Sample records for ongoing oscillatory activity

  1. Imaging of neural oscillations with embedded inferential and group prevalence statistics.

    PubMed

    Donhauser, Peter W; Florin, Esther; Baillet, Sylvain

    2018-02-01

    Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience.

  2. Imaging of neural oscillations with embedded inferential and group prevalence statistics

    PubMed Central

    2018-01-01

    Magnetoencephalography and electroencephalography (MEG, EEG) are essential techniques for studying distributed signal dynamics in the human brain. In particular, the functional role of neural oscillations remains to be clarified. For that reason, imaging methods need to identify distinct brain regions that concurrently generate oscillatory activity, with adequate separation in space and time. Yet, spatial smearing and inhomogeneous signal-to-noise are challenging factors to source reconstruction from external sensor data. The detection of weak sources in the presence of stronger regional activity nearby is a typical complication of MEG/EEG source imaging. We propose a novel, hypothesis-driven source reconstruction approach to address these methodological challenges. The imaging with embedded statistics (iES) method is a subspace scanning technique that constrains the mapping problem to the actual experimental design. A major benefit is that, regardless of signal strength, the contributions from all oscillatory sources, which activity is consistent with the tested hypothesis, are equalized in the statistical maps produced. We present extensive evaluations of iES on group MEG data, for mapping 1) induced oscillations using experimental contrasts, 2) ongoing narrow-band oscillations in the resting-state, 3) co-modulation of brain-wide oscillatory power with a seed region, and 4) co-modulation of oscillatory power with peripheral signals (pupil dilation). Along the way, we demonstrate several advantages of iES over standard source imaging approaches. These include the detection of oscillatory coupling without rejection of zero-phase coupling, and detection of ongoing oscillations in deeper brain regions, where signal-to-noise conditions are unfavorable. We also show that iES provides a separate evaluation of oscillatory synchronization and desynchronization in experimental contrasts, which has important statistical advantages. The flexibility of iES allows it to be adjusted to many experimental questions in systems neuroscience. PMID:29408902

  3. Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony

    PubMed Central

    Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S.

    2016-01-01

    Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity, the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations. PMID:28154616

  4. Controlling Working Memory Operations by Selective Gating: The Roles of Oscillations and Synchrony.

    PubMed

    Dipoppa, Mario; Szwed, Marcin; Gutkin, Boris S

    2016-01-01

    Working memory (WM) is a primary cognitive function that corresponds to the ability to update, stably maintain, and manipulate short-term memory (ST M) rapidly to perform ongoing cognitive tasks. A prevalent neural substrate of WM coding is persistent neural activity , the property of neurons to remain active after having been activated by a transient sensory stimulus. This persistent activity allows for online maintenance of memory as well as its active manipulation necessary for task performance. WM is tightly capacity limited. Therefore, selective gating of sensory and internally generated information is crucial for WM function. While the exact neural substrate of selective gating remains unclear, increasing evidence suggests that it might be controlled by modulating ongoing oscillatory brain activity. Here, we review experiments and models that linked selective gating, persistent activity, and brain oscillations, putting them in the more general mechanistic context of WM. We do so by defining several operations necessary for successful WM function and then discussing how such operations may be carried out by mechanisms suggested by computational models. We specifically show how oscillatory mechanisms may provide a rapid and flexible active gating mechanism for WM operations.

  5. Rhythms of Consciousness: Binocular Rivalry Reveals Large-Scale Oscillatory Network Dynamics Mediating Visual Perception

    PubMed Central

    Doesburg, Sam M.; Green, Jessica J.; McDonald, John J.; Ward, Lawrence M.

    2009-01-01

    Consciousness has been proposed to emerge from functionally integrated large-scale ensembles of gamma-synchronous neural populations that form and dissolve at a frequency in the theta band. We propose that discrete moments of perceptual experience are implemented by transient gamma-band synchronization of relevant cortical regions, and that disintegration and reintegration of these assemblies is time-locked to ongoing theta oscillations. In support of this hypothesis we provide evidence that (1) perceptual switching during binocular rivalry is time-locked to gamma-band synchronizations which recur at a theta rate, indicating that the onset of new conscious percepts coincides with the emergence of a new gamma-synchronous assembly that is locked to an ongoing theta rhythm; (2) localization of the generators of these gamma rhythms reveals recurrent prefrontal and parietal sources; (3) theta modulation of gamma-band synchronization is observed between and within the activated brain regions. These results suggest that ongoing theta-modulated-gamma mechanisms periodically reintegrate a large-scale prefrontal-parietal network critical for perceptual experience. Moreover, activation and network inclusion of inferior temporal cortex and motor cortex uniquely occurs on the cycle immediately preceding responses signaling perceptual switching. This suggests that the essential prefrontal-parietal oscillatory network is expanded to include additional cortical regions relevant to tasks and perceptions furnishing consciousness at that moment, in this case image processing and response initiation, and that these activations occur within a time frame consistent with the notion that conscious processes directly affect behaviour. PMID:19582165

  6. Theta oscillations locked to intended actions rhythmically modulate perception.

    PubMed

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  7. Oscillatory signatures of crossmodal congruence effects: An EEG investigation employing a visuotactile pattern matching paradigm.

    PubMed

    Göschl, Florian; Friese, Uwe; Daume, Jonathan; König, Peter; Engel, Andreas K

    2015-08-01

    Coherent percepts emerge from the accurate combination of inputs from the different sensory systems. There is an ongoing debate about the neurophysiological mechanisms of crossmodal interactions in the brain, and it has been proposed that transient synchronization of neurons might be of central importance. Oscillatory activity in lower frequency ranges (<30Hz) has been implicated in mediating long-range communication as typically studied in multisensory research. In the current study, we recorded high-density electroencephalograms while human participants were engaged in a visuotactile pattern matching paradigm and analyzed oscillatory power in the theta- (4-7Hz), alpha- (8-13Hz) and beta-bands (13-30Hz). Employing the same physical stimuli, separate tasks of the experiment either required the detection of predefined targets in visual and tactile modalities or the explicit evaluation of crossmodal stimulus congruence. Analysis of the behavioral data showed benefits for congruent visuotactile stimulus combinations. Differences in oscillatory dynamics related to crossmodal congruence within the two tasks were observed in the beta-band for crossmodal target detection, as well as in the theta-band for congruence evaluation. Contrasting ongoing activity preceding visuotactile stimulation between the two tasks revealed differences in the alpha- and beta-bands. Source reconstruction of between-task differences showed prominent involvement of premotor cortex, supplementary motor area, somatosensory association cortex and the supramarginal gyrus. These areas not only exhibited more involvement in the pre-stimulus interval for target detection compared to congruence evaluation, but were also crucially involved in post-stimulus differences related to crossmodal stimulus congruence within the detection task. These results add to the increasing evidence that low frequency oscillations are functionally relevant for integration in distributed brain networks, as demonstrated for crossmodal interactions in visuotactile pattern matching in the current study. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Prestimulus EEG Power Predicts Conscious Awareness But Not Objective Visual Performance

    PubMed Central

    Veniero, Domenica

    2017-01-01

    Abstract Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between α power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus α power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance. PMID:29255794

  9. A generalized locomotion CPG architecture based on oscillatory building blocks.

    PubMed

    Yang, Zhijun; França, Felipe M G

    2003-07-01

    Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area.

  10. A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior

    PubMed Central

    Voloh, Benjamin; Womelsdorf, Thilo

    2016-01-01

    Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets: (1) set a “neural context” in terms of narrow band frequencies that uniquely characterizes the activated circuits; (2) impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances; (3) are critical for neural coding models that depend on phase, increasing the informational content of neural representations; and (4) likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior. PMID:27013986

  11. Oscillatory magnetic brain activity is related to dissociative symptoms and childhood adversities - A study in women with multiple trauma.

    PubMed

    Schalinski, I; Moran, J K; Elbert, T; Reindl, V; Wienbruch, C

    2017-08-15

    Individuals with trauma-related disorders are complex and heterogeneous; part of this complexity derives from additional psychopathology like dissociation as well as environmental adversities such as traumatic stress, experienced throughout the lifespan. Understanding the neurophysiological abnormalities in Post-traumatic stress disorder (PTSD) requires a simultaneous consideration of these factors. Resting state magnetoencephalography (MEG) recordings were obtained from 41 women with PTSD and comorbid depressive symptoms, and 16 healthy women. Oscillatory brain activity was extracted for five frequency bands and 11 source locations, and analyzed in relation to shutdown dissociation and adversity-related measures. Dissociative symptoms were related to increased delta and lowered beta power. Adversity-related measures modulated theta and alpha oscillatory power (in particular childhood sexual abuse) and differed between patients and controls. Findings are based on women with comorbid depressive symptoms and therefore may not be applicable for men or groups with other clinical profiles. In respect to childhood adversities, we had no reliable source for the early infancy. Trauma-related abnormalities in neural organization vary with both exposure to adversities as well as their potential to evoke ongoing shutdown responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Using Brain–Computer Interfaces and Brain-State Dependent Stimulation as Tools in Cognitive Neuroscience

    PubMed Central

    Jensen, Ole; Bahramisharif, Ali; Oostenveld, Robert; Klanke, Stefan; Hadjipapas, Avgis; Okazaki, Yuka O.; van Gerven, Marcel A. J.

    2011-01-01

    Large efforts are currently being made to develop and improve online analysis of brain activity which can be used, e.g., for brain–computer interfacing (BCI). A BCI allows a subject to control a device by willfully changing his/her own brain activity. BCI therefore holds the promise as a tool for aiding the disabled and for augmenting human performance. While technical developments obviously are important, we will here argue that new insight gained from cognitive neuroscience can be used to identify signatures of neural activation which reliably can be modulated by the subject at will. This review will focus mainly on oscillatory activity in the alpha band which is strongly modulated by changes in covert attention. Besides developing BCIs for their traditional purpose, they might also be used as a research tool for cognitive neuroscience. There is currently a strong interest in how brain-state fluctuations impact cognition. These state fluctuations are partly reflected by ongoing oscillatory activity. The functional role of the brain state can be investigated by introducing stimuli in real-time to subjects depending on the actual state of the brain. This principle of brain-state dependent stimulation may also be used as a practical tool for augmenting human behavior. In conclusion, new approaches based on online analysis of ongoing brain activity are currently in rapid development. These approaches are amongst others informed by new insight gained from electroencephalography/magnetoencephalography studies in cognitive neuroscience and hold the promise of providing new ways for investigating the brain at work. PMID:21687463

  13. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  14. Ongoing slow oscillatory phase modulates speech intelligibility in cooperation with motor cortical activity.

    PubMed

    Onojima, Takayuki; Kitajo, Keiichi; Mizuhara, Hiroaki

    2017-01-01

    Neural oscillation is attracting attention as an underlying mechanism for speech recognition. Speech intelligibility is enhanced by the synchronization of speech rhythms and slow neural oscillation, which is typically observed as human scalp electroencephalography (EEG). In addition to the effect of neural oscillation, it has been proposed that speech recognition is enhanced by the identification of a speaker's motor signals, which are used for speech production. To verify the relationship between the effect of neural oscillation and motor cortical activity, we measured scalp EEG, and simultaneous EEG and functional magnetic resonance imaging (fMRI) during a speech recognition task in which participants were required to recognize spoken words embedded in noise sound. We proposed an index to quantitatively evaluate the EEG phase effect on behavioral performance. The results showed that the delta and theta EEG phase before speech inputs modulated the participant's response time when conducting speech recognition tasks. The simultaneous EEG-fMRI experiment showed that slow EEG activity was correlated with motor cortical activity. These results suggested that the effect of the slow oscillatory phase was associated with the activity of the motor cortex during speech recognition.

  15. Subliminal stimuli modulate somatosensory perception rhythmically and provide evidence for discrete perception.

    PubMed

    Baumgarten, Thomas J; Königs, Sara; Schnitzler, Alfons; Lange, Joachim

    2017-03-09

    Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13-18 Hz). This can be compellingly explained by a model of discrete perceptual cycles.

  16. Driving working memory with frequency-tuned noninvasive brain stimulation.

    PubMed

    Albouy, Philippe; Baillet, Sylvain; Zatorre, Robert J

    2018-04-29

    Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches. © 2018 New York Academy of Sciences.

  17. Distinction between added-energy and phase-resetting mechanisms in non-invasively detected somatosensory evoked responses.

    PubMed

    Fedele, T; Scheer, H-J; Burghoff, M; Waterstraat, G; Nikulin, V V; Curio, G

    2013-01-01

    Non-invasively recorded averaged event-related potentials (ERP) represent a convenient opportunity to investigate human brain perceptive and cognitive processes. Nevertheless, generative ERP mechanisms are still debated. Two previous approaches have been contested in the past: the added-energy model in which the response raises independently from the ongoing background activity, and the phase-reset model, based on stimulus-driven synchronization of oscillatory ongoing activity. Many criteria for the distinction of these two models have been proposed, but there is no definitive methodology to disentangle them, owing also to the limited information at the single trial level. Here, we propose a new approach combining low-noise EEG technology and multivariate decomposition techniques. We present theoretical analyses based on simulated data and identify in high-frequency somatosensory evoked responses an optimal target for the distinction between the two mechanisms.

  18. Subliminal stimuli modulate somatosensory perception rhythmically and provide evidence for discrete perception

    PubMed Central

    Baumgarten, Thomas J.; Königs, Sara; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13–18 Hz). This can be compellingly explained by a model of discrete perceptual cycles. PMID:28276493

  19. Differential effects of ongoing EEG beta and theta power on memory formation

    PubMed Central

    Scholz, Sebastian; Schneider, Signe Luisa

    2017-01-01

    Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459

  20. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    PubMed

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  1. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: A position paper

    PubMed Central

    Thut, Gregor; Bergmann, Til Ole; Fröhlich, Flavio; Soekadar, Surjo R.; Brittain, John-Stuart; Valero-Cabré, Antoni; Sack, Alexander; Miniussi, Carlo; Antal, Andrea; Siebner, Hartwig Roman; Ziemann, Ulf; Herrmann, Christoph S.

    2017-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques have a wide range of applications but also suffer from a number of limitations mainly related to poor specificity of intervention and variable effect size. These limitations motivated recent efforts to focus on the temporal dimension of NTBS with respect to the ongoing brain activity. Temporal patterns of ongoing neuronal activity, in particular brain oscillations and their fluctuations, can be traced with electro- or magnetoencephalography (EEG/MEG), to guide the timing as well as the stimulation settings of NTBS. These novel, online and offline EEG/MEG-guided NTBS-approaches are tailored to specifically interact with the underlying brain activity. Online EEG/MEG has been used to guide the timing of NTBS (i.e., when to stimulate): by taking into account instantaneous phase or power of oscillatory brain activity, NTBS can be aligned to fluctuations in excitability states. Moreover, offline EEG/MEG recordings prior to interventions can inform researchers and clinicians how to stimulate: by frequency-tuning NTBS to the oscillation of interest, intrinsic brain oscillations can be up- or down-regulated. In this paper, we provide an overview of existing approaches and ideas of EEG/MEG-guided interventions, and their promises and caveats. We point out potential future lines of research to address challenges. PMID:28233641

  2. Locking of correlated neural activity to ongoing oscillations

    PubMed Central

    Helias, Moritz

    2017-01-01

    Population-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis. PMID:28604771

  3. State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats.

    PubMed

    Brazhnik, Elena; Cruz, Ana V; Avila, Irene; Wahba, Marian I; Novikov, Nikolay; Ilieva, Neda M; McCoy, Alex J; Gerber, Colin; Walters, Judith R

    2012-06-06

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, 7 d after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8-25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25-40 Hz band with a peak frequency at 30-35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons, and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25-40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity.

  4. A brief historical perspective on the advent of brain oscillations in the biological and psychological disciplines.

    PubMed

    Karakaş, Sirel; Barry, Robert J

    2017-04-01

    We aim to review the historical evolution that has led to the study of the brain (body)-mind relationship based on brain oscillations, to outline and illustrate the principles of neuro-oscillatory dynamics using research findings. The paper addresses the relevant developments in behavioral sciences after Wundt established the science of psychology, and developments in the neurosciences after alpha and gamma oscillations were discovered by Berger and Adrian, respectively. Basic neuroscientific studies have led to a number of principles: (1) spontaneous EEG is composed of a set of oscillatory components, (2) the brain responds with oscillatory activity, (3) poststimulus oscillatory activity is a function of prestimulus activity, (4) the brain response results from a superposition of oscillatory components, (5) there are multiplicities with regard to oscillations and functions, and (6) oscillations are spatially integrated. Findings of clinical studies suggest that oscillatory responses can serve as biomarkers for neuropsychiatric disorders. However, the field of psychology is still making limited use of neuro-oscillatory dynamics for a bio-behavioral understanding of cognitive-affective processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Psychoacoustic Tinnitus Loudness and Tinnitus-Related Distress Show Different Associations with Oscillatory Brain Activity

    PubMed Central

    Balkenhol, Tobias; Wallhäusser-Franke, Elisabeth; Delb, Wolfgang

    2013-01-01

    Background The phantom auditory perception of subjective tinnitus is associated with aberrant brain activity as evidenced by magneto- and electroencephalographic studies. We tested the hypotheses (1) that psychoacoustically measured tinnitus loudness is related to gamma oscillatory band power, and (2) that tinnitus loudness and tinnitus-related distress are related to distinct brain activity patterns as suggested by the distinction between loudness and distress experienced by tinnitus patients. Furthermore, we explored (3) how hearing impairment, minimum masking level, and (4) psychological comorbidities are related to spontaneous oscillatory brain activity in tinnitus patients. Methods and Findings Resting state oscillatory brain activity recorded electroencephalographically from 46 male tinnitus patients showed a positive correlation between gamma band oscillations and psychoacoustic tinnitus loudness determined with the reconstructed tinnitus sound, but not with the other psychoacoustic loudness measures that were used. Tinnitus-related distress did also correlate with delta band activity, but at electrode positions different from those associated with tinnitus loudness. Furthermore, highly distressed tinnitus patients exhibited a higher level of theta band activity. Moreover, mean hearing loss between 0.125 kHz and 16 kHz was associated with a decrease in gamma activity, whereas minimum masking levels correlated positively with delta band power. In contrast, psychological comorbidities did not express significant correlations with oscillatory brain activity. Conclusion Different clinically relevant tinnitus characteristics show distinctive associations with spontaneous brain oscillatory power. Results support hypothesis (1), but exclusively for the tinnitus loudness derived from matching to the reconstructed tinnitus sound. This suggests to preferably use the reconstructed tinnitus spectrum to determine psychoacoustic tinnitus loudness. Results also support hypothesis (2). Moreover, hearing loss and minimum masking level correlate with oscillatory power in distinctive frequency bands. The lack of an association between psychological comorbidities and oscillatory power may be attributed to the overall low level of mental health problems in the present sample. PMID:23326394

  6. Interplay between non-NMDA and NMDA receptor activation during oscillatory wave propagation: Analyses of caffeine-induced oscillations in the visual cortex of rats.

    PubMed

    Yoshimura, Hiroshi; Sugai, Tokio; Kato, Nobuo; Tominaga, Takashi; Tominaga, Yoko; Hasegawa, Takahiro; Yao, Chenjuan; Akamatsu, Tetsuya

    2016-07-01

    Generation and propagation of oscillatory activities in cortical networks are important features of the brain. However, many issues related to oscillatory phenomena are unclear. We previously reported neocortical oscillation following caffeine treatment of rat brain slices. Input to the primary visual cortex (Oc1) generates N-methyl-d-aspartate (NMDA) receptor-dependent oscillations, and we proposed that the oscillatory signals originate in the secondary visual cortex (Oc2). Because non-NMDA and NMDA receptors cooperate in synaptic transmission, non-NMDA receptors may also play an important role in oscillatory activities. Here we investigated how non-NMDA receptor activities contribute to NMDA receptor-dependent oscillations by using optical recording methods. After induction of stable oscillations with caffeine application, blockade of NMDA receptors abolished the late stable oscillatory phase, but elicited 'hidden' non-NMDA receptor-dependent oscillation during the early depolarizing phase. An interesting finding is that the origin of the non-NMDA receptor-dependent oscillation moved from the Oc1, during the early phase, toward the origin of the NMDA receptor-dependent oscillation that is fixed in the Oc2. In addition, the frequency of the non-NMDA receptor-dependent oscillation was higher than that of the NMDA receptor-dependent oscillation. Thus, in one course of spatiotemporal oscillatory activities, the relative balance in receptor activities between non-NMDA and NMDA receptors gradually changes, and this may be due to the different kinetics of the two receptor types. These results suggest that interplay between the two receptor types in the areas of Oc1 and Oc2 may play an important role in oscillatory signal communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The role of high-frequency oscillatory activity in reward processing and learning.

    PubMed

    Marco-Pallarés, Josep; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2015-02-01

    Oscillatory activity has been proposed as a key mechanism in the integration of brain activity of distant structures. Particularly, high frequency brain oscillatory activity in the beta and gamma range has received increasing interest in the domains of attention and memory. In addition, a number of recent studies have revealed an increase of beta-gamma activity (20-35 Hz) after unexpected or relevant positive reward outcomes. In the present manuscript we review the literature on this phenomenon and we propose that this activity is a brain signature elicited by unexpected positive outcomes in order to transmit a fast motivational value signal to the reward network. In addition, we hypothesize that beta-gamma oscillatory activity indexes the interaction between attentional and emotional systems, and that it directly reflects the appearance of unexpected positive rewards in learning-related contexts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. State-Dependent Spike and Local Field Synchronization between Motor Cortex and Substantia Nigra in Hemiparkinsonian Rats

    PubMed Central

    Brazhnik, Elena; Cruz, Ana V.; Avila, Irene; Wahba, Marian I.; Novikov, Nikolay; Ilieva, Neda M.; McCoy, Alex J.; Gerber, Colin; Walters, Judith. R.

    2012-01-01

    Excessive beta frequency oscillatory and synchronized activity has been reported in the basal ganglia of Parkinsonian patients and animal models of the disease. To gain insight into processes underlying this activity, this study explores relationships between oscillatory activity in motor cortex and basal ganglia output in behaving rats after dopamine cell lesion. During inattentive rest, seven days after lesion, increases in motor cortex-substantia nigra pars reticulata (SNpr) coherence emerged in the 8–25 Hz range, with significant increases in local field potential (LFP) power in SNpr but not motor cortex. In contrast, during treadmill walking, marked increases in both motor cortex and SNpr LFP power, as well as coherence, emerged in the 25–40 Hz band with a peak frequency at 30–35 Hz. Spike-triggered waveform averages showed that 77% of SNpr neurons, 77% of putative cortical interneurons and 44% of putative pyramidal neurons were significantly phase-locked to the increased cortical LFP activity in the 25–40 Hz range. Although the mean lag between cortical and SNpr LFPs fluctuated around zero, SNpr neurons phase-locked to cortical LFP oscillations fired, on average, 17 ms after synchronized spiking in motor cortex. High coherence between LFP oscillations in cortex and SNpr supports the view that cortical activity facilitates entrainment and synchronization of activity in basal ganglia after loss of dopamine. However, the dramatic increases in cortical power and relative timing of phase-locked spiking in these areas suggest that additional processes help shape the frequency-specific tuning of the basal ganglia-thalamocortical network during ongoing motor activity. PMID:22674263

  9. Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period

    PubMed Central

    Chen, Guang; Rasch, Malte J.; Wang, Ran; Zhang, Xiao-hui

    2015-01-01

    Neural oscillatory activities have been shown to play important roles in neural information processing and the shaping of circuit connections during development. However, it remains unknown whether and how specific neural oscillations emerge during a postnatal critical period (CP), in which neuronal connections are most substantially modified by neural activity and experience. By recording local field potentials (LFPs) and single unit activity in developing primary visual cortex (V1) of head-fixed awake mice, we here demonstrate an emergence of characteristic oscillatory activities during the CP. From the pre-CP to CP, the peak frequency of spontaneous fast oscillatory activities shifts from the beta band (15–35 Hz) to the gamma band (40–70 Hz), accompanied by a decrease of cross-frequency coupling (CFC) and broadband spike-field coherence (SFC). Moreover, visual stimulation induced a large increase of beta-band activity but a reduction of gamma-band activity specifically from the CP onwards. Dark rearing of animals from the birth delayed this emergence of oscillatory activities during the CP, suggesting its dependence on early visual experience. These findings suggest that the characteristic neuronal oscillatory activities emerged specifically during the CP may represent as neural activity trait markers for the experience-dependent maturation of developing visual cortical circuits. PMID:26648548

  10. Frequency-dependent tACS modulation of BOLD signal during rhythmic visual stimulation.

    PubMed

    Chai, Yuhui; Sheng, Jingwei; Bandettini, Peter A; Gao, Jia-Hong

    2018-05-01

    Transcranial alternating current stimulation (tACS) has emerged as a promising tool for modulating cortical oscillations. In previous electroencephalogram (EEG) studies, tACS has been found to modulate brain oscillatory activity in a frequency-specific manner. However, the spatial distribution and hemodynamic response for this modulation remains poorly understood. Functional magnetic resonance imaging (fMRI) has the advantage of measuring neuronal activity in regions not only below the tACS electrodes but also across the whole brain with high spatial resolution. Here, we measured fMRI signal while applying tACS to modulate rhythmic visual activity. During fMRI acquisition, tACS at different frequencies (4, 8, 16, and 32 Hz) was applied along with visual flicker stimulation at 8 and 16 Hz. We analyzed the blood-oxygen-level-dependent (BOLD) signal difference between tACS-ON vs tACS-OFF, and different frequency combinations (e.g., 4 Hz tACS, 8 Hz flicker vs 8 Hz tACS, 8 Hz flicker). We observed significant tACS modulation effects on BOLD responses when the tACS frequency matched the visual flicker frequency or the second harmonic frequency. The main effects were predominantly seen in regions that were activated by the visual task and targeted by the tACS current distribution. These findings bridge different scientific domains of tACS research and demonstrate that fMRI could localize the tACS effect on stimulus-induced brain rhythms, which could lead to a new approach for understanding the high-level cognitive process shaped by the ongoing oscillatory signal. © 2018 Wiley Periodicals, Inc.

  11. Dynamic diseases in neurology and psychiatry

    NASA Astrophysics Data System (ADS)

    Milton, John; Black, Deborah

    1995-03-01

    Thirty-two (32) periodic diseases of the nervous system are identified in which symptoms and/or signs recur. In 10/32, the recurrence of a symptom complex is one of the defining features of the illness, whereas in 22/32 oscillatory signs occur in the setting of an ongoing nervous system disorder. We discuss the possibility that these disorders may be dynamic diseases.

  12. Brain reflections: A circuit-based framework for understanding information processing and cognitive control.

    PubMed

    Gratton, Gabriele

    2018-03-01

    Here, I propose a view of the architecture of the human information processing system, and of how it can be adapted to changing task demands (which is the hallmark of cognitive control). This view is informed by an interpretation of brain activity as reflecting the excitability level of neural representations, encoding not only stimuli and temporal contexts, but also action plans and task goals. The proposed cognitive architecture includes three types of circuits: open circuits, involved in feed-forward processing such as that connecting stimuli with responses and characterized by brief, transient brain activity; and two types of closed circuits, positive feedback circuits (characterized by sustained, high-frequency oscillatory activity), which help select and maintain representations, and negative feedback circuits (characterized by brief, low-frequency oscillatory bursts), which are instead associated with changes in representations. Feed-forward activity is primarily responsible for the spread of activation along the information processing system. Oscillatory activity, instead, controls this spread. Sustained oscillatory activity due to both local cortical circuits (gamma) and longer corticothalamic circuits (alpha and beta) allows for the selection of individuated representations. Through the interaction of these circuits, it also allows for the preservation of representations across different temporal spans (sensory and working memory) and their spread across the brain. In contrast, brief bursts of oscillatory activity, generated by novel and/or conflicting information, lead to the interruption of sustained oscillatory activity and promote the generation of new representations. I discuss how this framework can account for a number of psychological and behavioral phenomena. © 2017 Society for Psychophysiological Research.

  13. Oscillatory patterns in the light curves of five long-term monitored type 1 active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Kovačević, Andjelka B.; Pérez-Hernández, Ernesto; Popović, Luka Č.; Shapovalova, Alla I.; Kollatschny, Wolfram; Ilić, Dragana

    2018-04-01

    New combined data of five well-known type 1 active galactic nuclei (AGNs) are probed with a novel hybrid method in a search for oscillatory behaviour. Additional analysis of artificial light curves obtained from the coupled oscillatory models gives confirmation for detected periods that could have a physical background. We find periodic variations in the long-term light curves of 3C 390.3, NGC 4151 and NGC 5548, and E1821 + 643, with correlation coefficients larger than 0.6. We show that the oscillatory patterns of two binary black hole candidates, NGC 5548 and E1821 + 643, correspond to qualitatively different dynamical regimes of chaos and stability, respectively. We demonstrate that the absence of oscillatory patterns in Arp 102B could be the result of a weak coupling between oscillatory mechanisms. This is the first good evidence that 3C 390.3 and Arp 102B, categorized as double-peaked Balmer line objects, have qualitative different dynamics. Our analysis shows a novelty in the oscillatory dynamical patterns of the light curves of these type 1 AGNs.

  14. Modulation of neuronal oscillatory activity in the beta- and gamma-band is associated with current individual anxiety levels.

    PubMed

    Schneider, Till R; Hipp, Joerg F; Domnick, Claudia; Carl, Christine; Büchel, Christian; Engel, Andreas K

    2018-05-26

    Human faces are among the most salient visual stimuli and act both as socially and emotionally relevant signals. Faces and especially faces with emotional expression receive prioritized processing in the human brain and activate a distributed network of brain areas reflected, e.g., in enhanced oscillatory neuronal activity. However, an inconsistent picture emerged so far regarding neuronal oscillatory activity across different frequency-bands modulated by emotionally and socially relevant stimuli. The individual level of anxiety among healthy populations might be one explanation for these inconsistent findings. Therefore, we tested the hypothesis whether oscillatory neuronal activity is associated with individual anxiety levels during perception of faces with neutral and fearful facial expressions. We recorded neuronal activity using magnetoencephalography (MEG) in 27 healthy participants and determined their individual state anxiety levels. Images of human faces with neutral and fearful expressions, and physically matched visual control stimuli were presented while participants performed a simple color detection task. Spectral analyses revealed that face processing and in particular processing of fearful faces was characterized by enhanced neuronal activity in the theta- and gamma-band and decreased activity in the beta-band in early visual cortex and the fusiform gyrus (FFG). Moreover, the individuals' state anxiety levels correlated positively with the gamma-band response and negatively with the beta response in the FFG and the amygdala. Our results suggest that oscillatory neuronal activity plays an important role in affective face processing and is dependent on the individual level of state anxiety. Our work provides new insights on the role of oscillatory neuronal activity underlying processing of faces. Copyright © 2018. Published by Elsevier Inc.

  15. Oscillatory Correlates of Visual Consciousness

    PubMed Central

    Gallotto, Stefano; Sack, Alexander T.; Schuhmann, Teresa; de Graaf, Tom A.

    2017-01-01

    Conscious experiences are linked to activity in our brain: the neural correlates of consciousness (NCC). Empirical research on these NCCs covers a wide range of brain activity signals, measures, and methodologies. In this paper, we focus on spontaneous brain oscillations; rhythmic fluctuations of neuronal (population) activity which can be characterized by a range of parameters, such as frequency, amplitude (power), and phase. We provide an overview of oscillatory measures that appear to correlate with conscious perception. We also discuss how increasingly sophisticated techniques allow us to study the causal role of oscillatory activity in conscious perception (i.e., ‘entrainment’). This review of oscillatory correlates of consciousness suggests that, for example, activity in the alpha-band (7–13 Hz) may index, or even causally support, conscious perception. But such results also showcase an increasingly acknowledged difficulty in NCC research; the challenge of separating neural activity necessary for conscious experience to arise (prerequisites) from neural activity underlying the conscious experience itself (substrates) or its results (consequences). PMID:28736543

  16. Neural oscillatory deficits in schizophrenia predict behavioral and neurocognitive impairments

    PubMed Central

    Martínez, Antígona; Gaspar, Pablo A.; Hillyard, Steven A.; Bickel, Stephan; Lakatos, Peter; Dias, Elisa C.; Javitt, Daniel C.

    2015-01-01

    Paying attention to visual stimuli is typically accompanied by event-related desynchronizations (ERD) of ongoing alpha (7–14 Hz) activity in visual cortex. The present study used time-frequency based analyses to investigate the role of impaired alpha ERD in visual processing deficits in schizophrenia (Sz). Subjects viewed sinusoidal gratings of high (HSF) and low (LSF) spatial frequency (SF) designed to test functioning of the parvo- vs. magnocellular pathways, respectively. Patients with Sz and healthy controls paid attention selectively to either the LSF or HSF gratings which were presented in random order. Event-related brain potentials (ERPs) were recorded to all stimuli. As in our previous study, it was found that Sz patients were selectively impaired at detecting LSF target stimuli and that ERP amplitudes to LSF stimuli were diminished, both for the early sensory-evoked components and for the attend minus unattend difference component (the Selection Negativity), which is generally regarded as a specific index of feature-selective attention. In the time-frequency domain, the differential ERP deficits to LSF stimuli were echoed in a virtually absent theta-band phase locked response to both unattended and attended LSF stimuli (along with relatively intact theta-band activity for HSF stimuli). In contrast to the theta-band evoked responses which were tightly stimulus locked, stimulus-induced desynchronizations of ongoing alpha activity were not tightly stimulus locked and were apparent only in induced power analyses. Sz patients were significantly impaired in the attention-related modulation of ongoing alpha activity for both HSF and LSF stimuli. These deficits correlated with patients’ behavioral deficits in visual information processing as well as with visually based neurocognitive deficits. These findings suggest an additional, pathway-independent, mechanism by which deficits in early visual processing contribute to overall cognitive impairment in Sz. PMID:26190988

  17. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation.

    PubMed

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S; Weisz, Nathan

    2015-09-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. Copyright © 2015. Published by Elsevier Inc.

  18. Friends, not foes: Magnetoencephalography as a tool to uncover brain dynamics during transcranial alternating current stimulation

    PubMed Central

    Neuling, Toralf; Ruhnau, Philipp; Fuscà, Marco; Demarchi, Gianpaolo; Herrmann, Christoph S.; Weisz, Nathan

    2015-01-01

    Brain oscillations are supposedly crucial for normal cognitive functioning and alterations are associated with cognitive dysfunctions. To demonstrate their causal role on behavior, entrainment approaches in particular aim at driving endogenous oscillations via rhythmic stimulation. Within this context, transcranial electrical stimulation, especially transcranial alternating current stimulation (tACS), has received renewed attention. This is likely due to the possibility of defining oscillatory stimulation properties precisely. Also, measurements comparing pre-tACS with post-tACS electroencephalography (EEG) have shown impressive modulations. However, the period during tACS has remained a blackbox until now, due to the enormous stimulation artifact. By means of application of beamforming to magnetoencephalography (MEG) data, we successfully recovered modulations of the amplitude of brain oscillations during weak and strong tACS. Additionally, we demonstrate that also evoked responses to visual and auditory stimuli can be recovered during tACS. The main contribution of the present study is to provide critical evidence that during ongoing tACS, subtle modulations of oscillatory brain activity can be reconstructed even at the stimulation frequency. Future tACS experiments will be able to deliver direct physiological insights in order to further the understanding of the contribution of brain oscillations to cognition and behavior. PMID:26080310

  19. What it means to be Zen: Marked modulations of local and interareal synchronization during open monitoring meditation

    PubMed Central

    Hauswald, Anne; Übelacker, Teresa; Leske, Sabine; Weisz, Nathan

    2015-01-01

    Experienced meditators are able to voluntarily modulate their state of consciousness and attention. In the present study, we took advantage of this ability and studied brain activity related to the shift of mental state. Electrophysiological activity, i.e. EEG, was recorded from 11 subjects with varying degrees of meditation experience during Zen meditation (a form of open monitoring meditation) and during non-meditation rest. On a behavioral level, mindfulness scores were assessed using the Mindfulness Attention and Awareness Scale (MAAS). Analysis of EEG source power revealed the so far unreported finding that MAAS scores significantly correlated with gamma power (30–250 Hz), particularly high-frequency gamma (100–245 Hz), during meditation. High levels of mindfulness were related to increased high-frequency gamma, for example, in the cingulate cortex and somatosensory cortices. Further, we analyzed the relationship between connectivity during meditation and self-reported mindfulness (MAAS). We found a correlation between graph measures in the 160–170 Hz range and MAAS scores. Higher levels of mindfulness were related to lower small worldedness as well as global and local clustering in paracentral, insular, and thalamic regions during meditation. In sum, the present study shows significant relationships of mindfulness and brain activity during meditation indicated by measures of oscillatory power and graph theoretical measures. The most prominent effects occur in brain structures crucially involved in processes of awareness and attention, which also show structural changes in short- and long-term meditators, suggesting continuative alterations in the meditating brain. Overall, our study reveals strong changes in ongoing oscillatory activity as well as connectivity patterns that appear to be sensitive to the psychological state changes induced by Zen meditation. PMID:25562827

  20. What it means to be Zen: marked modulations of local and interareal synchronization during open monitoring meditation.

    PubMed

    Hauswald, Anne; Übelacker, Teresa; Leske, Sabine; Weisz, Nathan

    2015-03-01

    Experienced meditators are able to voluntarily modulate their state of consciousness and attention. In the present study, we took advantage of this ability and studied brain activity related to the shift of mental state. Electrophysiological activity, i.e. EEG, was recorded from 11 subjects with varying degrees of meditation experience during Zen meditation (a form of open monitoring meditation) and during non-meditation rest. On a behavioral level, mindfulness scores were assessed using the Mindfulness Attention and Awareness Scale (MAAS). Analysis of EEG source power revealed the so far unreported finding that MAAS scores significantly correlated with gamma power (30-250Hz), particularly high-frequency gamma (100-245Hz), during meditation. High levels of mindfulness were related to increased high-frequency gamma, for example, in the cingulate cortex and somatosensory cortices. Further, we analyzed the relationship between connectivity during meditation and self-reported mindfulness (MAAS). We found a correlation between graph measures in the 160-170Hz range and MAAS scores. Higher levels of mindfulness were related to lower small worldedness as well as global and local clustering in paracentral, insular, and thalamic regions during meditation. In sum, the present study shows significant relationships of mindfulness and brain activity during meditation indicated by measures of oscillatory power and graph theoretical measures. The most prominent effects occur in brain structures crucially involved in processes of awareness and attention, which also show structural changes in short- and long-term meditators, suggesting continuative alterations in the meditating brain. Overall, our study reveals strong changes in ongoing oscillatory activity as well as connectivity patterns that appear to be sensitive to the psychological state changes induced by Zen meditation. Copyright © 2015. Published by Elsevier Inc.

  1. Pre-stimulus EEG oscillations correlate with perceptual alternation of speech forms.

    PubMed

    Barraza, Paulo; Jaume-Guazzini, Francisco; Rodríguez, Eugenio

    2016-05-27

    Speech perception is often seen as a passive process guided by physical stimulus properties. However, ongoing brain dynamics could influence the subsequent perceptual organization of the speech, to an as yet unknown extent. To elucidate this issue, we analyzed EEG oscillatory activity before and immediately after the repetitive auditory presentation of words inducing the so-called verbal transformation effect (VTE), or spontaneous alternation of meanings due to its rapid repetition. Subjects indicated whether the meaning of the bistable word changed or not. For the Reversal more than for the Stable condition, results show a pre-stimulus local alpha desynchronization (300-50ms), followed by an early post-stimulus increase of local beta synchrony (0-80ms), and then a late increase and decrease of local alpha (200-340ms) and beta (360-440ms) synchrony respectively. Additionally, the ERPs showed that reversal positivity (RP) and reversal negativity components (RN), along with a late positivity complex (LPC) correlate with switching between verbal forms. Our results show how the ongoing dynamics brain is actively involved in the perceptual organization of the speech, destabilizing verbal perceptual states, and facilitating the perceptual regrouping of the elements composing the linguistic auditory stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Directed Communication between Nucleus Accumbens and Neocortex in Humans Is Differentially Supported by Synchronization in the Theta and Alpha Band.

    PubMed

    Horschig, Jörn M; Smolders, Ruud; Bonnefond, Mathilde; Schoffelen, Jan-Mathijs; van den Munckhof, Pepijn; Schuurman, P Richard; Cools, Roshan; Denys, Damiaan; Jensen, Ole

    2015-01-01

    Here, we report evidence for oscillatory bi-directional interactions between the nucleus accumbens and the neocortex in humans. Six patients performed a demanding covert visual attention task while we simultaneously recorded brain activity from deep-brain electrodes implanted in the nucleus accumbens and the surface electroencephalogram (EEG). Both theta and alpha oscillations were strongly coherent with the frontal and parietal EEG during the task. Theta-band coherence increased during processing of the visual stimuli. Granger causality analysis revealed that the nucleus accumbens was communicating with the neocortex primarily in the theta-band, while the cortex was communicating the nucleus accumbens in the alpha-band. These data are consistent with a model, in which theta- and alpha-band oscillations serve dissociable roles: Prior to stimulus processing, the cortex might suppress ongoing processing in the nucleus accumbens by modulating alpha-band activity. Subsequently, upon stimulus presentation, theta oscillations might facilitate the active exchange of stimulus information from the nucleus accumbens to the cortex.

  3. Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats.

    PubMed

    Dejean, Cyril; Nadjar, Agnes; Le Moine, Catherine; Bioulac, Bernard; Gross, Christian E; Boraud, Thomas

    2012-05-01

    It is well established that parkinsonian syndrome is associated with alterations of neuronal activity temporal pattern basal ganglia (BG). An increase in synchronized oscillations has been observed in different BG nuclei in Parkinson's disease patients as well as animal models such as 6-hydroxydopamine treated rats. We recently demonstrated that this increase in oscillatory synchronization is present during high-voltage spindles (HVS) probably underpinned by the disorganization of cortex-BG interactions. Here we investigated the time course of both oscillatory and motor alterations. For that purpose we performed daily simultaneous recordings of neuronal activity in motor cortex, striatum and substantia nigra pars reticulata (SNr), before and after 6-hydroxydopamine lesion in awake rats. After a brief non-dopamine-specific desynchronization, oscillatory activity first increased during HVS followed by progressive motor impairment and the shortening of SNr activation delay. While the oscillatory firing increase reflects dopaminergic depletion, response alteration in SNr neurons is closely related to motor symptom. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  5. Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress

    NASA Technical Reports Server (NTRS)

    McNally, J. Scott; Davis, Michael E.; Giddens, Don P.; Saha, Aniket; Hwang, Jinah; Dikalov, Sergey; Jo, Hanjoong; Harrison, David G.

    2003-01-01

    Oscillatory shear stress occurs at sites of the circulation that are vulnerable to atherosclerosis. Because oxidative stress contributes to atherosclerosis, we sought to determine whether oscillatory shear stress increases endothelial production of reactive oxygen species and to define the enzymes responsible for this phenomenon. Bovine aortic endothelial cells were exposed to static, laminar (15 dyn/cm2), and oscillatory shear stress (+/-15 dyn/cm2). Oscillatory shear increased superoxide (O2.-) production by more than threefold over static and laminar conditions as detected using electron spin resonance (ESR). This increase in O2*- was inhibited by oxypurinol and culture of endothelial cells with tungsten but not by inhibitors of other enzymatic sources. Oxypurinol also prevented H2O2 production in response to oscillatory shear stress as measured by dichlorofluorescin diacetate and Amplex Red fluorescence. Xanthine-dependent O2*- production was increased in homogenates of endothelial cells exposed to oscillatory shear stress. This was associated with decreased xanthine dehydrogenase (XDH) protein levels and enzymatic activity resulting in an elevated ratio of xanthine oxidase (XO) to XDH. We also studied endothelial cells lacking the p47phox subunit of the NAD(P)H oxidase. These cells exhibited dramatically depressed O2*- production and had minimal XO protein and activity. Transfection of these cells with p47phox restored XO protein levels. Finally, in bovine aortic endothelial cells, prolonged inhibition of the NAD(P)H oxidase with apocynin decreased XO protein levels and prevented endothelial cell stimulation of O2*- production in response to oscillatory shear stress. These data suggest that the NAD(P)H oxidase maintains endothelial cell XO levels and that XO is responsible for increased reactive oxygen species production in response to oscillatory shear stress.

  6. The Role of Oscillatory Phase in Determining the Temporal Organization of Perception: Evidence from Sensory Entrainment.

    PubMed

    Ronconi, Luca; Melcher, David

    2017-11-01

    Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural oscillations in the theta/alpha band (∼4-12 Hz) as possible mechanisms underlying temporal windows in perception. Here, we combined two innovative methodologies to provide more direct support for this evidence. We used sensory entrainment to align neural oscillations to different frequencies and then characterized the resultant perceptual oscillation with a temporal dense sampling of the integration/segregation performance. Our results provide the first evidence that the frequency of temporal segregation can be modified by sensory entrainment, supporting a critical role of ongoing oscillations in the integration/segregation of information over time. Copyright © 2017 Ronconi and Melcher.

  7. Changes of spontaneous oscillatory activity to tonic heat pain.

    PubMed

    Peng, Weiwei; Hu, Li; Zhang, Zhiguo; Hu, Yong

    2014-01-01

    Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes.

  8. Changes of Spontaneous Oscillatory Activity to Tonic Heat Pain

    PubMed Central

    Zhang, Zhiguo; Hu, Yong

    2014-01-01

    Transient painful stimuli could induce suppression of alpha oscillatory activities and enhancement of gamma oscillatory activities that also could be greatly modulated by attention. Here, we attempted to characterize changes in cortical activities during tonic heat pain perception and investigated the influence of directed/distracted attention on these responses. We collected 5-minute long continuous Electroencephalography (EEG) data from 38 healthy volunteers during four conditions presented in a counterbalanced order: (A) resting condition; (B) innoxious-distracted condition; (C) noxious-distracted condition; (D) noxious-attended condition. The effects of tonic heat pain stimulation and selective attention on oscillatory activities were investigated by comparing the EEG power spectra among the four experimental conditions and assessing the relationship between spectral power difference and subjective pain intensity. The change of oscillatory activities in condition D was characterized by stable and persistent decrease of alpha oscillation power over contralateral-central electrodes and widespread increase of gamma oscillation power, which were even significantly correlated with subjective pain intensity. Since EEG responses in the alpha and gamma frequency band were affected by attention in different manners, they are likely related to different aspects of the multidimensional sensory experience of pain. The observed contralateral-central alpha suppression (conditions D vs. B and D vs. C) may reflect primarily a top-down cognitive process such as attention, while the widespread gamma enhancement (conditions D vs. A) may partly reflect tonic pain processing, representing the summary effects of bottom-up stimulus-related and top-down subject-driven cognitive processes. PMID:24603703

  9. In vitro Neurons in Mammalian Cortical Layer 4 Exhibit Intrinsic Oscillatory Activity in the 10- to 50-Hz Frequency Range

    NASA Astrophysics Data System (ADS)

    Llinas, Rodolfo R.; Grace, Anthony A.; Yarom, Yosef

    1991-02-01

    We report here the presence of fast subthreshold oscillatory potentials recorded in vitro from neurons within layer 4 of the guinea pig frontal cortex. Two types of oscillatory neurons were recorded: (i) One type exhibited subthreshold oscillations whose frequency increased with membrane depolarization and encompassed a range of 10-45 Hz. Action potentials in this type of neuron demonstrated clear after-hyperpolarizations. (ii) The second type of neuron was characterized by narrow-frequency oscillations near 35-50 Hz. These oscillations often outlasted the initiating depolarizing stimulus. No calcium component could be identified in their action potential. In both types of cell the subthreshold oscillations were tetrodotoxin-sensitive, indicating that the depolarizing phase of the oscillation was generated by a voltage-dependent sodium conductance. The initial depolarizing phase was followed by a potassium conductance responsible for the falling phase of the oscillatory wave. In both types of cell, the subthreshold oscillation could trigger spikes at the oscillatory frequency, if the membrane was sufficiently depolarized. Combining intracellular recordings with Lucifer yellow staining showed that the narrow-frequency oscillatory activity was produced by a sparsely spinous interneuron located in layer 4 of the cortex. This neuron has extensive local axonal collaterals that ramify in layers 3 and 4 such that they may contribute to the columnar synchronization of activity in the 40- to 50-Hz range. Cortical activity in this frequency range has been proposed as the basis for the "conjunctive properties" of central nervous system networks.

  10. Cerebral oscillatory activity during simulated driving using MEG.

    PubMed

    Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro

    2014-01-01

    We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between "passive viewing" and "active driving." "Passive viewing" was the baseline, and oscillatory differences during "active driving" showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition.

  11. Oscillatory encoding of visual stimulus familiarity.

    PubMed

    Kissinger, Samuel T; Pak, Alexandr; Tang, Yu; Masmanidis, Sotiris C; Chubykin, Alexander A

    2018-06-18

    Familiarity of the environment changes the way we perceive and encode incoming information. However, the neural substrates underlying this phenomenon are poorly understood. Here we describe a new form of experience-dependent low frequency oscillations in the primary visual cortex (V1) of awake adult male mice. The oscillations emerged in visually evoked potentials (VEPs) and single-unit activity following repeated visual stimulation. The oscillations were sensitive to the spatial frequency content of a visual stimulus and required the muscarinic acetylcholine receptors (mAChRs) for their induction and expression. Finally, ongoing visually evoked theta (4-6 Hz) oscillations boost the VEP amplitude of incoming visual stimuli if the stimuli are presented at the high excitability phase of the oscillations. Our results demonstrate that an oscillatory code can be used to encode familiarity and serves as a gate for oncoming sensory inputs. Significance Statement. Previous experience can influence the processing of incoming sensory information by the brain and alter perception. However, the mechanistic understanding of how this process takes place is lacking. We have discovered that persistent low frequency oscillations in the primary visual cortex encode information about familiarity and the spatial frequency of the stimulus. These familiarity evoked oscillations influence neuronal responses to the oncoming stimuli in a way that depends on the oscillation phase. Our work demonstrates a new mechanism of visual stimulus feature detection and learning. Copyright © 2018 the authors.

  12. Brain Oscillatory Activity during Spatial Navigation: Theta and Gamma Activity Link Medial Temporal and Parietal Regions

    ERIC Educational Resources Information Center

    White, David J.; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B.

    2012-01-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town…

  13. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  14. Wavelet-based localization of oscillatory sources from magnetoencephalography data.

    PubMed

    Lina, J M; Chowdhury, R; Lemay, E; Kobayashi, E; Grova, C

    2014-08-01

    Transient brain oscillatory activities recorded with Eelectroencephalography (EEG) or magnetoencephalography (MEG) are characteristic features in physiological and pathological processes. This study is aimed at describing, evaluating, and illustrating with clinical data a new method for localizing the sources of oscillatory cortical activity recorded by MEG. The method combines time-frequency representation and an entropic regularization technique in a common framework, assuming that brain activity is sparse in time and space. Spatial sparsity relies on the assumption that brain activity is organized among cortical parcels. Sparsity in time is achieved by transposing the inverse problem in the wavelet representation, for both data and sources. We propose an estimator of the wavelet coefficients of the sources based on the maximum entropy on the mean (MEM) principle. The full dynamics of the sources is obtained from the inverse wavelet transform, and principal component analysis of the reconstructed time courses is applied to extract oscillatory components. This methodology is evaluated using realistic simulations of single-trial signals, combining fast and sudden discharges (spike) along with bursts of oscillating activity. The method is finally illustrated with a clinical application using MEG data acquired on a patient with a right orbitofrontal epilepsy.

  15. Modulation of alpha and gamma oscillations related to retrospectively orienting attention within working memory.

    PubMed

    Poch, Claudia; Campo, Pablo; Barnes, Gareth R

    2014-07-01

    Selective attention mechanisms allow us to focus on information that is relevant to the current behavior and, equally important, ignore irrelevant information. An influential model proposes that oscillatory neural activity in the alpha band serves as an active functional inhibitory mechanism. Recent studies have shown that, in the same way that attention can be selectively oriented to bias sensory processing in favor of relevant stimuli in perceptual tasks, it is also possible to retrospectively orient attention to internal representations held in working memory. However, these studies have not explored the associated oscillatory phenomena. In the current study, we analysed the patterns of neural oscillatory activity recorded with magnetoencephalography while participants performed a change detection task, in which a spatial retro-cue was presented during the maintenance period, indicating which item or items were relevant for subsequent retrieval. Participants benefited from retro-cues in terms of accuracy and reaction time. Retro-cues also modulated oscillatory activity in the alpha and gamma frequency bands. We observed greater alpha activity in a ventral visual region ipsilateral to the attended hemifield, thus supporting its suppressive role, i.e., a functional disengagement of task-irrelevant regions. Accompanying this modulation, we found an increase in gamma activity contralateral to the attended hemifield, which could reflect attentional orienting and selective processing. These findings suggest that the oscillatory mechanisms underlying attentional orienting to representations held in working memory are similar to those engaged when attention is oriented in the perceptual space. © 2014 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Brain Oscillatory Correlates of Altered Executive Functioning in Positive and Negative Symptomatic Schizophrenia Patients and Healthy Controls.

    PubMed

    Berger, Barbara; Minarik, Tamas; Griesmayr, Birgit; Stelzig-Schoeler, Renate; Aichhorn, Wolfgang; Sauseng, Paul

    2016-01-01

    Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups-healthy controls, predominantly negative, and predominantly positive symptomatic schizophrenia patients-when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analyzed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e., executive control network) expressed by interregional phase synchronization are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in a task-specific fronto-posterior connectivity even in the absence of behavioral impairment.

  17. Task-Dependent Changes in Cross-Level Coupling between Single Neurons and Oscillatory Activity in Multiscale Networks

    PubMed Central

    Canolty, Ryan T.; Ganguly, Karunesh; Carmena, Jose M.

    2012-01-01

    Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks. PMID:23284276

  18. Cerebral oscillatory activity during simulated driving using MEG

    PubMed Central

    Sakihara, Kotoe; Hirata, Masayuki; Ebe, Kazutoshi; Kimura, Kenji; Yi Ryu, Seong; Kono, Yoshiyuki; Muto, Nozomi; Yoshioka, Masako; Yoshimine, Toshiki; Yorifuji, Shiro

    2014-01-01

    We aimed to examine cerebral oscillatory differences associated with psychological processes during simulated car driving. We recorded neuromagnetic signals in 14 healthy volunteers using magnetoencephalography (MEG) during simulated driving. MEG data were analyzed using synthetic aperture magnetometry to detect the spatial distribution of cerebral oscillations. Group effects between subjects were analyzed statistically using a non-parametric permutation test. Oscillatory differences were calculated by comparison between “passive viewing” and “active driving.” “Passive viewing” was the baseline, and oscillatory differences during “active driving” showed an increase or decrease in comparison with a baseline. Power increase in the theta band was detected in the superior frontal gyrus (SFG) during active driving. Power decreases in the alpha, beta, and low gamma bands were detected in the right inferior parietal lobe (IPL), left postcentral gyrus (PoCG), middle temporal gyrus (MTG), and posterior cingulate gyrus (PCiG) during active driving. Power increase in the theta band in the SFG may play a role in attention. Power decrease in the right IPL may reflect selectively divided attention and visuospatial processing, whereas that in the left PoCG reflects sensorimotor activation related to driving manipulation. Power decreases in the MTG and PCiG may be associated with object recognition. PMID:25566017

  19. Cortical Alpha Activity in Schizoaffective Patients

    PubMed Central

    Moeini, Mahdi; Khaleghi, Ali; Mohammadi, Mohammad Reza; Zarafshan, Hadi; Fazio, Rachel L.; Majidi, Hamid

    2017-01-01

    Objective: Electrophysiological studies have identified abnormal oscillatory activities in the cerebral cortex in schizophrenia and mood disorders. Biological and pathophysiological evidence suggests specific deficits in serotonin (5-HT) receptor function in schizoaffective disorder (SA), a clinical syndrome with characteristics of both schizophrenia and bipolar disorder. This study investigated alpha oscillations in patients with SA. Method: Electroencephalography was used to measure ongoing and evoked alpha oscillations in 38 adults meeting Diagnostic and Statistical Manual of Mental Disorders–Fourth Edition (DSM–IV) criteria for SA, and in 39 healthy controls. Results: Spontaneous alpha power of the participants with SA was significantly lower than that of healthy participants [F (1, 75) = 8.81, P < 0.01]. Evoked alpha activity was also decreased in SA compared to controls [F (1, 75) = 5.67, P = 0.025]. Conclusion: A strong reduction of alpha power in the posterior regions may reflect abnormality in the thalamocortical circuits. It is shown that hypoxia and reduced cerebral blood flow is associated with reduced alpha activity among different regions of the brain. Therefore, it can be concluded that greatly decreased alpha activity, particularly in centro-parietal and occipital regions, is related to SA symptoms such as hallucinations. PMID:28496495

  20. Cortical Alpha Activity in Schizoaffective Patients.

    PubMed

    Moeini, Mahdi; Khaleghi, Ali; Mohammadi, Mohammad Reza; Zarafshan, Hadi; Fazio, Rachel L; Majidi, Hamid

    2017-01-01

    Objective: Electrophysiological studies have identified abnormal oscillatory activities in the cerebral cortex in schizophrenia and mood disorders. Biological and pathophysiological evidence suggests specific deficits in serotonin (5-HT) receptor function in schizoaffective disorder (SA), a clinical syndrome with characteristics of both schizophrenia and bipolar disorder. This study investigated alpha oscillations in patients with SA. Method: Electroencephalography was used to measure ongoing and evoked alpha oscillations in 38 adults meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) criteria for SA, and in 39 healthy controls. Results: Spontaneous alpha power of the participants with SA was significantly lower than that of healthy participants [F (1, 75) = 8.81, P < 0.01]. Evoked alpha activity was also decreased in SA compared to controls [F (1, 75) = 5.67, P = 0.025]. Conclusion : A strong reduction of alpha power in the posterior regions may reflect abnormality in the thalamocortical circuits. It is shown that hypoxia and reduced cerebral blood flow is associated with reduced alpha activity among different regions of the brain. Therefore, it can be concluded that greatly decreased alpha activity, particularly in centro-parietal and occipital regions, is related to SA symptoms such as hallucinations.

