Woods, Gregory M.; Hayball, John D.
2016-01-01
The devil facial tumor disease (DFTD) is caused by clonal transmissible cancers that have led to a catastrophic decline in the wild Tasmanian devil (Sarcophilus harrisii) population. The first transmissible tumor, now termed devil facial tumor 1 (DFT1), was first discovered in 1996 and has been continually transmitted to new hosts for at least 20 years. In 2015, a second transmissible cancer [devil facial tumor 2 (DFT2)] was discovered in wild devils, and the DFT2 is genetically distinct and independent from the DFT1. Despite the estimated 136,559 base pair substitutions and 14,647 insertions/deletions in the DFT1 genome as compared to two normal devil reference genomes, the allograft tumors are not rejected by the host immune system. Additionally, genome sequencing of two sub-strains of DFT1 detected greater than 15,000 single-base substitutions that were found in only one of the DFT1 sub-strains, demonstrating the transmissible tumors are evolving and that generation of neoantigens is likely ongoing. Recent evidence in human clinical trials suggests that blocking PD-1:PD-L1 interactions promotes antitumor immune responses and is most effective in cancers with a high number of mutations. We hypothesized that DFTD cells could exploit the PD-1:PD-L1 inhibitory pathway to evade antitumor immune responses. We developed recombinant proteins and monoclonal antibodies (mAbs) to provide the first demonstration that PD-1 binds to both PD-L1 and PD-L2 in a non-placental mammal and show that PD-L1 is upregulated in DFTD cells in response to IFN-γ. Immunohistochemistry showed that PD-L1 is rarely expressed in primary tumor masses, but low numbers of PD-L1+ non-tumor cells were detected in the microenvironment of several metastatic tumors. Importantly, in vitro testing suggests that PD-1 binding to PD-L1 and PD-L2 can be blocked by mAbs, which could be critical to understanding how the DFT allografts evade the immune system. PMID:28018348
Andersson, I M; Lorentzen, J C; Ericsson-Dahlstrand, A
2000-11-01
Endogenous corticosterone secreted during immune challenge restricts the inflammatory process and genetic variations in this neuroendocrine-immune dialogue have been suggested to influence an individuals sensitivity to develop chronic inflammatory disorders. We have tested inflammation-susceptible Dark Agouti (DA) rats and resistant, MHC-identical, PVG.1AV1 rats for their abilities to secrete corticosterone in response to acute challenge with bacterial lipopolysaccharide (LPS) or a prolonged activation of the nonspecific immune system with arthritogenic yeast beta-glucan. Intravenous injection of LPS triggered equipotent secretion of corticosterone in both rat strains. Interestingly, peak concentrations of corticosterone did not differ significantly between the strains. Intradermal injection of beta-glucan caused severe, monophasic, polyarthritis in DA rats while PVG.1AV1 responded with significantly milder joint inflammation. Importantly, serial sampling of plasma from glucan-injected DA and PVG.1AV1 rats did not reveal elevated concentrations of plasma corticosterone at any time from days 1-30 postinjection compared to preinjection values, in spite of the ongoing inflammatory process. Interestingly, adrenalectomized, beta-glucan-challenged DA rats responded with an aggravated arthritic process, indicating an anti-inflammatory role for the basal levels of corticosterone that were detected in intact DA rats challenged with beta-glucan. Moreover, substitution with subcutaneous corticosterone-secreting pellets, yielding moderate stress-levels, significantly attenuated the arthritic response. In contrast, adrenalectomized and glucan-challenged PVG.1AV1 rats did not respond with an elevated arthritic response, suggesting that these rats contain the arthritic process via corticosterone-independent mechanisms. In conclusion, the hypothalamic-pituitary-adrenal axis in both rat strains exhibited strong activation after challenge with LPS. This contrasted to the basal corticosterone levels observed strains during a prolonged arthritic process. No correlation between ability to secrete corticosterone and susceptibility to inflammation could be demonstrated. Basal levels of endogenous corticosterone appeared to restrain inflammation in beta-glucan-challenged DA rats whereas resistance to inflammation in PVG.1AV1 rats may be mediated via corticosterone-independent mechanisms.
Immunosuppression by hypoxic cell radiosensitizers: a phenomenon of potential clinical importance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockwell, S.; Kapp, D.S.
1982-06-01
The nitroimidazoles metronidazole, misonidazol, and desmethyl misonidazole are currently undergoing clinical trials as possible adjuncts to radiotherapy. Ongoing clinical trials are evaluating the effectiveness of these agents and also documenting the pharmacokinetics and toxicities of radiosensitizing doses of these drugs in man. A variety of toxic effects have been noted in man, including anorexia, nausea and vomiting, peripheral neuropathy, central nervous system symptoms, ototoxicity, allergy, and fear. Laboratory studies have also suggested that these agents have potential to be mutagenic, carcinogenic, and teratogenic. In the editorial presented, the author attempts to draw attention to an additional toxic effect of nitroimidazolesmore » - the inhibition of cell-mediated immune responses. (JMT)« less
Extremely Painful Multifocal Acquired Predominant Axonal Sensorimotor Neuropathy of the Upper Limb.
Lieba-Samal, Doris; van Eijk, Jeroen J J; van Rosmalen, Marieke H J; van Balken, Irene M F; Verrips, Aad; Mostert, Jop; Pillen, Sigrid; van Alfen, Nens
2018-06-01
The differential diagnosis of upper extremity mononeuritis multiplex includes neuralgic amyotrophy, vasculitic neuropathy, and Lewis-Sumner syndrome. We describe 3 patients initially suspected of neuralgic amyotrophy, who had an extremely painful, protracted, progressive disease course, not fitting one of these established diagnoses. Nerve ultrasonography showed focal caliber changes of the roots, plexus, and limb nerves. Electromyography showed predominant multifocal axonopathy. Ongoing autoimmune neuropathy was suspected. Steroid treatment provided temporary relief, and intravenous immunoglobulin A sustained pain decrease and functional improvement. These patients appear to have extremely painful axonal inflammatory neuropathy, with a good response to immune-modulating treatment. © 2017 by the American Institute of Ultrasound in Medicine.
Annual Progress Report Fiscal Year 1982.
1982-09-30
255 Work Jnit No. 82/43 (FY82,O) A\\dolescent Immunity to Varicella and Cytomegalovirus .............. 256 Work Unit No. 82/45 (FY82,O) V!1-26 In...with technetium-99m bone agent(Infarct avid) radiopharmaceuticals. Presented at the New Mexico Society of Internal Medicine, Albuquerque NM, 11-12 Dec...No: 82/43 Status: Ongoing Title: Adolescent Immunity to Varicella and Cytomegalovirus Start Date: Est Comp Date: Principal Investigator: Facility: LTC
Immunology and Immunotherapy of Head and Neck Cancer
Ferris, Robert L.
2015-01-01
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. PMID:26351330
Grant, R W; Mariani, R A; Vieira, V J; Fleshner, M; Smith, T P; Keylock, K T; Lowder, T W; McAuley, E; Hu, L; Chapman-Novakofski, K; Woods, J A
2008-08-01
Based upon a prior cross-sectional study, we hypothesized that an aerobic exercise intervention in sedentary older adults would improve a primary T cell-dependent immune response. Participants were a subset of older subjects from a large, ongoing exercise intervention study who were randomly assigned to either an aerobic exercise (Cardio, n=30, 68.9+0.8 years) or flexibility/balance (Flex, n=20, 69.9+1.2 years) intervention. The intervention consisted of either three aerobic sessions for 30-60 min at 55-70% VO(2 max) or two 60 min flexibility/balance sessions weekly for 10 months. Eight months into the intervention, samples were collected before intramuscular administration of KLH (125 microg), followed by sampling at 2, 3, and 6 weeks post-KLH. Serum anti-KLH IgM, IgG1, and IgG2 was measured by ELISA. Physiological and psychosocial measures were also assessed pre- and post-intervention. While there was no difference in the anti-KLH IgG2 response between groups, Cardio displayed significantly (p<0.05) higher anti-KLH IgG1 (at weeks 2, 3, and 6 post) and IgM responses when compared to Flex. Despite cardiovascular intervention-induced improvement in physical fitness (approximately 11% vs. 1% change in VO(2 peak) in Cardio vs. Flex, respectively), we found no relationship between improved fitness and enhanced anti-KLH antibody responses. Optimism, perceived stress, and affect were all associated with enhanced immune response. We have shown for the first time that cardiovascular training in previously sedentary elderly results in significantly higher primary IgG1 and IgM antibody responses, while having no effect on IgG2 production.
Yasuda, Takuwa; Ura, Takehiro; Taniguchi, Masaru; Yoshida, Hisahiro
2016-01-01
Skin is protected by a tough but flexible multilayered barrier and is a front line for immune responses against invading particles. For many years now, skin has been a tissue where certain vaccines are injected for the prevention of infectious disease, however, the detailed mechanisms of the skin immune response are not yet well understood. Using thin and small injection needles, we carefully injected OVA into a restricted region of mouse skin, i.e., intradermal (ID), and examined the antibody response in comparison with subcutaneous (SC) injection or epicutaneous patch administration of OVA. Epicutaneous patches induced a high IgE response against OVA, but IgG production was low. High IgG production was induced by both ID and SC injection, moreover, ID injection induced higher IgG production without any adjutants. Furthermore, OVA-specific IgE production was diminished by ID injection. We found that ID injection could efficiently stimulate skin resident DCs, drive Th1-biased conditions and diminish IgE production. The ID injection response was regulated by Langerin+ dermal DCs, because OVA was taken up mainly by these cells and, after transiently deleting them, the IgE response was no longer diminished and IgG1 production was enhanced. We also tested whether ID injection might be an effective allergy treatment by attempting to inhibit ongoing IgE production in mice with experimentally induced high serum IgE levels. Multiple ID injections of OVA were shown to prevent elevation of serum OVA-specific IgE after repeated allergen challenge. In contrast, SC OVA injection could only transiently inhibit the OVA-specific IgE production. These findings indicated that ID injection results in higher induction of antigen-specific IgG, and thus may be useful for vaccine delivery with little or no adjuvant components. Moreover, the observed diminishment of IgE and induction of Th1-biased immune responses suggest that ID may be a useful injection route for allergy immunotherapy. PMID:27973543
Bilbo, Staci D; Block, Carina L; Bolton, Jessica L; Hanamsagar, Richa; Tran, Phuong K
2018-01-01
Immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy, e.g. in response to infection, may disrupt the normal expression of immune molecules during critical stages of neural development and thereby contribute to the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). This hypothesis has in large part been shepherded by the work of Dr. Paul Patterson and colleagues, which has elegantly demonstrated that a single viral infection or injection of a viral mimetic to pregnant mice significantly and persistently impacts offspring immune and nervous system function, changes that underlie ASD-like behavioral dysfunction including social and communication deficits. Subsequent studies by many labs - in humans and in non-human animal models - have supported the hypothesis that ongoing disrupted immune molecule expression and/or neuroinflammation contributes to at least a significant subset of ASD. The heterogeneous clinical and biological phenotypes observed in ASD strongly suggest that in genetically susceptible individuals, environmental risk factors combine or synergize to create a tipping or threshold point for dysfunction. Importantly, animal studies showing a link between maternal immune activation (MIA) and ASD-like outcomes in offspring involve different species and diverse environmental factors associated with ASD in humans, beyond infection, including toxin exposures, maternal stress, and maternal obesity, all of which impact inflammatory or immune pathways. The goal of this review is to highlight the broader implications of Dr. Patterson's work for the field of autism, with a focus on the impact that MIA by diverse environmental factors has on fetal brain development, immune system development, and the pathophysiology of ASD. Copyright © 2017 Elsevier Inc. All rights reserved.
Personalized medicine in idiopathic pulmonary fibrosis: facts and promises.
Spagnolo, Paolo; Tzouvelekis, Argyris; Maher, Toby M
2015-09-01
In this article, we summarize and discuss the most recent literature on personalized medicine in idiopathic pulmonary fibrosis (IPF), a chronic progressive and almost invariably lethal disease of unknown cause. This review is timely as major advances in our understanding of disease pathobiology and improvements in molecular techniques have recently led to the identification of potential surrogates of diagnosis, prognosis and response to treatment. The most promising and advanced candidate biomarkers are presented based on their proposed mechanistic pathways (e.g. alveolar epithelial cell dysfunction, immune dysregulation, microbiome, extracellular matrix remodeling and fibroproliferation, epigenetic markers and metabolomics). Recent data suggest that components of the immune system may contribute to the development of IPF. A potential role for infections as a cofactor in disease development and progression or as a trigger in disease exacerbation has also recently been proposed. Clinical management of IPF is unsatisfactory because of limited availability of truly effective therapies, lack of accurate predictors of disease behavior and absence of simple short-term measures of therapeutic response. A number of putative biomarkers have been identified in patients with IPF, although none has been validated to the standard necessary for their use in either therapeutic trials or clinical practice. Currently, ongoing prospective longitudinal studies will hopefully permit such validation.
Petrovsky, Nikolai; Cooper, Peter D.
2015-01-01
There is an ongoing need for new adjuvants to facilitate development of vaccines against HIV, tuberculosis, malaria and cancer, amongst many others. Unfortunately, the most potent adjuvants are often associated with toxicity and safety issues. Inulin, a plant-derived polysaccharide, has no immunological activity in its native soluble form but when crystallised into stable microparticles (delta inulin) acquires potent adjuvant activity. Delta inulin has been shown to enhance humoral and cellular immune responses against a broad range of co-administered viral, bacterial, parasitic and toxin antigens. Inulin normally crystallises as large heterogeneous particles with a broad size distribution and variable solubility temperatures. To ensure reproducible delta inulin particles with a consistent size distribution and temperature of solubility, a current Good Manufacturing Practice (cGMP) process was designed to produce Advax™ adjuvant. In its cGMP form, Advax™ adjuvant has proved successful in human trials of vaccines against seasonal and pandemic influenza, hepatitis B and insect sting anaphylaxis, enhancing antibody and T-cell responses while at the same time being safe and well tolerated. Advax™ adjuvant thereby represents a novel human adjuvant with positive effects on both humoral and cellular immunity. This review describes the discovery and development of Advax™ adjuvant and research into its unique mechanism of action. PMID:26407920
Helminths and Immunological Tolerance
Johnston, Chris J.C.; McSorley, Henry J.; Anderton, Stephen M.; Wigmore, Stephen J.; Maizels, Rick M.
2014-01-01
Current immunosuppression regimens for solid-organ transplantation have shown disappointing efficacy in the prevention of chronic allograft rejection and carry unacceptable risks including toxicity, neoplasia, and life-threatening infection. Achievement of immunological tolerance (long-term antigen unresponsiveness in an immunocompetent host) presents the exciting prospect of freedom from immunosuppression for transplant recipients. It is now 60 years since the first demonstration of immunological tolerance in animal models of transplantation, but translation into routine clinical practice remains elusive. Helminth parasites may provide novel strategies toward achieving this goal. Helminths are remarkably successful parasites: they currently infect more than one quarter of the world’s population. It is now well established that the parasites’ success is the result of active immunomodulation of their hosts’ immune response. Although this primarily secures ongoing survival of the parasites, helminth-induced immunomodulation can also have a number of benefits for the host. Significant reductions in the prevalence of allergy and autoimmune conditions among helminth-infected populations are well recognized and there is now a significant body of evidence to suggest that harmful immune responses to alloantigens may be abrogated as well. Here, we review all existing studies of helminth infection and transplantation, explore the mechanisms involved, and discuss possible avenues for future translation to clinical practice. PMID:24025322
Current clinical trials testing combinations of immunotherapy and radiation.
Crittenden, Marka; Kohrt, Holbrook; Levy, Ronald; Jones, Jennifer; Camphausen, Kevin; Dicker, Adam; Demaria, Sandra; Formenti, Silvia
2015-01-01
Preclinical evidence of successful combinations of ionizing radiation with immunotherapy has inspired testing the translation of these results to the clinic. Interestingly, the preclinical work has consistently predicted the responses encountered in clinical trials. The first example came from a proof-of-principle trial started in 2001 that tested the concept that growth factors acting on antigen-presenting cells improve presentation of tumor antigens released by radiation and induce an abscopal effect. Granulocyte-macrophage colony-stimulating factor was administered during radiotherapy to a metastatic site in patients with metastatic solid tumors to translate evidence obtained in a murine model of syngeneic mammary carcinoma treated with cytokine FLT-3L and radiation. Subsequent clinical availability of vaccines and immune checkpoint inhibitors has triggered a wave of enthusiasm for testing them in combination with radiotherapy. Examples of ongoing clinical trials are described in this report. Importantly, most of these trials include careful immune monitoring of the patients enrolled and will generate important data about the proimmunogenic effects of radiation in combination with a variety of immune modulators, in different disease settings. Results of these studies are building a platform of evidence for radiotherapy as an adjuvant to immunotherapy and encourage the growth of this novel field of radiation oncology. Copyright © 2015 Elsevier Inc. All rights reserved.
Póvoa, Tiago F; Oliveira, Edson R A; Basílio-de-Oliveira, Carlos A; Nuovo, Gerard J; Chagas, Vera L A; Salomão, Natália G; Mota, Ester M; Paes, Marciano V
2016-01-01
Dengue disease is an acute viral illness caused by dengue virus (DENV) that can progress to hemorrhagic stages leading to about 20000 deaths every year worldwide. Despite many clinical investigations regarding dengue, the immunopathogenic process by which infected patients evolve to the severe forms is not fully understood. Apart from differences in virulence and the antibody cross reactivity that can potentially augment virus replication, imbalanced cellular immunity is also seen as a major concern in the establishment of severe dengue. In this context, the investigation of cellular immunity and its products in dengue fatal cases may provide valuable data to help revealing dengue immunopathogenesis. Here, based in four dengue fatal cases infected by the serotype 3 in Brazil, different peripheral organs (livers, lungs and kidneys) were studied to evaluate the presence of cell infiltrates and the patterns of local cytokine response. The overall scenario of the studied cases revealed a considerable systemic involvement of infection with mononuclear cells targeted to all of the evaluated organs, as measured by immunohistochemistry (IHC). Quantification of cytokine-expressing cells in peripheral tissues was also performed to characterize the ongoing inflammatory process by the severe stage of the disease. Increased levels of IFN-γ- and TNF-α-expressing cells in liver, lung and kidney samples of post-mortem subjects evidenced a strong pro-inflammatory induction in these tissues. The presence of increased RANTES-producing cell numbers in all analyzed organs suggested a possible link between the clinical status and altered vascular permeability. Co-staining of DENV RNA and IFN-γ or TNF-α using in situ hibridization and IHC confirmed the virus-specific trigger of the pro-inflammatory response. Taken together, this work provided additional evidences that corroborated with the traditional theories regarding the "cytokine storm" and the occurrence of uneven cellular immunity in response to DENV as major reasons for progress to severe disease.
Persisting PET-CT lesion activity and M. tuberculosis mRNA after pulmonary tuberculosis cure
Malherbe, Stephanus T.; Shenai, Shubhada; Ronacher, Katharina; Loxton, Andre G.; Dolganov, Gregory; Kriel, Magdalena; Van, Tran; Chen, Ray Y.; Warwick, James; Via, Laura E.; Song, Taeksun; Lee, Myungsun; Schoolnik, Gary; Tromp, Gerard; Alland, David; Barry, Clifton E.; Winter, Jill; Walzl, Gerhard
2016-01-01
The absence of a gold standard to determine when antibiotics have induced sterilizing cure confounds the development of new approaches to treat pulmonary tuberculosis (PTB). We detected PET-CT imaging response patterns consistent with active disease along with the presence of Mycobacterium tuberculosis mRNA in sputum and bronchoalveolar lavage samples in a substantial proportion of adult, HIV-negative PTB patients after standard 6-month treatment plus one year follow-up, including patients with a durable cure and others who later developed recurrent disease. The presence of MTB mRNA in the context of non-resolving and intensifying lesions on PET-CT might indicate ongoing transcription, suggesting that even apparently curative PTB treatment may not eradicate all organisms in most patients. This suggests an important complementary role for the immune response in maintaining a disease-free state. Sterilizing drugs or host-directed therapies and better treatment response markers are likely needed for the successful development of improved and shortened PTB treatment strategies. PMID:27595324
2014-01-01
Background Human papillomavirus (HPV) infection has traditionally been regarded as a sexually transmitted disease (STD), but recent evidence implicates that an infected mother can transmit HPV to her newborn during pregnancy, at delivery, perinatal period or later. Given the lack of any studies on HPV-specific immune responses in children, we conducted HPV16-specific cell-mediated immune (CMI) monitoring of the mother-child pairs with known oral and genital HPV follow-up (FU) data since the delivery. In the Finnish Family HPV Study, 10 out of 331 mothers developed incident cervical intraepithelial neoplasia (CIN) during their 14-year FU. Our hypothesis according to the common dogma is that there is no HPV16 specific immune response in offspring of the CIN mother as she/he has not started the sexual life yet. Methods We used overlapping 30–35 mer peptides covering the entire HPV16 E2, E6 and E7 protein sequences. Assays for lymphocyte proliferation capacity, cytokine production and HPV16-specific Foxp3 + CD25 + CD4+ regulatory T-cells were performed. Results HPV16-specific proliferative T-cell responses were broader in children than in their mothers. Nine of 10 children had responses against both E2 peptide pools compared to only 4 of the 10 mothers. Six of the 10 children and only 2 mothers displayed reactivity to E6 and/or E7. The cytokine levels of IL-2 (p = 0.023) and IL-5 (p = 0.028) induced by all peptide pools, were also higher among children than their mothers. The children of the mothers with incident CIN3 had significantly higher IFN-γ (p = 0.032) and TNF-α (p = 0.008) levels than other children. Conclusions Our study is the first to show that also children could have HPV-specific immunity. These data indicate that the children have circulating HPV16-specific memory T-cells which might have been induced by previous HPV16 exposure or ongoing HPV 16 infection. PMID:24524328
Human Memory CD4+ T Cell Immune Responses against Giardia lamblia
Sørnes, Steinar; Peirasmaki, Dimitra; Svärd, Staffan; Langeland, Nina
2015-01-01
The intestinal protozoan parasite Giardia lamblia may cause severe prolonged diarrheal disease or pass unnoticed as an asymptomatic infection. T cells seem to play an important role in the immune response to Giardia infection, and memory responses may last years. Recently, TH17 responses have been found in three animal studies of Giardia infection. The aim of this study was to characterize the human CD4+ T cell responses to Giardia. Peripheral blood mononuclear cells (PBMCs) were obtained from 21 returning travelers with recent or ongoing giardiasis and 12 low-risk healthy controls and stimulated in vitro with Giardia lamblia proteins. Production of tumor necrosis factor alpha (TNF-α), gamma interferon, interleukin-17A (IL-17A), IL-10, and IL-4 was measured in CD4+ effector memory (EM) T cells after 24 h by flow cytometry. After 6 days of culture, activation and proliferation were measured by flow cytometry, while an array of inflammatory cytokine levels in supernatants were measured with multiplex assays. We found the number of IL-17A-producing CD4+ EM T cells, as well as that of cells simultaneously producing both IL-17A and TNF-α, to be significantly elevated in the Giardia-exposed individuals after 24 h of antigen stimulation. In supernatants of PBMCs stimulated with Giardia antigens for 6 days, we found inflammation-associated cytokines, including 1L-17A, as well as CD4+ T cell activation and proliferation, to be significantly elevated in the Giardia-exposed individuals. We conclude that symptomatic Giardia infection in humans induces a CD4+ EM T cell response of which IL-17A production seems to be an important component. PMID:26376930
Immunology and Immunotherapy of Head and Neck Cancer.
Ferris, Robert L
2015-10-10
The immune system plays a key role in the development, establishment, and progression of head and neck squamous cell carcinoma (HNSCC). A greater understanding of the dysregulation and evasion of the immune system in the evolution and progression of HNSCC provides the basis for improved therapies and outcomes for patients. HNSCC cells evade the host immune system through manipulation of their own immunogenicity, production of immunosuppressive mediators, and promotion of immunomodulatory cell types. Through the tumor's influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth. This article provides a brief overview of key components of the immune infiltrating cells in the tumor microenvironment, reviewing immunological principles related to head and neck cancer, including the concept of cancer immunosurveillance and immune escape. Current immunotherapeutic strategies and emerging results from ongoing clinical trials are presented. © 2015 by American Society of Clinical Oncology.
Temporal-logic analysis of microglial phenotypic conversion with exposure to amyloid-β.
Anastasio, Thomas J
2015-02-01
Alzheimer Disease (AD) remains a leading killer with no adequate treatment. Ongoing research increasingly implicates the brain's immune system as a critical contributor to AD pathogenesis, but the complexity of the immune contribution poses a barrier to understanding. Here I use temporal logic to analyze a computational specification of the immune component of AD. Temporal logic is an extension of logic to propositions expressed in terms of time. It has traditionally been used to analyze computational specifications of complex engineered systems but applications to complex biological systems are now appearing. The inflammatory component of AD involves the responses of microglia to the peptide amyloid-β (Aβ), which is an inflammatory stimulus and a likely causative AD agent. Temporal-logic analysis of the model provides explanations for the puzzling findings that Aβ induces an anti-inflammatory and well as a pro-inflammatory response, and that Aβ is phagocytized by microglia in young but not in old animals. To potentially explain the first puzzle, the model suggests that interferon-γ acts as an "autocrine bridge" over which an Aβ-induced increase in pro-inflammatory cytokines leads to an increase in anti-inflammatory mediators also. To potentially explain the second puzzle, the model identifies a potential instability in signaling via insulin-like growth factor 1 that could explain the failure of old microglia to phagocytize Aβ. The model predicts that augmentation of insulin-like growth factor 1 signaling, and activation of protein kinase C in particular, could move old microglia from a neurotoxic back toward a more neuroprotective and phagocytic phenotype.
Amyloid-ß-directed immunotherapy for Alzheimer's disease
Lannfelt, L; Relkin, N R; Siemers, E R
2014-01-01
Lannfelt L, Relkin NR, Siemers ER (Uppsala University, Uppsala, Sweden; Weill Cornell Medical College, New York, NY; and Eli Lilly and Co., Indianapolis, IN, USA). Amyloid-ß-directed immunotherapy for Alzheimer’s disease. (Key Symposium). J Intern Med 2014; 275: 284–295. Current treatment options for Alzheimer's disease (AD) are limited to medications that reduce dementia symptoms. Given the rapidly ageing populations in most areas of the world, new therapeutic interventions for AD are urgently needed. In recent years, a number of drug candidates targeting the amyloid-ß (Aß) peptide have advanced into clinical trials; however, most have failed because of safety issues or lack of efficacy. The Aß peptide is central to the pathogenesis, and immunotherapy against Aß has attracted considerable interest. It offers the possibility to reach the target with highly specific drugs. Active immunization and passive immunization have been the most widely studied approaches to immunotherapy of AD. A favourable aspect of active immunization is the capacity for a small number of vaccinations to generate a prolonged antibody response. A potential disadvantage is the variability in the antibody response across patients. The potential advantages of passive immunotherapy include the reproducible delivery of a known amount of therapeutic antibodies to the patient and rapid clearance of those antibodies if side effects develop. A disadvantage is the requirement for repeated infusions of antibodies over time. After more than a decade of research, anti-amyloid immunotherapy remains one of the most promising emerging strategies for developing disease-modifying treatments for AD. In this review, we examine the presently ongoing Aß-directed immunotherapies that have passed clinical development Phase IIa. PMID:24605809
Checkpoint inhibitors in endometrial cancer: preclinical rationale and clinical activity.
Mittica, Gloria; Ghisoni, Eleonora; Giannone, Gaia; Aglietta, Massimo; Genta, Sofia; Valabrega, Giorgio
2017-10-27
Treatment of advanced and recurrent endometrial cancer (EC) is still an unmet need for oncologists and gynecologic oncologists. The Cancer Genome Atlas Research Network (TCGA) recently provided a new genomic classification, dividing EC in four subgroups. Two types of EC, the polymerase epsilon (POLE)-ultra-mutated and the microsatellite instability-hyper-mutated (MSI-H), are characterized by a high mutation rate providing the rationale for a potential activity of checkpoint inhibitors. We analyzed all available evidence supporting the role of tumor microenvironment (TME) in EC development and the therapeutic implications offered by immune checkpoint inhibitors in this setting. We performed a review on Pubmed with Mesh keywords 'endometrial cancer' and the name of each checkpoint inhibitor discussed in the article. The same search was operated on clinicaltrial.gov to identify ongoing clinical trials exploring PD-1/PD-L1 and CTLA-4 axis in EC, particularly focusing on POLE-ultra-muted and MSI-H cancer types. POLE-ultra-mutated and MSI-H ECs showed an active TME expressing high number of neo-antigens and an elevated amount of tumor infiltrating lymphocytes (TILs). Preliminary results from a phase-1 clinical trial (KEYNOTE-028) demonstrated antitumor activity of Pembrolizumab in EC. Moreover, both Pembrolizumab and Nivolumab reported durable clinical responses in POLE-ultra-mutated patients. Immune checkpoint inhibitors are an attractive option in POLE-ultra-mutated and MSI-H ECs. Future investigations in these subgroups include combinations of checkpoints inhibitors with chemotherapy and small tyrosine kinase inhibitors (TKIs) to enhance a more robust intra-tumoral immune response.
Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas
Müller, Sören; Agnihotri, Sameer; Shoger, Karsen E.; Myers, Max I.; Chaparala, Srilakshmi; Villanueva, Clarence R.; Chattopadhyay, Ansuman; Butterfield, Lisa H.; Okada, Hideho; Pollack, Ian F.
2018-01-01
Low-grade gliomas (LGGs) are the most common brain tumor affecting children. We recently reported an early phase clinical trial of a peptide-based vaccine, which elicited consistent antigen-specific T cell responses in pediatric LGG patients. Additionally, we observed radiologic responses of stable disease (SD), partial response (PR), and near-complete/complete response (CR) following therapy. To identify biomarkers of clinical response in peripheral blood, we performed RNA sequencing on PBMC samples collected at multiple time points. Patients who showed CR demonstrated elevated levels of T cell activation markers, accompanied by a cytotoxic T cell response shortly after treatment initiation. At week 34, patients with CR demonstrated both IFN signaling and Poly-IC:LC adjuvant response patterns. Patients with PR demonstrated a unique, late monocyte response signature. Interestingly, HLA-V expression, before or during therapy, and an early monocytic hematopoietic response were strongly associated with SD. Finally, low IDO1 and PD-L1 expression before treatment and early elevated levels of T cell activation markers were associated with prolonged progression-free survival. Overall, our data support the presence of unique peripheral immune patterns in LGG patients associated with different radiographic responses to our peptide vaccine immunotherapy. Future clinical trials, including our ongoing phase II LGG vaccine immunotherapy, should monitor these response patterns. PMID:29618666
Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas
Work, Thierry M.; Balazs, George H.; Rameyer, Robert; Chang, S.P.; Berestecky, J.
2000-01-01
Seven immature green turtles, Chelonia mydas, captured from Kaneohe Bay on the island of Oahu were used to evaluate methods for assessing their immune response. Two turtles each were immunized intramuscularly with egg white lysozyme (EWL) in Freund’s complete adjuvant, Gerbu, or ISA-70; a seventh turtle was immunized with saline only and served as a control. Humoral immune response was measured with an indirect enzyme linked immunosorbent assay (ELISA). Cell-mediated immune response was measured using in vitro cell proliferation assays (CPA) using whole blood or peripheral blood mononuclear cells (PBM) cultured with concanavalin A (ConA), phytohaemagglutinin (PHA), or soluble egg EWL antigen. All turtles, except for one immunized with Gerbu and the control, produced a detectable humoral immune response by 6 weeks which persisted for at least 14 weeks after a single immunization. All turtles produced an anamnestic humoral immune response after secondary immunization. Antigen specific cell-mediated immune response in PBM was seen in all turtles either after primary or secondary immunization, but it was not as consistent as humoral immune response; antigen specific cell-mediated immune response in whole blood was rarely seen. Mononuclear cells had significantly higher stimulation indices than whole blood regardless of adjuvant, however, results with whole blood had lower variability. Both Gerbu and ISA-70 appeared to potentiate the cell-mediated immune response when PBM or whole blood were cultured with PHA. This is the first time cell proliferation assays have been compared between whole blood and PBM for reptiles. This is also the first demonstration of antigen specific cell-mediated response in reptiles. Cell proliferation assays allowed us to evaluate the cell-mediated immune response of green turtles. However, CPA may be less reliable than ELISA for detecting antigen specific immune response. Either of the three adjuvants appears suitable to safely elicit a detectable immune response in green turtles.
Ethics and Childhood Vaccination Policy in the United States
Sturm, Lynne A.; Zimet, Gregory D.; Meslin, Eric M.
