Science.gov

Sample records for online cone beam

  1. Daily online cone beam computed tomography to assess interfractional motion in patients with intact cervical cancer.

    PubMed

    Tyagi, Neelam; Lewis, John H; Yashar, Catheryn M; Vo, Daniel; Jiang, Steve B; Mundt, Arno J; Mell, Loren K

    2011-05-01

    To quantify interfraction motion in patients with intact cervical cancer and assess implications for clinical target volume (CTV) coverage and required planning margins. We analyzed 10 patients undergoing external beam radiotherapy using online cone beam computed tomography (CBCT) before each fraction. CTVs were contoured on the planning CT and on each CBCT. Each CBCT was rigidly registered to the planning CT with respect to bony anatomy. The CTV from each CBCT was projected onto the planning CT and compared to the CTV from the planning CT. Uniform three-dimensional expansions were applied to the planning CTV to assess required planning margins. For each fraction, the minimum margin required to encompass the CTV was calculated, and the volume of CTV (on the CBCT) encompassed by the PTV was determined as a function of margin size. A uniform CTV planning treatment volume margin of 15 mm would have failed to encompass the CTV in 32% of fractions. The mean volume of CTV missed, however, was small (4 cc). The mean planning margin (across patients and fractions) required to encompass the CTV was 15 mm. Variation in margin estimates was high, with interpatient variation being the predominant component. Increased rectal volume was associated with posterior (p < 0.0001) and superior (p = 0.0004) shifts in the CTV, whereas increased bladder volume was associated with superior shifts (p < 0.0001). Interfraction motion results in a high probability of missing the CTV using conventional planning margins, but the volume of CTV missed is small. Adaptive radiotherapy approaches are needed to improve treatment accuracy. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Daily Online Cone Beam Computed Tomography to Assess Interfractional Motion in Patients With Intact Cervical Cancer

    SciTech Connect

    Tyagi, Neelam; Lewis, John H.; Yashar, Catheryn M.; Vo, Daniel; Jiang, Steve B.; Mundt, Arno J.; Mell, Loren K.

    2011-05-01

    Purpose: To quantify interfraction motion in patients with intact cervical cancer and assess implications for clinical target volume (CTV) coverage and required planning margins. Methods and Materials: We analyzed 10 patients undergoing external beam radiotherapy using online cone beam computed tomography (CBCT) before each fraction. CTVs were contoured on the planning CT and on each CBCT. Each CBCT was rigidly registered to the planning CT with respect to bony anatomy. The CTV from each CBCT was projected onto the planning CT and compared to the CTV from the planning CT. Uniform three-dimensional expansions were applied to the planning CTV to assess required planning margins. For each fraction, the minimum margin required to encompass the CTV was calculated, and the volume of CTV (on the CBCT) encompassed by the PTV was determined as a function of margin size. Results: A uniform CTV planning treatment volume margin of 15 mm would have failed to encompass the CTV in 32% of fractions. The mean volume of CTV missed, however, was small (4 cc). The mean planning margin (across patients and fractions) required to encompass the CTV was 15 mm. Variation in margin estimates was high, with interpatient variation being the predominant component. Increased rectal volume was associated with posterior (p < 0.0001) and superior (p = 0.0004) shifts in the CTV, whereas increased bladder volume was associated with superior shifts (p < 0.0001). Conclusions: Interfraction motion results in a high probability of missing the CTV using conventional planning margins, but the volume of CTV missed is small. Adaptive radiotherapy approaches are needed to improve treatment accuracy.

  3. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: Image quality and system performance

    SciTech Connect

    Letourneau, Daniel . E-mail: daniel.letourneau@rmp.uhn.on.ca; Wong, Rebecca; Moseley, Douglas; Sharpe, Michael B.; Ansell, Stephen B.Sc.; Gospodarowicz, Mary; Jaffray, David A.