  1. Oscillatory brain activity in spontaneous and induced sleep stages in flies.

    PubMed

    Yap, Melvyn H W; Grabowska, Martyna J; Rohrscheib, Chelsie; Jeans, Rhiannon; Troup, Michael; Paulk, Angelique C; van Alphen, Bart; Shaw, Paul J; van Swinderen, Bruno

    2017-11-28

    Sleep is a dynamic process comprising multiple stages, each associated with distinct electrophysiological properties and potentially serving different functions. While these phenomena are well described in vertebrates, it is unclear if invertebrates have distinct sleep stages. We perform local field potential (LFP) recordings on flies spontaneously sleeping, and compare their brain activity to flies induced to sleep using either genetic activation of sleep-promoting circuitry or the GABA A agonist Gaboxadol. We find a transitional sleep stage associated with a 7-10 Hz oscillation in the central brain during spontaneous sleep. Oscillatory activity is also evident when we acutely activate sleep-promoting neurons in the dorsal fan-shaped body (dFB) of Drosophila. In contrast, sleep following Gaboxadol exposure is characterized by low-amplitude LFPs, during which dFB-induced effects are suppressed. Sleep in flies thus appears to involve at least two distinct stages: increased oscillatory activity, particularly during sleep induction, followed by desynchronized or decreased brain activity.

  2. The spectrotemporal filter mechanism of auditory selective attention

    PubMed Central

    Lakatos, Peter; Musacchia, Gabriella; O’Connell, Monica N.; Falchier, Arnaud Y.; Javitt, Daniel C.; Schroeder, Charles E.

    2013-01-01

    SUMMARY While we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, while the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli. PMID:23439126

  3. Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity.

    PubMed

    Smit, Dirk J A; Wright, Margaret J; Meyers, Jacquelyn L; Martin, Nicholas G; Ho, Yvonne Y W; Malone, Stephen M; Zhang, Jian; Burwell, Scott J; Chorlian, David B; de Geus, Eco J C; Denys, Damiaan; Hansell, Narelle K; Hottenga, Jouke-Jan; McGue, Matt; van Beijsterveldt, Catharina E M; Jahanshad, Neda; Thompson, Paul M; Whelan, Christopher D; Medland, Sarah E; Porjesz, Bernice; Lacono, William G; Boomsma, Dorret I

    2018-06-26

    Oscillatory activity is crucial for information processing in the brain, and has a long history as a biomarker for psychopathology. Variation in oscillatory activity is highly heritable, but current understanding of specific genetic influences remains limited. We performed the largest genome-wide association study to date of oscillatory power during eyes-closed resting electroencephalogram (EEG) across a range of frequencies (delta 1-3.75 Hz, theta 4-7.75 Hz, alpha 8-12.75 Hz, and beta 13-30 Hz) in 8,425 subjects. Additionally, we performed KGG positional gene-based analysis and brain-expression analyses. GABRA2-a known genetic marker for alcohol use disorder and epilepsy-significantly affected beta power, consistent with the known relation between GABA A interneuron activity and beta oscillations. Tissue-specific SNP-based imputation of gene-expression levels based on the GTEx database revealed that hippocampal GABRA2 expression may mediate this effect. Twenty-four genes at 3p21.1 were significant for alpha power (FDR q < .05). SNPs in this region were linked to expression of GLYCTK in hippocampal tissue, and GNL3 and ITIH4 in the frontal cortex-genes that were previously implicated in schizophrenia and bipolar disorder. In sum, we identified several novel genetic variants associated with oscillatory brain activity; furthermore, we replicated and advanced understanding of previously known genes associated with psychopathology (i.e., schizophrenia and alcohol use disorders). Importantly, these psychopathological liability genes affect brain functioning, linking the genes' expression to specific cortical/subcortical brain regions. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Oscillatory network with self-organized dynamical connections for synchronization-based image segmentation.

    PubMed

    Kuzmina, Margarita; Manykin, Eduard; Surina, Irina

    2004-01-01

    An oscillatory network of columnar architecture located in 3D spatial lattice was recently designed by the authors as oscillatory model of the brain visual cortex. Single network oscillator is a relaxational neural oscillator with internal dynamics tunable by visual image characteristics - local brightness and elementary bar orientation. It is able to demonstrate either activity state (stable undamped oscillations) or "silence" (quickly damped oscillations). Self-organized nonlocal dynamical connections of oscillators depend on oscillator activity levels and orientations of cortical receptive fields. Network performance consists in transfer into a state of clusterized synchronization. At current stage grey-level image segmentation tasks are carried out by 2D oscillatory network, obtained as a limit version of the source model. Due to supplemented network coupling strength control the 2D reduced network provides synchronization-based image segmentation. New results on segmentation of brightness and texture images presented in the paper demonstrate accurate network performance and informative visualization of segmentation results, inherent in the model.

  5. Detailed Characterization of Local Field Potential Oscillations and Their Relationship to Spike Timing in the Antennal Lobe of the Moth Manduca sexta

    PubMed Central

    Daly, Kevin C.; Galán, Roberto F.; Peters, Oakland J.; Staudacher, Erich M.

    2011-01-01

    The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike–LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are incongruent with the transient oscillatory model. PMID:22046161

  6. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity

    PubMed Central

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  7. Rhythmic neural activity indicates the contribution of attention and memory to the processing of occluded movements in 10-month-old infants.

    PubMed

    Bache, Cathleen; Kopp, Franziska; Springer, Anne; Stadler, Waltraud; Lindenberger, Ulman; Werkle-Bergner, Markus

    2015-11-01

    Infants possess the remarkable capacity to perceive occluded movements as ongoing and coherent. Little is known about the neural mechanisms that enable internal representation of conspecifics' and inanimate objects' movements during visual occlusion. In this study, 10-month-old infants watched briefly occluded human and object movements. Prior to occlusion, continuous and distorted versions of the movement were shown. EEG recordings were used to assess neural activity assumed to relate to processes of attention (occipital alpha), memory (frontal theta), and sensorimotor simulation (central alpha) before, during, and after occlusion. Oscillatory activity was analyzed using an individualized data approach taking idiosyncrasies into account. Results for occipital alpha were consistent with infants' preference for attending to social stimuli. Furthermore, frontal theta activity was more pronounced when tracking distorted as opposed to continuous movement, and when maintaining object as opposed to human movement. Central alpha did not discriminate between experimental conditions. In sum, we conclude that observing occluded movements recruits processes of attention and memory which are modulated by stimulus and movement properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters.

    PubMed

    Jiang, Haiteng; van Gerven, Marcel A J; Jensen, Ole

    2015-03-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.

  9. Voluntary control of intracortical oscillations for reconfiguration of network activity

    PubMed Central

    Corlier, Juliana; Valderrama, Mario; Navarrete, Miguel; Lehongre, Katia; Hasboun, Dominique; Adam, Claude; Belaid, Hayat; Clémenceau, Stéphane; Baulac, Michel; Charpier, Stéphane; Navarro, Vincent; Le Van Quyen, Michel

    2016-01-01

    Voluntary control of oscillatory activity represents a key target in the self-regulation of brain function. Using a real-time closed-loop paradigm and simultaneous macro- and micro-electrode recordings, we studied the effects of self-induced intracortical oscillatory activity (4–8 Hz) in seven neurosurgical patients. Subjects learned to robustly and specifically induce oscillations in the target frequency, confirmed by increased oscillatory event density. We have found that the session-to-session variability in performance was explained by the functional long-range decoupling of the target area suggesting a training-induced network reorganization. Downstream effects on more local activities included progressive cross-frequency-coupling with gamma oscillations (30–120 Hz), and the dynamic modulation of neuronal firing rates and spike timing, indicating an improved temporal coordination of local circuits. These findings suggest that effects of voluntary control of intracortical oscillations can be exploited to specifically target plasticity processes to reconfigure network activity, with a particular relevance for memory function or skill acquisition. PMID:27808225

  10. Shadows of Music-Language Interaction on Low Frequency Brain Oscillatory Patterns

    ERIC Educational Resources Information Center

    Carrus, Elisa; Koelsch, Stefan; Bhattacharya, Joydeep

    2011-01-01

    Electrophysiological studies investigating similarities between music and language perception have relied exclusively on the signal averaging technique, which does not adequately represent oscillatory aspects of electrical brain activity that are relevant for higher cognition. The current study investigated the patterns of brain oscillations…

  11. Delay selection by spike-timing-dependent plasticity in recurrent networks of spiking neurons receiving oscillatory inputs.

    PubMed

    Kerr, Robert R; Burkitt, Anthony N; Thomas, Doreen A; Gilson, Matthieu; Grayden, David B

    2013-01-01

    Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.

  12. Delay Selection by Spike-Timing-Dependent Plasticity in Recurrent Networks of Spiking Neurons Receiving Oscillatory Inputs

    PubMed Central

    Kerr, Robert R.; Burkitt, Anthony N.; Thomas, Doreen A.; Gilson, Matthieu; Grayden, David B.

    2013-01-01

    Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem. PMID:23408878

  13. Emotions and stress increase respiratory resistance in asthma.

    PubMed

    Ritz, T; Steptoe, A; DeWilde, S; Costa, M

    2000-01-01

    Clinical reports suggest that various emotions and types of stress can precipitate asthmatic symptoms, but there is little experimental evidence to substantiate this claim. We studied the impact of different emotional states and stress on respiratory resistance in asthmatic and nonasthmatic individuals. Participants (24 asthmatic and 24 nonasthmatic patients) viewed short film sequences selected to induce anxiety, anger, depression, elation, happiness, contentment, or a neutral affective state and completed two stressful tasks, mental arithmetic to induce active coping efforts and viewing of medical slides to induce passive coping efforts. Oscillatory resistance, heart rate, blood pressure, baroreflex sensitivity, skin conductance level, respiration rate and volume, and self-reported affective state were measured throughout the session. Uniform increases in oscillatory resistance were found in all emotional states compared with the neutral state and during mental arithmetic in both groups. Asthmatic patients showed stronger reactions to the medical slides than healthy control subjects, with significant increases in oscillatory resistance, blood pressure, skin conductance level, and minute volume, as well as higher levels of self-reported depression, arousal, and shortness of breath. Changes in oscillatory resistance were inconsistently correlated with other physiological indices. Various emotional states and stress increase oscillatory resistance largely independently of concurrent increases in autonomic or ventilatory activity. The particular sensitivity of asthmatics to passive coping demand requires additional research.

  14. Oscillatory Dynamics Related to the Unagreement Pattern in Spanish

    ERIC Educational Resources Information Center

    Perez, Alejandro; Molinaro, Nicola; Mancini, Simona; Barraza, Paulo; Carreiras, Manuel

    2012-01-01

    Unagreement patterns consist in a person feature mismatch between subject and verb that is nonetheless grammatical in Spanish. The processing of this type of construction gives new insights into the understanding of agreement processes during language comprehension. Here, we contrasted oscillatory brain activity triggered by Unagreement in…

  15. Resting-State Oscillatory Activity in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Cornew, Lauren; Roberts, Timothy P. L.; Blaskey, Lisa; Edgar, J. Christopher

    2012-01-01

    Neural oscillatory anomalies in autism spectrum disorders (ASD) suggest an excitatory/inhibitory imbalance; however, the nature and clinical relevance of these anomalies are unclear. Whole-cortex magnetoencephalography data were collected while 50 children (27 with ASD, 23 controls) underwent an eyes-closed resting-state exam. A Fast Fourier…

  16. Synchronized delta oscillations correlate with the resting-state functional MRI signal

    PubMed Central

    Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.

    2007-01-01

    Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778

  17. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance.

    PubMed

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-03-14

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization.

  18. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance

    PubMed Central

    Violante, Ines R; Li, Lucia M; Carmichael, David W; Lorenz, Romy; Leech, Robert; Hampshire, Adam; Rothwell, John C; Sharp, David J

    2017-01-01

    Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimulation (tACS) to exogenously modulate oscillatory activity in a right frontoparietal network that supports WM. Externally induced synchronization improved performance when cognitive demands were high. Simultaneously collected fMRI data reveals tACS effects dependent on the relative phase of the stimulation and the internal cognitive processing state. Specifically, synchronous tACS during the verbal WM task increased parietal activity, which correlated with behavioral performance. Furthermore, functional connectivity results indicate that the relative phase of frontoparietal stimulation influences information flow within the WM network. Overall, our findings demonstrate a link between behavioral performance in a demanding WM task and large-scale brain synchronization. DOI: http://dx.doi.org/10.7554/eLife.22001.001 PMID:28288700

  19. Subthalamic Synchronized Oscillatory Activity Correlates With Motor Impairment in Patients With Parkinson’s Disease

    PubMed Central

    Neumann, Wolf-Julian; Degen, Katharina; Schneider, Gerd-Helge; Brücke, Christof; Huebl, Julius; Brown, Peter; Kühn, Andrea A.

    2016-01-01

    Objective Beta band oscillations in the subthalamic nucleus (STN) have been proposed as a pathophysiological signature in patients with Parkinson’s disease (PD). The aim of this study was to investigate the potential association between oscillatory activity in the STN and symptom severity in PD. Methods Subthalamic local field potentials were recorded from 63 PD patients in a dopaminergic OFF state. Power-spectra were analyzed for the frequency range from 5 to 95 Hz and correlated with individual UPDRS-III motor scores in the OFF state. Results A correlation between total UPDRS-III scores and 8 to 35 Hz activity was revealed across all patients (ρ = 0.44, P <.0001). When correlating each frequency bin, a narrow range from 10 to 15 Hz remained significant for the correlation (false discovery rate corrected P <.05). Conclusion Our results show a correlation between local STN 8 to 35 Hz power and impairment in PD, further supporting the role of subthalamic oscillatory activity as a potential biomarker for PD. PMID:27548068

  20. Frontal Oscillatory Dynamics Predict Feedback Learning and Action Adjustment

    ERIC Educational Resources Information Center

    van de Vijver, Irene; Ridderinkhof, K. Richard; Cohen, Michael X.

    2011-01-01

    Frontal oscillatory dynamics in the theta (4-8 Hz) and beta (20-30 Hz) frequency bands have been implicated in cognitive control processes. Here we investigated the changes in coordinated activity within and between frontal brain areas during feedback-based response learning. In a time estimation task, participants learned to press a button after…

  1. The Electro-Oxidation of Ethylene Glycol on Platinum over a Wide pH Range: Oscillations and Temperature Effects

    PubMed Central

    Sitta, Elton; Nagao, Raphael; Varela, Hamilton

    2013-01-01

    We report a comprehensive study of the electro-oxidation of ethylene glycol (EG) on platinum with emphasis on the effects exerted by the electrolyte pH, the EG concentration, and temperature, under both regular and oscillatory conditions. We extracted and discussed parameters such as voltammetric activity, reaction orders (with respect to [EG]), oscillation’s amplitude, frequency and waveform, and the evolution of the mean electrode potential at six pH values from 0 to 14. In addition, we obtained the apparent activation energies under several different conditions. Overall, we observed that increasing the electrolyte pH results in a discontinuous transition in most properties studied under both voltammetric and oscillatory regimes. As a relevant result in this direction, we found that the increase in the reaction order with pH is mediated by a minimum (~ 0) at pH = 12. Furthermore, the solution pH strongly affects all features investigated, c.f. the considerable increase in the oscillatory frequency and the decrease in the, oscillatory, activation energy as the pH increase. We suggest that adsorbed CO is probably the main surface-blocking species at low pH, and its absence at high pH is likely to be the main reason behind the differences observed. The size of the parameter region investigated and the amount of comparable parameters and properties presented in this study, as well as the discussion that followed illustrate the strategy of combining investigations under conventional and oscillatory regimes of electrocatalytic systems. PMID:24058650

  2. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers.

    PubMed

    Merchant, Sana; Medow, Marvin S; Visintainer, Paul; Terilli, Courtney; Stewart, Julian M

    2017-04-01

    Neurovascular coupling (NVC) describes the link between an increase in task-related neural activity and increased cerebral blood flow denoted "functional hyperemia." We previously showed induced cerebral blood flow oscillations suppressed functional hyperemia; conversely functional hyperemia also suppressed cerebral blood flow oscillations. We used lower body negative pressure (OLBNP) oscillations to force oscillations in middle cerebral artery cerebral blood flow velocity (CBFv). Here, we used N-back testing, an intellectual memory challenge as a neural activation task, to test the hypothesis that OLBNP-induced oscillatory cerebral blood flow can reduce functional hyperemia and NVC produced by a working memory task and can interfere with working memory. We used OLBNP (-30 mmHg) at 0.03, 0.05, and 0.10 Hz and measured spectral power of CBFv at all frequencies. Neither OLBNP nor N-back, alone or combined, affected hemodynamic parameters. 2-Back power and OLBNP individually were compared with 2-back power during OLBNP. 2-Back alone produced a narrow band increase in oscillatory arterial pressure (OAP) and oscillatory cerebral blood flow power centered at 0.0083 Hz. Functional hyperemia in response to 2-back was reduced to near baseline and 2-back memory performance was decreased by 0.03-, 0.05-, and 0.10-Hz OLBNP. OLBNP alone produced increased oscillatory power at frequencies of oscillation not suppressed by added 2-back. However, 2-back preceding OLBNP suppressed OLBNP power. OLBNP-driven oscillatory CBFv blunts NVC and memory performance, while memory task reciprocally interfered with forced CBFv oscillations. This shows that induced cerebral blood flow oscillations suppress functional hyperemia and functional hyperemia suppresses cerebral blood flow oscillations. NEW & NOTEWORTHY We show that induced cerebral blood flow oscillations suppress functional hyperemia produced by a working memory task as well as memory task performance. We conclude that oscillatory cerebral blood flow produces causal reductions of memory task neurovascular coupling and memory task performance. Reductions of functional hyperemia are constrained by autoregulation. Copyright © 2017 the American Physiological Society.

  4. Oscillatory activity in neocortical networks during tactile discrimination near the limit of spatial acuity.

    PubMed

    Adhikari, Bhim M; Sathian, K; Epstein, Charles M; Lamichhane, Bidhan; Dhamala, Mukesh

    2014-05-01

    Oscillatory interactions within functionally specialized but distributed brain regions are believed to be central to perceptual and cognitive functions. Here, using human scalp electroencephalography (EEG) recordings combined with source reconstruction techniques, we study how oscillatory activity functionally organizes different neocortical regions during a tactile discrimination task near the limit of spatial acuity. While undergoing EEG recordings, blindfolded participants felt a linear three-dot array presented electromechanically, under computer control, and reported whether the central dot was offset to the left or right. The average brain response differed significantly for trials with correct and incorrect perceptual responses in the timeframe approximately between 130 and 175ms. During trials with correct responses, source-level peak activity appeared in the left primary somatosensory cortex (SI) at around 45ms, in the right lateral occipital complex (LOC) at 130ms, in the right posterior intraparietal sulcus (pIPS) at 160ms, and finally in the left dorsolateral prefrontal cortex (dlPFC) at 175ms. Spectral interdependency analysis of activity in these nodes showed two distinct distributed networks, a dominantly feedforward network in the beta band (12-30Hz) that included all four nodes and a recurrent network in the gamma band (30-100Hz) that linked SI, pIPS and dlPFC. Measures of network activity in both bands were correlated with the accuracy of task performance. These findings suggest that beta and gamma band oscillatory networks coordinate activity between neocortical regions mediating sensory and cognitive processing to arrive at tactile perceptual decisions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Fast fMRI can detect oscillatory neural activity in humans.

    PubMed

    Lewis, Laura D; Setsompop, Kawin; Rosen, Bruce R; Polimeni, Jonathan R

    2016-10-25

    Oscillatory neural dynamics play an important role in the coordination of large-scale brain networks. High-level cognitive processes depend on dynamics evolving over hundreds of milliseconds, so measuring neural activity in this frequency range is important for cognitive neuroscience. However, current noninvasive neuroimaging methods are not able to precisely localize oscillatory neural activity above 0.2 Hz. Electroencephalography and magnetoencephalography have limited spatial resolution, whereas fMRI has limited temporal resolution because it measures vascular responses rather than directly recording neural activity. We hypothesized that the recent development of fast fMRI techniques, combined with the extra sensitivity afforded by ultra-high-field systems, could enable precise localization of neural oscillations. We tested whether fMRI can detect neural oscillations using human visual cortex as a model system. We detected small oscillatory fMRI signals in response to stimuli oscillating at up to 0.75 Hz within single scan sessions, and these responses were an order of magnitude larger than predicted by canonical linear models. Simultaneous EEG-fMRI and simulations based on a biophysical model of the hemodynamic response to neuronal activity suggested that the blood oxygen level-dependent response becomes faster for rapidly varying stimuli, enabling the detection of higher frequencies than expected. Accounting for phase delays across voxels further improved detection, demonstrating that identifying vascular delays will be of increasing importance with higher-frequency activity. These results challenge the assumption that the hemodynamic response is slow, and demonstrate that fMRI has the potential to map neural oscillations directly throughout the brain.

  6. Temporal Coupling with Cortex Distinguishes Spontaneous Neuronal Activities in Identified Basal Ganglia-Recipient and Cerebellar-Recipient Zones of the Motor Thalamus

    PubMed Central

    Nakamura, Kouichi C.; Sharott, Andrew; Magill, Peter J.

    2014-01-01

    Neurons of the motor thalamus mediate basal ganglia and cerebellar influences on cortical activity. To elucidate the net result of γ-aminobutyric acid-releasing or glutamatergic bombardment of the motor thalamus by basal ganglia or cerebellar afferents, respectively, we recorded the spontaneous activities of thalamocortical neurons in distinct identified “input zones” in anesthetized rats during defined cortical activity states. Unexpectedly, the mean rates and brain state dependencies of the firing of neurons in basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) were matched during slow-wave activity (SWA) and cortical activation. However, neurons were distinguished during SWA by their firing regularities, low-threshold spike bursts and, more strikingly, by the temporal coupling of their activities to ongoing cortical oscillations. The firing of neurons across the BZ was stronger and more precisely phase-locked to cortical slow (∼1 Hz) oscillations, although both neuron groups preferentially fired at the same phase. In contrast, neurons in BZ and CZ fired at different phases of cortical spindles (7–12 Hz), but with similar strengths of coupled firing. Thus, firing rates do not reflect the predicted inhibitory–excitatory imbalance across the motor thalamus, and input zone-specific temporal coding through oscillatory synchronization with the cortex could partly mediate the different roles of basal ganglia and cerebellum in behavior. PMID:23042738

  7. Brain oscillations track the formation of episodic memories in the real world.

    PubMed

    Griffiths, Benjamin; Mazaheri, Ali; Debener, Stefan; Hanslmayr, Simon

    2016-12-01

    Despite the well-known influence of environmental context on episodic memory, little has been done to increase contextual richness within the lab. This leaves a blind spot lingering over the neuronal correlates of episodic memory formation in day-to-day life. To address this, we presented participants with a series of words to memorise along a pre-designated route across campus while a mobile EEG system acquired ongoing neural activity. Replicating lab-based subsequent memory effects (SMEs), we identified significant low to mid frequency power decreases (<30Hz), including beta power decreases over the left inferior frontal gyrus. When investigating the oscillatory correlates of temporal and spatial context binding, we found that items strongly bound to spatial context exhibited significantly greater theta power decreases than items strongly bound to temporal context. These findings expand upon lab-based studies by demonstrating the influence of real world contextual factors that underpin memory formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Dopamine Induces Oscillatory Activities in Human Midbrain Neurons with Parkin Mutations.

    PubMed

    Zhong, Ping; Hu, Zhixing; Jiang, Houbo; Yan, Zhen; Feng, Jian

    2017-05-02

    Locomotor symptoms in Parkinson's disease (PD) are accompanied by widespread oscillatory neuronal activities in basal ganglia. Here, we show that activation of dopamine D1-class receptors elicits a large rhythmic bursting of spontaneous excitatory postsynaptic currents (sEPSCs) in midbrain neurons differentiated from induced pluripotent stem cells (iPSCs) of PD patients with parkin mutations, but not normal subjects. Overexpression of wild-type parkin, but not its PD-causing mutant, abolishes the oscillatory activities in patient neurons. Dopamine induces a delayed enhancement in the amplitude of spontaneous, but not miniature, EPSCs, thus increasing quantal content. The results suggest that presynaptic regulation of glutamatergic transmission by dopamine D1-class receptors is significantly potentiated by parkin mutations. The aberrant dopaminergic regulation of presynaptic glutamatergic transmission in patient-specific iPSC-derived midbrain neurons provides a mechanistic clue to PD pathophysiology, and it demonstrates the usefulness of this model system in understanding how mutations of parkin cause movement symptoms in Parkinson's disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation.

    PubMed

    Giovanni, Assenza; Capone, Fioravante; di Biase, Lazzaro; Ferreri, Florinda; Florio, Lucia; Guerra, Andrea; Marano, Massimo; Paolucci, Matteo; Ranieri, Federico; Salomone, Gaetano; Tombini, Mario; Thut, Gregor; Di Lazzaro, Vincenzo

    2017-01-01

    Non-invasive brain stimulation (NIBS) has been under investigation as adjunct treatment of various neurological disorders with variable success. One challenge is the limited knowledge on what would be effective neuronal targets for an intervention, combined with limited knowledge on the neuronal mechanisms of NIBS. Motivated on the one hand by recent evidence that oscillatory activities in neural systems play a role in orchestrating brain functions and dysfunctions, in particular those of neurological disorders specific of elderly patients, and on the other hand that NIBS techniques may be used to interact with these brain oscillations in a controlled way, we here explore the potential of modulating brain oscillations as an effective strategy for clinical NIBS interventions. We first review the evidence for abnormal oscillatory profiles to be associated with a range of neurological disorders of elderly (e.g., Parkinson's disease (PD), Alzheimer's disease (AD), stroke, epilepsy), and for these signals of abnormal network activity to normalize with treatment, and/or to be predictive of disease progression or recovery. We then ask the question to what extent existing NIBS protocols have been tailored to interact with these oscillations and possibly associated dysfunctions. Our review shows that, despite evidence for both reliable neurophysiological markers of specific oscillatory dis-functionalities in neurological disorders and NIBS protocols potentially able to interact with them, there are few applications of NIBS aiming to explore clinical outcomes of this interaction. Our review article aims to point out oscillatory markers of neurological, which are also suitable targets for modification by NIBS, in order to facilitate in future studies the matching of technical application to clinical targets.

  10. Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation

    PubMed Central

    Assenza, Giovanni; Capone, Fioravante; di Biase, Lazzaro; Ferreri, Florinda; Florio, Lucia; Guerra, Andrea; Marano, Massimo; Paolucci, Matteo; Ranieri, Federico; Salomone, Gaetano; Tombini, Mario; Thut, Gregor; Di Lazzaro, Vincenzo

    2017-01-01

    Non-invasive brain stimulation (NIBS) has been under investigation as adjunct treatment of various neurological disorders with variable success. One challenge is the limited knowledge on what would be effective neuronal targets for an intervention, combined with limited knowledge on the neuronal mechanisms of NIBS. Motivated on the one hand by recent evidence that oscillatory activities in neural systems play a role in orchestrating brain functions and dysfunctions, in particular those of neurological disorders specific of elderly patients, and on the other hand that NIBS techniques may be used to interact with these brain oscillations in a controlled way, we here explore the potential of modulating brain oscillations as an effective strategy for clinical NIBS interventions. We first review the evidence for abnormal oscillatory profiles to be associated with a range of neurological disorders of elderly (e.g., Parkinson’s disease (PD), Alzheimer’s disease (AD), stroke, epilepsy), and for these signals of abnormal network activity to normalize with treatment, and/or to be predictive of disease progression or recovery. We then ask the question to what extent existing NIBS protocols have been tailored to interact with these oscillations and possibly associated dysfunctions. Our review shows that, despite evidence for both reliable neurophysiological markers of specific oscillatory dis-functionalities in neurological disorders and NIBS protocols potentially able to interact with them, there are few applications of NIBS aiming to explore clinical outcomes of this interaction. Our review article aims to point out oscillatory markers of neurological, which are also suitable targets for modification by NIBS, in order to facilitate in future studies the matching of technical application to clinical targets. PMID:28659788

  11. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    PubMed

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  12. Paradoxical Expectation: Oscillatory Brain Activity Reveals Social Interaction Impairment in Schizophrenia.

    PubMed

    Billeke, Pablo; Armijo, Alejandra; Castillo, Daniel; López, Tamara; Zamorano, Francisco; Cosmelli, Diego; Aboitiz, Francisco

    2015-09-15

    People with schizophrenia show social impairments that are related to functional outcomes. We tested the hypothesis that social interaction impairments in people with schizophrenia are related to alterations in the predictions of others' behavior and explored their underlying neurobiological mechanisms. Electroencephalography was performed in 20 patients with schizophrenia and 25 well-matched control subjects. Participants played as proposers in the repeated version of the Ultimatum Game believing that they were playing with another human or with a computer. The power of oscillatory brain activity was obtained by means of the wavelet transform. We performed a trial-by-trial correlation between the oscillatory activity and the risk of the offer. Control subjects adapted their offers when playing with computers and tended to maintain their offers when playing with humans, as such revealing learning and bargaining strategies, respectively. People with schizophrenia presented the opposite pattern of behavior in both games. During the anticipation of others' responses, the power of alpha oscillations correlated with the risk of the offers made, in a different way in both games. Patients with schizophrenia presented a greater correlation in computer games than in human games; control subjects showed the opposite pattern. The alpha activity correlated with positive symptoms. Our results reveal an alteration in social interaction in patients with schizophrenia that is related to oscillatory brain activity, suggesting maladjustment of expectation when patients face social and nonsocial agents. This alteration is related to psychotic symptoms and could guide further therapies for improving social functioning in patients with schizophrenia. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Information-geometric measures estimate neural interactions during oscillatory brain states

    PubMed Central

    Nie, Yimin; Fellous, Jean-Marc; Tatsuno, Masami

    2014-01-01

    The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain. PMID:24605089

  14. Information-geometric measures estimate neural interactions during oscillatory brain states.

    PubMed

    Nie, Yimin; Fellous, Jean-Marc; Tatsuno, Masami

    2014-01-01

    The characterization of functional network structures among multiple neurons is essential to understanding neural information processing. Information geometry (IG), a theory developed for investigating a space of probability distributions has recently been applied to spike-train analysis and has provided robust estimations of neural interactions. Although neural firing in the equilibrium state is often assumed in these studies, in reality, neural activity is non-stationary. The brain exhibits various oscillations depending on cognitive demands or when an animal is asleep. Therefore, the investigation of the IG measures during oscillatory network states is important for testing how the IG method can be applied to real neural data. Using model networks of binary neurons or more realistic spiking neurons, we studied how the single- and pairwise-IG measures were influenced by oscillatory neural activity. Two general oscillatory mechanisms, externally driven oscillations and internally induced oscillations, were considered. In both mechanisms, we found that the single-IG measure was linearly related to the magnitude of the external input, and that the pairwise-IG measure was linearly related to the sum of connection strengths between two neurons. We also observed that the pairwise-IG measure was not dependent on the oscillation frequency. These results are consistent with the previous findings that were obtained under the equilibrium conditions. Therefore, we demonstrate that the IG method provides useful insights into neural interactions under the oscillatory condition that can often be observed in the real brain.

  15. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    PubMed

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Age-related changes to oscillatory dynamics in hippocampal and neocortical networks.

    PubMed

    Rondina, Renante; Olsen, Rosanna K; McQuiggan, Douglas A; Fatima, Zainab; Li, Lingqian; Oziel, Esther; Meltzer, Jed A; Ryan, Jennifer D

    2016-10-01

    Recent models of hippocampal function have emphasized its role in relational binding - the ability to form lasting representations regarding the relations among distinct elements or items which can support memory performance, even over brief delays (e.g., several seconds). The present study examined the extent to which aging is associated with changes in the recruitment of oscillatory activity within hippocampal and neocortical regions to support relational binding performance on a short delay visuospatial memory task. Structural magnetic resonance imaging and MEG were used to characterize potential age-related changes in hippocampal volume, oscillatory activity, and subsequent memory performance, and the relationships among them. Participants were required to bind the relative visuospatial positions of objects that were presented singly across time. Subsequently, the objects were re-presented simultaneously, and participants were required to indicate whether the relative spatial positions among the objects had been maintained. Older and younger adults demonstrated similar task accuracy, and older adults had preserved hippocampal volumes relative to younger adults. Age-group differences were found in pre-stimulus theta (∼5Hz) and beta (∼20Hz) oscillations, and this pre-stimulus activity was related to hippocampal volumes in younger adults. Age-group differences were also found in the recruitment of oscillatory activity from the pre-stimulus period to the task. Only younger adults showed a task-related change in theta power that was predictive of memory performance. In contrast, older adults demonstrated task-related alpha (∼10Hz) oscillatory power changes that were not observed in younger adults. These findings provide novel evidence for the role of the hippocampus and functionally connected regions in relational binding that is disrupted in aging. The present findings are discussed in the context of current models regarding the cognitive neuroscience of aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Gender agreement violations modulate beta oscillatory dynamics during sentence comprehension: A comparison of second language learners and native speakers.

    PubMed

    Lewis, Ashley Glen; Lemhӧfer, Kristin; Schoffelen, Jan-Mathijs; Schriefers, Herbert

    2016-08-01

    For native speakers, many studies suggest a link between oscillatory neural activity in the beta frequency range and syntactic processing. For late second language (L2) learners on the other hand, the extent to which the neural architecture supporting syntactic processing is similar to or different from that of native speakers is still unclear. In a series of four experiments, we used electroencephalography to investigate the link between beta oscillatory activity and the processing of grammatical gender agreement in Dutch determiner-noun pairs, for Dutch native speakers, and for German L2 learners of Dutch. In Experiment 1 we show that for native speakers, grammatical gender agreement violations are yet another among many syntactic factors that modulate beta oscillatory activity during sentence comprehension. Beta power is higher for grammatically acceptable target words than for those that mismatch in grammatical gender with their preceding determiner. In Experiment 2 we observed no such beta modulations for L2 learners, irrespective of whether trials were sorted according to objective or subjective syntactic correctness. Experiment 3 ruled out that the absence of a beta effect for the L2 learners in Experiment 2 was due to repetition of the target nouns in objectively correct and incorrect determiner-noun pairs. Finally, Experiment 4 showed that when L2 learners are required to explicitly focus on grammatical information, they show modulations of beta oscillatory activity, comparable to those of native speakers, but only when trials are sorted according to participants' idiosyncratic lexical representations of the grammatical gender of target nouns. Together, these findings suggest that beta power in L2 learners is sensitive to violations of grammatical gender agreement, but only when the importance of grammatical information is highlighted, and only when participants' subjective lexical representations are taken into account. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Activation and synchronization of the oscillatory morphodynamics in multicellular monolayer

    PubMed Central

    Lin, Shao-Zhen; Li, Bo; Lan, Ganhui; Feng, Xi-Qiao

    2017-01-01

    Oscillatory morphodynamics provides necessary mechanical cues for many multicellular processes. Owing to their collective nature, these processes require robustly coordinated dynamics of individual cells, which are often separated too distantly to communicate with each other through biomaterial transportation. Although it is known that the mechanical balance generally plays a significant role in the systems’ morphologies, it remains elusive whether and how the mechanical components may contribute to the systems’ collective morphodynamics. Here, we study the collective oscillations in the Drosophila amnioserosa tissue to elucidate the regulatory roles of the mechanical components. We identify that the tensile stress is the key activator that switches the collective oscillations on and off. This regulatory role is shown analytically using the Hopf bifurcation theory. We find that the physical properties of the tissue boundary are directly responsible for synchronizing the oscillatory intensity and polarity of all inner cells and for orchestrating the spatial oscillation patterns inthe tissue. PMID:28716911

  19. Memory improvement via slow-oscillatory stimulation during sleep in older adults.

    PubMed

    Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A

    2015-09-01

    We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Oscillatory hydraulic testing as a strategy for NAPL source zone monitoring: Laboratory experiments

    NASA Astrophysics Data System (ADS)

    Zhou, YaoQuan; Cardiff, Michael

    2017-05-01

    Non-aqueous phase liquids (NAPLs) have a complex mode of transport in heterogeneous aquifers, which can result in pools and lenses of NAPLs (the "source zone") that are difficult to detect and can cause long-term contamination via slow dissolution into groundwater (the "dissolved plume"). Characterizing the extent and evolution of NAPL contamination within the source zone is a useful strategy for designing and adapting appropriate remedial actions at many contaminated sites. As a NAPL flows into a given aquifer volume, the effective hydraulic conductivity (K) and specific storage (Ss) of the volume changes associated with the viscosity and compressibility of the impinging fluid, meaning that NAPL movement may be detectable with hydraulic testing. Recently, the use of oscillatory pumping tests - in which sinusoidal pumping variations are implemented and oscillatory pressure changes are detected at monitoring locations - has been suggested as a low-impact hydraulic testing strategy for characterizing aquifer properties (Cardiff et al., 2013; Zhou et al., 2016). Here, we investigate this strategy in an experimental laboratory sandbox where dyed vegetable oil is injected and allowed to migrate as a NAPL. Initial qualitative analyses demonstrate that measurable changes in pressure signal amplitude and phase provide clear evidence for NAPL plume emplacement and migration. Using the approach developed in Zhou et al. (2016), we then apply tomographic analyses to estimate the location of effective K changes (representing fluid changes) and their movement throughout time. This approach provides a method for monitoring ongoing NAPL movement without net extraction or injection of fluid, making it advantageous in field remediation applications.

  1. Anti-Stress, Behavioural and Magnetoencephalography Effects of an L-Theanine-Based Nutrient Drink: A Randomised, Double-Blind, Placebo-Controlled, Crossover Trial.

    PubMed

    White, David J; de Klerk, Suzanne; Woods, William; Gondalia, Shakuntla; Noonan, Chris; Scholey, Andrew B

    2016-01-19

    L-theanine (γ-glutamylethylamide) is an amino acid found primarily in the green tea plant. This study explored the effects of an L-theanine-based nutrient drink on mood responses to a cognitive stressor. Additional measures included an assessment of cognitive performance and resting state alpha oscillatory activity using magnetoencephalography (MEG). Thirty-four healthy adults aged 18-40 participated in this double-blind, placebo-controlled, balanced crossover study. The primary outcome measure, subjective stress response to a multitasking cognitive stressor, was significantly reduced one hour after administration of the L-theanine drink when compared to placebo. The salivary cortisol response to the stressor was reduced three hours post-dose following active treatment. No treatment-related cognitive performance changes were observed. Resting state alpha oscillatory activity was significantly greater in posterior MEG sensors after active treatment compared to placebo two hours post-dose; however, this effect was only apparent for those higher in trait anxiety. This change in resting state alpha oscillatory activity was not correlated with the change in subjective stress response or the cortisol response, suggesting further research is required to assess the functional relevance of these treatment-related changes in resting alpha activity. These findings further support the anti-stress effects of L-theanine.

  2. The Myotonometer: Not a Valid Measurement Tool for Active Hamstring Musculotendinous Stiffness.

    PubMed

    Pamukoff, Derek N; Bell, Sarah E; Ryan, Eric D; Blackburn, J Troy

    2016-05-01

    Hamstring musculotendinous stiffness (MTS) is associated with lower-extremity injury risk (ie, hamstring strain, anterior cruciate ligament injury) and is commonly assessed using the damped oscillatory technique. However, despite a preponderance of studies that measure MTS reliably in laboratory settings, there are no valid clinical measurement tools. A valid clinical measurement technique is needed to assess MTS and permit identification of individuals at heightened risk of injury and track rehabilitation progress. To determine the validity and reliability of the Myotonometer for measuring active hamstring MTS. Descriptive laboratory study. Laboratory. 33 healthy participants (15 men, age 21.33 ± 2.94 y, height 172.03 ± 16.36 cm, mass 74.21 ± 16.36 kg). Hamstring MTS was assessed using the damped oscillatory technique and the Myotonometer. Intraclass correlations were used to determine the intrasession, intersession, and interrater reliability of the Myotonometer. Criterion validity was assessed via Pearson product-moment correlation between MTS measures obtained from the Myotonometer and from the damped oscillatory technique. The Myotonometer demonstrated good intrasession (ICC3,1 = .807) and interrater reliability (ICC2,k = .830) and moderate intersession reliability (ICC2,k = .693). However, it did not provide a valid measurement of MTS compared with the damped oscillatory technique (r = .346, P = .061). The Myotonometer does not provide a valid measure of active hamstring MTS. Although the Myotonometer does not measure active MTS, it possesses good reliability and portability and could be used clinically to measure tissue compliance, muscle tone, or spasticity associated with multiple musculoskeletal disorders. Future research should focus on portable and clinically applicable tools to measure active hamstring MTS in efforts to prevent and monitor injuries.

  3. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.

    PubMed

    Voytek, Bradley; Knight, Robert T

    2015-06-15

    Perception, cognition, and social interaction depend upon coordinated neural activity. This coordination operates within noisy, overlapping, and distributed neural networks operating at multiple timescales. These networks are built upon a structural scaffolding with intrinsic neuroplasticity that changes with development, aging, disease, and personal experience. In this article, we begin from the perspective that successful interregional communication relies upon the transient synchronization between distinct low-frequency (<80 Hz) oscillations, allowing for brief windows of communication via phase-coordinated local neuronal spiking. From this, we construct a theoretical framework for dynamic network communication, arguing that these networks reflect a balance between oscillatory coupling and local population spiking activity and that these two levels of activity interact. We theorize that when oscillatory coupling is too strong, spike timing within the local neuronal population becomes too synchronous; when oscillatory coupling is too weak, spike timing is too disorganized. Each results in specific disruptions to neural communication. These alterations in communication dynamics may underlie cognitive changes associated with healthy development and aging, in addition to neurological and psychiatric disorders. A number of neurological and psychiatric disorders-including Parkinson's disease, autism, depression, schizophrenia, and anxiety-are associated with abnormalities in oscillatory activity. Although aging, psychiatric and neurological disease, and experience differ in the biological changes to structural gray or white matter, neurotransmission, and gene expression, our framework suggests that any resultant cognitive and behavioral changes in normal or disordered states or their treatment are a product of how these physical processes affect dynamic network communication. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Beta and gamma oscillatory activities associated with olfactory memory tasks: different rhythms for different functional networks?

    PubMed Central

    Martin, Claire; Ravel, Nadine

    2014-01-01

    Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform, and entorhinal cortices) and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to “bind” distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15–40 Hz) and gamma (60–100 Hz). While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory. PMID:25002840

  5. Phase-Locked Responses to Speech in Human Auditory Cortex are Enhanced During Comprehension

    PubMed Central

    Peelle, Jonathan E.; Gross, Joachim; Davis, Matthew H.

    2013-01-01

    A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners’ ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction. PMID:22610394

  6. Phase-locked responses to speech in human auditory cortex are enhanced during comprehension.

    PubMed

    Peelle, Jonathan E; Gross, Joachim; Davis, Matthew H

    2013-06-01

    A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners' ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction.

  7. Representation of time interval entrained by periodic stimuli in the visual thalamus of pigeons

    PubMed Central

    Wang, Shu-Rong

    2017-01-01

    Animals use the temporal information from previously experienced periodic events to instruct their future behaviors. The retina and cortex are involved in such behavior, but it remains largely unknown how the thalamus, transferring visual information from the retina to the cortex, processes the periodic temporal patterns. Here we report that the luminance cells in the nucleus dorsolateralis anterior thalami (DLA) of pigeons exhibited oscillatory activities in a temporal pattern identical to the rhythmic luminance changes of repetitive light/dark (LD) stimuli with durations in the seconds-to-minutes range. Particularly, after LD stimulation, the DLA cells retained the entrained oscillatory activities with an interval closely matching the duration of the LD cycle. Furthermore, the post-stimulus oscillatory activities of the DLA cells were sustained without feedback inputs from the pallium (equivalent to the mammalian cortex). Our study suggests that the experience-dependent representation of time interval in the brain might not be confined to the pallial/cortical level, but may occur as early as at the thalamic level. PMID:29284554

  8. Self-Organisation and Intermittent Coherent Oscillations in the EXTRAP T2 Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Sallander, E.; Drake, J. R.

    Many reversed-field pinch (RFP) experiments exhibit a coherent oscillatory behaviour that is characteristic of discrete dynamo events and is associated with intermittent current profile self-organisation phenomena. However, in the vast majority of the discharges in the resistive shell RFP experiment EXTRAP T2, the dynamo activity does not show global, coherent oscillatory behaviour. The internally resonant tearing modes are phase-aligned and wall-locked resulting in a large localised magnetic perturbation. Equilibrium and plasma parameters have a level of high frequency fluctuations but the average values are quasi-steady. For some discharges, however, the equilibrium parameters exhibit the oscillatory behaviour characteristic of the discrete dynamo events. For these discharges, the trend observed in the tearing mode spectra, associated with the onset of the discrete relaxation event behaviour, is a relative higher amplitude of m = 0 mode activity and relative lower amplitude of the m = 1 mode activity compared with their average values. Global plasma parameters and model profile calculations for sample discharges representing the two types of relaxation dynamics are presented.

  9. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando; Sauseng, Paul

    2015-04-01

    Aging-related decline in short-term memory capacity seems to be caused by deficient balancing of task-related and resting state brain networks activity; however, the exact neural mechanism underlying this deficit remains elusive. Here, we studied brain oscillatory activity in healthy young and old adults during visual information maintenance in a delayed match-to-sample task. Particular emphasis was on long range phase:amplitude coupling of frontal alpha (8-12 Hz) and posterior fast oscillatory activity (>30 Hz). It is argued that through posterior fast oscillatory activity nesting into the excitatory or the inhibitory phase of frontal alpha wave, long-range networks can be efficiently coupled or decoupled, respectively. On the basis of this mechanism, we show that healthy, elderly participants exhibit a lack of synchronization in task-relevant networks while maintaining synchronized regions of the resting state network. Lacking disconnection of this resting state network is predictive of aging-related short-term memory decline. These results support the idea of inefficient orchestration of competing brain networks in the aging human brain and identify the neural mechanism responsible for this control breakdown. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Sight restoration after congenital blindness does not reinstate alpha oscillatory activity in humans

    PubMed Central

    Bottari, Davide; Troje, Nikolaus F.; Ley, Pia; Hense, Marlene; Kekunnaya, Ramesh; Röder, Brigitte

    2016-01-01

    Functional brain development is characterized by sensitive periods during which experience must be available to allow for the full development of neural circuits and associated behavior. Yet, only few neural markers of sensitive period plasticity in humans are known. Here we employed electroencephalographic recordings in a unique sample of twelve humans who had been blind from birth and regained sight through cataract surgery between four months and 16 years of age. Two additional control groups were tested: a group of visually impaired individuals without a history of total congenital blindness and a group of typically sighted individuals. The EEG was recorded while participants performed a visual discrimination task involving intact and scrambled biological motion stimuli. Posterior alpha and theta oscillations were evaluated. The three groups showed indistinguishable behavioral performance and in all groups evoked theta activity varied with biological motion processing. By contrast, alpha oscillatory activity was significantly reduced only in individuals with a history of congenital cataracts. These data document on the one hand brain mechanisms of functional recovery (related to theta oscillations) and on the other hand, for the first time, a sensitive period for the development of alpha oscillatory activity in humans. PMID:27080158

  11. Local entrainment of oscillatory activity induced by direct brain stimulation in humans

    PubMed Central

    Amengual, Julià L.; Vernet, Marine; Adam, Claude; Valero-Cabré, Antoni

    2017-01-01

    In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions. PMID:28256510

  12. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that solute is drawn into the cell from reservoirs at both ends of the cell leading to a large mass build up. As a consequence, any initially induced mass flux will vanish after short times. This effect was not captured by the infinite channel model and hence numerical and experimental results deviated significantly. The revised model including finite cell lengths and reservoir volumes allowed quantitative predictions of the time history of the concentration profile throughout the system. This latter model accurately describes the fluxes observed for both oscillatory flow modes in experiments using single protein species. Based on the results obtained from research funded under NASA grant NAG-8-1080.S, we conclude that binary separations are not possible using purely oscillatory flow modes because of end effects associated with the cos((omega)t) mode. Our research shows, however, that a combination of cos(2(omega)t) and steady flow should lead to efficient separation free of end effects. This possibility is currently under investigation.

  13. Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes

    PubMed Central

    Manning, Cerys; Rattray, Magnus

    2017-01-01

    Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. This underlies a new challenge to the experimentalist because neither intuition nor pre-existing methods work well for identifying oscillatory activity in noisy biological time series. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here, we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live-cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a Hes1 promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5’ LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package. PMID:28493880

  14. Noninvasive transcranial focused ultrasonic-magnetic stimulation for modulating brain oscillatory activity

    NASA Astrophysics Data System (ADS)

    Yuan, Yi; Chen, Yudong; Li, Xiaoli

    2016-02-01

    A novel technique, transcranial focused ultrasonic-magnetic stimulation (tFUMS), has been developed for noninvasive brain modulation in vivo. tFUMS has a higher spatial resolution (<2 mm) and a higher penetration depth than other noninvasive neuromodulation methods. The in vivo animal experimental results show that tFUMS can not only increase the power of local field potentials and the firing rate of the neurons, but also enhance the effect of transcranial focused ultrasound stimulation on the neuromodulation. The results demonstrate that tFUMS can modulate brain oscillatory activities by stimulating brain tissues.

  15. Oscillation transmission and volume delivery during face mask-delivered HFOV in infants: Bench and in vivo study.

    PubMed

    De Luca, Daniele; Costa, Roberta; Visconti, Federico; Piastra, Marco; Conti, Giorgio

    2016-07-01

    Noninvasive high frequency oscillatory ventilation (NHFOV) has not been studied beyond neonatal age and with interfaces other than nasal prongs. We set up a preliminary study to investigate feasibility, oscillation transmission, and volume delivery of face mask-delivered NHFOV in a bench model mimicking a normal 1-year infant without any lung disease and then in vivo in a series of infants with same characteristics. A mannequin with upper airways was connected to an electronic active lung simulator ventilated through NHFOV with varying parameters. Volume delivered by oscillations (oTv), oscillatory pressure ratio, and estimation of ventilation (DCO2) were measured at the lung simulator. Four infants were ventilated with face mask-delivered NHFOV for 2 hr and monitored with respiratory inductance plethismography. Vital parameters, oscillatory pressure ratio, oscillatory (RIPo), and spontaneous cage/abdomen displacement (RIPs) were recorded. There was a dampening of oscillation amplitude both on the bench model and in vivo: oscillatory pressure ratios at the mask were 80% and 17%, respectively. Significant correlations exist between oscillatory pressure ratio (only when this latter was <0.038) and oTv (r = 0.48; P < 0.001) or DCO2 (r = 0.47; P < 0.001). At multivariate analysis, oscillatory pressure ratio was a main determinant of oTv and DCO2. Oscillations were slightly visible on the chest in vivo and RIPo was about 5% of RIPs. NHFOV did not change vital parameters and did not cause discomfort. Face mask-delivered NHFOV is feasible in a model of 1-year infant. No major complications occurred in vivo. Oscillations are superimposed to the spontaneous breathing and are significantly dampened. Pediatr Pulmonol. Pediatr Pulmonol. 2016;51:705-712. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Excito-oscillatory dynamics as a mechanism of ventricular fibrillation.

    PubMed

    Gray, Richard A; Huelsing, Delilah J

    2008-04-01

    The instabilities associated with reentrant spiral waves are of paramount importance to the initiation and maintenance of tachyarrhythmias, especially ventricular fibrillation (VF). In addition to tissue heterogeneities, there are only a few basic purported mechanisms of spiral wave breakup, most notably restitution. We test the hypothesis that oscillatory membrane properties act to destabilize spiral waves. We recorded transmembrane potential (V(m)) from isolated rabbit myocytes using a constant current stimulation protocol. We developed a mathematical model that included both the stable excitable equilibrium point at resting V(m) (-80 mV) and the unstable oscillatory equilibrium point at elevated V(m) (-10 mV). Spiral wave dynamics were studied in 2-dimensional grids using variants of the model. All models showed restitution and reproduced the experimental values of transmembrane resistance at rest and during the action potential plateau. Stable spiral waves were observed when the model showed only 1 equilibrium point. However, spatio-temporal complexity was observed if the model showed both excitable and oscillatory equilibrium points (i.e., excito-oscillatory models). The initial wave breaks resulted from oscillatory waves expanding in all directions; after a few beats, the patterns were characterized by a combination of unstable spiral waves and target patterns consistent with the patterns observed on the heart surface during VF. In our model, this VF-like activity only occurred when the single cell period of V(m) oscillations was within a specific range. The VF-like patterns observed in our excito-oscillatory models could not be explained by the existing proposed instability mechanisms. Our results introduce the important suggestion that membrane dynamics responsible for V(m) oscillations at elevated V(m) levels can destabilize spiral waves and thus may be a novel therapeutic target for preventing VF.

  17. Altered Neural Oscillations During Multisensory Integration in Adolescents with Fetal Alcohol Spectrum Disorder.

    PubMed

    Bolaños, Alfredo D; Coffman, Brian A; Candelaria-Cook, Felicha T; Kodituwakku, Piyadasa; Stephen, Julia M

    2017-12-01

    Children with fetal alcohol spectrum disorder (FASD), who were exposed to alcohol in utero, display a broad range of sensory, cognitive, and behavioral deficits, which are broadly theorized to be rooted in altered brain function and structure. Based on the role of neural oscillations in multisensory integration from past studies, we hypothesized that adolescents with FASD would show a decrease in oscillatory power during event-related gamma oscillatory activity (30 to 100 Hz), when compared to typically developing healthy controls (HC), and that such decrease in oscillatory power would predict behavioral performance. We measured sensory neurophysiology using magnetoencephalography (MEG) during passive auditory, somatosensory, and multisensory (synchronous) stimulation in 19 adolescents (12 to 21 years) with FASD and 23 age- and gender-matched HC. We employed a cross-hemisphere multisensory paradigm to assess interhemispheric connectivity deficits in children with FASD. Time-frequency analysis of MEG data revealed a significant decrease in gamma oscillatory power for both unisensory and multisensory conditions in the FASD group relative to HC, based on permutation testing of significant group differences. Greater beta oscillatory power (15 to 30 Hz) was also noted in the FASD group compared to HC in both unisensory and multisensory conditions. Regression analysis revealed greater predictive power of multisensory oscillations from unisensory oscillations in the FASD group compared to the HC group. Furthermore, multisensory oscillatory power, for both groups, predicted performance on the Intra-Extradimensional Set Shift Task and the Cambridge Gambling Task. Altered oscillatory power in the FASD group may reflect a restricted ability to process somatosensory and multisensory stimuli during day-to-day interactions. These alterations in neural oscillations may be associated with the neurobehavioral deficits experienced by adolescents with FASD and may carry over to adulthood. Copyright © 2017 by the Research Society on Alcoholism.

  18. Cross-correlated and oscillatory visual responses of superficial-layer and tecto-reticular neurones in cat superior colliculus.