2016-01-01
Childhood immunization involves a balance between parents’ autonomy in deciding whether to immunize their children and the benefits to public health from mandating vaccines. Ethical concerns about pediatric vaccination span several public health domains, including those of policymakers, clinicians, and other professionals. In light of ongoing developments and debates, we discuss several key ethical issues concerning childhood immunization in the United States and describe how they affect policy development and clinical practice. We focus on ethical considerations pertaining to herd immunity as a community good, vaccine communication, dismissal of vaccine-refusing families from practice, and vaccine mandates. Clinicians and policymakers need to consider the nature and timing of vaccine-related discussions and invoke deliberative approaches to policymaking. PMID:26691123
A minimal model for multiple epidemics and immunity spreading.
Sneppen, Kim; Trusina, Ala; Jensen, Mogens H; Bornholdt, Stefan
2010-10-18
Pathogens and parasites are ubiquitous in the living world, being limited only by availability of suitable hosts. The ability to transmit a particular disease depends on competing infections as well as on the status of host immunity. Multiple diseases compete for the same resource and their fate is coupled to each other. Such couplings have many facets, for example cross-immunization between related influenza strains, mutual inhibition by killing the host, or possible even a mutual catalytic effect if host immunity is impaired. We here introduce a minimal model for an unlimited number of unrelated pathogens whose interaction is simplified to simple mutual exclusion. The model incorporates an ongoing development of host immunity to past diseases, while leaving the system open for emergence of new diseases. The model exhibits a rich dynamical behavior with interacting infection waves, leaving broad trails of immunization in the host population. This obtained immunization pattern depends only on the system size and on the mutation rate that initiates new diseases.
Vacchelli, Erika; Galluzzi, Lorenzo; Eggermont, Alexander; Fridman, Wolf Hervé; Galon, Jerome; Sautès-Fridman, Catherine; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido
2012-01-01
Toll-like receptors (TLRs) have first been characterized for their capacity to detect conserved microbial components like lipopolysaccharide (LPS) and double-stranded RNA, resulting in the elicitation of potent (innate) immune responses against invading pathogens. More recently, TLRs have also been shown to promote the activation of the cognate immune system against cancer cells. Today, only three TLR agonists are approved by FDA for use in humans: the bacillus Calmette-Guérin (BCG), monophosphoryl lipid A (MPL) and imiquimod. BCG (an attenuated strain of Mycobacterium bovis) is mainly used as a vaccine against tuberculosis, but also for the immunotherapy of in situ bladder carcinoma. MPL (derived from the LPS of Salmonella minnesota) is included in the formulation of Cervarix®, a vaccine against human papillomavirus-16 and -18. Imiquimod (a synthetic imidazoquinoline) is routinely employed for actinic keratosis, superficial basal cell carcinoma, and external genital warts (condylomata acuminata). In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating FDA-approved TLR agonists as off-label medications for cancer therapy. PMID:23162757
Advances in urothelial bladder cancer immunotherapy, dawn of a new age of treatment.
Aoun, Fouad; Rassy, Elie El; Assi, Tarek; Albisinni, Simone; Katan, Joseph
2017-03-01
Urothelial bladder cancer displays a high number of somatic mutations that render these tumors more responsive to immunotherapy. Several immunotherapeutic agents were examined in patients with advanced stage urothelial bladder cancer and recently atezolizumab - an (PDL-1) immune checkpoint inhibitor antibody - was approved for the treatment of patients with metastatic disease progressing after platinum combination therapy. Despite the great success, there are still some unanswered questions and ongoing trials that are in progress to define the role of combination therapy and sequencing strategies. The objective of our manuscript is to summarize the most recent data on immunotherapy in advanced urothelial cancer. Current challenges and future perspectives of immunotherapy as a monotherapy or in combination strategies will also be analyzed.
Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...
Vasir, Baldev; Uhl, Lynne; Blotta, Simona; MacNamara, Claire; Somaiya, Poorvi; Wu, Zekui; Joyce, Robin; Levine, James D.; Dombagoda, Dilani; Yuan, Yan Emily; Francoeur, Karen; Fitzgerald, Donna; Richardson, Paul; Weller, Edie; Anderson, Kenneth; Kufe, Donald; Munshi, Nikhil; Avigan, David
2011-01-01
We have developed a tumor vaccine in which patient-derived myeloma cells are chemically fused with autologous dendritic cells (DCs) such that a broad spectrum of myeloma-associated antigens are presented in the context of DC-mediated costimulation. We have completed a phase 1 study in which patients with multiple myeloma underwent serial vaccination with the DC/multiple myeloma fusions in conjunction with granulocyte-macrophage colony-stimulating factor. DCs were generated from adherent mononuclear cells cultured with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-α and fused with myeloma cells obtained from marrow aspirates. Vaccine generation was successful in 17 of 18 patients. Successive cohorts were treated with 1 × 106, 2 × 106, and 4 × 106 fusion cells, respectively, with 10 patients treated at the highest dose level. Vaccination was well tolerated, without evidence of dose-limiting toxicity. Vaccination resulted in the expansion of circulating CD4 and CD8 lymphocytes reactive with autologous myeloma cells in 11 of 15 evaluable patients. Humoral responses were documented by SEREX (Serologic Analysis of Recombinant cDNA Expression Libraries) analysis. A majority of patients with advanced disease demonstrated disease stabilization, with 3 patients showing ongoing stable disease at 12, 25, and 41 months, respectively. Vaccination with DC/multiple myeloma fusions was feasible and well tolerated and resulted in antitumor immune responses and disease stabilization in a majority of patients. PMID:21030562
Booster dose vaccination for preventing hepatitis B.
Poorolajal, Jalal; Hooshmand, Elham
2016-06-07
Antibodies against hepatitis B surface antigen (HBsAg) wane over time following hepatitis B immunisation; hence, it is unclear whether people vaccinated in three-dose or four-dose schedules of the hepatitis B vaccine are still immune when the hepatitis B surface antibody (anti-HBs) level in their body is undetectable, or lower than the level usually considered protective. This question may potentially be answered indirectly by measuring the anamnestic immune response to a booster dose of vaccine. The term 'booster' (or revaccination) refers to an additional dose of hepatitis B vaccine (HBV) given some time post-primary vaccination to induce immune memory and improve protection against hepatitis B virus (HBV) infection. To assess the benefits and harms of booster dose hepatitis B vaccination, more than five years after the primary vaccination, for preventing HBV infection in healthy individuals previously vaccinated with the hepatitis B vaccine, and with hepatitis B surface antibody (anti-HBs) levels below 10 mIU/mL. We searched the Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, Science Citation Index Expanded, conference databases, and reference lists of articles to January 2016. We also contacted authors of articles. In addition, we searched ClinicalTrials.gov and the World Health Organization (WHO) International Clinical Trials Registry Platform for ongoing trials (May 2016). Randomised clinical trials addressing anamnestic immune response to a booster dose of hepatitis B vaccine, more than five years after the primary vaccination, in apparently healthy participants, vaccinated in a three-dose or four-dose schedule of the hepatitis B vaccine during the primary vaccination, without receiving an additional dose or immunoglobulin. Both review authors decided if the identified studies met the inclusion criteria or not. Primary outcomes included the proportion of participants with anamnestic immune response in non-protected participants and signs of HBV infection. Secondary outcomes were the proportion of participants that developed local and systemic adverse events following a booster dose injection. We planned to report the weighted proportion with 95% confidence intervals (CIs). There were no eligible randomised clinical trials fulfilling the inclusion criteria of this review. We were unable to include any randomised clinical trials on the topic; only randomised clinical trials will be able to provide an answer as to whether a booster dose vaccination is able to protect against hepatitis B infection.
Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric
2015-06-23
F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.
Clinical evaluation of compounds targeting PD-1/PD-L1 pathway for cancer immunotherapy.
Lu, Jing; Lee-Gabel, Linda; Nadeau, Michelle C; Ferencz, Thomas M; Soefje, Scott A
2015-12-01
Significant enthusiasm currently exists for new immunotherapeutic strategies: blocking the interaction between programmed death-1 receptor on T-cells and programmed death-ligand 1 on tumor cells to boost immune system stimulation to fight cancer. Immunomodulation with the antiprogrammed death-1/programmed death-ligand 1 monoclonal antibodies has shown to mediate tumor shrinkage and extend overall survival from several pivotal phase I/II studies in melanoma, renal cell carcinoma, and non-small cell lung cancer. This has prompted multiple large ongoing phase III trials with the expectation for fast-track FDA approvals to satisfy unmet medical needs. Compounds targeting the programmed death-1 pathway that are in clinical trials fall into two major categories, namely antiprogrammed death-1 antibodies: Nivolumab, MK-3475, and pidilizumab; and antiprogrammed death-ligand 1 antibodies: MPDL3280A, BMS-936559, MEDI4736, and MSB0010718C. We reviewed the clinical efficacy and safety of each compound based upon major registered clinical trials and published clinical data. Overall, response rate of more than 20% is consistently seen across all these trials, with maximal response of approximately 50% achieved by certain single antiprogrammed death-1 agents or when used in combination with cytotoxic T-lymphocyte antigen-4 blockade. The responses seen are early, durable, and have continued after treatment discontinuation. Immune-related adverse events are the most common side effects seen in these clinical trials. Overall, the skin and gastrointestinal tract are the most common organ systems affected by these compounds while hepatic, endocrine, and neurologic events are less frequent. These side effects are low grade, manageable, and typically resolve within a relatively short time frame with a predictable resolution pattern given proper management. We therefore propose detailed guidelines for management of major immune-related adverse events that are anticipated with antiprogrammed death-1/programmed death-ligand 1 therapies based on general experience with other monoclonal antibodies and the established management algorithms for immune-related adverse events for cytotoxic T-lymphocyte antigen-4 blockade with ipilimumab. We anticipate that the antiprogrammed death-1 strategy will become a viable and crucial clinical strategy for cancer therapy. © The Author(s) 2014.
Zipplies, Johanna K; Hauck, Stefanie M; Eberhardt, Christina; Hirmer, Sieglinde; Amann, Barbara; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A
2012-09-01
In equine recurrent uveitis (ERU), immune reactions are directed toward known antigens like S-antigen, interphotoreceptor retinoid-binding protein, and cellular retinalaldehyde-binding protein, and anti-retinal antibodies were detected in vitreous samples. The aim of this study was the investigation of intraocular immunoglobulin M (IgM) reactivities to retinal proteome. Retina was separated by one- and two-dimensional gel electrophoresis and blotted semidry on PVDF membranes. To identify intraocular IgM antibody responses to retinal tissue, blots were incubated with vitreous samples of ERU-diseased horses (n = 50) and healthy controls (n = 30), followed by an HRP-labeled secondary antibody specific for equine IgM. Noticeable 2D western blot signals were aligned on a 2D gel of retinal proteome, excised, and subsequently identified by tandem mass spectrometry. Interestingly, frequent and very miscellaneous IgM response patterns to the retinal proteome in 68% of ERU vitreous samples were detected. Binding of IgM antibodies was localized at 17 different molecular weights. The most frequently detected signal, in 21 of the 50 samples, was located at 49 kDa. Comparing the samples interindividually between one and up to nine different signals in one sample could be observed. All healthy vitreous samples were devoid of IgM antibodies. Analysis of targeted spots with mass spectrometry led to the clear identification of 11 different proteins (corresponding to 16 different spots). One candidate could not be discovered so far. The considerable IgM response to retinal proteins demonstrates an ongoing immune response, which might contribute to the remitting relapsing character of ERU. Novel identified target proteins point to a diverse response pattern of individual ERU cases. © 2012 American College of Veterinary Ophthalmologists.
Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke
2013-01-01
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066
Accumulating Evidence about What Prospective Memory Costs Actually Reveal
ERIC Educational Resources Information Center
Strickland, Luke; Heathcote, Andrew; Remington, Roger W.; Loft, Shayne
2017-01-01
Event-based prospective memory (PM) tasks require participants to substitute an atypical PM response for an ongoing task response when presented with PM targets. Responses to ongoing tasks are often slower with the addition of PM demands ("PM costs"). Prominent PM theories attribute costs to capacity-sharing between the ongoing and PM…
CMV-specific immune reconstitution following allogeneic stem cell transplantation
Blyth, Emily; Withers, Barbara; Clancy, Leighton; Gottlieb, David
2016-01-01
ABSTRACT Cytomegalovirus (CMV) remains a major contributor to morbidity and mortality following allogeneic haemopoietic stem cell transplant (HSCT) despite widespread use of viraemia monitoring and pre-emptive antiviral therapy. Uncontrolled viral replication occurs primarily in the first 100 d post transplant but this high risk period can extend to many months if immune recovery is delayed. The re-establishment of a functional population of cellular effectors is essential for control of virus replication and depends on recipient and donor serostatus, the stem cell source, degree of HLA matching and post-transplant factors such as CMV antigen exposure, presence of GVHD and ongoing use of immune suppression. A number of immune monitoring assays exist but have not yet become widely accessible for routine clinical use. Vaccination, adoptive transfer of CMV specific T cells and a number of graft engineering processes are being evaluated to enhance of CMV specific immune recovery post HSCT. PMID:27580355
Terrestrial Spaceflight Analogs: Antarctica
NASA Technical Reports Server (NTRS)
Crucian, Brian
2013-01-01
Alterations in immune cell distribution and function, circadian misalignment, stress and latent viral reactivation appear to persist during Antarctic winterover at Concordia Station. Some of these changes are similar to those observed in Astronauts, either during or immediately following spaceflight. Others are unique to the Concordia analog. Based on some initial immune data and environmental conditions, Concordia winterover may be an appropriate analog for some flight-associated immune system changes and mission stress effects. An ongoing smaller control study at Neumayer III will address the influence of the hypoxic variable. Changes were observed in the peripheral blood leukocyte distribution consistent with immune mobilization, and similar to those observed during spaceflight. Alterations in cytokine production profiles were observed during winterover that are distinct from those observed during spaceflight, but potentially consistent with those observed during persistent hypobaric hypoxia. The reactivation of latent herpesviruses was observed during overwinter/isolation, that is consistently associated with dysregulation in immune function.
Validation of Procedures for Monitoring Crewmember Immune Function
NASA Technical Reports Server (NTRS)
Pierson, Duane; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Sams, Clarence
2010-01-01
The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. To date, 18 short duration (now completed) and 8 long-duration crewmembers have completed the study. The long-duration phase of this study is ongoing. For this presentation, the final data set for the short duration subjects will be discussed.
PPAR-γ in innate and adaptive lung immunity.
Nobs, Samuel Philip; Kopf, Manfred
2018-05-16
The transcription factor PPAR-γ (peroxisome proliferator-activated receptor-γ) is a key regulator of lung immunity exhibiting multiple cell type specific roles in controlling development and function of the lung immune system. It is strictly required for the generation of alveolar macrophages by controlling differentiation of fetal lung monocyte precursors. Furthermore, it plays an important role in lung allergic inflammation by licensing lung dendritic cell t helper 2 (Th2) priming capacity as well as acting as a master transcription factor for pathogenic Th2 cells. Due to this plethora of functions and its involvement in multiple pulmonary diseases including asthma and pulmonary alveolar proteinosis, understanding the role of PPAR-γ in lung immunity is an important subject of ongoing research. ©2018 Society for Leukocyte Biology.
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A.; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-01-01
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged anoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. PMID:22921518
Dhabhar, Firdaus S.; Malarkey, William B.; Neri, Eric; McEwen, Bruce S.
2012-01-01
Background The surveillance and effector functions of the immune system are critically dependent on the appropriate distribution of immune cells in the body. An acute or short-term stress response induces a rapid and significant redistribution of immune cells among different body compartments. Stress-induced leukocyte redistribution may be a fundamental survival response that directs leukocyte subpopulations to specific target organs during stress, and significantly enhances the speed, efficacy and regulation of an immune response. Immune responses are generally enhanced in compartments (e.g., skin) that are enriched with leukocytes, and suppressed in compartments that are depleted of leukocytes during/following stress. The experiments described here were designed to elucidate the: 1) Time-course, trajectory, and subpopulation-specificity of stress-induced mobilization and trafficking of blood leukocytes. 2) Individual and combined actions of the principal stress hormones, norepinephrine (NE), epinephrine (EPI), and corticosterone (CORT), in mediating mobilization or trafficking of specific leukocyte subpopulations. 3) Effects of stress/stress hormones on adhesion molecule, L-selectin (CD62L), expression by each subpopulation to assess its adhesion / functional / maturation status. Methods Male Sprague Dawley rats were stressed (short-term restraint, 2–120 min), or adrenalectomized and injected with vehicle (VEH), NE, EPI, CORT, or their combinations, and blood was collected for measurement of hormones and flow cytometric quantification of leukocyte subpopulations. Results Acute stress induced an early increase/mobilization of neutrophils, lymphocytes, helper T cells (Th), cytolytic T cells (CTL), and B cells into the blood, followed by a decrease/trafficking of all cell types out of the blood, except neutrophil numbers that continued to increase. CD62L expression was increased on neutrophils, decreased on Th, CTL, and natural killer (NK) cells, and showed a biphasic decrease on monocytes & B cells, suggesting that CD62L is involved in mediating the redistribution effects of stress. Additionally, we observed significant differences in the direction, magnitude, and subpopulation specificity of the effects of each hormone: NE increased leukocyte numbers, most notably CD62L−/+ neutrophils and CD62L− B cells. EPI increased monocyte and neutrophil numbers, most notably CD62L−/+ neutrophils and CD62L− monocytes, but decreased lymphocyte numbers with CD62L−/+ CTL and CD62L+ B cells being especially sensitive. CORT decreased monocyte, lymphocyte, Th, CTL, and B cell numbers with CD62L− and CD62L+ cells being equally affected. Thus, naïve (CD62L+) vs. memory (CD62L−) T cells, classical (CD62L+) vs. non-classical (CD62L−) monocytes, and similarly distinct functional subsets of other leukocyte populations are differentially mobilized into the blood and trafficked to tissues by stress hormones. Conclusion Stress hormones orchestrate a large-scale redistribution of immune cells in the body. NE and EPI mobilize immune cells into the bloodstream, and EPI and CORT induce traffic out of the blood possibly to tissue surveillance pathways, lymphoid tissues, and sites of ongoing or de novo immune activation. Immune cell subpopulations appear to show differential sensitivities and redistribution responses to each hormone depending on the type of leukocyte (neutrophil, monocyte or lymphocyte) and its maturation/functional characteristics (e.g., resident or inflammatory monocyte, naïve or central/effector memory T cell). Thus, stress hormones could be administered simultaneously or sequentially to induce specific leukocyte subpopulations to be mobilized into the blood, or to traffic from blood to tissues. Stress hormone-mediated changes in immune cell distribution could be clinically harnessed to: 1) Direct leukocytes to sites of vaccination, wound healing, infection, or cancer and thereby enhance protective immunity. 2) Reduce leukocyte traffic to sites of inflammatory/autoimmune reactions. 3) Sequester immune cells in relatively protected compartments to minimize exposure to cytotoxic treatments like radiation or localized chemotherapy. 4) Measure biological resistance/sensitivity to stress hormones in vivo. In keeping with the guidelines for Richter Award manuscripts, in addition to original data we also present a model and synthesis of findings in the context of the literature on the effects of short-term stress on immune cell distribution and function. PMID:22727761
Marburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responses.
Stonier, Spencer W; Herbert, Andrew S; Kuehne, Ana I; Sobarzo, Ariel; Habibulin, Polina; Dahan, Chen V Abramovitch; James, Rebekah M; Egesa, Moses; Cose, Stephen; Lutwama, Julius Julian; Lobel, Leslie; Dye, John M
2017-09-04
Until recently, immune responses in filovirus survivors remained poorly understood. Early studies revealed IgM and IgG responses to infection with various filoviruses, but recent outbreaks have greatly expanded our understanding of filovirus immune responses. Immune responses in survivors of Ebola virus (EBOV) and Sudan virus (SUDV) infections have provided the most insight, with T cell responses as well as detailed antibody responses having been characterized. Immune responses to Marburg virus (MARV), however, remain almost entirely uncharacterized. We report that immune responses in MARV survivors share characteristics with EBOV and SUDV infections but have some distinct differences. MARV survivors developed multivariate CD4 + T cell responses but limited CD8 + T cell responses, more in keeping with SUDV survivors than EBOV survivors. In stark contrast to SUDV survivors, rare neutralizing antibody responses in MARV survivors diminished rapidly after the outbreak. These results warrant serious consideration for any vaccine or therapeutic that seeks to be broadly protective, as different filoviruses may require different immune responses to achieve immunity. © 2017 Stonier et al.
Gomes, Larissa Rodrigues; Totino, Paulo Renato Rivas; Sanchez, Maria Carmen Arroyo; Daniel, Elsa Paula da Silva Kaingona; de Macedo, Cristiana Santos; Fortes, Filomeno; Coura, José Rodrigues; Santi, Silvia Maria Di; Werneck, Guilherme Loureiro; Suárez-Mutis, Martha Cecilia; Ferreira-da-Cruz, Maria de Fátima; Daniel-Ribeiro, Cláudio Tadeu
2013-01-01
Anti-glycosylphosphatidylinositol (GPI) antibodies (Abs) may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP)3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19) in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown) in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax. PMID:24037204
Hajam, Irshad Ahmed; Lee, John Hwa
2017-06-01
Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (p<0.05) higher compared to the Salmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (p<0.05) increased at week 9 post-primary immunization. We conclude that preexisting anti-Salmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.
Rosenberg, Jonathan E; Hoffman-Censits, Jean; Powles, Tom; van der Heijden, Michiel S; Balar, Arjun V; Necchi, Andrea; Dawson, Nancy; O'Donnell, Peter H; Balmanoukian, Ani; Loriot, Yohann; Srinivas, Sandy; Retz, Margitta M; Grivas, Petros; Joseph, Richard W; Galsky, Matthew D; Fleming, Mark T; Petrylak, Daniel P; Perez-Gracia, Jose Luis; Burris, Howard A; Castellano, Daniel; Canil, Christina; Bellmunt, Joaquim; Bajorin, Dean; Nickles, Dorothee; Bourgon, Richard; Frampton, Garrett M; Cui, Na; Mariathasan, Sanjeev; Abidoye, Oyewale; Fine, Gregg D; Dreicer, Robert
2016-05-07
Patients with metastatic urothelial carcinoma have few treatment options after failure of platinum-based chemotherapy. In this trial, we assessed treatment with atezolizumab, an engineered humanised immunoglobulin G1 monoclonal antibody that binds selectively to programmed death ligand 1 (PD-L1), in this patient population. For this multicentre, single-arm, two-cohort, phase 2 trial, patients (aged ≥18 years) with inoperable locally advanced or metastatic urothelial carcinoma whose disease had progressed after previous platinum-based chemotherapy were enrolled from 70 major academic medical centres and community oncology practices in Europe and North America. Key inclusion criteria for enrolment were Eastern Cooperative Oncology Group performance status of 0 or 1, measurable disease defined by Response Evaluation Criteria In Solid Tumors version 1.1 (RECIST v1.1), adequate haematological and end-organ function, and no autoimmune disease or active infections. Formalin-fixed paraffin-embedded tumour specimens with sufficient viable tumour content were needed from all patients before enrolment. Patients received treatment with intravenous atezolizumab (1200 mg, given every 3 weeks). PD-L1 expression on tumour-infiltrating immune cells (ICs) was assessed prospectively by immunohistochemistry. The co-primary endpoints were the independent review facility-assessed objective response rate according to RECIST v1.1 and the investigator-assessed objective response rate according to immune-modified RECIST, analysed by intention to treat. A hierarchical testing procedure was used to assess whether the objective response rate was significantly higher than the historical control rate of 10% at an α level of 0·05. This study is registered with ClinicalTrials.gov, number NCT02108652. Between May 13, 2014, and Nov 19, 2014, 486 patients were screened and 315 patients were enrolled into the study. Of these patients, 310 received atezolizumab treatment (five enrolled patients later did not meet eligibility criteria and were not dosed with study drug). The PD-L1 expression status on infiltrating immune cells (ICs) in the tumour microenvironment was defined by the percentage of PD-L1-positive immune cells: IC0 (<1%), IC1 (≥1% but <5%), and IC2/3 (≥5%). The primary analysis (data cutoff May 5, 2015) showed that compared with a historical control overall response rate of 10%, treatment with atezolizumab resulted in a significantly improved RECIST v1.1 objective response rate for each prespecified immune cell group (IC2/3: 27% [95% CI 19-37], p<0·0001; IC1/2/3: 18% [13-24], p=0·0004) and in all patients (15% [11-20], p=0·0058). With longer follow-up (data cutoff Sept 14, 2015), by independent review, objective response rates were 26% (95% CI 18-36) in the IC2/3 group, 18% (13-24) in the IC1/2/3 group, and 15% (11-19) overall in all 310 patients. With a median follow-up of 11·7 months (95% CI 11·4-12·2), ongoing responses were recorded in 38 (84%) of 45 responders. Exploratory analyses showed The Cancer Genome Atlas (TCGA) subtypes and mutation load to be independently predictive for response to atezolizumab. Grade 3-4 treatment-related adverse events, of which fatigue was the most common (five patients [2%]), occurred in 50 (16%) of 310 treated patients. Grade 3-4 immune-mediated adverse events occurred in 15 (5%) of 310 treated patients, with pneumonitis, increased aspartate aminotransferase, increased alanine aminotransferase, rash, and dyspnoea being the most common. No treatment-related deaths occurred during the study. Atezolizumab showed durable activity and good tolerability in this patient population. Increased levels of PD-L1 expression on immune cells were associated with increased response. This report is the first to show the association of TCGA subtypes with response to immune checkpoint inhibition and to show the importance of mutation load as a biomarker of response to this class of agents in advanced urothelial carcinoma. F Hoffmann-La Roche Ltd. Copyright © 2016 Elsevier Ltd. All rights reserved.
Filia, Antonietta; Bella, Antonino; Del Manso, Martina; Baggieri, Melissa; Magurano, Fabio; Rota, Maria Cristina
2017-01-01
We report an ongoing measles outbreak in Italy, with over 4,400 cases reported in 20 Regions from January to August 2017. Median age was 27 years, 88% of the cases were unvaccinated. The highest incidence was in infants below one year of age and 7% of cases occurred among healthcare workers. Three deaths occurred and two cases of encephalitis were reported. Wide immunity gaps and nosocomial transmission are major challenges to measles elimination in Italy. PMID:28933342
Advances in HIV-1 Vaccine Development
Gao, Yong
2018-01-01
An efficacious HIV-1 vaccine is regarded as the best way to halt the ongoing HIV-1 epidemic. However, despite significant efforts to develop a safe and effective vaccine, the modestly protective RV144 trial remains the only efficacy trial to provide some level of protection against HIV-1 acquisition. This review will outline the history of HIV vaccine development, novel technologies being applied to HIV vaccinology and immunogen design, as well as the studies that are ongoing to advance our understanding of vaccine-induced immune correlates of protection. PMID:29614779
Palma, Paolo; Romiti, Maria Luisa; Montesano, Carla; Santilli, Veronica; Mora, Nadia; Aquilani, Angela; Dispinseri, Stefania; Tchidjou, Hyppolite K; Montano, Marco; Eriksson, Lars E; Baldassari, Stefania; Bernardi, Stefania; Scarlatti, Gabriella; Wahren, Britta; Rossi, Paolo
2013-01-01
Twenty vertically HIV-infected children, 6-16 years of age, with stable viral load control and CD4+ values above 400 cells/mm(3). Ten subjects continued their ongoing antiretroviral treatment (ART, Group A) and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B). The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96. Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047), whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031). No increased CD8+ perforin levels were observed in control Group A. The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population. clinicaltrialsregister.eu _2007-002359-18IT.
Palma, Paolo; Romiti, Maria Luisa; Montesano, Carla; Santilli, Veronica; Mora, Nadia; Aquilani, Angela; Dispinseri, Stefania; Tchidjou, Hyppolite K.; Montano, Marco; Eriksson, Lars E.; Baldassari, Stefania; Bernardi, Stefania; Scarlatti, Gabriella
2013-01-01
Subjects Twenty vertically HIV-infected children, 6–16 years of age, with stable viral load control and CD4+ values above 400 cells/mm3. Intervention Ten subjects continued their ongoing antiretroviral treatment (ART, Group A) and 10 were immunized with a HIV-DNA vaccine in addition to their previous therapy (ART and vaccine, Group B). The genetic vaccine represented HIV-1 subtypes A, B and C, encoded Env, Rev, Gag and RT and had no additional adjuvant. Immunizations took place at weeks 0, 4 and 12, with a boosting dose at week 36. Monitoring was performed until week 60 and extended to week 96. Results Safety data showed good tolerance of the vaccine. Adherence to ART remained high and persistent during the study and did not differ significantly between controls and vaccinees. Neither group experienced either virological failure or a decline of CD4+ counts from baseline. Higher HIV-specific cellular immune responses were noted transiently to Gag but not to other components of the vaccine. Lymphoproliferative responses to a virion antigen HIV-1 MN were higher in the vaccinees than in the controls (p = 0.047), whereas differences in reactivity to clade-specific Gag p24, RT or Env did not reach significance. Compared to baseline, the percentage of HIV-specific CD8+ lymphocytes releasing perforin in the Group B was higher after the vaccination schedule had been completed (p = 0.031). No increased CD8+ perforin levels were observed in control Group A. Conclusions The present study demonstrates the feasibility, safety and moderate immunogenicity of genetic vaccination in vertically HIV-infected children, paving the way for amplified immunotherapeutic approaches in the pediatric population. Trial registration clinicaltrialsregister.eu _2007-002359-18 IT PMID:24312194
CHIESA, V.; ODONE, A.
2015-01-01
Summary Neisseria meningitidis causes severe invasive meningococcal diseases (IMDs) in humans including meningitis and septicemia, responsible for serious clinical conditions and leading to life-long disabilities and death. Serogroup B dominates IMDs burden in Italy, accounting for over 60% of total cases. On January 2013 the European Medicine Agency (EMA) licensed the first serogroup B meningococcal (MenB) vaccine in Europe. A number of European countries and Regions have introduced the new MenB vaccine in their immunization schedule, including Italy. In this paper we present the state of art, related critical issues and future perspectives of MenB vaccine introduction in Italy, in the context of the most recent available epidemiological data. In particular, we systematically assess the ongoing processes in the 8 Italian regions and one autonomous province that have already introduced MenB vaccine. With the new 2014-2018 National Vaccine Prevention Plan including active MenB vaccine offer about to be adopted, it is of fundamental importance to gather further evidence on MenB vaccine clinical effectiveness, duration of protection and cost-effectiveness. Italian regions are called to organize and manage MenB immunization programs. Careful consideration will need to be devoted on timing, doses, and co-administration with other vaccines but also to economic assessments and strengthened communication to the general public. Our data will help to plan, implement and evaluate MenB immunization programmes in other Italian and international settings. PMID:26788733
PD-1/PD-L1 pathway inhibitors in advanced prostate cancer.
Isaacsson Velho, Pedro; Antonarakis, Emmanuel S
2018-05-01
Pharmacological inhibition of immune checkpoint receptors or their ligands represents a transformative breakthrough in the management of multiple cancers. However, immune checkpoint inhibitors have yet to be FDA-approved for the management of metastatic prostate cancer (PCa), the commonest non-cutaneous malignancy in men. Areas covered: We review our current understanding of the PD-1/PD-L1 pathway in cancer, the use of anti-PD-1/PD-L1 therapeutics in PCa, and potential subgroups of PCa patients who may derive the greatest benefit from these agents (such as men with tumors that have expression of PD-L1 and/or high mutational load). We also review the prior and current clinical trials evaluating the blockade of PD-1/PD-L1 in PCa, highlighting some of the key ongoing studies of greatest relevance to the field. Expert commentary: Clinical trials investigating PD-1/PD-L1 inhibitors should be encouraged in patients with PCa. While it is unlikely that immune checkpoint monotherapies will produce long-lasting responses in a substantial proportion of patients, there is early evidence of activity in some patient subsets. These subgroups may include those with high PD-L1 expression, those with hypermutated or microsatellite-unstable tumors, and those enriched for germline and/or somatic DNA-repair gene mutations (e.g. intraductal/ductal histology, primary Gleason pattern 5, and perhaps AR-V7-positive tumors).
Anderson, Per; Delgado, Mario
2008-01-01
Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314
Hashmi, Mehmood H; Van Veldhuizen, Peter J
2010-05-01
In advanced renal cell cancer and malignant melanoma, the current FDA approved immune modulators, such as IL-2, are the only agents which provide a durable complete remission. These responses, however, occur in < 10% of treated patients and their applicability is limited to selected patients because of their toxicity. The identification of new immunotherapeutic agents with an improved response rate and toxicity profile would represent a significant advancement in the treatment of these malignancies. This is a comprehensive review of IL-21 including its pharmacology and current developmental status. A literature review was performed using all PubMed listed publications involving IL-21, including original research articles, reviews and abstracts. It also includes a review of current ongoing trials and information from the official product website. Recombinant IL-21 (rIL-21) is a new immune modulator currently undergoing Phase I and II testing. It is a cytokine with a four helix structure that has structural and sequence homology to IL-2 and -15, but also possesses many unique biological properties. In this review, we evaluate the development, pharmacologic properties, safety profile and current clinical efficacy of rIL-21. rIL-21 has an acceptable safety profile and encouraging single agent activity in early phase renal cell carcinoma and melanoma clinical trials.