    2007-03-15

    Purpose: To assess the feasibility of an online strategy for palliative radiotherapy (RT) of spinal bone metastasis, which integrates imaging, planning, and treatment delivery in a single step at the treatment unit. The technical challenges of this approach include cone-beam CT (CBCT) image quality for target definition, online planning, and efficient process integration. Methods and Materials: An integrated imaging, planning, and delivery system was constructed and tested with phantoms. The magnitude of CBCT image artifacts following the use of an antiscatter grid and a nonlinear scatter correction was quantified using phantom data and images of patients receiving conventional palliative RT of the spine. The efficacy of online planning was then assessed using corrected CBCT images. Testing of the complete process was performed on phantoms with assessment of timing and dosimetric accuracy. Results: The use of image corrections reduced the cupping artifact from 30% to 4.5% on CBCT images of a body phantom and improved the accuracy of CBCT numbers (water: {+-} 20 Hounsfield unit [HU], and lung and bone: to within {+-} 130 HU). Bony anatomy was clearly visible and was deemed sufficient for target definition. The mean total time (n = 5) for application of the online approach was 23.1 min. Image-guided dose placement was assessed using radiochromic film measurements with good agreement (within 5% of dose difference and 2 mm of distance to agreement). Conclusions: The technical feasibility of CBCT-guided online planning and delivery for palliative single treatment has been demonstrated. The process was performed in one session equivalent to an initial treatment slot (<30 min) with dosimetric accuracy satisfying accepted RT standards.

  4. SU-E-J-92: On-Line Cone Beam CT Based Planning for Emergency and Palliative Radiation Therapy

    SciTech Connect

    Held, M; Morin, O; Pouliot, J

    2014-06-01

    Purpose: To evaluate and develop the feasibility of on-line cone beam CT based planning for emergency and palliative radiotherapy treatments. Methods: Subsequent to phantom studies, a case library of 28 clinical megavoltage cone beam CT (MVCBCT) was built to assess dose-planning accuracies on MVCBCT for all anatomical sites. A simple emergency treatment plan was created on the MVCBCT and copied to its reference CT. The agreement between the dose distributions of each image pair was evaluated by the mean dose difference of the dose volume and the gamma index of the central 2D axial plane. An array of popular urgent and palliative cases was also evaluated for imaging component clearance and field-of-view. Results: The treatment cases were categorized into four groups (head and neck, thorax/spine, pelvis and extremities). Dose distributions for head and neck treatments were predicted accurately in all cases with a gamma index of >95% for 2% and 2 mm criteria. Thoracic spine treatments had a gamma index as low as 60% indicating a need for better uniformity correction and tissue density calibration. Small anatomy changes between CT and MVCBCT could contribute to local errors. Pelvis and sacral spine treatment cases had a gamma index between 90% and 98% for 3%/3 mm criteria. The limited FOV became an issue for large pelvis patients. Imaging clearance was difficult for cases where the tumor was positioned far off midline. Conclusion: The MVCBCT based dose planning and delivery approach is feasible in many treatment cases. Dose distributions for head and neck patients are unrestrictedly predictable. Some FOV restrictions apply to other treatment sites. Lung tissue is most challenging for accurate dose calculations given the current imaging filters and corrections. Additional clinical cases for extremities need to be included in the study to assess the full range of site-specific planning accuracies. This work is supported by Siemens.

  5. Dosimetric Impact of Online Correction via Cone-Beam CT-Based Image Guidance for Stereotactic Lung Radiotherapy

    SciTech Connect

    Galerani, Ana Paula; Grills, Inga; Hugo, Geoffrey; Kestin, Larry; Mohammed, Nasiruddin; Chao, K. Kenneth; Suen, Andrew; Martinez, Alvaro; Yan, Di

    2010-12-01

    Purpose: To evaluate the dosimetric impact of online cone-beam computed tomography (CBCT) guided correction in lung stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty planning and 162 CBCT images from 20 patients undergoing lung SBRT were analyzed. The precorrection CBCT (CBCT after patient setup, no couch correction) was registered to planning CT using soft tissue; couch shift was applied, with a second CBCT for verification (postcorrection CBCT). Targets and normal structures were delineated on CBCTs: gross tumor volume (GTV), clinical target volume (CTV), cord, esophagus, lung, proximal bronchial tree, and aorta. Dose distributions on all organs manifested on each CBCT were compared with those planned on the CT. Results: Without CBCT guided target position correction, target dose reduced with respect to treatment plan. Mean and standard deviation of treatment dose discrepancy from the plan were -3.2% (4.9%), -2.1% (4.4%), -6.1% (10.7%), and -3.5% (7%) for GTV D{sub 99%}, GTV D{sub 95%}, CTV D{sub 99%}, and CTV D{sub 95%}, respectively. With CBCT correction, the results were -0.4% (2.6%), 0.1% (1.7%), -0.3% (4.2%), and 0.5% (3%). Mean and standard deviation of the difference in normal organ maximum dose were 2.2% (6.5%) before correction and 2.4% (5.9%) after correction for esophagus; 6.1% (14.1%) and 3.8% (8.1%) for cord; 3.1% (17.5%) and 6.2% (9.8%) for proximal bronchial tree; and 17.7% (19.5%) and 14.1% (17%) for aorta. Conclusion: Online CBCT guidance improves the accuracy of target dose delivery for lung SBRT. However, treatment dose to normal tissue can vary regardless of the correction. Normal tissues should be considered during target registration, according to target proximity.