    PubMed

    Chabli, A; Guitton, D; Fortin, S; Molotchnikoff, S

    2000-03-01

    The present study examined, in the superior colliculus (SC) of anaesthetised cats, the functional connectivity between superficial-layer neurones (SLNs) and tectoreticular neurones (TRNs: collicular output cells). TRNs were antidromically identified by electrical stimulation of the predorsal bundle. The auto- and cross-correlation histograms of visual responses of both types of neurones were recorded and analysed. A delayed, sharp peak in cross-correlograms allowed us to verify whether SLN and TRN cells were coupled; in addition, oscillatory activities were compared to verify if rhythmic responses of SLN sites were transmitted to TRN sites. We found that oscillatory activity was rarely observed in spontaneous activity of superficial (1/74) and TRN sites (1/48). Moving light bars induced oscillation in 31% (23/74) of the superficial-layer and in 23% (11/48) of the TRN sites. The strength of the rhythmic responses was determined by specific ranges of stimulus velocity in 83% (19/23) and 64% (7/11) of oscillating SLN and TRN sites, respectively. Frequencies of oscillations ranged between 5 and 125 Hz and were confined, for 53% of the cells, to the 5-20 Hz band. Thus, the band-width of frequencies of the stimulus-related oscillations in the superior colliculus was broader than the gamma range. Analysis of cross-correlation histograms revealed a significant predominant peak with a mean delay of 2.7+/-0.9 ms in 46% (17/37) of SLN-TRN pairs. Most correlated SLN-TRN pairs (88%: 15/17) had superimposed receptive fields, suggesting they were functionally interconnected. However, individual oscillatory frequencies of correlated and oscillatory SLN and TRN cells were never the same (0/8). Together, these results suggest that the neurones in collicular superficial layer contact TRNs and, consequently, support the idea that the superficial layers contribute to collicular outputs producing eye- and head-orienting movements.

  19. Irreducible Representations of Oscillatory and Swirling Flows in Active Soft Matter

    NASA Astrophysics Data System (ADS)

    Ghose, Somdeb; Adhikari, R.

    2014-03-01

    Recent experiments imaging fluid flow around swimming microorganisms have revealed complex time-dependent velocity fields that differ qualitatively from the stresslet flow commonly employed in theoretical descriptions of active matter. Here we obtain the most general flow around a finite sized active particle by expanding the surface stress in irreducible Cartesian tensors. This expansion, whose first term is the stresslet, must include, respectively, third-rank polar and axial tensors to minimally capture crucial features of the active oscillatory flow around translating Chlamydomonas and the active swirling flow around rotating Volvox. The representation provides explicit expressions for the irreducible symmetric, antisymmetric, and isotropic parts of the continuum active stress. Antisymmetric active stresses do not conserve orbital angular momentum and our work thus shows that spin angular momentum is necessary to restore angular momentum conservation in continuum hydrodynamic descriptions of active soft matter.

  20. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.

    PubMed

    Cohen, Michael X; Donner, Tobias H

    2013-12-01

    Action monitoring and conflict resolution require the rapid and flexible coordination of activity in multiple brain regions. Oscillatory neural population activity may be a key physiological mechanism underlying such rapid and flexible network coordination. EEG power modulations of theta-band (4-8 Hz) activity over the human midfrontal cortex during response conflict have been proposed to reflect neural oscillations that support conflict detection and resolution processes. However, it has remained unclear whether this frequency-band-specific activity reflects neural oscillations or nonoscillatory responses (i.e., event-related potentials). Here, we show that removing the phase-locked component of the EEG did not reduce the strength of the conflict-related modulation of the residual (i.e., non-phase-locked) theta power over midfrontal cortex. Furthermore, within-subject regression analyses revealed that the non-phase-locked theta power was a significantly better predictor of the conflict condition than was the time-domain phase-locked EEG component. Finally, non-phase-locked theta power showed robust and condition-specific (high- vs. low-conflict) cross-trial correlations with reaction time, whereas the phase-locked component did not. Taken together, our results indicate that most of the conflict-related and behaviorally relevant midfrontal EEG signal reflects a modulation of ongoing theta-band oscillations that occurs during the decision process but is not phase-locked to the stimulus or to the response.

  1. Correlated components of ongoing EEG point to emotionally laden attention - a possible marker of engagement?

    PubMed

    Dmochowski, Jacek P; Sajda, Paul; Dias, Joao; Parra, Lucas C

    2012-01-01

    Recent evidence from functional magnetic resonance imaging suggests that cortical hemodynamic responses coincide in different subjects experiencing a common naturalistic stimulus. Here we utilize neural responses in the electroencephalogram (EEG) evoked by multiple presentations of short film clips to index brain states marked by high levels of correlation within and across subjects. We formulate a novel signal decomposition method which extracts maximally correlated signal components from multiple EEG records. The resulting components capture correlations down to a one-second time resolution, thus revealing that peak correlations of neural activity across viewings can occur in remarkable correspondence with arousing moments of the film. Moreover, a significant reduction in neural correlation occurs upon a second viewing of the film or when the narrative is disrupted by presenting its scenes scrambled in time. We also probe oscillatory brain activity during periods of heightened correlation, and observe during such times a significant increase in the theta band for a frontal component and reductions in the alpha and beta frequency bands for parietal and occipital components. Low-resolution EEG tomography of these components suggests that the correlated neural activity is consistent with sources in the cingulate and orbitofrontal cortices. Put together, these results suggest that the observed synchrony reflects attention- and emotion-modulated cortical processing which may be decoded with high temporal resolution by extracting maximally correlated components of neural activity.

  2. Correlated Components of Ongoing EEG Point to Emotionally Laden Attention – A Possible Marker of Engagement?

    PubMed Central

    Dmochowski, Jacek P.; Sajda, Paul; Dias, Joao; Parra, Lucas C.

    2012-01-01

    Recent evidence from functional magnetic resonance imaging suggests that cortical hemodynamic responses coincide in different subjects experiencing a common naturalistic stimulus. Here we utilize neural responses in the electroencephalogram (EEG) evoked by multiple presentations of short film clips to index brain states marked by high levels of correlation within and across subjects. We formulate a novel signal decomposition method which extracts maximally correlated signal components from multiple EEG records. The resulting components capture correlations down to a one-second time resolution, thus revealing that peak correlations of neural activity across viewings can occur in remarkable correspondence with arousing moments of the film. Moreover, a significant reduction in neural correlation occurs upon a second viewing of the film or when the narrative is disrupted by presenting its scenes scrambled in time. We also probe oscillatory brain activity during periods of heightened correlation, and observe during such times a significant increase in the theta band for a frontal component and reductions in the alpha and beta frequency bands for parietal and occipital components. Low-resolution EEG tomography of these components suggests that the correlated neural activity is consistent with sources in the cingulate and orbitofrontal cortices. Put together, these results suggest that the observed synchrony reflects attention- and emotion-modulated cortical processing which may be decoded with high temporal resolution by extracting maximally correlated components of neural activity. PMID:22623915

  3. Differential recruitment of brain networks in single-digit addition and multiplication: Evidence from EEG oscillations in theta and lower alpha bands.

    PubMed

    Wang, Lihan; Gan, John Q; Zhang, Li; Wang, Haixian

    2018-06-01

    Previous neuroimaging research investigating dissociation between single-digit addition and multiplication has suggested that the former placed more reliance on the visuo-spatial processing whereas the latter on the verbal processing. However, there has been little exploration into the disassociation in spatio-temporal dynamics of the oscillatory brain activity in specific frequency bands during the two arithmetic operations. To address this issue, the electroencephalogram (EEG) data were recorded from 19 participants engaged in a delayed verification arithmetic task. By analyzing oscillatory EEG activity in theta (5-7 Hz) and lower alpha frequency (9-10 Hz) bands, we found different patterns of oscillatory brain activity between single-digit addition and multiplication during the early processing stage (0-400 ms post-operand onset). Experiment results in this study showed a larger phasic increase of theta-band power for addition than for multiplication in the midline and the right frontal and central regions during the operator and operands presentation intervals, which was extended to the right parietal and the right occipito-temporal regions during the interval immediately after the operands presentation. In contrast, during multiplication higher phase-locking in lower alpha band was evident in the centro-parietal regions during the operator presentation, which was extended to the left fronto-central and anterior regions during the operands presentation. Besides, we found stronger theta phase synchrony between the parietal areas and the right occipital areas for single-digit addition than for multiplication during operands encoding. These findings of oscillatory brain activity extend the previous observations on functional dissociation between the two arithmetic operations. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Oscillatory support for rapid frequency change processing in infants.

    PubMed

    Musacchia, Gabriella; Choudhury, Naseem A; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P; Benasich, April A

    2013-11-01

    Rapid auditory processing and auditory change detection abilities are crucial aspects of speech and language development, particularly in the first year of life. Animal models and adult studies suggest that oscillatory synchrony, and in particular low-frequency oscillations play key roles in this process. We hypothesize that infant perception of rapid pitch and timing changes is mediated, at least in part, by oscillatory mechanisms. Using event-related potentials (ERPs), source localization and time-frequency analysis of event-related oscillations (EROs), we examined the neural substrates of rapid auditory processing in 4-month-olds. During a standard oddball paradigm, infants listened to tone pairs with invariant standard (STD, 800-800 Hz) and variant deviant (DEV, 800-1200 Hz) pitch. STD and DEV tone pairs were first presented in a block with a short inter-stimulus interval (ISI) (Rapid Rate: 70 ms ISI), followed by a block of stimuli with a longer ISI (Control Rate: 300 ms ISI). Results showed greater ERP peak amplitude in response to the DEV tone in both conditions and later and larger peaks during Rapid Rate presentation, compared to the Control condition. Sources of neural activity, localized to right and left auditory regions, showed larger and faster activation in the right hemisphere for both rate conditions. Time-frequency analysis of the source activity revealed clusters of theta band enhancement to the DEV tone in right auditory cortex for both conditions. Left auditory activity was enhanced only during Rapid Rate presentation. These data suggest that local low-frequency oscillatory synchrony underlies rapid processing and can robustly index auditory perception in young infants. Furthermore, left hemisphere recruitment during rapid frequency change discrimination suggests a difference in the spectral and temporal resolution of right and left hemispheres at a very young age. © 2013 Elsevier Ltd. All rights reserved.

  5. Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation

    PubMed Central

    Vinding, Mikkel C.; Allen, Micah; Jensen, Troels Staehelin; Finnerup, Nanna Brix

    2017-01-01

    Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. PMID:28250150

  6. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.

    PubMed

    Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M

    2017-04-15

    Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.

  7. Synchronization Dynamics of Coupled Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Tompkins, Nathan

    The synchronization dynamics of complex networks have been extensively studied over the past few decades due to their ubiquity in the natural world. Prominent examples include cardiac rhythms, circadian rhythms, the flashing of fireflies, predator/prey population dynamics, mammalian gait, human applause, pendulum clocks, the electrical grid, and of the course the brain. Detailed experiments have been done to map the topology of many of these systems and significant advances have been made to describe the mathematics of these networks. Compared to these bodies of work relatively little has been done to directly test the role of topology in the synchronization dynamics of coupled oscillators. This Dissertation develops technology to examine the dynamics due to topology within networks of discrete oscillatory components. The oscillatory system used here consists of the photo-inhibitable Belousov-Zhabotinsky (BZ) reaction water-in-oil emulsion where the oscillatory drops are diffusively coupled to one another and the topology is defined by the geometry of the diffusive connections. Ring networks are created from a close-packed 2D array of drops using the Programmable Illumination Microscope (PIM) in order to test Turing's theory of morphogenesis directly. Further technology is developed to create custom planar networks of BZ drops in more complicated topologies which can be individually perturbed using illumination from the PIM. The work presented here establishes the validity of using the BZ emulsion system with a PIM to study the topology induced effects on the synchronization dynamics of coupled chemical oscillators, tests the successes and limitations of Turing's theory of morphogenesis, and develops new technology to further probe the effects of network topology on a system of coupled oscillators. Finally, this Dissertation concludes by describing ongoing experiments which utilize this new technology to examine topology induced transitions of synchronization dynamics of diffusively coupled chemical oscillators.

  8. Phase correlated adequate afferent action potentials as a drive of human spinal oscillators.

    PubMed

    Schalow, G

    1993-12-01

    1. By recording, with 2 pairs of wire electrodes, single-fibre action potentials (APs) from lower sacral nerve roots of a brain-dead human and a patient with spinal cord lesion, impulse patterns of afferent APs and impulse trains of oscillatory firing motoneurons could be identified and correlated. 2. Two highly activated secondary muscle spindle afferents increased and decreased their activity at about 0.3 Hz. The duration of the doublet interspike interval of a secondary spindle afferent fibre showed no correlation to the oscillation period of the motoneuron. 3. A continuously oscillatory firing motoneuron innervating the external and sphincter showed more transient breaks with the reduction of the number of phase correlated APs from 2 spindle afferents, indicating a looser oscillation. A transient brake of a 157 msec period alpha 2-oscillation could be correlated to the shift of a interspike interval distribution peak from 150 to 180 msec of the adequate afferent input, which suggests a transient loss of the necessary phase relation. 4. Oscillatory firing alpha 2-motoneurons innervating the external bladder and anal sphincters fired independently according to their phase correlated APs from the urinary bladder stretch receptor and muscle spindle afferents respectively; the bladder motoneuron slightly inhibited the anal motoneuron. 5. Receptors of the afferents and innervation sites of oscillatory firing motoneurons could be located within the urinary tract and the anal canal.

  9. Pharmacological modulation of pulvinar resting-state regional oscillations and network dynamics in major depression

    PubMed Central

    Tadayonnejad, Reza; Ajilore, Olusola; Mickey, Brian J.; Crane, Natania A.; Hsu, David T.; Kumar, Anand; Zubieta, Jon-Kar; Langenecker, Scott A.

    2016-01-01

    The pulvinar, the largest thalamus nucleus, has rich anatomical connections with several different cortical and subcortical regions suggesting its important involvement in high-level cognitive and emotional functions. Unfortunately, pulvinar dysfunction in psychiatric disorders particularly major depression disorder has not been thoroughly examined to date. In this study we explored the alterations in the baseline regional and network activities of the pulvinar in MDD by applying spectral analysis of resting-state oscillatory activity, functional connectivity and directed (effective) connectivity on resting-state fMRI data acquired from 20 healthy controls and 19 participants with MDD. Furthermore, we tested how pharmacological treatment with duloxetine can modulate the measured local and network variables in ten participants who completed treatment. Our results revealed a frequency-band dependent modulation of power spectrum characteristics of pulvinar regional oscillatory activity. At the network level, we found MDD is associated with aberrant causal interactions between pulvinar and several systems including default-mode and posterior insular networks. It was also shown that duloxetine treatment can correct or overcompensate the pathologic network behavior of the pulvinar. In conclusion, we suggest that pulvinar regional baseline oscillatory activity and its resting-state network dynamics are compromised in MDD and can be modulated therapeutically by pharmacological treatment. PMID:27148894

  10. Relationships between cortical myeloarchitecture and electrophysiological networks

    PubMed Central

    Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Mougin, Olivier E.; Geades, Nicolas; Singh, Krish D.; Morris, Peter G.; Gowland, Penny A.; Brookes, Matthew J.

    2016-01-01

    The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology. PMID:27830650

  11. Large-scale oscillatory calcium waves in the immature cortex.

    PubMed

    Garaschuk, O; Linn, J; Eilers, J; Konnerth, A

    2000-05-01

    Two-photon imaging of large neuronal networks in cortical slices of newborn rats revealed synchronized oscillations in intracellular Ca2+ concentration. These spontaneous Ca2+ waves usually started in the posterior cortex and propagated slowly (2.1 mm per second) toward its anterior end. Ca2+ waves were associated with field-potential changes and required activation of AMPA and NMDA receptors. Although GABAA receptors were not involved in wave initiation, the developmental transition of GABAergic transmission from depolarizing to hyperpolarizing (around postnatal day 7) stopped the oscillatory activity. Thus we identified a type of large-scale Ca2+ wave that may regulate long-distance wiring in the immature cortex.

  12. Oscillatory activity in the infant brain reflects object maintenance.

    PubMed

    Kaufman, Jordy; Csibra, Gergely; Johnson, Mark H

    2005-10-18

    The apparent failure of infants to understand "object permanence" by reaching for hidden objects is perhaps the most striking and debated phenomenon in cognitive development. Of particular interest is the extent to which infants perceive and remember objects in a similar way to that of adults. Here we report two findings that clarify infant object processing. The first is that 6-mo-old infants are sensitive to visual cues to occlusion, particularly gradual deletion. The second finding is that oscillatory electroencephalogram activity recorded over right temporal channels is involved in object maintenance. This effect occurs only after disappearance in a manner consistent with occlusion and the object's continued existence.

  13. Brain oscillatory substrates of visual short-term memory capacity.

    PubMed

    Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C

    2009-11-17

    The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.

  14. Effects of Electrical and Mechanical Overstimulus on Spontaneous Oscillations in Hair Bundles

    NASA Astrophysics Data System (ADS)

    Kao, Albert; Strimbu, C. Elliott; Bozovic, Dolores

    2011-11-01

    Spontaneous oscillations constitute one of the manifestations of the active process operant in hair cells and provides a sensitive probe for their internal dynamics. The influx of ions into the stereocilia can be modulated by applying an electrical current across the epithelium and has been previously shown to strongly affect the oscillatory profiles. We applied strong transient stimuli and demonstrated that they can induce a transition from the oscillatory to the quiescent state, an effect that can last over several seconds post stimulus cessation. The dynamics of recovery to the oscillatory state was found to be dependent on the amplitude and the duration of the stimulus. Similar dynamics were observed after high-amplitude mechanical stimulus, which mimics the effects of loud sound on an individual bundle.

  15. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    PubMed

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Differential Go/NoGo Activity in Both Contingent Negative Variation and Spectral Power

    PubMed Central

    Funderud, Ingrid; Lindgren, Magnus; Løvstad, Marianne; Endestad, Tor; Voytek, Bradley; Knight, Robert T.; Solbakk, Anne-Kristin

    2012-01-01

    We investigated whether both the contingent negative variation (CNV), an event-related potential index of preparatory brain activity, and event-related oscillatory EEG activity differentiated Go and NoGo trials in a delayed response task. CNV and spectral power (4–100 Hz) were calculated from EEG activity in the preparatory interval in 16 healthy adult participants. As previously reported, CNV amplitudes were higher in Go compared to NoGo trials. In addition, event-related spectral power of the Go condition was reduced in the theta to low gamma range compared to the NoGo condition, confirming that preparing to respond is associated with modulation of event-related spectral activity as well as the CNV. Altogether, the impact of the experimental manipulation on both slow event-related potentials and oscillatory EEG activity may reflect coordinated dynamic changes in the excitability of distributed neural networks involved in preparation. PMID:23119040

  17. Bidirectional modulation of hippocampal gamma (20-80 Hz) frequency activity in vitro via alpha(α)- and beta(β)-adrenergic receptors (AR).

    PubMed

    Haggerty, D C; Glykos, V; Adams, N E; Lebeau, F E N

    2013-12-03

    Noradrenaline (NA) in the hippocampus plays an important role in memory function and has been shown to modulate different forms of synaptic plasticity. Oscillations in the gamma frequency (20-80 Hz) band in the hippocampus have also been proposed to play an important role in memory functions and, evidence from both in vitro and in vivo studies, has suggested this activity can be modulated by NA. However, the role of different NA receptor subtypes in the modulation of gamma frequency activity has not been fully elucidated. We have found that NA (30 μM) exerts a bidirectional control on the magnitude of kainate-evoked (50-200 nM) gamma frequency oscillations in the cornu Ammonis (CA3) region of the rat hippocampus in vitro via activation of different receptor subtypes. Activation of alpha-adrenergic receptors (α-AR) reduced the power of the gamma frequency oscillation. In contrast, activation of beta-adrenergic receptors (β-AR) caused an increase in the power of the gamma frequency oscillations. Using specific agonists and antagonists of AR receptor subtypes we demonstrated that these effects are mediated specifically via α1A-AR and β1-AR subtypes. NA activated both receptor subtypes, but the α1A-AR-mediated effect predominated, resulting in a reversible suppression of gamma frequency activity. These results suggest that NA is able to differentially modulate on-going gamma frequency oscillatory activity that could result in either increased or decreased information flow through the hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. LES-based characterization of a suction and oscillatory blowing fluidic actuator

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Moin, Parviz

    2015-11-01

    Recently, a novel fluidic actuator using steady suction and oscillatory blowing was developed for control of turbulent flows. The suction and oscillatory blowing (SaOB) actuator combines steady suction and pulsed oscillatory blowing into a single device. The actuation is based upon a self-sustained mechanism of confined jets and does not require any moving parts. The control output is determined by a pressure source and the geometric details, and no additional input is needed. While its basic mechanisms have been investigated to some extent, detailed characteristics of internal turbulent flows are not well understood. In this study, internal flows of the SaOB actuator are simulated using large-eddy simulation (LES). Flow characteristics within the actuator are described in detail for a better understanding of the physical mechanisms and improving the actuator design. LES predicts the self-sustained oscillations of the turbulent jet. Switching frequency, maximum velocity at the actuator outlets, and wall pressure distribution are in good agreement with the experimental measurements. The computational results are used to develop simplified boundary conditions for numerical experiments of active flow control. Supported by the Boeing company.

  19. Neural dynamics during repetitive visual stimulation

    NASA Astrophysics Data System (ADS)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. Significance. These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.

  20. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina

    PubMed Central

    Haq, Wadood; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Euler, Thomas; Schubert, Timm

    2014-01-01

    During neuronal degenerative diseases, neuronal microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. The functional consequences of such remodeling are mostly unknown. For instance, in mutant rd1 mouse retina, a common model for Retinitis Pigmentosa, rod bipolar cells (RBCs) establish contacts with remnant cone photoreceptors (cones) as a consequence of rod photoreceptor cell death and the resulting lack of presynaptic input. To assess the functional connectivity in the remodeled, light-insensitive outer rd1 retina, we recorded spontaneous population activity in retinal wholemounts using Ca2+ imaging and identified the participating cell types. Focusing on cones, RBCs and horizontal cells (HCs), we found that these cell types display spontaneous oscillatory activity and form synchronously active clusters. Overall activity was modulated by GABAergic inhibition from interneurons such as HCs and/or possibly interplexiform cells. Many of the activity clusters comprised both cones and RBCs. Opposite to what is expected from the intact (wild-type) cone-ON bipolar cell pathway, cone and RBC activity was positively correlated and, at least partially, mediated by glutamate transporters expressed on RBCs. Deletion of gap junctional coupling between cones reduced the number of clusters, indicating that electrical cone coupling plays a crucial role for generating the observed synchronized oscillations. In conclusion, degeneration-induced synaptic remodeling of the rd1 retina results in a complex self-sustained outer retinal oscillatory network, that complements (and potentially modulates) the recently described inner retinal oscillatory network consisting of amacrine, bipolar and ganglion cells. PMID:25249942

  1. rTMS Induced Tinnitus Relief Is Related to an Increase in Auditory Cortical Alpha Activity

    PubMed Central

    Müller, Nadia; Lorenz, Isabel; Langguth, Berthold; Weisz, Nathan

    2013-01-01

    Chronic tinnitus, the continuous perception of a phantom sound, is a highly prevalent audiological symptom. A promising approach for the treatment of tinnitus is repetitive transcranial magnetic stimulation (rTMS) as this directly affects tinnitus-related brain activity. Several studies indeed show tinnitus relief after rTMS, however effects are moderate and vary strongly across patients. This may be due to a lack of knowledge regarding how rTMS affects oscillatory activity in tinnitus sufferers and which modulations are associated with tinnitus relief. In the present study we examined the effects of five different stimulation protocols (including sham) by measuring tinnitus loudness and tinnitus-related brain activity with Magnetoencephalography before and after rTMS. Changes in oscillatory activity were analysed for the stimulated auditory cortex as well as for the entire brain regarding certain frequency bands of interest (delta, theta, alpha, gamma). In line with the literature the effects of rTMS on tinnitus loudness varied strongly across patients. This variability was also reflected in the rTMS effects on oscillatory activity. Importantly, strong reductions in tinnitus loudness were associated with increases in alpha power in the stimulated auditory cortex, while an unspecific decrease in gamma and alpha power, particularly in left frontal regions, was linked to an increase in tinnitus loudness. The identification of alpha power increase as main correlate for tinnitus reduction sheds further light on the pathophysiology of tinnitus. This will hopefully stimulate the development of more effective therapy approaches. PMID:23390539

  2. Modulation of Beta-Band Activity in the Subgenual Anterior Cingulate Cortex during Emotional Empathy in Treatment-Resistant Depression.

    PubMed

    Merkl, Angela; Neumann, Wolf-Julian; Huebl, Julius; Aust, Sabine; Horn, Andreas; Krauss, Joachim K; Dziobek, Isabel; Kuhn, Jens; Schneider, Gerd-Helge; Bajbouj, Malek; Kühn, Andrea A

    2016-06-01

    Deep brain stimulation (DBS) is a promising approach in treatment-resistant depression (TRD). TRD is associated with problems in interpersonal relationships, which might be linked to impaired empathy. Here, we investigate the influence of DBS in the subgenual anterior cingulate cortex (sgACC) on empathy in patients with TRD and explore the pattern of oscillatory sgACC activity during performance of the multifaceted empathy test. We recorded local field potential activity directly from sgACC via DBS electrodes in patients. Based on previous behavioral findings, we expected disrupted empathy networks. Patients showed increased empathic involvement ratings toward negative stimuli as compared with healthy subjects that were significantly reduced after 6 months of DBS. Stimulus-related oscillatory activity pattern revealed a broad desynchronization in the beta (14-35 Hz) band that was significantly larger during patients' reported emotional empathy for negative stimuli than when patients reported to have no empathy. Beta desynchronization for empathic involvement correlated with self-reported severity of depression. Our results indicate a "negativity bias" in patients that can be reduced by DBS. Moreover, direct recordings show activation of the sgACC area during emotional processing and propose that changes in beta-band oscillatory activity in the sgACC might index empathic involvement of negative emotion in TRD. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs.

    PubMed

    Shubina, Liubov; Aliev, Rubin; Kitchigina, Valentina

    2017-04-15

    Changes in rhythmic activity can serve as early biomarkers of pathological alterations, but it remains unclear how different types of rhythmic activity are altered during neurodegenerative processes. Glutamatergic neurotoxicity, evoked by kainic acid (KA), causes hyperexcitation and acute seizures that result in delayed brain damage. We employed wide frequency range (0.1-300Hz) local field potential recordings in guinea pigs to study the oscillatory activity of the hippocampus, entorhinal cortex, medial septum, and amygdala in healthy animals for three months after KA introduction. To clarify whether the activation of endocannabinoid (eCB) system can influence toxic KA action, AM404, an eCB reuptake inhibitor, and URB597, an inhibitor of fatty acid amide hydrolase, were applied. The cannabinoid CB1 receptor antagonist AM251 was also tested. Coadministration of AM404 or URB597 with KA reduced acute behavioral seizures, but electrographic seizures were still registered. During the three months following KA injection, various trends in the oscillatory activities were observed, including an increase in activity power at all frequency bands in the hippocampus and a progressive long-term decrease in the medial septum. In the KA- and KA/AM251-treated animals, disturbances of the oscillatory activities were accompanied by cell loss in the dorsal hippocampus and mossy fiber sprouting in the dentate gyrus. Injections of AM404 or URB597 softened alterations in electrical activity of the brain and prevented hippocampal neuron loss and synaptic reorganization. Our results demonstrate the protective potential of the eCB system during excitotoxic influences. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients

    PubMed Central

    2010-01-01

    Background The physiopathological mechanism underlying the tinnitus phenomenon is still the subject of an ongoing debate. Since oscillatory EEG activity is increasingly recognized as a fundamental hallmark of cortical integrative functions, this study investigates deviations from the norm of different resting EEG parameters in patients suffering from chronic tinnitus. Results Spectral parameters of resting EEG of male tinnitus patients (n = 8, mean age 54 years) were compared to those of age-matched healthy males (n = 15, mean age 58.8 years). On average, the patient group exhibited higher spectral power over the frequency range of 2-100 Hz. Using LORETA source analysis, the generators of delta, theta, alpha and beta power increases were localized dominantly to left auditory (Brodmann Areas (BA) 41,42, 22), temporo-parietal, insular posterior, cingulate anterior and parahippocampal cortical areas. Conclusions Tinnitus patients show a deviation from the norm of different resting EEG parameters, characterized by an overproduction of resting state delta, theta and beta brain activities, providing further support for the microphysiological and magnetoencephalographic evidence pointing to a thalamocortical dysrhythmic process at the source of tinnitus. These results also provide further confirmation that reciprocal involvements of both auditory and associative/paralimbic areas are essential in the generation of tinnitus. PMID:20334674

  5. Cellular-based modeling of oscillatory dynamics in brain networks.

    PubMed

    Skinner, Frances K

    2012-08-01

    Oscillatory, population activities have long been known to occur in our brains during different behavioral states. We know that many different cell types exist and that they contribute in distinct ways to the generation of these activities. I review recent papers that involve cellular-based models of brain networks, most of which include theta, gamma and sharp wave-ripple activities. To help organize the modeling work, I present it from a perspective of three different types of cellular-based modeling: 'Generic', 'Biophysical' and 'Linking'. Cellular-based modeling is taken to encompass the four features of experiment, model development, theory/analyses, and model usage/computation. The three modeling types are shown to include these features and interactions in different ways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    PubMed

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Dynamics of a population of oscillatory and excitable elements.

    PubMed

    O'Keeffe, Kevin P; Strogatz, Steven H

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  8. Rheological aspects of C. elegans suspensions under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Malvar, Sara; Carmo, Bruno S.; Cunha, Francisco R.

    2017-11-01

    The rheological nature of an active suspension of nematodes is discussed. The nematode chosen for the study is Caenorhabditis elegans and its motion is subjected to the time reversibility of creeping flows. We investigate how the movement of the nematodes under different volumetric fractions alter the fluid rheological characteristics, considering collective behavior. We provide a deep discussion based on the experimental data obtained through a rotating disk rheometer. Oscillatory shear and step strain tests were conducted in order to present a discussion regarding zero shear viscosity and relaxation time for different nematodes concentrations. Moreover, theassociated time scales coupling provide a good physical comprehension of active suspensions. The authors wish to aknowledge the following Brazilian research foundation: Fapesp.

  9. Kinetic insights over a PEMFC operating on stationary and oscillatory states.

    PubMed

    Mota, Andressa; Gonzalez, Ernesto R; Eiswirth, Markus

    2011-12-01

    Kinetic investigations in the oscillatory state have been carried out in order to shed light on the interplay between the complex kinetics exhibited by a proton exchange membrane fuel cell fed with poisoned H(2) (108 ppm of CO) and the other in serie process. The apparent activation energy (E(a)) in the stationary state was investigated in order to clarify the E(a) observed in the oscillatory state. The apparent activation energy in the stationary state, under potentiostatic control, rendered (a) E(a) ≈ 50-60 kJ mol(-1) over 0.8 V < E < 0.6 V and (b) E(a) ≈ 10 kJ mol(-1) at E = 0.3 V. The former is related to the H(2) adsorption in the vacancies of the surface poisoned by CO and the latter is correlated to the process of proton conductivity in the membrane. The dependence of the period-one oscillations on the temperature yielded a genuine Arrhenius dependence with two E(a) values: (a) E(a) around 70 kJ mol(-1), at high temperatures, and (b) E(a) around 10-15 kJ mol(-1), at lower temperatures. The latter E(a) indicates the presence of protonic mass transport coupled to the essential oscillatory mechanism. These insights point in the right direction to predict spatial couplings between anode and cathode as having the highest strength as well as to speculate the most likely candidates to promote spatial inhomogeneities. © 2011 American Chemical Society

  10. Modeling oscillatory dynamics in brain microcircuits as a way to help uncover neurological disease mechanisms: A proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skinner, F. K.; Department of Medicine; Department of Physiology, University of Toronto Medical Sciences Building, 3rd Floor, 1 King's College Circle, Toronto, Ontario M5S 1A8

    There is an undisputed need and requirement for theoretical and computational studies in Neuroscience today. Furthermore, it is clear that oscillatory dynamical output from brain networks is representative of various behavioural states, and it is becoming clear that one could consider these outputs as measures of normal and pathological brain states. Although mathematical modeling of oscillatory dynamics in the context of neurological disease exists, it is a highly challenging endeavour because of the many levels of organization in the nervous system. This challenge is coupled with the increasing knowledge of cellular specificity and network dysfunction that is associated with disease.more » Recently, whole hippocampus in vitro preparations from control animals have been shown to spontaneously express oscillatory activities. In addition, when using preparations derived from animal models of disease, these activities show particular alterations. These preparations present an opportunity to address challenges involved with using models to gain insight because of easier access to simultaneous cellular and network measurements, and pharmacological modulations. We propose that by developing and using models with direct links to experiment at multiple levels, which at least include cellular and microcircuit, a cycling can be set up and used to help us determine critical mechanisms underlying neurological disease. We illustrate our proposal using our previously developed inhibitory network models in the context of these whole hippocampus preparations and show the importance of having direct links at multiple levels.« less

  11. Hearing and seeing meaning in noise: Alpha, beta, and gamma oscillations predict gestural enhancement of degraded speech comprehension.

    PubMed

    Drijvers, Linda; Özyürek, Asli; Jensen, Ole

    2018-05-01

    During face-to-face communication, listeners integrate speech with gestures. The semantic information conveyed by iconic gestures (e.g., a drinking gesture) can aid speech comprehension in adverse listening conditions. In this magnetoencephalography (MEG) study, we investigated the spatiotemporal neural oscillatory activity associated with gestural enhancement of degraded speech comprehension. Participants watched videos of an actress uttering clear or degraded speech, accompanied by a gesture or not and completed a cued-recall task after watching every video. When gestures semantically disambiguated degraded speech comprehension, an alpha and beta power suppression and a gamma power increase revealed engagement and active processing in the hand-area of the motor cortex, the extended language network (LIFG/pSTS/STG/MTG), medial temporal lobe, and occipital regions. These observed low- and high-frequency oscillatory modulations in these areas support general unification, integration and lexical access processes during online language comprehension, and simulation of and increased visual attention to manual gestures over time. All individual oscillatory power modulations associated with gestural enhancement of degraded speech comprehension predicted a listener's correct disambiguation of the degraded verb after watching the videos. Our results thus go beyond the previously proposed role of oscillatory dynamics in unimodal degraded speech comprehension and provide first evidence for the role of low- and high-frequency oscillations in predicting the integration of auditory and visual information at a semantic level. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Hearing and seeing meaning in noise: Alpha, beta, and gamma oscillations predict gestural enhancement of degraded speech comprehension

    PubMed Central

    Özyürek, Asli; Jensen, Ole

    2018-01-01

    Abstract During face‐to‐face communication, listeners integrate speech with gestures. The semantic information conveyed by iconic gestures (e.g., a drinking gesture) can aid speech comprehension in adverse listening conditions. In this magnetoencephalography (MEG) study, we investigated the spatiotemporal neural oscillatory activity associated with gestural enhancement of degraded speech comprehension. Participants watched videos of an actress uttering clear or degraded speech, accompanied by a gesture or not and completed a cued‐recall task after watching every video. When gestures semantically disambiguated degraded speech comprehension, an alpha and beta power suppression and a gamma power increase revealed engagement and active processing in the hand‐area of the motor cortex, the extended language network (LIFG/pSTS/STG/MTG), medial temporal lobe, and occipital regions. These observed low‐ and high‐frequency oscillatory modulations in these areas support general unification, integration and lexical access processes during online language comprehension, and simulation of and increased visual attention to manual gestures over time. All individual oscillatory power modulations associated with gestural enhancement of degraded speech comprehension predicted a listener's correct disambiguation of the degraded verb after watching the videos. Our results thus go beyond the previously proposed role of oscillatory dynamics in unimodal degraded speech comprehension and provide first evidence for the role of low‐ and high‐frequency oscillations in predicting the integration of auditory and visual information at a semantic level. PMID:29380945

  13. Resting state EEG correlates of memory consolidation.

    PubMed

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (<1Hz), in concert with reduced alpha (8-12Hz) activity. Mindwandering during the retention interval was also associated with improved memory. These observations suggest that a short period of quiet rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Linking Essential Tremor to the Cerebellum: Physiological Evidence.

    PubMed

    Filip, Pavel; Lungu, Ovidiu V; Manto, Mario-Ubaldo; Bareš, Martin

    2016-12-01

    Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography-magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.

  15. Oscillatory brain activity differentially reflects false belief understanding and complementation syntax processing.

    PubMed

    Guan, Yao; Farrar, M Jeffrey; Keil, Andreas

    2018-02-01

    False belief understanding (FBU) enables people to consider conflicting beliefs about the same situation. While language has been demonstrated to be a correlate of FBU, there is still controversy about the extent to which a specific aspect of language, complementation syntax, is a necessary condition for FBU. The present study tested an important notion from the debate proposing that complementation syntax task is redundant to FBU measures. Specifically, we examined electrophysiological correlates of false belief, false complementation, and their respective true conditions in adults using electroencephalography (EEG), focusing on indices of oscillatory brain activity and large-scale connectivity. The results showed strong modulation of parieto-occipital alpha (8-12 Hz) and beta (13-20 Hz) power by the experimental manipulations, with heightened sustained alpha power reflective of effortful internal processing observed in the false compared to the true conditions and reliable beta power reductions sensitive to mentalizing and/or syntactic demands in the belief versus the complementation conditions. In addition, higher coupling between parieto-occipital regions and widespread frontal sites in the beta band was found for the false-belief condition selectively. The result of divergence in beta oscillatory activity and in connectivity between false belief and false complementation does not support the redundancy hypothesis.

  16. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults.

    PubMed

    Saltuklaroglu, Tim; Harkrider, Ashley W; Thornton, David; Jenson, David; Kittilstved, Tiffani

    2017-06-01

    Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dynamics of corticospinal motor control during overground and treadmill walking in humans.

    PubMed

    Roeder, Luisa; Boonstra, Tjeerd Willem; Smith, Simon S; Kerr, Graham K

    2018-05-30

    Increasing evidence suggests cortical involvement in the control of human gait. However, the nature of corticospinal interactions remains poorly understood. We performed time-frequency analysis of electrophysiological activity acquired during treadmill and overground walking in 22 healthy, young adults. Participants walked at their preferred speed (4.2, SD 0.4 km h -1 ), which was matched across both gait conditions. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence (ITC) were assessed for EEG from bilateral sensorimotor cortices and EMG from the bilateral tibialis anterior (TA) muscles. Cortical power, CMC and ITC at theta, alpha, beta and gamma frequencies (4-45 Hz) increased during the double support phase of the gait cycle for both overground and treadmill walking. High beta (21-30 Hz) CMC and ITC of EMG was significantly increased during overground compared to treadmill walking, as well as EEG power in theta band (4-7 Hz). The phase spectra revealed positive time lags at alpha, beta and gamma frequencies, indicating that the EEG response preceded the EMG response. The parallel increases in power, CMC and ITC during double support suggest evoked responses at spinal and cortical populations rather than a modulation of ongoing corticospinal oscillatory interactions. The evoked responses are not consistent with the idea of synchronization of ongoing corticospinal oscillations, but instead suggest coordinated cortical and spinal inputs during the double support phase. Frequency-band dependent differences in power, CMC and ITC between overground and treadmill walking suggest differing neural control for the two gait modalities, emphasizing the task-dependent nature of neural processes during human walking.

  18. Cortical oscillations scan using chirp-evoked potentials in 6-hydroxydopamine rat model of Parkinson's disease.

    PubMed

    Pérez-Alcázar, Marta; Nicolás, María Jesús; Valencia, Miguel; Alegre, Manuel; López-Azcárate, Jon; Iriarte, Jorge; Artieda, Julio

    2010-01-15

    There has been a growing interest during the last years on the relationship between Parkinson's disease and changes in the oscillatory activity, mostly in the cortico-basal motor loop. As Parkinson's disease (PD) is not limited to motor symptoms, it is logical to assume that the changes in oscillatory activity are not limited to this loop. Steady-state responses (SSR) are the result of averaging individual responses to trains of rhythmic stimuli delivered at a constant frequency. The amplitude of the response varies depending on the stimulus modality and stimulation rate, with a frequency of maximal response that is probably associated to the working frequency of the pathway involved. The study of SSR may be of interest in PD as a non-invasive test of cortical oscillatory activity. Our aim was to study the changes in auditory steady-state responses (ASSR) in the 6-hydroxydopamine (6-OHDA) model of Parkinson's disease in rats. We recorded the ASSR over the auditory cortex in a group of 10 control and 17 6-OHDA lesioned rats (the latter before and after the administration of the dopaminergic agonist apomorphine) both awake and under anesthesia with ketamine/xylazine, using chirp-modulated stimuli. The three conditions (control, lesion, lesion plus apomorphine) were compared with special emphasis on the amplitude, inter-trial phase coherence, and frequency of maximal response. A reduction in the frequency of maximal response (between 40 and 60 Hz) was observed in the 6-OHDA lesioned rats that was normalized after apomorphine injection. The administration of this dopaminergic agonist also reduced the inter-trial phase coherence of the response in frequencies above 170 Hz. These findings suggest that the nigrostriatal dopaminergic system may be involved in the regulation of oscillatory activity not only in motor circuits, but also in sensory responses. Copyright 2009 Elsevier B.V. All rights reserved.

  19. On oscillatory microstructure during cellular growth of directionally solidified Sn–36at.%Ni peritectic alloy

    PubMed Central

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-01-01

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn–36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure. PMID:27066761

  20. On oscillatory microstructure during cellular growth of directionally solidified Sn-36at.%Ni peritectic alloy.

    PubMed

    Peng, Peng; Li, Xinzhong; Li, Jiangong; Su, Yanqing; Guo, Jingjie

    2016-04-12

    An oscillatory microstructure has been observed during deep-cellular growth of directionally solidified Sn-36at.%Ni hyperperitectic alloy containing intermetallic compounds with narrow solubility range. This oscillatory microstructure with a dimension of tens of micrometers has been observed for the first time. The morphology of this wave-like oscillatory structure is similar to secondary dendrite arms, and can be observed only in some local positions of the sample. Through analysis such as successive sectioning of the sample, it can be concluded that this oscillatory microstructure is caused by oscillatory convection of the mushy zone during solidification. And the influence of convection on this oscillatory microstructure was characterized through comparison between experimental and calculations results on the wavelength. Besides, the change in morphology of this oscillatory microstructure has been proved to be caused by peritectic transformation during solidification. Furthermore, the melt concentration increases continuously during solidification of intermetallic compounds with narrow solubility range, which helps formation of this oscillatory microstructure.

  1. EEG Oscillatory States: Universality, Uniqueness and Specificity across Healthy-Normal, Altered and Pathological Brain Conditions

    PubMed Central

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.

    2014-01-01

    For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292

  2. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: a pilot study.

    PubMed

    Saebipour, Mohammad R; Joghataei, Mohammad T; Yoonessi, Ali; Sadeghniiat-Haghighi, Khosro; Khalighinejad, Nima; Khademi, Soroush

    2015-10-01

    Recent evidence suggests that lack of slow-wave activity may play a fundamental role in the pathogenesis of insomnia. Pharmacological approaches and brain stimulation techniques have recently offered solutions for increasing slow-wave activity during sleep. We used slow (0.75 Hz) oscillatory transcranial direct current stimulation during stage 2 of non-rapid eye movement sleeping insomnia patients for resonating their brain waves to the frequency of sleep slow-wave. Six patients diagnosed with either sleep maintenance or non-restorative sleep insomnia entered the study. After 1 night of adaptation and 1 night of baseline polysomnography, patients randomly received sham or real stimulation on the third and fourth night of the experiment. Our preliminary results show that after termination of stimulations (sham or real), slow oscillatory transcranial direct current stimulation increased the duration of stage 3 of non-rapid eye movement sleep by 33 ± 26 min (P = 0.026), and decreased stage 1 of non-rapid eye movement sleep duration by 22 ± 17.7 min (P = 0.028), compared with sham. Slow oscillatory transcranial direct current stimulation decreased stage 1 of non-rapid eye movement sleep and wake time after sleep-onset durations, together, by 55.4 ± 51 min (P = 0.045). Slow oscillatory transcranial direct current stimulation also increased sleep efficiency by 9 ± 7% (P = 0.026), and probability of transition from stage 2 to stage 3 of non-rapid eye movement sleep by 20 ± 17.8% (P = 0.04). Meanwhile, slow oscillatory transcranial direct current stimulation decreased transitions from stage 2 of non-rapid eye movement sleep to wake by 12 ± 6.7% (P = 0.007). Our preliminary results suggest a sleep-stabilizing role for the intervention, which may mimic the effect of sleep slow-wave-enhancing drugs. © 2015 European Sleep Research Society.

  3. Observations of Running Penumbral Waves Emerging in a Sunspot

    NASA Astrophysics Data System (ADS)

    Priya, T. G.; Wenda, Cao; Jiangtao, Su; Jie, Chen; Xinjie, Mao; Yuanyong, Deng; Robert, Erdélyi

    2018-01-01

    We present results from the investigation of 5 minute umbral oscillations in a single-polarity sunspot of active region NOAA 12132. The spectra of TiO, Hα, and 304 Å are used for corresponding atmospheric heights from the photosphere to lower corona. Power spectrum analysis at the formation height of Hα – 0.6 Å to the Hα center resulted in the detection of 5 minute oscillation signals in intensity interpreted as running waves outside the umbral center, mostly with vertical magnetic field inclination >15°. A phase-speed filter is used to extract the running wave signals with speed v ph > 4 km s‑1, from the time series of Hα – 0.4 Å images, and found twenty-four 3 minute umbral oscillatory events in a duration of one hour. Interestingly, the initial emergence of the 3 minute umbral oscillatory events are noticed closer to or at umbral boundaries. These 3 minute umbral oscillatory events are observed for the first time as propagating from a fraction of preceding running penumbral waves (RPWs). These fractional wavefronts rapidly separate from RPWs and move toward the umbral center, wherein they expand radially outwards suggesting the beginning of a new umbral oscillatory event. We found that most of these umbral oscillatory events develop further into RPWs. We speculate that the waveguides of running waves are twisted in spiral structures and hence the wavefronts are first seen at high latitudes of umbral boundaries and later at lower latitudes of the umbral center.

  4. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  5. Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus

    NASA Technical Reports Server (NTRS)

    Furlan, R.; Porta, A.; Costa, F.; Tank, J.; Baker, L.; Schiavi, R.; Robertson, D.; Malliani, A.; Mosqueda-Garcia, R.

    2000-01-01

    BACKGROUND: We tested the hypothesis that a common oscillatory pattern might characterize the rhythmic discharge of muscle sympathetic nerve activity (MSNA) and the spontaneous variability of heart rate and systolic arterial pressure (SAP) during a physiological increase of sympathetic activity induced by the head-up tilt maneuver. METHODS AND RESULTS: Ten healthy subjects underwent continuous recordings of ECG, intra-arterial pressure, respiratory activity, central venous pressure, and MSNA, both in the recumbent position and during 75 degrees head-up tilt. Venous samplings for catecholamine assessment were obtained at rest and during the fifth minute of tilt. Spectrum and cross-spectrum analyses of R-R interval, SAP, and MSNA variabilities and of respiratory activity provided the low (LF, 0.1 Hz) and high frequency (HF, 0.27 Hz) rhythmic components of each signal and assessed their linear relationships. Compared with the recumbent position, tilt reduced central venous pressure, but blood pressure was unchanged. Heart rate, MSNA, and plasma epinephrine and norepinephrine levels increased, suggesting a marked enhancement of overall sympathetic activity. During tilt, LF(MSNA) increased compared with the level in the supine position; this mirrored similar changes observed in the LF components of R-R interval and SAP variabilities. The increase of LF(MSNA) was proportional to the amount of the sympathetic discharge. The coupling between LF components of MSNA and R-R interval and SAP variabilities was enhanced during tilt compared with rest. CONCLUSIONS: During the sympathetic activation induced by tilt, a similar oscillatory pattern based on an increased LF rhythmicity characterized the spontaneous variability of neural sympathetic discharge, R-R interval, and arterial pressure.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneda, Akihiro, E-mail: ayoneda@sci.hokudai.ac.jp; Division of Molecular Therapeutics, Center for Food & Medical Innovation, Hokkaido University; Watanabe, Tomomasa

    In mammals, phospholipase Cζ (PLCζ) has the ability to trigger calcium (Ca{sup 2+}) oscillations in oocytes, leading to oocyte activation. Although there is a species-specific difference in the PLCζ-induced Ca{sup 2+} oscillatory pattern, whether PLCζ-induced Ca{sup 2+} oscillations affect preimplantation embryonic development remains unclear. Here, we show that Ca{sup 2+} oscillations in mouse PLCζ cRNA-injected oocytes stopped just before pronuclear formation, while that in porcine PLCζ cRNA-injected oocytes continued for several hours after pronuclei had been formed. This difference of Ca{sup 2+} oscillations in oocytes after pronuclear formation was dependent on the difference in the nuclear localization signal (NLS) sequencemore » of PLCζ between the mouse and pig. However, mouse and porcine PLCζ cRNA-injected oocytes parthenogenetically developed to blastocysts regardless of the absence or presence of Ca{sup 2+} oscillations after pronuclear formation. Furthermore, the developmental rate of mouse or porcine PLCζ-activated oocytes injected with round spermatids to the blastocyst stage was not significantly different from that of strontium-activated oocytes injected with round spermatids. These results suggest that the PLCζ-induced Ca{sup 2+} oscillatory pattern in mouse oocytes is dependent on the NLS sequence of PLCζ and injection of PLCζ may be a useful method for activation of round spermatid-injected and somatic nuclear transferred oocytes. - Highlights: • Porcine PLCζ-induced Ca{sup 2+} oscillations continued after pronuclear formation. • The Ca{sup 2+} oscillatory pattern was dependent on the difference in the NLS sequence of PLCζ. • PLCζ-activated oocytes parthenogenetically developed to blastocysts. • PLCζ-activated oocytes injected with round spermatids developed to blastocysts.« less

  7. Influence of chronic endurance exercise training on conduit artery retrograde and oscillatory shear in older adults.

    PubMed

    Casey, Darren P; Schneider, Aaron C; Ueda, Kenichi

    2016-10-01

    With aging, there tends to be an increase in retrograde and oscillatory shear in peripheral conduit arteries of humans. Whether the increase in shear rate is due to the aging process or an effect of a less active lifestyle that often accompanies aging is unknown. Therefore, we examined whether chronic endurance exercise training attenuates conduit artery retrograde and oscillatory shear in older adults. Brachial and common femoral artery mean blood velocities and diameter were determined via Doppler ultrasound under resting conditions, and shear rate was calculated in 13 young (24 ± 2 years), 17 older untrained (66 ± 3 years), and 16 older endurance exercise-trained adults (66 ± 7 years). Brachial artery retrograde (-9.1 ± 6.4 vs. -12.6 ± 9.4 s(-1); P = 0.35) and oscillatory (0.14 ± 0.08 vs. 0.14 ± 0.08 arbitrary units; P = 0.99) shear were similar between the older trained and untrained groups, whereas brachial artery retrograde and oscillatory shear were greater in older untrained compared to young adults (-5.0 ± 3.4, 0.08 ± 0.05 s(-1) arbitrary units, P = 0.017 and 0.048, respectively). There was no difference between the young and older trained brachial retrograde (P = 0.29) and oscillatory (P = 0.07) shear. Common femoral artery retrograde (-6.3 ± 2.9 s(-1)) and oscillatory (0.21 ± 0.08 arbitrary units) shear were reduced in older trained compared to the older untrained group (-10.4 ± 4.1 and 0.30 ± 0.09 s(-1) arbitrary units, both P = 0.005 and 0.006, respectively), yet similar to young adults (-7.1 ± 3.5 and 0.19 ± 0.06 s(-1) arbitrary units, P = 0.81 and 0.87, respectively). Our results suggest that chronic endurance exercise training in older adults ameliorates retrograde and oscillatory shear rate patterns, particularly in the common femoral artery.

  8. Phase slips in oscillatory hair bundles.

    PubMed

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-05

    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production.

  9. The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties

    PubMed Central

    Llinás, Rodolfo R.

    2014-01-01

    The reflexological view of brain function (Sherrington, 1906) has played a crucial role in defining both the nature of connectivity and the role of the synaptic interactions among neuronal circuits. One implicit assumption of this view, however, has been that CNS function is fundamentally driven by sensory input. This view was questioned as early as the beginning of the last century when a possible role for intrinsic activity in CNS function was proposed by Thomas Graham Brow (Brown, 1911, 1914). However, little progress was made in addressing intrinsic neuronal properties in vertebrates until the discovery of calcium conductances in vertebrate central neurons leading dendritic electroresponsiveness (Llinás and Hess, 1976; Llinás and Sugimori, 1980a,b) and subthreshold neuronal oscillation in mammalian inferior olive (IO) neurons (Llinás and Yarom, 1981a,b). This happened in parallel with a similar set of findings concerning invertebrate neuronal system (Marder and Bucher, 2001). The generalization into a more global view of intrinsic rhythmicity, at forebrain level, occurred initially with the demonstration that the thalamus has similar oscillatory properties (Llinás and Jahnsen, 1982) and the ionic properties responsible for some oscillatory activity were, in fact, similar to those in the IO (Jahnsen and Llinás, 1984; Llinás, 1988). Thus, lending support to the view that not only motricity, but cognitive properties, are organized as coherent oscillatory states (Pare et al., 1992; Singer, 1993; Hardcastle, 1997; Llinás et al., 1998; Varela et al., 2001). PMID:24478634

  10. Dynamic processes in regulation and some implications for biofeedback and biobehavioral interventions.

    PubMed

    Lehrer, Paul; Eddie, David

    2013-06-01

    Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.

  11. Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson's disease.

    PubMed

    Hurtado, José M; Rubchinsky, Leonid L; Sigvardt, Karen A; Wheelock, Vicki L; Pappas, Conrad T E

    2005-03-01

    Both standard spectral analysis and time-dependent phase correlation techniques were applied to 27 pairs of tremor-related single units in the globus pallidus internus (GPi) and EMG of patients with Parkinson's disease (PD) undergoing stereotactic neurosurgery. Over long time-scales (approximately 60 s), GPi tremor-related units were statistically coherent with restricted regions of the peripheral musculature displaying tremor. The distribution of pooled coherence across all pairs supports a classification of GPi cell/EMG oscillatory pairs into coherent or noncoherent. Analysis using approximately 2-s sliding windows shows that oscillatory activity in both GPi tremor units and muscles occurs intermittently over time. For brain/muscle pairs that are coherent, there is partial overlap in the times of oscillatory activity but, in most cases, no significant correlation between the times of oscillatory subepisodes in the two signals. Phase locking between coherent pairs occurs transiently; however, the phase delay is similar for different phase-locking subepisodes. Noncoherent pairs also show episodes of transient phase locking, but they occurred less frequently, and no preferred phase delay was seen across subepisodes. Tremor oscillations in pallidum and EMGs are punctuated by phase slips, which were classified as synchronizing or desynchronizing depending on their effect on phase locking. In coherent pairs, the incidence of synchronizing slips is higher than desynchronizing slips, whereas no significant difference was seen for noncoherent pairs. The results of this quantitative characterization of parkinsonian tremor provide a foundation for hypotheses about the structure and dynamical functioning of basal ganglia motor control networks involved in tremor generation.

  12. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function

    PubMed Central

    Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A.

    2016-01-01

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2–12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16–0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. PMID:27927961

  13. Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.

    PubMed

    Zelano, Christina; Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A

    2016-12-07

    The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. Copyright © 2016 the authors 0270-6474/16/3612448-20$15.00/0.

  14. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats.

    PubMed

    Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming

    2016-08-01

    Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Beta band oscillations in motor cortex reflect neural population signals that delay movement onset

    PubMed Central

    Khanna, Preeya; Carmena, Jose M

    2017-01-01

    Motor cortical beta oscillations have been reported for decades, yet their behavioral correlates remain unresolved. Some studies link beta oscillations to changes in underlying neural activity, but the specific behavioral manifestations of these reported changes remain elusive. To investigate how changes in population neural activity, beta oscillations, and behavior are linked, we recorded multi-scale neural activity from motor cortex while three macaques performed a novel neurofeedback task. Subjects volitionally brought their beta oscillatory power to an instructed state and subsequently executed an arm reach. Reaches preceded by a reduction in beta power exhibited significantly faster movement onset times than reaches preceded by an increase in beta power. Further, population neural activity was found to shift farther from a movement onset state during beta oscillations that were neurofeedback-induced or naturally occurring during reaching tasks. This finding establishes a population neural basis for slowed movement onset following periods of beta oscillatory activity. DOI: http://dx.doi.org/10.7554/eLife.24573.001 PMID:28467303

  16. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion

    PubMed Central

    Noga, Brian R.; Sanchez, Francisco J.; Villamil, Luz M.; O’Toole, Christopher; Kasicki, Stefan; Olszewski, Maciej; Cabaj, Anna M.; Majczyński, Henryk; Sławińska, Urszula; Jordan, Larry M.