Morales-Barrera, Rafael; Suárez, Cristina; de Castro, Ana Martínez; Racca, Fabricio; Valverde, Claudia; Maldonado, Xavier; Bastaros, Juan Maria; Morote, Juan; Carles, Joan
2016-11-01
Bladder cancer is one of the leading causes of death in Europe and the United States. About 25% of patients with bladder cancer have advanced disease (muscle-invasive or metastatic disease) at presentation and are candidates for systemic chemotherapy. In the setting of metastatic disease, use of cisplatin-based regimens improves survival. However, despite initial high response rates, the responses are typically not durable leading to recurrence and death in the vast majority of these patients with median overall survival of 15months and a 5-year survival rate of ⩽10%. Furthermore, unfit patients for cisplatin have no standard of care for first line therapy in advance disease Most second-line chemotherapeutic agents tested have been disappointing. Newer targeted drugs and immunotherapies are being studied in the metastatic setting, their usefulness in the neoadjuvant and adjuvant settings is also an intriguing area of ongoing research. Thus, new treatment strategies are clearly needed. The comprehensive evaluation of multiple molecular pathways characterized by The Cancer Genome Atlas project has shed light on potential therapeutic targets for bladder urothelial carcinomas. We have focused especially on emerging therapies in locally advanced and metastatic urothelial carcinoma with an emphasis on immune checkpoints inhibitors and FGFR targeted therapies, which have shown great promise in early clinical studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Workel, Hagma H.; Tijans, Aline M.; Terwindt, Anouk L.J.; Brunekreeft, Kim L.; Plat, Annechien; Klip, Harry G.; Eggink, Florine A.; Leffers, Ninke; Helfrich, Wijnand; Samplonius, Douwe F.; Bremer, Edwin; Wisman, G. Bea A.; Daemen, Toos; Duiker, Evelien W.; Hollema, Harry; Nijman, Hans W.; de Bruyn, Marco
2016-01-01
CD103+ tumor-infiltrating lymphocytes (TIL) have been linked to specific epithelial infiltration and a prolonged survival in high-grade serous epithelial ovarian cancer (HGSC). However, whether these cells are induced as part of an ongoing anti-HGSC immune response or represent non-specifically expanded resident or mucosal lymphocytes remains largely unknown. In this study, we first confirmed that CD103+ TIL from HGSC were predominantly localized in the cancer epithelium and were strongly correlated with an improved prognosis. We further demonstrate that CD103+ TIL were almost exclusively CD3+ TCRαβ+ CD8αβ+ CD4- T cells, but heterogeneously expressed T cell memory and differentiation markers. Activation of peripheral T cells in the presence of HGSC was sufficient to trigger induction of CD103 in over 90% of all CD8+ cells in a T cell receptor (TCR)- and TGFβR1-dependent manner. Finally, CD103+ TIL isolated from primary HGSC showed signs of recent activation and dominantly co-expressed key immunotherapeutic targets PD-1 and CD27. Taken together, our data indicate CD103+ TIL in HGSC are formed as the result of an adaptive anti-tumor immune response that might be reactivated by (dual) checkpoint inhibition. PMID:27650547
Krishnamurthy, A; Jimeno, A
2017-04-01
In recent years, immunotherapy has come to the forefront as a major development in cancer treatment. Evasion of the immune system by tumor cells has been identified as one of the hallmarks of cancer and multiple therapies have been developed to counter this process. Programmed cell death 1 ligand 1 (PD-L1), a ligand to programmed cell death protein 1 (PD-1), is expressed by many cancer cells and the binding of PD-L1 to PD-1 results in the suppression of T-cell-mediated immune response against cancer cells. Atezolizumab is a monoclonal antibody that binds to PD-L1 and blocks its interaction with PD-1, thereby enhancing T-cell activity against tumor cells. Atezolizumab has been shown to be well tolerated with no dose-limiting toxicities in phase I trials. Atezolizumab was approved by the U.S. Food and Drug Administration in 2016 for the treatment of platinum-resistant metastatic non-small cell lung cancer (NSCLC) and urothelial cancer based on phase II and preliminary phase III studies that have shown significant improvement in objective response rate and median overall survival. There are 117 ongoing clinical trials of atezolizumab currently. Given its efficacy in NSCLC and urothelial carcinoma, atezolizumab holds much potential in the future of cancer therapeutics. Copyright 2017 Clarivate Analytics.
The Effect of Ongoing Exposure Dynamics in Dose Response Relationships
Pujol, Josep M.; Eisenberg, Joseph E.; Haas, Charles N.; Koopman, James S.
2009-01-01
Characterizing infectivity as a function of pathogen dose is integral to microbial risk assessment. Dose-response experiments usually administer doses to subjects at one time. Phenomenological models of the resulting data, such as the exponential and the Beta-Poisson models, ignore dose timing and assume independent risks from each pathogen. Real world exposure to pathogens, however, is a sequence of discrete events where concurrent or prior pathogen arrival affects the capacity of immune effectors to engage and kill newly arriving pathogens. We model immune effector and pathogen interactions during the period before infection becomes established in order to capture the dynamics generating dose timing effects. Model analysis reveals an inverse relationship between the time over which exposures accumulate and the risk of infection. Data from one time dose experiments will thus overestimate per pathogen infection risks of real world exposures. For instance, fitting our model to one time dosing data reveals a risk of 0.66 from 313 Cryptosporidium parvum pathogens. When the temporal exposure window is increased 100-fold using the same parameters fitted by our model to the one time dose data, the risk of infection is reduced to 0.09. Confirmation of this risk prediction requires data from experiments administering doses with different timings. Our model demonstrates that dose timing could markedly alter the risks generated by airborne versus fomite transmitted pathogens. PMID:19503605
Immunity to betanodavirus infections of marine fish.
Chen, Young-Mao; Wang, Ting-Yu; Chen, Tzong-Yueh
2014-04-01
Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection. Copyright © 2013 Elsevier Ltd. All rights reserved.
Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors.
Terranova-Barberio, Manuela; Thomas, Scott; Munster, Pamela N
2016-06-01
Immune surveillance should be directed to suppress tumor development and progression, involving a balance of coinhibitory and costimulatory signals that amplify immune response without overwhelming the host. Immunotherapy confers durable clinical benefit in 'immunogenic tumors', whereas in other tumors the responses are modest. Thus, immune checkpoint inhibitors may need to be combined with strategies to boost immune response or increase the tumor immune profile. Epigenetic aberrations contribute significantly to carcinogenesis. Recent findings suggest that epigenetic drugs prime the immune response by increasing expression of tumor-associated antigens and immune-related genes, as well as modulating chemokines and cytokines involved in immune system activation. This review describes our current understanding regarding epigenetic and immunotherapy combination, focusing on immune response priming to checkpoint blockade.
Hickey, DK; Patel, MV; Fahey, JV; Wira, CR
2011-01-01
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract. PMID:21353708
Singh, Prashant Kumar; Parasuraman, Sulabha
2014-04-01
This study examines trends in gender differentials in child immunization beyond the conventional male-female dichotomy, by considering older surviving sibling composition between 1992 and 2006 in India. The present study adopts the World Health Organization (WHO) guidelines for appraising full immunization among children utilising three rounds of the National Family Health Survey. Twelve combinations of sex composition of surviving older siblings were constructed. Bivariate differentials and pooled multilevel logistic regression analysis were conducted to assess the trends and patterns of child immunization with respect to various categories of older surviving sibling composition. Although child immunization increased between 1992 and 2006, majority of all eligible children did not receive the recommended immunization. Further, full immunization significantly varies by twelve categories of siblings composition during 1992-2006. The probability of full immunization among male children who did not have any older surviving sibling was 60% in 2005-06, while it was just 26% among female children who had 1+ older surviving sister and brother. This study emphasizes the need to integrate sibling issues in child immunization as a prioritized component in the ongoing Universal Immunization Programme, which could be an effective step towards ensuring full immunization coverage among Indian children. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kumar, Amit; Wonganan, Piyanuch; Sandoval, Michael A; Li, Xinran; Zhu, Saijie; Cui, Zhengrong
2012-10-28
Previously, it was shown that microneedle-mediated transcutaneous immunization with plasmid DNA can potentially induce a stronger immune response than intramuscular injection of the same plasmid DNA. In the present study, we showed that the immune responses induced by transcutaneous immunization by applying plasmid DNA onto a skin area pretreated with solid microneedles were significantly enhanced by coating the plasmid DNA on the surface of cationic nanoparticles. In addition, the net surface charge of the DNA-coated nanoparticles significantly affected their in vitro skin permeation and their ability to induce immune responses in vivo. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles elicited a stronger immune response than with plasmid DNA-coated net negatively charged nanoparticles or by intramuscular immunization with plasmid DNA alone. Transcutaneous immunization with plasmid DNA-coated net positively charged nanoparticles induced comparable immune responses as intramuscular injection of them, but transcutaneous immunization was able to induce specific mucosal immunity and a more balanced T helper type 1 and type 2 response. The ability of the net positively charged DNA-coated nanoparticles to induce a strong immune response through microneedle-mediated transcutaneous immunization may be attributed to their ability to increase the expression of the antigen gene encoded by the plasmid and to more effectively stimulate the maturation of antigen-presenting cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Amelioration of ongoing experimental autoimmune encephalomyelitis with fluoxetine.
Bhat, Roopa; Mahapatra, Sidharth; Axtell, Robert C; Steinman, Lawrence
2017-12-15
In patients with multiple sclerosis, the selective serotonin reuptake inhibitor, fluoxetine, resulted in less acute disease activity. We tested the immune modulating effects of fluoxetine in a mouse model of multiple sclerosis, i.e. experimental autoimmune encephalomyelitis (EAE). We show that fluoxetine delayed the onset of disease and reduced clinical paralysis in mice with established disease. Fluoxetine had abrogating effects on proliferation of immune cells and inflammatory cytokine production by both antigen-presenting cells and T cells. Specifically, in CD 4 T cells, fluoxetine increased Fas-induced apoptosis. We conclude that fluoxetine possesses immune-modulating effects resulting in the amelioration of symptoms in EAE. Copyright © 2017 Elsevier B.V. All rights reserved.
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
The cost of doing business: cost structure of electronic immunization registries.
Fontanesi, John M; Flesher, Don S; De Guire, Michelle; Lieberthal, Allan; Holcomb, Kathy
2002-10-01
To predict the true cost of developing and maintaining an electronic immunization registry, and to set the framework for developing future cost-effective and cost-benefit analysis. Primary data collected at three immunization registries located in California, accounting for 90 percent of all immunization records in registries in the state during the study period. A parametric cost analysis compared registry development and maintenance expenditures to registry performance requirements. Data were collected at each registry through interviews, reviews of expenditure records, technical accomplishments development schedules, and immunization coverage rates. The cost of building immunization registries is predictable and independent of the hardware/software combination employed. The effort requires four man-years of technical effort or approximately $250,000 in 1998 dollars. Costs for maintaining a registry were approximately $5,100 per end user per three-year period. There is a predictable cost structure for both developing and maintaining immunization registries. The cost structure can be used as a framework for examining the cost-effectiveness and cost-benefits of registries. The greatest factor effecting improvement in coverage rates was ongoing, user-based administrative investment.
Senescence in immune priming and attractiveness in a beetle.
Daukšte, J; Kivleniece, I; Krama, T; Rantala, M J; Krams, I
2012-07-01
Age-related decline in immune activity is referred to as immunosenescence and has been observed for both the adaptive immune response of vertebrates and the innate immune system of invertebrates. Because maintaining a basic level of immune defence and mounting an immune response is costly, optimal investment in immune function should vary over a wide range of individual states such as the individual's age. In this study, we tested whether the immune response and immunological priming within individuals become less efficient with age using mealworm beetles, Tenebrio molitor, as a model organism. We also tested whether ageing and immunological priming affected the odours produced by males. We found that young males of T. molitor were capable of mounting an immune response a sterile nylon monofilament implant with the potential to exhibit a simple form of immune memory through mechanisms of immune priming. Older males did not increase their immune response to a second immune challenge, which negatively affected their sexual attractiveness and remaining life span. Our results indicate that the immune system of older males in T. molitor is less effective, suggesting complex evolutionary trade-offs between ageing, immune response and sexual attractiveness. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
PROSTVAC® targeted immunotherapy candidate for prostate cancer.
Shore, Neal D
2014-01-01
Targeted immunotherapies represent a valid strategy for the treatment of metastatic castrate-resistant prostate cancer. A randomized, double-blind, Phase II clinical trial of PROSTVAC® demonstrated a statistically significant improvement in overall survival and a large, global, Phase III trial with overall survival as the primary end point is ongoing. PROSTVAC immunotherapy contains the transgenes for prostate-specific antigen and three costimulatory molecules (designated TRICOM). Research suggests that PROSTVAC not only targets prostate-specific antigen, but also other tumor antigens via antigen cascade. PROSTVAC is well tolerated and has been safely combined with other cancer therapies, including hormonal therapy, radiotherapy, another immunotherapy and chemotherapy. Even greater benefits of PROSTVAC may be recognized in earlier-stage disease and low-disease burden settings where immunotherapy can trigger a long-lasting immune response.
The Biology of TRAIL and the Role of TRAIL-Based Therapeutics in Infectious Diseases
Shepard, Brett D.; Badley, Andrew D.
2011-01-01
TNF-related apoptosis inducing ligand (TRAIL) is a key mediator of the innate immune response to infection. While TRAIL-mediated apoptosis plays an essential role in the clearance of virus-infected cells, its physiologic role also includes immunosurveilance for cancer cells. Therapeutics that induce TRAIL-mediated apoptosis in cancer cells remain a focus of ongoing investigation in clinical trials, and much has been learned from these studies regarding the efficacy and toxicity of these interventions. These data, combined with data from numerous preclinical studies that detail the important and multifaceted role of TRAIL during infection with human immunodeficiency virus and other viruses, suggest that therapeutic exploitation of TRAIL signaling offers a novel and efficacious strategy for the management of infectious diseases. PMID:21857885
Avenell, Alison
2009-08-01
The amino acid glutamine has numerous important roles including particularly antioxidant defence, immune function, the inflammatory response, acid-base balance and N economy. The present systematic review of randomised controlled trials of nutrition support with glutamine up to August 2008 has found that parenteral glutamine in critical illness is associated with a non-significant reduction in mortality (risk ratio 0.71 (95% CI 0.49, 1.03)) and may reduce infections. However, poor study quality and the possibility of publication bias mean that these results should be interpreted with caution. There is no evidence to suggest that glutamine is harmful in terms of organ failure and parenteral glutamine may reduce the development of organ failure.
Pharmacotherapy of Pediatric HIV Infection
Rakhmanina, Natella; Phelps, Ryan
2012-01-01
SYNOPSIS With the ongoing epidemic of human immune deficiency virus (HIV) infections in the pediatric age group, the delivery of safe and effective antiretroviral therapy to children and adolescents is crucial to save the lives of millions of children worldwide. Antiretroviral drugs have been demonstrated to significantly decrease HIV-associated morbidity and mortality, assure normal growth and development, and improve survival and quality of life in children and adolescents. The immunologic response to HIV infection is closely related to the child’s development and creates age specific parameters for the evaluation of therapeutic response to antiretroviral therapy in pediatric HIV disease. In addition to the changes in immunological response to HIV infection, the development and maturation of organ systems involved in drug absorption, distribution, metabolism, and elimination determines significant changes in the pharmacokinetics of antiretroviral drugs throughout the childhood. Multiple factors including age-specific adherence barriers, changes in social and economical surroundings, and psychological and sexual maturation affect the choices and outcomes of the treatment of pediatric HIV disease. In this chapter we will review the evolution of antiretroviral treatment from early infancy through adolescence. PMID:23036246
Guns, germs, and stealing: exploring the link between infectious disease and crime.
Shrira, Ilan; Wisman, Arnaud; Webster, Gregory
2013-03-27
Can variation in crime rates be traced to the threat of infectious disease? Pathogens pose an ongoing challenge to survival, leading humans to adapt defenses to manage this threat. In addition to the biological immune system, humans have psychological and behavioral responses designed to protect against disease. Under persistent disease threat, xenophobia increases and people constrict social interactions to known in-group members. Though these responses reduce disease transmission, they can generate favorable crime conditions in two ways. First, xenophobia reduces inhibitions against harming and exploiting out-group members. Second, segregation into in-group factions erodes people's concern for the welfare of their community and weakens the collective ability to prevent crime. The present study examined the effects of infection incidence on crime rates across the United States. Infection rates predicted violent and property crime more strongly than other crime covariates. Infections also predicted homicides against strangers but not family or acquaintances, supporting the hypothesis that in-group-out-group discrimination was responsible for the infections-crime link. Overall, the results add to evidence that disease threat shapes interpersonal behavior and structural characteristics of groups.
Meier, Helen C S; Haan, Mary N; Mendes de Leon, Carlos F; Simanek, Amanda M; Dowd, Jennifer B; Aiello, Allison E
2016-10-01
Persistent infections, such as cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), Helicobacter pylori (H. pylori), and Toxoplasma gondii (T. gondii), are common in the U.S. but their prevalence varies by socioeconomic status. It is unclear if early or later life socioeconomic position (SEP) is a more salient driver of disparities in immune control of these infections. Using data from the Sacramento Area Latino Study on Aging, we examined whether early or later life SEP was the strongest predictor of immune control later in life by contrasting two life course models, the critical period model and the chain of risk model. Early life SEP was measured as a latent variable, derived from parental education and occupation, and food availability. Indicators for SEP in later life included education level and occupation. Individuals were categorized by immune response to each pathogen (seronegative, low, medium and high) with increasing immune response representing poorer immune control. Cumulative immune response was estimated using a latent profile analysis with higher total immune response representing poorer immune control. Structural equation models were used to examine direct, indirect and total effects of early life SEP on each infection and cumulative immune response, controlling for age and gender. The direct effect of early life SEP on immune response was not statistically significant for the infections or cumulative immune response. Higher early life SEP was associated with lower immune response for T. gondii, H. pylori and cumulative immune response through pathways mediated by later life SEP. For CMV, higher early life SEP was both directly associated and partially mediated by later life SEP. No association was found between SEP and HSV-1. Findings from this study support a chain of risk model, whereby early life SEP acts through later life SEP to affect immune response to persistent infections in older age. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chatterjee, Arunita; Roy, Debasish; Patnaik, Esha; Nongthomba, Upendra
2016-06-01
Muscle contraction brings about movement and locomotion in animals. However, muscles have also been implicated in several atypical physiological processes including immune response. The role of muscles in immunity and the mechanism involved has not yet been deciphered. In this paper, using Drosophila indirect flight muscles (IFMs) as a model, we show that muscles are immune-responsive tissues. Flies with defective IFMs are incapable of mounting a potent humoral immune response. Upon immune challenge, the IFMs produce anti-microbial peptides (AMPs) through the activation of canonical signaling pathways, and these IFM-synthesized AMPs are essential for survival upon infection. The trunk muscles of zebrafish, a vertebrate model system, also possess the capacity to mount an immune response against bacterial infections, thus establishing that immune responsiveness of muscles is evolutionarily conserved. Our results suggest that physiologically fit muscles might boost the innate immune response of an individual. © 2016. Published by The Company of Biologists Ltd.
Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology.
Buchon, Nicolas; Silverman, Neal; Cherry, Sara
2014-12-01
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis
2017-02-01
Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.
Oncolytic Viral Therapy and the Immune System: A Double-Edged Sword Against Cancer.
Marelli, Giulia; Howells, Anwen; Lemoine, Nicholas R; Wang, Yaohe
2018-01-01
Oncolytic viral therapy is a new promising strategy against cancer. Oncolytic viruses (OVs) can replicate in cancer cells but not in normal cells, leading to lysis of the tumor mass. Beside this primary effect, OVs can also stimulate the immune system. Tumors are an immuno-suppressive environment in which the immune system is silenced in order to avoid the immune response against cancer cells. The delivery of OVs into the tumor wakes up the immune system so that it can facilitate a strong and durable response against the tumor itself. Both innate and adaptive immune responses contribute to this process, producing an immune response against tumor antigens and facilitating immunological memory. However, viruses are recognized by the immune system as pathogens and the consequent anti-viral response could represent a big hurdle for OVs. Finding a balance between anti-tumor and anti-viral immunity is, under this new light, a priority for researchers. In this review, we provide an overview of the various ways in which different components of the immune system can be allied with OVs. We have analyzed the different immune responses in order to highlight the new and promising perspectives leading to increased anti-tumor response and decreased immune reaction to the OVs.
The gender perspective in cancer research and therapy: novel insights and on-going hypotheses.
Gabriele, Lucia; Buoncervello, Maria; Ascione, Barbara; Bellenghi, Maria; Matarrese, Paola; Carè, Alessandra
2016-01-01
Cancer represents a leading cause of death whose incidence is steadily increasing worldwide due to the population aging. The Global Health Observatory of the World Health Organization reported that approximately 13% of all deaths are caused by cancer. In the 2012 the estimated total number of cancer deaths was 1.75 million, 56% in men and 44% in women. Gender is recognized to play a role in cancer incidence, progression and response to therapy. Besides anatomical and hormonal disparities, genetic differences should be considered when assessing the effects of gender on cancer. Accumulating evidence also support the existence of sex-driven differences in immune responses. Until today clinical trials and research in animal models have been gender unbalanced. In consideration of the differences between sexes observed in cancer, sex should represent an important stratification factor to be included in all randomized clinical trials for a better understanding of biological differences between men and women, which may yield improved targeted therapies.
Less than 3 doses of the HPV vaccine – Review of efficacy against virological and disease end points
Basu, Partha; Bhatla, Neerja; Ngoma, Twalib; Sankaranarayanan, Rengaswamy
2016-01-01
ABSTRACT World Health Organization (WHO) recommended 2 doses of the Human Papillomavirus (HPV) vaccine for girls below 15 y on the basis of the immune-bridging studies demonstrating non-inferior immune response of 2 doses in the adolescent girls compared to 3 doses in the young adult women in whom the efficacy against disease is established. The biological nature of the antigens (virus-like particles) constituting the HPV vaccine is responsible for the vigorous antibody response that may make the third dose redundant. The protection offered by 2 doses has been demonstrated in non-randomized clinical trials to be comparable to that offered by 3 doses against incident and persistent infections of vaccine targeted HPV types. However, results emerging from the ecological and nested case-control studies embedded in the population based screening programs of different countries indicate reduced efficacy of 2 doses against virological and disease end points. Some recent studies observed the protective effect of single dose of the vaccine against incident and persistent infections of the vaccine targeted HPV types to be similar to 3 doses in spite of immunological inferiority. The sample size, duration of follow-ups and number of events were limited in these studies. Longer follow ups of the less than 3 doses cohorts in the ongoing studies as well as appropriately designed and ethically justifiable randomized studies are needed to establish the protection offered by the alternative schedules at least beyond 10 y of vaccination. PMID:26933961
Atassi, M Z
2015-12-01
Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rolland-Turner, Magali; Farre, Guillaume; Muller, Delphine; Rouet, Nelly; Boue, Franck
2004-10-22
The immune response in the fox (Vulpes vulpes), despite the success of the oral rabies vaccine is not well characterized, and specific immunological tools are needed. To investigate both the humoral and cellular immune response, we used ovalbumin (OVA) and cholera toxin B (CTB) as an antigenic model to set-up ELISA and ELISPOT antibodies secreting cells (ASC) assays in the fox model. Identification of antibodies that cross-react with fox immunoglobulin was performed by Western blot, and their use was adapted for both the ELISA and ELISPOT ASC assay. The humoral and cellular specific immune responses were assessed after intra-muscular or intra-nasal immunization. Intra-muscular immunization resulted in the development of both cellular and humoral anti-OVA and anti-CTB responses in peripheral blood mononuclear cells (PBMCs). Immunization via the intra-nasal route resulted in the development of a cellular and humoral response against CTB in PBMCs. This immune response was confirmed using splenocytes from immunized animals by ELISPOT assay at euthanasia. Females immunized via the intra-nasal route developed specific anti-CTB IgM, IgA and IgG in vaginal fluids after the initial boost (day 26) showing that mucosal immunization produces a vaginal immune response in foxes. These immunological tools developed here are now available to be adapted to other antigenic models to facilitate further immune studies in foxes.
Brenzel, Logan; Schütte, Carl; Goguadze, Keti; Valdez, Werner; Le Gargasson, Jean-Bernard; Guthrie, Teresa
2016-02-01
Governments in resource-poor settings have traditionally relied on external donor support for immunization. Under the Global Vaccine Action Plan, adopted in 2014, countries have committed to mobilizing additional domestic resources for immunization. Data gaps make it difficult to map how well countries have done in spending government resources on immunization to demonstrate greater ownership of programs. This article presents findings of an innovative approach for financial mapping of routine immunization applied in Benin, Ghana, Honduras, Moldova, Uganda, and Zambia. This approach uses modified System of Health Accounts coding to evaluate data collected from national and subnational levels and from donor agencies. We found that government sources accounted for 27-95 percent of routine immunization financing in 2011, with countries that have higher gross national product per capita better able to finance requirements. Most financing is channeled through government agencies and used at the primary care level. Sustainable immunization programs will depend upon whether governments have the fiscal space to allocate additional resources. Ongoing robust analysis of routine immunization should be instituted within the context of total health expenditure tracking. Project HOPE—The People-to-People Health Foundation, Inc.
Innate immune memory in plants.
Reimer-Michalski, Eva-Maria; Conrath, Uwe
2016-08-01
The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.
The innate and adaptive immune response to avian influenza virus
USDA-ARS?s Scientific Manuscript database
Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Matthew; Hooker, Brian S.; Herbert, Martha
We review evidence to support the model that autism may begin when a maternal environmental, infectious, or autoantibody insult causes inflammation which increases reactive oxygen species (ROS) production in the fetus, leading to fetal DNA damage (nuclear and mitochondrial), and that these inflammatory and oxidative stressors persist beyond early development (with potential further exacerbations), producing ongoing functional consequences. In organs with a high metabolic demand such as the central nervous system, the continued use of mitochondria with DNA damage may generate additional ROS which will activate the innate immune system leading to more ROS production. Such a mechanism would self-sustainmore » and possibly progressively worsen. The mitochondrial dysfunction and altered redox signal transduction pathways found in autism would conspire to activate both astroglia and microglia. These activated cells can then initiate a broad-spectrum proinflammatory gene response. Neurons may have acquired receptors for these inflammatory signals to inhibit neuronal signaling as a protection from excitotoxic damage during various pathologic insults (e.g., infection). In autism, over-zealous neuroinflammatory responses could not only influence neural developmental processes, but may more significantly impair neural signaling involved in cognition in an ongoing fashion. This model makes specific predictions in patients and experimental animal models and suggests a number of targets sites of intervention. Our model of potentially reversible pathophysiological mechanisms in autism motivates our hope that effective therapies may soon appear on the horizon.« less
Holmström, Morten Orebo; Riley, Caroline Hasselbalch; Skov, Vibe; Svane, Inge Marie; Hasselbalch, Hans Carl; Andersen, Mads Hald
2018-01-01
The Chronic Myeloproliferative Neoplasms (MPN) are cancers characterized by hyperinflammation and immune deregulation. Concurrently, the expression of the immune check point programmed death ligand 1 (PD-L1) is induced by inflammation. In this study we report on the occurrence of spontaneous T cell responses against a PD-L1 derived epitope in patients with MPN. We show that 71% of patients display a significant immune response against PD-L1, and patients with advanced MPN have significantly fewer and weaker PD-L1 specific immune responses compared to patients with non-advanced MPN. The PD-L1 specific T cell responses are CD4 + T cell responses, and by gene expression analysis we show that expression of PD-L1 is enhanced in patients with MPN. This could imply that the tumor specific immune response in MPN could be enhanced by vaccination with PD-L1 derived epitopes by boosting the anti-regulatory immune response hereby allowing tumor specific T cell to exert anti-tumor immunity.
Fan, Yuchen; Moon, James J.
2016-01-01
Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. PMID:27038091
Ault, Alida; Zajac, Alyse M.; Kong, Wing-Pui; Gorres, J. Patrick; Royals, Michael; Wei, Chih-Jen; Bao, Saran; Yang, Zhi-yong; Reedy, Stephanie E.; Sturgill, Tracy L.; Page, Allen E.; Donofrio-Newman, Jennifer; Adams, Amanda A.; Balasuriya, Udeni B.R.; Horohov, David W.; Chambers, Thomas M.; Nabel, Gary J.; Rao, Srinivas S.
2012-01-01
Equine influenza A (H3N8) virus is a leading cause of infectious respiratory disease in horses causing widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, requiring constant re-evaluation of current vaccines and development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against multiple strains and require frequent boosts. Ongoing research into new vaccine technologies, including gene-based vaccines, aims to increase the neutralization potency, breadth, and duration of protective immunity of new or existing vaccines. In these hypothesis-generating experiments, we demonstrate that a DNA vaccine expressing the hemagglutinin protein of equine H3N8 influenza virus generates homologous and heterologous immune responses, and protects against clinical disease and viral replication following homologous H3N8 infection in horses. Furthermore, we demonstrate that a needle-free delivery device is as efficient and effective as conventional parenteral injection using a needle and syringe. The observed trends in this study drive the hypothesis that DNA vaccines offer a safe, effective, and promising alternative approach for veterinary vaccines against influenza, and applicable to combat equine influenza. PMID:22449425
Kaumaya, Pravin TP
2015-01-01
There is a recognizable and urgent need to speed the development and application of novel, more efficacious anti-cancer vaccine therapies that inhibit tumor progression and prevent acquisition of tumor resistance. We have created and established a portfolio of validated peptide epitopes against multiple receptor tyrosine kinases and we have identified the most biologically effective combinations of EGFR (HER-1), HER-2, HER-3, VEGF and IGF-1R peptide vaccines/mimics to selectively inhibit multiple receptors and signaling pathways. The strategy is based on the use of chimeric conformational B-cell epitope peptides incorporating “promiscuous” T-cell epitopes that afford the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide antibodies as potential vaccines and peptide mimics that act as antagonists to receptor signaling that drive cancer metastasis. In this review we will summarize our ongoing studies based on the development of combinatorial immunotherapeutic strategies that act synergistically to enhance immune-mediated tumor killing aimed at addressing mechanisms of tumor resistance for several tumor types. PMID:25874884
Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
Background In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. Materials and methods BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. Results The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conclusion Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively. PMID:23637758
Barisani-Asenbauer, Talin; Inic-Kanada, Aleksandra; Belij, Sandra; Marinkovic, Emilija; Stojicevic, Ivana; Montanaro, Jacqueline; Stein, Elisabeth; Bintner, Nora; Stojanovic, Marijana
2013-01-01
In a quest for a needle-free vaccine administration strategy, we evaluated the ocular conjunctiva as an alternative mucosal immunization route by profiling and comparing the local and systemic immune responses to the subcutaneous or conjunctival administration of tetanus toxoid (TTd), a model antigen. BALB/c and C57BL/6 mice were immunized either subcutaneously with TTd alone or via the conjunctiva with TTd alone, TTd mixed with 2% glycerol or TTd with merthiolate-inactivated whole-cell B. pertussis (wBP) as adjuvants. Mice were immunized on days 0, 7 and 14 via both routes, and an evaluation of the local and systemic immune responses was performed two weeks after the last immunization. Four weeks after the last immunization, the mice were challenged with a lethal dose (2 × LD50) of tetanus toxin. The conjunctival application of TTd in BALB/c mice induced TTd-specific secretory IgA production and skewed the TTd-specific immune response toward a Th1/Th17 profile, as determined by the stimulation of IFNγ and IL-17A secretion and/or the concurrent pronounced reduction of IL-4 secretion, irrespective of the adjuvant. In conjunctivaly immunized C57BL/6 mice, only TTd administered with wBP promoted the establishment of a mixed Th1/Th17 TTd-specific immune response, whereas TTd alone or TTd in conjunction with glycerol initiated a dominant Th1 response against TTd. Immunization via the conjunctiva with TTd plus wBP adjuvant resulted in a 33% survival rate of challenged mice compared to a 0% survival rate in non-immunized animals (p<0.05). Conjunctival immunization with TTd alone or with various adjuvants induced TTd-specific local and systemic immune responses, predominantly of the Th1 type. The strongest immune responses developed in mice that received TTd together with wBP, which implies that this alternative route might tailor the immune response to fight intracellular bacteria or viruses more effectively.
Prestimulus neural oscillations inhibit visual perception via modulation of response gain.
Chaumon, Maximilien; Busch, Niko A
2014-11-01
The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities. To move beyond qualitative description, we formally compared psychometric functions obtained under different levels of ongoing alpha power and evaluated the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain models. This procedure opens the way to understanding the actual functional mechanisms by which ongoing brain activity affects visual performance. We found that strong prestimulus occipital alpha oscillations-but not more anterior mu oscillations-reduce performance most strongly for stimuli of the highest intensities tested. This inhibitory effect is best explained by a divisive reduction of response gain. Ongoing occipital alpha oscillations thus reflect changes in the visual system's input/output transformation that are independent of the sensory input to the system. They selectively scale the system's response, rather than change its sensitivity to sensory information.