  6. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    SciTech Connect

    Li, J; Shi, W; Andrews, D; Werner-Wasik, M; Yu, Y; Liu, H

    2015-06-15

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom was imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between TrueBeam

  7. Cardiac cone-beam CT

    SciTech Connect

    Manzke, Robert . E-mail: robert.manzke@philips.com

    2005-10-15

    This doctoral thesis addresses imaging of the heart with retrospectively gated helical cone-beam computed tomography (CT). A thorough review of the CT reconstruction literature is presented in combination with a historic overview of cardiac CT imaging and a brief introduction to other cardiac imaging modalities. The thesis includes a comprehensive chapter about the theory of CT reconstruction, familiarizing the reader with the problem of cone-beam reconstruction. The anatomic and dynamic properties of the heart are outlined and techniques to derive the gating information are reviewed. With the extended cardiac reconstruction (ECR) framework, a new approach is presented for the heart-rate-adaptive gated helical cardiac cone-beam CT reconstruction. Reconstruction assessment criteria such as the temporal resolution, the homogeneity in terms of the cardiac phase, and the smoothness at cycle-to-cycle transitions are developed. Several reconstruction optimization approaches are described: An approach for the heart-rate-adaptive optimization of the temporal resolution is presented. Streak artifacts at cycle-to-cycle transitions can be minimized by using an improved cardiac weighting scheme. The optimal quiescent cardiac phase for the reconstruction can be determined automatically with the motion map technique. Results for all optimization procedures applied to ECR are presented and discussed based on patient and phantom data. The ECR algorithm is analyzed for larger detector arrays of future cone-beam systems throughout an extensive simulation study based on a four-dimensional cardiac CT phantom. The results of the scientific work are summarized and an outlook proposing future directions is given. The presented thesis is available for public download at www.cardiac-ct.net.

  8. Monitoring tumor motion with on-line mega-voltage cone-beam computed tomography imaging in a cine mode

    NASA Astrophysics Data System (ADS)

    Reitz, Bodo; Gayou, Olivier; Parda, David S.; Miften, Moyed

    2008-02-01

    Accurate daily patient localization is becoming increasingly important in external-beam radiotherapy (RT). Mega-voltage cone-beam computed tomography (MV-CBCT) utilizing a therapy beam and an on-board electronic portal imager can be used to localize tumor volumes and verify the patient's position prior to treatment. MV-CBCT produces a static volumetric image and therefore can only account for inter-fractional changes. In this work, the feasibility of using the MV-CBCT raw data as a fluoroscopic series of portal images to monitor tumor changes due to e.g. respiratory motion was investigated. A method was developed to read and convert the CB raw data into a cine. To improve the contrast-to-noise ratio on the MV-CB projection data, image post-processing with filtering techniques was investigated. Volumes of interest from the planning CT were projected onto the MV-cine. Because of the small exposure and the varying thickness of the patient depending on the projection angle, soft-tissue contrast was limited. Tumor visibility as a function of tumor size and projection angle was studied. The method was well suited in the upper chest, where motion of the tumor as well as of the diaphragm could be clearly seen. In the cases of patients with non-small cell lung cancer with medium or large tumor masses, we verified that the tumor mass was always located within the PTV despite respiratory motion. However for small tumors the method is less applicable, because the visibility of those targets becomes marginal. Evaluation of motion in non-superior-inferior directions might also be limited for small tumor masses. Viewing MV-CBCT data in a cine mode adds to the utility of MV-CBCT for verification of tumor motion and for deriving individualized treatment margins.