    2017-01-01

    Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites. PMID:28579945

  17. Event-related theta synchronization predicts deficit in facial affect recognition in schizophrenia.

    PubMed

    Csukly, Gábor; Stefanics, Gábor; Komlósi, Sarolta; Czigler, István; Czobor, Pál

    2014-02-01

    Growing evidence suggests that abnormalities in the synchronized oscillatory activity of neurons in schizophrenia may lead to impaired neural activation and temporal coding and thus lead to neurocognitive dysfunctions, such as deficits in facial affect recognition. To gain an insight into the neurobiological processes linked to facial affect recognition, we investigated both induced and evoked oscillatory activity by calculating the Event Related Spectral Perturbation (ERSP) and the Inter Trial Coherence (ITC) during facial affect recognition. Fearful and neutral faces as well as nonface patches were presented to 24 patients with schizophrenia and 24 matched healthy controls while EEG was recorded. The participants' task was to recognize facial expressions. Because previous findings with healthy controls showed that facial feature decoding was associated primarily with oscillatory activity in the theta band, we analyzed ERSP and ITC in this frequency band in the time interval of 140-200 ms, which corresponds to the N170 component. Event-related theta activity and phase-locking to facial expressions, but not to nonface patches, predicted emotion recognition performance in both controls and patients. Event-related changes in theta amplitude and phase-locking were found to be significantly weaker in patients compared with healthy controls, which is in line with previous investigations showing decreased neural synchronization in the low frequency bands in patients with schizophrenia. Neural synchrony is thought to underlie distributed information processing. Our results indicate a less effective functioning in the recognition process of facial features, which may contribute to a less effective social cognition in schizophrenia. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  18. Relationship between oscillatory neuronal activity during reward processing and trait impulsivity and sensation seeking.

    PubMed

    Leicht, Gregor; Troschütz, Stefan; Andreou, Christina; Karamatskos, Evangelos; Ertl, Matthias; Naber, Dieter; Mulert, Christoph

    2013-01-01

    The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects. During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss) and high or low magnitude (5 vs. 25 points). We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking. The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.

  19. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    PubMed

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Integration of actomyosin contractility with cell-cell adhesion during dorsal closure.

    PubMed

    Duque, Julia; Gorfinkiel, Nicole

    2016-12-15

    In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis. © 2016. Published by The Company of Biologists Ltd.

  1. Altering the threshold of an excitable signal transduction network changes cell migratory modes.

    PubMed

    Miao, Yuchuan; Bhattacharya, Sayak; Edwards, Marc; Cai, Huaqing; Inoue, Takanari; Iglesias, Pablo A; Devreotes, Peter N

    2017-04-01

    The diverse migratory modes displayed by different cell types are generally believed to be idiosyncratic. Here we show that the migratory behaviour of Dictyostelium was switched from amoeboid to keratocyte-like and oscillatory modes by synthetically decreasing phosphatidylinositol-4,5-bisphosphate levels or increasing Ras/Rap-related activities. The perturbations at these key nodes of an excitable signal transduction network initiated a causal chain of events: the threshold for network activation was lowered, the speed and range of propagating waves of signal transduction activity increased, actin-driven cellular protrusions expanded and, consequently, the cell migratory mode transitions ensued. Conversely, innately keratocyte-like and oscillatory cells were promptly converted to amoeboid by inhibition of Ras effectors with restoration of directed migration. We use computational analysis to explain how thresholds control cell migration and discuss the architecture of the signal transduction network that gives rise to excitability.

  2. Hippocampal Sharp Wave Bursts Coincide with Neocortical "Up-State" Transitions

    ERIC Educational Resources Information Center

    Battaglia, Francesco P.; Sutherland, Gary R.; McNaughton, Bruce L.

    2004-01-01

    The sleeping neocortex shows nested oscillatory activity in different frequency ranges, characterized by fluctuations between "up-states" and "down-states." High-density neuronal ensemble recordings in rats now reveal the interaction between synchronized activity in the hippocampus and neocortex: Electroencephalographic sharp…

  3. Remote sensor response study in the regime of the microwave radiation-induced magnetoresistance oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2013-11-04

    A concurrent remote sensing and magneto-transport study of the microwave excited two dimensional electron system (2DES) at liquid helium temperatures has been carried out using a carbon detector to remotely sense the microwave activity of the 2D electron system in the GaAs/AlGaAs heterostructure during conventional magneto-transport measurements. Various correlations are observed and reported between the oscillatory magnetotransport and the remotely sensed reflection. In addition, the oscillatory remotely sensed signal is shown to exhibit a power law type variation in its amplitude, similar to the radiation-induced magnetoresistance oscillations.

  4. Beta Oscillatory Dynamics in the Prefrontal and Superior Temporal Cortices Predict Spatial Working Memory Performance.

    PubMed

    Proskovec, Amy L; Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2018-05-31

    The oscillatory dynamics serving spatial working memory (SWM), and how such dynamics relate to performance, are poorly understood. To address these topics, the present study recruited 22 healthy adults to perform a SWM task during magnetoencephalography (MEG). The resulting MEG data were transformed into the time-frequency domain, and significant oscillatory responses were imaged using a beamformer. Voxel time series data were extracted from the cluster peaks to quantify the dynamics, while whole-brain partial correlation maps were computed to identify regions where oscillatory strength varied with accuracy on the SWM task. The results indicated transient theta oscillations in spatially distinct subregions of the prefrontal cortices at the onset of encoding and maintenance, which may underlie selection of goal-relevant information. Additionally, strong and persistent decreases in alpha and beta oscillations were observed throughout encoding and maintenance in parietal, temporal, and occipital regions, which could serve sustained attention and maintenance processes during SWM performance. The neuro-behavioral correlations revealed that beta activity within left dorsolateral prefrontal control regions and bilateral superior temporal integration regions was negatively correlated with SWM accuracy. Notably, this is the first study to employ a whole-brain approach to significantly link neural oscillations to behavioral performance in the context of SWM.

  5. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the troughs. Preliminary quantitative results illuminate variations in equilibrium ripple geometry, ripple migration rates, and transition time scales between equilibrium states, all as functions of the sediment size mixture and flow forcing.

  6. Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention.

    PubMed

    Schubert, Jonathan T W; Buchholz, Verena N; Föcker, Julia; Engel, Andreas K; Röder, Brigitte; Heed, Tobias

    2015-08-15

    Touch can be localized either on the skin in anatomical coordinates, or, after integration with posture, in external space. Sighted individuals are thought to encode touch in both coordinate systems concurrently, whereas congenitally blind individuals exhibit a strong bias for using anatomical coordinates. We investigated the neural correlates of this differential dominance in the use of anatomical and external reference frames by assessing oscillatory brain activity during a tactile spatial attention task. The EEG was recorded while sighted and congenitally blind adults received tactile stimulation to uncrossed and crossed hands while detecting rare tactile targets at one cued hand only. In the sighted group, oscillatory alpha-band activity (8-12Hz) in the cue-target interval was reduced contralaterally and enhanced ipsilaterally with uncrossed hands. Hand crossing attenuated the degree of posterior parietal alpha-band lateralization, indicating that attention deployment was affected by external spatial coordinates. Beamforming suggested that this posture effect originated in the posterior parietal cortex. In contrast, cue-related lateralization of central alpha-band as well as of beta-band activity (16-24Hz) were unaffected by hand crossing, suggesting that these oscillations exclusively encode anatomical coordinates. In the blind group, central alpha-band activity was lateralized, but did not change across postures. The pattern of beta-band activity was indistinguishable between groups. Because the neural mechanisms for posterior alpha-band generation seem to be linked to developmental vision, we speculate that the lack of this neural mechanism in blind individuals is related to their preferred use of anatomical over external spatial codes in sensory processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Oscillatory Activity in the Infant Brain and the Representation of Small Numbers

    PubMed Central

    Leung, Sumie; Mareschal, Denis; Rowsell, Renee; Simpson, David; Iaria, Leon; Grbic, Amanda; Kaufman, Jordy

    2016-01-01

    Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6–8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants’ representation of small numbers. PMID:26903821

  8. Oscillatory Activity in the Infant Brain and the Representation of Small Numbers.

    PubMed

    Leung, Sumie; Mareschal, Denis; Rowsell, Renee; Simpson, David; Iaria, Leon; Grbic, Amanda; Kaufman, Jordy

    2016-01-01

    Gamma-band oscillatory activity (GBA) is an established neural signature of sustained occluded object representation in infants and adults. However, it is not yet known whether the magnitude of GBA in the infant brain reflects the quantity of occluded items held in memory. To examine this, we compared GBA of 6-8 month-old infants during occlusion periods after the representation of two objects vs. that of one object. We found that maintaining a representation of two objects during occlusion resulted in significantly greater GBA relative to maintaining a single object. Further, this enhancement was located in the right occipital region, which is consistent with previous object representation research in adults and infants. We conclude that enhanced GBA reflects neural processes underlying infants' representation of small numbers.

  9. Collective phase description of oscillatory convection

    NASA Astrophysics Data System (ADS)

    Kawamura, Yoji; Nakao, Hiroya

    2013-12-01

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting oscillatory convection on the basis of the derived phase equations.

  10. Subthalamic stimulation, oscillatory activity and connectivity reveal functional role of STN and network mechanisms during decision making under conflict.

    PubMed

    Hell, Franz; Taylor, Paul C J; Mehrkens, Jan H; Bötzel, Kai

    2018-05-01

    Inhibitory control is an important executive function that is necessary to suppress premature actions and to block interference from irrelevant stimuli. Current experimental studies and models highlight proactive and reactive mechanisms and claim several cortical and subcortical structures to be involved in response inhibition. However, the involved structures, network mechanisms and the behavioral relevance of the underlying neural activity remain debated. We report cortical EEG and invasive subthalamic local field potential recordings from a fully implanted sensing neurostimulator in Parkinson's patients during a stimulus- and response conflict task with and without deep brain stimulation (DBS). DBS made reaction times faster overall while leaving the effects of conflict intact: this lack of any effect on conflict may have been inherent to our task encouraging a high level of proactive inhibition. Drift diffusion modelling hints that DBS influences decision thresholds and drift rates are modulated by stimulus conflict. Both cortical EEG and subthalamic (STN) LFP oscillations reflected reaction times (RT). With these results, we provide a different interpretation of previously conflict-related oscillations in the STN and suggest that the STN implements a general task-specific decision threshold. The timecourse and topography of subthalamic-cortical oscillatory connectivity suggest the involvement of motor, frontal midline and posterior regions in a larger network with complementary functionality, oscillatory mechanisms and structures. While beta oscillations are functionally associated with motor cortical-subthalamic connectivity, low frequency oscillations reveal a subthalamic-frontal-posterior network. With our results, we suggest that proactive as well as reactive mechanisms and structures are involved in implementing a task-related dynamic inhibitory signal. We propose that motor and executive control networks with complementary oscillatory mechanisms are tonically active, react to stimuli and release inhibition at the response when uncertainty is resolved and return to their default state afterwards. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. An integrative model of auditory phantom perception: tinnitus as a unified percept of interacting separable subnetworks.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Weisz, Nathan; Londero, Alain; Schlee, Winnie; Elgoyhen, Ana Belen; Langguth, Berthold

    2014-07-01

    Tinnitus is a considered to be an auditory phantom phenomenon, a persistent conscious percept of a salient memory trace, externally attributed, in the absence of a sound source. It is perceived as a phenomenological unified coherent percept, binding multiple separable clinical characteristics, such as its loudness, the sidedness, the type (pure tone, noise), the associated distress and so on. A theoretical pathophysiological framework capable of explaining all these aspects in one model is highly needed. The model must incorporate both the deafferentation based neurophysiological models and the dysfunctional noise canceling model, and propose a 'tinnitus core' subnetwork. The tinnitus core can be defined as the minimal set of brain areas that needs to be jointly activated (=subnetwork) for tinnitus to be consciously perceived, devoid of its affective components. The brain areas involved in the other separable characteristics of tinnitus can be retrieved by studies on spontaneous resting state magnetic and electrical activity in people with tinnitus, evaluated for the specific aspect investigated and controlled for other factors. By combining these functional imaging studies with neuromodulation techniques some of the correlations are turned into causal relationships. Thereof, a heuristic pathophysiological framework is constructed, integrating the tinnitus perceptual core with the other tinnitus related aspects. This phenomenological unified percept of tinnitus can be considered an emergent property of multiple, parallel, dynamically changing and partially overlapping subnetworks, each with a specific spontaneous oscillatory pattern and functional connectivity signature. Communication between these different subnetworks is proposed to occur at hubs, brain areas that are involved in multiple subnetworks simultaneously. These hubs can take part in each separable subnetwork at different frequencies. Communication between the subnetworks is proposed to occur at discrete oscillatory frequencies. As such, the brain uses multiple nonspecific networks in parallel, each with their own oscillatory signature, that adapt to the context to construct a unified percept possibly by synchronized activation integrated at hubs at discrete oscillatory frequencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. On the contribution of motor planning to the retroactive cuing benefit in working memory: Evidence by mu and beta oscillatory activity in the EEG.

    PubMed

    Schneider, Daniel; Barth, Anna; Wascher, Edmund

    2017-11-15

    Attention can be allocated toward mental representations in working memory also after the initial encoding of information has been completed. It was shown that focusing on only one item within working memory transfers this representation into a protected state, reducing its susceptibility to interference by incoming signals. The present study investigated the nature of this retroactive cue (retro-cue) benefit by means of oscillatory activity in the EEG. In a working memory task with a retro-cue indicating one, two or three memory representations as relevant and a block-wise distractor display presented after the retro-cue, participants had to remember the orientation of a colored bar. On behavioral level, we found that the interfering effect of the distractor display on memory performance could be prevented when a retro-cue reduced the number of attended representations in working memory. However, only the one-item retro-cue led to an overall increase in task performance compared to a condition without a retro-cue. The neural basis of this special representational status was investigated by means of oscillatory parameters in the EEG and a clustering approach on level of the independent components (ICs) in the signal. The retroactive reduction of attended working memory representations was reflected in a suppression of alpha power over right parietal and parieto-occipital sites. In addition, we found that an IC cluster representing oscillatory activity in the mu/beta range (10-12 Hz and 20-24 Hz) with a source in sensorimotor cortex revealed a power suppression already prior to the memory probe following the one-item retro-cue. This suggests that the retro-cue benefit results in large parts from the possibility to focus attention on one particular item in working memory and initiate motor planning processes already ahead of the probe stimulus indicating the respective response. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Spontaneous sensorimotor cortical activity is suppressed by deep brain stimulation in patients with advanced Parkinson's disease.

    PubMed

    Luoma, Jarkko; Pekkonen, Eero; Airaksinen, Katja; Helle, Liisa; Nurminen, Jussi; Taulu, Samu; Mäkelä, Jyrki P

    2018-06-22

    Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the subthalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD. Copyright © 2018. Published by Elsevier B.V.

  14. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-01-01

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may inspire new strategies to control the self-organization of active matter and swarming robots.

  15. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.

    PubMed

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-02-09

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may inspire new strategies to control the self-organization of active matter and swarming robots.

  16. Dynamic Processes in Regulation and Some Implications for Biofeedback and Biobehavioral Interventions

    PubMed Central

    Lehrer, Paul; Eddie, David

    2013-01-01

    Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244

  17. Modulation of Oscillatory Power and Connectivity in the Human Posterior Cingulate Cortex Supports the Encoding and Retrieval of Episodic Memories.

    PubMed

    Lega, Bradley; Germi, James; Rugg, Michael

    2017-08-01

    Existing data from noninvasive studies have led researchers to posit that the posterior cingulate cortex (PCC) supports mnemonic processes: It exhibits degeneration in memory disorders, and fMRI investigations have demonstrated memory-related activation principally during the retrieval of memory items. Despite these data, the role of the PCC in episodic memory has received only limited treatment using the spatial and temporal precision of intracranial EEG, with previous analyses focused on item retrieval. Using data gathered from 21 human participants who underwent stereo-EEG for seizure localization, we characterized oscillatory patterns in the PCC during the encoding and retrieval of episodic memories. We identified a subsequent memory effect during item encoding characterized by increased gamma band oscillatory power and a low-frequency power desynchronization. Fourteen participants had stereotactic electrodes located simultaneously in the hippocampus and PCC, and with these unique data, we describe connectivity changes between these structures that predict successful item encoding and that precede item retrieval. Oscillatory power during retrieval matched the pattern we observed during encoding, with low-frequency (below 15 Hz) desynchronization and a gamma band (especially high gamma, 70-180 Hz) power increase. Encoding is characterized by synchrony between the hippocampus and PCC, centered at 3 Hz, consistent with other observations of properties of this oscillation akin to those for rodent theta activity. We discuss our findings in light of existing theories of episodic memory processing, including the information via desynchronization hypothesis and retrieved context theory, and examine how our data fit with existing theories for the functional role of the PCC. These include a postulated role for the PCC in modulating internally directed attention and for representing or integrating contextual information for memory items.

  18. mir-125a-5p-mediated Regulation of Lfng is Essential for the Avian Segmentation Clock

    PubMed Central

    Riley, Maurisa F.; Bochter, Matthew S.; Wahi, Kanu; Nuovo, Gerard J.; Cole, Susan E.

    2013-01-01

    Summary Somites are embryonic precursors of the axial skeleton and skeletal muscles, and establish the segmental vertebrate body plan. Somitogenesis is controlled in part by a segmentation clock that requires oscillatory expression of genes including Lunatic fringe (Lfng). Oscillatory genes must be tightly regulated both at the transcriptional and post-transcriptional levels for proper clock function. Here we demonstrate that microRNA-mediated regulation of Lfng is essential for proper segmentation during chick somitogenesis. We find that mir-125a-5p targets evolutionarily conserved sequences in the Lfng 3′UTR, and that preventing interactions between mir-125a-5p and Lfng transcripts in vivo causes abnormal segmentation and perturbs clock activity. This provides strong evidence that miRNAs function in the post-transcriptional regulation of oscillatory genes in the segmentation clock. Further, this demonstrates that the relatively subtle effects of miRNAs on target genes can have broad effects in developmental situations that have critical requirements for tight post-transcriptional regulation. PMID:23484856

  19. Oscillatory mechanisms of process binding in memory.

    PubMed

    Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul

    2010-06-01

    A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Cellular and oscillatory substrates of fear extinction learning.

    PubMed

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G

    2017-11-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a combination of chemogenetics, activity-based neuronal-ensemble labeling and in vivo electrophysiology, we found that fear extinction learning confers on parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6-12 Hz oscillation and a fear-associated 3-6 Hz oscillation within the BLA. Loss of this competition increases a 3-6 Hz oscillatory signature, with BLA→medial prefrontal cortex directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning.

  1. Cellular and Oscillatory Substrates of Fear Extinction Learning

    PubMed Central

    Davis, Patrick; Zaki, Yosif; Maguire, Jamie; Reijmers, Leon G.

    2018-01-01

    The mammalian brain contains dedicated circuits for both the learned expression and suppression of fear. These circuits require precise coordination to facilitate the appropriate expression of fear behavior, but the mechanisms underlying this coordination remain unclear. Using a novel combination of chemogenetics, activity-based neuronal-ensemble labeling, and in vivo electrophysiology, we found that fear extinction learning confers parvalbumin-expressing (PV) interneurons in the basolateral amygdala (BLA) with a dedicated role in the selective suppression of a previously encoded fear memory and BLA fear-encoding neurons. In addition, following extinction learning, PV interneurons enable a competing interaction between a 6–12 Hz oscillation and a fear-associated 3–6 Hz oscillation within the BLA. Loss of this competition increases a 3–6 Hz oscillatory signature, with BLA→mPFC directionality signaling the recurrence of fear expression. The discovery of cellular and oscillatory substrates of fear extinction learning that critically depend on BLA PV-interneurons could inform therapies aimed at preventing the pathological recurrence of fear following extinction learning. PMID:28967909

  2. Scaling of movement is related to pallidal γ oscillations in patients with dystonia.

    PubMed

    Brücke, Christof; Huebl, Julius; Schönecker, Thomas; Neumann, Wolf-Julian; Yarrow, Kielan; Kupsch, Andreas; Blahak, Christian; Lütjens, Goetz; Brown, Peter; Krauss, Joachim K; Schneider, Gerd-Helge; Kühn, Andrea A

    2012-01-18

    Neuronal synchronization in the gamma (γ) band is considered important for information processing through functional integration of neuronal assemblies across different brain areas. Movement-related γ synchronization occurs in the human basal ganglia where it is centered at ~70 Hz and more pronounced contralateral to the moved hand. However, its functional significance in motor performance is not yet well understood. Here, we assessed whether event-related γ synchronization (ERS) recorded from the globus pallidus internus in patients undergoing deep brain stimulation for medically intractable primary focal and segmental dystonia might code specific motor parameters. Pallidal local field potentials were recorded in 22 patients during performance of a choice-reaction-time task. Movement amplitude of the forearm pronation-supination movements was parametrically modulated with an angular degree of 30°, 60°, and 90°. Only patients with limbs not affected by dystonia were tested. A broad contralateral γ band (35-105 Hz) ERS occurred at movement onset with a maximum reached at peak velocity of the movement. The pallidal oscillatory γ activity correlated with movement parameters: the larger and faster the movement, the stronger was the synchronization in the γ band. In contrast, the event-related decrease in beta band activity was similar for all movements. Gamma band activity did not change with movement direction and did not occur during passive movements. The stepwise increase of γ activity with movement size and velocity suggests a role of neuronal synchronization in this frequency range in basal ganglia control of the scaling of ongoing movements.

  3. Collective phase description of oscillatory convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, Yoji, E-mail: ykawamura@jamstec.go.jp; Nakao, Hiroya

    We formulate a theory for the collective phase description of oscillatory convection in Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a single degree of freedom which we call the collective phase. The theory can be considered as a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems, namely, stable time-periodic solutions to partial differential equations, representing the oscillatory convection. We derive the phase sensitivity function, which quantifies the phase response of the oscillatory convection to weak perturbations applied at each spatial point, and analyze the phase synchronization between two weakly coupled Hele-Shawmore » cells exhibiting oscillatory convection on the basis of the derived phase equations.« less

  4. Spatio-temporal modelling of the NF-κB intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry.

    PubMed

    Terry, Alan J; Chaplain, Mark A J

    2011-12-07

    The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT1A and 5-HT2A receptors.

    PubMed

    Riga, Maurizio S; Lladó-Pelfort, Laia; Artigas, Francesc; Celada, Pau

    2017-12-06

    5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT 1A /5-HT 2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT 1A and 5-HT 2A receptors. Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT 2A -R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT 1A -R antagonist WAY-100635. 5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity. The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT 1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity. Copyright © 2017. Published by Elsevier Ltd.

  6. Inhibitory interneuron circuits at cortical and spinal levels are associated with individual differences in corticomuscular coherence during isometric voluntary contraction

    PubMed Central

    Matsuya, Ryosuke; Ushiyama, Junichi; Ushiba, Junichi

    2017-01-01

    Corticomuscular coherence (CMC) is an oscillatory synchronization of 15–35 Hz (β-band) between electroencephalogram (EEG) of the sensorimotor cortex and electromyogram of contracting muscles. Although we reported that the magnitude of CMC varies among individuals, the physiological mechanisms underlying this variation are still unclear. Here, we aimed to investigate the associations between CMC and intracortical inhibition (ICI) in the primary motor cortex (M1)/recurrent inhibition (RI) in the spinal cord, which probably affect oscillatory neural activities. Firstly, we quantified ICI from changes in motor-evoked potentials induced by paired-pulse transcranial magnetic stimulation in M1 during tonic isometric voluntary contraction of the first dorsal interosseous. ICI showed a significant, negative correlation with the strength of EEG β-oscillation, but not with the magnitude of CMC across individuals. Next, we quantified RI from changes in H-reflexes induced by paired-pulse electrical nerve stimulation to the posterior tibial nerve during isometric contraction of the soleus muscle. We observed a significant, positive correlation between RI and peak CMC across individuals. These results suggest that the local inhibitory interneuron networks in cortical and spinal levels are associated with the oscillatory activity in corticospinal loop. PMID:28290507

  7. Resting-State Oscillatory Activity in Children Born Small for Gestational Age: An MEG Study

    PubMed Central

    Boersma, Maria; de Bie, Henrica M. A.; Oostrom, Kim J.; van Dijk, Bob W.; Hillebrand, Arjan; van Wijk, Bernadette C. M.; Delemarre-van de Waal, Henriëtte A.; Stam, Cornelis J.

    2013-01-01

    Growth restriction in utero during a period that is critical for normal growth of the brain, has previously been associated with deviations in cognitive abilities and brain anatomical and functional changes. We measured magnetoencephalography (MEG) in 4- to 7-year-old children to test if children born small for gestational age (SGA) show deviations in resting-state brain oscillatory activity. Children born SGA with postnatally spontaneous catch-up growth [SGA+; six boys, seven girls; mean age 6.3 year (SD = 0.9)] and children born appropriate for gestational age [AGA; seven boys, three girls; mean age 6.0 year (SD = 1.2)] participated in a resting-state MEG study. We calculated absolute and relative power spectra and used non-parametric statistics to test for group differences. SGA+ and AGA born children showed no significant differences in absolute and relative power except for reduced absolute gamma band power in SGA children. At the time of MEG investigation, SGA+ children showed significantly lower head circumference (HC) and a trend toward lower IQ, however there was no association of HC or IQ with absolute or relative power. Except for reduced absolute gamma band power, our findings suggest normal brain activity patterns at school age in a group of children born SGA in which spontaneous catch-up growth of bodily length after birth occurred. Although previous findings suggest that being born SGA alters brain oscillatory activity early in neonatal life, we show that these neonatal alterations do not persist at early school age when spontaneous postnatal catch-up growth occurs after birth. PMID:24068993

  8. Oscillatory serotonin function in depression.

    PubMed

    Salomon, Ronald M; Cowan, Ronald L

    2013-11-01

    Oscillations in brain activities with periods of minutes to hours may be critical for normal mood behaviors. Ultradian (faster than circadian) rhythms of mood behaviors and associated central nervous system activities are altered in depression. Recent data suggest that ultradian rhythms in serotonin (5HT) function also change in depression. In two separate studies, 5HT metabolites in cerebrospinal fluid (CSF) were measured every 10 min for 24 h before and after chronic antidepressant treatment. Antidepressant treatments were associated with enhanced ultradian amplitudes of CSF metabolite levels. Another study used resting-state functional magnetic resonance imaging (fMRI) to measure amplitudes of dorsal raphé activation cycles following sham or active dietary depletions of the 5HT precursor (tryptophan). During depletion, amplitudes of dorsal raphé activation cycles increased with rapid 6 s periods (about 0.18 Hz) while functional connectivity weakened between dorsal raphé and thalamus at slower periods of 20 s (0.05 Hz). A third approach studied MDMA (ecstasy, 3,4-methylenedioxy-N-methylamphetamine) users because of their chronically diminished 5HT function compared with non-MDMA polysubstance users (Karageorgiou et al., 2009). Compared with a non-MDMA using cohort, MDMA users showed diminished fMRI intra-regional coherence in motor regions along with altered functional connectivity, again suggesting effects of altered 5HT oscillatory function. These data support a hypothesis that qualities of ultradian oscillations in 5HT function may critically influence moods and behaviors. Dysfunctional 5HT rhythms in depression may be a common endpoint and biomarker for depression, linking dysfunction of slow brain network oscillators to 5HT mechanisms affected by commonly available treatments. 5HT oscillatory dysfunction may define illness subtypes and predict responses to serotonergic agents. Further studies of 5HT oscillations in depression are indicated. Copyright © 2013 Wiley Periodicals, Inc.

  9. Pursuing the flow of information: connectivity between bilateral premotor cortices predicts better accuracy in the phonological working memory task.

    PubMed

    Ono, Yumie; Nanjo, Tatsuya; Ishiyama, Atsushi

    2013-01-01

    Using Magnetoencephalography (MEG) we studied functional connectivity of cortical areas during phonological working memory task. Six subjects participated in the experiment and their neuronal activity was measured by a 306-channel MEG system. We used a modified version of the visual Sternberg paradigm, which required subjects to memorize 8 alphabet letters in 2s for a late recall period. We estimated functional connectivity of oscillatory regional brain activities during the encoding session for each trial of each subject using beamformer source reconstruction and Granger causality analysis. Regional brain activities were mostly found in the bilateral premotor cortex (Brodmann area (BA) 6: PMC), the right dorsolateral prefrontal cortex (BA 9: DLPFC), and the right frontal eye field (BA 8). Considering that the left and right PMCs participate in the functions of phonological loop (PL) and the visuospatial sketchpad (VS) in the Baddeley's model of working memory, respectively, our result suggests that subjects utilized either single function or both functions of working memory circuitry to execute the task. Interestingly, the accuracy of the task was significantly higher in the trials where the alpha band oscillatory activities in the bilateral PMCs established functional connectivity compared to those where the PMC was not working in conjunction with its counterpart. Similar relationship was found in the theta band oscillatory activities between the right PMC and the right DLPFC, however in this case the establishment of functional connectivity significantly decreased the accuracy of the task. These results suggest that sharing the memory load with both PL- and VS- type memory storage circuitries contributed to better performance in the highly-demanding cognitive task.

  10. A chemical kinetic theory on muscle contraction and spontaneous oscillation

    NASA Astrophysics Data System (ADS)

    Guo, Wei-Sheng; Luo, Liao-Fu; Li, Qian-Zhong

    2002-09-01

    From a set of chemical kinetic equations describing the actin-activated myosin ATPase cycle, we show that, in active muscle, the fraction of myosin heads in any given biochemical state is independent of both [ADP] and [P i]. Combining muscle mechanics data of Pate and Cooke, we deduce the muscle state equation in which muscle force is a state variable of the muscle system. The theoretical results are consistent with Baker's experimental data but somewhat different from conventional muscle theory. Based on the muscle state equation with the knowledge of special structure of muscle, we present a physical mechanism which can lead to both contraction and oscillation of sarcomeres. It explains the muscle spontaneous oscillatory contraction in a natural way and agrees well with experimental data. The model will be helpful in studying the oscillatory behavior of cilia and flagella.

  11. Attention training improves aberrant neural dynamics during working memory processing in veterans with PTSD.

    PubMed

    McDermott, Timothy J; Badura-Brack, Amy S; Becker, Katherine M; Ryan, Tara J; Bar-Haim, Yair; Pine, Daniel S; Khanna, Maya M; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-12-01

    Posttraumatic stress disorder (PTSD) is associated with executive functioning deficits, including disruptions in working memory (WM). Recent studies suggest that attention training reduces PTSD symptomatology, but the underlying neural mechanisms are unknown. We used high-density magnetoencephalography (MEG) to evaluate whether attention training modulates brain regions serving WM processing in PTSD. Fourteen veterans with PTSD completed a WM task during a 306-sensor MEG recording before and after 8 sessions of attention training treatment. A matched comparison sample of 12 combat-exposed veterans without PTSD completed the same WM task during a single MEG session. To identify the spatiotemporal dynamics, each group's data were transformed into the time-frequency domain, and significant oscillatory brain responses were imaged using a beamforming approach. All participants exhibited activity in left hemispheric language areas consistent with a verbal WM task. Additionally, veterans with PTSD and combat-exposed healthy controls each exhibited oscillatory responses in right hemispheric homologue regions (e.g., right Broca's area); however, these responses were in opposite directions. Group differences in oscillatory activity emerged in the theta band (4-8 Hz) during encoding and in the alpha band (9-12 Hz) during maintenance and were significant in right prefrontal and right supramarginal and inferior parietal regions. Importantly, following attention training, these significant group differences were reduced or eliminated. This study provides initial evidence that attention training improves aberrant neural activity in brain networks serving WM processing.

  12. Modulation of α power and functional connectivity during facial affect recognition.

    PubMed

    Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan

    2013-04-03

    Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.

  13. Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.

    PubMed

    Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2012-10-01

    Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.

  14. Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI.

    PubMed

    Deiber, Marie-Pierre; Ibañez, Vicente; Missonnier, Pascal; Herrmann, François; Fazio-Costa, Lara; Gold, Gabriel; Giannakopoulos, Panteleimon

    2009-09-01

    The electroencephalography (EEG) theta frequency band reacts to memory and selective attention paradigms. Global theta oscillatory activity includes a posterior phase-locked component related to stimulus processing and a frontal-induced component modulated by directed attention. To investigate the presence of early deficits in the directed attention-related network in elderly individuals with mild cognitive impairment (MCI), time-frequency analysis at baseline was used to assess global and induced theta oscillatory activity (4-6Hz) during n-back working memory tasks in 29 individuals with MCI and 24 elderly controls (EC). At 1-year follow-up, 13 MCI patients were still stable and 16 had progressed. Baseline task performance was similar in stable and progressive MCI cases. Induced theta activity at baseline was significantly reduced in progressive MCI as compared to EC and stable MCI in all n-back tasks, which were similar in terms of directed attention requirements. While performance is maintained, the decrease of induced theta activity suggests early deficits in the directed-attention network in progressive MCI, whereas this network is functionally preserved in stable MCI.

  15. The engram formation and the global oscillations of CA3.

    PubMed

    Ventriglia, Francesco

    2008-12-01

    The investigation on the conditions which cause global population oscillatory activities in neural fields, originated some years ago with reference to a kinetic theory of neural systems, as been further deepened in this paper. In particular, the genesis of sharp waves and of some rhythmic activities, such as theta and gamma rhythms, of the hippocampal CA3 field, behaviorally important for their links to learning and memory, has been analyzed with more details. To this aim, the modeling-computational framework previously devised for the study of activities in large neural fields, has been enhanced in such a way that a greater number of biological features, extended dendritic trees-in particular, could be taken into account. By using that methodology, a two-dimensional model of the entire CA3 field has been described and its activity, as it results from the several external inputs impinging on it, has been simulated. As a consequence of these investigations, some hypotheses have been elaborated about the possible function of global oscillatory activities of neural populations of Hippocampus in the engram formation.

  16. Thoughts of Death Modulate Psychophysical and Cortical Responses to Threatening Stimuli

    PubMed Central

    Valentini, Elia; Koch, Katharina; Aglioti, Salvatore Maria

    2014-01-01

    Existential social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Therefore we explored whether reminders of mortality influence subjective ratings of intensity and threat of auditory and painful thermal stimuli and the associated electroencephalographic activity. Moreover, we explored whether personality and demographics modulate psychophysical and neural changes related to mortality salience (MS). Following MS induction, a specific increase in ratings of intensity and threat was found for both nociceptive and auditory stimuli. While MS did not have any specific effect on nociceptive and auditory evoked potentials, larger amplitude of theta oscillatory activity related to thermal nociceptive activity was found after thoughts of death were induced. MS thus exerted a top-down modulation on theta electroencephalographic oscillatory amplitude, specifically for brain activity triggered by painful thermal stimuli. This effect was higher in participants reporting higher threat perception, suggesting that inducing a death-related mind-set may have an influence on body-defence related somatosensory representations. PMID:25386905

  17. Functionally Specific Oscillatory Activity Correlates between Visual and Auditory Cortex in the Blind

    ERIC Educational Resources Information Center

    Schepers, Inga M.; Hipp, Joerg F.; Schneider, Till R.; Roder, Brigitte; Engel, Andreas K.

    2012-01-01

    Many studies have shown that the visual cortex of blind humans is activated in non-visual tasks. However, the electrophysiological signals underlying this cross-modal plasticity are largely unknown. Here, we characterize the neuronal population activity in the visual and auditory cortex of congenitally blind humans and sighted controls in a…

  18. Activation energy measurements of cheese

    USDA-ARS?s Scientific Manuscript database

    Temperature sweeps of cheeses using small amplitude oscillatory shear tests produced values for activation energy of flow (Ea) between 30 and 44 deg C. Soft goat cheese and Queso Fresco, which are high-moisture cheeses and do not flow when heated, exhibited Ea values between 30 and 60 kJ/mol. The ...

  19. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  20. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    PubMed Central

    Stone, David B.; Coffman, Brian A.; Bustillo, Juan R.; Aine, Cheryl J.; Stephen, Julia M.

    2014-01-01

    Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia. PMID:25414652

  1. Deviation of tracheal pressure from airway opening pressure during high-frequency oscillatory ventilation in a porcine lung model.

    PubMed

    Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M

    2013-04-01

    Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.

  2. How to Evaluate Phase Differences between Trial Groups in Ongoing Electrophysiological Signals

    PubMed Central

    VanRullen, Rufin

    2016-01-01

    A growing number of studies endeavor to reveal periodicities in sensory and cognitive functions, by comparing the distribution of ongoing (pre-stimulus) oscillatory phases between two (or more) trial groups reflecting distinct experimental outcomes. A systematic relation between the phase of spontaneous electrophysiological signals, before a stimulus is even presented, and the eventual result of sensory or cognitive processing for that stimulus, would be indicative of an intrinsic periodicity in the underlying neural process. Prior studies of phase-dependent perception have used a variety of analytical methods to measure and evaluate phase differences, and there is currently no established standard practice in this field. The present report intends to remediate this need, by systematically comparing the statistical power of various measures of “phase opposition” between two trial groups, in a number of real and simulated experimental situations. Seven measures were evaluated: one parametric test (circular Watson-Williams test), and three distinct measures of phase opposition (phase bifurcation index, phase opposition sum, and phase opposition product) combined with two procedures for non-parametric statistical testing (permutation, or a combination of z-score and permutation). While these are obviously not the only existing or conceivable measures, they have all been used in recent studies. All tested methods performed adequately on a previously published dataset (Busch et al., 2009). On a variety of artificially constructed datasets, no single measure was found to surpass all others, but instead the suitability of each measure was contingent on several experimental factors: the time, frequency, and depth of oscillatory phase modulation; the absolute and relative amplitudes of post-stimulus event-related potentials for the two trial groups; the absolute and relative trial numbers for the two groups; and the number of permutations used for non-parametric testing. The concurrent use of two phase opposition measures, the parametric Watson-Williams test and a non-parametric test based on summing inter-trial coherence values for the two trial groups, appears to provide the most satisfactory outcome in all situations tested. Matlab code is provided to automatically compute these phase opposition measures. PMID:27683543

  3. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.

    PubMed

    Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E

    2017-01-01

    Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine whether similar source space EEG dynamics exhibit different time-frequency changes in individuals with neurological disorders that cause movement errors. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Endothelial ATP-binding cassette G1 in mouse endothelium protects against hemodynamic-induced atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Shanshan; Department of Pediatrics, Baodi District People’s Hospital of Tianjin City, Tianjin, 301800; Wang, Jiaxing

    Activated vascular endothelium inflammation under persistent hyperlipidemia is the initial step of atherogenesis. ATP-binding cassette G1 (ABCG1) is a crucial factor maintaining sterol and lipid homeostasis by transporting cholesterol efflux to high-density lipoprotein. In this study, we investigated the protective effects of ABCG1 in endothelial inflammation activation during early-stage atherogenesis in mice and the underlying mechanisms. Endothelial cell (EC)-specific ABCG1 transgenic (EC-ABCG1-Tg) mice were generated and cross-bred with low-density lipoprotein receptor–deficient (Ldlr{sup −/−}) mice. After a 4-week Western-type diet, the mice were sacrificed for assessing atherosclerosis. Human umbilical vein ECs were treated with different flows, and ABCG1 was adenovirally overexpressedmore » to investigate the mechanism in vitro. Compared with Ldlr{sup −/−} mouse aortas, EC-ABCG1-Tg/Ldlr{sup −/−} aortas showed decreased early-stage lesions. Furthermore, the lesion area in the EC-ABCG1-Tg/Ldlr{sup −/−} mouse aortic arch but not thoracic aorta was significantly reduced, which suggests a protective role of ABCG1 under atheroprone flow. In vitro, overexpression of ABCG1 attenuated EC activation caused by oscillatory shear stress. Overexpression of ABCG1 blunted cholesterol-activated ECs in vitro. In exploring the mechanisms of ABCG1 attenuating endothelial inflammation, we found that ABCG1 inhibited oscillatory flow-activated nuclear factor kappa B and NLRP3 inflammasome in ECs. ABCG1 may play a protective role in early-stage atherosclerosis by reducing endothelial activation induced by oscillatory shear stress via suppressing the inflammatory response. - Highlights: • EC-ABCG1-Tg mice in a Ldlr{sup −/−} background showed decreased atherosclerosis. • Overexpression of ABCG1 in ECs decreased OSS-induced EC activation. • NLRP3 and NF-κB might be an underlying mechanism of ABCG1 protective role.« less

  5. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies. PMID:25153888

  6. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    PubMed

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  7. Selective entrainment of brain oscillations drives auditory perceptual organization.

    PubMed

    Costa-Faidella, Jordi; Sussman, Elyse S; Escera, Carles

    2017-10-01

    Perceptual sound organization supports our ability to make sense of the complex acoustic environment, to understand speech and to enjoy music. However, the neuronal mechanisms underlying the subjective experience of perceiving univocal auditory patterns that can be listened to, despite hearing all sounds in a scene, are poorly understood. We hereby investigated the manner in which competing sound organizations are simultaneously represented by specific brain activity patterns and the way attention and task demands prime the internal model generating the current percept. Using a selective attention task on ambiguous auditory stimulation coupled with EEG recordings, we found that the phase of low-frequency oscillatory activity dynamically tracks multiple sound organizations concurrently. However, whereas the representation of ignored sound patterns is circumscribed to auditory regions, large-scale oscillatory entrainment in auditory, sensory-motor and executive-control network areas reflects the active perceptual organization, thereby giving rise to the subjective experience of a unitary percept. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [The mechanism and function of hippocampal neural oscillation].

    PubMed

    Lu, Ning; Xing, Dan-Qin; Sheng, Tao; Lu, Wei

    2017-10-25

    Neural oscillation is rhythmic or repetitive neural activity in the central nervous system that is usually generated by oscillatory activity of neuronal ensembles, reflecting regular and synchronized activities within these cell populations. According to several oscillatory bands covering frequencies from approximately 0.5 Hz to >100 Hz, neural oscillations are usually classified as delta oscillation (0.5-3 Hz), theta oscillation (4-12 Hz), beta oscillation (12-30 Hz), gamma oscillation (30-100 Hz) and sharp-wave ripples (>100 Hz ripples superimposed on 0.01-3 Hz sharp waves). Neural oscillation in different frequencies can be detected in different brain regions of human and animal during perception, motion and sleep, and plays an essential role in cognition, learning and memory process. In this review, we summarize recent findings on neural oscillations in hippocampus, as well as the mechanism and function of hippocampal theta oscillation, gamma oscillation and sharp-wave ripples. This review may yield new insights into the functions of neural oscillation in general.

  9. Large-scale cortical correlation structure of spontaneous oscillatory activity

    PubMed Central

    Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.

    2013-01-01

    Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454

  10. The time course of symbolic number adaptation: oscillatory EEG activity and event-related potential analysis.

    PubMed

    Hsu, Yi-Fang; Szűcs, Dénes

    2012-02-15

    Several functional magnetic resonance imaging (fMRI) studies have used neural adaptation paradigms to detect anatomical locations of brain activity related to number processing. However, currently not much is known about the temporal structure of number adaptation. In the present study, we used electroencephalography (EEG) to elucidate the time course of neural events in symbolic number adaptation. The numerical distance of deviants relative to standards was manipulated. In order to avoid perceptual confounds, all levels of deviants consisted of perceptually identical stimuli. Multiple successive numerical distance effects were detected in event-related potentials (ERPs). Analysis of oscillatory activity further showed at least two distinct stages of neural processes involved in the automatic analysis of numerical magnitude, with the earlier effect emerging at around 200ms and the later effect appearing at around 400ms. The findings support for the hypothesis that numerical magnitude processing involves a succession of cognitive events. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  11. Human gamma-frequency oscillations associated with attention and memory.

    PubMed

    Jensen, Ole; Kaiser, Jochen; Lachaux, Jean-Philippe

    2007-07-01

    Both theoretical and experimental animal work supports the hypothesis that transient oscillatory synchronization of neuronal assemblies at gamma frequencies (30-100 Hz) is closely associated with sensory processing. Recent data from recordings in animals and humans have suggested that gamma-frequency activity also has an important role in attention and both working and long-term memory. The involvement of gamma-band synchronization in various cognitive paradigms in humans is currently being investigated using intracranial and high-density electro- and magnetoencephalography recordings. Here, we discuss recent findings demonstrating human gamma-frequency activity associated with attention and memory in both sensory and non-sensory areas. Because oscillatory gamma-frequency activity has an important role in neuronal communication and synaptic plasticity, it could provide a key for understanding neuronal processing in both local and distributed cortical networks engaged in complex cognitive functions. This review is part of the INMED/TINS special issue Physiogenic and pathogenic oscillations: the beauty and the beast, based on presentations at the annual INMED/TINS symposium (http://inmednet.com).

  12. [Effects of quantum nonlocality in the water activation process].

    PubMed

    Zatsepina, O V; Stekhin, A A; Yakovleva, G V

    2014-01-01

    The dynamic alterations of the magnetic flux density of the water volume, activated with structurally stressed calcium carbonate in micellar form have been investigated. The phase of the associated water was established to exhibit electrical and magnetic properties, recorded by in B&E meter in the frequency range of 5Hz - 2kHz. Alterations in water Eh (redox) potential and the magnetic flux density B testify to synchronous auto-oscillatory changes. This gives evidence of non-linearity of the relationship between auto-oscillatory processes excited in the water; and reflects the nonlocal in time the relationship between the states of water, manifesting in a change of water activity on the 1st and 2nd day in negative time. The mechanism of action of associated water phase is shown to be described by de Broglie concept of matter waves with taking into account delocalized in time states of phase of electron wave packet in accordance with the transactional interpretation of quantum physics.

  13. Multiplexing using synchrony in the zebrafish olfactory bulb.

    PubMed

    Friedrich, Rainer W; Habermann, Christopher J; Laurent, Gilles

    2004-08-01

    In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist.

  14. Phorbol ester and spontaneous activity in SHR aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisey, D.M.; Cox, R.H.

    1986-03-01

    Thoracic aortas (TA) were excised from 6-week old SHR and WKY. 2mm rings were mounted isometrically at optimum preload. Spontaneous rhythmical activity developed in TA from SHR and had a frequency of 3-4/min with varying periods of quiescence between bursts of activity. The spontaneous activity often produced an increase in tension development which was associated with increased frequency of oscillations. Verapamil (10/sup -7/ M) or Ca/sup + +/-free solution added during the contractile phase resulted in an immediate loss of tension and spontaneous activity. Addition of ouabain (10/sup -4/ M) during the contractile phase of spontaneous activity, increased the frequencymore » of oscillations which appeared to fuse into a tetanus. Spontaneous rhythmical activity was infrequently observed in TA from WKY. However, addition of phorbol 12-myristate-13 acetate (TPA), frequently induced spontaneous rhythmic oscillations associated with tension development in TA from WKY. TPA contracted the SHR TA and increased the frequency of oscillations. SHR TA were more sensitive to TPA than WKY. This study demonstrates (1) spontaneous rhythmical activity, independent of agonist stimulation in TA from 6-week old SHR and (2) TPA induced spontaneous oscillatory activity. The mechanism underlying the spontaneous oscillatory activity may involve membrane coupling events and Na-pump difference between SHR and WKY.« less

  15. Dopamine D1 Receptors Regulate the Light Dependent Development of Retinal Synaptic Responses

    PubMed Central

    He, Quanhua; Xu, Hong-ping; Wang, Ping; Tian, Ning

    2013-01-01

    Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina. PMID:24260267

  16. Transcranial direct-current stimulation modulates offline visual oscillatory activity: A magnetoencephalography study

    PubMed Central

    Heinrichs-Graham, Elizabeth; McDermott, Timothy J.; Mills, Mackenzie S.; Coolidge, Nathan M.; Wilson, Tony W.

    2017-01-01

    Transcranial direct-current stimulation (tDCS) is a noninvasive neuromodulatory method that involves delivering low amplitude, direct current to specific regions of the brain. While a wealth of literature shows changes in behavior and cognition following tDCS administration, the underlying neuronal mechanisms remain largely unknown. Neuroimaging studies have generally used fMRI and shown only limited consensus to date, while the few electrophysiological studies have reported mostly null or counterintuitive findings. The goal of the current investigation was to quantify tDCS-induced alterations in the oscillatory dynamics of visual processing. To this end, we performed either active or sham tDCS using an occipital-frontal electrode configuration, and then recorded magnetoencephalography (MEG) offline during a visual entrainment task. Significant oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on absolute and relative power were assessed. The results indicated significantly increased basal alpha levels in the occipital cortex following anodal tDCS, as well as reduced occipital synchronization at the second harmonic of the stimulus-flicker frequency relative to sham stimulation. In addition, we found reduced power in brain regions near the cathode (e.g., right inferior frontal gyrus) following active tDCS, which was absent in the sham group. Taken together, these results suggest that anodal tDCS of the occipital cortices differentially modulates spontaneous and induced activity, and may interfere with the entrainment of neuronal populations by a visual-flicker stimulus. These findings also demonstrate the importance of electrode configuration on whole-brain dynamics, and highlight the deceptively complicated nature of tDCS in the context of neurophysiology. PMID:28042984

  17. Charting epilepsy by searching for intelligence in network space with the help of evolving autonomous agents.

    PubMed

    Ohayon, Elan L; Kalitzin, Stiliyan; Suffczynski, Piotr; Jin, Frank Y; Tsang, Paul W; Borrett, Donald S; Burnham, W McIntyre; Kwan, Hon C

    2004-01-01

    The problem of demarcating neural network space is formidable. A simple fully connected recurrent network of five units (binary activations, synaptic weight resolution of 10) has 3.2 *10(26) possible initial states. The problem increases drastically with scaling. Here we consider three complementary approaches to help direct the exploration to distinguish epileptic from healthy networks. [1] First, we perform a gross mapping of the space of five-unit continuous recurrent networks using randomized weights and initial activations. The majority of weight patterns (>70%) were found to result in neural assemblies exhibiting periodic limit-cycle oscillatory behavior. [2] Next we examine the activation space of non-periodic networks demonstrating that the emergence of paroxysmal activity does not require changes in connectivity. [3] The next challenge is to focus the search of network space to identify networks with more complex dynamics. Here we rely on a major available indicator critical to clinical assessment but largely ignored by epilepsy modelers, namely: behavioral states. To this end, we connected the above network layout to an external robot in which interactive states were evolved. The first random generation showed a distribution in line with approach [1]. That is, the predominate phenotypes were fixed-point or oscillatory with seizure-like motor output. As evolution progressed the profile changed markedly. Within 20 generations the entire population was able to navigate a simple environment with all individuals exhibiting multiply-stable behaviors with no cases of default locked limit-cycle oscillatory motor behavior. The resultant population may thus afford us a view of the architectural principles demarcating healthy biological networks from the pathological. The approach has an advantage over other epilepsy modeling techniques in providing a way to clarify whether observed dynamics or suggested therapies are pointing to computational viability or dead space.

  18. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task.

    PubMed

    Jiang, Jun; Bailey, Kira; Xiao, Xiao

    2018-01-01

    Past attempts to characterize the neural mechanisms of affective priming have conceptualized it in terms of classic cognitive conflict, but have not examined the neural oscillatory mechanisms of subliminal affective priming. Using behavioral and electroencephalogram (EEG) time frequency (TF) analysis, the current study examines the oscillatory dynamics of unconsciously triggered conflict in an emotional facial expressions version of the masked affective priming task. The results demonstrate that the power dynamics of conflict are characterized by increased midfrontal theta activity and suppressed parieto-occipital alpha activity. Across-subject and within-trial correlation analyses further confirmed this pattern. Phase synchrony and Granger causality analyses (GCAs) revealed that the fronto-parietal network was involved in unconscious conflict detection and resolution. Our findings support a response conflict account of affective priming, and reveal the role of the fronto-parietal network in unconscious conflict control.

  19. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates.

    PubMed

    Brunel, N; Hakim, V

    1999-10-01

    We study analytically the dynamics of a network of sparsely connected inhibitory integrate-and-fire neurons in a regime where individual neurons emit spikes irregularly and at a low rate. In the limit when the number of neurons --> infinity, the network exhibits a sharp transition between a stationary and an oscillatory global activity regime where neurons are weakly synchronized. The activity becomes oscillatory when the inhibitory feedback is strong enough. The period of the global oscillation is found to be mainly controlled by synaptic times but depends also on the characteristics of the external input. In large but finite networks, the analysis shows that global oscillations of finite coherence time generically exist both above and below the critical inhibition threshold. Their characteristics are determined as functions of systems parameters in these two different regions. The results are found to be in good agreement with numerical simulations.

  20. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.

    PubMed

    Negrón-Oyarzo, Ignacio; Espinosa, Nelson; Aguilar, Marcelo; Fuenzalida, Marco; Aboitiz, Francisco; Fuentealba, Pablo

    2018-06-18

    Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.

  1. Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation.

    PubMed

    Miller, Jonathan; Watrous, Andrew J; Tsitsiklis, Melina; Lee, Sang Ah; Sheth, Sameer A; Schevon, Catherine A; Smith, Elliot H; Sperling, Michael R; Sharan, Ashwini; Asadi-Pooya, Ali Akbar; Worrell, Gregory A; Meisenhelter, Stephen; Inman, Cory S; Davis, Kathryn A; Lega, Bradley; Wanda, Paul A; Das, Sandhitsu R; Stein, Joel M; Gorniak, Richard; Jacobs, Joshua

    2018-06-21

    The hippocampus plays a vital role in various aspects of cognition including both memory and spatial navigation. To understand electrophysiologically how the hippocampus supports these processes, we recorded intracranial electroencephalographic activity from 46 neurosurgical patients as they performed a spatial memory task. We measure signals from multiple brain regions, including both left and right hippocampi, and we use spectral analysis to identify oscillatory patterns related to memory encoding and navigation. We show that in the left but not right hippocampus, the amplitude of oscillations in the 1-3-Hz "low theta" band increases when viewing subsequently remembered object-location pairs. In contrast, in the right but not left hippocampus, low-theta activity increases during periods of navigation. The frequencies of these hippocampal signals are slower than task-related signals in the neocortex. These results suggest that the human brain includes multiple lateralized oscillatory networks that support different aspects of cognition.

  2. Cycle-Triggered Cortical Stimulation during Slow Wave Sleep Facilitates Learning a BMI Task: A Case Report in a Non-Human Primate

    PubMed Central

    Rembado, Irene; Zanos, Stavros; Fetz, Eberhard E.

    2017-01-01

    Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating newly acquired information. A growing body of evidence has shown that delta (1–4 Hz) oscillatory activity, the characteristic electroencephalographic signature of SWS, is involved in coordinating interaction between the hippocampus and the neocortex and is thought to take a role in stabilizing memory traces related to a novel task. This case report describes a new protocol that uses neuroprosthetics training of a non-human primate to evaluate the effects of surface cortical electrical stimulation triggered from SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory activity promoted learning of the neuroprosthetic task. This protocol could be used to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep and offers new insights into the role of brain oscillations in information processing and memory consolidation. PMID:28450831

  3. Conflict processing in the anterior cingulate cortex constrains response priming.

    PubMed

    Pastötter, Bernhard; Hanslmayr, Simon; Bäuml, Karl-Heinz T

    2010-05-01

    A prominent function of the anterior cingulate cortex (ACC) is to process conflict between competing response options. In this study, we investigated the role of conflict processing in a response-priming task in which manual responses were either validly or invalidly cued. Examining electrophysiological measurements of oscillatory brain activity on the source level, we found response priming to be related to a beta power decrease in the premotor cortex and conflict processing to be linked to a theta power increase in the ACC. In particular, correlation of oscillatory brain activities in the ACC and the premotor cortex showed that conflict processing reduces response priming by slowing response time in valid trials and lowering response errors in invalid trials. This relationship emerged on a between subjects level as well as within subjects, on a single trial level. These findings suggest that conflict processing in the ACC constrains the automatic priming process. 2010 Elsevier Inc. All rights reserved.

  4. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    PubMed

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  5. Signal Processing in Periodically Forced Gradient Frequency Neural Networks

    PubMed Central

    Kim, Ji Chul; Large, Edward W.