Strain difference in the immune response to hydralazine in inbred guinea-pigs
Ellman, L.; Inman, J.; Green, Ira
1971-01-01
Guinea-pigs were immunized with hydralazine in Freund's complete adjuvant. A marked strain difference in the immune response involving both anti-hydralazine antibody and delayed hypersensitivity to hydralazine was observed in different strains of guinea-pigs: Hartley guinea-pigs and inbred strain 13 guinea-pigs were able to mount a vigorous immune response to the drug while inbred strain 2 guinea-pigs appeared to be `low or non-responders'. This difference could not be explained in terms of metabolism of the drug in that no differences in acetylation were observed. Breeding studies suggest that immune responsiveness to hydralazine is inherited in an autosomal dominant manner. The immune response to hydralazine may be controlled by a `specific immune response gene' which appears not to be linked to the major strain 13 histocompatibility gene. Anti-nuclear and anti-DNA antibodies could not be demonstrated at a time when the animals manifested a strong immune response to hydralazine. Thus, the development of auto-immune phenomena does not appear to be related to the development of an immune response to the drug in short term immunization. Hydralazine-protein conjugates were synthesized, radio-iodinated and used in a Farr technique for the measurement of anti-hydralazine antibody. These techniques for the assay of anti-hydralazine antibodies may be useful in clinical investigations. Imagesp933-a PMID:5316639
Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges.
Cooper, Dustin; Eleftherianos, Ioannis
2017-01-01
The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a "loitering" innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.
Borcherding, Nicholas; Kolb, Ryan; Gullicksrud, Jodi; Vikas, Praveen; Zhu, Yuwen; Zhang, Weizhou
2018-07-06
Immune checkpoints are a diverse set of inhibitory signals to the immune system that play a functional role in adaptive immune response and self-tolerance. Dysregulation of these pathways is a vital mechanism in the avoidance of immune destruction by tumor cells. Immune checkpoint blockade (ICB) refers to targeted strategies to disrupt the tumor co-opted immune suppression to enhance anti-tumor immunity. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1) are two immune checkpoints that have the widest range of antibody-based therapies. These therapies have gone from promising approaches to Food and Drug Administration-approved first- and second-line agents for a number of immunogenic cancers. The burgeoning investigations of ICB efficacy in blood and solid cancers have underscored the importance of identifying the predictors of response and resistance to ICB. Identification of response correlates is made complicated by the observations of mixed reactions, or different responses in multiple lesions from the same patient, and delayed responses that can occur over a year after the induction therapy. Factors that can influence response and resistance in ICB can illuminate underlying molecular mechanisms of immune activation and suppression. These same response predictors can guide the identification of patients who would benefit from ICB, reduce off-target immune-relate adverse events, and facilitate the use of combinatorial therapies to increase efficacy. Here we review the underlying principles of immune checkpoint therapy and results of single-agent ICB clinical trials, and summarize the predictors of response and resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bolduc, Anna; Long, Eugene; Stapler, Dale; Cascalho, Marilia; Tsubata, Takeshi; Koni, Pandelakis A.; Shimoda, Michiko
2013-01-01
CD40/CD40L engagement is essential to T cell-dependent B cell proliferation and differentiation. However, the precise role of CD40 signaling through cognate T–B interaction in the generation of germinal center and memory B cells is still incompletely understood. To address this issue, a B cell-specific CD40L transgene (CD40LBTg) was introduced into mice with B cell-restricted MHC class II deficiency. Using this mouse model, we show that constitutive CD40L expression on B cells alone could not induce germinal center differentiation of MHC class II-deficient B cells after immunization with T cell-dependent Ag. Thus, some other MHC class II-dependent T cell-derived signals are essential for the generation of germinal center B cells in response to T cell-dependent Ag. In fact, CD40LBTg mice generated a complex Ag-specific IgG1 response, which was greatly enhanced in early, but reduced in late, primary response compared with control mice. We also found that the frequency of Ag-specific germinal center B cells in CD40LBTg mice was abruptly reduced 1 wk after immunization. As a result, the numbers of Ag-specific IgG1 long-lived plasma cells and memory B cells were reduced. By histology, large numbers of Ag-specific plasma cells were found in T cell areas adjacent to Ag-specific germinal centers of CD40LBTg mice, temporarily during the second week of primary response. These results indicate that CD40L expression on B cells prematurely terminated their ongoing germinal center response and produced plasma cells. Our results support the notion that CD40 signaling is an active termination signal for germinal center reaction. PMID:20505142
Filia, Antonietta; Bella, Antonino; Del Manso, Martina; Baggieri, Melissa; Magurano, Fabio; Rota, Maria Cristina
2017-09-14
We report an ongoing measles outbreak in Italy, with over 4,400 cases reported in 20 Regions from January to August 2017. Median age was 27 years, 88% of the cases were unvaccinated. The highest incidence was in infants below one year of age and 7% of cases occurred among healthcare workers. Three deaths occurred and two cases of encephalitis were reported. Wide immunity gaps and nosocomial transmission are major challenges to measles elimination in Italy. This article is copyright of The Authors, 2017.
Purinergic signaling during intestinal inflammation.
Longhi, Maria Serena; Moss, Alan; Jiang, Zhenghui Gordon; Robson, Simon C
2017-09-01
Inflammatory bowel disease (IBD) is a devastating disease that is associated with excessive inflammation in the intestinal tract in genetically susceptible individuals and potentially triggered by microbial dysbiosis. This illness markedly predisposes patients to thrombophilia and chronic debility as well as bowel, lymphatic, and liver cancers. Development of new therapies is needed to re-establish long-term immune tolerance in IBD patients without increasing the risk of opportunistic infections and cancer. Aberrant purinergic signaling pathways have been implicated in disordered thromboregulation and immune dysregulation, as noted in the pathogenesis of IBD and other gastrointestinal/hepatic autoimmune diseases. Expression of CD39 on endothelial or immune cells allows for homeostatic integration of hemostasis and immunity, which are disrupted in IBD. Our focus in this review is on novel aspects of the functions of CD39 and related NTPDases in IBD. Regulated CD39 activity allows for scavenging of extracellular nucleotides, the maintenance of P2-receptor integrity and coordination of adenosinergic signaling responses. CD39 together with CD73, serves as an integral component of the immunosuppressive machinery of dendritic cells, myeloid cells, T and B cells. Genetic inheritance and environental factors closely regulate the levels of expression and phosphohydrolytic activity of CD39, both on immune cells and released microparticles. Purinergic mechanisms associated with T regulatory and supressor T helper type 17 cells modulate disease activity in IBD, as can be modeled in experimental colitis. As a recent example, upregulation of CD39 is dependent upon ligation of the aryl hydrocarbon receptor (AHR), as with natural ligands such as bilirubin and 2-(1' H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Decreased expression of CD39 and/or dysfunctional AHR signaling, however, abrogates the protective effects of immunosuppressive AHR ligands. These factors could also serve as biomarkers of disease activity in IBD. Heightened thrombosis, inflammation, and immune disturbances as seen in IBD appear to be associated with aberrant purinergic signaling. Ongoing development of therapeutic strategies augmenting CD39 ectonucleotidase bioactivity via cytokines or AHR ligands offers promise for management of thrombophilia, disordered inflammation, and aberrant immune reactivity in IBD.
TLR7 imidazoquinoline ligand 3M-019 is a potent adjuvant for pure protein prototype vaccines.
Johnston, Dean; Zaidi, Bushra; Bystryn, Jean-Claude
2007-08-01
Cancer vaccines, while theoretically attractive, present difficult challenges that must be overcome to be effective. Cancer vaccines are often poorly immunogenic and may require augmentation of immunogenicity through the use of adjuvants and/or immune response modifiers. Toll-like receptor (TLR) ligands are a relatively new class of immune response modifiers that may have great potential in inducing and augmenting both cellular and humoral immunity to vaccines. TLR7 ligands produce strong cellular responses and specific IgG2a and IgG2b antibody responses to protein immunogens. This study shows that a new TLR7 ligand, 3M-019, in combination with liposomes produces very strong immune responses to a pure protein prototype vaccine in mice. Female C57BL/6 mice were immunized subcutaneously with ovalbumin (OVA, 0.1 mg/dose) weekly 4x. Some groups were immunized to OVA plus 3M-019 or to OVA plus 3M-019 encapsulated in liposomes. Both antibody and cellular immune responses against OVA were measured after either two or four immunizations. Anti-OVA IgG antibody responses were significantly increased after two immunizations and were substantially higher after four immunizations in mice immunized with OVA combined with 3M-019. Encapsulation in liposomes further augmented antibody responses. IgM responses, on the other hand, were lowered by 3M-019. OVA-specific IgG2a levels were increased 625-fold by 3M-019 in liposomes compared to OVA alone, while anti-OVA IgG2b levels were over 3,000 times higher. In both cases encapsulation of 3M-019 in liposomes was stronger than either liposomes alone or 3M-019 without liposomes. Cellular immune responses were likewise increased by 3M-019 but further enhanced when it was encapsulated in liposomes. The lack of toxicity also indicates that this combination may by safe, effective method to boost immune response to cancer vaccines.
Dendritic Cell Immune Responses in HIV-1 Controllers.
Martin-Gayo, Enrique; Yu, Xu G
2017-02-01
Robust HIV-1-specific CD8 T cell responses are currently regarded as the main correlate of immune defense in rare individuals who achieve natural, drug-free control of HIV-1; however, the mechanisms that support evolution of such powerful immune responses are not well understood. Dendritic cells (DCs) are specialized innate immune cells critical for immune recognition, immune regulation, and immune induction, but their possible contribution to HIV-1 immune defense in controllers remains ill-defined. Recent studies suggest that myeloid DCs from controllers have improved abilities to recognize HIV-1 through cytoplasmic immune sensors, resulting in more potent, cell-intrinsic type I interferon secretion in response to viral infection. This innate immune response may facilitate DC-mediated induction of highly potent antiviral HIV-1-specific T cells. Moreover, protective HLA class I isotypes restricting HIV-1-specific CD8 T cells may influence DC function through specific interactions with innate myelomonocytic MHC class I receptors from the leukocyte immunoglobulin-like receptor family. Bi-directional interactions between dendritic cells and HIV-1-specific T cells may contribute to natural HIV-1 immune control, highlighting the importance of a fine-tuned interplay between innate and adaptive immune activities for effective antiviral immune defense.
Past, present and future targets for immunotherapy in ovarian cancer
Schwab, Carlton L; English, Diana P; Roque, Dana M; Pasternak, Monica; Santin, Alessandro D
2015-01-01
Ovarian cancer is the leading cause of death from gynecologic malignancy in the US. Treatments have improved with conventional cytotoxic chemotherapy and advanced surgical techniques but disease recurrence is common and fatal in nearly all cases. Current evidence suggests that the immune system and its ability to recognize and eliminate microscopic disease is paramount in preventing recurrence. Ovarian cancer immunotherapy is targeting tumors through active, passive and adoptive approaches. The goal of immunotherapy is to balance the activation of the immune system against cancer while preventing the potential for tremendous toxicity elicited by immune modulation. In this paper we will review the different immunotherapies available for ovarian cancer as well as current ongoing studies and potential future directions. PMID:25524384
Subverting sterols: rerouting an oxysterol-signaling pathway to promote tumor growth
York, Autumn G.
2013-01-01
Oxysterols are oxidized derivatives of cholesterol that are generated enzymatically or through autoxidation. Initially identified as important lipid signaling molecules in the context of atherosclerosis and inflammation, accumulated evidence indicates that these lipid-signaling molecules can have pleiotropic effects on the fate and function of the immune system. These effects range from the regulation of immune cell survival and proliferation to chemotaxis and antiviral immunity. New studies now indicate that tumor-derived oxysterols can serve to subvert the immune system by recruiting protumorigenic neutrophils into the tumor microenvironment. The consequence of this recruitment is the generation of proangiogenic factors and matrix metalloproteinase proteins that provide a tumor a significant growth and survival advantage. In combination with other recent studies, these data highlight the ongoing cross talk between sterol metabolism and the immune system, and they raise the intriguing possibility that targeting oxysterol pathways could serve as a novel therapeutic approach in the war on cancer. PMID:23980123
Yun, Katherine; Urban, Kailey; Mamo, Blain; Matheson, Jasmine; Payton, Colleen; Scott, Kevin C; Song, Lihai; Stauffer, William M; Stone, Barbara L; Young, Janine; Lin, Henry
2016-08-01
To determine whether the addition of hepatitis B virus (HBV) vaccine to national immunization programs improved vaccination rates among refugee children, a marginalized population with limited access to care. The sample included 2291 refugees younger than 19 years who completed HBV screening after arrival in the United States. Children were categorized by having been born before or after the addition of the 3-dose HBV vaccine to their birth country's national immunization program. The outcome was serological evidence of immunization. The odds of serological evidence of HBV immunization were higher for children born after the addition of HBV vaccine to their birth country's national immunization program (adjusted odds ratio = 2.54; 95% confidence interval = 2.04, 3.15). National HBV vaccination programs have contributed to the increase in HBV vaccination coverage observed among US-bound refugee children. Ongoing public health surveillance is needed to ensure that vaccine rates are sustained among diverse, conflict-affected, displaced populations.
McEwen, Melanie; Farren, Elizabeth
2005-01-01
Studies indicate that roughly half of health care workers are not immunized against hepatitis B and influenza. Findings from a survey of 1,000 registered nurses (RNs) conducted to analyze their beliefs and actions related to immunization recommendations are reported. Only 8% of the responding RNs chose not to receive vaccination against hepatitis B. The primary reasons that nurses declined hepatitis B vaccination were because they were not working in nursing or did not believe they were at risk of exposure. Similarly, 86% of the RNs reported they had ever received a flu shot, and 69% reported of being immunized during 2 of the previous 4 years. Rationale for receiving immunization included belief in its effectiveness, belief that they were at risk of exposure, and that it was provided free of charge. Reasons for declining included concerns about side effects, lack of concern about getting the illness, and doubts about effectiveness. The nurses who responded to the survey appear to value immunizations and generally adhere to immunization recommendations. Further study needs to be conducted on related issues, including follow-up for assessment of long-term protection of hepatitis B immunization and adherence to guidelines for postexposure prophylaxis. Ongoing monitoring and further study of serious complications of hepatitis B immunizations are also needed.
Immunization Information Systems: A Decade of Progress in Law and Policy
Martin, Daniel W.; Lowery, N. Elaine; Brand, Bill; Gold, Rebecca; Horlick, Gail
2015-01-01
This article reports on a study of laws, regulations, and policies governing Immunization Information Systems (IIS, also known as “immunization registries”) in states and selected urban areas of the United States. The study included a search of relevant statutes, administrative codes and published attorney general opinions/findings, an online questionnaire completed by immunization program managers and/or their staff, and follow-up telephone interviews. The legal/regulatory framework for IIS has changed considerably since 2000, largely in ways that improve IIS’ ability to perform their public health functions while continuing to maintain strict confidentiality and privacy controls. Nevertheless, the exchange of immunization data and other health information between care providers and public health and between entities in different jurisdictions remains difficult due in part to ongoing regulatory diversity. To continue to be leaders in health information exchange and facilitate immunization of children and adults, IIS will need to address the challenges presented by the interplay of federal and state legislation, regulations, and policies and continue to move toward standardized data collection and sharing necessary for interoperable systems. PMID:24402434
Immune Responses to HCV and Other Hepatitis Viruses
Park, Su-Hyung; Rehermann, Barbara
2014-01-01
Summary Five human hepatitis viruses cause most acute and chronic liver disease worldwide. Over the past 25 years hepatitis C virus (HCV) in particular has received much interest because of its ability to persist in most immunocompetent adults and the lack of a protective vaccine. Here we examine innate and adaptive immune responses to HCV infection. Although HCV activates an innate immune response, it employs an elaborate set of mechanisms to evade interferon (IFN)-based antiviral immunity. By comparing innate and adaptive immune responses to HCV with those to hepatitis A and B viruses, we suggest that prolonged innate immune activation impairs the development of successful adaptive immune responses. Comparative immunology furthermore provides insights into the maintenance of immune protection. We conclude by discussing prospects for an HCV vaccine and future research needs for the hepatitis viruses. PMID:24439265
Immune System and Kidney Transplantation.
Shrestha, Badri Man
2017-01-01
The immune system recognises a transplanted kidney as foreign body and mounts immune response through cellular and humoral mechanisms leading to acute or chronic rejection, which ultimately results in graft loss. Over the last five decades, there have been significant advances in the understanding of the immune responses to transplanted organs in both experimental and clinical transplant settings. Modulation of the immune response by using immunosuppressive agents has led to successful outcomes after kidney transplantation. The paper provides an overview of the general organisation and function of human immune system, immune response to kidney transplantation, and the current practice of immunosuppressive therapy in kidney transplantation in the United Kingdom.
Influences of Plant Traits on Immune Responses of Specialist and Generalist Herbivores
Lampert, Evan
2012-01-01
Specialist and generalist insect herbivore species often differ in how they respond to host plant traits, particularly defensive traits, and these responses can include weakened or strengthened immune responses to pathogens and parasites. Accurate methods to measure immune response in the presence and absence of pathogens and parasites are necessary to determine whether susceptibility to these natural enemies is reduced or increased by host plant traits. Plant chemical traits are particularly important in that host plant metabolites may function as antioxidants beneficial to the immune response, or interfere with the immune response of both specialist and generalist herbivores. Specialist herbivores that are adapted to process and sometimes accumulate specific plant compounds may experience high metabolic demands that may decrease immune response, whereas the metabolic demands of generalist species differ due to more broad-substrate enzyme systems. However, the direct deleterious effects of plant compounds on generalist herbivores may weaken their immune responses. Further research in this area is important given that the ecological relevance of plant traits to herbivore immune responses is equally important in natural systems and agroecosystems, due to potential incompatibility of some host plant species and cultivars with biological control agents of herbivorous pests. PMID:26466545
Q fever in pregnant goats: humoral and cellular immune responses
2013-01-01
Q fever is a zoonosis caused by the intracellular bacterium Coxiella burnetii. Both humoral and cellular immunity are important in the host defence against intracellular bacteria. Little is known about the immune response to C. burnetii infections in domestic ruminants even though these species are the major source of Q fever in humans. To investigate the goat’s immune response we inoculated groups of pregnant goats via inhalation with a Dutch outbreak isolate of C. burnetii. All animals were successfully infected. Phase 1 and Phase 2 IgM- and IgG-specific antibodies were measured. Cellular immune responses were investigated by interferon-gamma, enzyme-linked immunosorbent spot test (IFN-γ Elispot), lymphocyte proliferation test (LPT) and systemic cytokines. After two weeks post inoculation (wpi), a strong anti-C. burnetii Phase 2 IgM and IgG antibody response was observed while the increase in IgM anti-Phase 1 antibodies was less pronounced. IgG anti-Phase 1 antibodies started to rise at 6 wpi. Cellular immune responses were observed after parturition. Our results demonstrated humoral and cellular immune responses to C. burnetii infection in pregnant goats. Cell-mediated immune responses did not differ enough to distinguish between Coxiella-infected and non-infected pregnant animals, whereas a strong-phase specific antibody response is detected after 2 wpi. This humoral immune response may be useful in the early detection of C. burnetii-infected pregnant goats. PMID:23915213
Tilapia show immunization response against Ich
USDA-ARS?s Scientific Manuscript database
This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...
Cutaneous immunology: basics and new concepts.
Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran
2016-01-01
As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.
Dubinsky, Marla C.; Lin, Ying-Chao; Dutridge, Debra; Picornell, Yoana; Landers, Carol J.; Farrior, Sharmayne; Wrobel, Iwona; Quiros, Antonio; Vasiliauskas, Eric A.; Grill, Bruce; Israel, David; Bahar, Ron; Christie, Dennis; Wahbeh, Ghassan; Silber, Gary; Dallazadeh, Saied; Shah, Praful; Thomas, Danny; Kelts, Drew; Hershberg, Robert M.; Elson, Charles O.; Targan, Stephan R.; Taylor, Kent D.; Rotter, Jerome I.; Yang, Huiying
2007-01-01
BACKGROUND AND AIM Crohn’s disease (CD) is a heterogeneous disorder characterized by diverse clinical phenotypes. Childhood-onset CD has been described as a more aggressive phenotype. Genetic and immune factors may influence disease phenotype and clinical course. We examined the association of immune responses to microbial antigens with disease behavior and prospectively determined the influence of immune reactivity on disease progression in pediatric CD patients. METHODS Sera were collected from 196 pediatric CD cases and tested for immune responses: anti-I2, anti-outer membrane protein C (anti-OmpC), anti-CBir1 flagellin (anti-CBir1), and anti-Saccharomyces-cerevisiae (ASCA) using ELISA. Associations between immune responses and clinical phenotype were evaluated. RESULTS Fifty-eight patients (28%) developed internal penetrating and/or stricturing (IP/S) disease after a median follow-up of 18 months. Both anti-OmpC (p < 0.0006) and anti-I2 (p < 0.003) were associated with IP/S disease. The frequency of IP/S disease increased with increasing number of immune responses (p trend = 0.002). The odds of developing IP/S disease were highest in patients positive for all four immune responses (OR (95% CI): 11 (1.5–80.4); p = 0.03). Pediatric CD patients positive for ≥1 immune response progressed to IP/S disease sooner after diagnosis as compared to those negative for all immune responses (p < 0.03). CONCLUSIONS The presence and magnitude of immune responses to microbial antigens are significantly associated with more aggressive disease phenotypes among children with CD. This is the first study to prospectively demonstrate that the time to develop a disease complication in children is significantly faster in the presence of immune reactivity, thereby predicting disease progression to more aggressive disease phenotypes among pediatric CD patients. PMID:16454844
Kim, Ju Hyeon; Min, Jee Sun; Kang, Jae Soon; Kwon, Deok Ho; Yoon, Kyong Sup; Strycharz, Joseph; Koh, Young Ho; Pittendrigh, Barry Robert; Clark, J Marshall; Lee, Si Hyeock
2011-05-01
The differences in the immune response between body lice, Pediculus humanus humanus, and head lice, Pediculus humanus capitis, were investigated initially by measuring the proliferation rates of two model bacteria, a Gram-positive Staphylococcus aureus and a Gram-negative Escherichia coli, following challenge by injection. Body lice showed a significantly reduced immune response compared to head lice particularly to E. coli at the early stage of the immune challenge. Annotation of the body louse genome identified substantially fewer immune-related genes compared with other insects. Nevertheless, all required genetic components of the major immune pathways, except for the immune deficiency (Imd) pathway, are still retained in the body louse genome. Transcriptional profiling of representative genes involved in the humoral immune response, following bacterial challenge, revealed that both body and head lice, regardless of their developmental stages, exhibited an increased immune response to S. aureus but little to E. coli. Head lice, however, exhibited a significantly higher phagocytotic activity against E. coli than body lice, whereas the phagocytosis against S. aureus differed only slightly between body and head lice. These findings suggest that the greater immune response in head lice against E. coli is largely due to enhanced phagocytosis and not due to differences in the humoral immune response. The reduced phagocytotic activity in body lice could be responsible, in part, for their increased vector competence. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chang, Yu-Hsuan; Kumar, Ramya; Ng, Tze Hann; Wang, Han-Ching
2018-03-01
The possibility of immunological memory in invertebrates is a topic that has recently attracted a lot of attention. Today, even vertebrates are known to exhibit innate immune responses that show memory-like properties, and since these responses are triggered by cells that are involved in the innate immune system, it seems that immune specificity and immune memory do not necessarily require the presence of B cells and T cells after all. This kind of immune response has been called "immune priming" or "trained immunity". In this report, we review recent observations and our current understanding of immunological memory within the innate immune system in cultured shrimp and crayfish after vaccination with live vaccine, killed vaccine and subunit vaccines. We also discuss the possible mechanisms involved in this immune response. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing immune competence in pigs by immunization with tetanus toxoid.
Gimsa, U; Tuchscherer, A; Gimsa, J; Tuchscherer, M
2018-01-01
Immune competence can be tested by challenging organisms with a set of infectious agents. However, disease control requirements impose restrictions on the infliction of infections upon domestic pigs. Alternatively, vaccinations induce detectable immune responses that reflect immune competence. Here, we tested this approach with tetanus toxoid (TT) in young domestic pigs. To optimize the vaccination protocol, we immunized the pigs with a commercial TT vaccine at the age of 21 or 35 days. Booster immunizations were performed either 14 or 21 days later. TT-specific antibodies in plasma as well as lymphoproliferative responses were determined both 7 and 14 days after booster immunization using ELISA and lymphocyte transformation tests, respectively. In addition, general IgG and IgM plasma concentrations and mitogen-induced proliferation were measured. The highest TT-specific antibody responses were detected when blood samples were collected 1 week after a booster immunization conducted 21 days after primary immunization. The pigs' age at primary immunization did not have a significant influence on TT-specific antibody responses. Similarly, the TT-specific proliferative responses were highest when blood samples were collected 1 week after booster immunization, while age and time of primary and booster immunization were irrelevant in our setup. While general IgG and IgM plasma levels were highly age dependent, there were no significant age effects for TT-specific immune responses. In addition, mitogen-induced proliferation was independent of immunization as well as blood sampling protocols. In summary, our model of TT vaccination provides an interesting approach for the assessment of immune competence in young pigs. The detected vaccination effects were not biased by age, even though our data were acquired from immune systems that were under development during our tests.
Cellular Immune Response to Cytomegalovirus Infection After Renal Transplantation
Linnemann, Calvin C.; Kauffman, Carol A.; First, M. Roy; Schiff, Gilbert M.; Phair, John P.
1978-01-01
A prospective study of 15 patients who received renal transplants defined the effect of renal transplantation on the cellular immune response to cytomegalovirus infection. Of 15 patients, 14 developed cytomegalovirus infection, usually in the first 2 months after transplantation, and all infections were accompanied by a normal humoral immune response. After the initiation of immunosuppressive therapy and transplantation, there was a general depression of lymphocyte transformation, as reflected in the response to phytohemagglutinin, accompanied by a specific defect in cellular immunity, as indicated by lymphocyte transformation to cytomegalovirus antigen. Eleven patients had cellular immunity to cytomegalovirus before transplantation, and all of these became negative in the first month after transplantation. In subsequent months, only 6 of the 14 study patients with cytomegalovirus infection developed specific cellular immune responses to cytomegalovirus. This occurred most often in patients who had severe febrile illnesses in association with infection. The specific cellular immune response which developed in the posttransplant period did not persist in three of the patients. This study demonstrates the dissociation of the humoral and cellular immune response to cytomegalovirus infection in renal transplant patients and indicates the importance of the loss of cellular immunity in the appearance of infection. Previously infected patients lost their cell-mediated immunity and had reactivation infections despite the presence of serum antibody. PMID:215541
The Immune System’s Role in the Biology of Autism
Goines, Paula; Van de Water, Judy
2010-01-01
PURPOSE OF REVIEW The following is a review of the most recent research concerning the potential role of immune system dysfunction in autism. This body of literature has expanded dramatically over the past few years as researchers continue to identify immune anomalies in individuals with autism. RECENT FINDINGS The most exciting of these recent findings is the discovery of autoantibodies targeting brain proteins in both children with autism and their mothers. In particular, circulating maternal autoantibodies directed towards fetal brain proteins are highly specific for autism. This finding has great potential as a biomarker for disease risk, and may provide an avenue for future therapeutics and prevention. Additionally, data concerning the cellular immune system in children with autism suggest there may be a defect in signaling pathways that are shared by the immune and central nervous systems. While studies to explore this hypothesis are ongoing, there is great interest in the commonalities between the neural and immune systems and their extensive interactions. SUMMARY In summary, there is exciting research regarding the role of the immune system in autism spectrum disorders that may have profound implications for diagnosis and treatment of this devastating disease. PMID:20160651
The Cost of Doing Business: Cost Structure of Electronic Immunization Registries
Fontanesi, John M; Flesher, Don S; De Guire, Michelle; Lieberthal, Allan; Holcomb, Kathy
2002-01-01
Objective To predict the true cost of developing and maintaining an electronic immunization registry, and to set the framework for developing future cost-effective and cost-benefit analysis. Data Sources/Study Setting Primary data collected at three immunization registries located in California, accounting for 90 percent of all immunization records in registries in the state during the study period. Study Design A parametric cost analysis compared registry development and maintenance expenditures to registry performance requirements. Data Collection/Extraction Methods Data were collected at each registry through interviews, reviews of expenditure records, technical accomplishments development schedules, and immunization coverage rates. Principal Findings The cost of building immunization registries is predictable and independent of the hardware/software combination employed. The effort requires four man-years of technical effort or approximately $250,000 in 1998 dollars. Costs for maintaining a registry were approximately $5,100 per end user per three-year period. Conclusions There is a predictable cost structure for both developing and maintaining immunization registries. The cost structure can be used as a framework for examining the cost-effectiveness and cost-benefits of registries. The greatest factor effecting improvement in coverage rates was ongoing, user-based administrative investment. PMID:12479497
Tissue homeostasis and immunity--more on models.
Cunliffe, J
2006-09-01
This article continues the ongoing debate around models of the immune system. Earlier contributors have paid much attention to the various processes that lead to adaptive immune system aggression or tolerance. They have often based their discussions around facts that have been established by experimental investigation. However, both the observation and interpretation of these facts have been influenced by the function--or system goal--that is believed to have generated them. The perception of this function (of all or part of the immune system) is influenced by long established theories in immunology (e.g. horror autotoxicus, clonal deletion in utero, pathogen elimination, clonal selection, auto-immunity and so on) which, for many, have become enshrined as facts. One function that has had less consideration and has not been extensively investigated is the maintenance of tissue homeostasis. When the immune system is viewed from this perspective, the facts invite alternative interpretations. Whilst this perspective may not necessarily be the only valid one, let alone a correct one, viewing things this way--at least briefly--might help to expose hidden assumptions. It also emphasizes that the immune system is a system and, as such, it can by analysed through the principles of general systems theory.
Murphy, Sean C.; Kas, Arnold; Stone, Brad C.; Bevan, Michael J.
2013-01-01
Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins. PMID:23530242
Costs of mounting an immune response during pregnancy in a lizard.
Meylan, Sandrine; Richard, Murielle; Bauer, Sophie; Haussy, Claudy; Miles, Donald
2013-01-01
Immune defenses are of great benefit to hosts, but reducing the impact of infection by mounting an immune response also entails costs. However, the physiological mechanisms that generate the costs of an immune response remain poorly understood. Moreover, the majority of studies investigating the consequences of an immune challenge in vertebrates have been conducted on mammals and birds. The aim of this study is to investigate the physiological costs of mounting an immune response during gestation in an ectothermic species. Indeed, because ectothermic species are unable to internally regulate their body temperature, the apportionment of resources to homeostatic activities in ectothermic species can differ from that in endothermic species. We conducted this study on the common lizard Zootoca vivipara. We investigated the costs of mounting an immune response by injecting females with sheep red blood cells and quantified the consequences to reproductive performance (litter mass and success) and physiological performance (standard metabolic rate, endurance, and phytohemagglutinin response). In addition, we measured basking behavior. Our analyses revealed that mounting an immune response affected litter mass, physiological performance, and basking behavior. Moreover, we demonstrated that the modulation of an immune challenge is impacted by intrinsic factors, such as body size and condition.
Immune Response in Thyroid Cancer: Widening the Boundaries
Ward, Laura Sterian
2014-01-01
The association between thyroid cancer and thyroid inflammation has been repeatedly reported and highly debated in the literature. In fact, both molecular and epidemiological data suggest that these diseases are closely related and this association reinforces that the immune system is important for thyroid cancer progression. Innate immunity is the first line of defensive response. Unlike innate immune responses, adaptive responses are highly specific to the particular antigen that induced them. Both branches of the immune system may interact in antitumor immune response. Major effector cells of the immune system that directly target thyroid cancer cells include dendritic cells, macrophages, polymorphonuclear leukocytes, mast cells, and lymphocytes. A mixture of immune cells may infiltrate thyroid cancer microenvironment and the balance of protumor and antitumor activity of these cells may be associated with prognosis. Herein, we describe some evidences that immune response may be important for thyroid cancer progression and may help us identify more aggressive tumors, sparing the vast majority of patients from costly unnecessary invasive procedures. The future trend in thyroid cancer is an individualized therapy. PMID:25328756
Dimier-Poisson, Isabelle; Aline, Fleur; Bout, Daniel; Mévélec, Marie-Noëlle
2006-03-06
Toxoplasma gondii enters the mucosal surfaces of the host, and so immunity at these sites is of major interest. Due to the compartmentalization of the immune response, systemic immunization does not induce high levels of immunity at mucosal surfaces. Intranasal immunization has been shown to be very effective in inducing both systemic and mucosal immune responses. Immunization with mRNA can induce both humoral and cell-mediated immune responses, both of which are important in conferring immunity to T. gondii. The efficacy of RNA vaccination by the nasal route with T. gondii RNA was evaluated. We assessed the percentage of cumulative survival after an oral challenge with a lethal dose of T. gondii cysts (40 cysts), and the number of brain cysts following a challenge with a sublethal dose of T. gondii 76 K cysts (15 cysts). Vaccinated mice were found to be significantly better protected than non-immunized mice after a challenge with a lethal dose of cysts; and a challenge with a sublethal dose also resulted in fewer brain cysts than in non-immunized mice. Sera and intestinal secretions of immunized mice recognized T. gondii antigens, suggesting that a specific humoral immune response may occur. Moreover, a specific lymphoproliferative response observed in cervical lymph nodes may confer protection. These preliminary findings suggest that RNA vaccination by a mucosal route could be feasible.