  9. Dosimetric Advantages of Four-Dimensional Adaptive Image-Guided Radiotherapy for Lung Tumors Using Online Cone-Beam Computed Tomography

    SciTech Connect

    Harsolia, Asif; Hugo, Geoffrey D.; Kestin, Larry L. Grills, Inga S.; Yan Di

    2008-02-01

    Purpose: This study compares multiple planning techniques designed to improve accuracy while allowing reduced planning target volume (PTV) margins though image-guided radiotherapy (IGRT) with four-dimensional (4D) cone-beam computed tomography (CBCT). Methods and Materials: Free-breathing planning and 4D-CBCT scans were obtained in 8 patients with lung tumors. Four plans were generated for each patient: 3D-conformal, 4D-union, 4D-offline adaptive with a single correction (offline ART), and 4D-online adaptive with daily correction (online ART). For the 4D-union plan, the union of gross tumor volumes from all phases of the 4D-CBCT was created with a 5-mm expansion applied for setup uncertainty. For offline and online ART, the gross tumor volume was delineated at the mean position of tumor motion from the 4D-CBCT. The PTV margins were calculated from the random components of tumor motion and setup uncertainty. Results: Adaptive IGRT techniques provided better PTV coverage with less irradiated normal tissues. Compared with 3D plans, mean relative decreases in PTV volumes were 15%, 39%, and 44% using 4D-union, offline ART, and online ART planning techniques, respectively. This resulted in mean lung volume receiving {>=} 20Gy (V20) relative decreases of 21%, 23%, and 31% and mean lung dose relative decreases of 16%, 26%, and 31% for the 4D-union, 4D-offline ART, and 4D-online ART, respectively. Conclusions: Adaptive IGRT using CBCT is feasible for the treatment of patients with lung tumors and significantly decreases PTV volume and dose to normal tissues, allowing for the possibility of dose escalation. All analyzed 4D planning strategies resulted in improvements over 3D plans, with 4D-online ART appearing optimal.

  10. Image-Guided Radiotherapy via Daily Online Cone-Beam CT Substantially Reduces Margin Requirements for Stereotactic Lung Radiotherapy

    SciTech Connect

    Grills, Inga S. Hugo, Geoffrey; Kestin, Larry L.; Galerani, Ana Paula; Chao, K. Kenneth; Wloch, Jennifer; Yan Di

    2008-03-15

    Purpose: To determine treatment accuracy and margins for stereotactic lung radiotherapy with and without cone-beam CT (CBCT) image guidance. Methods and Materials: Acquired for the study were 308 CBCT of 24 patients with solitary peripheral lung tumors treated with stereotactic radiotherapy. Patients were immobilized in a stereotactic body frame (SBF) or alpha-cradle and treated with image guidance using daily CBCT. Four (T1) or five (T2/metastatic) 12-Gy fractions were prescribed to the planning target volume (PTV) edge. The PTV margin was {>=}5 mm depending on a pretreatment estimate of tumor excursion. Initial daily setup was according to SBF coordinates or tattoos for alpha-cradle cases. A CBCT was performed and registered to the planning CT using soft tissue registration of the target. The initial setup error/precorrection position, was recorded for the superior-inferior, anterior-posterior, and medial-lateral directions. The couch was adjusted to correct the tumor positional error. A second CBCT verified tumor position after correction. Patients were treated in the corrected position after the residual errors were {<=}2 mm. A final CBCT after treatment assessed intrafraction tumor displacement. Results: The precorrection systematic ({sigma}) and random errors ({sigma}) for the population ranged from 2-3 mm for SBF and 2-6 mm for alpha-cradle patients; postcorrection errors ranged from 0.4-1.0 mm. Calculated population margins were 9 to 13 mm (SBF) and 10-14 mm (cradle) precorrection, 1-2 mm (SBF), and 2-3 mm (cradle) postcorrection, and 2-4 mm (SBF) and 2-5 mm (cradle) posttreatment. Conclusions: Setup for stereotactic lung radiotherapy using a SBF or alpha-cradle alone is suboptimal. CBCT image guidance significantly improves target positioning and substantially reduces required target margins and normal tissue irradiation.

  11. Panoramic cone beam computed tomography

    SciTech Connect

    Chang Jenghwa; Zhou Lili; Wang Song; Clifford Chao, K. S.