    2015-01-01

    Oscillatory instability at the Hopf bifurcation is a dynamical phenomenon that has been suggested to characterize active non-linear processes observed in the auditory system. Networks of oscillators poised near Hopf bifurcation points and tuned to tonotopically distributed frequencies have been used as models of auditory processing at various levels, but systematic investigation of the dynamical properties of such oscillatory networks is still lacking. Here we provide a dynamical systems analysis of a canonical model for gradient frequency neural networks driven by a periodic signal. We use linear stability analysis to identify various driven behaviors of canonical oscillators for all possible ranges of model and forcing parameters. The analysis shows that canonical oscillators exhibit qualitatively different sets of driven states and transitions for different regimes of model parameters. We classify the parameter regimes into four main categories based on their distinct signal processing capabilities. This analysis will lead to deeper understanding of the diverse behaviors of neural systems under periodic forcing and can inform the design of oscillatory network models of auditory signal processing. PMID:26733858

  6. Aberrant occipital dynamics differentiate HIV-infected patients with and without cognitive impairment.

    PubMed

    Wiesman, Alex I; O'Neill, Jennifer; Mills, Mackenzie S; Robertson, Kevin R; Fox, Howard S; Swindells, Susan; Wilson, Tony W

    2018-06-01

    Combination antiretroviral therapies have revolutionized the treatment of HIV infection, and many patients now enjoy a lifespan equal to that of the general population. However, HIV-associated neurocognitive disorders (HAND) remain a major health concern, with between 30% and 70% of all HIV-infected patients developing cognitive impairments during their life time. One important feature of HAND is visuo-perceptual deficits, but the systems-level neural dynamics underlying these impairments are poorly understood. In the current study, we use magnetoencephalography and advanced time series analyses to examine these neural dynamics during a visuospatial processing task in a group of HIV-infected patients without HAND (n = 25), patients with HAND (n = 18), and a group of demographically-matched uninfected controls (n = 24). All participants completed a thorough neuropsychological assessment, and underwent magnetoencephalography and structural MRI protocols. In agreement with previous studies, patients with HAND performed significantly worse than HIV-infected patients without HAND and controls on the cognitive task, in terms of increased reaction time and decreased accuracy. Our magnetoencephalography results demonstrated that both spontaneous and neural oscillatory activity within the occipital cortices were affected by HIV infection, and that these patterns predicted behavioural performance (i.e. accuracy) on the task. Specifically, spontaneous neural activity in the alpha (8-16 Hz) and gamma (52-70 Hz) bands during the prestimulus baseline period, as well as oscillatory theta responses (4-8 Hz) during task performance were aberrant in HIV-infected patients, with both spontaneous alpha and oscillatory theta activity significantly predicting accuracy on the task and neuropsychological performance outside of the magnetoencephalography scanner. Importantly, these rhythmic patterns of population-level neural activity also distinguished patients by HAND status, such that spontaneous alpha activity in patients with HAND was elevated relative to HIV-infected patients without HAND and controls. In contrast, HIV-infected patients with and without HAND had increased spontaneous gamma compared to controls. Finally, there was a stepwise decrease in oscillatory theta activity as a function of disease severity, such that the response diminished from controls to patients without HAND to patients with HAND. Interestingly, the strength of the relationship between this theta response and accuracy also dissociated patient groups in a similar manner (controls > HIV with no HAND > HIV with HAND), indicating a reduced coupling between neurophysiology and behaviour in HIV-infected patients. This study provides the first neuroimaging evidence of a dissociation between HIV-infected patients with and without HAND, and these findings shed new light on the neural bases of cognitive impairment in HIV infection.

  7. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Wu, Yilin

    Collective oscillatory behavior is ubiquitous in nature and it plays a vital role in many biological processes. Collective oscillations in biological multicellular systems often arise from coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we discovered a unique 'weak synchronization' mechanism that does not require long-range coupling, nor even inherent oscillation of individual cells: We found that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individuals move in an erratic manner. Over large spatial scales we found that the phase of the oscillations is in fact organized into a centimeter scale traveling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations. These findings expand our knowledge of biological self-organization and reveal a new type of long-range order in active matter systems. The mechanism of collective oscillation uncovered here may inspire new strategies to control the self-organization of active matter and swarming robots. This work is supported by funding from CUHK Direct research Grants (4053019, 4053079, 4053130), the Research Grants Council of HKSAR (RGC Ref. No. CUHK 409713), and from the National Natural Science Foundation of China (NSFC 21473152).

  8. Determination of airway humidification in high-frequency oscillatory ventilation using an artificial neonatal lung model. Comparison of a heated humidifier and a heat and moisture exchanger.

    PubMed

    Schiffmann, H; Singer, S; Singer, D; von Richthofen, E; Rathgeber, J; Züchner, K

    1999-09-01

    Thus far only few data are available on airway humidification during high-frequency oscillatory ventilation (HFOV). Therefore, we studied the performance and efficiency of a heated humidifier (HH) and a heat and moisture exchanger (HME) in HFOV using an artificial lung model. Experiments were performed with a pediatric high-frequency oscillatory ventilator. The artificial lung contained a sponge saturated with water to simulate evaporation and was placed in an incubator heated to 37 degrees C to prevent condensation. The airway humidity was measured using a capacitive humidity sensor. The water loss of the lung model was determined gravimetrically. The water loss of the lung model varied between 2.14 and 3.1 g/h during active humidification; it was 2.85 g/h with passive humidification and 7.56 g/h without humidification. The humidity at the tube connector varied between 34. 2 and 42.5 mg/l, depending on the temperature of the HH and the ventilator setting during active humidification, and between 37 and 39.9 mg/l with passive humidification. In general, HH and HME are suitable devices for airway humidification in HFOV. The performance of the ventilator was not significantly influenced by the mode of humidification. However, the adequacy of humidification and safety of the HME remains to be demonstrated in clinical practice.

  9. Complementary fMRI and EEG evidence for more efficient neural processing of rhythmic vs. unpredictably timed sounds

    PubMed Central

    van Atteveldt, Nienke; Musacchia, Gabriella; Zion-Golumbic, Elana; Sehatpour, Pejman; Javitt, Daniel C.; Schroeder, Charles

    2015-01-01

    The brain’s fascinating ability to adapt its internal neural dynamics to the temporal structure of the sensory environment is becoming increasingly clear. It is thought to be metabolically beneficial to align ongoing oscillatory activity to the relevant inputs in a predictable stream, so that they will enter at optimal processing phases of the spontaneously occurring rhythmic excitability fluctuations. However, some contexts have a more predictable temporal structure than others. Here, we tested the hypothesis that the processing of rhythmic sounds is more efficient than the processing of irregularly timed sounds. To do this, we simultaneously measured functional magnetic resonance imaging (fMRI) and electro-encephalograms (EEG) while participants detected oddball target sounds in alternating blocks of rhythmic (e.g., with equal inter-stimulus intervals) or random (e.g., with randomly varied inter-stimulus intervals) tone sequences. Behaviorally, participants detected target sounds faster and more accurately when embedded in rhythmic streams. The fMRI response in the auditory cortex was stronger during random compared to random tone sequence processing. Simultaneously recorded N1 responses showed larger peak amplitudes and longer latencies for tones in the random (vs. the rhythmic) streams. These results reveal complementary evidence for more efficient neural and perceptual processing during temporally predictable sensory contexts. PMID:26579044

  10. Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors.

    PubMed

    Aroniadou-Anderjaska, Vassiliki; Pidoplichko, Volodymyr I; Figueiredo, Taiza H; Braga, Maria F M

    2018-03-01

    Synchronous, rhythmic firing of GABAergic interneurons is a fundamental mechanism underlying the generation of brain oscillations, and evidence suggests that NMDA receptors (NMDARs) play a key role in oscillatory activity by regulating the activity of interneurons. Consistent with this, derangement of brain rhythms in certain neuropsychiatric disorders, notably schizophrenia and autism, is associated with NMDAR hypofunction and loss of inhibitory interneurons. In the basolateral amygdala (BLA)-dysfunction of which is involved in a host of neuropsychiatric diseases-, principal neurons display spontaneous, rhythmic "bursts" of inhibitory activity, which could potentially be involved in the orchestration of oscillations in the BLA network; here, we investigated the role of NMDARs in these inhibitory oscillations. Rhythmic bursts of spontaneous IPSCs (0.5 Hz average burst frequency) recorded from rat BLA principal cells were blocked or significantly suppressed by D-AP5, and could be driven by NMDAR activation alone. BLA interneurons generated spontaneous bursts of suprathreshold EPSCs at a similar frequency, which were also blocked or reduced by D-AP5. PEAQX (GluN2A-NMDAR antagonist; 0.4 μM) or Ro-25-6981 (GluN2B-NMDAR antagonist; 5 μM) suppressed the IPSC and EPSC bursts; suppression by PEAQX was significantly greater than that by Ro-25-6981. Immunohistochemical labeling revealed the presence of both GluN2A- and GluN2B-NMDARs on GABAergic BLA interneurons, while, functionally, GluN2A-NMDARs have the dominant role, as suggested by a greater reduction of NMDA-evoked currents by PEAQX versus Ro-25-6981. Entrainment of BLA principal neurons in an oscillatory generation of inhibitory activity depends primarily on activation of GluN2A-NMDARs, and interneuronal GluN2A-NMDARs may play a significant role. Published by Elsevier Ltd.

  11. The anterior and posterior pedunculopontine tegmental nucleus are involved in behavior and neuronal activity of the cuneiform and entopeduncular nuclei.

    PubMed

    Jin, X; Schwabe, K; Krauss, J K; Alam, M

    2016-05-13

    Loss of cholinergic neurons in the mesencephalic locomotor region, comprising the pedunculopontine nucleus (PPN) and the cuneiform nucleus (CnF), is related to gait disturbances in late stage Parkinson's disease (PD). We investigate the effect of anterior or posterior cholinergic lesions of the PPN on gait-related motor behavior, and on neuronal network activity of the PPN area and basal ganglia (BG) motor loop in rats. Anterior PPN lesions, posterior PPN lesions or sham lesions were induced by stereotaxic microinjection of the cholinergic toxin AF64-A or vehicle in male Sprague-Dawley rats. First, locomotor activity (open field), postural disturbances (Rotarod) and gait asymmetry (treadmill test) were assessed. Thereafter, single-unit and oscillatory activities were measured in the non-lesioned area of the PPN, the CnF and the entopeduncular nucleus (EPN), the BG output region, with microelectrodes under urethane anesthesia. Additionally, ECoG was recorded in the motor cortex. Injection of AF64-A into the anterior and posterior PPN decreased cholinergic cell counts as compared to naive controls (P<0.001) but also destroyed non-cholinergic cells. Only anterior PPN lesions decreased the front limb swing time of gait in the treadmill test, while not affecting other gait-related parameters tested. Main electrophysiological findings were that anterior PPN lesions increased the firing activity in the CnF (P<0.001). Further, lesions of either PPN region decreased the coherence of alpha (8-12 Hz) band between CnF and motor cortex (MCx), and increased the beta (12-30 Hz) oscillatory synchronization between EPN and the MCx. Lesions of the PPN in rats had complex effects on oscillatory neuronal activity of the CnF and the BG network, which may contribute to the understanding of the pathophysiology of gait disturbance in PD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Common oscillatory mechanisms across multiple memory systems

    NASA Astrophysics Data System (ADS)

    Headley, Drew B.; Paré, Denis

    2017-01-01

    The cortex, hippocampus, and striatum support dissociable forms of memory. While each of these regions contains specialized circuitry supporting their respective functions, all structure their activities across time with delta, theta, and gamma rhythms. We review how these oscillations are generated and how they coordinate distinct memory systems during encoding, consolidation, and retrieval. First, gamma oscillations occur in all regions and coordinate local spiking, compressing it into short population bursts. Second, gamma oscillations are modulated by delta and theta oscillations. Third, oscillatory dynamics in these memory systems can operate in either a "slow" or "fast" mode. The slow mode happens during slow-wave sleep and is characterized by large irregular activity in the hippocampus and delta oscillations in cortical and striatal circuits. The fast mode occurs during active waking and rapid eye movement (REM) sleep and is characterized by theta oscillations in the hippocampus and its targets, along with gamma oscillations in the rest of cortex. In waking, the fast mode is associated with the efficacious encoding and retrieval of declarative and procedural memories. Theta and gamma oscillations have similar relationships with encoding and retrieval across multiple forms of memory and brain regions, despite regional differences in microcircuitry and information content. Differences in the oscillatory coordination of memory systems during sleep might explain why the consolidation of some forms of memory is sensitive to slow-wave sleep, while others depend on REM. In particular, theta oscillations appear to support the consolidation of certain types of procedural memories during REM, while delta oscillations during slow-wave sleep seem to promote declarative and procedural memories.

  13. Autism, Attention, and Alpha Oscillations: An Electrophysiological Study of Attentional Capture.

    PubMed

    Keehn, Brandon; Westerfield, Marissa; Müller, Ralph-Axel; Townsend, Jeanne

    2017-09-01

    Autism spectrum disorder (ASD) is associated with deficits in adaptively orienting attention to behaviorally-relevant information. Neural oscillatory activity plays a key role in brain function and provides a high-resolution temporal marker of attention dynamics. Alpha band (8-12 Hz) activity is associated with both selecting task-relevant stimuli and filtering task-irrelevant information. The present study used electroencephalography (EEG) to examine alpha-band oscillatory activity associated with attentional capture in nineteen children with ASD and twenty-one age- and IQ-matched typically developing (TD) children. Participants completed a rapid serial visual presentation paradigm designed to investigate responses to behaviorally-relevant targets and contingent attention capture by task-irrelevant distractors, which either did or did not share a behaviorally-relevant feature. Participants also completed six minutes of eyes-open resting EEG. In contrast to their TD peers, children with ASD did not evidence posterior alpha desynchronization to behaviorally-relevant targets. Additionally, reduced target-related desynchronization and poorer target detection were associated with increased ASD symptomatology. TD children also showed behavioral and electrophysiological evidence of contingent attention capture, whereas children with ASD showed no behavioral facilitation or alpha desynchronization to distractors that shared a task-relevant feature. Lastly, children with ASD had significantly decreased resting alpha power, and for all participants increased resting alpha levels were associated with greater task-related alpha desynchronization. These results suggest that in ASD under-responsivity and impairments in orienting to salient events within their environment are reflected by atypical EEG oscillatory neurodynamics, which may signify atypical arousal levels and/or an excitatory/inhibitory imbalance.

  14. Correlation transfer from basal ganglia to thalamus in Parkinson's disease

    PubMed Central

    Pamela, Reitsma; Brent, Doiron; Jonathan, Rubin

    2011-01-01

    Spike trains from neurons in the basal ganglia of parkinsonian primates show increased pairwise correlations, oscillatory activity, and burst rate compared to those from neurons recorded during normal brain activity. However, it is not known how these changes affect the behavior of downstream thalamic neurons. To understand how patterns of basal ganglia population activity may affect thalamic spike statistics, we study pairs of model thalamocortical (TC) relay neurons receiving correlated inhibitory input from the internal segment of the globus pallidus (GPi), a primary output nucleus of the basal ganglia. We observe that the strength of correlations of TC neuron spike trains increases with the GPi correlation level, and bursty firing patterns such as those seen in the parkinsonian GPi allow for stronger transfer of correlations than do firing patterns found under normal conditions. We also show that the T-current in the TC neurons does not significantly affect correlation transfer, despite its pronounced effects on spiking. Oscillatory firing patterns in GPi are shown to affect the timescale at which correlations are best transferred through the system. To explain this last result, we analytically compute the spike count correlation coefficient for oscillatory cases in a reduced point process model. Our analysis indicates that the dependence of the timescale of correlation transfer is robust to different levels of input spike and rate correlations and arises due to differences in instantaneous spike correlations, even when the long timescale rhythmic modulations of neurons are identical. Overall, these results show that parkinsonian firing patterns in GPi do affect the transfer of correlations to the thalamus. PMID:22355287

  15. Source Space Estimation of Oscillatory Power and Brain Connectivity in Tinnitus

    PubMed Central

    Zobay, Oliver; Palmer, Alan R.; Hall, Deborah A.; Sereda, Magdalena; Adjamian, Peyman

    2015-01-01

    Tinnitus is the perception of an internally generated sound that is postulated to emerge as a result of structural and functional changes in the brain. However, the precise pathophysiology of tinnitus remains unknown. Llinas’ thalamocortical dysrhythmia model suggests that neural deafferentation due to hearing loss causes a dysregulation of coherent activity between thalamus and auditory cortex. This leads to a pathological coupling of theta and gamma oscillatory activity in the resting state, localised to the auditory cortex where normally alpha oscillations should occur. Numerous studies also suggest that tinnitus perception relies on the interplay between auditory and non-auditory brain areas. According to the Global Brain Model, a network of global fronto—parietal—cingulate areas is important in the generation and maintenance of the conscious perception of tinnitus. Thus, the distress experienced by many individuals with tinnitus is related to the top—down influence of this global network on auditory areas. In this magnetoencephalographic study, we compare resting-state oscillatory activity of tinnitus participants and normal-hearing controls to examine effects on spectral power as well as functional and effective connectivity. The analysis is based on beamformer source projection and an atlas-based region-of-interest approach. We find increased functional connectivity within the auditory cortices in the alpha band. A significant increase is also found for the effective connectivity from a global brain network to the auditory cortices in the alpha and beta bands. We do not find evidence of effects on spectral power. Overall, our results provide only limited support for the thalamocortical dysrhythmia and Global Brain models of tinnitus. PMID:25799178

  16. Expectancy for food or expectancy for chocolate reveals timing systems for metabolism and reward.

    PubMed

    Angeles-Castellanos, M; Salgado-Delgado, R; Rodríguez, K; Buijs, R M; Escobar, C

    2008-07-31

    The clock gene protein Per 1 (PER1) is expressed in several brain structures and oscillates associated with the suprachiasmatic nucleus (SCN). Restricted feeding schedules (RFS) induce anticipatory activity and impose daily oscillations of c-Fos and clock proteins in brain structures. Daily access to a palatable treat (chocolate) also elicits anticipatory activity and induces c-Fos expression mainly in corticolimbic structures. Here the influence of daily access to food or chocolate was explored by the analysis of the oscillatory patterns of PER1 in hypothalamic and corticolimbic structures. Wistar rats were exposed to RFS or to daily access to chocolate for 3 weeks. Persistence of food or chocolate entrained rhythms was determined 8 days after cessation of the feeding protocols. RFS and chocolate induced a phase shift in PER1 rhythmicity in corticolimbic structures with peak values at zeitgeber time 12 and a higher amplitude in the chocolate group. Both RFS and chocolate groups showed an upregulation of PER1 in the SCN. Food and chocolate entrained rhythms persisted for 8 days in behavior and in PER1 expression in the dorsomedial hypothalamic nucleus, accumbens, prefrontal cortex and central amygdala. The present data demonstrate the existence of different oscillatory systems in the brain that can be activated by entrainment to metabolic stimuli or to reward and suggest the participation of PER1 in both entraining pathways. Persistence and amplification of PER1 oscillations in structures associated with reward suggest that this oscillatory process is fundamental to food addictive behavior.

  17. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study

    PubMed Central

    van Ede, Freek

    2017-01-01

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABAA inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABAA decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABAA inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABAA inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABAA inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABAA inhibition induced by tACS and the magnitude of GABAA inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. PMID:28348136

  18. Efficient “Communication through Coherence” Requires Oscillations Structured to Minimize Interference between Signals

    PubMed Central

    Akam, Thomas E.; Kullmann, Dimitri M.

    2012-01-01

    The ‘communication through coherence’ (CTC) hypothesis proposes that selective communication among neural networks is achieved by coherence between firing rate oscillation in a sending region and gain modulation in a receiving region. Although this hypothesis has stimulated extensive work, it remains unclear whether the mechanism can in principle allow reliable and selective information transfer. Here we use a simple mathematical model to investigate how accurately coherent gain modulation can filter a population-coded target signal from task-irrelevant distracting inputs. We show that selective communication can indeed be achieved, although the structure of oscillatory activity in the target and distracting networks must satisfy certain previously unrecognized constraints. Firstly, the target input must be differentiated from distractors by the amplitude, phase or frequency of its oscillatory modulation. When distracting inputs oscillate incoherently in the same frequency band as the target, communication accuracy is severely degraded because of varying overlap between the firing rate oscillations of distracting inputs and the gain modulation in the receiving region. Secondly, the oscillatory modulation of the target input must be strong in order to achieve a high signal-to-noise ratio relative to stochastic spiking of individual neurons. Thus, whilst providing a quantitative demonstration of the power of coherent oscillatory gain modulation to flexibly control information flow, our results identify constraints imposed by the need to avoid interference between signals, and reveal a likely organizing principle for the structure of neural oscillations in the brain. PMID:23144603

  19. DNA Molecules in Microfluidic Oscillatory Flow

    PubMed Central

    Chen, Y.-L.; Graham, M.D.; de Pablo, J.J.; Jo, K.; Schwartz, D.C.

    2008-01-01

    The conformation and dynamics of a single DNA molecule undergoing oscillatory pressure-driven flow in microfluidic channels is studied using Brownian dynamics simulations, accounting for hydrodynamic interactions between segments in the bulk and between the chain and the walls. Oscillatory flow provides a scenario under which the polymers may remain in the channel for an indefinite amount of time as they are stretched and migrate away from the channel walls. We show that by controlling the chain length, flow rate and oscillatory flow frequency, we are able to manipulate the chain extension and the chain migration from the channel walls. The chain stretch and the chain depletion layer thickness near the wall are found to increase as the Weissenberg number increases and as the oscillatory frequency decreases. PMID:19057656

  20. ONR Tokyo Scientific Bulletin. Volume 4, Number 4, October-December 1979,

    DTIC Science & Technology

    1979-12-01

    describing various biological rhythms, from oscillatory electrical activities of the brain to circadian fluctuations in bodily functions and task...Technology Division, Naval Research Laboratory, has concentrated his activities on the design and utilization of far infrared gas lasers for the study... activities of the International Indian Ocean Expedition (IIOE) and the plankton sorting center established at Cochin, for plankton samples taken during the

  1. Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.

    PubMed

    McDermott, Timothy J; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2017-08-01

    The flanker task is a test of visual selective attention that has been widely used to probe error monitoring, response conflict, and related constructs. However, to date, few studies have focused on the selective attention component of this task and imaged the underlying oscillatory dynamics serving task performance. In this study, 21 healthy adults successfully completed an arrow-based version of the Eriksen flanker task during magnetoencephalography (MEG). All MEG data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and voxel time series were extracted from the peak responses to identify the temporal dynamics. Across both congruent and incongruent flanker conditions, our results indicated robust decreases in alpha (9-12Hz) activity in medial and lateral occipital regions, bilateral parietal cortices, and cerebellar areas during task performance. In parallel, increases in theta (3-7Hz) oscillatory activity were detected in dorsal and ventral frontal regions, and the anterior cingulate. As per conditional effects, stronger alpha responses (i.e., greater desynchronization) were observed in parietal, occipital, and cerebellar cortices during incongruent relative to congruent trials, whereas the opposite pattern emerged for theta responses (i.e., synchronization) in the anterior cingulate, left dorsolateral prefrontal, and ventral prefrontal cortices. Interestingly, the peak latency of theta responses in these latter brain regions was significantly correlated with reaction time, and may partially explain the amplitude difference observed between congruent and incongruent trials. Lastly, whole-brain exploratory analyses implicated the frontal eye fields, right temporoparietal junction, and premotor cortices. These findings suggest that regions of both the dorsal and ventral attention networks contribute to visual selective attention processes during incongruent trials, and that such differential processes are transient and fully completed shortly after the behavioral response in most trials. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Asymmetric right/left encoding of emotions in the human subthalamic nucleus

    PubMed Central

    Eitan, Renana; Shamir, Reuben R.; Linetsky, Eduard; Rosenbluh, Ovadya; Moshel, Shay; Ben-Hur, Tamir; Bergman, Hagai; Israel, Zvi

    2013-01-01

    Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN), an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson's disease (PD). This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12–30 Hz), the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs. In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS) surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and psychiatric diseases. PMID:24194703

  3. Electrophysiological characteristics of task-specific tremor in 22 instrumentalists.

    PubMed

    Lee, André; Tominaga, Kenta; Furuya, Shinichi; Miyazaki, Fumio; Altenmüller, Eckart

    2015-03-01

    Our aim was to address three characteristics of task-specific tremor in musicians (TSTM): First, we quantified muscular activity of flexor and extensor muscles, of coactivation as well as tremor acceleration. Second, we compared muscular activity between task-dependent and position-dependent tremor. Third, we investigated, whether there is an overflow of muscular activity to muscles adjacent to the affected muscles in TSTM. Tremor acceleration and muscular activity were measured in the affected muscles and the muscles adjacent to the affected muscles in 22 patients aged 51.5 ± 11.4 years with a task-specific tremor. We assessed power of muscular oscillatory activity and calculated the coherence between EMG activity of affected muscles and tremor acceleration as well as between adjacent muscles and tremor acceleration. This was done for task-dependent and position-dependent tremor. We found the highest power and coherence of muscular oscillatory activity in the frequency range of 3-8 Hz for affected and adjacent muscles. No difference was found between task-dependent and position-dependent tremor in neither power nor coherence measures. Our results generalize previous results of a relation between coactivation and tremor among a variety of musicians. Furthermore, we found coherence of adjacent muscles and TSTM. This indicates that overflow exists in TSTM and suggests an association of TST with dystonia.

  4. Corticomuscular transmission of tremor signals by propriospinal neurons in Parkinson's disease.

    PubMed

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3-C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur.

  5. Corticomuscular Transmission of Tremor Signals by Propriospinal Neurons in Parkinson's Disease

    PubMed Central

    Hao, Manzhao; He, Xin; Xiao, Qin; Alstermark, Bror; Lan, Ning

    2013-01-01

    Cortical oscillatory signals of single and double tremor frequencies act together to cause tremor in the peripheral limbs of patients with Parkinson's disease (PD). But the corticospinal pathway that transmits the tremor signals has not been clarified, and how alternating bursts of antagonistic muscle activations are generated from the cortical oscillatory signals is not well understood. This paper investigates the plausible role of propriospinal neurons (PN) in C3–C4 in transmitting the cortical oscillatory signals to peripheral muscles. Kinematics data and surface electromyogram (EMG) of tremor in forearm were collected from PD patients. A PN network model was constructed based on known neurophysiological connections of PN. The cortical efferent signal of double tremor frequencies were integrated at the PN network, whose outputs drove the muscles of a virtual arm (VA) model to simulate tremor behaviors. The cortical efferent signal of single tremor frequency actuated muscle spindles. By comparing tremor data of PD patients and the results of model simulation, we examined two hypotheses regarding the corticospinal transmission of oscillatory signals in Parkinsonian tremor. Hypothesis I stated that the oscillatory cortical signals were transmitted via the mono-synaptic corticospinal pathways bypassing the PN network. The alternative hypothesis II stated that they were transmitted by way of PN multi-synaptic corticospinal pathway. Simulations indicated that without the PN network, the alternating burst patterns of antagonistic muscle EMGs could not be reliably generated, rejecting the first hypothesis. However, with the PN network, the alternating burst patterns of antagonist EMGs were naturally reproduced under all conditions of cortical oscillations. The results suggest that cortical commands of single and double tremor frequencies are further processed at PN to compute the alternating burst patterns in flexor and extensor muscles, and the neuromuscular dynamics demonstrated a frequency dependent damping on tremor, which may prevent tremor above 8 Hz to occur. PMID:24278189

  6. Oxygen-induced excitability of the belousov-zhabotinskii oscillatory system

    NASA Astrophysics Data System (ADS)

    Treindl, Ľudovit; Mrákavová, Marta

    1985-12-01

    The modified Belousov-Zhabotinskii ferroin-catalyzed oscillatory system with the ethyl ester of 3-oxobutanoic acid is described. After an induction period of about 120 s its oscillatory state consisting of four or five oscillations of absorbancy at a wavenumber of 22×10 3 cm -1 can be revived three or four times, if the solution is shaken for 25 s after the oscillatory state has finished. This apparently "mechanical" excitability, which can be observed spectrophotometrically and also polarographically using a rotating platinum disc electrode, proved to be oxygen-induced.

  7. Effects of transverse oscillatory waves on turbulent boundary waves

    NASA Technical Reports Server (NTRS)

    Matulevich, Jonathan; Jacobs, Harold R.

    1994-01-01

    Studies of the interaction of unsteady (oscillatory) flows with the growth of a turbulent boundary layer on a flat plate have primarily dealt with an oscillatory component in the primary flow direction. Past studies of the 2-D flow have shown little or no increase in the time averaged heat transfer. The present paper deals with a steady axial and an oscillatory transverse flow. It is shown that for such flows the temporal variation for both the turbulent skin friction and heat transfer are such as to yield increased time averaged values.

  8. Contribution of Rho kinase to the early phase of the calcium-contraction coupling in airway smooth muscle.

    PubMed

    Mbikou, Prisca; Fajmut, Ales; Brumen, Milan; Roux, Etienne

    2011-02-01

    We investigated theoretically and experimentally the role of Rho kinase (RhoK) in Ca(2+)-contraction coupling in rat airways. Isometric contraction was measured on tracheal, extrapulmonary and intrapulmonary bronchial rings. Intracellular [Ca(2+)] was recorded in freshly isolated tracheal myocytes. Stimulation by carbachol (0.3 and 10 μm) and 50 mm external KCl induced a short-time, Hill-shaped contraction obtained within 90 s, followed by a sustained or an additional delayed contraction. Responses of [Ca(2+)](i) to acetylcholine consisted in a fast peak followed by a plateau and, in 42% of the cells, superimposed Ca(2+) oscillations. The RhoK inhibitor Y27632 (10 μm) did not alter the [Ca(2+)](i) response. Whatever the agonist, Y27632 did not modify the basal tension but decreased the amplitude of the short-duration response, without altering the additional delayed contraction. The Myosin Light Chain Phosphatase (MLCP) inhibitor calyculin A increased the basal tension and abolished the effect of RhoK. KN93 (Ca(2+)-calmodulin-dependent protein kinase II inhibitor) and DIDS (inhibitor of Ca(2+)-activated Cl(-) channels) had no influence on the RhoK effect. We built a theoretical model of Ca(2+)-dependent active/inactive RhoK ratio and subsequent RhoK-dependent MLCP inactivation, which was further coupled with a four-state model of the contractile apparatus and Ca(2+)-dependent MLCK activation. The model explains the time course of the short-duration contraction and the role of RhoK by Ca(2+)-dependent activation of MLCK and RhoK, which inactivates MLCP. Oscillatory and non-oscillatory [Ca(2+)](i) responses result in a non-oscillatory contraction, the amplitude of which is encoded by the plateau value and oscillation frequency. In conclusion, Ca(2+)-dependent but CaMK II-independent RhoK activation contributes to the early phase of the contractile response via MLCP inhibition.

  9. Response of cat cerebellar vermis induced by sound. I. Influence of drugs on responses of single units.

    PubMed

    Jastreboff, P J; Tarnecki, R

    1975-01-01

    Experiments were done on the cats under Chloralose and/or Nembutal anesthesia. A click was used as a standard acoustic stimulus. The type of responses of single units from cerebellar vermis lobuli V-VII were analyzed. At least four different types of single unit reactions were observed and one of these - oscillatory - was produced by the presence of Flaxedil simultaneously with Chloralose. The system that controls the activity of the middle-ear-muscles can be suspected as the source of the oscillatory pattern of the cerebellar response. Latencies were found to be constant, independent of anesthesia, but it was necessary to have a low level of Nembutal anesthesia because of the overriding inhibitory influence of Nembutal.

  10. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure.

    PubMed

    Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim

    2017-05-01

    Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.

  11. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity

    PubMed Central

    Quiroga-Varela, A.; Walters, J.R.; Brazhnik, E.; Marin, C.; Obeso, J.A.

    2014-01-01

    One well accepted functional feature of the parkinsonian state is the recording of enhanced beta oscillatory activity in the basal ganglia. This has been demonstrated in patients with Parkinson's disease (PD) and in animal models such as the rat with 6-hydroxydopamine (6-OHDA)-induced lesion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, all of which are associated with severe striatal dopamine depletion. Neuronal hyper-synchronization in the beta (or any other) band is not present despite the presence of bradykinetic features in the rat and monkey models, suggesting that increased beta band power may arise when nigro-striatal lesion is advanced and that it is not an essential feature of the early parkinsonian state. Similar observations and conclusions have been previously made for increased neuronal firing rate in the subthalamic and globus pallidus pars interna nuclei. Accordingly, it is suggested that early parkinsonism may be associated with dynamic changes in basal ganglia output activity leading to reduced movement facilitation that may be an earlier feature of the parkinsonian state. PMID:23727447

  12. Theta and Alpha Oscillation Impairments in Autistic Spectrum Disorder Reflect Working Memory Deficit.

    PubMed

    Larrain-Valenzuela, Josefina; Zamorano, Francisco; Soto-Icaza, Patricia; Carrasco, Ximena; Herrera, Claudia; Daiber, Francisca; Aboitiz, Francisco; Billeke, Pablo

    2017-10-30

    A dysfunction in the excitatory-inhibitory (E/I) coordination in neuronal assembly has been proposed as a possible neurobiological mechanism of Autistic Spectrum Disorder (ASD). However, the potential impact of this mechanism in cognitive performance is not fully explored. Since the main consequence of E/I dysfunction is an impairment in oscillatory activity and its underlying cognitive computations, we assessed the electroencephalographic activity of ASD and typically developing (TD) subjects during a working-memory task. We found that ASD subjects committed more errors than TD subjects. Moreover, TD subjects demonstrated a parametric modulation in the power of alpha and theta band while ASD subjects did not demonstrate significant modulations. The preceding leads to significant differences between the groups in both the alpha power placed on the occipital cortex and the theta power placed on the left premotor and the right prefrontal cortex. The impaired theta modulation correlated with autistic symptoms. The results indicated that ASD may present an alteration in the recruitment of the oscillatory activity during working-memory, and this alteration could be related to the physiopathology of the disorder.

  13. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory.

    PubMed

    Ekstrom, Arne D; Watrous, Andrew J

    2014-01-15

    A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct location to visit). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of "spectral fingerprints," or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. Copyright © 2013. Published by Elsevier Inc.

  14. Multifaceted roles for low-frequency oscillations in bottom-up and top-down processing during navigation and memory

    PubMed Central

    Ekstrom, Arne D.; Watrous, Andrew J.

    2014-01-01

    A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct arm to explore). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of “spectral fingerprints,” or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval. PMID:23792985

  15. Reducing Traffic Congestions by Introducing CACC-Vehicles on a Multi-Lane Highway Using Agent-Based Approach

    NASA Technical Reports Server (NTRS)

    Arnaout, Georges M.; Bowling, Shannon R.

    2011-01-01

    Traffic congestion is an ongoing problem of great interest to researchers from different areas in academia. With the emerging technology for inter-vehicle communication, vehicles have the ability to exchange information with predecessors by wireless communication. In this paper, we present an agent-based model of traffic congestion and examine the impact of having CACC (Cooperative Adaptive Cruise Control) embedded vehicle(s) on a highway system consisting of 4 traffic lanes without overtaking. In our model, CACC vehicles adapt their acceleration/deceleration according to vehicle-to-vehicle inter-communication. We analyze the average speed of the cars, the shockwaves, and the evolution of traffic congestion throughout the lifecycle of the model. The study identifies how CACC vehicles affect the dynamics of traffic flow on a complex network and reduce the oscillatory behavior (stop and go) resulting from the acceleration/deceleration of the vehicles.

  16. Analysis and Synthesis of Adaptive Neural Elements and Assembles

    DTIC Science & Technology

    1992-02-17

    effects of neuromodulators on electrically activity. Based on the simulations it appears that there are potentially novel mechanisms with which modulatory...and Byrne, J.H. A learning rule based on empirically-derived activity-dependent neuromodulation supports operant conditioning in a small network...dependent neuromodulation can support operant conditioning in a small oscillatory network". 2. Society for Neuroscience Short Course on Neural

  17. Morning nutrition and executive function processes in preadolescents: modulation of frontal event-related theta, beta and gamma EEG oscillations during a go/ no-go task

    USDA-ARS?s Scientific Manuscript database

    Executive functions (i.e., goal-directed behavior such as inhibition and flexibility of action) have been linked to frontal brain regions and to covariations in oscillatory brain activity, e.g., theta and gamma activity. We studied the effects of morning nutritional status on executive function rel...

  18. First and Second Language in the Brain: Neuronal Correlates of Language Processing and Spelling Strategies

    ERIC Educational Resources Information Center

    Weber, Patricia; Kozel, Nadja; Purgstaller, Christian; Kargl, Reinhard; Schwab, Daniela; Fink, Andreas

    2013-01-01

    This study explores oscillatory brain activity by means of event-related synchronization and desynchronization (%ERS/ERD) of EEG activity during the use of phonological and orthographic-morphological spelling strategies in L2 (English) and L1 (German) in native German speaking children. EEG was recorded while 33 children worked on a task requiring…

  19. A limit-cycle self-organizing map architecture for stable arm control.

    PubMed

    Huang, Di-Wei; Gentili, Rodolphe J; Katz, Garrett E; Reggia, James A

    2017-01-01

    Inspired by the oscillatory nature of cerebral cortex activity, we recently proposed and studied self-organizing maps (SOMs) based on limit cycle neural activity in an attempt to improve the information efficiency and robustness of conventional single-node, single-pattern representations. Here we explore for the first time the use of limit cycle SOMs to build a neural architecture that controls a robotic arm by solving inverse kinematics in reach-and-hold tasks. This multi-map architecture integrates open-loop and closed-loop controls that learn to self-organize oscillatory neural representations and to harness non-fixed-point neural activity even for fixed-point arm reaching tasks. We show through computer simulations that our architecture generalizes well, achieves accurate, fast, and smooth arm movements, and is robust in the face of arm perturbations, map damage, and variations of internal timing parameters controlling the flow of activity. A robotic implementation is evaluated successfully without further training, demonstrating for the first time that limit cycle maps can control a physical robot arm. We conclude that architectures based on limit cycle maps can be organized to function effectively as neural controllers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks.

    PubMed

    Porcaro, Camillo; Di Lorenzo, Giorgio; Seri, Stefano; Pierelli, Francesco; Tecchio, Franca; Coppola, Gianluca

    2017-09-01

    Introduction We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. Methods Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1-400 Hz and 450-750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. Results Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. Conclusions This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.

  1. Aberrant Modulation of Brain Oscillatory Activity and Attentional Impairment in Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Lenartowicz, Agatha; Mazaheri, Ali; Jensen, Ole; Loo, Sandra K

    2018-01-01

    Electroencephalography and magnetoencephalography are noninvasive neuroimaging techniques that have been used extensively to study various resting-state and cognitive processes in the brain. The purpose of this review is to highlight a number of recent studies that have investigated the alpha band (8-12 Hz) oscillatory activity present in magnetoencephalography and electroencephalography, to provide new insights into the maladaptive network activity underlying attentional impairments in attention-deficit/hyperactivity disorder (ADHD). Studies reviewed demonstrate that event-related decrease in alpha is attenuated during visual selective attention, primarily in ADHD inattentive type, and is often significantly associated with accuracy and reaction time during task performance. Furthermore, aberrant modulation of alpha activity has been reported across development and may have abnormal or atypical lateralization patterns in ADHD. Modulations in the alpha band thus represent a robust, relatively unexplored putative biomarker of attentional impairment and a strong prospect for future studies aimed at examining underlying neural mechanisms and treatment response among individuals with ADHD. Potential limitations of its use as a diagnostic biomarker and directions for future research are discussed. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Deciphering the Duality of Clock and Growth Metabolism in a Cell Autonomous System Using NMR Profiling of the Secretome.

    PubMed

    Sengupta, Arjun; Krishnaiah, Saikumari Y; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O; Van Dang, Chi; Hogenesch, John B; Weljie, Aalim M

    2016-07-27

    Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations.

  3. Deciphering the Duality of Clock and Growth Metabolism in a Cell Autonomous System Using NMR Profiling of the Secretome

    PubMed Central

    Sengupta, Arjun; Krishnaiah, Saikumari Y.; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O.; Van Dang, Chi; Hogenesch, John B.; Weljie, Aalim M.

    2016-01-01

    Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations. PMID:27472375

  4. Control of Cavity Resonance Using Oscillatory Blowing

    NASA Technical Reports Server (NTRS)

    Scarfe, Alison Lamp; Chokani, Ndaona

    2000-01-01

    The near-zero net mass oscillatory blowing control of a subsonic cavity flow has been experimentally investigated. An actuator was designed and fabricated to provide both steady and oscillatory blowing over a range of blowing amplitudes and forcing frequencies. The blowing was applied just upstream of the cavity front Wall through interchangeable plate configurations These configurations enabled the effects of hole size, hole shape, and blowing angle to be examined. A significant finding is that in terms of the blowing amplitude, the near zero net mass oscillatory blowing is much more effective than steady blowing; momentum coefficients Lip two orders of magnitude smaller than those required for steady blowing are sufficient to accomplish the same control of cavity resonance. The detailed measurements obtained in the experiment include fluctuating pressure data within the cavity wall, and hot-wire measurements of the cavity shear layer. Spectral and wavelet analysis techniques are applied to understand the dynamics and mechanisms of the cavity flow with control. The oscillatory blowing, is effective in enhancing the mixing in the cavity shear layer and thus modifying the feedback loop associated with the cavity resonance. The nonlinear interactions in the cavity flow are no longer driven by the resonant cavity modes but by the forcing associated with the oscillatory blowing. The oscillatory blowing does not suppress the mode switching behavior of the cavity flow, but the amplitude modulation is reduced.

  5. Brain Oscillations during Semantic Evaluation of Speech

    ERIC Educational Resources Information Center

    Shahin, Antoine J.; Picton, Terence W.; Miller, Lee M.

    2009-01-01

    Changes in oscillatory brain activity have been related to perceptual and cognitive processes such as selective attention and memory matching. Here we examined brain oscillations, measured with electroencephalography (EEG), during a semantic speech processing task that required both lexically mediated memory matching and selective attention.…

  6. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  7. Cardiac and respiratory patterns synchronize between persons during choir singing.

    PubMed

    Müller, Viktor; Lindenberger, Ulman

    2011-01-01

    Dyadic and collective activities requiring temporally coordinated action are likely to be associated with cardiac and respiratory patterns that synchronize within and between people. However, the extent and functional significance of cardiac and respiratory between-person couplings have not been investigated thus far. Here, we report interpersonal oscillatory couplings among eleven singers and one conductor engaged in choir singing. We find that: (a) phase synchronization both in respiration and heart rate variability increase significantly during singing relative to a rest condition; (b) phase synchronization is higher when singing in unison than when singing pieces with multiple voice parts; (c) directed coupling measures are consistent with the presence of causal effects of the conductor on the singers at high modulation frequencies; (d) the different voices of the choir are reflected in network analyses of cardiac and respiratory activity based on graph theory. Our results suggest that oscillatory coupling of cardiac and respiratory patterns provide a physiological basis for interpersonal action coordination.

  8. Cardiac and Respiratory Patterns Synchronize between Persons during Choir Singing

    PubMed Central

    Müller, Viktor; Lindenberger, Ulman

    2011-01-01

    Dyadic and collective activities requiring temporally coordinated action are likely to be associated with cardiac and respiratory patterns that synchronize within and between people. However, the extent and functional significance of cardiac and respiratory between-person couplings have not been investigated thus far. Here, we report interpersonal oscillatory couplings among eleven singers and one conductor engaged in choir singing. We find that: (a) phase synchronization both in respiration and heart rate variability increase significantly during singing relative to a rest condition; (b) phase synchronization is higher when singing in unison than when singing pieces with multiple voice parts; (c) directed coupling measures are consistent with the presence of causal effects of the conductor on the singers at high modulation frequencies; (d) the different voices of the choir are reflected in network analyses of cardiac and respiratory activity based on graph theory. Our results suggest that oscillatory coupling of cardiac and respiratory patterns provide a physiological basis for interpersonal action coordination. PMID:21957466

  9. Root Apex Transition Zone As Oscillatory Zone

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone. PMID:24106493

  10. On the Active and Passive Flow Separation Control Techniques over Airfoils

    NASA Astrophysics Data System (ADS)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  11. The Influence of Oscillatory Fractions on Mass Transfer of Non-Newtonian Fluid in Wavy-Walled Tubes for Pulsatile Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Donghui; Bian, Yongning

    2018-03-01

    The shape of pipeline structure, fluid medium and flow state have important influence on the heat transfer and mass effect of fluid. In this paper, we investigated the mass transfer behavior of Non-Newtonian fluid CMC solution with 700ppm concentration in five different-sized axisymmetric wave-walled tubes for pulsatile flow. It is revealed that the effect of mass transfer is enhanced with the increase of oscillatory fractions P based on the PIV measurements. Besides, mass transfer rate was measured by the electrochemical method in the larger oscillatory points rate range. It is observed that mass transfer rate increases with the increase in P and reached the maximum mass transfer rate at the most optimal oscillatory fractions P opt. After reaching the optimal oscillatory fractions P opt, the mass transfer rate decreases with increasing P.

  12. Asymmetric pallidal neuronal activity in patients with cervical dystonia

    PubMed Central

    Moll, Christian K. E.; Galindo-Leon, Edgar; Sharott, Andrew; Gulberti, Alessandro; Buhmann, Carsten; Koeppen, Johannes A.; Biermann, Maxine; Bäumer, Tobias; Zittel, Simone; Westphal, Manfred; Gerloff, Christian; Hamel, Wolfgang; Münchau, Alexander; Engel, Andreas K.

    2014-01-01

    The origin of asymmetric clinical manifestation of symptoms in patients suffering from cervical dystonia (CD) is hitherto poorly understood. Dysregulated neuronal activity in the basal ganglia has been suggested to have a role in the pathophysiology of CD. Here, we re-assessed the question to what extent relative changes occur in the direct vs. indirect basal ganglia pathway in CD, whether these circuit changes are lateralized, and how these alterations relate to CD symptoms. To this end, we recorded ongoing single cell and local field potential (LFP) activity from the external (GPe) and internal pallidal segment (GPi) of 13 CD patients undergoing microelectrode-guided stereotactic surgery for deep brain stimulation in the GPi. We compared pallidal recordings from CD patients operated under local anaesthesia (LA) with those obtained in CD patients operated under general anaesthesia (GA). In awake patients, mean GPe discharge rate (52 Hz) was lower than that of GPi (72 Hz). Mean GPi discharge ipsilateral to the side of head turning was higher than contralateral and correlated with torticollis symptom severity. Lateralized differences were absent at the level of the GPe and in recordings from patients operated under GA. Furthermore, in the GPi of CD patients there was a subpopulation of theta-oscillatory cells with unique bursting characteristics. Power and coherence of GPe– and GPi–LFPs were dominated by a theta peak and also exhibited band-specific interhemispheric differences. Strong cross-frequency coupling of low-gamma amplitude to theta phase was a feature of pallidal LFPs recorded under LA, but not GA. These results indicate that CD is associated with an asymmetric pallidal outflow. Based on the finding of symmetric neuronal discharges in the GPe, we propose that an imbalanced interhemispheric direct pathway gain may be involved in CD pathophysiology. PMID:24574981

  13. Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

    PubMed

    Bastos, Andre M; Briggs, Farran; Alitto, Henry J; Mangun, George R; Usrey, W Martin

    2014-05-28

    Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex. Copyright © 2014 the authors 0270-6474/14/347639-06$15.00/0.

  14. Theoretical analysis of oscillatory terms in lattice heat-current time correlation functions and their contributions to thermal conductivity

    NASA Astrophysics Data System (ADS)

    Pereverzev, Andrey; Sewell, Tommy

    2018-03-01

    Lattice heat-current time correlation functions for insulators and semiconductors obtained using molecular dynamics (MD) simulations exhibit features of both pure exponential decay and oscillatory-exponential decay. For some materials the oscillatory terms contribute significantly to the lattice heat conductivity calculated from the correlation functions. However, the origin of the oscillatory terms is not well understood, and their contribution to the heat conductivity is accounted for by fitting them to empirical functions. Here, a translationally invariant expression for the heat current in terms of creation and annihilation operators is derived. By using this full phonon-picture definition of the heat current and applying the relaxation-time approximation we explain, at least in part, the origin of the oscillatory terms in the lattice heat-current correlation function. We discuss the relationship between the crystal Hamiltonian and the magnitude of the oscillatory terms. A solvable one-dimensional model is used to illustrate the potential importance of terms that are omitted in the commonly used phonon-picture expression for the heat current. While the derivations are fully quantum mechanical, classical-limit expressions are provided that enable direct contact with classical quantities obtainable from MD.

  15. Methods for parameter identification in oscillatory networks and application to cortical and thalamic 600 Hz activity.

    PubMed

    Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H

    2006-01-01

    Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.

  16. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex.

    PubMed

    Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M

    2017-01-01

    The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.

  17. Retrieval during Learning Facilitates Subsequent Memory Encoding

    ERIC Educational Resources Information Center

    Pastotter, Bernhard; Schicker, Sabine; Niedernhuber, Julia; Bauml, Karl-Heinz T.

    2011-01-01

    In multiple-list learning, retrieval during learning has been suggested to improve recall of the single lists by enhancing list discrimination and, at test, reducing interference. Using electrophysiological, oscillatory measures of brain activity, we examined to what extent retrieval during learning facilitates list encoding. Subjects studied 5…

  18. Subthalamic Nucleus Stimulation Modulates Motor Cortex Oscillatory Activity in Parkinson's Disease

    ERIC Educational Resources Information Center

    Devos, D.; Labyt, E.; Derambure, P.; Bourriez, J. L.; Cassim, F.; Reyns, N.; Blond, S.; Guieu, J. D.; Destee, A.; Defebvre, L.

    2004-01-01

    In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but…

  19. Lifespan Differences in Cortical Dynamics of Auditory Perception

    ERIC Educational Resources Information Center

    Muller, Viktor; Gruber, Walter; Klimesch, Wolfgang; Lindenberger, Ulman

    2009-01-01

    Using electroencephalographic recordings (EEG), we assessed differences in oscillatory cortical activity during auditory-oddball performance between children aged 9-13 years, younger adults, and older adults. From childhood to old age, phase synchronization increased within and between electrodes, whereas whole power and evoked power decreased. We…

  20. Driving Human Motor Cortical Oscillations Leads to Behaviorally Relevant Changes in Local GABAA Inhibition: A tACS-TMS Study.

    PubMed

    Nowak, Magdalena; Hinson, Emily; van Ede, Freek; Pogosyan, Alek; Guerra, Andrea; Quinn, Andrew; Brown, Peter; Stagg, Charlotte J

    2017-04-26

    Beta and gamma oscillations are the dominant oscillatory activity in the human motor cortex (M1). However, their physiological basis and precise functional significance remain poorly understood. Here, we used transcranial magnetic stimulation (TMS) to examine the physiological basis and behavioral relevance of driving beta and gamma oscillatory activity in the human M1 using transcranial alternating current stimulation (tACS). tACS was applied using a sham-controlled crossover design at individualized intensity for 20 min and TMS was performed at rest (before, during, and after tACS) and during movement preparation (before and after tACS). We demonstrated that driving gamma frequency oscillations using tACS led to a significant, duration-dependent decrease in local resting-state GABA A inhibition, as quantified by short interval intracortical inhibition. The magnitude of this effect was positively correlated with the magnitude of GABA A decrease during movement preparation, when gamma activity in motor circuitry is known to increase. In addition, gamma tACS-induced change in GABA A inhibition was closely related to performance in a motor learning task such that subjects who demonstrated a greater increase in GABA A inhibition also showed faster short-term learning. The findings presented here contribute to our understanding of the neurophysiological basis of motor rhythms and suggest that tACS may have similar physiological effects to endogenously driven local oscillatory activity. Moreover, the ability to modulate local interneuronal circuits by tACS in a behaviorally relevant manner provides a basis for tACS as a putative therapeutic intervention. SIGNIFICANCE STATEMENT Gamma oscillations have a vital role in motor control. Using a combined tACS-TMS approach, we demonstrate that driving gamma frequency oscillations modulates GABA A inhibition in the human motor cortex. Moreover, there is a clear relationship between the change in magnitude of GABA A inhibition induced by tACS and the magnitude of GABA A inhibition observed during task-related synchronization of oscillations in inhibitory interneuronal circuits, supporting the hypothesis that tACS engages endogenous oscillatory circuits. We also show that an individual's physiological response to tACS is closely related to their ability to learn a motor task. These findings contribute to our understanding of the neurophysiological basis of motor rhythms and their behavioral relevance and offer the possibility of developing tACS as a therapeutic tool. Copyright © 2017 Nowak et al.

  1. Multiple Independent Oscillatory Networks in the Degenerating Retina

    PubMed Central

    Euler, Thomas; Schubert, Timm

    2015-01-01

    During neuronal degenerative diseases, microcircuits undergo severe structural alterations, leading to remodeling of synaptic connectivity. This can be particularly well observed in the retina, where photoreceptor degeneration triggers rewiring of connections in the retina’s first synaptic layer (e.g., Strettoi et al., 2003; Haq et al., 2014), while the synaptic organization of inner retinal circuits appears to be little affected (O’Brien et al., 2014; Figures 1A,B). Remodeling of (outer) retinal circuits and diminishing light-driven activity due to the loss of functional photoreceptors lead to spontaneous activity that can be observed at different retinal levels (Figure 1C), including the retinal ganglion cells, which display rhythmic spiking activity in the degenerative retina (Margolis et al., 2008; Stasheff, 2008; Menzler and Zeck, 2011; Stasheff et al., 2011). Two networks have been suggested to drive the oscillatory activity in the degenerating retina: a network of remnant cone photoreceptors, rod bipolar cells (RBCs) and horizontal cells in the outer retina (Haq et al., 2014), and the AII amacrine cell-cone bipolar cell network in the inner retina (Borowska et al., 2011). Notably, spontaneous rhythmic activity in the inner retinal network can be triggered in the absence of synaptic remodeling in the outer retina, for example, in the healthy retina after photo-bleaching (Menzler et al., 2014). In addition, the two networks show remarkable differences in their dominant oscillation frequency range as well as in the types and numbers of involved cells (Menzler and Zeck, 2011; Haq et al., 2014). Taken together this suggests that the two networks are self-sustained and can be active independently from each other. However, it is not known if and how they modulate each other. In this mini review, we will discuss: (i) commonalities and differences between these two oscillatory networks as well as possible interaction pathways; (ii) how multiple self-sustained networks may hamper visual restoration strategies employing, for example, microelectronic implants, optogenetics or stem cells, and briefly; and (iii) how the finding of diverse (independent) networks in the degenerative retina may relate to other parts of the neurodegenerative central nervous system. PMID:26617491

  2. Inferring oscillatory modulation in neural spike trains

    PubMed Central

    Arai, Kensuke; Kass, Robert E.

    2017-01-01

    Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscillatory signals, and independently from the spike train alone, but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of slow modulation not locked to stimuli and irregular oscillations with large variability in oscillatory periods, present challenges to searching for temporal structures present in the spike train. In order to study oscillatory modulation in real data collected under a variety of experimental conditions, we describe a flexible point-process framework we call the Latent Oscillatory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-stationarity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory modulation. We also extend the LOST model to accommodate changes in the modulatory structure over the duration of the experiment, and thereby discover trial-to-trial variability in the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm. Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect oscillations when the firing rate is low, the modulation is weak, and when the modulating oscillation has a broad spectral peak. PMID:28985231

  3. Effects of Oscillatory Flow on Fertilization in the Green Sea Urchin Strongylocentrotus droebachiensis

    PubMed Central

    Kregting, Louise T.; Bass, Anna L.; Guadayol, Òscar; Yund, Philip O.; Thomas, Florence I. M.

    2013-01-01

    Broadcast spawning invertebrates that live in shallow, high-energy coastal habitats are subjected to oscillatory water motion that creates unsteady flow fields above the surface of animals. The frequency of the oscillatory fluctuations is driven by the wave period, which will influence the stability of local flow structures and may affect fertilization processes. Using an oscillatory water tunnel, we quantified the percentage of eggs fertilized on or near spawning green sea urchins, Strongylocentrotus droebachiensis. Eggs were sampled in the water column, wake eddy, substratum and aboral surface under a range of different periods (T = 4.5 – 12.7 s) and velocities of oscillatory flow. The root-mean-square wave velocity (rms(u w)) was a good predictor of fertilization in oscillatory flow, although the root-mean-square of total velocity (rms(u)), which incorporates all the components of flow (current, wave and turbulence), also provided significant predictions. The percentage of eggs fertilized varied between 50 – 85% at low flows (rms(u w) <0.02 m s−1), depending on the location sampled, but declined to below 10% for most locations at higher rms(u w). The water column was an important location for fertilization with a relative contribution greater than that of the aboral surface, especially at medium and high rms(u w) categories. We conclude that gametes can be successfully fertilized on or near the parent under a range of oscillatory flow conditions. PMID:24098766

  4. Thermal-inertial ratchet effects: negative mobility, resonant activation, noise-enhanced stability, and noise-weakened stability.

    PubMed

    Li, Jing-hui; Łuczka, Jerzy

    2010-10-01

    Transport properties of a Brownian particle in thermal-inertial ratchets subject to an external time-oscillatory drive and a constant bias force are investigated. Since the phenomena of negative mobility, resonant activation and noise-enhance stability were reported before, in the present paper, we report some additional aspects of negative mobility, resonant activation and noise-enhance stability, such as the ingredients for the appearances of these phenomena, multiple resonant activation peaks, current reversals, noise-weakened stability, and so on.

  5. A novel function for Wnt signaling modulating neuronal firing activity and the temporal structure of spontaneous oscillation in the entorhinal-hippocampal circuit.