Vermeulen, Françoise; Dirix, Violette; Verscheure, Virginie; Damis, Eliane; Vermeylen, Danièle; Locht, Camille; Mascart, Françoise
2013-04-08
Due to their high risk of developing severe Bordetella pertussis (Bp) infections, it is recommended to immunize preterm infants at their chronological age. However, little is known about the persistence of their specific immune responses, especially of the cellular responses recognized to play a role in protection. We compared here the cellular immune responses to two major antigens of Bp between three groups of one year-old children born prematurely, who received for their primary vaccination respectively the whole cell vaccine Tetracoq(®) (TC), the acellular vaccine Tetravac(®) (TV), or the acellular vaccine Infanrix-hexa(®) (IR). Whereas most children had still detectable IFN-γ responses at one year of age, they were lower in the IR-vaccinated children compared to the two other groups. In contrast, both the TV- and the IR-vaccinated children displayed higher Th2-type immune responses, resulting in higher antigen-specific IFN-γ/IL-5 ratios in TC- than in TV- or IR-vaccinated children. The IFN-γ/IL-5 ratio of mitogen-induced cytokines was also lower in IR- compared to TC- or TV-vaccinated children. No major differences in the immune responses were noted after the booster compared to the pre-booster responses for each vaccine. The IR-vaccinated children had a persistently low specific Th1-type immune response associated with high specific Th2-type immune responses, resulting in lower antigen-specific IFN-γ/IL-5 ratios compared to the two other groups. We conclude that antigen-specific cellular immune responses persisted in one year-old children born prematurely and vaccinated during infancy at their chronological age, that a booster dose did not significantly boost the cellular immune responses, and that the Th1/Th2 balance of the immune responses is modulated by the different vaccines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Battling the Bite: Tradeoffs in Immunity to Insect-Borne Pathogens.
Schneider, David Samuel
2016-06-21
Effective pathogens are successful, by definition, because they can defeat our immune response. Pingen et al. (2016) in this issue of Immunity demonstrate that some mosquito-transmitted viruses depend upon a strong host immune response triggered by the innate immune response to the bite to promote dissemination through the body. Copyright © 2016. Published by Elsevier Inc.
Bowyer, Georgina; Ewer, Katie J
2017-01-01
Sporadic outbreaks of Ebola virus infection have been documented since the mid-Seventies and viral exposure can lead to lethal haemorrhagic fever with case fatalities as high as 90%. There is now a comprehensive body of data from both ongoing and completed clinical trials assessing various vaccine strategies, which were rapidly advanced through clinical trials in response to the 2013–2016 Ebola virus disease (EVD) public health emergency. Careful consideration of immunogenicity post vaccination is essential but has been somewhat stifled because of the wide array of immunological assays and outputs that have been used in the numerous clinical trials. We discuss here the different aspects of the immune assays currently used in the Phase I clinical trials for Ebola virus vaccines, and draw comparisons across the immune outputs where possible; various trials have examined both cellular and humoral immunity in European and African cohorts. Assessment of the safety data, the immunological outputs and the ease of field deployment for the various vaccine modalities will help both the scientific community and policy-makers prioritize and potentially license vaccine candidates. If this can be achieved, the next outbreak of Ebola virus, or other emerging pathogen, can be more readily contained and will not have such widespread and devastating consequences. This article is part of the themed issue ‘The 2013–2016 West African Ebola epidemic: data, decision-making and disease control’. PMID:28396468
Antigenic Variation and Immune Escape in the MTBC
2017-01-01
Microbes that infect other organisms encounter host immune responses, and must overcome or evade innate and adaptive immune responses to successfully establish infection. Highly successful microbial pathogens, including M. tuberculosis, are able to evade adaptive immune responses (mediated by antibodies and/or T lymphocytes) and thereby establish long-term chronic infection. One mechanism that diverse pathogens use to evade adaptive immunity is antigenic variation, in which structural variants emerge that alter recognition by established immune responses and allow those pathogens to persist and/or to infect previously-immune hosts. Despite the wide use of antigenic variation by diverse pathogens, this mechanism appears to be infrequent in M. tuberculosis, as indicated by findings that known and predicted human T cell epitopes in this organism are highly conserved, although there are exceptions. These findings have implications for diagnostic tests that are based on measuring host immune responses, and for vaccine design and development. PMID:29116635
Ambient ozone and pulmonary innate immunity
Al-Hegelan, Mashael; Tighe, Robert M.; Castillo, Christian; Hollingsworth, John W.
2013-01-01
Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk. PMID:21132467
Tools for translation: non-viral materials for therapeutic mRNA delivery
NASA Astrophysics Data System (ADS)
Hajj, Khalid A.; Whitehead, Kathryn A.
2017-10-01
In recent years, messenger RNA (mRNA) has come into the spotlight as a versatile therapeutic with the potential to prevent and treat a staggering range of diseases. Billions of dollars have been invested in the commercial development of mRNA drugs, with ongoing clinical trials focused on vaccines (for example, influenza and Zika viruses) and cancer immunotherapy (for example, myeloma, leukaemia and glioblastoma). Although significant progress has been made in the design of in vitro-transcribed mRNA that retains potency while minimizing unwanted immune responses, the widespread use of mRNA drugs requires the development of safe and effective drug delivery vehicles. In this Review, we provide an overview of the field of mRNA therapeutics and describe recent advances in the development of synthetic materials that encapsulate and deliver mRNA payloads.
DNA damage talks to inflammation.
Cohen, Idan
2017-02-01
Interleukin-1 alpha (IL-1α) and beta (IL-1β) are pleiotropic cytokines affecting multiple cells and regulating many immune and inflammatory responses. The recent finding that nuclear IL-1α is recruited to sites of DNA damage, and its ability to actively sense and report genotoxic stress to the surrounding tissue, dramatically alters the way we view IL-1 biology. This discovery add a new face to the classical "danger theory" and show that danger signaling is not strictly limited to passive release or dying cells. Most importantly, as now physiological stresses are linked to the release or secretion of IL-1α, chronic danger signaling and the alarmin inhibition should be considered as a new therapeutic approach for many diseases that are characterized by ongoing DNA damage, stress signaling and inflammation. Copyright © 2016. Published by Elsevier Ltd.
Spotlight on atezolizumab and its potential in the treatment of advanced urothelial bladder cancer.
Aydin, Ahmet Murat; Woldu, Solomon L; Hutchinson, Ryan C; Boegemann, Martin; Bagrodia, Aditya; Lotan, Yair; Margulis, Vitaly; Krabbe, Laura-Maria
2017-01-01
Metastatic urothelial carcinoma of the bladder is an aggressive malignancy with poor prognosis, reflecting a lack of effective systemic therapies. The current standard of care includes multiagent platinum-based chemotherapy; however a majority of patients do not respond to treatment and most eventually succumb to disease. Recently, renewed interest in immunotherapy in the form of immune-checkpoint inhibition has gained widespread attention for a number of malignancies. Atezolizumab, an anti-PDL1 antibody, has been shown to be effective in a subset of patients previously treated with or unfit for platinum-based chemotherapy, and has shown durable responses with a good tolerability profile. We review the mechanism of action and clinical evidence of atezolizumab for metastatic urothelial bladder cancer, and discuss this drug within the context of ongoing developments in this dynamic field of immunooncology.
Spotlight on atezolizumab and its potential in the treatment of advanced urothelial bladder cancer
Aydin, Ahmet Murat; Woldu, Solomon L; Hutchinson, Ryan C; Boegemann, Martin; Bagrodia, Aditya; Lotan, Yair; Margulis, Vitaly; Krabbe, Laura-Maria
2017-01-01
Metastatic urothelial carcinoma of the bladder is an aggressive malignancy with poor prognosis, reflecting a lack of effective systemic therapies. The current standard of care includes multiagent platinum-based chemotherapy; however a majority of patients do not respond to treatment and most eventually succumb to disease. Recently, renewed interest in immunotherapy in the form of immune-checkpoint inhibition has gained widespread attention for a number of malignancies. Atezolizumab, an anti-PDL1 antibody, has been shown to be effective in a subset of patients previously treated with or unfit for platinum-based chemotherapy, and has shown durable responses with a good tolerability profile. We review the mechanism of action and clinical evidence of atezolizumab for metastatic urothelial bladder cancer, and discuss this drug within the context of ongoing developments in this dynamic field of immunooncology. PMID:28331342
Topological Acoustic Delay Line
NASA Astrophysics Data System (ADS)
Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan
2018-03-01
Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.
Subverting Toll-Like Receptor Signaling by Bacterial Pathogens
McGuire, Victoria A.; Arthur, J. Simon C.
2015-01-01
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936
Immunity against Helminths: Interactions with the Host and the Intercurrent Infections
Moreau, Emmanuelle; Chauvin, Alain
2010-01-01
Helminth parasites are of considerable medical and economic importance. Studies of the immune response against helminths are of great interest in understanding interactions between the host immune system and parasites. Effector immune mechanisms against tissue-dwelling helminths and helminths localized in the lumen of organs, and their regulation, are reviewed. Helminth infections are characterized by an association of Th2-like and Treg responses. Worms are able to persist in the host and are mainly responsible for chronic infection despite a strong immune response developed by the parasitized host. Two types of protection against the parasite, namely, premune and partial immunities, have been described. Immune responses against helminths can also participate in pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host and parasite by controlling immunopathologic disorders and parasite persistence. Consequences of the modified Th2-like responses on co-infection, vaccination, and inflammatory diseases are discussed. PMID:20150967
Post, Gloria B; Gleason, Jessie A; Cooper, Keith R
2017-12-01
Perfluoroalkyl acids (PFAAs), a group of synthetic organic chemicals with industrial and commercial uses, are of current concern because of increasing awareness of their presence in drinking water and their potential to cause adverse health effects. PFAAs are distinctive among persistent, bioaccumulative, and toxic (PBT) contaminants because they are water soluble and do not break down in the environment. This commentary discusses scientific and risk assessment issues that impact the development of drinking water guidelines for PFAAs, including choice of toxicological endpoints, uncertainty factors, and exposure assumptions used as their basis. In experimental animals, PFAAs cause toxicity to the liver, the immune, endocrine, and male reproductive systems, and the developing fetus and neonate. Low-dose effects include persistent delays in mammary gland development (perfluorooctanoic acid; PFOA) and suppression of immune response (perfluorooctane sulfonate; PFOS). In humans, even general population level exposures to some PFAAs are associated with health effects such as increased serum lipids and liver enzymes, decreased vaccine response, and decreased birth weight. Ongoing exposures to even relatively low drinking water concentrations of long-chain PFAAs substantially increase human body burdens, which remain elevated for many years after exposure ends. Notably, infants are a sensitive subpopulation for PFAA's developmental effects and receive higher exposures than adults from the same drinking water source. This information, as well as emerging data from future studies, should be considered in the development of health-protective and scientifically sound guidelines for PFAAs in drinking water.
Gleason, Jessie A.; Cooper, Keith R.
2017-01-01
Perfluoroalkyl acids (PFAAs), a group of synthetic organic chemicals with industrial and commercial uses, are of current concern because of increasing awareness of their presence in drinking water and their potential to cause adverse health effects. PFAAs are distinctive among persistent, bioaccumulative, and toxic (PBT) contaminants because they are water soluble and do not break down in the environment. This commentary discusses scientific and risk assessment issues that impact the development of drinking water guidelines for PFAAs, including choice of toxicological endpoints, uncertainty factors, and exposure assumptions used as their basis. In experimental animals, PFAAs cause toxicity to the liver, the immune, endocrine, and male reproductive systems, and the developing fetus and neonate. Low-dose effects include persistent delays in mammary gland development (perfluorooctanoic acid; PFOA) and suppression of immune response (perfluorooctane sulfonate; PFOS). In humans, even general population level exposures to some PFAAs are associated with health effects such as increased serum lipids and liver enzymes, decreased vaccine response, and decreased birth weight. Ongoing exposures to even relatively low drinking water concentrations of long-chain PFAAs substantially increase human body burdens, which remain elevated for many years after exposure ends. Notably, infants are a sensitive subpopulation for PFAA’s developmental effects and receive higher exposures than adults from the same drinking water source. This information, as well as emerging data from future studies, should be considered in the development of health-protective and scientifically sound guidelines for PFAAs in drinking water. PMID:29261653
Enterotoxigenic Escherichia coli Elicits Immune Responses to Multiple Surface Proteins▿ †
Roy, Koushik; Bartels, Scott; Qadri, Firdausi; Fleckenstein, James M.
2010-01-01
Enterotoxigenic Escherichia coli (ETEC) causes considerable morbidity and mortality due to diarrheal illness in developing countries, particularly in young children. Despite the global importance of these heterogeneous pathogens, a broadly protective vaccine is not yet available. While much is known regarding the immunology of well-characterized virulence proteins, in particular the heat-labile toxin (LT) and colonization factors (CFs), to date, evaluation of the immune response to other antigens has been limited. However, the availability of genomic DNA sequences for ETEC strains coupled with proteomics technology affords opportunities to examine novel uncharacterized antigens that might also serve as targets for vaccine development. Analysis of whole or fractionated bacterial proteomes with convalescent-phase sera can potentially accelerate identification of secreted or surface-expressed targets that are recognized during the course of infection. Here we report results of an immunoproteomics approach to antigen discovery with ETEC strain H10407. Immunoblotting of proteins separated by two-dimensional electrophoresis (2DE) with sera from mice infected with strain H10407 or with convalescent human sera obtained following natural ETEC infections demonstrated multiple immunoreactive molecules in culture supernatant, outer membrane, and outer membrane vesicle preparations, suggesting that many antigens are recognized during the course of infection. Proteins identified by this approach included established virulence determinants, more recently identified putative virulence factors, as well as novel secreted and outer membrane proteins. Together, these studies suggest that existing and emerging proteomics technologies can provide a useful complement to ongoing approaches to ETEC vaccine development. PMID:20457787
Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C
2011-10-01
A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Simi, S; Peter, Valsa S; Peter, M C Subhash
2017-09-15
Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern of mRNA expression of Na + /K + -ATPase α-subunit isoforms; nkaα1a, nkaα1b and nkaα1c and the shift in nkaα1a and nkaα1b isoforms expression after hypoxia stress in immune-challenged fish, presents transcriptomic evidence for a modified Na + /K + ion transporter system in these fish. Collectively, our data thus provide evidence for an interactive immune-stress response in an air-breathing fish, where the patterns of cortisol-thyroid hormone interaction, the ion transporter functions and the non-specific immune responses are reversed by hypoxia stress in immune-challenged fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity
Rosado, Maria Manuela; Simkó, Myrtill; Mattsson, Mats-Olof; Pioli, Claudio
2018-01-01
In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while “respecting” the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing. PMID:29632855
Immune-Modulating Perspectives for Low Frequency Electromagnetic Fields in Innate Immunity.
Rosado, Maria Manuela; Simkó, Myrtill; Mattsson, Mats-Olof; Pioli, Claudio
2018-01-01
In recent years, the effects of electromagnetic fields (EMFs) on the immune system have received a considerable interest, not only to investigate possible negative health impact but also to explore the possibility to favorably modulate immune responses. To generate beneficial responses, the immune system should eradicate pathogens while "respecting" the organism and tolerating irrelevant antigens. According to the current view, damage-associated molecules released by infected or injured cells, or secreted by innate immune cells generate danger signals activating an immune response. These signals are also relevant to the subsequent activation of homeostatic mechanisms that control the immune response in pro- or anti-inflammatory reactions, a feature that allows modulation by therapeutic treatments. In the present review, we describe and discuss the effects of extremely low frequency (ELF)-EMF and pulsed EMF on cell signals and factors relevant to the activation of danger signals and innate immunity cells. By discussing the EMF modulating effects on cell functions, we envisage the use of EMF as a therapeutic agent to regulate immune responses associated with wound healing.
Bonnefoy, Francis; Daoui, Anna; Valmary-Degano, Séverine; Toussirot, Eric; Saas, Philippe; Perruche, Sylvain
2016-08-11
Apoptotic cell-based therapies have been proposed to treat chronic inflammatory diseases. The aim of this study was to investigate the effect of intravenous (i.v.) apoptotic cell infusion in ongoing collagen-induced arthritis (CIA) and the interaction of this therapy with other treatments used in rheumatoid arthritis (RA), including methotrexate (MTX) or anti-TNF therapy. The effects of i.v. apoptotic cell infusion were evaluated in a CIA mouse model in DBA/1 mice immunized with bovine type II collagen. The number and functions of antigen-presenting cells (APC), regulatory CD4(+) T cells (Treg), and circulating anti-collagen auto-antibodies were analyzed in CIA mice. Treatment of arthritic mice with i.v. apoptotic cell infusion significantly reduced the arthritis clinical score. This therapeutic approach modified T cell responses against the collagen auto-antigen with selective induction of collagen-specific Treg. In addition, we observed that APC from apoptotic-cell-treated animals were resistant to toll-like receptor ligand activation and favored ex vivo Treg induction, indicating APC reprogramming. Apoptotic cell injection-induced arthritis modulation was dependent on transforming growth factor (TGF)-β, as neutralizing anti-TGF-β antibody prevented the effects of apoptotic cells. Methotrexate did not interfere, while anti-TNF therapy was synergic with apoptotic-cell-based therapy. Overall, our data demonstrate that apoptotic-cell-based therapy is efficient in treating ongoing CIA, compatible with current RA treatments, and needs to be evaluated in humans in the treatment of RA.
Qu, Baoxi; Rosenberg, Roger N; Li, Liping; Boyer, Philip J; Johnston, Stephen A
2004-12-01
The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid without the Abeta gene. Treated mice showed significant humoral immune responses as demonstrated by ELISA and by Western blot. These mice also showed no significant cellular immune response as tested by ELISPOT. One of the treated mice was killed at 7 months of age for histological observations, and scattered amyloid plaques were noted in all layers of the cerebral cortex and in the hippocampus in both Abeta(42)- and control-vaccinated mice. No definite difference was discerned between the experimental and control animals. Gene-gun-administered genetic immunization with the Abeta(42) gene in wild-type BALB/c and AD transgenic mice can effectively elicit humoral immune responses without a significant T-cell-mediated immune response to the Abeta peptide. This immunotherapeutic approach could provide an alternative active immunization method for therapy and prevention of AD.
Sugai, Toshiyuki; Mori, Masaaki; Nakazawa, Masatoshi; Ichino, Motohide; Naruto, Takuya; Kobayashi, Naoki; Kobayashi, Yoshinori; Minami, Mutsuhiko; Yokota, Shumpei
2005-11-16
Adjuvants in vaccines are immune stimulants that play an important role in the induction of effective and appropriate immune responses to vaccine component(s). Diphtheria-tetanus-pertussis (DPT) vaccine contains not only aluminum hydrate (alum) to enhance the immune response to the vaccine ingredients, but also, both for that purpose and as a principal ingredient, pertussis toxin (PT). However, both adjuvants strongly promote T helper (Th) 2 type immune responses. Th1 and Th2 type immune responses are counterbalanced in vivo, and a Th2-prone immune response is not effective against intracellular infections but promotes IgE production, which is related to allergic disease. In this study, we used the CpG motif contained in oligodeoxynucleotide (CpG-ODN), which has an adjuvant effect and also induces the Th1 response, as an adjuvant to this vaccine, and we investigated its adjuvanticity and its potential to modulate immune responses to DPT vaccine. Administration of DPT vaccine with CpG-ODN (DPT-alum/ODN) to mice significantly reduced the total IgE levels and increased the anti-PT specific IgG2a titer in serum, in comparison with ordinary DPT vaccine (DPT-alum). Moreover, we investigated the antibody response to orally administrated ovalbumin (OVA) after vaccine administration. In the DPT-alum/ODN-administered group, the OVA specific IgE production in serum greatly decreased in comparison with that in the DPT-alum-administered group. These data indicate that CpG-ODN was not useful only as an efficient vaccine adjuvant but also shifted the immune responses substantially toward Th1 and modulated the Th1/Th2 immune response in DPT vaccine. These data suggested new applications of CpG-ODN as adjuvants in DPT vaccine.
ABORDO-ADESIDA, EVELYN; FOLLENZI, ANTONIA; BARCIA, CARLOS; SCIASCIA, SANDRA; CASTRO, MARIA G.; NALDINI, LUIGI; LOWENSTEIN, PEDRO R.
2009-01-01
Lentiviral vectors are promising tools for gene therapy in the CNS. It is therefore important to characterize their interactions with the immune system in the CNS. This work characterizes transgene expression and brain inflammation in the presence or absence of immune responses generated after systemic immunization with lentiviral vectors. We characterized transduction with SIN-LV vectors in the CNS. A dose—response curve using SIN-LV-GFP demonstrated detectable transgene expression in the striatum at a dose of 102, and maximum expression at 106, transducing units of lentiviral vector, with minimal increase in inflammatory markers between the lowest and highest dose of vector injected. Our studies demonstrate that injection of a lentiviral vector into the CNS did not cause a measurable inflammatory response. Systemic immunization after CNS injection, with the lentiviral vector expressing the same transgene as a vector injected into the CNS, caused a decrease in transgene expression in the CNS, concomitantly with an infiltration of inflammatory cells into the CNS parenchyma at the injection site. However, peripheral immunization with a lentiviral vector carrying a different transgene did not diminish transgene expression, or cause CNS inflammation. Systemic immunization preceding injection of lentiviral vectors into the CNS determined that preexisting antilentiviral immunity, regardless of the transgene, did not affect transgene expression. Furthermore, we showed that the transgene, but not the virion or vector components, is responsible for providing antigenic epitopes to the activated immune system, on systemic immunization with lentivirus. Low immunogenicity and prolonged transgene expression in the presence of preexisting lentiviral immunity are encouraging data for the future use of lentiviral vectors in CNS gene therapy. In summary, the lentiviral vectors tested induced undetectable activation of innate immune responses, and stimulation of adaptive immune responses against lentiviral vectors was effective in causing a decrease in transgene expression only if the immune response was directed against the transgene. A systemic immune response against vector components alone did not cause brain inflammation, possibly because vector-derived epitopes were not being presented in the CNS. PMID:15960605
Hallmarks of response to immune checkpoint blockade
Cogdill, Alexandria P; Andrews, Miles C; Wargo, Jennifer A
2017-01-01
Unprecedented advances have been made in the treatment of cancer through the use of immune checkpoint blockade, with approval of several checkpoint blockade regimens spanning multiple cancer types. However, responses to this form of therapy are not universal, and insights are clearly needed to identify optimal biomarkers of response and to combat mechanisms of therapeutic resistance. A working knowledge of the hallmarks of cancer yields insight into responses to immune checkpoint blockade, although the focus of this is rather tumour-centric and additional factors are pertinent, including host immunity and environmental influences. Herein, we describe the foundation for pillars and hallmarks of response to immune checkpoint blockade, with a discussion of their relevance to immune monitoring and mechanisms of resistance. Evolution of this understanding will ultimately help guide treatment strategies to enhance therapeutic responses. PMID:28524159
Adamo, Shelley A
2014-09-01
Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration rather than as mediating a trade-off. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Expected immunizations and health protection for Hajj and Umrah 2018 -An overview.
Al-Tawfiq, Jaffar A; Gautret, Philippe; Memish, Ziad A
2017-09-01
The annual Hajj and Umrah are one of the largest recurring religious mass gatherings across the globe drawing pilgrims from more than 185 countries. The living circumstances and activities of the pilgrims may create an environment for the occurrence and spread of communicable diseases. Each year, the Health authority of the Kingdom of Saudi Arabia, in coordination with international health authorities, updates health requirements for pilgrims. The Hajj for 2017 took place from August 24 to September 5, 2017. Here, we review the expected obligations for immunizations for the 2018 Hajj and Umrah. The Hajj and Umrah vaccine requirements include mandatory vaccinations against yellow fever, quadrivalent meningococcal polysaccharide (every 3 years) or conjugated (every 5 years) vaccines and poliomyelitis vaccine. Influenza vaccine utilizing the 2016 (Southern Hemisphere vaccine to all pilgrims) was recommended but was not obligatory for pilgrims. Ciprofloxacin is required for individuals >12 years excluding pregnant women as chemoprophylaxis to be given at the port of entry for Pilgrims coming from the meningitis belt. With the ongoing outbreaks of measles in Europe, it is recommended that all pilgrims have an updated immunization against vaccine-preventable diseases (diphtheria, tetanus, pertussis, polio, measles and mumps). The mandatory vaccines remain the same with continued vigilance for the development of any new or emerging infectious diseases. Continuing surveillance for Zika virus, cholera and MERS-CoV are ongoing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P
2016-10-01
The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.
The immune response to human CMV
La Rosa, Corinna; Diamond, Don J
2012-01-01
This review will summarize and interpret recent literature regarding the human CMV immune response, which is among the strongest measured and is the focus of attention for numerous research groups. CMV is a highly prevalent, globally occurring infection that rarely elicits disease in healthy immunocompetent hosts. The human immune system is unable to clear CMV infection and latency, but mounts a spirited immune-defense targeting multiple immune-evasion genes encoded by this dsDNA β-herpes virus. Additionally, the magnitude of cellular immune response devoted to CMV may cause premature immune senescence, and the high frequencies of cytolytic T cells may aggravate vascular pathologies. However, uncontrolled CMV viremia and life-threatening symptoms, which occur readily after immunosuppression and in the immature host, clearly indicate the essential role of immunity in maintaining asymptomatic co-existence with CMV. Approaches for harnessing the host immune response to CMV are needed to reduce the burden of CMV complications in immunocompromised individuals. PMID:23308079
B cell function in the immune response to helminths
Harris, Nicola
2010-01-01
Similar T helper (Th)2-type immune responses are generated against different helminths parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen-presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites. PMID:21159556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusuf, Nabiha; Skin Diseases Research Center, University of Alabama at Birmingham, 1530 Third Avenue South, Birmingham, AL 35294-0009; Timares, Laura
Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8{sup +} T cells are effector cells in the response, whereasmore » CD4{sup +} T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents.« less
Nystrand, M; Dowling, D K
2014-05-01
Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales--the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge--but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
SIRT1 and HIF1α signaling in metabolism and immune responses.
Yu, Qing; Dong, Lin; Li, Yan; Liu, Gaungwei
2018-04-01
SIRT1 and HIF1α are regarded as two key metabolic sensors in cellular metabolism pathways and play vital roles in influencing immune responses. SIRT1 and HIF1α regulate immune responses in metabolism-dependent and -independent ways. Here, we summarized the recent knowledge of SIRT1 and HIF1α signaling in metabolism and immune responses. HIF1α is a direct target of SIRT1. Sometimes, SIRT1 and HIF1α cooperate or act separately to mediate immune responses. In innate immune responses, SIRT1 can regulate the glycolytic activity of myeloid-derived suppressor cells (MDSCs) and influence MDSC functional differentiation. SIRT1 can regulate monocyte function through NF-κB and PGC-1, accompanying an increased NAD + level. The SIRT1-HIF1α axis bridges the innate immune signal to an adaptive immune response by directing cytokine production of dendritic cells in a metabolism-independent manner, promoting the differentiation of CD4 + T cells. For adaptive immune cells, SIRT1 can mediate the differentiation of inflammatory T cell subsets in a NAD + -dependent manner. HIF1α can stimulate some glycolysis-associated genes and regulate the ATP and ROS generations. In addition, SIRT1-and HIF1α-associated metabolism inhibits the activity of mTOR, thus negatively regulating the differentiation and function of Th9 cells. As immune cells are crucial in controlling immune-associated diseases, SIRT1-and HIF1α associated-metabolism is closely linked to immune-associated diseases, including infection, tumors, allergic airway inflammation, and autoimmune diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Harizi, H; Gualde, N
2005-06-01
The innate immune response is essentially the first line of defense against an invading pathogen. Through specialized receptors, known as pattern recognition receptors, especially Toll-like receptors, specialized cells of myeloid origin, including macrophages and dendritic cells (DCs) are able to phagocytose microorganisms and induce an innate inflammatory response. Although B and T lymphocytes recognize tissue antigens with high specificity, they are unable to initiate immune responses. The decision to activate an appropriate immune response is made by unique DC, the most professional antigen-presenting cells (APCs) which control the responses of several types of lymphocytes and play central role in the transition between innate and adaptive immunity. Increased secretion of inflammatory endogenous mediators such as cytokines and arachidonic acid-derived lipid mediators, also termed eicosanoids, can activate APC, particularly DC, which in turn induce an adaptive immune response. There is an increasing evidence that eicosanoids play an important role in connecting innate and adaptive immunity by acting on cells of both systems. Prostanoids, a major class of eicosanoids, have a great impact on inflammatory and immune responses. PGE(2) is one of the best known and most well-characterized prostanoids in terms of immunomodulation. Although cytokines are known as key regulators of immunity, eicosanoids, including PGE(2), PGD(2), LTB(4), and LTC(4), may also affect cells of immune system by modulating cytokine release, cell differentiation, survival, migration, antigen presentation, and apoptosis. By acting on various aspects of immune and inflammatory reactions, these lipid mediators emerge as key regulators of the crosstalk between innate and adaptive immunity.
Jalah, Rashmi; Kulkarni, Viraj; Patel, Vainav; Rosati, Margherita; Alicea, Candido; Bear, Jenifer; Yu, Lei; Guan, Yongjun; Shen, Xiaoying; Tomaras, Georgia D; LaBranche, Celia; Montefiori, David C; Prattipati, Rajasekhar; Pinter, Abraham; Bess, Julian; Lifson, Jeffrey D; Reed, Steven G; Sardesai, Niranjan Y; Venzon, David J; Valentin, Antonio; Pavlakis, George N; Felber, Barbara K
2014-01-01
We tested the concept of combining DNA with protein to improve anti-HIV Env systemic and mucosal humoral immune responses. Rhesus macaques were vaccinated with DNA, DNA&protein co-immunization or DNA prime followed by protein boost, and the magnitude and mucosal dissemination of the antibody responses were monitored in both plasma and mucosal secretions. We achieved induction of robust humoral responses by optimized DNA vaccination delivered by in vivo electroporation. These responses were greatly increased upon administration of a protein boost. Importantly, a co-immunization regimen of DNA&protein injected in the same muscle at the same time induced the highest systemic binding and neutralizing antibodies to homologous or heterologous Env as well as the highest Env-specific IgG in saliva. Inclusion of protein in the vaccine resulted in more immunized animals with Env-specific IgG in rectal fluids. Inclusion of DNA in the vaccine significantly increased the longevity of systemic humoral immune responses, whereas protein immunization, either as the only vaccine component or as boost after DNA prime, was followed by a great decline of humoral immune responses overtime. We conclude that DNA&protein co-delivery in a simple vaccine regimen combines the strength of each vaccine component, resulting in improved magnitude, extended longevity and increased mucosal dissemination of the induced antibodies in immunized rhesus macaques.
c-di-GMP enhances protective innate immunity in a murine model of pertussis.
Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A; Gerdts, Volker
2014-01-01
Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required.
c-di-GMP Enhances Protective Innate Immunity in a Murine Model of Pertussis
Elahi, Shokrollah; Van Kessel, Jill; Kiros, Tedele G.; Strom, Stacy; Hayakawa, Yoshihiro; Hyodo, Mamoru; Babiuk, Lorne A.; Gerdts, Volker
2014-01-01
Innate immunity represents the first line of defense against invading pathogens in the respiratory tract. Innate immune cells such as monocytes, macrophages, dendritic cells, NK cells, and granulocytes contain specific pathogen-recognition molecules which induce the production of cytokines and subsequently activate the adaptive immune response. c-di-GMP is a ubiquitous second messenger that stimulates innate immunity and regulates biofilm formation, motility and virulence in a diverse range of bacterial species with potent immunomodulatory properties. In the present study, c-di-GMP was used to enhance the innate immune response against pertussis, a respiratory infection mainly caused by Bordetella pertussis. Intranasal treatment with c-di-GMP resulted in the induction of robust innate immune responses to infection with B. pertussis characterized by enhanced recruitment of neutrophils, macrophages, natural killer cells and dendritic cells. The immune responses were associated with an earlier and more vigorous expression of Th1-type cytokines, as well as an increase in the induction of nitric oxide in the lungs of treated animals, resulting in significant reduction of bacterial numbers in the lungs of infected mice. These results demonstrate that c-di-GMP is a potent innate immune stimulatory molecule that can be used to enhance protection against bacterial respiratory infections. In addition, our data suggest that priming of the innate immune system by c-di-GMP could further skew the immune response towards a Th1 type phenotype during subsequent infection. Thus, our data suggest that c-di-GMP might be useful as an adjuvant for the next generation of acellular pertussis vaccine to mount a more protective Th1 phenotype immune response, and also in other systems where a Th1 type immune response is required. PMID:25333720
Scheid, Adam D; Van Keulen, Virginia P; Felts, Sara J; Neier, Steven C; Middha, Sumit; Nair, Asha A; Techentin, Robert W; Gilbert, Barry K; Jen, Jin; Neuhauser, Claudia; Zhang, Yuji; Pease, Larry R
2018-03-01
Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4 + cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4 + cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness. Copyright © 2018 by The American Association of Immunologists, Inc.