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{sub cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and

  12. Dosimetric Effect of Intrafraction Motion and Residual Setup Error for Hypofractionated Prostate Intensity-Modulated Radiotherapy With Online Cone Beam Computed Tomography Image Guidance

    SciTech Connect

    Adamson, Justus; Wu Qiuwen; Yan Di

    2011-06-01

    Purpose: To quantify the dosimetric effect and margins required to account for prostate intrafractional translation and residual setup error in a cone beam computed tomography (CBCT)-guided hypofractionated radiotherapy protocol. Methods and Materials: Prostate position after online correction was measured during dose delivery using simultaneous kV fluoroscopy and posttreatment CBCT in 572 fractions to 30 patients. We reconstructed the dose distribution to the clinical tumor volume (CTV) using a convolution of the static dose with a probability density function (PDF) based on the kV fluoroscopy, and we calculated the minimum dose received by 99% of the CTV (D{sub 99}). We compared reconstructed doses when the convolution was performed per beam, per patient, and when the PDF was created using posttreatment CBCT. We determined the minimum axis-specific margins to limit CTV D{sub 99} reduction to 1%. Results: For 3-mm margins, D{sub 99} reduction was {<=}5% for 29/30 patients. Using post-CBCT rather than localizations at treatment delivery exaggerated dosimetric effects by {approx}47%, while there was no such bias between the dose convolved with a beam-specific and patient-specific PDF. After eight fractions, final cumulative D{sub 99} could be predicted with a root mean square error of <1%. For 90% of patients, the required margins were {<=}2, 4, and 3 mm, with 70%, 40%, and 33% of patients requiring no right-left (RL), anteroposterior (AP), and superoinferior margins, respectively. Conclusions: For protocols with CBCT guidance, RL, AP, and SI margins of 2, 4, and 3 mm are sufficient to account for translational errors; however, the large variation in patient-specific margins suggests that adaptive management may be beneficial.

  13. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    SciTech Connect

    Worm, Esben S.; Hoyer, Morten; Fledelius, Walther; Nielsen, Jens E.; Larsen, Lars P.; Poulsen, Per R.

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensional marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of

  14. Tilted cone beam VCT reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Hsieh, Jiang; Tang, Xiangyang

    2005-04-01

    Reconstruction algorithms for volumetric CT have been the focus of many studies. Several exact and approximate reconstruction algorithms have been proposed for step-and-shoot and helical scanning trajectories to combat cone beam related artifacts. In this paper, we present a closed form cone beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed to compensate for errors induced by the gantry tilt, none of the algorithms addresses the case in which the cone beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. Because of the rebinning process, the amount of iso-center adjustment depends not only on the projection angle and tilt angle, but also on the reconstructed pixel location. The proposed algorithm has been tested extensively on both 16 and 64 slice VCT with phantoms and clinical data. The efficacy of the algorithm is clearly demonstrated by the experiments.

  15. Funnel cone for focusing intense ion beams on a target

    SciTech Connect

    Bieniosek, F.M.; Henestroza, E.; Ni, P.

    2009-10-05

    We describe a funnel cone for concentrating an ion beam on a target. The cone utilizes the reflection characteristic of ion beams on solid walls to focus the incident beam andincrease beam intensity on target. The cone has been modeled with the TRIM code. A prototype has been tested and installed for use in the 350-keV K+ NDCX target chamber.

  16. Comparison of Localization Performance with Implanted Fiducial Markers and Cone-Beam Computed Tomography for On-line Image-Guided Radiotherapy of the Prostate

    PubMed Central

    Moseley, Douglas J; White, Elizabeth A; Wiltshire, Kirsty L; Rosewall, Tara; Sharpe, Michael B; Siewerdsen, Jeffrey H; Bissonnette, Jean-Pierre; Gospodarowicz, Mary; Warde, Padraig; Catton, Charles N; Jaffray, David A