    PubMed

    Oliva, Carolina A; Inestrosa, Nibaldo C

    2015-07-01

    During early and late postnatal developments, the establishment of functional neuronal connectivity depends on molecules like Wnt that help the recently formed synapses to establish and consolidate their new cellular interactions. However, unlike other molecules, whether Wnt can modulate the firing properties of cells is unknown. Here, for the first time we explore the physiological effect of the canonical and non-canonical Wnt pathways on a circuit that is currently generating oscillatory activity, the entorhinal cortex-hippocampal circuit. Our results indicate that Wnt pathways have strong influence in the circuital and cellular properties depending on the Wnt protein isoforms, concentration, and type of neuronal circuit. Antibodies against canonical and non-canonical ligands, as well as WASP-1 and sFRP-2, demonstrate that constitutive release of Wnts contributes to the maintenance of the network and intrinsic properties of the circuit. Furthermore, we found that the excess of Wnt3a or the permanent intracellular activation of the pathway with BIO-6 accelerates the period of the oscillation by disrupting the oscillatory units (Up states) in short units, presumably by affecting the synaptic mechanisms that couples neurons into the oscillatory cycle, but without affecting the spike generation. Instead, low doses of Wnt5a increase the period of the oscillation in EC by incorporating new cells into the network activity, probably modifying firing activity in other places of the circuit. Moreover, we found that Wnt signaling operates under different principles in the hippocampus. Using pyrvinium pamoate, a Wnt/β-catenin dependent pathway inhibitor, we demonstrated that this pathway is essential to keep the firing activity in the circuit CA3, and in less degree of CA1 circuit. However, CA1 circuit possesses homeostatic mechanisms to up-regulate the firing activity when it has been suppressed in CA3, and to down-modulate the cellular excitability when exacerbated circuital activity has dominated. In summary, the amount of Wnt that is being released can exert a fine tuning of the physiological output, modulating firing activity, improving reliability of communication between neurons, and maintaining a continuous self-regulatory cycle of synaptic structure-function that can be present during all postnatal life. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Maturation of the P3 and concurrent oscillatory processes during adolescence.

    PubMed

    Mathes, Birgit; Khalaidovski, Ksenia; Wienke, Annika S; Schmiedt-Fehr, Christina; Basar-Eroglu, Canan

    2016-07-01

    During adolescence event-related modulations of the neural response may increase. For slow event-related components, such as the P3, this developmental change may be masked due to increased amplitude levels of ongoing delta and theta oscillations in adolescents. In a cross-sectional study design, EEG was measured in 51 participants between 13 and 24years. A visual oddball paradigm was used to elicit the P3. Our analysis focused on fronto-parietal activations within the P3 time-window and the concurrent time-frequency characteristics in the delta (∼0.5-4Hz) and theta (∼4-7Hz) band. The parietal P3 amplitude was similar across the investigated age range, while the amplitude at frontal regions increased with age. The pre-stimulus amplitudes of delta and theta oscillations declined with age, while post-stimulus amplitude enhancement and inter-trial phase coherence increased. These changes affected fronto-parietal electrode sites. The parietal P3 maximum seemed comparable for adolescents and young adults. Detailed analysis revealed that within the P3 time-window brain maturation during adolescence may lead to reduced spontaneous slow-wave oscillations, increased amplitude modulation and time precision of event-related oscillations, and altered P3 scalp topography. Time-frequency analyses may help to distinguish selective neurodevelopmental changes within the P3 time window. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    PubMed Central

    Domnick, Claudia; Hauck, Michael; Casey, Kenneth L; Engel, Andreas K; Lorenz, Jürgen

    2009-01-01

    Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage. PMID:21197293

  8. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  9. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.

    PubMed

    Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi

    2010-10-01

    It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P < 0.05). These results imply that oscillatory coupling between the sensorimotor cortex and spinal motoneurons during steady contraction differs among muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P < 0.05). These results indicate that oscillatory interaction between the sensorimotor cortex and spinal motoneurons can be changed by long-term specialized use of the muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.

  10. Oscillatory dynamics in the dorsal and ventral attention networks during the reorienting of attention.

    PubMed

    Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wiesman, Alex I; McDermott, Timothy J; Wilson, Tony W

    2018-05-01

    The ability to reorient attention within the visual field is central to daily functioning, and numerous fMRI studies have shown that the dorsal and ventral attention networks (DAN, VAN) are critical to such processes. However, despite the instantaneous nature of attentional shifts, the dynamics of oscillatory activity serving attentional reorientation remain poorly characterized. In this study, we utilized magnetoencephalography (MEG) and a Posner task to probe the dynamics of attentional reorienting in 29 healthy adults. MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Voxel time series were then extracted from peak voxels in the functional beamformer images. These time series were used to quantify the dynamics of attentional reorienting, and to compute dynamic functional connectivity. Our results indicated strong increases in theta and decreases in alpha and beta activity across many nodes in the DAN and VAN. Interestingly, theta responses were generally stronger during trials that required attentional reorienting relative to those that did not, while alpha and beta oscillations were more dynamic, with many regions exhibiting significantly stronger responses during non-reorienting trials initially, and the opposite pattern during later processing. Finally, stronger functional connectivity was found following target presentation (575-700 ms) between bilateral superior parietal lobules during attentional reorienting. In sum, these data show that visual attention is served by multiple cortical regions within the DAN and VAN, and that attentional reorienting processes are often associated with spectrally-specific oscillations that have largely distinct spatiotemporal dynamics. © 2018 Wiley Periodicals, Inc.

  11. Microfluidic mixing through oscillatory transverse perturbations

    NASA Astrophysics Data System (ADS)

    Wu, J. W.; Xia, H. M.; Zhang, Y. Y.; Zhu, P.

    2018-05-01

    Fluid mixing in miniaturized fluidic devices is a challenging task. In this work, the mixing enhancement through oscillatory transverse perturbations coupling with divergent circular chambers is studied. To simplify the design, an autonomous microfluidic oscillator is used to produce the oscillatory flow. It is then applied to four side-channels that intersect with a central channel of constant flow. The mixing performance is tested at high fluid viscosities of up to 16 cP. Results show that the oscillatory flow can cause strong transverse perturbations which effectively enhance the mixing. The influence of a fluidic capacitor in the central channel is also examined, which at low viscosities can intensify the perturbations and further improve the mixing.

  12. Differentiation of specific ripple patterns helps to identify epileptogenic areas for surgical procedures.

    PubMed

    Kerber, Karolin; Dümpelmann, Matthias; Schelter, Björn; Le Van, Pierre; Korinthenberg, Rudolf; Schulze-Bonhage, Andreas; Jacobs, Julia

    2014-07-01

    High frequency oscillations (HFOs) at 80-500 Hz are promising markers of epileptic areas. Several retrospective studies reported that surgical removal of areas generating HFOs was associated with a good seizure outcome. Recent reports suggested that ripple (80-200 Hz) HFO patterns co-existed with different background EEG activities. We hypothesized that the coexisting background EEG pattern may distinguish physiological from epileptic ripples. Rates of HFOs were analyzed in intracranial EEG recordings of 22 patients. Additionally, ripple patterns were classified for each channel depending either as coexisting with a flat or oscillatory background activity. A multi-variate analysis was performed to determine whether removal of areas showing the above EEG markers correlated with seizure outcome. Removal of areas generating high rates of 'fast ripples (>200 Hz)' and 'ripples on a flat background activity' showed a significant correlation with a seizure-free outcome. In contrast, removal of high rates of 'ripples' or 'ripple patterns in a continuously oscillating background' was not significantly associated with seizure outcome. Ripples occurring in an oscillatory background activity may be suggestive of physiological activity, while those on a flat background reflect epileptic activity. Consideration of coexisting background patterns may improve the delineation of the epileptogenic areas using ripple oscillations. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Potentials evoked by chirp-modulated tones: a new technique to evaluate oscillatory activity in the auditory pathway.

    PubMed

    Artieda, J; Valencia, M; Alegre, M; Olaziregi, O; Urrestarazu, E; Iriarte, J

    2004-03-01

    Steady-state potentials are oscillatory responses generated by a rhythmic stimulation of a sensory pathway. The frequency of the response, which follows the frequency of stimulation, is maximal at a stimulus rate of 40 Hz for auditory stimuli. The exact cause of these maximal responses is not known, although some authors have suggested that they might be related to the 'working frequency' of the auditory cortex. Testing of the responses to different frequencies of stimulation may be lengthy if a single frequency is studied at a time. Our aim was to develop a fast technique to explore the oscillatory response to auditory stimuli, using a tone modulated in amplitude by a sinusoid whose frequency increases linearly in frequency ('chirp') from 1 to 120 Hz. Time-frequency transforms were used for the analysis of the evoked responses in 10 subjects. Also, we analyzed whether the peaks in these responses were due to increases of amplitude or to phase-locking phenomena, using single-sweep time-frequency transforms and inter-trial phase analysis. The pattern observed in the time-frequency transform of the chirp-evoked potential was very similar in all subjects: a diagonal band of energy was observed, corresponding to the frequency of modulation at each time instant. Two components were present in the band, one around 45 Hz (30-60 Hz) and a smaller one between 80 and 120 Hz. Inter-trial phase analysis showed that these components were mainly due to phase locking phenomena. A simultaneous testing of the amplitude-modulation-following oscillatory responses to auditory stimulation is feasible using a tone modulated in amplitude at increasing frequencies. The maximal energies found at stimulation frequencies around 40 Hz are probably due to increased phase-locking of the individual responses.

  14. Magnetoencephalographic study of event-related fields and cortical oscillatory changes during cutaneous warmth processing.

    PubMed

    An, Kyung-Min; Lim, Sanghyun; Lee, Hyun Joon; Kwon, Hyukchan; Kim, Min-Young; Gohel, Bakul; Kim, Ji-Eun; Kim, Kiwoong

    2018-05-01

    Thermoreception is an important cutaneous sense, which plays a role in the maintenance of our body temperature and in the detection of potential noxious heat stimulation. In this study, we investigated event-related fields (ERFs) and neural oscillatory activities, which were modulated by warmth stimulation. We developed a warmth stimulator that could elicit a warmth sensation, without pain or tactile sensation, by using a deep-penetrating 980-nm diode laser. The index finger of each participant (n = 24) was irradiated with the laser warmth stimulus, and the cortical responses were measured using magnetoencephalography (MEG). The ERFs and oscillatory responses had late latencies (∼1.3 s and 1.0-1.5 s for ERFs and oscillatory responses, respectively), which could be explained by a slow conduction velocity of warmth-specific C-fibers. Cortical sources of warmth-related ERFs were seen in the bilateral primary and secondary somatosensory cortices (SI and SII), posterior part of the anterior cingulate cortex (pACC), ipsilateral primary motor, and premotor cortex. Thus, we suggested that SI, SII, and pACC play a role in processing the warmth sensation. Time-frequency analysis demonstrated the suppression of the alpha (8-13 Hz) and beta (18-23 Hz) band power in the bilateral sensorimotor cortex. We proposed that the suppressions in alpha and beta band power are involved in the automatic response to the input of warmth stimulation and sensorimotor interactions. The delta band power (1-4 Hz) increased in the frontal, temporal, and cingulate cortices. The power changes in delta band might be related with the attentional processes during the warmth stimulation. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  15. Analysis of Wind Tunnel Longitudinal Static and Oscillatory Data of the F-16XL Aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.; Curry, Timothy J.; Brandon, Jay M.

    1997-01-01

    Static and oscillatory wind tunnel data are presented for a 10-percent-scale model of an F-16XL aircraft. Static data include the effect of angle of attack, sideslip angle, and control surface deflections on aerodynamic coefficients. Dynamic data from small-amplitude oscillatory tests are presented at nominal values of angle of attack between 20 and 60 degrees. Model oscillations were performed at five frequencies from 0.6 to 2.9 Hz and one amplitude of 5 degrees. A simple harmonic analysis of the oscillatory data provided Fourier coefficients associated with the in-phase and out-of-phase components of the aerodynamic coefficients. A strong dependence of the oscillatory data on frequency led to the development of models with unsteady terms in the form of indicial functions. Two models expressing the variation of the in-phase and out-of-phase components with angle of attack and frequency were proposed and their parameters estimated from measured data.

  16. On oscillatory convection with the Cattaneo–Christov hyperbolic heat-flow model

    PubMed Central

    Bissell, J. J.

    2015-01-01

    Adoption of the hyperbolic Cattaneo–Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, Rc and RS respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number C exceeds a threshold value CT≥8/27π2≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number P1, which—in contrast to the classical stationary scenario—can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number CT is computed as a function of P1∈[10−2,10+2] for both boundary regimes. PMID:25792960

  17. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.

    PubMed

    Fiebig, Florian; Lansner, Anders

    2017-01-04

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. Copyright © 2017 Fiebig and Lansner.

  18. Analysis and visualization of single-trial event-related potentials

    NASA Technical Reports Server (NTRS)

    Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.

    2001-01-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image visualization to the analysis of sets of single trials from event-related EEG (or MEG) experiments can increase the information available from ERP (or ERF) data. Copyright 2001 Wiley-Liss, Inc.

  19. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation

    PubMed Central

    Fiebig, Florian

    2017-01-01

    A dominant theory of working memory (WM), referred to as the persistent activity hypothesis, holds that recurrently connected neural networks, presumably located in the prefrontal cortex, encode and maintain WM memory items through sustained elevated activity. Reexamination of experimental data has shown that prefrontal cortex activity in single units during delay periods is much more variable than predicted by such a theory and associated computational models. Alternative models of WM maintenance based on synaptic plasticity, such as short-term nonassociative (non-Hebbian) synaptic facilitation, have been suggested but cannot account for encoding of novel associations. Here we test the hypothesis that a recently identified fast-expressing form of Hebbian synaptic plasticity (associative short-term potentiation) is a possible mechanism for WM encoding and maintenance. Our simulations using a spiking neural network model of cortex reproduce a range of cognitive memory effects in the classical multi-item WM task of encoding and immediate free recall of word lists. Memory reactivation in the model occurs in discrete oscillatory bursts rather than as sustained activity. We relate dynamic network activity as well as key synaptic characteristics to electrophysiological measurements. Our findings support the hypothesis that fast Hebbian short-term potentiation is a key WM mechanism. SIGNIFICANCE STATEMENT Working memory (WM) is a key component of cognition. Hypotheses about the neural mechanism behind WM are currently under revision. Reflecting recent findings of fast Hebbian synaptic plasticity in cortex, we test whether a cortical spiking neural network model with such a mechanism can learn a multi-item WM task (word list learning). We show that our model can reproduce human cognitive phenomena and achieve comparable memory performance in both free and cued recall while being simultaneously compatible with experimental data on structure, connectivity, and neurophysiology of the underlying cortical tissue. These findings are directly relevant to the ongoing paradigm shift in the WM field. PMID:28053032

  20. Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis.

    PubMed

    Balconi, Michela; Lucchiari, Claudio

    2008-01-01

    It remains an open question whether it is possible to assign a single brain operation or psychological function for facial emotion decoding to a certain type of oscillatory activity. Gamma band activity (GBA) offers an adequate tool for studying cortical activation patterns during emotional face information processing. In the present study brain oscillations were analyzed in response to facial expression of emotions. Specifically, GBA modulation was measured when twenty subjects looked at emotional (angry, fearful, happy, and sad faces) or neutral faces in two different conditions: supraliminal (10 ms) vs subliminal (150 ms) stimulation (100 target-mask pairs for each condition). The results showed that both consciousness and significance of the stimulus in terms of arousal can modulate the power synchronization (ERD decrease) during 150-350 time range: an early oscillatory event showed its peak at about 200 ms post-stimulus. GBA was enhanced by supraliminal more than subliminal elaboration, as well as more by high arousal (anger and fear) than low arousal (happiness and sadness) emotions. Finally a left-posterior dominance for conscious elaboration was found, whereas right hemisphere was discriminant in emotional processing of face in comparison with neutral face.

  1. The role of oscillatory brain activity in object processing and figure-ground segmentation in human vision.

    PubMed

    Kinsey, K; Anderson, S J; Hadjipapas, A; Holliday, I E

    2011-03-01

    The perception of an object as a single entity within a visual scene requires that its features are bound together and segregated from the background and/or other objects. Here, we used magnetoencephalography (MEG) to assess the hypothesis that coherent percepts may arise from the synchronized high frequency (gamma) activity between neurons that code features of the same object. We also assessed the role of low frequency (alpha, beta) activity in object processing. The target stimulus (i.e. object) was a small patch of a concentric grating of 3c/°, viewed eccentrically. The background stimulus was either a blank field or a concentric grating of 3c/° periodicity, viewed centrally. With patterned backgrounds, the target stimulus emerged--through rotation about its own centre--as a circular subsection of the background. Data were acquired using a 275-channel whole-head MEG system and analyzed using Synthetic Aperture Magnetometry (SAM), which allows one to generate images of task-related cortical oscillatory power changes within specific frequency bands. Significant oscillatory activity across a broad range of frequencies was evident at the V1/V2 border, and subsequent analyses were based on a virtual electrode at this location. When the target was presented in isolation, we observed that: (i) contralateral stimulation yielded a sustained power increase in gamma activity; and (ii) both contra- and ipsilateral stimulation yielded near identical transient power changes in alpha (and beta) activity. When the target was presented against a patterned background, we observed that: (i) contralateral stimulation yielded an increase in high-gamma (>55 Hz) power together with a decrease in low-gamma (40-55 Hz) power; and (ii) both contra- and ipsilateral stimulation yielded a transient decrease in alpha (and beta) activity, though the reduction tended to be greatest for contralateral stimulation. The opposing power changes across different regions of the gamma spectrum with 'figure/ground' stimulation suggest a possible dual role for gamma rhythms in visual object coding, and provide general support of the binding-by-synchronization hypothesis. As the power changes in alpha and beta activity were largely independent of the spatial location of the target, however, we conclude that their role in object processing may relate principally to changes in visual attention. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina

    PubMed Central

    Tian, Ning; Xu, Hong-ping; Wang, Ping

    2014-01-01

    Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815

  3. Frequency-dependent oscillatory neural profiles during imitation.

    PubMed

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-04-10

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation.

  4. Direct Recordings of Pitch Responses from Human Auditory Cortex

    PubMed Central

    Griffiths, Timothy D.; Kumar, Sukhbinder; Sedley, William; Nourski, Kirill V.; Kawasaki, Hiroto; Oya, Hiroyuki; Patterson, Roy D.; Brugge, John F.; Howard, Matthew A.

    2010-01-01

    Summary Pitch is a fundamental percept with a complex relationship to the associated sound structure [1]. Pitch perception requires brain representation of both the structure of the stimulus and the pitch that is perceived. We describe direct recordings of local field potentials from human auditory cortex made while subjects perceived the transition between noise and a noise with a regular repetitive structure in the time domain at the millisecond level called regular-interval noise (RIN) [2]. RIN is perceived to have a pitch when the rate is above the lower limit of pitch [3], at approximately 30 Hz. Sustained time-locked responses are observed to be related to the temporal regularity of the stimulus, commonly emphasized as a relevant stimulus feature in models of pitch perception (e.g., [1]). Sustained oscillatory responses are also demonstrated in the high gamma range (80–120 Hz). The regularity responses occur irrespective of whether the response is associated with pitch perception. In contrast, the oscillatory responses only occur for pitch. Both responses occur in primary auditory cortex and adjacent nonprimary areas. The research suggests that two types of pitch-related activity occur in humans in early auditory cortex: time-locked neural correlates of stimulus regularity and an oscillatory response related to the pitch percept. PMID:20605456

  5. Frequency-dependent oscillatory neural profiles during imitation

    PubMed Central

    Sugata, Hisato; Hirata, Masayuki; Tamura, Yuichi; Onishi, Hisao; Goto, Tetsu; Araki, Toshihiko; Yorifuji, Shiro

    2017-01-01

    Imitation is a complex process that includes higher-order cognitive and motor function. This process requires an observation-execution matching system that transforms an observed action into an identical movement. Although the low-gamma band is thought to reflect higher cognitive processes, no studies have focused on it. Here, we used magnetoencephalography (MEG) to examine the neural oscillatory changes including the low-gamma band during imitation. Twelve healthy, right-handed participants performed a finger task consisting of four conditions (imitation, execution, observation, and rest). During the imitation and execution conditions, significant event-related desynchronizations (ERDs) were observed at the left frontal, central, and parietal MEG sensors in the alpha, beta, and low-gamma bands. Functional connectivity analysis at the sensor level revealed an imitation-related connectivity between a group of frontal sensors and a group of parietal sensors in the low-gamma band. Furthermore, source reconstruction with synthetic aperture magnetometry showed significant ERDs in the low-gamma band in the left sensorimotor area and the middle frontal gyrus (MFG) during the imitation condition when compared with the other three conditions. Our results suggest that the oscillatory neural activities of the low-gamma band at the sensorimotor area and MFG play an important role in the observation-execution matching system related to imitation. PMID:28393878

  6. Effect of inhibitory feedback on correlated firing of spiking neural network.

    PubMed

    Xie, Jinli; Wang, Zhijie

    2013-08-01

    Understanding the properties and mechanisms that generate different forms of correlation is critical for determining their role in cortical processing. Researches on retina, visual cortex, sensory cortex, and computational model have suggested that fast correlation with high temporal precision appears consistent with common input, and correlation on a slow time scale likely involves feedback. Based on feedback spiking neural network model, we investigate the role of inhibitory feedback in shaping correlations on a time scale of 100 ms. Notably, the relationship between the correlation coefficient and inhibitory feedback strength is non-monotonic. Further, computational simulations show how firing rate and oscillatory activity form the basis of the mechanisms underlying this relationship. When the mean firing rate holds unvaried, the correlation coefficient increases monotonically with inhibitory feedback, but the correlation coefficient keeps decreasing when the network has no oscillatory activity. Our findings reveal that two opposing effects of the inhibitory feedback on the firing activity of the network contribute to the non-monotonic relationship between the correlation coefficient and the strength of the inhibitory feedback. The inhibitory feedback affects the correlated firing activity by modulating the intensity and regularity of the spike trains. Finally, the non-monotonic relationship is replicated with varying transmission delay and different spatial network structure, demonstrating the universality of the results.

  7. Abdominal expiratory activity in the rat brainstem–spinal cord in situ: patterns, origins and implications for respiratory rhythm generation

    PubMed Central

    Abdala, A P L; Rybak, I A; Smith, J C; Paton, J F R

    2009-01-01

    We studied respiratory neural activity generated during expiration. Motoneuronal activity was recorded simultaneously from abdominal (AbN), phrenic (PN), hypoglossal (HN) and central vagus nerves from neonatal and juvenile rats in situ. During eupnoeic activity, low-amplitude post-inspiratory (post-I) discharge was only present in AbN motor outflow. Expression of AbN late-expiratory (late-E) activity, preceding PN bursts, occurred during hypercapnia. Biphasic expiratory (biphasic-E) activity with pre-inspiratory (pre-I) and post-I discharges occurred only during eucapnic anoxia or hypercapnic anoxia. Late-E activity generated during hypercapnia (7–10% CO2) was abolished with pontine transections or chemical suppression of retrotrapezoid nucleus/ventrolateral parafacial (RTN/vlPF). AbN late-E activity during hypercapnia is coupled with augmented pre-I discharge in HN, truncated PN burst, and was quiescent during inspiration. Our data suggest that the pons provides a necessary excitatory drive to an additional neural oscillatory mechanism that is only activated under conditions of high respiratory drive to generate late-E activity destined for AbN motoneurones. This mechanism may arise from neurons located in the RTN/vlPF or the latter may relay late-E activity generated elsewhere. We hypothesize that this oscillatory mechanism is not a necessary component of the respiratory central pattern generator but constitutes a defensive mechanism activated under critical metabolic conditions to provide forced expiration and reduced upper airway resistance simultaneously. Possible interactions of this oscillator with components of the brainstem respiratory network are discussed. PMID:19491247

  8. Traffic jams induced by fluctuation of a leading car.

    PubMed

    Nagatani, T

    2000-04-01

    We present a phase diagram of the different kinds of congested traffic triggered by fluctuation of a leading car in an open system without sources and sinks. Traffic states and density waves are investigated numerically by varying the amplitude of fluctuation using a car following model. The phase transitions among the free traffic, oscillatory congested traffic, and homogeneous congested traffic occur by fluctuation of a leading car. With increasing the amplitude of fluctuation, the transition between the free traffic and oscillatory traffic occurs at lower density and the transition between the homogeneous congested traffic and the oscillatory traffic occurs at higher density. The oscillatory congested traffic corresponds to the coexisting phase. Also, the moving localized clusters appear just above the transition lines.

  9. Time course of ongoing activity during neuritis and following axonal transport disruption.

    PubMed

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-05-01

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (<10%) A- and C-fiber neurons showed ongoing activity 1-15 days following vinblastine treatment. In contrast, AMS increased transiently at the vinblastine treatment site, peaking on days 4-5 (28% of C/slow Aδ-fiber neurons) and resolved by day 15. Conduction velocities were slowed in all groups. In summary, the disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.

  10. The Triple-Flash Illusion Reveals a Driving Role of Alpha-Band Reverberations in Visual Perception.

    PubMed

    Gulbinaite, Rasa; İlhan, Barkın; VanRullen, Rufin

    2017-07-26

    The modulatory role of spontaneous brain oscillations on perception of threshold-level stimuli is well established. Here, we provide evidence that alpha-band (∼10 Hz) oscillations not only modulate perception of threshold-level sensory inputs but also can drive perception and generate percepts without a physical stimulus being present. We used the "triple-flash" illusion: Occasional perception of three flashes when only two spatially coincident veridical ones, separated by ∼100 ms, are presented. The illusion was proposed to result from superposition of two hypothetical oscillatory impulse response functions generated in response to each flash: When the delay between flashes matches the period of the oscillation, the superposition enhances a later part of the oscillation that is normally damped; when this enhancement crosses perceptual threshold, a third flash is erroneously perceived (Bowen, 1989). In Experiment 1, we varied stimulus onset asynchrony and validated Bowen's theory: The optimal stimulus onset asynchrony for illusion to occur was correlated, across human subjects (both genders), with the subject-specific impulse response function period determined from a separate EEG experiment. Experiment 2 revealed that prestimulus parietal, but no occipital, alpha EEG phase and power, as well as poststimulus alpha phase-locking, together determine the occurrence of the illusion on a trial-by-trial basis. Thus, oscillatory reverberations create something out of nothing: A third flash where there are only two. SIGNIFICANCE STATEMENT We highlight a novel property of alpha-band (∼10 Hz) oscillations based on three experiments (two EEG and one psychophysics) by demonstrating that alpha-band oscillations do not merely modulate perception, but can also drive perception. We show that human participants report seeing a third flash when only two are presented (the "triple-flash" illusion) most often when the interflash delay matches the period of participant's oscillatory impulse response function reverberating in alpha. Within-subject, the phase and power of ongoing parietal, but not occipital, alpha-band oscillations at the time of the first flash determine illusory percept on a trial-by-trial basis. We revealed a physiologically plausible mechanism that validates and extends the original theoretical account of the triple-flash illusion proposed by Bowen in 1989. Copyright © 2017 the authors 0270-6474/17/377219-12$15.00/0.

  11. Serotonin Modulation of Prefronto-Hippocampal Rhythms in Health and Disease.

    PubMed

    Puig, M Victoria; Gener, Thomas

    2015-07-15

    There is mounting evidence that most cognitive functions depend upon the coordinated activity of neuronal networks often located far from each other in the brain. Ensembles of neurons synchronize their activity, generating oscillations at different frequencies that may encode behavior by allowing an efficient communication between brain areas. The serotonin system, by virtue of the widespread arborisation of serotonergic neurons, is in an excellent position to exert strong modulatory actions on brain rhythms. These include specific oscillatory activities in the prefrontal cortex and the hippocampus, two brain areas essential for many higher-order cognitive functions. Psychiatric patients show abnormal oscillatory activities in these areas, notably patients with schizophrenia who display psychotic symptoms as well as affective and cognitive impairments. Synchronization of neural activity between the prefrontal cortex and the hippocampus seems to be important for cognition and, in fact, reduced prefronto-hippocampal synchrony has been observed in a genetic mouse model of schizophrenia. Here, we review recent advances in the field of neuromodulation of brain rhythms by serotonin, focusing on the actions of serotonin in the prefrontal cortex and the hippocampus. Considering that the serotonergic system plays a crucial role in cognition and mood and is a target of many psychiatric treatments, it is surprising that this field of research is still in its infancy. In that regard, we point to future investigations that are much needed in this field.

  12. Atypical Laterality of Resting Gamma Oscillations in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Maxwell, Christina R.; Villalobos, Michele E.; Schultz, Robert T.; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Kohls, Gregor

    2015-01-01

    Abnormal brain oscillatory activity has been found in autism spectrum disorders (ASD) and proposed as a potential biomarker. While several studies have investigated gamma oscillations in ASD, none have examined resting gamma power across multiple brain regions. This study investigated resting gamma power using EEG in 15 boys with ASD and 18 age…

  13. Independent Oscillatory Patterns Determine Performance Fluctuations in Children with Attention Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Yordanova, Juliana; Albrecht, Bjorn; Uebel, Henrik; Kirov, Roumen; Banaschewski, Tobias; Rothenberger, Aribert; Kolev, Vasil

    2011-01-01

    The maintenance of stable goal-directed behaviour is a hallmark of conscious executive control in humans. Notably, both correct and error human actions may have a subconscious activation-based determination. One possible source of subconscious interference may be the default mode network that, in contrast to attentional network, manifests…

  14. Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network.

    PubMed

    Kang, Guiyeom; Lowery, Madeleine M

    2013-03-01

    Growing evidence suggests that synchronized neural oscillations in the cortico-basal ganglia network may play a critical role in the pathophysiology of Parkinson's disease. In this study, a new model of the closed loop network is used to explore the generation and interaction of network oscillations and their suppression through deep brain stimulation (DBS). Under simulated dopamine depletion conditions, increased gain through the hyperdirect pathway resulted in the interaction of neural oscillations at different frequencies in the cortex and subthalamic nucleus (STN), leading to the emergence of synchronized oscillations at a new intermediate frequency. Further increases in synaptic gain resulted in the cortex driving synchronous oscillatory activity throughout the network. When DBS was added to the model a progressive reduction in STN power at the tremor and beta frequencies was observed as the frequency of stimulation was increased, with resonance effects occurring for low frequency DBS (40 Hz) in agreement with experimental observations. The results provide new insights into the mechanisms by which synchronous oscillations can arise within the network and how DBS may suppress unwanted oscillatory activity.

  15. Understanding action language modulates oscillatory mu and beta rhythms in the same way as observing actions.

    PubMed

    Moreno, Iván; de Vega, Manuel; León, Inmaculada

    2013-08-01

    The mu rhythms (8-13 Hz) and the beta rhythms (15 up to 30 Hz) of the EEG are observed in the central electrodes (C3, Cz and C4) in resting states, and become suppressed when participants perform a manual action or when they observe another's action. This has led researchers to consider that these rhythms are electrophysiological markers of the motor neuron activity in humans. This study tested whether the comprehension of action language, unlike abstract language, modulates mu and low beta rhythms (15-20 Hz) in a similar way as the observation of real actions. The log-ratios were calculated for each oscillatory band between each condition and baseline resting periods. The results indicated that both action language and action videos caused mu and beta suppression (negative log-ratios), whereas abstract language did not, confirming the hypothesis that understanding action language activates motor networks in the brain. In other words, the resonance of motor areas associated with action language is compatible with the embodiment approach to linguistic meaning. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events.

  17. Relationship Between Acoustic Voice Onset and Offset and Selected Instances of Oscillatory Onset and Offset in Young Healthy Men and Women.

    PubMed

    Patel, Rita R; Forrest, Karen; Hedges, Drew

    2017-05-01

    This study aimed to investigate the relationship between (1) onset of the acoustic signal (X 1 a ) and prephonatory phases associated with oscillatory onset and (2) offset of the acoustic signal (X 2 a ) with the postphonatory events associated with oscillatory offset across vocally healthy adults. High-speed videoendoscopy was captured simultaneously with the acoustic signal during repeated production of /hi.hi.hi/ at typical pitch and loudness from 56 vocally healthy adults (aged 20-42 years; 21 men, 35 women). The relationships between the acoustic sound pressure signal and oscillatory onset and offset events from the glottal area waveforms (GAWs) were statistically investigated using a multivariate linear regression analysis. The X 1 a is a significant predictor of the onset of first oscillatory motion (X 1 g ) and onset of sustained oscillations (X 2 g ). X 1 a as well as gender are significant predictors of the first medial contact of the vocal folds (X 1.5 g ). The X 2 a is a significant predictor of the first instance of oscillatory offset (X 3 g ), first instance of incomplete glottal closure (X 3.5 g ), and complete cessation of (vocal fold) oscillatory motion (X 4 g ). The acoustic signal onset is closely related to the X 1.5 g , but the latency between these events is longer for women compared to men. The X 2 a occurs immediately after incomplete glottal adduction. The emerging normative group latencies between the onset and offset of the acoustic and the GAW from this study appear promising for future investigations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics.

    PubMed

    Iwayama, Koji; Zhu, Liping; Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki

    2016-04-12

    An amoeboid unicellular organism, a plasmodium of the true slime mold Physarum polycephalum, exhibits complex spatiotemporal oscillatory dynamics and sophisticated information processing capabilities while deforming its amorphous body. We previously devised an 'amoeba-based computer (ABC),' that implemented optical feedback control to lead this amoeboid organism to search for a solution to the traveling salesman problem (TSP). In the ABC, the shortest TSP route (the optimal solution) is represented by the shape of the organism in which the body area (nutrient absorption) is maximized while the risk of being exposed to aversive light stimuli is minimized. The shortness of the TSP route found by ABC, therefore, serves as a quantitative measure of the optimality of the decision made by the organism. However, it remains unclear how the decision-making ability of the organism originates from the oscillatory dynamics of the organism. We investigated the number of coexisting traveling waves in the spatiotemporal patterns of the oscillatory dynamics of the organism. We show that a shorter TSP route can be found when the organism exhibits a lower number of traveling waves. The results imply that the oscillatory dynamics are highly coordinated throughout the global body. Based on the results, we discuss the fact that the decision-making ability of the organism can be enhanced not by uncorrelated random fluctuations, but by its highly coordinated oscillatory dynamics.

  19. Improved Filon-type asymptotic methods for highly oscillatory differential equations with multiple time scales

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Wu, Xinyuan

    2014-11-01

    In this paper we consider multi-frequency highly oscillatory second-order differential equations x″ (t) + Mx (t) = f (t , x (t) ,x‧ (t)) where high-frequency oscillations are generated by the linear part Mx (t), and M is positive semi-definite (not necessarily nonsingular). It is known that Filon-type methods are effective approach to numerically solving highly oscillatory problems. Unfortunately, however, existing Filon-type asymptotic methods fail to apply to the highly oscillatory second-order differential equations when M is singular. We study and propose an efficient improvement on the existing Filon-type asymptotic methods, so that the improved Filon-type asymptotic methods can be able to numerically solving this class of multi-frequency highly oscillatory systems with a singular matrix M. The improved Filon-type asymptotic methods are designed by combining Filon-type methods with the asymptotic methods based on the variation-of-constants formula. We also present one efficient and practical improved Filon-type asymptotic method which can be performed at lower cost. Accompanying numerical results show the remarkable efficiency.

  20. Oscillatory system I-, H2O2, HClO4: the modified form of the Bray-Liebhafsky reaction.

    PubMed

    Olexová, Anna; Mrákavová, Marta; Melichercík, Milan; Treindl, L'udovít

    2010-07-08

    The kinetics of iodide ions oxidation with hydrogen peroxide in solutions of perchloric acid at temperature of 60 degrees C has been studied in detail. We have found conditions under which this reaction proceeds oscillatory. The Bray-Liebhafsky (BL) oscillatory reaction started by the oxidation of iodide ions with hydrogen peroxide is described for the first time. The described results support our assumption (Olexová, A.; Mrákavová, M.; Melichercík, M.; Treindl, L. Collect. Czech. Chem. Commun. 2006, 71, 91-106) that singlet oxygen ((1)O(2)) is an important intermediate of the BL oscillatory reaction in the sense of the Noyes-Treindl (N-T) skeleton mechanism (Treindl, L.; Noyes, R.M. J. Phys. Chem. 1993, 97, 11354-11362).

  1. Al-Mg Isotope Study of Allende 5241

    NASA Technical Reports Server (NTRS)

    Kerekgyarto, A. G.; Jeffcoat, C. R.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.; Simon, J. I.

    2016-01-01

    The defining characteristic of type B1 CAIs is a large (.5- 3mm) concentric melilite mantle [1]. In [2] we presented two isochrons from separate traverses across the melilite mantle of Allende EK 459-5-1. The primary petrographic differences between the traverses was the preservation of strong oscillatory zoning. The traverse that crossed the distinctive oscillatory zone produced a pristine internal isochron, while the other that did not have a strongly preserved oscillatory zone produced a disturbed isochron indicated by more scatter (higher MSWD) and a positive (delta)26Mg* intercept. The implication simply being that the oscillatory zone may represent varying conditions during the mantle formation event. We targeted a similar texture in Allende 5241 using the same methodology in an attempt to achieve similar results.

  2. Opto-current-clamp actuation of cortical neurons using a strategically designed channelrhodopsin.

    PubMed

    Wen, Lei; Wang, Hongxia; Tanimoto, Saki; Egawa, Ryo; Matsuzaka, Yoshiya; Mushiake, Hajime; Ishizuka, Toru; Yawo, Hiromu

    2010-09-23

    Optogenetic manipulation of a neuronal network enables one to reveal how high-order functions emerge in the central nervous system. One of the Chlamydomonas rhodopsins, channelrhodopsin-1 (ChR1), has several advantages over channelrhodopsin-2 (ChR2) in terms of the photocurrent kinetics. Improved temporal resolution would be expected by the optogenetics using the ChR1 variants with enhanced photocurrents. The photocurrent retardation of ChR1 was overcome by exchanging the sixth helix domain with its counterpart in ChR2 producing Channelrhodopsin-green receiver (ChRGR) with further reform of the molecule. When the ChRGR photocurrent was measured from the expressing HEK293 cells under whole-cell patch clamp, it was preferentially activated by green light and has fast kinetics with minimal desensitization. With its kinetic advantages the use of ChRGR would enable one to inject a current into a neuron by the time course as predicted by the intensity of the shedding light (opto-current clamp). The ChRGR was also expressed in the motor cortical neurons of a mouse using Sindbis pseudovirion vectors. When an oscillatory LED light signal was applied sweeping through frequencies, it robustly evoked action potentials synchronized to the oscillatory light at 5-10 Hz in layer 5 pyramidal cells in the cortical slice. The ChRGR-expressing neurons were also driven in vivo with monitoring local field potentials (LFPs) and the time-frequency energy distribution of the light-evoked response was investigated using wavelet analysis. The oscillatory light enhanced both the in-phase and out-phase responses of LFP at the preferential frequencies of 5-10 Hz. The spread of activity was evidenced by the fact that there were many c-Fos-immunoreactive neurons that were negative for ChRGR in a region of the motor cortex. The opto-current-clamp study suggests that the depolarization of a small number of neurons wakes up the motor cortical network over some critical point to the activated state.

  3. Bicycling and Walking are Associated with Different Cortical Oscillatory Dynamics

    PubMed Central

    Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Schnitzler, Alfons; Dalal, Sarang S.

    2016-01-01

    Although bicycling and walking involve similar complex coordinated movements, surprisingly Parkinson’s patients with freezing of gait typically remain able to bicycle despite severe difficulties in walking. This observation suggests functional differences in the motor networks subserving bicycling and walking. However, a direct comparison of brain activity related to bicycling and walking has never been performed, neither in healthy participants nor in patients. Such a comparison could potentially help elucidating the cortical involvement in motor control and the mechanisms through which bicycling ability may be preserved in patients with freezing of gait. The aim of this study was to contrast the cortical oscillatory dynamics involved in bicycling and walking in healthy participants. To this end, EEG and EMG data of 14 healthy participants were analyzed, who cycled on a stationary bicycle at a slow cadence of 40 revolutions per minute (rpm) and walked at 40 strides per minute (spm), respectively. Relative to walking, bicycling was associated with a stronger power decrease in the high beta band (23–35 Hz) during movement initiation and execution, followed by a stronger beta power increase after movement termination. Walking, on the other hand, was characterized by a stronger and persisting alpha power (8–12 Hz) decrease. Both bicycling and walking exhibited movement cycle-dependent power modulation in the 24–40 Hz range that was correlated with EMG activity. This modulation was significantly stronger in walking. The present findings reveal differential cortical oscillatory dynamics in motor control for two types of complex coordinated motor behavior, i.e., bicycling and walking. Bicycling was associated with a stronger sustained cortical activation as indicated by the stronger high beta power decrease during movement execution and less cortical motor control within the movement cycle. We speculate this to be due to the more continuous nature of bicycling demanding less phase-dependent sensory processing and motor planning, as opposed to walking. PMID:26924977

  4. The Conundrum of Estrogen Receptor Oscillatory Activity in the Search for an Appropriate Hormone Replacement Therapy

    PubMed Central

    Della Torre, Sara; Biserni, Andrea; Rando, Gianpaolo; Monteleone, Giuseppina; Ciana, Paolo; Komm, Barry

    2011-01-01

    By the use of in vivo imaging, we investigated the dynamics of estrogen receptor (ER) activity in intact, ovariectomized, and hormone-replaced estrogen response element-luciferase reporter mice. The study revealed the existence of a long-paced, noncircadian oscillation of ER transcriptional activity. Among the ER-expressing organs, this oscillation was asynchronous and its amplitude and period were tissue dependent. Ovariectomy affected the amplitude but did not suppress ER oscillations, suggesting the presence of tissue endogenous oscillators. Long-term administration of raloxifene, bazedoxifene, combined estrogens alone or with basedoxifene to ovariectomized estrogen response element-luciferase mice showed that each treatment induced a distinct spatiotemporal profile of ER activity, demonstrating that the phasing of ER activity among tissues may be regulated by the chemical nature and the concentration of circulating estrogen. This points to the possibility of a hierarchical organization of the tissue-specific pacemakers. Conceivably, the rhythm of ER transcriptional activity translates locally into the activation of specific gene networks enabling ER to significantly change its physiological activity according to circulating estrogens. In reproductive and nonreproductive organs this hierarchical regulation may provide ER with the signaling plasticity necessary to drive the complex metabolic changes occurring at each female reproductive status. We propose that the tissue-specific oscillatory activity here described is an important component of ER signaling necessary for the full hormone action including the beneficial effects reported for nonreproductive organs. Thus, this mechanism needs to be taken in due consideration to develop novel, more efficacious, and safer hormone replacement therapies. PMID:21505049

  5. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Krause, Andrew L.; Klika, Václav; Woolley, Thomas E.; Gaffney, Eamonn A.

    2018-05-01

    We report on an instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well-known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity.

  6. Chirp-evoked potentials in the awake and anesthetized rat. A procedure to assess changes in cortical oscillatory activity.

    PubMed

    Pérez-Alcázar, M; Nicolás, M J; Valencia, M; Alegre, M; Iriarte, J; Artieda, J

    2008-03-01

    Steady-state potentials are oscillatory responses generated by rhythmic stimulation of a sensory pathway. The frequency of the response, which follows the frequency of stimulation and potentially indicates the preferential working frequency of the auditory neural network, is maximal at a stimulus rate of 40 Hz for auditory stimuli in humans, but may be different in other species. Our aim was to explore the responses to different frequencies in the rat. The stimulus was a tone modulated in amplitude by a sinusoid with linearly-increasing frequency from 1 to 250 Hz ("chirp"). Time-frequency transforms were used for response analysis in 12 animals, awake and under ketamine/xylazine anesthesia. We studied whether the responses were due to increases in amplitude or to phase-locking phenomena, using single-sweep time-frequency transforms and inter-trial phase analysis. A progressive decrease in the amplitude of the response was observed from the maximal values (around 15 Hz) up to the limit of the test (250 Hz). The high-frequency component was mainly due to phase-locking phenomena with a smaller amplitude contribution. Under anesthesia, the amplitude and phase-locking of lower frequencies (under 100 Hz) decreased, while the phase-locking over 200 Hz increased. In conclusion, amplitude-modulation following responses differ between humans and rats in response range and frequency of maximal amplitude. Anesthesia with ketamine/xylazine modifies differentially the amplitude and the phase-locking of the responses. These findings should be taken into account when assessing the changes in cortical oscillatory activity related to different drugs, in healthy rodents and in animal models of neurodegenerative diseases.

  7. Basic features of the STS/Spacelab vibration environment

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Ramachandran, N.

    1994-01-01

    The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.

  8. Resting-State Pallidal-Cortical Oscillatory Couplings in Patients With Predominant Phasic and Tonic Dystonia.

    PubMed

    Yokochi, Fusako; Kato, Kenji; Iwamuro, Hirokazu; Kamiyama, Tsutomu; Kimura, Katsuo; Yugeta, Akihiro; Okiyama, Ryoichi; Taniguchi, Makoto; Kumada, Satoko; Ushiba, Junichi

    2018-01-01

    Pallidal deep brain stimulation (DBS) improves the symptoms of dystonia. The improvement processes of dystonic movements (phasic symptoms) and tonic symptoms differ. Phasic symptoms improve rapidly after starting DBS treatment, but tonic symptoms improve gradually. This difference implies distinct neuronal mechanisms for phasic and tonic symptoms in the underlying cortico-basal ganglia neuronal network. Phasic symptoms are related to the pallido-thalamo-cortical pathway. The pathway related to tonic symptoms has been assumed to be different from that for phasic symptoms. In the present study, local field potentials of the globus pallidus internus (GPi) and globus pallidus externus (GPe) and electroencephalograms from the motor cortex (MCx) were recorded in 19 dystonia patients to analyze the differences between the two types of symptoms. The 19 patients were divided into two groups, 10 with predominant phasic symptoms (phasic patients) and 9 with predominant tonic symptoms (tonic patients). To investigate the distinct features of oscillations and functional couplings across the GPi, GPe, and MCx by clinical phenotype, power and coherence were calculated over the delta (2-4 Hz), theta (5-7 Hz), alpha (8-13 Hz), and beta (14-35 Hz) frequencies. In phasic patients, the alpha spectral peaks emerged in the GPi oscillatory activities, and alpha GPi coherence with the GPe and MCx was higher than in tonic patients. On the other hand, delta GPi oscillatory activities were prominent, and delta GPi-GPe coherence was significantly higher in tonic than in phasic patients. However, there was no significant delta coherence between the GPi/GPe and MCx in tonic patients. These results suggest that different pathophysiological cortico-pallidal oscillations are related to tonic and phasic symptoms.

  9. Dynamic oscillatory processes governing cued orienting and allocation of auditory attention

    PubMed Central

    Ahveninen, Jyrki; Huang, Samantha; Belliveau, John W.; Chang, Wei-Tang; Hämäläinen, Matti

    2013-01-01

    In everyday listening situations, we need to constantly switch between alternative sound sources and engage attention according to cues that match our goals and expectations. The exact neuronal bases of these processes are poorly understood. We investigated oscillatory brain networks controlling auditory attention using cortically constrained fMRI-weighted magnetoencephalography/ electroencephalography (MEG/EEG) source estimates. During consecutive trials, subjects were instructed to shift attention based on a cue, presented in the ear where a target was likely to follow. To promote audiospatial attention effects, the targets were embedded in streams of dichotically presented standard tones. Occasionally, an unexpected novel sound occurred opposite to the cued ear, to trigger involuntary orienting. According to our cortical power correlation analyses, increased frontoparietal/temporal 30–100 Hz gamma activity at 200–1400 ms after cued orienting predicted fast and accurate discrimination of subsequent targets. This sustained correlation effect, possibly reflecting voluntary engagement of attention after the initial cue-driven orienting, spread from the temporoparietal junction, anterior insula, and inferior frontal (IFC) cortices to the right frontal eye fields. Engagement of attention to one ear resulted in a significantly stronger increase of 7.5–15 Hz alpha in the ipsilateral than contralateral parieto-occipital cortices 200–600 ms after the cue onset, possibly reflecting crossmodal modulation of the dorsal visual pathway during audiospatial attention. Comparisons of cortical power patterns also revealed significant increases of sustained right medial frontal cortex theta power, right dorsolateral prefrontal cortex and anterior insula/IFC beta power, and medial parietal cortex and posterior cingulate cortex gamma activity after cued vs. novelty-triggered orienting (600–1400 ms). Our results reveal sustained oscillatory patterns associated with voluntary engagement of auditory spatial attention, with the frontoparietal and temporal gamma increases being best predictors of subsequent behavioral performance. PMID:23915050

  10. Oscillatory Reinstatement Enhances Declarative Memory.

    PubMed

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.

  11. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  12. Spectral signatures of viewing a needle approaching one's body when anticipating pain.

    PubMed

    Höfle, Marion; Pomper, Ulrich; Hauck, Michael; Engel, Andreas K; Senkowski, Daniel

    2013-10-01

    When viewing the needle of a syringe approaching your skin, anticipation of a painful prick may lead to increased arousal. How this anticipation is reflected in neural oscillatory activity and how it relates to activity within the autonomic nervous system is thus far unknown. Recently, we found that viewing needle pricks compared with Q-tip touches increases the pupil dilation response (PDR) and perceived unpleasantness of electrical stimuli. Here, we used high-density electroencephalography to investigate whether anticipatory oscillatory activity predicts the unpleasantness of electrical stimuli and PDR while viewing a needle approaching a hand that is perceived as one's own. We presented video clips of needle pricks and Q-tip touches, and delivered spatiotemporally aligned painful and nonpainful intracutaneous electrical stimuli. The perceived unpleasantness of electrical stimuli and the PDR were enhanced when participants viewed needle pricks compared with Q-tip touches. Source reconstruction using linear beamforming revealed reduced alpha-band activity in the posterior cingulate cortex (PCC) and fusiform gyrus before the onset of electrical stimuli when participants viewed needle pricks compared with Q-tip touches. Moreover, alpha-band activity in the PCC predicted PDR on a single trial level. The anticipatory reduction of alpha-band activity in the PCC may reflect a neural mechanism that serves to protect the body from forthcoming harm by facilitating the preparation of adequate defense responses. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Restoration of rhythmicity in diffusively coupled dynamical networks.

    PubMed

    Zou, Wei; Senthilkumar, D V; Nagao, Raphael; Kiss, István Z; Tang, Yang; Koseska, Aneta; Duan, Jinqiao; Kurths, Jürgen

    2015-07-15

    Oscillatory behaviour is essential for proper functioning of various physical and biological processes. However, diffusive coupling is capable of suppressing intrinsic oscillations due to the manifestation of the phenomena of amplitude and oscillation deaths. Here we present a scheme to revoke these quenching states in diffusively coupled dynamical networks, and demonstrate the approach in experiments with an oscillatory chemical reaction. By introducing a simple feedback factor in the diffusive coupling, we show that the stable (in)homogeneous steady states can be effectively destabilized to restore dynamic behaviours of coupled systems. Even a feeble deviation from the normal diffusive coupling drastically shrinks the death regions in the parameter space. The generality of our method is corroborated in diverse non-linear systems of diffusively coupled paradigmatic models with various death scenarios. Our study provides a general framework to strengthen the robustness of dynamic activity in diffusively coupled dynamical networks.

  14. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  15. Event-Related Beta EEG Changes During Active, Passive Movement and Functional Electrical Stimulation of the Lower Limb.

    PubMed

    Qiu, Shuang; Yi, Weibo; Xu, Jiapeng; Qi, Hongzhi; Du, Jingang; Wang, Chunfang; He, Feng; Ming, Dong

    2016-02-01

    A number of electroencephalographic (EEG) studies have reported on event-related desynchronization/synchronization (ERD/ERS) during active movements, passive movements, and the movements induced by functional electrical stimulation (FES). However, the quantitative differences in ERD values and affected frequency bands associated with the lower limb have not been discussed. The goal of this paper was to quantitatively compare the ERD patterns during active movement, passive movement and FES-induced movement of the lower limb. 64-channel EEG signals were recorded to investigate the brain oscillatory patterns during active movement, passive movement and FES-induced movement of the lower limb in twelve healthy subjects. And passive movement and FES-induced movement were also performed in a hemiplegic stroke patient. For healthy subjects, FES-induced movement presented significantly higher characteristic frequency of central beta ERD while there was no significant difference in ERD values compared with active or passive movement. Meanwhile, beta ERD values of FES-induced movement were significantly correlated with those of active movement, and spatial distribution of beta ERD pattern for FES-induced movement was more correlated with that for active movement. In addition, the stroke patient presented central ERD patterns during FES-induced movement, while no ERD with similar frequencies could be found during passive movement. This work implies that the EEG oscillatory pattern under FES-induced movement tends more towards active movement instead of passive movement. The quantification of ERD patterns could be expected as a potential technique to evaluate the brain response during FES-induced movement.

  16. Sensorimotor Integration for Decision Making: How the Worm Steers.

    PubMed

    Kaplan, Harris S; Zimmer, Manuel

    2018-01-17

    Animals' movements actively shape their perception and subsequent decision making. In this issue of Neuron, Liu et al. (2018) show how C. elegans nematodes steer toward an odorant: a dedicated interneuron class integrates oscillatory olfactory signals, generated by head swings, with corollary discharge motor signals. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Anticipatory Attentional Suppression of Visual Features Indexed by Oscillatory Alpha-Band Power Increases: A High-Density Electrical Mapping Study

    PubMed Central

    Snyder, Adam C.; Foxe, John J.

    2010-01-01

    Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273

  18. State-dependent effects of transcranial oscillatory currents on the motor system: what you think matters.

    PubMed

    Feurra, Matteo; Pasqualetti, Patrizio; Bianco, Giovanni; Santarnecchi, Emiliano; Rossi, Alessandro; Rossi, Simone

    2013-10-30

    Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions.

  19. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.

    PubMed

    Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro

    2005-04-01

    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.

  20. Cortical oscillatory activity and the induction of plasticity in the human motor cortex.

    PubMed

    McAllister, Suzanne M; Rothwell, John C; Ridding, Michael C

    2011-05-01

    Repetitive transcranial magnetic stimulation paradigms such as continuous theta burst stimulation (cTBS) induce long-term potentiation- and long-term depression-like plasticity in the human motor cortex. However, responses to cTBS are highly variable and may depend on the activity of the cortex at the time of stimulation. We investigated whether power in different electroencephalogram (EEG) frequency bands predicted the response to subsequent cTBS, and conversely whether cTBS had after-effects on the EEG. cTBS may utilize similar mechanisms of plasticity to motor learning; thus, we conducted a parallel set of experiments to test whether ongoing electroencephalography could predict performance of a visuomotor training task, and whether training itself had effects on the EEG. Motor evoked potentials (MEPs) provided an index of cortical excitability pre- and post-intervention. The EEG was recorded over the motor cortex pre- and post-intervention, and power spectra were computed. cTBS reduced MEP amplitudes; however, baseline power in the delta, theta, alpha or beta frequencies did not predict responses to cTBS or learning of the visuomotor training task. cTBS had no effect on delta, theta, alpha or beta power. In contrast, there was an increase in alpha power following visuomotor training that was positively correlated with changes in MEP amplitude post-training. The results suggest that the EEG is not a useful state-marker for predicting responses to plasticity-inducing paradigms. The correlation between alpha power and changes in corticospinal excitability following visuomotor training requires further investigation, but may be related to disengagement of the somatosensory system important for motor memory consolidation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Preventive and Abortive Strategies for Stimulation Based Control of Epilepsy: A Computational Model Study.

    PubMed

    Koppert, Marc; Kalitzin, Stiliyan; Velis, Demetrios; Lopes Da Silva, Fernando; Viergever, Max A

    2016-12-01

    Epilepsy is a condition in which periods of ongoing normal EEG activity alternate with periods of oscillatory behavior characteristic of epileptic seizures. The dynamics of the transitions between the two states are still unclear. Computational models provide a powerful tool to explore the underlying mechanisms of such transitions, with the purpose of eventually finding therapeutic interventions for this debilitating condition. In this study, the possibility to postpone seizures elicited by a decrease of inhibition is investigated by using external stimulation in a realistic bistable neuronal model consisting of two interconnected neuronal populations representing pyramidal cells and interneurons. In the simulations, seizures are induced by slowly decreasing the conductivity of GABA[Formula: see text] synaptic channels over time. Since the model is bistable, the system will change state from the initial steady state (SS) to the limit cycle (LS) state because of internal noise, when the inhibition falls below a certain threshold. Several state-independent stimulations paradigms are simulated. Their effectiveness is analyzed for various stimulation frequencies and intensities in combination with periodic and random stimulation sequences. The distributions of the time to first seizure in the presence of stimulation are compared with the situation without stimulation. In addition, stimulation protocols targeted to specific subsystems are applied with the objective of counteracting the baseline shift due to decreased inhibition in the system. Furthermore, an analytical model is used to investigate the effects of random noise. The relation between the strength of random noise stimulation, the control parameter of the system and the transitions between steady state and limit cycle are investigated. The study shows that it is possible to postpone epileptic activity by targeted stimulation in a realistic neuronal model featuring bistability and that it is possible to stop seizures by random noise in an analytical model.