Effect of antipyretic analgesics on immune responses to vaccination.
Saleh, Ezzeldin; Moody, M Anthony; Walter, Emmanuel B
2016-09-01
While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses.
Effect of antipyretic analgesics on immune responses to vaccination
Saleh, Ezzeldin; Moody, M. Anthony; Walter, Emmanuel B.
2016-01-01
ABSTRACT While antipyretic analgesics are widely used to ameliorate vaccine adverse reactions, their use has been associated with blunted vaccine immune responses. Our objective was to review literature evaluating the effect of antipyretic analgesics on vaccine immune responses and to highlight potential underlying mechanisms. Observational studies reporting on antipyretic use around the time of immunization concluded that their use did not affect antibody responses. Only few randomized clinical trials demonstrated blunted antibody response of unknown clinical significance. This effect has only been noted following primary vaccination with novel antigens and disappears following booster immunization. The mechanism by which antipyretic analgesics reduce antibody response remains unclear and not fully explained by COX enzyme inhibition. Recent work has focused on the involvement of nuclear and subcellular signaling pathways. More detailed immunological investigations and a systems biology approach are needed to precisely define the impact and mechanism of antipyretic effects on vaccine immune responses. PMID:27246296
The innate immune response during urinary tract infection and pyelonephritis
Spencer, John David; Schwaderer, Andrew L.; Becknell, Brian; Watson, Joshua; Hains, David S.
2013-01-01
Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides – a ubiquitous component of the innate immune response. PMID:23732397
The innate immune response during urinary tract infection and pyelonephritis.
Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S
2014-07-01
Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.
Immune Modulation in the Treatment of Amyotrophic Lateral Sclerosis: A Review of Clinical Trials
Khalid, Syed I.; Ampie, Leonel; Kelly, Ryan; Ladha, Shafeeq S.; Dardis, Christopher
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the degeneration of motor neurons. Though many molecular and genetic causes are thought to serve as predisposing or disease propagating factors, the underlying pathogenesis of the disease is not known. Recent discoveries have demonstrated the presence of inflammation propagating substrates in the central nervous system of patients afflicted with ALS. Over the past decade, this hypothesis has incited an effort to better understand the role of the immune system in ALS and has led to the trial of several potential immune-modulating therapies. Here, we briefly review advances in the role of such therapies. The clinical trials discussed here are currently ongoing or have been concluded at the time of writing. PMID:28993751
Inducible nitric oxide synthase in T cells regulates T cell death and immune memory
Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit
2004-01-01
The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408
Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis.
Lemieux, Maxime W; Sonzogni-Desautels, Karine; Ndao, Momar
2017-12-24
In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between T H 1/T H 2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.
Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis
Lemieux, Maxime W.; Sonzogni-Desautels, Karine; Ndao, Momar
2017-01-01
In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries. PMID:29295550
Inhibition of ongoing responses in patients with Parkinson's disease
Gauggel, S; Rieger, M; Feghoff, T
2004-01-01
Objectives: We investigated the involvement of the basal ganglia in inhibiting ongoing responses in patients with Parkinson's disease (PD). Methods: Thirty two patients with PD and 31 orthopaedic controls performed the stop signal task, which allows an estimation of the time it takes to inhibit an ongoing reaction (stop signal reaction time, SSRT). Results: Patients with PD showed significantly longer SSRTs than the controls. This effect seemed to be independent of global cognitive impairment and severity of PD. Furthermore, in the PD patients, there was no significant relation between general slowing and inhibitory efficiency. Conclusions: Our results provide evidence for involvement of the basal ganglia in the inhibition of ongoing responses. PMID:15026491
Modulation of occluding junctions alters the hematopoietic niche to trigger immune activation
Khadilkar, Rohan J; Vogl, Wayne; Goodwin, Katharine
2017-01-01
Stem cells are regulated by signals from their microenvironment, or niche. During Drosophila hematopoiesis, a niche regulates prohemocytes to control hemocyte production. Immune challenges activate cell-signalling to initiate the cellular and innate immune response. Specifically, certain immune challenges stimulate the niche to produce signals that induce prohemocyte differentiation. However, the mechanisms that promote prohemocyte differentiation subsequent to immune challenges are poorly understood. Here we show that bacterial infection induces the cellular immune response by modulating occluding-junctions at the hematopoietic niche. Occluding-junctions form a permeability barrier that regulates the accessibility of prohemocytes to niche derived signals. The immune response triggered by infection causes barrier breakdown, altering the prohemocyte microenvironment to induce immune cell production. Moreover, genetically induced barrier ablation provides protection against infection by activating the immune response. Our results reveal a novel role for occluding-junctions in regulating niche-hematopoietic progenitor signalling and link this mechanism to immune cell production following infection. PMID:28841136
Love, Charity, & Pope Leo XIII: A Leadership Paradigm for Catholic Education
ERIC Educational Resources Information Center
Davis, Henry J.
2015-01-01
The treatment of workers is an ongoing social issue affecting society. No organization is immune to questionable employee practices, including Catholic educational institutions. For Catholic leadership to fully embody its intended justice-based role, it must first be aware of the social teachings put forth by the Roman Catholic Church. In this…
Sex-specific consequences of an induced immune response on reproduction in a moth.
Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T
2015-12-16
Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.
Pegu, Poonam; Helmus, Ruth; Gupta, Phalguni; Tarwater, Patrick; Caruso, Lori; Shen, Chengli; Ross, Ted; Chen, Yue
2011-12-01
The lower gastrointestinal tract is a major mucosal site of HIV entry and initial infection. Thus, the induction of strong cellular immune responses at this mucosal site will be an important feature of an effective HIV vaccine. We have used a novel prime-boost vaccination approach to induce immune responses at mucosal sites. Orally delivered recombinant Clostridium perfringens expressing HIV-1 gag (Cp-Gag) was evaluated for induction of HIV-1 Gag specific T cell responses in a prime-boost model with intranasal inoculation of HIV-1 virus like particles (VLP). HIV-1 specific cellular immune responses in both the effector (Lamina propria) and inductive sites (Peyer's patches) of the gastrointestinal (GI) tract were significantly higher in mice immunized using Cp-Gag and VLPs in a prime-boost approach compared to mice immunized with either Cp-Gag or VLPs alone. Such cellular immune response was found to be mediated by both CD8(+) and CD4(+) T cells. Such a strong mucosal immune response could be very useful in developing a mucosal vaccine against HIV-1.
Induction of potent local cellular immunity with low dose X4 SHIV{sub SF33A} vaginal exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasca, Silvana; Tsai, Lily; Trunova, Nataliya
2007-10-10
Intravaginal inoculation of rhesus macaques with varying doses of the CXCR4 (X4)-tropic SHIV{sub SF33A} isolate revealed a threshold inoculum for establishment of systemic virus infection and a dose dependency in overall viral burden and CD4+ T cell depletion. While exposure to inoculum size of 1000 or greater 50% tissue infectious dose (TCID{sub 50}) resulted in high viremia and precipitous CD4+ T cell loss, occult infection was observed in seven of eight macaques exposed to 500 TCID{sub 50} of the same virus. The latter was characterized by intermittent detection of low level virus with no evidence of seroconversion or CD4+ Tmore » cell decline, but with signs of an ongoing antiviral T cell immune response. Upon vaginal re-challenge with the same limiting dose 11-12 weeks after the first, classic pathogenic X4 SHIV{sub SF33A} infection was established in four of the seven previously exposed seronegative macaques, implying enhanced susceptibility to systemic infection with prior exposure. Pre-existing peripheral SIV gag-specific CD4+ T cells were more readily demonstrable in macaques that became systemically infected following re-exposure than those that were not. In contrast, early presence of circulating polyfunctional cytokine secreting CD8+ T cells or strong virus-specific proliferative responses in draining lymph nodes and in the gut associated lymphoid tissue (GALT) following the first exposure was associated with protection from systemic re-infection. These studies identify the gut and lymphoid tissues proximal to the genital tract as sites of robust CD8 T lymphocyte responses that contribute to containment of virus spread following vaginal transmission.« less
Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy
NASA Astrophysics Data System (ADS)
Kranz, Lena M.; Diken, Mustafa; Haas, Heinrich; Kreiter, Sebastian; Loquai, Carmen; Reuter, Kerstin C.; Meng, Martin; Fritz, Daniel; Vascotto, Fulvia; Hefesha, Hossam; Grunwitz, Christian; Vormehr, Mathias; Hüsemann, Yves; Selmi, Abderraouf; Kuhn, Andreas N.; Buck, Janina; Derhovanessian, Evelyna; Rae, Richard; Attig, Sebastian; Diekmann, Jan; Jabulowsky, Robert A.; Heesch, Sandra; Hassel, Jessica; Langguth, Peter; Grabbe, Stephan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur
2016-06-01
Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.
Konieczna, Patrycja; Schiavi, Elisa; Ziegler, Mario; Groeger, David; Healy, Selena; Grant, Ray; O'Mahony, Liam
2015-01-01
The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses.
Konieczna, Patrycja; Schiavi, Elisa; Ziegler, Mario; Groeger, David; Healy, Selena; Grant, Ray; O’Mahony, Liam
2015-01-01
The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses. PMID:25816321
Role of immune system in tumor progression and carcinogenesis.
Upadhyay, Shishir; Sharma, Nidhi; Gupta, Kunj Bihari; Dhiman, Monisha
2018-07-01
Tumor micro-environment has potential to customize the behavior of the immune cell according to their need. In immune-eliminating phase, immune cells eliminate transformed cells but after tumor establishment innate and adaptive immune cells synergistically provide shelter as well as fulfill their requirement that helps in progression. In between eliminating and establishment phase, equilibrium and escaping phase regulate the immune cells response. During immune-escaping, (1) the antigenic response generated is either inadequate, or focused entirely on tolerance, and (2) immune response generated is specific and effective, but the tumor skips immune recognition. In this review, we are discussing the critical role of immune cells and their cytokines before and after the establishment of tumor which might play a critical role during immunotherapy. © 2018 Wiley Periodicals, Inc.
Innate immune response to Burkholderia mallei.
Saikh, Kamal U; Mott, Tiffany M
2017-06-01
Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.
Immunogenetics of Seasonal Influenza Vaccine Response*
Poland, Gregory A.; Ovsyannikova, Inna G.; Jacobson, Robert M.
2008-01-01
Seasonal influenza causes significant morbidity, mortality, and economic costs. Vaccines against influenza, though both safe and effective, are imperfect. Notably, these vaccines result in significant immune response variability across the population. The mechanism for this variability, in part, appears to lie in the polymorphisms of key immune response genes. Despite the importance of this variability, little in the way of genetic polymorphisms and its association with vaccine immune response to viral vaccines has been performed. Herein, we review and synthesize what is known about the immune response pathway and influenza viral immunity and then present original data from our laboratory on the immunogenetic relationships between HLA, cytokine and cytokine receptor gene polymorphisms and the variations in humoral immune response to inactivated seasonal influenza vaccine. Finally, we propose that a better understanding of vaccine immunogenetics offers insight towards the development of better influenza vaccines. PMID:19230157
Evasion of Influenza A Viruses from Innate and Adaptive Immune Responses
van de Sandt, Carolien E.; Kreijtz, Joost H. C. M.; Rimmelzwaan, Guus F.
2012-01-01
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies. PMID:23170167
Immunization with excreted-secreted antigens reduces tissue cyst formation in pigs.
Wang, Yanhua; Zhang, Delin; Wang, Guangxiang; Yin, Hong; Wang, Meng
2013-11-01
It has been demonstrated that tachyzoite-pooled excreted-secreted antigens (ESAs) of Toxoplasma gondii are highly immunogenic and can be used in vaccine development. However, most of the information regarding protective immunity induced by immunization with ESAs is derived from studies using mouse model systems. These results cannot be extrapolated to pigs due to important differences in the susceptibility and immune response mechanisms between pigs and mice. We show that the immunization of pigs with ESAs emulsified in Freund's adjuvant induced not only a humoral immune response but also a cellular response. The cellular immune response was associated with the production of IFN-γ and IL-4. The humoral immune response was mainly directed against the antigens with molecular masses between 34 and 116 kDa. After intraperitoneal challenge with 10(7) T. gondii of the Gansu Jingtai strain (GJS) of tachyzoites, the immunized pigs remained clinically normal except for a brief low-grade fever (≤40.5 °C), while the control pigs developed clinical signs of toxoplasmosis (cough, anorexia, prostration, and high fever). At necropsy, visible lesions were found at multiple locations (enlarged mesenteric lymph nodes, an enlarged spleen with focal necrosis, and enlarged lungs with miliary or focal necrosis and off-white lesions) in all of the control pigs but not in the pigs that had been immunized. We also found that immunization with ESAs reduced tissue cyst formation in the muscle (P < 0.01). Our data demonstrate that immunization with ESAs can trigger a strong immune response against T. gondii infection in pigs.
CMV immune evasion and manipulation of the immune system with aging.
Jackson, Sarah E; Redeker, Anke; Arens, Ramon; van Baarle, Debbie; van den Berg, Sara P H; Benedict, Chris A; Čičin-Šain, Luka; Hill, Ann B; Wills, Mark R
2017-06-01
Human cytomegalovirus (HCMV) encodes numerous proteins and microRNAs that function to evade the immune response and allow the virus to replicate and disseminate in the face of a competent innate and acquired immune system. The establishment of a latent infection by CMV, which if completely quiescent at the level of viral gene expression would represent an ultimate in immune evasion strategies, is not sufficient for lifelong persistence and dissemination of the virus. CMV needs to reactivate and replicate in a lytic cycle of infection in order to disseminate further, which occurs in the face of a fully primed secondary immune response. Without reactivation, latency itself would be redundant for the virus. It is also becoming clear that latency is not a totally quiescent state, but is characterized by limited viral gene expression. Therefore, the virus also needs immune evasion strategies during latency. An effective immune response to CMV is required or viral replication will cause morbidity and ultimately mortality in the host. There is clearly a complex balance between virus immune evasion and host immune recognition over a lifetime. This poses the important question of whether long-term evasion or manipulation of the immune response driven by CMV is detrimental to health. In this meeting report, three groups used the murine model of CMV (MCMV) to examine if the contribution of the virus to immune senescence is set by the (i) initial viral inoculum, (ii) inflation of T cell responses, (iii) or the balance between functionally distinct effector CD4+ T cells. The work of other groups studying the CMV response in humans is discussed. Their work asks whether the ability to make immune responses to new antigens is compromised by (i) age and HCMV carriage, (ii) long-term exposure to HCMV giving rise to an overall immunosuppressive environment and increased levels of latent virus, or (iii) adapted virus mutants (used as potential vaccines) that have the capacity to elicit conventional and unconventional T cell responses.
2014-01-01
Background Previous exposures to flu and subsequent immune responses may impact on 2009/2010 pandemic flu vaccine responses and clinical symptoms upon infection with the 2009 pandemic H1N1 influenza strain. Qualitative and quantitative differences in humoral and cellular immune responses associated with the flu vaccination in 2009/2010 (pandemic H1N1 vaccine) and natural infection have not yet been described in detail. We designed a longitudinal study to examine influenza- (flu-) specific immune responses and the association between pre-existing flu responses, symptoms of influenza-like illness (ILI), impact of pandemic flu infection, and pandemic flu vaccination in a cohort of 2,040 individuals in Sweden in 2009–2010. Methods Cellular flu-specific immune responses were assessed by whole-blood antigen stimulation assay, and humoral responses by a single radial hemolysis test. Results Previous seasonal flu vaccination was associated with significantly lower flu-specific IFN-γ responses (using a whole-blood assay) at study entry. Pandemic flu vaccination induced long-lived T-cell responses (measured by IFN-γ production) to influenza A strains, influenza B strains, and the matrix (M1) antigen. In contrast, individuals with pandemic flu infection (PCR positive) exhibited increased flu-specific T-cell responses shortly after onset of ILI symptoms but the immune response decreased after the flu season (spring 2010). We identified non-pandemic-flu vaccinated participants without ILI symptoms who showed an IFN-γ production profile similar to pandemic-flu infected participants, suggesting exposure without experiencing clinical symptoms. Conclusions Strong and long-lived flu-M1 specific immune responses, defined by IFN-γ production, in individuals after vaccination suggest that M1-responses may contribute to protective cellular immune responses. Silent flu infections appeared to be frequent in 2009/2010. The pandemic flu vaccine induced qualitatively and quantitatively different humoral and cellular immune responses as compared to infection with the 2009 H1N1 pandemic H1N1 influenza strain. PMID:24916787
Chemokine-mediated immune responses in the female genital tract mucosa.
Deruaz, Maud; Luster, Andrew D
2015-04-01
The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.
Sombetzki, Martina; Koslowski, Nicole; Rabes, Anne; Seneberg, Sonja; Winkelmann, Franziska; Fritzsche, Carlos; Loebermann, Micha; Reisinger, Emil C
2018-01-01
Infection with the intravascular diecious trematode Schistosoma spp . remains a serious tropical disease and public health problem in the developing world, affecting over 258 million people worldwide. During chronic Schistosoma mansoni infection, complex immune responses to tissue-entrapped parasite eggs provoke granulomatous inflammation which leads to serious damage of the liver and intestine. The suppression of protective host immune mechanisms by helminths promotes parasite survival and benefits the host by reducing tissue damage. However, immune-suppressive cytokines may reduce vaccine-induced immune responses. By combining a single-sex infection system with a murine air pouch model, we were able to demonstrate that male and female schistosomes play opposing roles in modulating the host's immune response. Female schistosomes suppress early innate immune responses to invading cercariae in the skin and upregulate anergy-associated genes. In contrast, male schistosomes trigger strong innate immune reactions which lead to a reduction in worm and egg burden in the liver. Our data suggest that the female worm is a neglected player in the dampening of the host's immune defense system and is therefore a promising target for new immune modulatory therapies.
Spaceflight and immune responses of Rhesus monkeys
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1994-01-01
Evidence from both human and rodent studies indicates that alterations in immunological parameters occur after space flight. The objective of this project is to determine the effects of space flight on immune responses of Rhesus monkeys. The expected significance of the work is a determination of the range of immunological functions of the Rhesus monkey, a primate similar in many ways to man, affected by space flight. Changes in immune responses that could yield alterations in resistance to infection may be determined as well as the duration of alterations in immune responses. Additional information on the nature of cellular interactions for the generation of immune responses may also be obtained.
Role of muscarinic receptors in the regulation of immune and inflammatory responses
Razani-Boroujerdi, Seddigheh; Behl, Muskaan; Hahn, Fletcher F.; Pena-Philippides, Juan Carlos; Hutt, Julie; Sopori, Mohan L.
2008-01-01
Leukocytes contain both nicotinic and muscarinic receptors, and while activation of nicotinic receptors suppresses immune/inflammatory responses, the role of muscarinic receptors in immunity is unclear. We examined the effects of a muscarinic receptor antagonist (atropine) and agonist (oxotremorine), administered chronically through miniosmotic pumps, on immune/inflammatory responses in the rat. Results show that while oxotremorine stimulated, atropine inhibited the antibody and T-cell proliferative responses. Moreover, atropine also suppressed the turpentine-induced leukocytic infiltration and tissue injury, and inhibited chemotaxis of leukocytes toward neutrophil and monocyte/lymphocyte chemoattractants. Thus, activation of nicotinic and muscarinic receptors has opposite effects on the immune/inflammatory responses. PMID:18190972
Synthetic immunology: modulating the human immune system.
Geering, Barbara; Fussenegger, Martin
2015-02-01
Humans have manipulated the immune system to dampen or boost the immune response for thousands of years. As our understanding of fundamental immunology and biotechnological methodology accumulates, we can capitalize on this combined knowledge to engineer biological devices with the aim of rationally manipulating the immune response. We address therapeutic approaches based on the principles of synthetic immunology that either ameliorate disorders of the immune system by interfering with the immune response, or improve diverse pathogenic conditions by exploiting immune cell effector functions. We specifically highlight synthetic proteins investigated in preclinical and clinical trials, summarize studies that have used engineered immune cells, and finish with a discussion of possible future therapeutic concepts. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Mucosal immunity with emphasis on urinary tract immunity and diabetes].
Krejsek, J; Kudlová, M; Kolácková, M; Novosad, J
2008-05-01
Protective immune response in urinary tract is frequently impaired in patients with diabetes. Immunity in this mucosal compartment displays unique characteristics; e.g. absence of physiological microflora and lack of mucus. Pathogens are identified by the PRR receptors expressed on both epithelial and immune cells. Inflammatory response characterised by the acumulation ofgranulocytes is followed. Both protective and harm characteristics of inflammatory response are inseparable linked and delineated by gene polymorphisms in PRR receptors.
Nivolumab Monotherapy for First-Line Treatment of Advanced Non–Small-Cell Lung Cancer
Rizvi, Naiyer A.; Chow, Laura Q.; Borghaei, Hossein; Brahmer, Julie; Ready, Neal; Gerber, David E.; Shepherd, Frances A.; Antonia, Scott; Goldman, Jonathan W.; Juergens, Rosalyn A.; Laurie, Scott A.; Nathan, Faith E.; Shen, Yun; Harbison, Christopher T.; Hellmann, Matthew D.
2016-01-01
Purpose Nivolumab, a programmed death-1 (PD-1) immune checkpoint inhibitor antibody, has demonstrated improved survival over docetaxel in previously treated advanced non–small-cell lung cancer (NSCLC). First-line monotherapy with nivolumab for advanced NSCLC was evaluated in the phase I, multicohort, Checkmate 012 trial. Methods Fifty-two patients received nivolumab 3 mg/kg intravenously every 2 weeks until progression or unacceptable toxicity; postprogression treatment was permitted per protocol. The primary objective was to assess safety; secondary objectives included objective response rate (ORR) and 24-week progression-free survival (PFS) rate; overall survival (OS) was an exploratory end point. Results Any-grade treatment-related adverse events (AEs) occurred in 71% of patients, most commonly: fatigue (29%), rash (19%), nausea (14%), diarrhea (12%), pruritus (12%), and arthralgia (10%). Ten patients (19%) reported grade 3 to 4 treatment-related AEs; grade 3 rash was the only grade 3 to 4 event occurring in more than one patient (n = 2; 4%). Six patients (12%) discontinued because of a treatment-related AE. The confirmed ORR was 23% (12 of 52), including four ongoing complete responses. Nine of 12 responses (75%) occurred by first tumor assessment (week 11); eight (67%) were ongoing (range, 5.3+ to 25.8+ months) at the time of data lock. ORR was 28% (nine of 32) in patients with any degree of tumor PD–ligand 1 expression and 14% (two of 14) in patients with no PD–ligand 1 expression. Median PFS was 3.6 months, and the 24-week PFS rate was 41% (95% CI, 27 to 54). Median OS was 19.4 months, and the 1-year and 18-month OS rates were 73% (95% CI, 59 to 83) and 57% (95% CI, 42 to 70), respectively. Conclusion First-line nivolumab monotherapy demonstrated a tolerable safety profile and durable responses in first-line advanced NSCLC. PMID:27354485
Nivolumab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer.
Gettinger, Scott; Rizvi, Naiyer A; Chow, Laura Q; Borghaei, Hossein; Brahmer, Julie; Ready, Neal; Gerber, David E; Shepherd, Frances A; Antonia, Scott; Goldman, Jonathan W; Juergens, Rosalyn A; Laurie, Scott A; Nathan, Faith E; Shen, Yun; Harbison, Christopher T; Hellmann, Matthew D
2016-09-01
Nivolumab, a programmed death-1 (PD-1) immune checkpoint inhibitor antibody, has demonstrated improved survival over docetaxel in previously treated advanced non-small-cell lung cancer (NSCLC). First-line monotherapy with nivolumab for advanced NSCLC was evaluated in the phase I, multicohort, Checkmate 012 trial. Fifty-two patients received nivolumab 3 mg/kg intravenously every 2 weeks until progression or unacceptable toxicity; postprogression treatment was permitted per protocol. The primary objective was to assess safety; secondary objectives included objective response rate (ORR) and 24-week progression-free survival (PFS) rate; overall survival (OS) was an exploratory end point. Any-grade treatment-related adverse events (AEs) occurred in 71% of patients, most commonly: fatigue (29%), rash (19%), nausea (14%), diarrhea (12%), pruritus (12%), and arthralgia (10%). Ten patients (19%) reported grade 3 to 4 treatment-related AEs; grade 3 rash was the only grade 3 to 4 event occurring in more than one patient (n = 2; 4%). Six patients (12%) discontinued because of a treatment-related AE. The confirmed ORR was 23% (12 of 52), including four ongoing complete responses. Nine of 12 responses (75%) occurred by first tumor assessment (week 11); eight (67%) were ongoing (range, 5.3+ to 25.8+ months) at the time of data lock. ORR was 28% (nine of 32) in patients with any degree of tumor PD-ligand 1 expression and 14% (two of 14) in patients with no PD-ligand 1 expression. Median PFS was 3.6 months, and the 24-week PFS rate was 41% (95% CI, 27 to 54). Median OS was 19.4 months, and the 1-year and 18-month OS rates were 73% (95% CI, 59 to 83) and 57% (95% CI, 42 to 70), respectively. First-line nivolumab monotherapy demonstrated a tolerable safety profile and durable responses in first-line advanced NSCLC. © 2016 by American Society of Clinical Oncology.
Ipilimumab for Patients With Advanced Mucosal Melanoma
Postow, Michael A.; Luke, Jason J.; Bluth, Mark J.; Ramaiya, Nikhil; Panageas, Katherine S.; Lawrence, Donald P.; Ibrahim, Nageatte; Flaherty, Keith T.; Sullivan, Ryan J.; Ott, Patrick A.; Callahan, Margaret K.; Harding, James J.; D'Angelo, Sandra P.; Dickson, Mark A.; Schwartz, Gary K.; Chapman, Paul B.; Gnjatic, Sacha; Wolchok, Jedd D.; Hodi, F. Stephen
2013-01-01
The outcome of patients with mucosal melanoma treated with ipilimumab is not defined. To assess the efficacy and safety of ipilimumab in this melanoma subset, we performed a multicenter, retrospective analysis of 33 patients with unresectable or metastatic mucosal melanoma treated with ipilimumab. The clinical characteristics, treatments, toxicities, radiographic assessment of disease burden by central radiology review at each site, and mutational profiles of the patients' tumors were recorded. Available peripheral blood samples were used to assess humoral immunity against a panel of cancer-testis antigens and other antigens. By the immune-related response criteria of the 30 patients who underwent radiographic assessment after ipilimumab at approximately week 12, there were 1 immune-related complete response, 1 immune-related partial response, 6 immune-related stable disease, and 22 immune-related progressive disease. By the modified World Health Organization criteria, there were 1 immune-related complete response, 1 immune-related partial response, 5 immune-related stable disease, and 23 immune-related progressive disease. Immune-related adverse events (as graded by Common Terminology Criteria for Adverse Events version 4.0) consisted of six patients with rash (four grade 1, two grade 2), three patients with diarrhea (one grade 1, two grade 3), one patient with grade 1 thyroiditis, one patient with grade 3 hepatitis, and 1 patient with grade 2 hypophysitis. The median overall survival from the time of the first dose of ipilimumab was 6.4 months (range: 1.8–26.7 months). Several patients demonstrated serologic responses to cancer-testis antigens and other antigens. Durable responses to ipilimumab were observed, but the overall response rate was low. Additional investigation is necessary to clarify the role of ipilimumab in patients with mucosal melanoma. PMID:23716015
Ipilimumab for patients with advanced mucosal melanoma.
Postow, Michael A; Luke, Jason J; Bluth, Mark J; Ramaiya, Nikhil; Panageas, Katherine S; Lawrence, Donald P; Ibrahim, Nageatte; Flaherty, Keith T; Sullivan, Ryan J; Ott, Patrick A; Callahan, Margaret K; Harding, James J; D'Angelo, Sandra P; Dickson, Mark A; Schwartz, Gary K; Chapman, Paul B; Gnjatic, Sacha; Wolchok, Jedd D; Hodi, F Stephen; Carvajal, Richard D
2013-06-01
The outcome of patients with mucosal melanoma treated with ipilimumab is not defined. To assess the efficacy and safety of ipilimumab in this melanoma subset, we performed a multicenter, retrospective analysis of 33 patients with unresectable or metastatic mucosal melanoma treated with ipilimumab. The clinical characteristics, treatments, toxicities, radiographic assessment of disease burden by central radiology review at each site, and mutational profiles of the patients' tumors were recorded. Available peripheral blood samples were used to assess humoral immunity against a panel of cancer-testis antigens and other antigens. By the immune-related response criteria of the 30 patients who underwent radiographic assessment after ipilimumab at approximately week 12, there were 1 immune-related complete response, 1 immune-related partial response, 6 immune-related stable disease, and 22 immune-related progressive disease. By the modified World Health Organization criteria, there were 1 immune-related complete response, 1 immune-related partial response, 5 immune-related stable disease, and 23 immune-related progressive disease. Immune-related adverse events (as graded by Common Terminology Criteria for Adverse Events version 4.0) consisted of six patients with rash (four grade 1, two grade 2), three patients with diarrhea (one grade 1, two grade 3), one patient with grade 1 thyroiditis, one patient with grade 3 hepatitis, and 1 patient with grade 2 hypophysitis. The median overall survival from the time of the first dose of ipilimumab was 6.4 months (range: 1.8-26.7 months). Several patients demonstrated serologic responses to cancer-testis antigens and other antigens. Durable responses to ipilimumab were observed, but the overall response rate was low. Additional investigation is necessary to clarify the role of ipilimumab in patients with mucosal melanoma.
Mechanisms regulating skin immunity and inflammation.
Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O
2014-05-01
Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.
Modeling the interactions between pathogenic bacteria, bacteriophage and immune response
NASA Astrophysics Data System (ADS)
Leung, Chung Yin (Joey); Weitz, Joshua S.
The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.
Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B
2014-01-01
Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.
Bretscher, P A
2014-01-01
It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592
Doyne lecture 2016: intraocular health and the many faces of inflammation
Dick, A D
2017-01-01
Dogma for reasons of immune privilege including sequestration (sic) of ocular antigen, lack of lymphatic and immune competent cells in the vital tissues of the eye has long evaporated. Maintaining tissue and cellular health to preserve vision requires active immune responses to prevent damage and respond to danger. A priori the eye must contain immune competent cells, undergo immune surveillance to ensure homoeostasis as well as an ability to promote inflammation. By interrogating immune responses in non-infectious uveitis and compare with age-related macular degeneration (AMD), new concepts of intraocular immune health emerge. The role of macrophage polarisation in the two disorders is a tractable start. TNF-alpha regulation of macrophage responses in uveitis has a pivotal role, supported via experimental evidence and validated by recent trial data. Contrast this with the slow, insidious degeneration in atrophic AMD or in neovasular AMD, with the compelling genetic association with innate immunity and complement, highlights an ability to attenuate pathogenic immune responses and despite known inflammasome activation. Yolk sac-derived microglia maintains tissue immune health. The result of immune cell activation is environmentally dependent, for example, on retinal cell bioenergetics status, autophagy and oxidative stress, and alterations that skew interaction between macrophages and retinal pigment epithelium (RPE). For example, dead RPE eliciting macrophage VEGF secretion but exogenous IL-4 liberates an anti-angiogenic macrophage sFLT-1 response. Impaired autophagy or oxidative stress drives inflammasome activation, increases cytotoxicity, and accentuation of neovascular responses, yet exogenous inflammasome-derived cytokines, such as IL-18 and IL-33, attenuate responses. PMID:27636226
Eichmann, Klaus; Braun, Dietmar G.; Krause, Richard M.
1971-01-01
Selective breeding of rabbits immunized with Group C and Group A streptococcal vaccines was employed to reveal genetic influences on the magnitude and on the restriction in heterogeneity of the immune response to the group-specific carbohydrates. After two generations of selective breeding, complete segregation was achieved between a high-response population (>18 mg precipitins/ml serum, average 33 mg/ml) and a low-response population (<13 mg precipitins/ml serum, average 7.5 mg/ml) to Group C carbohydrate. This suggests that a limited number of genes controls the magnitude of the immune response to this antigen. Selective breeding of rabbits which were representative of heterogeneous, restricted, and monoclonal responses revealed that the degree of antibody heterogeneity in the parental rabbits is reflected in the offspring. More than 95% of the offspring derived from rabbits which had a heterogeneous immune response developed heterogeneous antibodies. 33% of the offspring derived from rabbits which had restricted and monoclonal immune responses developed monoclonal antibodies. This suggests that the degree of heterogeneity of the antibody response to the streptococcal carbohydrates is under genetic control. The degree of heterogeneity and the magnitude of the immune response appear to be independent variables. PMID:5558071
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.
Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li
2018-01-01
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.
Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response
Zhong, Hong; Ma, Minjuan
2018-01-01
In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction. PMID:29484304
Rapid Link of Innate Immune Signal to Adaptive Immunity by Brain–Fat Axis
Kim, Min Soo; Yan, Jingqi; Wu, Wenhe; Zhang, Guo; Zhang, Yalin; Cai, Dongsheng
2015-01-01
Innate immunity signals induced by pathogen/damage-associated molecular patterns are essential for adaptive immune responses, but it is unclear if the brain plays a role in this process. Here we show that while tumor necrosis factor (TNF) quickly increased in the brain of mice following bacterial infection, intra-brain TNF delivery mimicked bacterial infection to rapidly increase peripheral lymphocytes, especially in the spleen and fat. Multiple mouse models revealed that hypothalamic responses to TNF were accountable for this increase of peripheral lymphocytes in response to bacterial infection. Finally, hypothalamic induction of lipolysis was found to mediate the brain's action in promoting this increase in peripheral adaptive immune response. Thus, the brain-fat axis is important for rapidly linking innate immunity to adaptive immunity. PMID:25848866
Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S.; Kuehne, Ana I.; Stonier, Spencer W.; Ochayon, David E.; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C.; Lutwama, Julius Julian; Dye, John M.; Yavelsky, Victoria; Lobel, Leslie
2015-01-01
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda—Gulu 2000–2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1–649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1–649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses. PMID:25569078
Immune memory to Sudan virus: comparison between two separate disease outbreaks.
Sobarzo, Ariel; Eskira, Yael; Herbert, Andrew S; Kuehne, Ana I; Stonier, Spencer W; Ochayon, David E; Fedida-Metula, Shlomit; Balinandi, Steven; Kislev, Yaara; Tali, Neta; Lewis, Eli C; Lutwama, Julius Julian; Dye, John M; Yavelsky, Victoria; Lobel, Leslie
2015-01-06
Recovery from ebolavirus infection in humans is associated with the development of both cell-mediated and humoral immune responses. According to recent studies, individuals that did not survive infection with ebolaviruses appear to have lacked a robust adaptive immune response and the expression of several early innate response markers. However, a comprehensive protective immune profile has yet to be described. Here, we examine cellular memory immune responses among survivors of two separate Ebolavirus outbreaks (EVDs) due to Sudan virus (SUDV) infection in Uganda-Gulu 2000-2001 and Kibaale 2012. Freshly collected blood samples were stimulated with inactivated SUDV, as well as with recombinant SUDV or Ebola virus (EBOV) GP (GP1-649). In addition, ELISA and plaque reduction neutralization assays were performed to determine anti-SUDV IgG titers and neutralization capacity. Cytokine expression was measured in whole blood cultures in response to SUDV and SUDV GP stimulation in both survivor pools, demonstrating recall responses that indicate immune memory. Cytokine responses between groups were similar but had distinct differences. Neutralizing, SUDV-specific IgG activity against irradiated SUDV and SUDV recombinant proteins were detected in both survivor cohorts. Furthermore, humoral and cell-mediated crossreactivity to EBOV and EBOV recombinant GP1-649 was observed in both cohorts. In conclusion, immune responses in both groups of survivors demonstrate persistent recognition of relevant antigens, albeit larger cohorts are required in order to reach greater statistical significance. The differing cytokine responses between Gulu and Kibaale outbreak survivors suggests that each outbreak may not yield identical memory responses and promotes the merits of studying the immune responses among outbreaks of the same virus. Finally, our demonstration of cross-reactive immune recognition suggests that there is potential for developing cross-protective vaccines for ebolaviruses.
Jain, Sanyog; Harde, Harshad; Indulkar, Anura; Agrawal, Ashish Kumar
2014-02-01
The present study was designed with the objective to investigate the stability and potential of glucomannan-modified bilosomes (GM-bilosomes) in eliciting immune response following oral administration. GM-bilosomes exhibited desired quality attributes simultaneously maintaining the chemical and conformation stability of the tetanus toxoid (TT) entrapped in to freeze dried formulations. The GM-bilosomes exhibited excellent stability in different simulated biological fluids and sustained release profile up to 24 h. GM-bilosomes elicited significantly higher (P<0.05) systemic immune response (serum IgG level) as compared to bilosomes, niosomes and alum adsorbed TT administered through oral route. More importantly, GM-bilosomes were found capable of inducing mucosal immune response, i.e. sIgA titre in salivary and intestinal secretions as well as cell mediated immune response (IL-2 and IFN-γ levels in spleen homogenate) which was not induced by i.m. TT, the conventional route of immunization. Conclusively, GM-bilosomes could be considered as a promising carrier and adjuvant system for oral mucosal immunization. This team reports on the development and effects of a glucomannan-modified bilosome as an oral vaccine vector, using tetanus toxoid in the experiments. These GM-bilosomes not only elicited significantly higher systemic immune response as compared to bilosomes, niosomes and alum adsorbed orally administered TT, but also demonstrated mucosal immune response induction as well as cell mediated immune responses, which were not induced by the conventional route of immunization. © 2014.
Tarbell, Kristin V; Egen, Jackson G
2018-02-02
The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction. ©2018 Society for Leukocyte Biology.
Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J.; Shih, J. Wai-Kuo
2017-01-01
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-γ-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biasedpathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-γ demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins. PMID:18675871
Qiu, Qi; Wang, Richard Yuan-Hu; Jiao, Xuanmao; Jin, Bo; Sugauchi, Fuminaka; Grandinetti, Teresa; Alter, Harvey J; Shih, J Wai-Kuo
2008-10-09
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.
The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus.
Dewi, Intan M W; van de Veerdonk, Frank L; Gresnigt, Mark S
2017-10-04
The ubiquitous opportunistic fungal pathogen Aspergillus fumigatus rarely causes infections in immunocompetent individuals. A healthy functional innate immune system plays a crucial role in preventing Aspergillus -infection. This pivotal role for the innate immune system makes it a main research focus in studying the pathogenesis of aspergillosis. Although sometimes overshadowed by the innate immune response, the adaptive immune response, and in particular T-helper responses, also represents a key player in host defense against Aspergillus . Virtually all T-helper subsets have been described to play a role during aspergillosis, with the Th1 response being crucial for fungal clearance. However; morbidity and mortality of aspergillosis can also be partly attributed to detrimental immune responses resulting from adaptive immune activation. Th2 responses benefit fungal persistence; and are the foundation of allergic forms of aspergillosis. The Th17 response has two sides; although crucial for granulocyte recruitment, it can be involved in detrimental immunopathology. Regulatory T-cells, the endogenous regulators of inflammatory responses, play a key role in controlling detrimental inflammatory responses during aspergillosis. The current knowledge of the adaptive immune response against A. fumigatus is summarized in this review. A better understanding on how T-helper responses facilitate clearance of Aspergillus -infection and control inflammation can be the fundamental basis for understanding the pathogenesis of aspergillosis and for the development of novel host-directed therapies.
Autoimmune therapies targeting costimulation and emerging trends in multivalent therapeutics.
Chittasupho, Chuda; Siahaan, Teruna J; Vines, Charlotte M; Berkland, Cory
2011-07-01
Proteins participating in immunological signaling have emerged as important targets for controlling the immune response. A multitude of receptor-ligand pairs that regulate signaling pathways of the immune response have been identified. In the complex milieu of immune signaling, therapeutic agents targeting mediators of cellular signaling often either activate an inflammatory immune response or induce tolerance. This review is primarily focused on therapeutics that inhibit the inflammatory immune response by targeting membrane-bound proteins regulating costimulation or mediating immune-cell adhesion. Many of these signals participate in larger, organized structures such as the immunological synapse. Receptor clustering and arrangement into organized structures is also reviewed and emerging trends implicating a potential role for multivalent therapeutics is posited.
[IMMUNE SYSTEM INTERNSHIP WITH SYMBIOTIC MICROORGANISMS IN GNOTOBIOTIC ANIMAL'S INTESTINUM ILEUM].
Kochlamasashvili, B; Gogiashvili, L; Jandieri, K
2017-11-01
Structures, responsible for acceptive (comensaling relation) and protective (pathogenic defense) immunity, were studied and compared in small intestine - to ileum mucosa. Data shown, that main application of the both domains of immune system is to support the correlation between body and foreign microbes, but they response is different. Most significant differences are as follows: in acceptive reactions presented only in aseptic animals - gnotobionts, inflammatory changes absent, so immune reaction complex develops into physiological condition. Symbiotic reactions release in mucosa epithelial cells, also in cells, responsible for adaptive and congenital immune reactivity. Thus, acceptive immune reactions contribute symbiotic biocenosis versus elimination; which is function of protective immunity.
Hopewell, Emily L.; Bronk, Crystina C.; Massengill, Michael; Engelman, Robert W.; Beg, Amer A.
2012-01-01
Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase β (IKKβ) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively-activated IKKβ (AdIKK) induced robust DC maturation and high expression of key cytokines compared to a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKβ/NF-κB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity. PMID:22161279
Virus-like nanostructures for tuning immune response
NASA Astrophysics Data System (ADS)
Mammadov, Rashad; Cinar, Goksu; Gunduz, Nuray; Goktas, Melis; Kayhan, Handan; Tohumeken, Sehmus; Topal, Ahmet E.; Orujalipoor, Ilghar; Delibasi, Tuncay; Dana, Aykutlu; Ide, Semra; Tekinay, Ayse B.; Guler, Mustafa O.
2015-11-01
Synthetic vaccines utilize viral signatures to trigger immune responses. Although the immune responses raised against the biochemical signatures of viruses are well characterized, the mechanism of how they affect immune response in the context of physical signatures is not well studied. In this work, we investigated the ability of zero- and one-dimensional self-assembled peptide nanostructures carrying unmethylated CpG motifs (signature of viral DNA) for tuning immune response. These nanostructures represent the two most common viral shapes, spheres and rods. The nanofibrous structures were found to direct immune response towards Th1 phenotype, which is responsible for acting against intracellular pathogens such as viruses, to a greater extent than nanospheres and CpG ODN alone. In addition, nanofibers exhibited enhanced uptake into dendritic cells compared to nanospheres or the ODN itself. The chemical stability of the ODN against nuclease-mediated degradation was also observed to be enhanced when complexed with the peptide nanostructures. In vivo studies showed that nanofibers promoted antigen-specific IgG production over 10-fold better than CpG ODN alone. To the best of our knowledge, this is the first report showing the modulation of the nature of an immune response through the shape of the carrier system.
Musa, Bolanle O. P.; Onyemelukwe, Geoffrey C.; Hambolu, Joseph O.; Mamman, Aisha I.; Isa, Albarka H.
2010-01-01
The pathogenesis of sickle vaso-occlusive crisis (VOC) in sickle cell disease (SCD) patients involves the accumulation of rigid sickle cells and the stimulation of an ongoing inflammatory response, as well as the stress of infections. The immune response, via cytokine imbalances and deregulated T-cell subsets, also has been proposed to contribute to the development of VOC. In this study, a panel of high-sensitivity cytokine kits was used to investigate cytokines in the sera of SCD patients in VOC. The results were compared primarily with those for stable SCD patients and secondarily with those for normal healthy people who served as controls. The cytokines studied included interleukin-2 (IL-2), IL-4, and IL-10. Lymphocyte subsets of patients with VOC were also studied and were compared with those of both control groups (20 stable patients without crisis [SCD group] and 20 normal healthy controls [NHC]). The VOC group was notable for remarkably elevated levels of IL-4, among the three cytokines tested, compared with those for the SCD and NHC groups. Patients with VOC also differed from stable SCD patients and NHC by having notably lower IL-10 levels, as well as the lowest ratio of CD4+ to CD8+ T cells (0.7). The patterns of the proinflammatory cytokine IL-2 did not differ between VOC and stable SCD patients, but NHC had significantly lower IL-2 levels than both the VOC and SCD groups. Our results demonstrate coexisting levels, both high and low, of TH1- and TH2-type cytokines, as well as diminished levels of T-cell subsets in VOC. These results are discussed in an effort to better understand the importance of the immune system profile in the pathogenesis of sickle cell VOC. Since the possibility that a cytokine imbalance is implicated in the pathogenesis of sickle cell crisis has been raised, our results should prompt further investigation of the host immune response in terms of TH1 and TH2 balance in sickle cell crisis. PMID:20130127
Urban, Kailey; Mamo, Blain; Matheson, Jasmine; Payton, Colleen; Scott, Kevin C.; Song, Lihai; Stauffer, William M.; Stone, Barbara L.; Young, Janine; Lin, Henry
2016-01-01
Objectives. To determine whether the addition of hepatitis B virus (HBV) vaccine to national immunization programs improved vaccination rates among refugee children, a marginalized population with limited access to care. Methods. The sample included 2291 refugees younger than 19 years who completed HBV screening after arrival in the United States. Children were categorized by having been born before or after the addition of the 3-dose HBV vaccine to their birth country’s national immunization program. The outcome was serological evidence of immunization. Results. The odds of serological evidence of HBV immunization were higher for children born after the addition of HBV vaccine to their birth country’s national immunization program (adjusted odds ratio = 2.54; 95% confidence interval = 2.04, 3.15). Conclusions. National HBV vaccination programs have contributed to the increase in HBV vaccination coverage observed among US-bound refugee children. Public Health Implications. Ongoing public health surveillance is needed to ensure that vaccine rates are sustained among diverse, conflict-affected, displaced populations. PMID:27310356
Nicholas, Benjamin L; Brennan, F R; Martinez-Torrecuadrada, J L; Casal, J I; Hamilton, W D; Wakelin, D
2002-06-21
NIH mice were vaccinated subcutaneously or intranasally with chimaeric cow pea mosaic virus (CPMV) constructs expressing a 17-mer peptide sequence from canine parvovirus (CPV) as monomers or dimers on the small or large protein surface subunits. Responses to the chimaeric virus particles (CVPs) were compared with those of mice immunized with the native virus or with parvovirus peptide conjugated to keyhole limpet haemocyanin (KLH). The characteristics of the immune response to vaccination were examined by measuring serum and mucosal antibody responses in ELISA, in vitro antigen-induced spleen cell proliferation and cytokine responses. Mice made strong antibody responses to the native plant virus and peptide-specific responses to two of the four CVP constructs tested which were approximately 10-fold lower than responses to native plant virus. The immune response generated by the CVP constructs showed a marked TH1 bias, as determined by a predominantly IgG(2a) isotype peptide-specific antibody response and the release of IFN-gamma but not IL-4 or IL-5 from lymphocytes exposed to antigen in vitro. In comparison, parvovirus peptide conjugated to KLH generated an IgG(1)-biased (TH2) response. These data indicate that the presentation of peptides on viral particles could be used to bias the immune response in favor of a TH1 response.Anti-viral and anti-peptide IgA were detected in intestinal and bronchial lavage fluid of immunized mice, demonstrating that a mucosal immune response to CPV can be generated by systemic and mucosal immunization with CVP vaccines. Serum antibody from both subcutaneously-vaccinated and intranasally-vaccinated mice showed neutralizing activity against CPV in vitro.
Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana
2012-12-11
To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.
Adamo, Shelley A
2017-02-01
The classic biomedical view is that stress hormone effects on the immune system are largely pathological, especially if the stress is chronic. However, more recent interpretations have focused on the potential adaptive function of these effects. This paper examines stress response-immune system interactions from a physiological network perspective, using insects because of their simpler physiology. For example, stress hormones can reduce disease resistance, yet activating an immune response results in the release of stress hormones in both vertebrates and invertebrates. From a network perspective, this phenomenon is consistent with the 'sharing' of the energy-releasing ability of stress hormones by both the stress response and the immune system. Stress-induced immunosuppression is consistent with the stress response 'borrowing' molecular components from the immune system to increase the capacity of stress-relevant physiological processes (i.e. a trade off). The insect stress hormones octopamine and adipokinetic hormone can also 'reconfigure' the immune system to help compensate for the loss of some of the immune system's molecular resources (e.g. apolipophorin III). This view helps explain seemingly maladaptive interactions between the stress response and immune system. The adaptiveness of stress hormone effects on individual immune components may be apparent only from the perspective of the whole organism. These broad principles will apply to both vertebrates and invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Lack of broad functional differences in immunity in fully vaccinated vs. unvaccinated children.
Sherrid, Ashley M; Ruck, Candice E; Sutherland, Darren; Cai, Bing; Kollmann, Tobias R
2017-04-01
Concerns have been raised that with an increase in the number of vaccines administered early in life, immune development could be altered, leading to either increased or decreased immune reactivity. We investigated the impact of vaccination on immune status, contrasting the immune response to general, nonantigen-specific stimuli in a cohort of entirely unvaccinated vs. fully vaccinated children at 3-5 y of age. Innate immunity was assessed by quantifying bulk and cell-type-specific cytokine production in response to stimulation with pathogen associated microbial patterns. Adaptive immune status was characterized by assessing lymphocyte proliferation and cytokine production in response to generic T cell stimuli. Our investigations failed to reveal a broadly evident alteration of either innate or adaptive immunity in vaccinated children. Equivalently robust innate and adaptive responses to pathogen associated microbial patterns and generic T cell stimulants were observed in both groups. Although our sample size was small, our data suggest that standard childhood vaccinations do not lead to long-lasting gross alterations of the immune system.
Metabolic regulation of inflammation.
Gaber, Timo; Strehl, Cindy; Buttgereit, Frank
2017-05-01
Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.
Wilson, Kumanan; Atkinson, Katherine M; Deeks, Shelley L; Crowcroft, Natasha S
2016-01-01
Immunization registries or information systems are critical to improving the quality and evaluating the ongoing success of immunization programs. However, the completeness of these systems is challenged by a myriad of factors including the fragmentation of vaccine administration, increasing mobility of individuals, new vaccine development, use of multiple products, and increasingly frequent changes in recommendations. Mobile technologies could offer a solution, which mitigates some of these challenges. Engaging individuals to have more control of their own immunization information using their mobile devices could improve the timeliness and accuracy of data in central immunization information systems. Other opportunities presented by mobile technologies that could be exploited to improve immunization information systems include mobile reporting of adverse events following immunization, the capacity to scan 2D barcodes, and enabling bidirectional communication between individuals and public health officials. Challenges to utilizing mobile solutions include ensuring privacy of data, access, and equity concerns, obtaining consent and ensuring adoption of technology at sufficiently high rates. By empowering individuals with their own health information, mobile technologies can also serve as a mechanism to transfer immunization information as individuals cross local, regional, and national borders. Ultimately, mobile enhanced immunization information systems can help realize the goal of the individual, the healthcare provider, and public health officials always having access to the same immunization information. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A comparative study of an innate immune response in Lamprologine cichlid fishes.
O'Connor, Constance M; Reddon, Adam R; Marsh-Rollo, Susan E; Hellmann, Jennifer K; Ligocki, Isaac Y; Hamilton, Ian M; Balshine, Sigal
2014-10-01
Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding (Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour (Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.
A comparative study of an innate immune response in Lamprologine cichlid fishes
NASA Astrophysics Data System (ADS)
O'Connor, Constance M.; Reddon, Adam R.; Marsh-Rollo, Susan E.; Hellmann, Jennifer K.; Ligocki, Isaac Y.; Hamilton, Ian M.; Balshine, Sigal
2014-10-01
Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding ( Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour ( Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.
Bluestein, H G; Green, I; Benacerraf, B
1971-08-01
The ability of guinea pigs to make immune responses to GA, a linear random copolymer of L-glutamic acid and L-alanine, GT, a random linear copolymer of L-glutamic acid and L-tyrosine, and PLL, a linear homopolymer of L-lysine, is controlled by different autosomal dominant genes specific for each of those polymers. We have investigated the relationship between the PLL gene and the GA and GT immune response genes by simultaneously immunizing random-bred Hartley strain guinea pigs with GA and PLL, GT and PLL, or GA and GT. In most Hartley guinea pigs the ability to respond immunologically to GA and to PLL is inherited together; that is, most animals responding to GA respond to PLL and vice versa. However, a few animals respond to either GA or to PLL but not both, demonstrating that the GA and PLL immune response genes are not identical but linked in most Hartley animals. Conversely, when simultaneously immunized with GT and PLL, most Hartley guinea pigs respond to either PLL or GT but not both, indicating that GT and PLL responsiveness tends to segregate away from each other. Thus, the GT and PLL immune response genes also are not inherited independently but, rather, behave as alleles or pseudoalleles. Similar results are observed when Hartley guinea pigs are simultaneously immunized with GA and GT. The ability to respond to GA segregates away from the ability to respond to GT. Our studies demonstrated that the specific immune response genes thus far identified in guinea pigs controlling the ability to respond to GA, GT, and PLL, respectively, are found on the same chromosome. In most Hartley animals, the GA and PLL immune response genes are often linked, i.e. occur on the same chromosome strand, and tend to behave as alleles or pseudoalleles to the GT immune response gene.
Interplay between behavioural thermoregulation and immune response in mealworms.
Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco
2012-11-01
Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Host genetics contributes to the effectiveness of dendritic cell-based HIV immunotherapy.
Reis, Edione C; da Silva, Lais T; da Silva, Wanessa C; Rios, Alexandre; Duarte, Alberto J; Oshiro, Telma M; Crovella, Sergio; Pontillo, Alessandra
2018-04-11
Systems biological analysis has recently revealed how innate immune variants as well as gut microbiota impact the individual response to immunization. HIV-infected (HIV+) patients have a worse response rate after standard vaccinations, possibly due to the immune exhaustion, increased gut permeability and microbial translocation. In the last decade, dendritic cells (DC)-based immunotherapy has been proposed as an alternative approach to control HIV plasma viral load, however clinical trials showed a heterogeneity of immunization response. Hypothesizing that host genetics may importantly affects the outcome of immunotherapy in HIV+ patients, genetic polymorphisms' distribution and gene expression modulation were analyzed in a phase I/II clinical trial of DC-based immunotherapy according to immunization response, and quality of vaccine product (DC). Polymorphisms in genes previously associated with progression of HIV infection to AIDS (i.e.: PARD3B, CCL5) contribute to a better response to immunotherapy in HIV+ individuals, possibly through a systemic effect on host immune system, but also directly on vaccine product. Genes expression profile after immunization correlates with different degrees of immune chronic activation/exhaustion of HIV+ patients (i.e. PD1, IL7RA, EOMES), but also with anti-viral response and DC quality (i.e.: APOBEC3G, IL8, PPIA), suggested that an incompetent individual would have a better vaccine response. These findings showed once more that host genetics can affect the response to DC-based immunotherapy in HIV+ individuals, contributing to the heterogeneity of response observed in concluded trials; and it can be used as predictor of immunization success.
DNA β-Amyloid1–42 Trimer Immunization for Alzheimer Disease in a Wild-Type Mouse Model
Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N.; Stüve, Olaf; Rosenberg, Roger N.
2010-01-01
Context DNA β-amyloid1–42 (Aβ42) trimer immunization was developed to produce specific T helper 2 cell (TH2)–type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Aβ42 peptide that occur in the brain of patients with AD. Objective To compare the immune response in wild-type mice after immunization with DNA Aβ42 trimer and Aβ42 peptide. Design and Intervention Wild-type mice received either 4 µg of DNA Aβ42 trimer immunization administered with gene gun (n=8) or intraperitoneal injection of 100 µg of human Aβ42 peptide with the adjuvant Quil A (n=8). Titers, epitope mapping, and isotypes of the Aβ42-specific antibodies were analyzed. Main Outcome Measures Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Aβ42-specific antibodies, and T-cell activation. Results DNA Aβ42 trimer immunization resulted in antibody titers with a mean of 15 µg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a TH2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed TH1/TH2 immune response (IgG1/IgG2a ratio of 1) (P<.001). No increased T-cell proliferation was observed in the DNA-immunized mice (P=.03). Conclusion In this preliminary study in a wild-type mouse model, DNA Aβ42 trimer immunization protocol produced a TH2 immune response and appeared to have low potential to cause an inflammatory T-cell response. PMID:19861672
Ondondo, Beatrice Omusiro
2014-01-01
Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes. PMID:24639678
DNA beta-amyloid(1-42) trimer immunization for Alzheimer disease in a wild-type mouse model.
Lambracht-Washington, Doris; Qu, Bao-Xi; Fu, Min; Eagar, Todd N; Stüve, Olaf; Rosenberg, Roger N
2009-10-28
DNA beta-amyloid(1-42) (Abeta42) trimer immunization was developed to produce specific T helper 2 cell (T(H)2)-type antibodies to provide an effective and safe therapy for Alzheimer disease (AD) by reducing elevated levels of Abeta42 peptide that occur in the brain of patients with AD. To compare the immune response in wild-type mice after immunization with DNA Abeta42 trimer and Abeta42 peptide. Wild-type mice received either 4 microg of DNA Abeta42 trimer immunization administered with gene gun (n = 8) or intraperitoneal injection of 100 microg of human Abeta42 peptide with the adjuvant Quil A (n = 8). Titers, epitope mapping, and isotypes of the Abeta42-specific antibodies were analyzed. Antibody titers, mapping of binding sites (epitopes), isotype profiles of the Abeta42-specific antibodies, and T-cell activation. DNA Abeta42 trimer immunization resulted in antibody titers with a mean of 15 microg per milliliter of plasma. The isotype profile of the antibodies differed markedly. A predominant IgG1 antibody response was found in the DNA-immunized mice, indicating a T(H)2 type of immune response (IgG1/IgG2a ratio of 10). The peptide-immunized mice showed a mixed T(H)1/T(H)2 immune response (IgG1/IgG2a ratio of 1) (P < .001). No increased T-cell proliferation was observed in the DNA-immunized mice (P = .03). In this preliminary study in a wild-type mouse model, DNA Abeta42 trimer immunization protocol produced a T(H)2 immune response and appeared to have low potential to cause an inflammatory T-cell response.
CELL SURFACE SIGNALING MOLECULES IN THE CONTROL OF IMMUNE RESPONSES: A TIDE MODEL
Zhu, Yuwen; Yao, Sheng; Chen, Lieping
2011-01-01
Summary A large numbers of cell surface signaling molecules (CSSMs) have been molecularly identified and functionally characterized in recent years and, via these studies, our knowledge in the control of immune response has increased exponentially. Two major lines of evidence emerge. First, the majority of immune cells rely on one or few CSSMs to deliver a primary triggering signal to sense their environment, leading to initiation of an immune response. Second, both costimulatory CSSMs that promote the response, and coinhibitory CSSMs that inhibit the response, are required to control direction and magnitude of a given immune response. With such tight feedback, immune responses are tuned and returned to baseline. These findings extend well beyond our previous observation in the requirement for lymphocyte activation and argue a revisit of the traditional “two-signal model” for activation and tolerance of lymphocytes. Here we propose a “tide” model to accommodate and interpret current experimental findings. PMID:21511182
Size, Shape, and Sequence-Dependent Immunogenicity of RNA Nanoparticles.
Guo, Sijin; Li, Hui; Ma, Mengshi; Fu, Jian; Dong, Yizhou; Guo, Peixuan
2017-12-15
RNA molecules have emerged as promising therapeutics. Like all other drugs, the safety profile and immune response are important criteria for drug evaluation. However, the literature on RNA immunogenicity has been controversial. Here, we used the approach of RNA nanotechnology to demonstrate that the immune response of RNA nanoparticles is size, shape, and sequence dependent. RNA triangle, square, pentagon, and tetrahedron with same shape but different sizes, or same size but different shapes were used as models to investigate the immune response. The levels of pro-inflammatory cytokines induced by these RNA nanoarchitectures were assessed in macrophage-like cells and animals. It was found that RNA polygons without extension at the vertexes were immune inert. However, when single-stranded RNA with a specific sequence was extended from the vertexes of RNA polygons, strong immune responses were detected. These immunostimulations are sequence specific, because some other extended sequences induced little or no immune response. Additionally, larger-size RNA square induced stronger cytokine secretion. 3D RNA tetrahedron showed stronger immunostimulation than planar RNA triangle. These results suggest that the immunogenicity of RNA nanoparticles is tunable to produce either a minimal immune response that can serve as safe therapeutic vectors, or a strong immune response for cancer immunotherapy or vaccine adjuvants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Zinc in Infection and Inflammation
Gammoh, Nour Zahi; Rink, Lothar
2017-01-01
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli. PMID:28629136
Barth, Kenneth; Genco, Caroline Attardo
2016-01-01
The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456
Innate immune response to Burkholderia mallei
Saikh, Kamal U.; Mott, Tiffany M.
2017-01-01
Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei. PMID:28177960
Zinc in Infection and Inflammation.
Gammoh, Nour Zahi; Rink, Lothar
2017-06-17
Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.
Inbreeding effects on immune response in free-living song sparrows (Melospiza melodia).
Reid, Jane M; Arcese, Peter; Keller, Lukas F; Elliott, Kyle H; Sampson, Laura; Hasselquist, Dennis
2007-03-07
The consequences of inbreeding for host immunity to parasitic infection have broad implications for the evolutionary and dynamical impacts of parasites on populations where inbreeding occurs. To rigorously assess the magnitude and the prevalence of inbreeding effects on immunity, multiple components of host immune response should be related to inbreeding coefficient (f) in free-living individuals. We used a pedigreed, free-living population of song sparrows (Melospiza melodia) to test whether individual responses to widely used experimental immune challenges varied consistently with f. The patagial swelling response to phytohaemagglutinin declined markedly with f in both females and males in both 2002 and 2003, although overall inbreeding depression was greater in males. The primary antibody response to tetanus toxoid declined with f in females but not in males in both 2004 and 2005. Primary antibody responses to diphtheria toxoid were low but tended to decline with f in 2004. Overall inbreeding depression did not solely reflect particularly strong immune responses in outbred offspring of immigrant-native pairings or weak responses in highly inbred individuals. These data indicate substantial and apparently sex-specific inbreeding effects on immune response, implying that inbred hosts may be relatively susceptible to parasitic infection to differing degrees in males and females.
2017-08-01
Award Number: W81XWH-15-1-0328 TITLE: Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed against...1 August 2016 - 31 July 2017 4. TITLE AND SUBTITLE Targeting Peripheral-Derived Regulatory T Cells as a Means of Enhancing Immune Responses Directed...discovered that a subset of regulatory T cells (Tregs), termed peripheral-derived Tregs (pTregs), impair immune responses directed against tumor
Nivolumab for the treatment of colorectal cancer.
Smith, Kortnye Maureen; Desai, Jayesh
2018-05-24
Despite a variety of therapies for advanced metastatic colorectal cancer being available, the outcomes in this malignancy remain sub-optimal. Immunotherapy has been slow to impact the management of this patient group. Checkpoint inhibitors, such as nivolumab, have had disappointing results when used broadly. However, for the subset of patients with microsatellite unstable colorectal cancer the use of checkpoint inhibitors such as nivolumab appears to be transformative, and will provide a new therapeutic option for patient with advanced disease. Areas covered: Nivolumab gained regulatory approval for the treatment of dMMR/MSI-H metastatic colorectal cancer in mid 2017. The current review will summarize the clinical evidence of checkpoint inhibitors in metastatic colorectal cancer, with a focus on nivolumab. Expert commentary: For patients with dMMR/MSI-H mCRC the use of nivolumab has now been shown to have objective and sustained clinical responses in a pivotal phase II trial. While additional data is limited, the therapeutic role for augmenting an immune response in metastatic colorectal cancer is likely to continue to expand. Further combination trials of nivolumab with immunologic and non-immunologic agents are ongoing.
New Paradigm for Translational Modeling to Predict Long‐term Tuberculosis Treatment Response
Bartelink, IH; Zhang, N; Keizer, RJ; Strydom, N; Converse, PJ; Dooley, KE; Nuermberger, EL
2017-01-01
Abstract Disappointing results of recent tuberculosis chemotherapy trials suggest that knowledge gained from preclinical investigations was not utilized to maximal effect. A mouse‐to‐human translational pharmacokinetics (PKs) – pharmacodynamics (PDs) model built on a rich mouse database may improve clinical trial outcome predictions. The model included Mycobacterium tuberculosis growth function in mice, adaptive immune response effect on bacterial growth, relationships among moxifloxacin, rifapentine, and rifampin concentrations accelerating bacterial death, clinical PK data, species‐specific protein binding, drug‐drug interactions, and patient‐specific pathology. Simulations of recent trials testing 4‐month regimens predicted 65% (95% confidence interval [CI], 55–74) relapse‐free patients vs. 80% observed in the REMox‐TB trial, and 79% (95% CI, 72–87) vs. 82% observed in the Rifaquin trial. Simulation of 6‐month regimens predicted 97% (95% CI, 93–99) vs. 92% and 95% observed in 2RHZE/4RH control arms, and 100% predicted and observed in the 35 mg/kg rifampin arm of PanACEA MAMS. These results suggest that the model can inform regimen optimization and predict outcomes of ongoing trials. PMID:28561946
Martin, C E; Paibomesai, M A; Emam, S M; Gallienne, J; Hine, B C; Thompson-Crispi, K A; Mallard, B A
2016-03-01
Genetic selection for enhanced immune response has been shown to decrease disease occurrence in dairy cattle. Cows can be classified as high (H), average, or low responders based on antibody-mediated immune response (AMIR), predominated by type-2 cytokine production, and cell-mediated immune response (CMIR) through estimated breeding values for these traits. The purpose of this study was to identify in vitro tests that correlate with in vivo immune response phenotyping in dairy cattle. Blood mononuclear cells (BMC) isolated from cows classified as H-AMIR and H-CMIR through estimated breeding values for immune response traits were stimulated with concanavalin A (ConA; Sigma Aldrich, St. Louis, MO) and gene expression, cytokine production, and cell proliferation was determined at multiple time points. A repeated measures model, which included the effects of immune response group, parity, and stage of lactation, was used to compare differences between immune response phenotype groups. The H-AMIR cows produced more IL-4 protein than H-CMIR cows at 48 h; however, no difference in gene expression of type-2 transcription factor GATA3 or IL4 was noted. The BMC from H-CMIR cows had increased production of IFN-γ protein at 48, 72, and 96 h compared with H-AMIR animals. Further, H-CMIR cows had increased expression of the IFNG gene at 16, 24, and 48 h post-treatment with ConA, although expression of the type-1 transcription factor gene TBX21 did not differ between immune response groups. Although proliferation of BMC increased from 24 to 72 h after ConA stimulation, no differences were found between the immune response groups. Overall, stimulation of H-AMIR and H-CMIR bovine BMC with ConA resulted in distinct cytokine production profiles according to genetically defined groups. These distinct cytokine profiles could be used to define disease resistance phenotypes in dairy cows according to stimulation in vitro; however, other immune response phenotypes should be assessed. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Genetic selection of cattle for improved immunity and health.