    2007-01-01

    Purpose To assess the accuracy of kV cone-beam CT (CBCT) based setup corrections as compared to orthogonal MV portal image-based corrections for patients undergoing external-beam radiotherapy of the prostate. Method and Materials Daily cone-beam CT volumetric images were acquired after setup for patients with three intra-prostatic fiducial markers. The estimated couch shifts were compared retrospectively to patient adjustments based on two orthogonal MV portal images (the current clinical standard of care in our institution). The CBCT soft-tissue based shifts were also estimated by digitally removing the gold markers in each projection to suppress the artifacts in the reconstructed volumes. A total of 256 volumetric images for 15 patients were analyzed. Results The Pearson coefficient of correlation for the patient position shifts using fiducial markers in MV vs kV was (R2 = 0.95, 0.84, 0.81) in the L/R, A/P and S/I directions respectively. The correlation using soft-tissue matching was ((R2 = 0.90, 0.49, 0.51) in the L/R, A/P and S/I directions. A Bland-Altman analysis showed no significant trends in the data. The percentage of shifts within a +/−3mm tolerance (the clinical action level) was (99.7, 95.5, 91.3) for fiducial marker matching and (99.5, 70.3, 78.4) for soft-tissue matching. Conclusions Cone-beam CT is an accurate and precise tool for image-guidance. It provides an equivalent means of patient setup correction for prostate patients with implanted gold fiducial markers. Use of the additional information provided by the visualization of soft-tissue structures is an active area of research. PMID:17293243

  17. Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate

    SciTech Connect

    Moseley, Douglas J. . E-mail: douglas.moseley@rmp.uhn.on.ca; White, Elizabeth A.; Wiltshire, Kirsty L.; Rosewall, Tara; Sharpe, Michael B.; Siewerdsen, Jeffrey H.; Bissonnette, Jean-Pierre; Gospodarowicz, Mary; Warde, Padraig; Catton, Charles N.; Jaffray, David A.

    2007-03-01

    Purpose: The aim of this work was to assess the accuracy of kilovoltage (kV) cone-beam computed tomography (CBCT)-based setup corrections as compared with orthogonal megavoltage (MV) portal image-based corrections for patients undergoing external-beam radiotherapy of the prostate. Methods and Materials: Daily cone-beam CT volumetric images were acquired after setup for patients with three intraprostatic fiducial markers. The estimated couch shifts were compared retrospectively to patient adjustments based on two orthogonal MV portal images (the current clinical standard of care in our institution). The CBCT soft-tissue based shifts were also estimated by digitally removing the gold markers in each projection to suppress the artifacts in the reconstructed volumes. A total of 256 volumetric images for 15 patients were analyzed. Results: The Pearson coefficient of correlation for the patient position shifts using fiducial markers in MV vs. kV was (R{sup 2} = 0.95, 0.84, 0.81) in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively. The correlation using soft-tissue matching was as follows: R{sup 2} = 0.90, 0.49, 0.51 in the LR, AP and SI directions. A Bland-Altman analysis showed no significant trends in the data. The percentage of shifts within a {+-}3-mm tolerance (the clinical action level) was 99.7%, 95.5%, 91.3% for fiducial marker matching and 99.5%, 70.3%, 78.4% for soft-tissue matching. Conclusions: Cone-beam CT is an accurate and precise tool for image guidance. It provides an equivalent means of patient setup correction for prostate patients with implanted gold fiducial markers. Use of the additional information provided by the visualization of soft-tissue structures is an active area of research.

  18. Correction for ‘artificial’ electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung

    NASA Astrophysics Data System (ADS)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J.

    2013-06-01

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  19. Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung.

    PubMed

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J

    2013-06-21

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  20. Cone beam computed tomography use in orthodontics.

    PubMed

    Nervina, J M

    2012-03-01

    Cone beam computed tomography (CBCT) is widely used by orthodontists to obtain three-dimensional (3-D) images of their patients. This is of value as malocclusion results from discrepancies in three planes of space. This review tracks the use of CBCT in orthodontics, from its validation as an accurate and reliable tool, to its use in diagnosing and treatment planning, and in assessing treatment outcomes in orthodontics.

  1. Dedicated Cone-Beam CT System for Extremity Imaging

    PubMed Central

    Al Muhit, Abdullah; Zbijewski, Wojciech; Thawait, Gaurav K.; Stayman, J. Webster; Packard, Nathan; Senn, Robert; Yang, Dong; Foos, David H.; Yorkston, John; Siewerdsen, Jeffrey H.