  2. Electroencephalogram oscillations support the involvement of task-unrelated thoughts in the mechanism of boredom: A pilot study.

    PubMed

    Miyauchi, Eri; Kawasaki, Masahiro

    2018-06-11

    Boredom is a universal experience; however, the neural mechanisms underlying the phenomenon remain unclear. Previous research suggests that boredom is related to attentional failure and derives a possible explanation for the cognitive processes of boredom as a product of appraisals made about task-unrelated thoughts. There are little published data regarding proposed processes from neuroscientific perspectives. Therefore, the authors aimed to examine whether cognitive processes of boredom with task-unrelated thoughts followed by appraisals of them can be explained by examining oscillatory correlates. Electroencephalography was used to measure changes in neural oscillatory activity during subjective experiences of boredom or dislike in healthy subjects. Using this approach, temporal information of brain activity particular to the boredom experience was acquired. Additionally, the Adult Attention-Deficit Hyperactivity Disorder Self-Report Scale was used to evaluate the effects of attentional deficits in the neural processing of boredom. Tonic increase in theta and transient increases in alpha activity were exhibited before the key press response for experiencing boredom; however, only tonic increases in theta amplitudes were boredom specific. The results of this pilot study suggest that the boredom experience is possibly associated with cognitive processes involved in task-unrelated thoughts, followed by their appraisals to be bored, mediated by alpha and theta activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Theta-Modulated Gamma-Band Synchronization Among Activated Regions During a Verb Generation Task

    PubMed Central

    Doesburg, Sam M.; Vinette, Sarah A.; Cheung, Michael J.; Pang, Elizabeth W.

    2012-01-01

    Expressive language is complex and involves processing within a distributed network of cortical regions. Functional MRI and magnetoencephalography (MEG) have identified brain areas critical for expressive language, but how these regions communicate across the network remains poorly understood. It is thought that synchronization of oscillations between neural populations, particularly at a gamma rate (>30 Hz), underlies functional integration within cortical networks. Modulation of gamma rhythms by theta-band oscillations (4–8 Hz) has been proposed as a mechanism for the integration of local cell coalitions into large-scale networks underlying cognition and perception. The present study tested the hypothesis that these oscillatory mechanisms of functional integration were present within the expressive language network. We recorded MEG while subjects performed a covert verb generation task. We localized activated cortical regions using beamformer analysis, calculated inter-regional phase locking between activated areas, and measured modulation of inter-regional gamma synchronization by theta phase. The results show task-dependent gamma-band synchronization among regions activated during the performance of the verb generation task, and we provide evidence that these transient and periodic instances of high-frequency connectivity were modulated by the phase of cortical theta oscillations. These findings suggest that oscillatory synchronization and cross-frequency interactions are mechanisms for functional integration among distributed brain areas supporting expressive language processing. PMID:22707946

  4. 24 CFR 35.1220 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Ongoing lead-based paint..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Tenant-Based Rental Assistance § 35.1220 Ongoing lead-based paint maintenance activities...

  5. 24 CFR 35.1220 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Ongoing lead-based paint..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Tenant-Based Rental Assistance § 35.1220 Ongoing lead-based paint maintenance activities...

  6. 24 CFR 35.1220 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Ongoing lead-based paint..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Tenant-Based Rental Assistance § 35.1220 Ongoing lead-based paint maintenance activities...

  7. 24 CFR 35.1220 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Ongoing lead-based paint..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Tenant-Based Rental Assistance § 35.1220 Ongoing lead-based paint maintenance activities...

  8. 24 CFR 35.1220 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Ongoing lead-based paint..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Tenant-Based Rental Assistance § 35.1220 Ongoing lead-based paint maintenance activities...

  9. Distinct collective states due to trade-off between attractive and repulsive couplings

    NASA Astrophysics Data System (ADS)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  10. 24 CFR 35.935 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Rehabilitation § 35.935 Ongoing lead-based paint maintenance activities. In the case of a rental... 24 Housing and Urban Development 1 2011-04-01 2011-04-01 false Ongoing lead-based paint...

  11. 24 CFR 35.935 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Rehabilitation § 35.935 Ongoing lead-based paint maintenance activities. In the case of a rental... 24 Housing and Urban Development 1 2012-04-01 2012-04-01 false Ongoing lead-based paint...

  12. 24 CFR 35.935 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Rehabilitation § 35.935 Ongoing lead-based paint maintenance activities. In the case of a rental... 24 Housing and Urban Development 1 2014-04-01 2014-04-01 false Ongoing lead-based paint...

  13. 24 CFR 35.935 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Rehabilitation § 35.935 Ongoing lead-based paint maintenance activities. In the case of a rental... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Ongoing lead-based paint...

  14. 24 CFR 35.935 - Ongoing lead-based paint maintenance activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Department of Housing and Urban Development LEAD-BASED PAINT POISONING PREVENTION IN CERTAIN RESIDENTIAL STRUCTURES Rehabilitation § 35.935 Ongoing lead-based paint maintenance activities. In the case of a rental... 24 Housing and Urban Development 1 2013-04-01 2013-04-01 false Ongoing lead-based paint...

  15. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    PubMed Central

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  16. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    PubMed

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-05-03

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.

  17. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy

    PubMed Central

    Kros, Lieke; Lindeman, Sander; Eelkman Rooda, Oscar H. J.; Murugesan, Pavithra; Bina, Lorenzo; Bosman, Laurens W. J.; De Zeeuw, Chris I.; Hoebeek, Freek E.

    2017-01-01

    Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations. PMID:29163057

  18. Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions.

    PubMed

    White, David J; Congedo, Marco; Ciorciari, Joseph; Silberstein, Richard B

    2012-03-01

    Brain oscillatory correlates of spatial navigation were investigated using blind source separation (BSS) and standardized low resolution electromagnetic tomography (sLORETA) analyses of 62-channel EEG recordings. Twenty-five participants were instructed to navigate to distinct landmark buildings in a previously learned virtual reality town environment. Data from periods of navigation between landmarks were subject to BSS analyses to obtain source components. Two of these cortical sources were found to exhibit significant spectral power differences during navigation with respect to a resting eyes open condition and were subject to source localization using sLORETA. These two sources were localized as a right parietal component with gamma activation and a right medial-temporal-parietal component with activation in theta and gamma bandwidths. The parietal gamma activity was thought to reflect visuospatial processing associated with the task. The medial-temporal-parietal activity was thought to be more specific to the navigational processing, representing the integration of ego- and allo-centric representations of space required for successful navigation, suggesting theta and gamma oscillations may have a role in integrating information from parietal and medial-temporal regions. Theta activity on this medial-temporal-parietal source was positively correlated with more efficient navigation performance. Results are discussed in light of the depth and proposed closed field structure of the hippocampus and potential implications for scalp EEG data. The findings of the present study suggest that appropriate BSS methods are ideally suited to minimizing the effects of volume conduction in noninvasive recordings, allowing more accurate exploration of deep brain processes.

  19. Subthalamic nucleus involvement in executive functions with increased cognitive load: a subthalamic nucleus and anterior cingulate cortex depth recording study.

    PubMed

    Aulická, Stefania Rusnáková; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Halámek, Josef; Baláž, Marek; Bočková, Martina; Chrastina, Jan; Rektor, Ivan

    2014-10-01

    We studied the appearance of broadband oscillatory changes (ranging 2-45 Hz) induced by a cognitive task with two levels of complexity. The event-related de/synchronizations (ERD/S) in the subthalamic nucleus (STN) and in the anterior cingulate cortex (ACC) were evaluated in an executive function test. Four epilepsy surgery candidates with intracerebral electrodes implanted in the ACC and three Parkinson's disease patients with externalized deep brain stimulation electrodes implanted in the STN participated in the study. A Flanker test (FT) with visual stimuli (arrows) was performed. Subjects reacted to four types of stimuli presented on the monitor by pushing the right or left button: congruent arrows to the right or left side (simple task) and incongruent arrows to the right or left side (more difficult complex task). We explored the activation of STN and the activation of the ACC while processing the FT. Both conditions, i.e. congruent and incongruent, induced oscillatory changes in the ACC and also STN with significantly higher activation during incongruent trial. At variance with the ACC, in the STN not only the ERD beta but also the ERD alpha activity was significantly more activated by the incongruent condition. In line with our earlier studies, the STN appears to be involved in activities linked with increased cognitive load. The specificity and complexity of task-related activation of the STN might indicate the involvement of the STN in processes controlling human behaviour, e.g. in the selection and inhibition of competing alternatives.

  20. Behavioral relevance of gamma-band activity for short-term memory-based auditory decision-making.

    PubMed

    Kaiser, Jochen; Heidegger, Tonio; Lutzenberger, Werner

    2008-06-01

    Oscillatory activity in the gamma-band range has been established as a correlate of cognitive processes, including perception, attention and memory. Only a few studies, however, have provided evidence for an association between gamma-band activity (GBA) and measures of behavioral performance. Here we focused on the comparison between sample and test stimuli S1 and S2 during an auditory spatial short-term memory task. Applying statistical probability mapping to magnetoencephalographic recordings from 28 human subjects, we identified GBA components distinguishing nonidentical from identical S1-S2 pairs. This activity was found at frequencies between 65 and 90 Hz and was localized over posterior cortical regions contralateral to the hemifield in which the stimuli were presented. The 10 best task performers showed higher amplitudes of this GBA component than the 10 worst performers. This group difference was most pronounced between about 150 and 300 ms after stimulus onset. Apparently the decision about whether test stimuli matched the stored representation of previously presented sample sounds relied partly on the oscillatory activation of networks representing differences between both stimuli. This result could be replicated by reanalyzing the combined data from two previous studies assessing short-term memory for sound duration and sound lateralization, respectively. Similarly to our main study, GBA amplitudes to nonmatching vs. matching S1-S2 pairs were higher in good performers than poor performers. The present findings demonstrate the behavioral relevance of GBA.

  1. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  2. The Application of Electro- and Magneto-Encephalography in Tinnitus Research – Methods and Interpretations

    PubMed Central

    Adjamian, Peyman

    2014-01-01

    In recent years, there has been a significant increase in the use of electroencephalography (EEG) and magnetoencephalography (MEG) to investigate changes in oscillatory brain activity associated with tinnitus with many conflicting results. Current view of the underlying mechanism of tinnitus is that it results from changes in brain activity in various structures of the brain as a consequence of sensory deprivation. This in turn gives rise to increased spontaneous activity and/or synchrony in the auditory centers but also involves modulation from non-auditory processes from structures of the limbic and paralimbic system. Some of the neural changes associated with tinnitus may be assessed non-invasively in human beings with MEG and EEG (M/EEG) in ways, which are superior to animal studies and other non-invasive imaging techniques. However, both MEG and EEG have their limitations and research results can be misinterpreted without appropriate consideration of these limitations. In this article, I intend to provide a brief review of these techniques, describe what the recorded signals reflect in terms of the underlying neural activity, and their strengths and limitations. I also discuss some pertinent methodological issues involved in tinnitus-related studies and conclude with suggestions to minimize possible discrepancies between results. The overall message is that while MEG and EEG are extremely useful techniques, the interpretation of results from tinnitus studies requires much caution given the individual variability in oscillatory activity and the limits of these techniques. PMID:25431567

  3. Information coding with frequency of oscillations in Belousov-Zhabotinsky encapsulated disks

    NASA Astrophysics Data System (ADS)

    Gorecki, J.; Gorecka, J. N.; Adamatzky, Andrew

    2014-04-01

    Information processing with an excitable chemical medium, like the Belousov-Zhabotinsky (BZ) reaction, is typically based on information coding in the presence or absence of excitation pulses. Here we present a new concept of Boolean coding that can be applied to an oscillatory medium. A medium represents the logical TRUE state if a selected region oscillates with a high frequency. If the frequency fails below a specified value, it represents the logical FALSE state. We consider a medium composed of disks encapsulating an oscillatory mixture of reagents, as related to our recent experiments with lipid-coated BZ droplets. We demonstrate that by using specific geometrical arrangements of disks containing the oscillatory medium one can perform logical operations on variables coded in oscillation frequency. Realizations of a chemical signal diode and of a single-bit memory with oscillatory disks are also discussed.

  4. Oscillatory integration windows in neurons

    PubMed Central

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  5. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1997-01-01

    In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton- Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics. These lecture notes are basically self-contained. It is our hope that with these notes and with the help of the quoted references, the reader can understand the algorithms and code them up for applications.

  6. Improving visual perception through neurofeedback

    PubMed Central

    Scharnowski, Frank; Hutton, Chloe; Josephs, Oliver; Weiskopf, Nikolaus; Rees, Geraint

    2012-01-01

    Perception depends on the interplay of ongoing spontaneous activity and stimulus-evoked activity in sensory cortices. This raises the possibility that training ongoing spontaneous activity alone might be sufficient for enhancing perceptual sensitivity. To test this, we trained human participants to control ongoing spontaneous activity in circumscribed regions of retinotopic visual cortex using real-time functional MRI based neurofeedback. After training, we tested participants using a new and previously untrained visual detection task that was presented at the visual field location corresponding to the trained region of visual cortex. Perceptual sensitivity was significantly enhanced only when participants who had previously learned control over ongoing activity were now exercising control, and only for that region of visual cortex. Our new approach allows us to non-invasively and non-pharmacologically manipulate regionally specific brain activity, and thus provide ‘brain training’ to deliver particular perceptual enhancements. PMID:23223302

  7. Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys

    PubMed Central

    Kammermeier, Stefan; Pittard, Damien; Hamada, Ikuma

    2016-01-01

    Deep brain stimulation of the internal globus pallidus (GPi) is a major treatment for advanced Parkinson's disease. The effects of this intervention on electrical activity patterns in targets of GPi output, specifically in the thalamus, are poorly understood. The experiments described here examined these effects using electrophysiological recordings in two Rhesus monkeys rendered moderately parkinsonian through treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), after sampling control data in the same animals. Analysis of spontaneous spiking activity of neurons in the basal ganglia-receiving areas of the ventral thalamus showed that MPTP-induced parkinsonism is associated with a reduction of firing rates of segments of the data that contained neither bursts nor decelerations, and with increased burst firing. Spectral analyses revealed an increase of power in the 3- to 13-Hz band and a reduction in the γ-range in the spiking activity of these neurons. Electrical stimulation of the ventrolateral motor territory of GPi with macroelectrodes, mimicking deep brain stimulation in parkinsonian patients (bipolar electrodes, 0.5 mm intercontact distance, biphasic stimuli, 120 Hz, 100 μs/phase, 200 μA), had antiparkinsonian effects. The stimulation markedly reduced oscillations in thalamic firing in the 13- to 30-Hz range and uncoupled the spiking activity of recorded neurons from simultaneously recorded local field potential (LFP) activity. These results confirm that oscillatory and nonoscillatory characteristics of spontaneous activity in the basal ganglia receiving ventral thalamus are altered in MPTP-induced parkinsonism. Electrical stimulation of GPi did not entrain thalamic activity but changed oscillatory activity in the ventral thalamus and altered the relationship between spikes and simultaneously recorded LFPs. PMID:27683881

  8. Sparsity-optimized separation of body waves and ground-roll by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Wenchao; Wang, Xiaokai; Wang, Wei

    2017-10-01

    Low-frequency oscillatory ground-roll is regarded as one of the main regular interference waves, which obscures primary reflections in land seismic data. Suppressing the ground-roll can reasonably improve the signal-to-noise ratio of seismic data. Conventional suppression methods, such as high-pass and various f-k filtering, usually cause waveform distortions and loss of body wave information because of their simple cut-off operation. In this study, a sparsity-optimized separation of body waves and ground-roll, which is based on morphological component analysis theory, is realized by constructing dictionaries using tunable Q-factor wavelet transforms with different Q-factors. Our separation model is grounded on the fact that the input seismic data are composed of low-oscillatory body waves and high-oscillatory ground-roll. Two different waveform dictionaries using a low Q-factor and a high Q-factor, respectively, are confirmed as able to sparsely represent each component based on their diverse morphologies. Thus, seismic data including body waves and ground-roll can be nonlinearly decomposed into low-oscillatory and high-oscillatory components. This is a new noise attenuation approach according to the oscillatory behaviour of the signal rather than the scale or frequency. We illustrate the method using both synthetic and field shot data. Compared with results from conventional high-pass and f-k filtering, the results of the proposed method prove this method to be effective and advantageous in preserving the waveform and bandwidth of reflections.

  9. Prismatic Adaptation Modulates Oscillatory EEG Correlates of Motor Preparation but Not Visual Attention in Healthy Participants

    PubMed Central

    Veniero, Domenica; Oliveri, Massimiliano

    2018-01-01

    Prismatic adaption (PA) has been proposed as a tool to induce neural plasticity and is used to help neglect rehabilitation. It leads to a recalibration of visuomotor coordination during pointing as well as to aftereffects on a number of sensorimotor and attention tasks, but whether these effects originate at a motor or attentional level remains a matter of debate. Our aim was to further characterize PA aftereffects by using an approach that allows distinguishing between effects on attentional and motor processes. We recorded EEG in healthy human participants (9 females and 7 males) while performing a new double step, anticipatory attention/motor preparation paradigm before and after adaptation to rightward-shifting prisms, with neutral lenses as a control. We then examined PA aftereffects through changes in known oscillatory EEG signatures of spatial attention orienting and motor preparation in the alpha and beta frequency bands. Our results were twofold. First, we found PA to rightward-shifting prisms to selectively affect EEG signatures of motor but not attentional processes. More specifically, PA modulated preparatory motor EEG activity over central electrodes in the right hemisphere, contralateral to the PA-induced, compensatory leftward shift in pointing movements. No effects were found on EEG signatures of spatial attention orienting over occipitoparietal sites. Second, we found the PA effect on preparatory motor EEG activity to dominate in the beta frequency band. We conclude that changes to intentional visuomotor, rather than attentional visuospatial, processes underlie the PA aftereffect of rightward-deviating prisms in healthy participants. SIGNIFICANCE STATEMENT Prismatic adaptation (PA) has been proposed as a tool to induce neural plasticity in both healthy participants and patients, due to its aftereffect impacting on a number of visuospatial and visuomotor functions. However, the neural mechanisms underlying PA aftereffects are poorly understood as only little neuroimaging evidence is available. Here, we examined, for the first time, the origin of PA aftereffects studying oscillatory brain activity. Our results show a selective modulation of preparatory motor activity following PA in healthy participants but no effect on attention-related activity. This provides novel insight into the PA aftereffect in the healthy brain and may help to inform interventions in neglect patients. PMID:29255004

  10. Contamination and Micropropulsion Technology

    DTIC Science & Technology

    2012-07-01

    23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904

  11. Investigation of Dynamic Algorithms for Pattern Recognition Identified in Cerebral Cortex

    DTIC Science & Technology

    1991-12-02

    oscillatory and possibly chaotic activity forin the actual cortical substrate of the diverse sensory, motor, and cognitive operations now studied in...September Neural Information Processing Systems - Natural and Synthetic, Denver, Colo., November 1989 U.C. San Diego, Cognitive Science Dept...Baird. Biologically applied neural networks may foster the co-evolution of neurobiology and cognitive psychology. Brain and Behavioral Sciences, 37

  12. The role of propriospinal neuronal network in transmitting the alternating muscular activities of flexor and extensor in parkinsonian tremor.

    PubMed

    Hao, M; He, X; Lan, N

    2012-01-01

    It has been shown that normal cyclic movement of human arm and resting limb tremor in Parkinson's disease (PD) are associated with the oscillatory neuronal activities in different cerebral networks, which are transmitted to the antagonistic muscles via the same spinal pathway. There are mono-synaptic and multi-synaptic corticospinal pathways for conveying motor commands. This study investigates the plausible role of propriospinal neuronal (PN) network in the C3-C4 levels in multi-synaptic transmission of cortical commands for oscillatory movements. A PN network model is constructed based on known neurophysiological connections, and is hypothesized to achieve the conversion of cortical oscillations into alternating antagonistic muscle bursts. Simulations performed with a virtual arm (VA) model indicate that without the PN network, the alternating bursts of antagonistic muscle EMG could not be reliably generated, whereas with the PN network, the alternating pattern of bursts were naturally displayed in the three pairs of antagonist muscles. Thus, it is suggested that oscillations in the primary motor cortex (M1) of single and double tremor frequencies are processed at the PN network to compute the alternating burst pattern in the flexor and extensor muscles.

  13. Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarnecchi, Emiliano; Polizzotto, Nicola Riccardo; Godone, Marco

    Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band.more » Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven’s matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The finding presented here supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.« less

  14. Dynamic adjustments of cognitive control: oscillatory correlates of the conflict adaptation effect.

    PubMed

    Pastötter, Bernhard; Dreisbach, Gesine; Bäuml, Karl-Heinz T

    2013-12-01

    It is a prominent idea that cognitive control mediates conflict adaptation, in that response conflict in a previous trial triggers control adjustments that reduce conflict in a current trial. In the present EEG study, we investigated the dynamics of cognitive control in a response-priming task by examining the effects of previous trial conflict on intertrial and current trial oscillatory brain activities, both on the electrode and the source level. Behavioral results showed conflict adaptation effects for RTs and response accuracy. Physiological results showed sustained intertrial effects in left parietal theta power, originating in the left inferior parietal cortex, and midcentral beta power, originating in the left and right (pre)motor cortex. Moreover, physiological analysis revealed a current trial conflict adaptation effect in midfrontal theta power, originating in the ACC. Correlational analyses showed that intertrial effects predicted conflict-induced midfrontal theta power in currently incongruent trials. In addition, conflict adaptation effects in midfrontal theta power and RTs were positively related. Together, these findings point to a dynamic cognitive control system that, as a function of previous trial type, up- and down-regulates attention and preparatory motor activities in anticipation of the next trial.

  15. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    PubMed

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome

    2008-01-01

    Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.

  17. Stimulus Load and Oscillatory Activity in Higher Cortex

    PubMed Central

    Kornblith, Simon; Buschman, Timothy J.; Miller, Earl K.

    2016-01-01

    Exploring and exploiting a rich visual environment requires perceiving, attending, and remembering multiple objects simultaneously. Recent studies have suggested that this mental “juggling” of multiple objects may depend on oscillatory neural dynamics. We recorded local field potentials from the lateral intraparietal area, frontal eye fields, and lateral prefrontal cortex while monkeys maintained variable numbers of visual stimuli in working memory. Behavior suggested independent processing of stimuli in each hemifield. During stimulus presentation, higher-frequency power (50–100 Hz) increased with the number of stimuli (load) in the contralateral hemifield, whereas lower-frequency power (8–50 Hz) decreased with the total number of stimuli in both hemifields. During the memory delay, lower-frequency power increased with contralateral load. Load effects on higher frequencies during stimulus encoding and lower frequencies during the memory delay were stronger when neural activity also signaled the location of the stimuli. Like power, higher-frequency synchrony increased with load, but beta synchrony (16–30 Hz) showed the opposite effect, increasing when power decreased (stimulus presentation) and decreasing when power increased (memory delay). Our results suggest roles for lower-frequency oscillations in top-down processing and higher-frequency oscillations in bottom-up processing. PMID:26286916

  18. A NON-OSCILLATORY SCHEME FOR OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    In modeling shocks in open channel flows, the traditional finite difference schemes become inefficient and warrant special numerical treatment for smooth computations. This paper provides a general introduction to the non-oscillatory high-resolution methodology, coupled with the ...

  19. Persistent nuclear wave packet oscillation coexistent with incoherent vibrational population at excited F centers in KI.

    PubMed

    Koyama, Takeshi; Takahashi, Youtarou; Nakajima, Makoto; Suemoto, Tohru

    2006-06-14

    We investigated nuclear wave packet dynamics in the excited state of KI F centers at 10 K using time-resolved luminescence spectroscopy. Observed transient spectrum is divided into oscillatory and non-oscillatory components. The former lasts over 11 ps without appreciable damping and is attributed to the oscillation of the wave packet consisting mainly of the A(1g) mode around the center. The non-oscillatory part rises quickly after photo-excitation exhibiting a cooling of incoherent vibrational population. This behavior suggests the fast energy dissipation due to the dephasing of the bulk phonon modes.

  20. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  1. Oscillatory supersonic kernel function method for interfering surfaces

    NASA Technical Reports Server (NTRS)

    Cunningham, A. M., Jr.

    1974-01-01

    In the method presented in this paper, a collocation technique is used with the nonplanar supersonic kernel function to solve multiple lifting surface problems with interference in steady or oscillatory flow. The pressure functions used are based on conical flow theory solutions and provide faster solution convergence than is possible with conventional functions. In the application of the nonplanar supersonic kernel function, an improper integral of a 3/2 power singularity along the Mach hyperbola is described and treated. The method is compared with other theories and experiment for two wing-tail configurations in steady and oscillatory flow.

  2. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  3. Calcium feedback mechanisms regulate oscillatory activity of a TRP-like Ca2+ conductance in C. elegans intestinal cells

    PubMed Central

    Estevez, Ana Y; Strange, Kevin

    2005-01-01

    Inositol-1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations in Caenorhabditis elegans intestinal epithelial cells regulate the nematode defecation cycle. The role of plasma membrane ion channels in intestinal cell oscillatory Ca2+ signalling is unknown. We have shown previously that cultured intestinal cells express a Ca2+-selective conductance, IORCa, that is biophysically similar to TRPM7 currents. IORCa activates slowly and stabilizes when cells are patch clamped with pipette solutions containing 10 mm BAPTA and free Ca2+ concentrations of ∼17 nm. However, when BAPTA concentration is lowered to 1 mm, IORCa oscillates. Oscillations in channel activity induced simultaneous oscillations in cytoplasmic Ca2+ levels. Removal of extracellular Ca2+ inhibited IORCa oscillations, whereas readdition of Ca2+ to the bath caused a rapid and transient reactivation of the current. Experimental manoeuvres that elevated intracellular Ca2+ blocked current oscillations. Elevation of intracellular Ca2+ in the presence of 10 mm BAPTA to block IORCa oscillations led to a dose-dependent increase in the rate of current activation. At intracellular Ca2+ concentrations of 250 nm, current activation was transient. Patch pipette solutions buffered with 1–4 mm of either BAPTA or EGTA gave rise to similar patterns of IORCa oscillations. We conclude that changes in Ca2+ concentration close to the intracellular opening of the channel pore regulate channel activity. Low concentrations of Ca2+ activate the channel. As Ca2+ enters and accumulates near the pore mouth, channel activity is inhibited. Oscillating plasma membrane Ca2+ entry may play a role in generating intracellular Ca2+ oscillations that regulate the C. elegans defecation rhythm. PMID:15961418

  4. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface

    PubMed Central

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them. PMID:24567704

  5. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface.

    PubMed

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  6. Positive expiratory pressure therapy versus other airway clearance techniques for bronchiectasis.

    PubMed

    Lee, Annemarie L; Burge, Angela T; Holland, Anne E

    2017-09-27

    People with bronchiectasis experience chronic cough and sputum production and require the prescription of airway clearance techniques (ACTs). A common type of ACT prescribed is positive expiratory pressure (PEP) therapy. A previous review has suggested that ACTs including PEP therapy are beneficial compared to no treatment in people with bronchiectasis. However, the efficacy of PEP therapy in a stable clinical state or during an acute exacerbation compared to other ACTs in bronchiectasis is unknown. The primary aim of this review was to determine the effects of PEP therapy compared with other ACTs on health-related quality of life (HRQOL), rate of acute exacerbations, and incidence of hospitalisation in individuals with stable or an acute exacerbation of bronchiectasis.Secondary aims included determining the effects of PEP therapy upon physiological outcomes and clinical signs and symptoms compared with other ACTs in individuals with stable or an acute exacerbation of bronchiectasis. We searched the Cochrane Airways Group Specialised Register of Trials, PEDro and clinical trials registries from inception to February 2017 and we handsearched relevant journals. Randomised controlled parallel and cross-over trials that compared PEP therapy versus other ACTs in participants with bronchiectasis. We used standard methodological procedures as outlined by Cochrane. Nine studies involving 213 participants met the inclusion criteria, of which seven were cross-over in design. All studies included adults with bronchiectasis, with eight including participants in a stable clinical state and one including participants experiencing an acute exacerbation. Eight studies used oscillatory PEP therapy, using either a Flutter or Acapella device and one study used Minimal PEP therapy. The comparison intervention differed between studies. The methodological quality of studies was poor, with cross-over studies including suboptimal or no washout period, and a lack of blinding of participants, therapists or personnel for outcome measure assessment in most studies. Clinical heterogeneity between studies limited meta-analysis.Daily use of oscillatory PEP therapy for four weeks was associated with improved general health according to the Short-Form 36 questionnaire compared to the active cycle of breathing technique (ACBT). When applied for three sessions over one week, minimal PEP therapy resulted in similar improvement in cough-related quality of life as autogenic drainage (AD) and L'expiration Lente Totale Glotte Ouverte en Decubitus Lateral (ELTGOL). Oscillatory PEP therapy twice daily for four weeks had similar effects on disease-specific HRQOL (MD -0.09, 95% CI -0.37 to 0.19; low-quality evidence). Data were not available to determine the incidence of hospitalisation or rate of exacerbation in clinically stable participants.Two studies of a single session comparison of oscillatory PEP therapy and gravity-assisted drainage (GAD) with ACBT had contrasting findings. One study found a similar sputum weight produced with both techniques (SMD 0.54g (-0.38 to 1.46; 20 participants); the other found greater sputum expectoration with GAD and ACBT (SMD 5.6 g (95% CI 2.91 to 8.29: 36 participants). There was no difference in sputum weight yielded between oscillatory PEP therapy and ACBT with GAD when applied daily for four weeks or during an acute exacerbation. Although a single session of oscillatory PEP therapy was associated with less sputum compared to AD (median difference 3.1 g (95% CI 1.5 to 4.8 g; one study, 31 participants), no difference between oscillatory PEP therapy and seated ACBT was evident. PEP therapy had a similar effect on dynamic and static measures of lung volumes and gas exchange as all other ACTs. A single session of oscillatory PEP therapy (Flutter) generated a similar level of fatigue as ACBT with GAD, but greater fatigue was noted with oscillatory PEP therapy compared to ACBT alone. The degree of breathlessness experienced with PEP therapy did not differ from other techniques. Among studies exploring adverse events, only one study reported nausea with use of oscillatory PEP therapy. PEP therapy appears to have similar effects on HRQOL, symptoms of breathlessness, sputum expectoration, and lung volumes compared to other ACTs when prescribed within a stable clinical state or during an acute exacerbation. The number of studies and the overall quality of the evidence were both low. In view of the chronic nature of bronchiectasis, additional information is needed to establish the long-term clinical effects of PEP therapy over other ACTs for outcomes that are important to people with bronchiectasis and on clinical parameters which impact on disease progression and patient morbidity in individuals with stable bronchiectasis. In addition, the role of PEP therapy during an acute exacerbation requires further exploration. This information is necessary to provide further guidance for prescription of PEP therapy for people with bronchiectasis.

  7. Effects of enhanced stratification on equatorward dynamo wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Käpylä, Petri J.; Mantere, Maarit J.; Cole, Elizabeth

    We present results from simulations of rotating magnetized turbulent convection in spherical wedge geometry representing parts of the latitudinal and longitudinal extents of a star. Here we consider a set of runs for which the density stratification is varied, keeping the Reynolds and Coriolis numbers at similar values. In the case of weak stratification, we find quasi-steady dynamo solutions for moderate rotation and oscillatory ones with poleward migration of activity belts for more rapid rotation. For stronger stratification, the growth rate tends to become smaller. Furthermore, a transition from quasi-steady to oscillatory dynamos is found as the Coriolis number ismore » increased, but now there is an equatorward migrating branch near the equator. The breakpoint where this happens corresponds to a rotation rate that is about three to seven times the solar value. The phase relation of the magnetic field is such that the toroidal field lags behind the radial field by about π/2, which can be explained by an oscillatory α{sup 2} dynamo caused by the sign change of the α-effect about the equator. We test the domain size dependence of our results for a rapidly rotating run with equatorward migration by varying the longitudinal extent of our wedge. The energy of the axisymmetric mean magnetic field decreases as the domain size increases and we find that an m = 1 mode is excited for a full 2π azimuthal extent, reminiscent of the field configurations deduced from observations of rapidly rotating late-type stars.« less

  8. Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling.

    PubMed

    Bondarenko, Vladimir E; Cymbalyuk, Gennady S; Patel, Girish; Deweerth, Stephen P; Calabrese, Ronald L

    2004-12-01

    Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed.

  9. Dissociation between two subgroups of the suprachiasmatic nucleus affected by the number of damped oscillated neurons

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Yang, Huijie; Rohling, Jos HT

    2017-03-01

    In mammals, the main clock located in the suprachiasmatic nucleus (SCN) of the brain synchronizes the body rhythms to the environmental light-dark cycle. The SCN is composed of about 2 ×104 neurons which can be classified into three oscillatory phenotypes: self-sustained oscillators, damped oscillators, and arrhythmic neurons. Exposed to an artificial external light-dark cycle with a period of 22 h instead of 24 h , two subgroups of the SCN can become desynchronized (dissociated). The ventrolateral (VL) subgroup receives photic input and is entrained to the external cycle and a dorsomedial (DM) subgroup oscillates with its endogenous (i.e., free running) period and is synchronized to the external light-dark cycle through coupling from the VL. In the present study, we examined the effects of damped oscillatory neurons on the dissociation between VL and DM under an external 22 h cycle. We found that, with increasing numbers of damped oscillatory neurons located in the VL, the dissociation between the VL and DM emerges, but if these neurons are increasingly present in the DM the dissociation disappears. Hence, the damped oscillatory neurons in different subregions of the SCN play distinct roles in the dissociation between the two subregions of the SCN. This shows that synchrony between SCN subregions is affected by the number of damped oscillatory neurons and the location of these cells. We suggest that more knowledge on the number and the location of these cells may explain why some species do show a dissociation between the subregions and others do not, as the distribution of oscillatory types of neurons offers a plausible and novel candidate mechanism to explain heterogeneity.

  10. The influence of metakaolin substitution by slag in alkali-activated inorganic binders for civil engineering

    NASA Astrophysics Data System (ADS)

    Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.

    2017-02-01

    In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

  11. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    PubMed

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Frontal Theta Links Prediction Errors to Behavioral Adaptation in Reinforcement Learning

    PubMed Central

    Cavanagh, James F.; Frank, Michael J.; Klein, Theresa J.; Allen, John J.B.

    2009-01-01

    Investigations into action monitoring have consistently detailed a fronto-central voltage deflection in the Event-Related Potential (ERP) following the presentation of negatively valenced feedback, sometimes termed the Feedback Related Negativity (FRN). The FRN has been proposed to reflect a neural response to prediction errors during reinforcement learning, yet the single trial relationship between neural activity and the quanta of expectation violation remains untested. Although ERP methods are not well suited to single trial analyses, the FRN has been associated with theta band oscillatory perturbations in the medial prefrontal cortex. Medio-frontal theta oscillations have been previously associated with expectation violation and behavioral adaptation and are well suited to single trial analysis. Here, we recorded EEG activity during a probabilistic reinforcement learning task and fit the performance data to an abstract computational model (Q-learning) for calculation of single-trial reward prediction errors. Single-trial theta oscillatory activities following feedback were investigated within the context of expectation (prediction error) and adaptation (subsequent reaction time change). Results indicate that interactive medial and lateral frontal theta activities reflect the degree of negative and positive reward prediction error in the service of behavioral adaptation. These different brain areas use prediction error calculations for different behavioral adaptations: with medial frontal theta reflecting the utilization of prediction errors for reaction time slowing (specifically following errors), but lateral frontal theta reflecting prediction errors leading to working memory-related reaction time speeding for the correct choice. PMID:19969093

  13. Design principles for robust oscillatory behavior.

    PubMed

    Castillo-Hair, Sebastian M; Villota, Elizabeth R; Coronado, Alberto M

    2015-09-01

    Oscillatory responses are ubiquitous in regulatory networks of living organisms, a fact that has led to extensive efforts to study and replicate the circuits involved. However, to date, design principles that underlie the robustness of natural oscillators are not completely known. Here we study a three-component enzymatic network model in order to determine the topological requirements for robust oscillation. First, by simulating every possible topological arrangement and varying their parameter values, we demonstrate that robust oscillators can be obtained by augmenting the number of both negative feedback loops and positive autoregulations while maintaining an appropriate balance of positive and negative interactions. We then identify network motifs, whose presence in more complex topologies is a necessary condition for obtaining oscillatory responses. Finally, we pinpoint a series of simple architectural patterns that progressively render more robust oscillators. Together, these findings can help in the design of more reliable synthetic biomolecular networks and may also have implications in the understanding of other oscillatory systems.

  14. Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems.

    PubMed

    Bae, Seul-A; Acevedo, Alison; Androulakis, Ioannis P

    2016-01-01

    Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered. We investigated established oscillatory mechanisms and designed a study to analyze the oscillatory characteristics of signaling molecules and system output in an effort to answer these questions. Two classic oscillators, Goodwin and PER, were selected as the model systems, and corresponding no-feedback models were created for each oscillator to discover the advantage of oscillating signals. Through simulating the original oscillators and the matching no-feedback models, we show that oscillating systems have the capability to achieve better resource-to-output efficiency, and we identify oscillatory characteristics that lead to improved efficiency.

  15. Eighth-order explicit two-step hybrid methods with symmetric nodes and weights for solving orbital and oscillatory IVPs

    NASA Astrophysics Data System (ADS)

    Franco, J. M.; Rández, L.

    The construction of new two-step hybrid (TSH) methods of explicit type with symmetric nodes and weights for the numerical integration of orbital and oscillatory second-order initial value problems (IVPs) is analyzed. These methods attain algebraic order eight with a computational cost of six or eight function evaluations per step (it is one of the lowest costs that we know in the literature) and they are optimal among the TSH methods in the sense that they reach a certain order of accuracy with minimal cost per step. The new TSH schemes also have high dispersion and dissipation orders (greater than 8) in order to be adapted to the solution of IVPs with oscillatory solutions. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order explicit TSH methods are more efficient than other standard TSH or Numerov-type methods proposed in the scientific literature.

  16. Proepileptic patterns in EEG of WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Yu.; Nedaivozov, Vladimir O.; Koronovskii, Alexey A.

    2018-04-01

    In this paper we study specific oscillatory patterns on EEG signals of WAG/Rij rats. These patterns are known as proepileptic because they occur in time period during the development of absence-epilepsy before fully-formed epileptic seizures. In the paper we analyze EEG signals of WAG/Rij rats with continuous wavelet transform and empirical mode decomposition in order to find particular features of epileptic spike-wave discharges and nonepileptic sleep spindles. Then we introduce proepileptic activity as patterns that combine features of epileptic and non-epileptic activity. We analyze proepileptic activity in order to specify its features and time-frequency structure.

  17. Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System.

    PubMed

    Andres, Daniela S; Darbin, Olivier

    2018-01-01

    The rate and oscillatory hypotheses are the two main current frameworks of basal ganglia pathophysiology. Both hypotheses have emerged from research on movement disorders sharing similar conceptualizations. These pathological conditions are classified either as hypokinetic or hyperkinetic, and the electrophysiological hallmarks of basal ganglia dysfunction are categorized as prokinetic or antikinetic. Although nonmotor symptoms, including neurobehavioral symptoms, are a key manifestation of basal ganglia dysfunction, they are uncommonly accounted for in these models. In patients with Parkinson's disease, the broad spectrum of motor symptoms and neurobehavioral symptoms challenges the concept that basal ganglia disorders can be classified into two categories. The profile of symptoms of basal ganglia dysfunction is best characterized by a breakdown of information processing, accompanied at an electrophysiological level by complex alterations of spiking activity from basal ganglia neurons. The authors argue that the dynamics of the basal ganglia circuit cannot be fully characterized by linear properties such as the firing rate or oscillatory activity. In fact, the neuronal spiking stream of the basal ganglia circuit is irregular but has temporal structure. In this context, entropy was introduced as a measure of probabilistic irregularity in the temporal organization of neuronal activity of the basal ganglia, giving place to the entropy hypothesis of basal ganglia pathology. Obtaining a quantitative characterization of irregularity of spike trains from basal ganglia neurons is key to elaborating a new framework of basal ganglia pathophysiology.

  18. Application of describing function analysis to a model of deep brain stimulation.

    PubMed

    Davidson, Clare Muireann; de Paor, Annraoi M; Lowery, Madeleine M

    2014-03-01

    Deep brain stimulation effectively alleviates motor symptoms of medically refractory Parkinson's disease, and also relieves many other treatment-resistant movement and affective disorders. Despite its relative success as a treatment option, the basis of its efficacy remains elusive. In Parkinson's disease, increased functional connectivity and oscillatory activity occur within the basal ganglia as a result of dopamine loss. A correlative relationship between pathological oscillatory activity and the motor symptoms of the disease, in particular bradykinesia, rigidity, and tremor, has been established. Suppression of the oscillations by either dopamine replacement or DBS also correlates with an improvement in motor symptoms. DBS parameters are currently chosen empirically using a "trial and error" approach, which can be time-consuming and costly. The work presented here amalgamates concepts from theories of neural network modeling with nonlinear control engineering to describe and analyze a model of synchronous neural activity and applied stimulation. A theoretical expression for the optimum stimulation parameters necessary to suppress oscillations is derived. The effect of changing stimulation parameters (amplitude and pulse duration) on induced oscillations is studied in the model. Increasing either stimulation pulse duration or amplitude enhanced the level of suppression. The predicted parameters were found to agree well with clinical measurements reported in the literature for individual patients. It is anticipated that the simplified model described may facilitate the development of protocols to aid optimum stimulation parameter choice on a patient by patient basis.

  19. Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway.

    PubMed

    Starr, Philip A; Kang, Gail A; Heath, Susan; Shimamoto, Shoichi; Turner, Robert S

    2008-05-01

    Chorea is the predominant motor manifestation in the early symptomatic phase of adult onset Huntington's disease (HD). Pathologically, this stage is marked by differential loss of striatal neurons contributing to the indirect pathway. This pattern of neuronal loss predicts decreased neuronal firing rates in GPi and increased firing rates in GPe, the opposite of the changes in firing rate known to occur in Parkinson's disease (PD). We present single-unit discharge characteristics (33 neurons) observed in an awake patient with HD (41 CAG repeats) undergoing microelectrode guided surgery for pallidal deep brain stimulation. Pallidal single-unit activity at "rest" and during voluntary movement was discriminated off line by principal component analysis and evaluated with respect to discharge rate, bursting, and oscillatory activity in the 0-200 Hz range. 24 GPi and 9 GPe units were studied, and compared with 132 GPi and 50 GPe units from 14 patients with PD. The mean (+/-SEM) spontaneous discharge rate for HD was 58+/-4 for GPi and 73+/-5 for GPe. This contrasted with discharge rates in PD of 95+/-2 for GPi and 57+/-3 for GPe. HD GPi units showed more bursting than PD GPi units but much less oscillatory activity in the 2-35 Hz frequency range at rest. These findings are consistent with selective early loss of striatal cells originating the indirect pathway.

  20. Interactions between neural networks: a mechanism for tuning chaos and oscillations.

    PubMed

    Wang, Lipo

    2007-06-01

    We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability.

  1. Internal Representation and Memory Formation of Odor Preference Based on Oscillatory Activities in a Terrestrial Slug

    ERIC Educational Resources Information Center

    Sekiguchi, Tatsuhiko; Furudate, Hiroyuki; Kimura, Tetsuya

    2010-01-01

    The terrestrial slug "Limax" exhibits a highly developed ability to learn odors with a small nervous system. When a fluorescent dye, Lucifer Yellow (LY), is injected into the slug's body cavity after odor-taste associative conditioning, a group of neurons in the procerebral (PC) lobe, an olfactory center of the slug, is labeled by LY. We examined…

  2. Rapid Transmeridian Deployment: Cognitive Performance and Chronobiologic Prophylaxis for Circadian Dyschronism,

    DTIC Science & Technology

    1980-06-01

    shifted LD schedules. Similarly, post-flight participation in outdoor group activities can hasten the adaptation process following transmeridian flight...fruit juice, milk, and decaffeinated cof- fee; in fact, the majority ate nothing. Napping was prohibited throughout the day. Upon boarding the...to-day variation of individuals and may obfuscate the oscillatory nature of the adjust- ment process by Implying a smooth, gradual transition

  3. Distribution of chaos and periodic spikes in a three-cell population model of cancer. Auto-organization of oscillatory phases in parameter planes

    NASA Astrophysics Data System (ADS)

    Gallas, Michelle R.; Gallas, Marcia R.; Gallas, Jason A. C.

    2014-10-01

    We study complex oscillations generated by the de Pillis-Radunskaya model of cancer growth, a model including interactions between tumor cells, healthy cells, and activated immune system cells. We report a wide-ranging systematic numerical classification of the oscillatory states and of their relative abundance. The dynamical states of the cell populations are characterized here by two independent and complementary types of stability diagrams: Lyapunov and isospike diagrams. The model is found to display stability phases organized regularly in old and new ways: Apart from the familiar spirals of stability, it displays exceptionally long zig-zag networks and intermixed cascades of two- and three-doubling flanked stability islands previously detected only in feedback systems with delay. In addition, we also characterize the interplay between continuous spike-adding and spike-doubling mechanisms responsible for the unbounded complexification of periodic wave patterns. This article is dedicated to Prof. Hans Jürgen Herrmann on the occasion of his 60th birthday.

  4. Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study.

    PubMed

    Theers, Mario; Winkler, Roland G

    2014-08-28

    We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.

  5. Dynamo generation of magnetic fields in three-dimensional space - Solar cycle main flux tube formation and reversals

    NASA Astrophysics Data System (ADS)

    Yoshimura, H.

    1983-08-01

    The case of the solar magnetic cycle is investigated as a prototype of the dynamo processes involved in the generation of magnetic fields in astrophysics. Magnetohydrodynamic (MHD) equations are solved using a numerical method with a prescribed velocity field in order follow the movement and deformation. It is shown that a simple combination of differential rotation and global convection, given by a linear analysis of fluid dynamics in a rotating sphere, can perpetually create and reverse great magnetic flux tubes encircling the sun. These main flux tubes of the solar cycle are the progenitors of small-scale flux ropes of the solar activity. These findings indicate that magnetic fields can be generated by fluid motions and that MHD equations have a new type of oscillatory solution. It is shown that the solar cycle can be identified with one of these oscillatory solutions. It is proposed that the formation of magnetic flux tubes by streaming plasma flows is a universal mechanism of flux tube formation in astrophysics.

  6. Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates.

    PubMed

    Dann, Benjamin; Michaels, Jonathan A; Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-08-15

    The functional communication of neurons in cortical networks underlies higher cognitive processes. Yet, little is known about the organization of the single neuron network or its relationship to the synchronization processes that are essential for its formation. Here, we show that the functional single neuron network of three fronto-parietal areas during active behavior of macaque monkeys is highly complex. The network was closely connected (small-world) and consisted of functional modules spanning these areas. Surprisingly, the importance of different neurons to the network was highly heterogeneous with a small number of neurons contributing strongly to the network function (hubs), which were in turn strongly inter-connected (rich-club). Examination of the network synchronization revealed that the identified rich-club consisted of neurons that were synchronized in the beta or low frequency range, whereas other neurons were mostly non-oscillatory synchronized. Therefore, oscillatory synchrony may be a central communication mechanism for highly organized functional spiking networks.

  7. Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance.

    PubMed

    Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J

    2017-04-05

    The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Prestimulus neural oscillations inhibit visual perception via modulation of response gain.

    PubMed

    Chaumon, Maximilien; Busch, Niko A

    2014-11-01

    The ongoing state of the brain radically affects how it processes sensory information. How does this ongoing brain activity interact with the processing of external stimuli? Spontaneous oscillations in the alpha range are thought to inhibit sensory processing, but little is known about the psychophysical mechanisms of this inhibition. We recorded ongoing brain activity with EEG while human observers performed a visual detection task with stimuli of different contrast intensities. To move beyond qualitative description, we formally compared psychometric functions obtained under different levels of ongoing alpha power and evaluated the inhibitory effect of ongoing alpha oscillations in terms of contrast or response gain models. This procedure opens the way to understanding the actual functional mechanisms by which ongoing brain activity affects visual performance. We found that strong prestimulus occipital alpha oscillations-but not more anterior mu oscillations-reduce performance most strongly for stimuli of the highest intensities tested. This inhibitory effect is best explained by a divisive reduction of response gain. Ongoing occipital alpha oscillations thus reflect changes in the visual system's input/output transformation that are independent of the sensory input to the system. They selectively scale the system's response, rather than change its sensitivity to sensory information.

  9. Prediction of Unsteady Aerodynamic Coefficients at High Angles of Attack

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Murphy, Patrick C.; Klein, Vladislav; Brandon, Jay M.

    2001-01-01

    The nonlinear indicial response method is used to model the unsteady aerodynamic coefficients in the low speed longitudinal oscillatory wind tunnel test data of the 0.1 scale model of the F-16XL aircraft. Exponential functions are used to approximate the deficiency function in the indicial response. Using one set of oscillatory wind tunnel data and parameter identification method, the unknown parameters in the exponential functions are estimated. The genetic algorithm is used as a least square minimizing algorithm. The assumed model structures and parameter estimates are validated by comparing the predictions with other sets of available oscillatory wind tunnel test data.

  10. Bias-dependent oscillatory electron transport of monatomic sulfur chains

    NASA Astrophysics Data System (ADS)

    Yu, Jing-Xin; Cheng, Yan; Sanvito, Stefano; Chen, Xiang-Rong

    2012-03-01

    The bias-dependent oscillatory electron transport of monatomic sulfur chains sandwiched between gold electrodes is investigated with density functional theory and non-equilibrium Green's function method. At zero bias, in contrast to the typical odd-even oscillations observed in most metallic chains, we find that the conductance oscillates with a period of four atoms. However, as the bias voltage is increased the current displays a two-atom periodicity. This emerges gradually, first for the longer chains and then, at voltages larger than 0.7 V, for lengths. The oscillatory behaviors are analyzed by the density of states and the energy-dependent and bias-dependent transmission coefficients.

  11. Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons

    PubMed Central

    Edgerton, Jeremy R.; Jaeger, Dieter

    2011-01-01

    Correlated firing among populations of neurons is present throughout the brain and is often rhythmic in nature, observable as an oscillatory fluctuation in the local field potential. Although rhythmic population activity is believed to be critical for normal function in many brain areas, synchronized neural oscillations are associated with disease states in other cases. In the globus pallidus (GP in rodents, homolog of the primate GPe), pairs of neurons generally have uncorrelated firing in normal animals despite an anatomical organization suggesting that they should receive substantial common input. By contrast, correlated and rhythmic GP firing is observed in animal models of Parkinson's disease (PD). Based in part on these findings it has been proposed that an important part of basal ganglia function is active decorrelation, whereby redundant information is compressed. Mechanisms that implement active decorrelation, and changes that cause it to fail in PD, are subjects of great interest. Rat GP neurons express fast, transient voltage-dependent sodium channels (NaF channels) in their dendrites, with the expression level being highest near asymmetric synapses. We recently showed that the dendritic NaF density strongly influences the responsiveness of model GP neurons to synchronous excitatory inputs. In the present study we use rat GP neuron models to show that dendritic NaF channel expression is a potential cellular mechanism of active decorrelation. We further show that model neurons with lower dendritic NaF channel expression have a greater tendency to phase lock with oscillatory synaptic input patterns like those observed in PD. PMID:21795543

  12. Rhythmic Components in Extracranial Brain Signals Reveal Multifaceted Task Modulation of Overlapping Neuronal Activity

    PubMed Central

    van Ede, Freek; Maris, Eric

    2016-01-01

    Oscillatory neuronal activity is implicated in many cognitive functions, and its phase coupling between sensors may reflect networks of communicating neuronal populations. Oscillatory activity is often studied using extracranial recordings and compared between experimental conditions. This is challenging, because there is overlap between sensor-level activity generated by different sources, and this can obscure differential experimental modulations of these sources. Additionally, in extracranial data, sensor-level phase coupling not only reflects communicating populations, but can also be generated by a current dipole, whose sensor-level phase coupling does not reflect source-level interactions. We present a novel method, which is capable of separating and characterizing sources on the basis of their phase coupling patterns as a function of space, frequency and time (trials). Importantly, this method depends on a plausible model of a neurobiological rhythm. We present this model and an accompanying analysis pipeline. Next, we demonstrate our approach, using magnetoencephalographic (MEG) recordings during a cued tactile detection task as a case study. We show that the extracted components have overlapping spatial maps and frequency content, which are difficult to resolve using conventional pairwise measures. Because our decomposition also provides trial loadings, components can be readily contrasted between experimental conditions. Strikingly, we observed heterogeneity in alpha and beta sources with respect to whether their activity was suppressed or enhanced as a function of attention and performance, and this happened both in task relevant and irrelevant regions. This heterogeneity contrasts with the common view that alpha and beta amplitude over sensory areas are always negatively related to attention and performance. PMID:27336159

  13. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

    PubMed

    Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas

    2013-10-02

    Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.

  14. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.

    PubMed

    Brader, J M; Siebenbürger, M; Ballauff, M; Reinheimer, K; Wilhelm, M; Frey, S J; Weysser, F; Fuchs, M

    2010-12-01

    Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a nonlinear response, characterized by significant higher harmonic contributions. An important feature of the theory is the prediction of an ideal glass transition at sufficiently strong coupling, which is accompanied by the discontinuous appearance of a dynamic yield stress. For the oscillatory shear flow under consideration we find that the yield stress plays an important role in determining the nonlinearity of the time-dependent stress response. Our theoretical findings are strongly supported by both large amplitude oscillatory experiments (with Fourier transform rheology analysis) on suspensions of thermosensitive core-shell particles dispersed in water and Brownian dynamics simulations performed on a two-dimensional binary hard-disk mixture. In particular, theory predicts nontrivial values of the exponents governing the final decay of the storage and loss moduli as a function of strain amplitude which are in good agreement with both simulation and experiment. A consistent set of parameters in the presented schematic model achieves to jointly describe linear moduli, nonlinear flow curves, and large amplitude oscillatory spectroscopy.

  15. Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits.

    PubMed

    Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana; Compte, Albert

    2016-01-13

    Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics. Here, we examined LFPs recorded from LPFC of macaques while they compared the directions or the speeds of two moving random-dot patterns, S1 and S2, separated by a delay. LFP activity in the theta, beta, and gamma bands tracked consecutive components of the task. In response to motion stimuli, LFP theta and gamma power increased, and beta power decreased, but showed only weak motion selectivity. In the delay, LFP beta power modulation anticipated the onset of S2 and encoded the task-relevant S1 feature, suggesting network dynamics associated with memory maintenance. After S2 onset the difference between the current stimulus S2 and the remembered S1 was strongly reflected in broadband LFP activity, with an early sensory-related component proportional to stimulus difference and a later choice-related component reflecting the behavioral decision buildup. Our results demonstrate that individual LFP bands reflect both sensory and cognitive processes engaged independently during different stages of the task. This activation pattern suggests that during elementary cognitive tasks, the prefrontal network transitions dynamically between states and that these transitions are characterized by the conjunction of LFP rhythms rather than by single LFP bands. Neurons in the brain communicate through electrical impulses and coordinate this activity in ensembles that pulsate rhythmically, very much like musical instruments in an orchestra. These rhythms change with "brain state," from sleep to waking, but also signal with different oscillation frequencies rapid changes between sensory and cognitive processing. Here, we studied rhythmic electrical activity in the monkey prefrontal cortex, an area implicated in working memory, decision making, and executive control. Monkeys had to identify and remember a visual motion pattern and compare it to a second pattern. We found orderly transitions between rhythmic activity where the same frequency channels were active in all ongoing prefrontal computations. This supports prefrontal circuit dynamics that transitions rapidly between complex rhythmic patterns during structured cognitive tasks. Copyright © 2016 the authors 0270-6474/16/360489-17$15.00/0.