Mallard, Bonnie A; Emam, Mehdi; Paibomesai, Marlene; Thompson-Crispi, Kathleen; Wagter-Lesperance, Lauraine
2015-02-01
The immune system is a sensing structure composed of tissues and molecules that are well integrated with the neuroendocrine system. This integrate system ensures non-self from self-discrimination. In this capacity the immune system provides detection and protection from a wide range of pathogens. In mammals, the immune system is regulated by several thousand genes (8-9% of the genome) which indicate its high genetic priority as a critical fitness trait providing survival of the species. Identifying and selectively breeding livestock with the inherent ability to make superior immune responses can reduce disease occurrence, improve milk quality and increase farm profitability. Healthier animals also may be expected to demonstrate improvements in other traits, including reproductive fitness. Using the University of Guelph's patented High Immune Response technology it is possible to classify animals as high, average, or low responders based on their genetic estimated breeding value for immune responsiveness. High responders have the inherent ability to produce more balanced and robust immune responses compared with average or low responders. High responders dairy cattle essentially have about one-half the disease occurrence of low responders, and can pass their superior immune response genes on to future generations thereby accumulating health benefits within the dairy herd.
Cram, Dominic L; Blount, Jonathan D; York, Jennifer E; Young, Andrew J
2015-01-01
The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity.
Immune Response in a Wild Bird Is Predicted by Oxidative Status, but Does Not Cause Oxidative Stress
Cram, Dominic L.; Blount, Jonathan D.; York, Jennifer E.; Young, Andrew J.
2015-01-01
The immune system provides vital protection against pathogens, but extensive evidence suggests that mounting immune responses can entail survival and fecundity costs. The physiological mechanisms that underpin these costs remain poorly understood, despite their potentially important role in shaping life-histories. Recent studies involving laboratory models highlight the possibility that oxidative stress could mediate these costs, as immune-activation can increase the production of reactive oxygen species leading to oxidative stress. However, this hypothesis has rarely been tested in free-ranging wild populations, where natural oxidative statuses and compensatory strategies may moderate immune responses and their impacts on oxidative status. Furthermore, the possibility that individuals scale their immune responses according to their oxidative status, conceivably to mitigate such costs, remains virtually unexplored. Here, we experimentally investigate the effects of a phytohaemagglutinin (PHA) immune-challenge on oxidative status in wild male and female white-browed sparrow weavers, Plocepasser mahali. We also establish whether baseline oxidative status prior to challenge predicts the scale of the immune responses. Contrary to previous work on captive animals, our findings suggest that PHA-induced immune-activation does not elicit oxidative stress. Compared with controls (n = 25 birds), PHA-injected birds (n = 27 birds) showed no evidence of a differential change in markers of oxidative damage or enzymatic and non-enzymatic antioxidant protection 24 hours after challenge. We did, however, find that the activity of a key antioxidant enzyme (superoxide dismutase, SOD) prior to immune-activation predicted the scale of the resulting swelling: birds with stronger initial SOD activity subsequently produced smaller swellings. Our findings (i) suggest that wild birds can mount immune responses without suffering from systemic oxidative stress, and (ii) lend support to biomedical evidence that baseline oxidative status can impact the scale of immune responses; a possibility not yet recognised in ecological studies of immunity. PMID:25815888
Salem, George A; Selby, George B
2017-01-01
Inflammatory bowel disease (IBD) is a complex, relapsing and remitting, disease characterized by an exaggerated immune response in a susceptible host. The symptoms and complications of the disease can be debilitating. Advances in medical treatment in the last decade changed the course of the disease in many patients. Despite the use of novel agents for controlling disease, a proportion of patients' disease courses continue to be either refractory, or become resistant, to available therapeutic options. Stem-cell therapy, with hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs), is a promising modality of treatment for severe refractory cases, mainly Crohn's disease (CD) patients. HSCs have the ability to migrate to damaged tissue, which provides them with further properties to differentiate to epithelial or immune-modulatory cells to restore normal mucosal tissue and integrity. MSCs therapy is a promising model for patients with perianal CD due to their immunosuppressive properties, ability to migrate to areas of injury, and demonstration of colonic healing, including fistulizing tracts. The results from ongoing clinical trials will provide a valuable understanding of the future of stem-cell therapy as a treatment option in refractory cases of IBD, a disease whose pathogenesis remains unknown, and is notoriously difficult to treat.
Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses.
Ji, Rui-Cheng
2016-12-28
The lymphatic system is essential for transporting interstitial fluid, soluble antigen, and immune cells from peripheral tissues to lymph nodes (LNs). Functional integrity of LNs is dependent on intact lymphatics and effective lymph drainage. Molecular mechanisms that facilitate interactions between tumor cells and lymphatic endothelial cells (LECs) during tumor progression still remain to be identified. The cellular and molecular structures of LNs are optimized to trigger a rapid and efficient immune response, and to participate in the process of tumor metastasis by stimulating lymphangiogenesis and establishing a premetastatic niche in LNs. Several molecules, e.g., S1P, CCR7-CCL19/CCL21, CXCL12/CXCR4, IL-7, IFN-γ, TGF-β, and integrin α4β1 play an important role in controlling the activity of LN stromal cells including LECs, fibroblastic reticular cells (FRCs) and follicular dendritic cells (DCs). The functional stromal cells are critical for reconstruction and remodeling of the LN that creates a unique microenvironment of tumor cells and LECs for cancer metastasis. LN metastasis is a major determinant for the prognosis of most human cancers and clinical management. Ongoing work to elucidate the function and molecular regulation of LN lymphatic sinuses will provide insight into cancer development mechanisms and improve therapeutic approaches for human malignancy.
Antitumor activity of nivolumab on hemodialysis after renal allograft rejection.
Ong, Michael; Ibrahim, Andrea Marie; Bourassa-Blanchette, Samuel; Canil, Christina; Fairhead, Todd; Knoll, Greg
2016-01-01
Nivolumab (Opdivo™) is a novel IgG4 subclass programmed death-1 (PD-1) inhibiting antibody that has demonstrated breakthrough-designation anti-tumor activity. To date, clinical trials of nivolumab and other checkpoint inhibitors have generally excluded patients with solid organ transplantation and patients with concurrent immunosuppression. However, organ transplant recipients are at high-risk of development of malignancy as a result of suppressed immune surveillance of cancer. We illustrate the outcomes of a 63 year-old type I diabetic female patient who developed pulmonary metastatic, BRAF wild-type cutaneous melanoma 10 years after renal transplantation. After downward titration of the patient's immunosuppressive medications and extensive multidisciplinary review, she was treated with nivolumab in the first-line setting. Within 1 week of administration, the patient experienced acute renal allograft rejection, renal failure and concurrent diabetic ketoacidosis due to steroid therapy. Allograft function did not return, but patient made a full clinical recovery after being placed on hemodialysis. Subsequently, the patient had clinical disease progression off therapy and required re-challenge with nivolumab on hemodialysis, resulting in ongoing clinical and radiographic response. This case illustrates multiple practical challenges and dangers of administering anti-PD1 immune checkpoint inhibitors to patients with solid-organ transplantation including need for titration of immunosuppressive medications, risks of allograft rejection, and treatment during hemodialysis.
Prospects and progress of atezolizumab in non-small cell lung cancer.
Vansteenkiste, Johan; Wauters, Els; Park, Keunchil; Rittmeyer, Achim; Sandler, Alan; Spira, Alexander
2017-06-01
Immunotherapy has recently come to the forefront of oncology treatment as a potential means of combating cancer by restoring the body's adaptive cancer-immunity cycle. Atezolizumab is a monoclonal antibody agent that specifically targets programmed death ligand 1 (PD-L1), a key molecule in the cancer-immunity pathway, to block binding to its receptors PD-1 and B7.1. Areas covered: This review covers the role of atezolizumab in the treatment of non-small-cell lung cancer (NSCLC). Several studies have reported promising efficacy in this indication. The phase II FIR and BIRCH studies evaluated atezolizumab monotherapy across different lines of therapy in NSCLC selected by PD-L1 expression status. The randomized POPLAR and OAK trials of atezolizumab versus docetaxel in previously treated NSCLC reported improved efficacy in the atezolizumab arm. Several ongoing studies yet to report data are also described and treatment-related adverse events are discussed. Expert opinion: Clinical trials have shown that atezolizumab has a favorable risk-benefit ratio compared with standard chemotherapy in second-line treatment of non-oncogene-driven advanced NSCLC. Promising response rates and survival over 2 years has been reported in the first-line setting; however, more research is needed in this setting and in evaluating combinatorial strategies to treat NSCLC.
Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.
Zhang, Jie; Liu, Huan; Wei, Bin
Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.
Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection*
Zhang, Jie; Liu, Huan; Wei, Bin
2017-01-01
Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1. PMID:28378566
Teran, Rommy; Mitre, Edward; Vaca, Maritza; Erazo, Silvia; Oviedo, Gisela; Hübner, Marc P; Chico, Martha E; Mattapallil, Joseph J; Bickle, Quentin; Rodrigues, Laura C; Cooper, Philip J
2011-03-01
The immune response that develops in early childhood underlies the development of inflammatory diseases such as asthma and there are few data from tropical Latin America (LA). This study investigated the effects of age on the development of immunity during the first 5 years of life by comparing innate and adaptive immune responses in Ecuadorian children aged 6-9 months, 22-26 months, and 48-60 months. Percentages of naïve CD4+ T cells declined with age while those of memory CD4(+) and CD8(+) T cells increased indicating active development of the immune system throughout the first five years. Young infants had greater innate immune responses to TLR agonists compared to older children while regulatory responses including SEB-induced IL-10 and percentages of FoxP3(+) T-regulatory cells decreased with age. Enhanced innate immunity in early life may be important for host defense against pathogens but may increase the risk of immunopathology. Copyright © 2010 Elsevier Inc. All rights reserved.
Pathogenesis of Endometriosis: Roles of Retinoids and Inflammatory Pathways
Taylor, Robert N.; Kane, Maureen A.; Sidell, Neil
2016-01-01
Endometriosis is a nonmalignant, but potentially metastatic, gynecological condition manifested by the extrauterine growth of inflammatory endometrial implants. Ten percent of reproductive-age women are affected and commonly suffer pelvic pain and/ or infertility. The theories of endometriosis histogenesis remain controversial, but retrograde menstruation and metaplasia each infer mechanisms that explain the immune cell responses observed around the ectopic lesions. Recent findings from our laboratories and others suggest that retinoic acid metabolism and action are fundamentally flawed in endometriotic tissues and even generically in women with endometriosis. The focus of our ongoing research is to develop medical therapies as adjuvants or alternatives to the surgical excision of these lesions. On the basis of concepts put forward in this review, we predict that the pharmacological actions and anticipated low side-effect profiles of retinoid supplementation might provide a new treatment option for the long-term management of this chronic and debilitating gynecological disease. PMID:26132929
Abi Rached, L; McDermott, M F; Pontarotti, P
1999-02-01
The human Major Histocompatibility Complex (MHC) shares similarities with three other chromosome regions in human. This could be the vestige of ancestral large scale duplications. We discuss here the possibility i) that these duplications occurred during two rounds of tetraploidization supposed to have taken place during chordate evolution before the jawed vertebrate radiation, and ii) that one of the quadruplicate regions, relaxed of functional constraints, gave rise to the vertebrate MHC by a quick round of gene cis-duplication and cis-exon shuffling. These different rounds of cis-duplications and exon shufflings allowed the emergence of new genes participating in novel biological functions i.e. adaptive immune responses. Cis-duplications and cis-exon shufflings are ongoing processes in the evolution of some of these genes in this region as they have occurred and were fixed at different times and in different lineages during vertebrate evolution. In contrast, other genes within the MHC have remained stable since the emergence of jawed vertebrates.
Repurposing Drugs in Oncology (ReDO)—Propranolol as an anti-cancer agent
Pantziarka, Pan; Bouche, Gauthier; Sukhatme, Vidula; Meheus, Lydie; Rooman, Ilse; Sukhatme, Vikas P
2016-01-01
Propranolol (PRO) is a well-known and widely used non-selective beta-adrenergic receptor antagonist (beta-blocker), with a range of actions which are of interest in an oncological context. PRO displays effects on cellular proliferation and invasion, on the immune system, on the angiogenic cascade, and on tumour cell sensitivity to existing treatments. Both pre-clinical and clinical evidence of these effects, in multiple cancer types, is assessed and summarised and relevant mechanisms of action outlined. In particular there is evidence that PRO is effective at multiple points in the metastatic cascade, particularly in the context of the post-surgical wound response. Based on this evidence the case is made for further clinical investigation of the anticancer effects of PRO, particularly in combination with other agents. A number of trials are on-going, in different treatment settings for various cancers. PMID:27899953
Fidler, Sarah; Thornhill, John; Malatinkova, Eva; Reinhard, Robert; Lamplough, Rosanne; Ananworanich, Jintanat; Chahroudi, Ann
2015-10-01
The International AIDS Society (IAS) convened the Towards an HIV Cure Symposium on 18-19 July 2015 in Vancouver, Canada, bringing together researchers and community to discuss the most recent advances in our understanding of HIV latency, reservoirs and a summary of the current clinical approaches towards an HIV cure. The symposium objectives were to: (1) gather researchers and stakeholders to present, review, and discuss the latest research towards an HIV cure; (2) promote cross-disciplinary global interactions between basic, clinical and social scientists; and (3) provide a platform for sharing information among scientists, clinicians, funders, media and civil society. The symposium examined basic molecular science and animal model data, and emerging and ongoing clinical trial results to prioritise strategies and determine the viral and immune responses that could lead to HIV remission without antiretroviral therapy. This report summarises some of the major findings discussed during the symposium.
Alsahli, M; Farrell, R J; Michetti, P
2001-01-01
Over the past decade, intensive research has focused on developing a vaccine therapy for Helicobacter pylori. Substantial unresolved questions cloud the current approach, and the development of a vaccine against this unique organism has proved very challenging. Many candidate vaccines have been tested in animal models. The immunogenicity and the safety of some vaccine formulations have been recently evaluated through clinical trials, and the efficacy of these vaccine therapies in humans will be determined in the near future. This article will provide an overview of the current knowledge of natural and vaccine-induced immune responses to H. pylori infection. It will also review past vaccine successes and failures in animal models and the limited experience to date in using vaccine therapy in humans. Several obstacles to H. pylori vaccine development efforts along with the future direction of these efforts will be discussed. Copyright 2001 S. Karger AG, Basel
Novel Therapies for Coeliac Disease
Sollid, Ludvig M.; Khosla, Chaitan
2011-01-01
Coeliac disease is a widespread, lifelong disorder for which dietary control represents the only accepted form of therapy. There is an unmet need for non-dietary therapies to treat this condition. Most ongoing and emerging drug discovery programmes are based on the understanding that coeliac disease is caused by an inappropriate T-cell-mediated immune response to dietary gluten proteins. Recent genome-wide association studies lend further support to this pathogenic model. The central role of human leukocyte antigen genes has been validated, and a number of new risk loci have been identified, most of which are related to the biology of T cells and antigen-presenting cells. Here we review the status of potential non-dietary therapies under consideration for coeliac disease. We conclude that future development of novel therapies will be aided by the identification of new, preferably non-invasive, surrogate markers for coeliac disease activity. PMID:21401739
Immune and stress responses in oysters with insights on adaptation.
Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude
2015-09-01
Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Immunization safety in US print media, 1995-2005.
Hussain, Hamidah; Omer, Saad B; Manganello, Jennifer A; Kromm, Elizabeth Edsall; Carter, Terrell C; Kan, Lilly; Stokley, Shannon; Halsey, Neal A; Salmon, Daniel A
2011-05-01
To identify and describe vaccine safety in US newspaper articles. Articles (1147) from 44 states and Washington, DC, between January 1, 1995, and July 15, 2005, were identified by using the search terms "immunize or vaccine" and "adverse events or safety or exemption or danger or risk or damage or injury or side effect" and were coded by using a standardized data-collection instrument. The mean number of vaccine-safety articles per state was 26. Six (not mutually exclusive) topics were identified: vaccine-safety concerns (46%); vaccine policy (44%); vaccines are safe (20%); immunizations are required (10%); immunizations are not required (8%); and state/school exemption (8%). Three spikes in the number of newspaper articles about vaccine-safety issues were observed: in 1999 regarding rotavirus vaccine and in 2002 and 2003 regarding smallpox vaccine. Excluding articles that referred to rotavirus and smallpox vaccines, 37% of the articles had a negative take-home message. Ongoing monitoring of news on vaccine safety may help the content and framing of vaccine-safety messages.
Haque, Sulsal; Yellu, Mahender; Randhawa, Jaskirat; Hashemi-Sadraei, Nooshin
2017-01-01
Head and neck squamous cell cancer (HNSCC) is the sixth most common malignancy worldwide, and despite advances in cytotoxic, surgical and radiation techniques, outcomes are still poor in those with both locally advanced and metastatic diseases. The need for development of better therapeutics along with a greater understanding of the relationship between the immune system and malignancies has led to a new therapeutic modality, immune modulators, particularly checkpoint inhibitors in HNSCC. It is now well recognized that HNSCC circumvents crucial pathways utilized by the immune system to escape surveillance. These hijacked pathways include impairing tumor antigen presentation machinery and co-opting checkpoint receptors. This understanding has led to the development of monoclonal antibodies targeting checkpoint receptors and has resulted in promising outcomes in HNSCC. This article describes the mechanisms that HNSCC utilizes to escape immune surveillance, clinical impact of checkpoint inhibitors (with a focus on pembrolizumab), ongoing studies, and future directions. PMID:28919706
Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish.
Williams, Julie A; Sathyanarayanan, Sriram; Hendricks, Joan C; Sehgal, Amita
2007-04-01
The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFkappaB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response.
Interaction Between Sleep and the Immune Response in Drosophila: A Role for the NFκB Relish
Williams, Julie A.; Sathyanarayanan, Sriram; Hendricks, Joan C.; Sehgal, Amita
2010-01-01
Study Objectives The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. Design We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. Results A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFκB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. Conclusion These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response. PMID:17520783
Lane, Sarah M; Briffa, Mark
2018-02-20
The ability to mitigate the costs of engaging in a fight will depend on an individual's physiological state. However, the experience of fighting itself may, in turn, affect an individual's state, especially if the fight results in injury. Previous studies have found a correlation between immune state and fighting success, but the causal direction of this relationship remains unclear. Does immune state determine fighting success? Or does fighting itself influence subsequent immune state? Using the beadlet anemone, Actinia equina , we disentangled the cause and effect of this relationship, measuring immune response once pre-fight and twice post-fight. Contrary to previous findings, pre-fight immune response did not predict fighting success, but rather predicted whether an individual used its weapons during the fight. Furthermore, weapon use and contest outcome significantly affected post-fight immune response. Individuals that used their weapons maintained a stable immune response following the fight, whereas those that fought non-injuriously did not. Furthermore, although winners suffered a reduction in immune response similar to that of losers immediately post-fight, winners began to recover pre-fight levels within 24 h. Our findings indicate that immune state can influence strategic fighting decisions and, moreover, that fight outcome and the agonistic behaviours expressed can significantly affect subsequent immunity. © 2018. Published by The Company of Biologists Ltd.
Mucosal immunology of HIV infection.
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S
2013-07-01
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mucosal Immunology of HIV Infection
Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.
2013-01-01
Summary Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of ‘symbiotic’ intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4+ T-cell responses, binding antibodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Further, immune therapies specifically directed towards boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. PMID:23772612
Chemical & Biological Point Detection Decontamination
2002-04-01
high priority in biological defense. Research on multivalent assays is also ongoing. Biased libraries, generated from immunized animals, or unbiased ...2003 TBD decontamination and modeling and simulation I I The Chem-Bio Point Detection Roadmap The summary level updated and expanded Bio Point... Molecular Imprinted Polymer Sensor, Dendrimer-based Antibody Assays, Pyrolysis-GC-ion mobility spectrometry, and surface enhanced Raman spectroscopy. Data
Inflammatory cytokines in the brain: does the CNS shape immune responses?
Owens, T; Renno, T; Taupin, V; Krakowski, M
1994-12-01
Immune responses in the central nervous system (CNS) have traditionally been regarded as representing the intrusion of an unruly, ill-behaved mob of leukocytes into the well-ordered and organized domain of thought and reason. However, results accumulated over the past few years suggest that, far from being an immunologically privileged organ, T lymphocytes may be regular and frequent visitors to the CNS, for purposes of immune surveillance. Here, Trevor Owens and colleagues propose that the brain itself can regulate or shape immune responses therein. Furthermore, given that the immune cells may be subverted to autoimmunity, they suggest that the study of inflammatory autoimmune disease in the brain may shed light on the ability of the local environment to regulate immune responses.
The role of dehydroepiandrosterone on functional innate immune responses to acute stress.
Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P
2017-12-01
The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.
Marrocco, V; Fiore, P; Benedetti, A; Pisu, S; Rizzuto, E; Musarò, A; Madaro, L; Lozanoska-Ochser, B; Bouché, M
2017-02-01
Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a "cure" for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology, which may eventually converge, may be successful. In this context, we previously showed that genetic ablation of Protein Kinase C θ (PKCθ), an enzyme known to be involved in immune response, in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Copyright © 2017 3-V Biosciences. Published by Elsevier B.V. All rights reserved.
Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K
2011-08-01
The present study was undertaken to explore the effect of the essential oil isolated from the buds of Eugenia caryophyllata on some immunological parameters. Humoral immunity was assessed by measuring the hemagglutination titre to sheep red blood cells and delayed type hypersensitivity was assessed by measuring foot pad thickness. Clove oil administration produced a significant increase in the primary as well as secondary humoral immune response. In addition, it also produced a significant decrease in foot pad thickness compared with the control group. Thus, these results suggest that clove oil can modulate the immune response by augmenting humoral immunity and decreasing cell mediated immunity. Copyright © 2011 John Wiley & Sons, Ltd.
Humby, Frances; Bombardieri, Michele; Manzo, Antonio; Kelly, Stephen; Blades, Mark C; Kirkham, Bruce; Spencer, Jo; Pitzalis, Costantino
2009-01-13
Follicular structures resembling germinal centres (GCs) that are characterized by follicular dendritic cell (FDC) networks have long been recognized in chronically inflamed tissues in autoimmune diseases, including the synovium of rheumatoid arthritis (RA). However, it is debated whether these ectopic structures promote autoimmunity and chronic inflammation driving the production of pathogenic autoantibodies. Anti-citrullinated protein/peptide antibodies (ACPA) are highly specific markers of RA, predict a poor prognosis, and have been suggested to be pathogenic. Therefore, the main study objectives were to determine whether ectopic lymphoid structures in RA synovium: (i) express activation-induced cytidine deaminase (AID), the enzyme required for somatic hypermutation and class-switch recombination (CSR) of Ig genes; (ii) support ongoing CSR and ACPA production; and (iii) remain functional in a RA/severe combined immunodeficiency (SCID) chimera model devoid of new immune cell influx into the synovium. Using immunohistochemistry (IHC) and quantitative Taqman real-time PCR (QT-PCR) in synovial tissue from 55 patients with RA, we demonstrated that FDC+ structures invariably expressed AID with a distribution resembling secondary lymphoid organs. Further, AID+/CD21+ follicular structures were surrounded by ACPA+/CD138+ plasma cells, as demonstrated by immune reactivity to citrullinated fibrinogen. Moreover, we identified a novel subset of synovial AID+/CD20+ B cells outside GCs resembling interfollicular large B cells. In order to gain direct functional evidence that AID+ structures support CSR and in situ manufacturing of class-switched ACPA, 34 SCID mice were transplanted with RA synovium and humanely killed at 4 wk for harvesting of transplants and sera. Persistent expression of AID and Igamma-Cmu circular transcripts (identifying ongoing IgM-IgG class-switching) was observed in synovial grafts expressing FDCs/CD21L. Furthermore, synovial mRNA levels of AID were closely associated with circulating human IgG ACPA in mouse sera. Finally, the survival and proliferation of functional B cell niches was associated with persistent overexpression of genes regulating ectopic lymphoneogenesis. Our demonstration that FDC+ follicular units invariably express AID and are surrounded by ACPA-producing plasma cells provides strong evidence that ectopic lymphoid structures in the RA synovium are functional and support autoantibody production. This concept is further confirmed by evidence of sustained AID expression, B cell proliferation, ongoing CSR, and production of human IgG ACPA from GC+ synovial tissue transplanted into SCID mice, independently of new B cell influx from the systemic circulation. These data identify AID as a potential therapeutic target in RA and suggest that survival of functional synovial B cell niches may profoundly influence chronic inflammation, autoimmunity, and response to B cell-depleting therapies.
[History of vaccination: from empiricism towards recombinant vaccines].
Guérin, N
2007-01-01
Two hundreds years after the discovery of the smallpox vaccine, immunization remains one of the most powerful tools of preventive medicine. Immunization was born with Jenner, then Pasteur and expanded during the 19th and 20th century. It started with the empirical observation of cross-immunity between two diseases, cowpox and smallpox. It became a real science, with pathogen isolation, culture and attenuation or inactivation, to prepare a vaccine. Together with clinical and biological efficacy studies and adverse events assessments, it constructed the concept of "vaccinology". Protein conjugation of polyosidic vaccines has made possible early immunisation of infants. Nowadays, recombinant, reassortant, or virus-like particles technologies open the road for new vaccines. Ongoing research opens the way for the development of new vaccines that will help to control transmittable diseases for which we are lacking antimicrobial agents.
Innovative Approaches to Improve Anti-Infective Vaccine Efficacy.
Yeaman, Michael R; Hennessey, John P
2017-01-06
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Complex Immune Correlates of Protection in HIV-1 Vaccine Efficacy Trials
Tomaras, Georgia D.; Plotkin, Stanley A.
2016-01-01
Summary Development of an efficacious HIV-1 vaccine is a major priority for improving human health worldwide. Vaccine mediated protection against human pathogens can be achieved through elicitation of protective innate, humoral, and cellular responses. Identification of specific immune responses responsible for pathogen protection enables vaccine development and provides insights into host defenses against pathogens and the immunological mechanisms that most effectively fight infection. Defining immunological correlates of transmission risk in preclinical and clinical HIV-1 vaccine trials has moved the HIV-1 vaccine development field forward and directed new candidate vaccine development. Immune correlate studies are providing novel hypotheses about immunological mechanisms that may be responsible for preventing HIV-1 acquisition. Recent results from HIV-1 immune correlates work has demonstrated that there are multiple types of immune responses that together, comprise an immune correlate—thus implicating polyfunctional immune control of HIV-1 transmission. An in depth understanding of these complex immunological mechanisms of protection against HIV-1 will accelerate the development of an efficacious HIV-1 vaccine. PMID:28133811
Leleux, Jardin; Atalis, Alexandra; Roy, Krishnendu
2017-01-01
While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses. PMID:26489733
Yuen, Grace J; Ausubel, Frederick M
2018-12-31
The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.
2018-01-01
ABSTRACT The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection. PMID:29436902
Effect of Pain Management on Immunization Efficacy in Mice
Kolstad, April M; Rodriguiz, Ramona M; Kim, Caroline J; Hale, Laura P
2012-01-01
Immunization with complete Freund adjuvant (CFA) or incomplete Freund adjuvant (IFA) is commonly viewed as painful, yet rodents may not receive analgesics due to concerns that these drugs affect the desired immune responses. Here we tested the hypothesis that pain associated with immunization with CFA or IFA in mice can be relieved without compromising the effectiveness of the immune response. After subcutaneous immunization in the leg with antigen in CFA or IFA, mice were assessed for signs of pain by using behavioral tests, including unrestricted locomotion in an open field, forced running on an automated treadmill, and voluntary wheel running. Effects of the analgesics acetaminophen, meloxicam, and buprenorphine on behavioral and antibody responses were assessed after primary and secondary immunization with the model antigen ovalbumin and after repeated immunization with a limiting dose of recombinant protective antigen from Bacillus anthracis. Open field activity and the distance traveled during forced gait analysis and voluntary wheel running both decreased after immunization. Treatment with each of the analgesics normalized some but not all of these behaviors but did not decrease the mean or maximal antibody titer after primary or repeated immunization with a moderate dose of ovalbumin or after repeated immunization with a limiting dose of protective antigen. In summary, after immunization with CFA or IFA, mice showed behavioral responses suggestive of pain. Acetaminophen, meloxicam, and buprenorphine attenuated these effects without decreasing antibody responses. Therefore, the use of these analgesics for managing rodent pain associated with CFA- or IFA-containing vaccines can be encouraged. PMID:23043810
Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke
2017-02-06
In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.
Lopez, Wilfredo; Page, Alexis M; Carlson, Darby J; Ericson, Brad L; Cserhati, Matyas F; Guda, Chittibabu; Carlson, Kimberly A
2018-01-01
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster . The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
Nosratababadi, Reza; Bagheri, Vahid; Zare-Bidaki, Mohammad; Hakimi, Hamid; Zainodini, Nahid; Kazemi Arababadi, Mohammad
2017-04-01
Chlamydia species are obligate intracellular pathogens causing different infectious diseases particularly asymptomatic genital infections and are also responsible for a wide range of complications. Previous studies showed that there are different immune responses to Chlamydia species and their infections are limited to some cases. Moreover, Chlamydia species are able to alter immune responses through modulating the expression of some immune system related molecules including cytokines. Toll like receptors (TLRs) belonge to pathogen recognition receptors (PRRs) and play vital roles in recognition of microbes and stimulation of appropriate immune responses. Therefore, it appears that TLRs may be considered as important sensors for recognition of Chlamydia and promotion of immune responses against these bacterial infections. Accordingly, TLR4 detects several microbial PAMPs such as bacterial lipopolysacharide (LPS) and subsequently activates transcription from pro-inflammatory cytokines in both MYD88 and TRIF pathways dependent manner. The purpose of this review is to provide the recent data about the status and major roles played by TLR4 in Chlamydia species recognition and promotion of immune responses against these infections and also the relationship between TLR4 activities and pathogenesis of Chlamydia infections. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aguilera, Eduardo; Amat, Juan A.
2007-11-01
Allocation trade-offs of carotenoids between their use in the immune system and production of sexual ornaments have been suggested as a proximate mechanism maintaining honesty of sexual signals. To test this idea, we experimentally examined whether carotenoid availability in the diet was related to variation in antibody response to novel antigens in male greenfinches ( Carduelis chloris aurantiiventris), a species with extensive carotenoid-dependent plumage colouration. We also measured the cost of mounting a humoral response in terms of circulating carotenoids. Finally, we examined the relationship between plumage colour, immune response and circulating carotenoids. We found that males with carotenoid-supplemented diets showed stronger antibody response than non-supplemented birds. We also found that activation of the immune system significantly reduced circulating carotenoids (24.9% lower in immune-challenged birds than in control birds). Finally, intensity (chroma) of ventral plumage colouration of males, a character directly related to concentration of total carotenoids in feathers, was negatively correlated with the immune response and circulating carotenoids in winter. These results support the idea that carotenoids are a limiting resource and that males trade ornamental colouration against immune response.
Koop, Jennifer A H; Owen, Jeb P; Knutie, Sarah A; Aguilar, Maria A; Clayton, Dale H
2013-08-01
Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi-binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi-binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody-mediated defenses against ectoparasites. Philornis downsi-binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi-induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune defenses, rather than assuming that such responses increase host fitness. Host immune responses can protect against the negative fitness consequences of parasitism; however, the strength and effectiveness of these responses vary among hosts. Strong host immune responses are often assumed to correlate with greater host fitness. This study investigates the relationship between host immune response, parasite load, and host fitness using Darwin's finches and an invasive nest parasite. We found that while the immune response of mothers appeared defensive, it did not rescue current reproductive fitness.