  16. Interactions Between Nuclear Receptor SHP and FOXA1 Maintain Oscillatory Homocysteine Homeostasis in Mice.

    PubMed

    Tsuchiya, Hiroyuki; da Costa, Kerry-Ann; Lee, Sangmin; Renga, Barbara; Jaeschke, Hartmut; Yang, Zhihong; Orena, Stephen J; Goedken, Michael J; Zhang, Yuxia; Kong, Bo; Lebofsky, Margitta; Rudraiah, Swetha; Smalling, Rana; Guo, Grace; Fiorucci, Stefano; Zeisel, Steven H; Wang, Li

    2015-05-01

    Hyperhomocysteinemia is often associated with liver and metabolic diseases. We studied nuclear receptors that mediate oscillatory control of homocysteine homeostasis in mice. We studied mice with disruptions in Nr0b2 (called small heterodimer partner [SHP]-null mice), betaine-homocysteine S-methyltransferase (Bhmt), or both genes (BHMT-null/SHP-null mice), along with mice with wild-type copies of these genes (controls). Hyperhomocysteinemia was induced by feeding mice alcohol (National Institute on Alcohol Abuse and Alcoholism binge model) or chow diets along with water containing 0.18% DL-homocysteine. Some mice were placed on diets containing cholic acid (1%) or cholestyramine (2%) or high-fat diets (60%). Serum and livers were collected during a 24-hour light-dark cycle and analyzed by RNA-seq, metabolomic, and quantitative polymerase chain reaction, immunoblot, and chromatin immunoprecipitation assays. SHP-null mice had altered timing in expression of genes that regulate homocysteine metabolism compared with control mice. Oscillatory production of S-adenosylmethionine, betaine, choline, phosphocholine, glyceophosphocholine, cystathionine, cysteine, hydrogen sulfide, glutathione disulfide, and glutathione, differed between SHP-null mice and control mice. SHP inhibited transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1. Expression of Bhmt and cystathionine γ-lyase was decreased when mice were fed cholic acid but increased when they were placed on diets containing cholestyramine or high-fat content. Diets containing ethanol or homocysteine induced hyperhomocysteinemia and glucose intolerance in control, but not SHP-null, mice. In BHMT-null and BHMT-null/SHP-null mice fed a control liquid, lipid vacuoles were observed in livers. Ethanol feeding induced accumulation of macrovesicular lipid vacuoles to the greatest extent in BHMT-null and BHMT-null/SHP-null mice. Disruption of Shp in mice alters timing of expression of genes that regulate homocysteine metabolism and the liver responses to ethanol and homocysteine. SHP inhibits the transcriptional activation of Bhmt and cystathionine γ-lyase by FOXA1. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury.

    PubMed

    Rotta, A T; Gunnarsson, B; Fuhrman, B P; Hernan, L J; Steinhorn, D M

    2001-11-01

    To determine the impact of different protective and nonprotective mechanical ventilation strategies on the degree of pulmonary inflammation, oxidative damage, and hemodynamic stability in a saline lavage model of acute lung injury. A prospective, randomized, controlled, in vivo animal laboratory study. Animal research facility of a health sciences university. Forty-six New Zealand White rabbits. Mature rabbits were instrumented with a tracheostomy and vascular catheters. Lavage-injured rabbits were randomized to receive conventional ventilation with either a) low peak end-expiratory pressure (PEEP; tidal volume of 10 mL/kg, PEEP of 2 cm H2O); b) high PEEP (tidal volume of 10 mL/kg, PEEP of 10 cm H2O); c) low tidal volume with PEEP above Pflex (open lung strategy, tidal volume of 6 mL/kg, PEEP set 2 cm H2O > Pflex); or d) high-frequency oscillatory ventilation. Animals were ventilated for 4 hrs. Lung lavage fluid and tissue samples were obtained immediately after animals were killed. Lung lavage fluid was assayed for measurements of total protein, elastase activity, tumor necrosis factor-alpha, and malondialdehyde. Lung tissue homogenates were assayed for measurements of myeloperoxidase activity and malondialdehyde. The need for inotropic support was recorded. Animals that received a lung protective strategy (open lung or high-frequency oscillatory ventilation) exhibited more favorable oxygenation and lung mechanics compared with the low PEEP and high PEEP groups. Animals ventilated by a lung protective strategy also showed attenuation of inflammation (reduced tracheal fluid protein, tracheal fluid elastase, tracheal fluid tumor necrosis factor-alpha, and pulmonary leukostasis). Animals treated with high-frequency oscillatory ventilation had attenuated oxidative injury to the lung and greater hemodynamic stability compared with the other experimental groups. Both lung protective strategies were associated with improved oxygenation, attenuated inflammation, and decreased lung damage. However, in this small-animal model of acute lung injury, an open lung strategy with deliberate hypercapnia was associated with significant hemodynamic instability.

  18. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control of circadian clock components. Certain cultivar and berry tissue features could rely on specific circadian oscillatory expression profiles. These findings may help to a better understanding of the progress of berry ripening in short term time scales. PMID:24666982

  19. Bed Morphology and Sediment Transport under Oscillatory Flow

    ERIC Educational Resources Information Center

    Pedocchi Miljan, Francisco

    2009-01-01

    Recent laboratory and field experiments have shown the inability of existing oscillatory flow ripple predictors to accurately predict both ripple size and planform geometry. However, at this time, only partial adaptations of these predictors have been proposed in the literature to account for the observed discrepancies with experimental data…

  20. Visual food stimulus changes resting oscillatory brain activities related to appetitive motive.

    PubMed

    Yoshikawa, Takahiro; Tanaka, Masaaki; Ishii, Akira; Yamano, Yoko; Watanabe, Yasuyoshi

    2016-09-26

    Changes of resting brain activities after visual food stimulation might affect the feeling of pleasure in eating food in daily life and spontaneous appetitive motives. We used magnetoencephalography (MEG) to identify brain areas related to the activity changes. Fifteen healthy, right-handed males [age, 25.4 ± 5.5 years; body mass index, 22.5 ± 2.7 kg/m 2 (mean ± SD)] were enrolled. They were asked to watch food or mosaic pictures for 5 min and to close their eyes for 3 min before and after the picture presentation without thinking of anything. Resting brain activities were recorded during two eye-closed sessions. The feeling of pleasure in eating food in daily life and appetitive motives in the study setting were assessed by visual analogue scale (VAS) scores. The γ-band power of resting oscillatory brain activities was decreased after the food picture presentation in the right insula [Brodmann's area (BA) 13], the left orbitofrontal cortex (OFC) (BA11), and the left frontal pole (BA10). Significant reductions of the α-band power were observed in the dorsolateral prefrontal cortex (DLPFC) (BA46). Particularly, the feeling of pleasure in eating food was positively correlated with the power decrease in the insula and negatively with that in the DLPFC. The changes in appetitive motives were associated with the power decrease in the frontal pole. These findings suggest automatic brain mechanics whereby changes of the resting brain activity might be associated with positive feeling in dietary life and have an impact on the irresistible appetitive motives through emotional and cognitive brain functions.

  1. Alpha Rhythms in Audition: Cognitive and Clinical Perspectives

    PubMed Central

    Weisz, Nathan; Hartmann, Thomas; Müller, Nadia; Lorenz, Isabel; Obleser, Jonas

    2011-01-01

    Like the visual and the sensorimotor systems, the auditory system exhibits pronounced alpha-like resting oscillatory activity. Due to the relatively small spatial extent of auditory cortical areas, this rhythmic activity is less obvious and frequently masked by non-auditory alpha-generators when recording non-invasively using magnetoencephalography (MEG) or electroencephalography (EEG). Following stimulation with sounds, marked desynchronizations can be observed between 6 and 12 Hz, which can be localized to the auditory cortex. However knowledge about the functional relevance of the auditory alpha rhythm has remained scarce so far. Results from the visual and sensorimotor system have fuelled the hypothesis of alpha activity reflecting a state of functional inhibition. The current article pursues several intentions: (1) Firstly we review and present own evidence (MEG, EEG, sEEG) for the existence of an auditory alpha-like rhythm independent of visual or motor generators, something that is occasionally met with skepticism. (2) In a second part we will discuss tinnitus and how this audiological symptom may relate to reduced background alpha. The clinical part will give an introduction into a method which aims to modulate neurophysiological activity hypothesized to underlie this distressing disorder. Using neurofeedback, one is able to directly target relevant oscillatory activity. Preliminary data point to a high potential of this approach for treating tinnitus. (3) Finally, in a cognitive neuroscientific part we will show that auditory alpha is modulated by anticipation/expectations with and without auditory stimulation. We will also introduce ideas and initial evidence that alpha oscillations are involved in the most complex capability of the auditory system, namely speech perception. The evidence presented in this article corroborates findings from other modalities, indicating that alpha-like activity functionally has an universal inhibitory role across sensory modalities. PMID:21687444

  2. Enhancement of oscillatory activity in the endopiriform nucleus of rats raised under abnormal oral conditions.

    PubMed

    Yoshimura, Hiroshi; Hasumoto-Honjo, Miho; Sugai, Tokio; Segami, Natsuki; Kato, Nobuo

    2014-02-21

    Endopiriform nucleus (EPN) is located deep to the piriform cortex, and has neural connections with not only neighboring sensory areas but also subcortical areas where emotional and nociceptive information is processed. Well-balanced oral condition might play an important role in stability of brain activities. When the oral condition is impaired, several areas in the brain might be affected. In the present study, we investigated whether abnormal conditions of oral region influence neural activities in the EPN. Orthodontic appliance that generates continuous force and chronic pain-related stress was fixed to maxillary incisors of rats, and raised. Field potential recordings were made from the EPN of brain slices. We previously reported that the EPN has an ability to generate membrane potential oscillation. In the present study, we have applied the same methods to assess activities of neuron clusters in the EPN. In the case of normal rats, stable field potential oscillations were induced in the EPN by application of low-frequency electrical stimulation under the medium with caffeine. In the case of rats with the orthodontic appliance, stable field potential oscillations were also induced, but both duration of oscillatory activities and wavelet number were increased. The enhanced oscillations were depressed by blockade of NMDA receptors. Thus, impairment of oral health under application of continuous orthodontic force and chronic pain-related stress enhanced neural activities in the EPN, in which up-regulation of NMDA receptors may be concerned. These findings suggest that the EPN might be involved in information processing with regard to abnormal conditions of oral region. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Fluid Physics in a Fluctuating Acceleration Environment

    NASA Technical Reports Server (NTRS)

    Thomson, J. Ross; Drolet, Francois; Vinals, Jorge

    1996-01-01

    We summarize several aspects of an ongoing investigation of the effects that stochastic residual accelerations (g-jitter) onboard spacecraft can have on experiments conducted in a microgravity environment. The residual acceleration field is modeled as a narrow band noise, characterized by three independent parameters: intensity (g(exp 2)), dominant angular frequency Omega, and characteristic correlation time tau. Realistic values for these parameters are obtained from an analysis of acceleration data corresponding to the SL-J mission, as recorded by the SAMS instruments. We then use the model to address the random motion of a solid particle suspended in an incompressible fluid subjected to such random accelerations. As an extension, the effect of jitter on coarsening of a solid-liquid mixture is briefly discussed, and corrections to diffusion controlled coarsening evaluated. We conclude that jitter will not be significant in the experiment 'Coarsening of solid-liquid mixtures' to be conducted in microgravity. Finally, modifications to the location of onset of instability in systems driven by a random force are discussed by extending the standard reduction to the center manifold to the stochastic case. Results pertaining to time-modulated oscillatory convection are briefly discussed.

  4. Forced convection in vertical Bridgman configuration with the submerged heater

    NASA Astrophysics Data System (ADS)

    Meyer, S.; Ostrogorsky, A. G.

    1997-02-01

    Ga-doped Ge single crystals were grown in vertical Bridgman configuration, using the submerged heater method (SHM). When used without rotation, the submerged heater drastically reduces convection at the solid-liquid interface. When the submerged heater is set in to rotation or oscillatory rotation, it acts as a centrifugal viscous pump, inducing forced convection (radial-inward flow) along the interface. The flow produced by a rotation and oscillatory rotation of the submerged heater was visualized using a 1 : 1 scale model. The vigorous mixing produced by the oscillatory rotation creates a nearly perfectly stirred melt, and yields a uniform lateral distribution of the dopant. The crystals were free of unintentionally produced striae.

  5. Oscillatory wake potential with exchange-correlation in plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  6. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  7. Mechanism for Spiral Wave Breakup in Excitable and Oscillatory Media

    NASA Astrophysics Data System (ADS)

    Yang, Junzhong; Xie, Fagen; Qu, Zhilin; Garfinkel, Alan

    2003-10-01

    We study spiral wave breakup using a Fitzhugh-Nagumo type system. We find that spiral wave breakup can occur near the core or far from it in both excitable and oscillatory regimes. There is a faraway breakup scenario in both excitable and oscillatory media that depends on long wavelength modulation modes. We observed three distinct scenarios, including one that involves breakup that does not develop into turbulence. However, we find that the mechanisms behind these three scenarios are the same: they are caused by the interaction between the dispersion relation and the asymptotic behavior of the modulation mode. The difference in phenomenology is due to the asymptotic behavior of the modulation mode.

  8. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Multi-mode Spiral Wave in a Coupled Oscillatory Medium

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Gao, Qing-Yu; Lü, Hua-Ping; Zheng, Zhi-Gang

    2010-05-01

    Multi-mode spiral wave and its breakup in 1-d and 2-d coupled oscillatory media is studied here by theoretic analysis and numerical simulations. The analysis in 1-d system shows that the dispersion relation curve could be non-monotonic depending on the coupling strength. It may also lead to the coexistence of different wave numbers within one system. Direct numerical observations in 1-d and 2-d systems conform to the prediction of dispersion relation analysis. Our findings indicate that the wave grouping can also be observed in oscillatory media without tip meandering and waves with negative group velocity can occur without inhomogeneity.

  9. Behavior of a supercooled chalcogenide liquid in the non-Newtonian regime under steady vs. oscillatory shear

    NASA Astrophysics Data System (ADS)

    Sen, S.; Zhu, W.; Aitken, B. G.

    2017-07-01

    The steady and oscillatory shear rate dependence of viscosity of a supercooled chalcogenide liquid of composition As10Se90 is measured at Newtonian viscosities ranging between 103 and 107 Pa s using capillary and parallel plate rheometry. The liquid displays strong violation of the Cox-Merz rule in the non-Newtonian regime where the viscosity under steady shear is nearly an order of magnitude lower than that under oscillatory shear. This behavior is argued to be related to the emergence of unusually large (6-8 nm) cooperatively rearranging regions with long relaxation times in the liquid that result from significant structural rearrangements under steady shear.

  10. Development and Hover Testing of the Active Elevon Rotor

    DTIC Science & Technology

    2012-05-01

    typically aimed at reducing vibration, improving rotor performance, and/or reducing blade -vortex interaction (BVI) or in-plane noise . These efforts...will become unstable, either through a 1-DOF (degree of freedom) flutter or some kind of aeroservoelastic coupling with the rotor blade and/or wake ... blade CAEAs did exhibit electrical arcing (audible noise ), even at oscillatory voltages below ±200 V. This arcing/ noise suggests a latent deficiency

  11. Interactions between neural networks: a mechanism for tuning chaos and oscillations

    PubMed Central

    2007-01-01

    We show that chaos and oscillations in a higher-order binary neural network can be tuned effectively using interactions between neural networks. Our results suggest that network interactions may be useful as a means of adjusting the level of dynamic activities in systems that employ chaos and oscillations for information processing, or as a means of suppressing oscillatory behaviors in systems that require stability. PMID:19003511

  12. An Active Z Gravity Compensation System

    DTIC Science & Technology

    1992-07-01

    is necessary to convert the modified digital controller back into continuous time, assuming a zero -order hold for output, and using the Padd ...most likely higher frequency pole- zero pairs introduced by the motor and torque servo, these are generally non-oscillatory, and small in amplitude...on the output of the PI control. The detection scheme is the following: if the output of the fuzzy controller has remained zero (static system) for

  13. Horizons of cybernetical physics

    PubMed Central

    2017-01-01

    The subject and main areas of a new research field—cybernetical physics—are discussed. A brief history of cybernetical physics is outlined. The main areas of activity in cybernetical physics are briefly surveyed, such as control of oscillatory and chaotic behaviour, control of resonance and synchronization, control in thermodynamics, control of distributed systems and networks, quantum control. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115620

  14. Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization.

    PubMed

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Brambilla, Paolo; Crespo-Facorro, Benedicto; Deco, Gustavo; Fañanás, Lourdes

    2016-11-28

    Hosting nearly eighty percent of all human neurons, the cerebellum is functionally connected to large regions of the brain. Accumulating data suggest that some cerebellar resting-state alterations may constitute a key candidate mechanism for depressive psychopathology. While there is some evidence linking cerebellar function and depression, two topics remain largely unexplored. First, the genetic or environmental roots of this putative association have not been elicited. Secondly, while different mathematical representations of resting-state fMRI patterns can embed diverse information of relevance for health and disease, many of them have not been studied in detail regarding the cerebellum and depression. Here, high-resolution fMRI scans were examined to estimate functional connectivity patterns across twenty-six cerebellar regions in a sample of 48 identical twins (24 pairs) informative for depression liability. A network-based statistic approach was employed to analyze cerebellar functional networks built using three methods: the conventional approach of filtered BOLD fMRI time-series, and two analytic components of this oscillatory activity (amplitude envelope and instantaneous phase). The findings indicate that some environmental factors may lead to depression vulnerability through alterations of the neural oscillatory activity of the cerebellum during resting-state. These effects may be observed particularly when exploring the amplitude envelope of fMRI oscillations.

  15. Permian single crystal U-Pb zircon age of the Rožňava Formation volcanites (Southern Gemeric Unit, Western Carpathians, Slovakia)

    NASA Astrophysics Data System (ADS)

    Vozárová, Anna; Šmelko, Miloš; Paderin, Ilya

    2009-12-01

    Zircon populations from the Rožňava Formation volcanic rock complex have been analysed. Euhedral zircons from the 1st volcanogenic horizon with fine oscillatory growth zoning, typical of magmatic origin, gave the average concordia age of 273.3 ± 2.8 Ma, with Th/U ratios in the range of 0.44-0.73. The Permian ages ranging from 266 to 284 Ma were identified in the wider, zoned or unzoned, central zircon parts, as well as in their fine-zoned oscillatory rims. The average concordia age of 275.3 ± 2.9 was obtained from the euhedral zircon population of the 2nd volcanogenic horizon of the Rožňava Formation. The analyses were performed on zoned magmatic zircons in the age interval from 267 to 287 Ma, with Th/U ratios in the range of 0.39-0.75. In the later zircon population two inherited zircon grains were dated giving the age of 842 ± 12 Ma (Neoproterozoic) and 456 ± 7 Ma (Late Ordovician). The magmatic zircon ages document the Kungurian age of Permian volcanic activity and contemporaneous establishment of the south-Gemeric basin. The time span of volcanic activity corresponds to the collapse of the Western Carpathian Variscan foreland which expanded southward.

  16. Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension.

    PubMed

    Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung

    2012-09-04

    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises.

  17. Short-term memory in olfactory network dynamics

    NASA Astrophysics Data System (ADS)

    Stopfer, Mark; Laurent, Gilles

    1999-12-01

    Neural assemblies in a number of animal species display self-organized, synchronized oscillations in response to sensory stimuli in a variety of brain areas.. In the olfactory system of insects, odour-evoked oscillatory synchronization of antennal lobe projection neurons (PNs) is superimposed on slower and stimulus-specific temporal activity patterns. Hence, each odour activates a specific and dynamic projection neuron assembly whose evolution during a stimulus is locked to the oscillation clock. Here we examine, using locusts, the changes in population dynamics of projection-neuron assemblies over repeated odour stimulations, as would occur when an animal first encounters and then repeatedly samples an odour for identification or localization. We find that the responses of these assemblies rapidly decrease in intensity, while they show a marked increase in spike time precision and inter-neuronal oscillatory coherence. Once established, this enhanced precision in the representation endures for several minutes. This change is stimulus-specific, and depends on events within the antennal lobe circuits, independent of olfactory receptor adaptation: it may thus constitute a form of sensory memory. Our results suggest that this progressive change in olfactory network dynamics serves to converge, over repeated odour samplings, on a more precise and readily classifiable odour representation, using relational information contained across neural assemblies.

  18. Distinct spatio-temporal profiles of beta-oscillations within visual and sensorimotor areas during action recognition as revealed by MEG.

    PubMed

    Pavlidou, Anastasia; Schnitzler, Alfons; Lange, Joachim

    2014-05-01

    The neural correlates of action recognition have been widely studied in visual and sensorimotor areas of the human brain. However, the role of neuronal oscillations involved during the process of action recognition remains unclear. Here, we were interested in how the plausibility of an action modulates neuronal oscillations in visual and sensorimotor areas. Subjects viewed point-light displays (PLDs) of biomechanically plausible and implausible versions of the same actions. Using magnetoencephalography (MEG), we examined dynamic changes of oscillatory activity during these action recognition processes. While both actions elicited oscillatory activity in visual and sensorimotor areas in several frequency bands, a significant difference was confined to the beta-band (∼20 Hz). An increase of power for plausible actions was observed in left temporal, parieto-occipital and sensorimotor areas of the brain, in the beta-band in successive order between 1650 and 2650 msec. These distinct spatio-temporal beta-band profiles suggest that the action recognition process is modulated by the degree of biomechanical plausibility of the action, and that spectral power in the beta-band may provide a functional interaction between visual and sensorimotor areas in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavini, Francesco; Calò, Annalisa; Gao, Yang

    We report on a new oscillatory behavior of nanoscopic friction in continuous polycrystalline MoS 2 films for an odd and even number of atomic layers, related to the different in-plane polarization of crystalline grains and different capability of absorbing charged molecules.

  20. Oscillatory singular integrals and harmonic analysis on nilpotent groups

    PubMed Central

    Ricci, F.; Stein, E. M.

    1986-01-01

    Several related classes of operators on nilpotent Lie groups are considered. These operators involve the following features: (i) oscillatory factors that are exponentials of imaginary polynomials, (ii) convolutions with singular kernels supported on lower-dimensional submanifolds, (iii) validity in the general context not requiring the existence of dilations that are automorphisms. PMID:16593640

  1. Friction and work function oscillatory behavior for an even and odd number of layers in polycrystalline MoS 2

    DOE PAGES

    Lavini, Francesco; Calò, Annalisa; Gao, Yang; ...

    2018-01-01

    We report on a new oscillatory behavior of nanoscopic friction in continuous polycrystalline MoS 2 films for an odd and even number of atomic layers, related to the different in-plane polarization of crystalline grains and different capability of absorbing charged molecules.

  2. Norman Ramsey and the Separated Oscillatory Fields Method

    Science.gov Websites

    methods of investigation; in particular, he contributed many refinements of the molecular beam method for the study of atomic and molecular properties, he invented the separated oscillatory field method of atomic and molecular spectroscopy and it is the practical basis for the most precise atomic clocks

  3. An Extended Motor Network Generates Beta and Gamma Oscillatory Perturbations during Development

    ERIC Educational Resources Information Center

    Wilson, Tony W.; Slason, Erin; Asherin, Ryan; Kronberg, Eugene; Reite, Martin L.; Teale, Peter D.; Rojas, Donald C.

    2010-01-01

    This study examines the time course and neural generators of oscillatory beta and gamma motor responses in typically-developing children. Participants completed a unilateral flexion-extension task using each index finger as whole-head magnetoencephalography (MEG) data were acquired. These MEG data were imaged in the frequency-domain using spatial…

  4. Diffusion of chemically reactive species in MHD oscillatory flow with thermal radiation in the presence of constant suction and injection

    NASA Astrophysics Data System (ADS)

    Sasikumar, J.; Bhuvaneshwari, S.; Govindarajan, A.

    2018-04-01

    In this project, it is proposed to investigate the effect of suction/injection on the unsteady oscillatory flow of an incompressible viscous electrically conducting fluid through a channel filled with porous medium and non-uniform wall temperature. The fluid is subjected to a uniform magnetic field normal to the channel and the velocity slip at the cold plate is taken into consideration. With the assumption of magnetic Reynolds number to be very small, the induced magnetic field is neglected. Assuming pressure gradient to be oscillatory across the ends of the channel, resulting flow as unsteady oscillatory flow. Under the usual Bousinessq approximation, a mathematical model representing this fluid flow consisting of governing equations with boundary conditions will be developed. Closed form solutions of the dimensionless governing equations of the fluid flow, namely momentum equation, energy equation and species concentration can be obtained . The effects of heat radiation and chemical reaction with suction and injection on temperature, velocity and species concentration profiles will be analysed with tables and graphs.

  5. Stationary and oscillatory bound states of dissipative solitons created by third-order dispersion

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Skryabin, Dmitry V.; Malomed, Boris A.

    2018-06-01

    We consider the model of fiber-laser cavities near the zero-dispersion point, based on the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, including the third-order dispersion (TOD) term. It is well known that this model supports stable dissipative solitons. We demonstrate that the same model gives rise to several families of robust bound states of the solitons, which exists only in the presence of the TOD. There are both stationary and dynamical bound states, with oscillating separation between the bound solitons. Stationary states are multistable, corresponding to different values of the separation. With the increase of the TOD coefficient, the bound state with the smallest separation gives rise the oscillatory state through the Hopf bifurcation. Further growth of TOD leads to a bifurcation transforming the oscillatory limit cycle into a strange attractor, which represents a chaotically oscillating dynamical bound state. Families of multistable three- and four-soliton complexes are found too, the ones with the smallest separation between the solitons again ending by a transition to oscillatory states through the Hopf bifurcation.

  6. Influence of Pb 2+ ions in the H 2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.

    The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.

  7. Regional gas transport in the heterogeneous lung during oscillatory ventilation

    PubMed Central

    Herrmann, Jacob; Tawhai, Merryn H.

    2016-01-01

    Regional ventilation in the injured lung is heterogeneous and frequency dependent, making it difficult to predict how an oscillatory flow waveform at a specified frequency will be distributed throughout the periphery. To predict the impact of mechanical heterogeneity on regional ventilation distribution and gas transport, we developed a computational model of distributed gas flow and CO2 elimination during oscillatory ventilation from 0.1 to 30 Hz. The model consists of a three-dimensional airway network of a canine lung, with heterogeneous parenchymal tissues to mimic effects of gravity and injury. Model CO2 elimination during single frequency oscillation was validated against previously published experimental data (Venegas JG, Hales CA, Strieder DJ, J Appl Physiol 60: 1025–1030, 1986). Simulations of gas transport demonstrated a critical transition in flow distribution at the resonant frequency, where the reactive components of mechanical impedance due to airway inertia and parenchymal elastance were equal. For frequencies above resonance, the distribution of ventilation became spatially clustered and frequency dependent. These results highlight the importance of oscillatory frequency in managing the regional distribution of ventilation and gas exchange in the heterogeneous lung. PMID:27763872

  8. A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing

    PubMed Central

    Tian, Xiaoguang; Yoshida, Masatoshi; Hafed, Ziad M.

    2016-01-01

    Microsaccades exhibit systematic oscillations in direction after spatial cueing, and these oscillations correlate with facilitatory and inhibitory changes in behavioral performance in the same tasks. However, independent of cueing, facilitatory and inhibitory changes in visual sensitivity also arise pre-microsaccadically. Given such pre-microsaccadic modulation, an imperative question to ask becomes: how much of task performance in spatial cueing may be attributable to these peri-movement changes in visual sensitivity? To investigate this question, we adopted a theoretical approach. We developed a minimalist model in which: (1) microsaccades are repetitively generated using a rise-to-threshold mechanism, and (2) pre-microsaccadic target onset is associated with direction-dependent modulation of visual sensitivity, as found experimentally. We asked whether such a model alone is sufficient to account for performance dynamics in spatial cueing. Our model not only explained fine-scale microsaccade frequency and direction modulations after spatial cueing, but it also generated classic facilitatory (i.e., attentional capture) and inhibitory [i.e., inhibition of return (IOR)] effects of the cue on behavioral performance. According to the model, cues reflexively reset the oculomotor system, which unmasks oscillatory processes underlying microsaccade generation; once these oscillatory processes are unmasked, “attentional capture” and “IOR” become direct outcomes of pre-microsaccadic enhancement or suppression, respectively. Interestingly, our model predicted that facilitatory and inhibitory effects on behavior should appear as a function of target onset relative to microsaccades even without prior cues. We experimentally validated this prediction for both saccadic and manual responses. We also established a potential causal mechanism for the microsaccadic oscillatory processes hypothesized by our model. We used retinal-image stabilization to experimentally control instantaneous foveal motor error during the presentation of peripheral cues, and we found that post-cue microsaccadic oscillations were severely disrupted. This suggests that microsaccades in spatial cueing tasks reflect active oculomotor correction of foveal motor error, rather than presumed oscillatory covert attentional processes. Taken together, our results demonstrate that peri-microsaccadic changes in vision can go a long way in accounting for some classic behavioral phenomena. PMID:27013991

  9. A Experimental Investigation of Hydrodynamic Forces on Circular Cylinders in Sinusoidal and Random Oscillating Flow

    NASA Astrophysics Data System (ADS)

    Longoria, Raul Gilberto

    An experimental apparatus has been developed which can be used to generate a general time-dependent planar flow across a cylinder. A mass of water enclosed with no free surface within a square cross-section tank and two spring pre-loaded pistons is oscillated using a hydraulic actuator. A circular cylinder is suspended horizontally in the tank by two X-Y force transducers used to simultaneously measure the total in-line and transverse forces. Fluid motion is measured using a differential pressure transducer for instantaneous acceleration and an LVDT for displacement. This investigation provides measurement of forces on cylinders subjected to planar fluid flow velocity with a time (and frequency) dependence which more accurately represent the random conditions encountered in a natural ocean environment. The use of the same apparatus for both sinusoidal and random experiments provides a quantified assessment of the applicability of sinusoidal planar oscillatory flow data in offshore structure design methods. The drag and inertia coefficients for a Morison equation representation of the inline force are presented for both sinusoidal and random flow. Comparison of the sinusoidal results is favorable with those of previous investigations. The results from random experiments illustrates the difference in the force mechanism by contrasting the force transfer coefficients for the inline and transverse forces. It is found that application of sinusoidal results to random hydrodynamic inline force prediction using the Morison equation wrongly weighs the drag and inertia components, and the transverse force is overpredicted. The use of random planar oscillatory flow in the laboratory, contrasted with sinusoidal planar oscillatory flow, quantifies the accepted belief that the force transfer coefficients from sinusoidal flow experiments are conservative for prediction of forces on cylindrical structures subjected to random sea waves and the ensuing forces. Further analysis of data is conducted in the frequency domain to illustrate models used for predicting the power spectral density of the inline force including a nonlinear describing function method. It is postulated that the large-scale vortex activity prominent in sinusoidal oscillatory flow is subdued in random flow conditions.

  10. Frequency-dependent, transient effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling and neuronal activity in the hemiparkinsonian rat.

    PubMed

    So, Rosa Q; McConnell, George C; Grill, Warren M

    2017-03-01

    Methamphetamine-induced circling is used to quantify the behavioral effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in hemiparkinsonian rats. We observed a frequency-dependent transient effect of DBS on circling, and quantified this effect to determine its neuronal basis. High frequency STN DBS (75-260Hz) resulted in transient circling contralateral to the lesion at the onset of stimulation, which was not sustained after the first several seconds of stimulation. Following the transient behavioral change, DBS resulted in a frequency-dependent steady-state reduction in pathological ipsilateral circling, but no change in overall movement. Recordings from single neurons in globus pallidus externa (GPe) and substantia nigra pars reticulata (SNr) revealed that high frequency, but not low frequency, STN DBS elicited transient changes in both firing rate and neuronal oscillatory power at the stimulation frequency in a subpopulation of GPe and SNr neurons. These transient changes were not sustained, and most neurons exhibited a different response during the steady-state phase of DBS. During the steady-state, DBS produced elevated neuronal oscillatory power at the stimulus frequency in a majority of GPe and SNr neurons, and the increase was more pronounced during high frequency DBS than during low frequency DBS. Changes in oscillatory power during both transient and steady-state DBS were highly correlated with changes in firing rates. These results suggest that distinct neural mechanisms were responsible for transient and sustained behavioral responses to STN DBS. The transient contralateral turning behavior following the onset of high frequency DBS was paralleled by transient changes in firing rate and oscillatory power in the GPe and SNr, while steady-state suppression of ipsilateral turning was paralleled by sustained increased synchronization of basal ganglia neurons to the stimulus pulses. Our analysis of distinct frequency-dependent transient and steady-state responses to DBS lays the foundation for future mechanistic studies of the immediate and persistent effects of DBS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Pattern formation and mass transfer under stationary solutal Marangoni instability.

    PubMed

    Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin

    2014-04-01

    According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Computational Fluid Dynamics Modeling of Submerged Objects Under Unidirectional and Oscillatory Flows.

    NASA Astrophysics Data System (ADS)

    Fytanidis, D. K.; Wu, H.; Landry, B. J.; Garcia, M. H.

    2017-12-01

    Abandoned Unexploded Ordnances (UXOs) from wartime events, accidents, training or other military activities can be found in coastal environments. While the interest for these hazardous submerged objects is increased, there are still existing knowledge gaps regarding the mechanisms of incipient motion and flow behavior around UXOs lying on the seafloor. Numerical modeling of flow around near bed placed UXOs is conducted for unidirectional and oscillatory flow conditions using Computational Fluid Dynamics techniques. The Reynolds-Averaged Navier-Stokes (RANS) approach is used to simulate the complex turbulent flow field around UXOs. The numerical results are compared with two-dimensional Particle Image Velocimetry measurements from experiments conducted in unidirectional and oscillatory flow facilities within the Ven Te Chow Hydrosystems Laboratory to evaluate the accuracy of the applied RANS-based solver. Realistic boundary conditions are imposed in the numerical models to mimic the experimental conditions in the laboratory facilities. The comparison between the numerical results and the experimental data agrees well. In addition, the effect of the angle of attack on the forces that UXOs experience is examined. Numerical results suggest that the orientation of UXOs with respect to the mean flow is an important parameter for incipient motion under critical flow conditions which is in agreement with prior laboratory experimental results regarding the identification of critical flow conditions for the initiation of motion of UXOs. Finally, an extensive parametric analysis is conducted to evaluate the effect of the maximum current velocity and wave characteristics (maximum velocity and period) on the flow forces and the mean flow pattern around the objects.

  13. Cross-modal integration of lexical-semantic features during word processing: evidence from oscillatory dynamics during EEG.

    PubMed

    van Ackeren, Markus J; Rueschemeyer, Shirley-Ann

    2014-01-01

    In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically, participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud) and asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE). Each pair of features described properties from either the same modality (e.g., silver, tiny  =  visual features) or different modalities (e.g., silver, loud  =  visual, auditory). Behavioral and EEG data were collected. The results show that verifying features that are putatively represented in the same modality-specific network is faster than verifying features across modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta range (4-6 Hz) in left anterior temporal lobe (ATL), a putative hub for integrating distributed semantic content. In addition, enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal semantic hubs such as left ATL.

  14. Low Reynolds number kappa-epsilon and empirical transition models for oscillatory pipe flow and heat transfer. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bauer, Christopher

    1993-01-01

    Stirling engine heat exchangers are shell-and-tube type with oscillatory flow (zero-mean velocity) for the inner fluid. This heat transfer process involves laminar-transition turbulent flow motions under oscillatory flow conditions. A low Reynolds number kappa-epsilon model, (Lam-Bremhorst form), was utilized in the present study to simulate fluid flow and heat transfer in a circular tube. An empirical transition model was used to activate the low Reynolds number k-e model at the appropriate time within the cycle for a given axial location within the tube. The computational results were compared with experimental flow and heat transfer data for: (1) velocity profiles, (2) kinetic energy of turbulence, (3) skin friction factor, (4) temperature profiles, and (5) wall heat flux. The experimental data were obtained for flow in a tube (38 mm diameter and 60 diameter long), with the maximum Reynolds number based on velocity being Re(sub max) = 11840, a dimensionless frequency (Valensi number) of Va = 80.2, at three axial locations X/D = 16, 30 and 44. The agreement between the computations and the experiment is excellent in the laminar portion of the cycle and good in the turbulent portion. Moreover, the location of transition was predicted accurately. The Low Reynolds Number kappa-epsilon model, together with an empirical transition model, is proposed herein to generate the wall heat flux values at different operating parameters than the experimental conditions. Those computational data can be used for testing the much simpler and less accurate one dimensional models utilized in 1-D Stirling Engine design codes.

  15. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise.

    PubMed

    Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En

    2018-03-22

    In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method.

  16. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise

    PubMed Central

    Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En

    2018-01-01

    In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method. PMID:29565288

  17. Oscillatory Critical Amplitudes in Hierarchical Models and the Harris Function of Branching Processes

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Giacomin, Giambattista

    2013-02-01

    Oscillatory critical amplitudes have been repeatedly observed in hierarchical models and, in the cases that have been taken into consideration, these oscillations are so small to be hardly detectable. Hierarchical models are tightly related to iteration of maps and, in fact, very similar phenomena have been repeatedly reported in many fields of mathematics, like combinatorial evaluations and discrete branching processes. It is precisely in the context of branching processes with bounded off-spring that T. Harris, in 1948, first set forth the possibility that the logarithm of the moment generating function of the rescaled population size, in the super-critical regime, does not grow near infinity as a power, but it has an oscillatory prefactor (the Harris function). These oscillations have been observed numerically only much later and, while the origin is clearly tied to the discrete character of the iteration, the amplitude size is not so well understood. The purpose of this note is to reconsider the issue for hierarchical models and in what is arguably the most elementary setting—the pinning model—that actually just boils down to iteration of polynomial maps (and, notably, quadratic maps). In this note we show that the oscillatory critical amplitude for pinning models and the Harris function coincide. Moreover we make explicit the link between these oscillatory functions and the geometry of the Julia set of the map, making thus rigorous and quantitative some ideas set forth in Derrida et al. (Commun. Math. Phys. 94:115-132, 1984).

  18. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via an intermediate FCC phase.

  19. Nonlinear dynamics and rheology of active fluids: simulations in two dimensions.

    PubMed

    Fielding, S M; Marenduzzo, D; Cates, M E

    2011-04-01

    We report simulations of a continuum model for (apolar, flow aligning) active fluids in two dimensions. Both free and anchored boundary conditions are considered, at parallel confining walls that are either static or moving at fixed relative velocity. We focus on extensile materials and find that steady shear bands, previously shown to arise ubiquitously in one dimension for the active nematic phase at small (or indeed zero) shear rate, are generally replaced in two dimensions by more complex flow patterns that can be stationary, oscillatory, or apparently chaotic. The consequences of these flow patterns for time-averaged steady-state rheology are examined. ©2011 American Physical Society

  20. Spontaneous flow in polar active fluids: the effect of a phenomenological self propulsion-like term.

    PubMed

    Bonelli, Francesco; Gonnella, Giuseppe; Tiribocchi, Adriano; Marenduzzo, Davide

    2016-01-01

    We present hybrid lattice Boltzmann simulations of extensile and contractile active fluids where we incorporate phenomenologically the tendency of active particles such as cell and bacteria, to move, or swim, along the local orientation. Quite surprisingly, we show that the interplay between alignment and activity can lead to completely different results, according to geometry (periodic boundary conditions or confinement between flat walls) and nature of the activity (extensile or contractile). An interesting generic outcome is that the alignment interaction can transform stationary active patterns into continuously moving ones: the dynamics of these evolving patterns can be oscillatory or chaotic according to the strength of the alignment term. Our results suggest that flow-polarisation alignment can have important consequences on the collective dynamics of active fluids and active gel.

  1. Improved oxygenation 24 hours after transition to airway pressure release ventilation or high-frequency oscillatory ventilation accurately discriminates survival in immunocompromised pediatric patients with acute respiratory distress syndrome*.

    PubMed

    Yehya, Nadir; Topjian, Alexis A; Thomas, Neal J; Friess, Stuart H

    2014-05-01

    Children with an immunocompromised condition and requiring invasive mechanical ventilation have high risk of death. Such patients are commonly transitioned to rescue modes of nonconventional ventilation, including airway pressure release ventilation and high-frequency oscillatory ventilation, for acute respiratory distress syndrome refractory to conventional ventilation. Our aim was to describe our experience with airway pressure release ventilation and high-frequency oscillatory ventilation in children with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation and to identify factors associated with survival. Retrospective cohort study. Tertiary care, university-affiliated PICU. Sixty pediatric patients with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation. None. Demographic data, ventilator settings, arterial blood gases, oxygenation index, and PaO(2)/FIO(2) were recorded before transition to either mode of nonconventional ventilation and at predetermined intervals after transition for up to 5 days. Mortality in the entire cohort was 63% and did not differ between patients transitioned to airway pressure release ventilation and high-frequency oscillatory ventilation. For both airway pressure release ventilation and high-frequency oscillatory ventilation, improvements in oxygenation index and PaO(2)/FIO(2) at 24 hours expressed as a fraction of pretransition values (oxygenation index(24)/oxygenation index(pre) and PaO(2)/FIO(224)/PaO(2)/FIO(2pre)) reliably discriminated nonsurvivors from survivors, with receiver operating characteristic areas under the curves between 0.89 and 0.95 (p for all curves < 0.001). Sensitivity-specificity analysis suggested that less than 15% reduction in oxygenation index (90% sensitive, 75% specific) or less than 90% increase in PaO(2)/FIO(2) (80% sensitive, 94% specific) 24 hours after transition to airway pressure release ventilation were the optimal cutoffs to identify nonsurvivors. The comparable values 24 hours after transition to high-frequency oscillatory ventilation were less than 5% reduction in oxygenation index (100% sensitive, 83% specific) or less than 80% increase in PaO(2)/FIO(2) (91% sensitive, 89% specific) to identify nonsurvivors. In this single-center retrospective study of pediatric patients with an immunocompromised condition and acute respiratory distress syndrome failing conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation, improved oxygenation at 24 hours expressed as PaO(2)/FIO(224)/PaO(2)/FIO(2pre) or oxygenation index(24)/oxygenation indexpre reliably discriminates nonsurvivors from survivors. These findings should be prospectively verified.

  2. The frequency preference of neurons and synapses in a recurrent oscillatory network.

    PubMed

    Tseng, Hua-an; Martinez, Diana; Nadim, Farzan

    2014-09-17

    A variety of neurons and synapses shows a maximal response at a preferred frequency, generally considered to be important in shaping network activity. We are interested in whether all neurons and synapses in a recurrent oscillatory network can have preferred frequencies and, if so, whether these frequencies are the same or correlated, and whether they influence the network activity. We address this question using identified neurons in the pyloric network of the crab Cancer borealis. Previous work has shown that the pyloric pacemaker neurons exhibit membrane potential resonance whose resonance frequency is correlated with the network frequency. The follower lateral pyloric (LP) neuron makes reciprocally inhibitory synapses with the pacemakers. We find that LP shows resonance at a higher frequency than the pacemakers and the network frequency falls between the two. We also find that the reciprocal synapses between the pacemakers and LP have preferred frequencies but at significantly lower values. The preferred frequency of the LP to pacemaker synapse is correlated with the presynaptic preferred frequency, which is most pronounced when the peak voltage of the LP waveform is within the dynamic range of the synaptic activation curve and a shift in the activation curve by the modulatory neuropeptide proctolin shifts the frequency preference. Proctolin also changes the power of the LP neuron resonance without significantly changing the resonance frequency. These results indicate that different neuron types and synapses in a network may have distinct preferred frequencies, which are subject to neuromodulation and may interact to shape network oscillations. Copyright © 2014 the authors 0270-6474/14/3412933-13$15.00/0.

  3. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link?

    PubMed

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel

    2015-08-01

    Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.

  4. Effects of musical expertise on oscillatory brain activity in response to emotional sounds.

    PubMed

    Nolden, Sophie; Rigoulot, Simon; Jolicoeur, Pierre; Armony, Jorge L

    2017-08-01

    Emotions can be conveyed through a variety of channels in the auditory domain, be it via music, non-linguistic vocalizations, or speech prosody. Moreover, recent studies suggest that expertise in one sound category can impact the processing of emotional sounds in other sound categories as they found that musicians process more efficiently emotional musical and vocal sounds than non-musicians. However, the neural correlates of these modulations, especially their time course, are not very well understood. Consequently, we focused here on how the neural processing of emotional information varies as a function of sound category and expertise of participants. Electroencephalogram (EEG) of 20 non-musicians and 17 musicians was recorded while they listened to vocal (speech and vocalizations) and musical sounds. The amplitude of EEG-oscillatory activity in the theta, alpha, beta, and gamma band was quantified and Independent Component Analysis (ICA) was used to identify underlying components of brain activity in each band. Category differences were found in theta and alpha bands, due to larger responses to music and speech than to vocalizations, and in posterior beta, mainly due to differential processing of speech. In addition, we observed greater activation in frontal theta and alpha for musicians than for non-musicians, as well as an interaction between expertise and emotional content of sounds in frontal alpha. The results reflect musicians' expertise in recognition of emotion-conveying music, which seems to also generalize to emotional expressions conveyed by the human voice, in line with previous accounts of effects of expertise on musical and vocal sounds processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Prefrontal oscillations during recall of conditioned and extinguished fear in humans.

    PubMed

    Mueller, Erik M; Panitz, Christian; Hermann, Christiane; Pizzagalli, Diego A

    2014-05-21

    Human neuroimaging studies indicate that the anterior midcingulate cortex (AMC) and the ventromedial prefrontal cortex (vmPFC) play important roles in the expression and extinction of fear, respectively. Electrophysiological rodent studies further indicate that oscillatory neuronal activity in homolog regions (i.e., prelimbic and infralimbic cortices) changes during fear expression and fear extinction recall. Whether similar processes occur in humans remains largely unexplored. By assessing scalp surface EEG in conjunction with LORETA source estimation of CS-related theta and gamma activity, we tested whether a priori defined ROIs in the human AMC and vmPFC similarly modulate their oscillatory activity during fear expression and extinction recall, respectively. To this end, 42 healthy individuals underwent a differential conditioning/differential extinction protocol with a Recall Test on the next day. In the Recall Test, nonextinguished versus extinguished stimuli evoked an increased differential (CS(+) vs CS(-)) response with regard to skin conductance and AMC-localized theta power. Conversely, extinguished versus nonextinguished stimuli evoked an increased differential response with regard to vmPFC-localized gamma power. Finally, individuals who failed to show a suppressed skin conductance response to the extinguished versus nonextinguished CS(+) also failed to show the otherwise observed alterations in vmPFC gamma power to extinguished CS(+). These results indicate that fear expression is associated with AMC theta activity, whereas successful fear extinction recall relates to changes in vmPFC gamma activity. The present work thereby bridges findings from prior rodent electrophysiological research and human neuroimaging studies and indicates that EEG is a valuable tool for future fear extinction research. Copyright © 2014 the authors 0270-6474/14/347059-08$15.00/0.

  6. Coherence of neuronal firing of the entopeduncular nucleus with motor cortex oscillatory activity in the 6-OHDA rat model of Parkinson's disease with levodopa-induced dyskinesias.

    PubMed

    Jin, Xingxing; Schwabe, Kerstin; Krauss, Joachim K; Alam, Mesbah

    2016-04-01

    The pathophysiological mechanisms leading to dyskinesias in Parkinson's disease (PD) after long-term treatment with levodopa remain unclear. This study investigates the neuronal firing characteristics of the entopeduncular nucleus (EPN), the rat equivalent of the human globus pallidus internus and output nucleus of the basal ganglia, and its coherence with the motor cortex (MCx) field potentials in the unilateral 6-OHDA rat model of PD with and without levodopa-induced dyskinesias (LID). 6-hydroxydopamine-lesioned hemiparkinsonian (HP) rats, 6-OHDA-lesioned HP rats with LID (HP-LID) rats, and naïve controls were used for recording of single-unit activity under urethane (1.4 g/kg, i.p) anesthesia in the EPN "on" and "off" levodopa. Over the MCx, the electrocorticogram output was recorded. Analysis of single-unit activity in the EPN showed enhanced firing rates, burst activity, and irregularity compared to naïve controls, which did not differ between drug-naïve HP and HP-LID rats. Analysis of EPN spike coherence and phase-locked ratio with MCx field potentials showed a shift of low (12-19 Hz) and high (19-30 Hz) beta oscillatory activity between HP and HP-LID groups. EPN theta phase-locked ratio was only enhanced in HP-LID compared to HP rats. Overall, levodopa injection had no stronger effect in HP-LID rats than in HP rats. Altered coherence and changes in the phase lock ratio of spike and local field potentials in the beta range may play a role for the development of LID.

  7. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    PubMed

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P < .01), resulting in a reduced cortical activity at global (P < .02) and local levels (P < .01). Participants who showed better timed motor performance also showed stronger oscillatory synchronization (r = -0.356; P < .05) and higher cortical activity (r = -0.393; P < .05). Our data may model the ability of the motor command to respond to more subtle, physiological inputs from other brain areas. This novel insight indicates that impairments of the timing accuracy of synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  8. Geometrical Series and Phase Space in a Finite Oscillatory Motion

    ERIC Educational Resources Information Center

    Mareco, H. R. Olmedo

    2006-01-01

    This article discusses some interesting physical properties of oscillatory motion of a particle on two joined inclined planes. The geometrical series demonstrates that the particle will oscillate during a finite time. Another detail is the converging path to the origin of the phase space. Due to its simplicity, this motion may be used as a…

  9. Numerical simulation and stability analysis of solutocapillary effect in ultrathin films

    NASA Astrophysics Data System (ADS)

    Gordeeva, V. Yu.; Lyushnin, A. V.

    2017-04-01

    Polar fluids, like water or polydimethylsiloxane, are widely used in technical and medical applications. Capillary effects arising from surface tension gradients can be significant in thin liquid films. The present paper is dedicated to investigation of capillary flow due to a surfactant added to a polar liquid under conditions when intermolecular forces and disjoining pressure play an important role. Evolution equations are formulated for a film profile and the surfactant concentration. Stability analysis shows that the Marangoni effect destabilizes the film, and oscillatory modes appear at slow evaporation rates. We find that the film has four stability modes of at slow evaporation: monotonic stable, monotonic unstable, oscillatory stable, and oscillatory unstable, depending on the wave number of disturbances.

  10. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  11. On the generation of umbral flashes and running penumbral waves.

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1973-01-01

    From a review of the observed properties of umbral flashes and running penumbral waves it is proposed that the source of these periodic phenomena is the oscillatory convection which Danielson and Savage (1968) and Savage (1969) have shown is likely to occur in the superadiabatic subphotospheric layers of sunspot umbras. Periods and growth rates are computed for oscillatory modes arising in a simple two-layer model umbra. The results suggest that umbral flashes result from disturbances produced by oscillatory convection occurring in the upper subphotospheric layer of the umbra, where the superadiabatic temperature gradient is much enhanced over that in lower layers, while running penumbral waves are due to oscillations in a layer just below this upper layer.

  12. Qualitative simulation for process modeling and control

    NASA Technical Reports Server (NTRS)

    Dalle Molle, D. T.; Edgar, T. F.

    1989-01-01

    A qualitative model is developed for a first-order system with a proportional-integral controller without precise knowledge of the process or controller parameters. Simulation of the qualitative model yields all of the solutions to the system equations. In developing the qualitative model, a necessary condition for the occurrence of oscillatory behavior is identified. Initializations that cannot exhibit oscillatory behavior produce a finite set of behaviors. When the phase-space behavior of the oscillatory behavior is properly constrained, these initializations produce an infinite but comprehensible set of asymptotically stable behaviors. While the predictions include all possible behaviors of the real system, a class of spurious behaviors has been identified. When limited numerical information is included in the model, the number of predictions is significantly reduced.

  13. Cortical-Cortical Interactions And Sensory Information Processing in Autism

    DTIC Science & Technology

    2008-04-30

    Frith U: Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 2002, 125:1839-1849. 15...Methods The subjects were ten males clinically diagnosed with autism (i.e., Autistic Disorder or Asperger Disorder; DSM-IV-TR; [22]), all naïve both...Disordered visual processing and oscillatory brain activity in autism and Williams syndrome . Neuroreport 2001, 12:2697-2700. 18. Wilson TW, Rojas DC

  14. Effects of ongoing task context and target typicality on prospective memory performance: the importance of associative cueing

    NASA Technical Reports Server (NTRS)

    Nowinski, Jessica Lang; Dismukes, Key R.

    2005-01-01

    Two experiments examined whether prospective memory performance is influenced by contextual cues. In our automatic activation model, any information available at encoding and retrieval should aid recall of the prospective task. The first experiment demonstrated an effect of the ongoing task context; performance was better when information about the ongoing task present at retrieval was available at encoding. Performance was also improved by a strong association between the prospective memory target as it was presented at retrieval and the intention as it was encoded. Experiment 2 demonstrated boundary conditions of the ongoing task context effect, which implicate the association between the ongoing and prospective tasks formed at encoding as the source of the context effect. The results of this study are consistent with predictions based on automatic activation of intentions.

  15. Rac1 and Cdc42 GTPases regulate shear stress-driven β-catenin signaling in osteoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki

    2013-04-19

    Highlights: •Shear stress increased TCF/LEF activity and stimulated β-catenin nuclear localization. •Rac1, Cdc42, and RhoA displayed distinct dynamic activity patterns under flow. •Rac1 and Cdc42, but not RhoA, regulate shear stress-driven TCF/LEF activation. •Cytoskeleton did not significantly affect shear stress-induced TCF/LEF activation. -- Abstract: Beta-catenin-dependent TCF/LEF (T-cell factor/lymphocyte enhancing factor) is known to be mechanosensitive and an important regulator for promoting bone formation. However, the functional connection between TCF/LEF activity and Rho family GTPases is not well understood in osteoblasts. Herein we investigated the molecular mechanisms underlying oscillatory shear stress-induced TCF/LEF activity in MC3T3-E1 osteoblast cells using live cell imaging.more » We employed fluorescence resonance energy transfer (FRET)-based and green fluorescent protein (GFP)-based biosensors, which allowed us to monitor signal transduction in living cells in real time. Oscillatory (1 Hz) shear stress (10 dynes/cm{sup 2}) increased TCF/LEF activity and stimulated translocation of β-catenin to the nucleus with the distinct activity patterns of Rac1 and Cdc42. The shear stress-induced TCF/LEF activity was blocked by the inhibition of Rac1 and Cdc42 with their dominant negative mutants or selective drugs, but not by a dominant negative mutant of RhoA. In contrast, constitutively active Rac1 and Cdc42 mutants caused a significant enhancement of TCF/LEF activity. Moreover, activation of Rac1 and Cdc42 increased the basal level of TCF/LEF activity, while their inhibition decreased the basal level. Interestingly, disruption of cytoskeletal structures or inhibition of myosin activity did not significantly affect shear stress-induced TCF/LEF activity. Although Rac1 is reported to be involved in β-catenin in cancer cells, the involvement of Cdc42 in β-catenin signaling in osteoblasts has not been identified. Our findings in this study demonstrate that both Rac1 and Cdc42 GTPases are critical regulators in shear stress-driven β-catenin signaling in osteoblasts.« less

  16. Analysis of current-driven oscillatory dynamics of single-layer homoepitaxial islands on crystalline conducting substrates

    NASA Astrophysics Data System (ADS)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    2018-03-01

    We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.

  17. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  18. Dynamics of viscous liquid bridges inside microchannels subject to external oscillatory flow.

    PubMed

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2015-02-01

    We report on two-dimensional simulations of liquid bridges' dynamics inside microchannels of uniform wettability and subject to an external oscillatory flow rate. The oscillatory flow results in a zero net flow rate and its effects are compared to those of a stationary system. To handle the three phase contact lines motion, Cahn-Hilliard diffuse-interface formulation was used and the flow equations were solved using the finite element method with adaptively refined unstructured grids. The results indicate that the liquid bridge responds in three different ways depending on the substrate wettability properties and the frequency of the oscillatory flow. In particular below a critical frequency, the liquid bridge will rupture when the channel walls are philic or detach from the surface when they are phobic. However, at high frequencies, the liquid bridge shows a perpetual periodic oscillatory motion for both philic and phobic surfaces. Furthermore, an increase in the frequency of the flow velocity results in stabilization effects and a behavior approaching that of the stationary system where no rupture or detachment can be observed. This stable behavior is the direct result of less deformation of the liquid bridge due to the fast flow direction change and motion of contact lines on the solid substrate. Moreover, it was found that the flow velocity is out of phase with the footprint and throat lengths and that the latter two also show a phase difference. These differences were explained in terms of the motion of the two contact lines on the solid substrates and the deformation of the two fluid-fluid interfaces.

  19. Nanomotor dynamics in a chemically oscillating medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Bryan, E-mail: bryan.robertson@mail.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca

    2015-04-21

    Synthetic nanomotors powered by chemical reactions have potential uses as cargo transport vehicles in both in vivo and in vitro applications. In many situations, motors will have to operate in out-of-equilibrium complex chemically reacting media, which supply fuel to the motors and remove the products they produce. Using molecular simulation and mean-field theory, this paper describes some of the new features that arise when a chemically powered nanomotor, operating through a diffusiophoretic mechanism, moves in an environment that supports an oscillatory chemical reaction network. It is shown how oscillations in the concentrations in chemical species in the environment give risemore » to oscillatory motor dynamics. More importantly, since the catalytic reactions on the motor that are responsible for its propulsion couple to the bulk phase reaction network, the motor can change its local environment. This process can give rise to distinctive spatiotemporal structures in reaction-diffusion media that occur as a result of active motor motion. Such locally induced nonequilibrium structure will play an important role in applications that involve motor dynamics in complex chemical media.« less

  20. The spectro-contextual encoding and retrieval theory of episodic memory.

    PubMed

    Watrous, Andrew J; Ekstrom, Arne D

    2014-01-01

    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research.

Top