    2014-01-01

    Purpose To provide initial assessment of image quality and dose for a cone-beam computed tomographic (CT) scanner dedicated to extremity imaging. Materials and Methods A prototype cone-beam CT scanner has been developed for imaging the extremities, including the weight-bearing lower extremities. Initial technical assessment included evaluation of radiation dose measured as a function of kilovolt peak and tube output (in milliampere seconds), contrast resolution assessed in terms of the signal difference–to-noise ratio (SDNR), spatial resolution semiquantitatively assessed by using a line-pair module from a phantom, and qualitative evaluation of cadaver images for potential diagnostic value and image artifacts by an expert CT observer (musculoskeletal radiologist). Results The dose for a nominal scan protocol (80 kVp, 108 mAs) was 9 mGy (absolute dose measured at the center of a CT dose index phantom). SDNR was maximized with the 80-kVp scan technique, and contrast resolution was sufficient for visualization of muscle, fat, ligaments and/or tendons, cartilage joint space, and bone. Spatial resolution in the axial plane exceeded 15 line pairs per centimeter. Streaks associated with x-ray scatter (in thicker regions of the patient—eg, the knee), beam hardening (about cortical bone—eg, the femoral shaft), and cone-beam artifacts (at joint space surfaces oriented along the scanning plane—eg, the interphalangeal joints) presented a slight impediment to visualization. Cadaver images (elbow, hand, knee, and foot) demonstrated excellent visibility of bone detail and good soft-tissue visibility suitable to a broad spectrum of musculoskeletal indications. Conclusion A dedicated extremity cone-beam CT scanner capable of imaging upper and lower extremities (including weight-bearing examinations) provides sufficient image quality and favorable dose characteristics to warrant further evaluation for clinical use. © RSNA, 2013 Online supplemental material is available for

  2. Dual energy approach for cone beam artifacts correction

    NASA Astrophysics Data System (ADS)

    Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk

    2017-03-01

    Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.

  3. Cone Beam Computed Tomography - Know its Secrets

    PubMed Central

    Kumar, Mohan; Shanavas, Muhammad; Sidappa, Ashwin; Kiran, Madhu

    2015-01-01

    Cone-beam computed tomography (CBCT) is an advanced imaging modality that has high clinical applications in the field of dentistry. CBCT proved to be a successful investigative modality that has been used for dental and maxillofacial imaging. Radiation exposure dose from CBCT is 10 times less than from conventional CT scans during maxillofacial exposure. Furthermore, CBCT is highly accurate and can provide a three-dimensional volumetric data in axial, sagittal and coronal planes. This article describes the basic technique, difference in CBCT from CT and main clinical applications of CBCT. PMID:25859112

  4. Setup Reproducibility for Thoracic and Upper Gastrointestinal Radiation Therapy: Influence of Immobilization Method and On-Line Cone-Beam CT Guidance

    SciTech Connect

    Li, Winnie; Moseley, Douglas J.; Bissonnette, Jean-Pierre; Purdie, Thomas G.; Bezjak, Andrea; Jaffray, David A.

    2010-01-01

    We report the setup reproducibility of thoracic and upper gastrointestinal (UGI) radiotherapy (RT) patients for 2 immobilization methods evaluated through cone-beam computed tomography (CBCT) image guidance, and present planning target volume (PTV) margin calculations made on the basis of these observations. Daily CBCT images from 65 patients immobilized in a chestboard (CB) or evacuated cushion (EC) were registered to the planning CT using automatic bony anatomy registration. The standardized region-of-interest for matching was focused around vertebral bodies adjacent to tumor location. Discrepancies >3 mm between the CBCT and CT datasets were corrected before initiation of RT and verified with a second CBCT to assess residual error (usually taken after 90 s of the initial CBCT). Positional data were analyzed to evaluate the magnitude and frequencies of setup errors before and after correction. The setup distributions were slightly different for the CB (797 scans) and EC (757 scans) methods, and the probability of adjustment at a 3-mm action threshold was not significantly different (p = 0.47). Setup displacements >10 mm in any direction were observed in 10% of CB fractions and 16% of EC fractions (p = 0.0008). Residual error distributions after CBCT guidance were equivalent regardless of immobilization method. Using a published formula, the PTV margins for the CB were L/R, 3.3 mm; S/I, 3.5 mm; and A/P, 4.6 mm), and for EC they were L/R, 3.7 mm; S/I, 3.3 mm; and A/P, 4.6 mm. In the absence of image guidance, the CB slightly outperformed the EC in precision. CBCT allows reduction to a single immobilization system that can be chosen for efficiency, logistics, and cost. Image guidance allows for increased geometric precision and accuracy and supports a corresponding reduction in PTV margin.

  5. Cone beam computed tomography in endodontics.

    PubMed

    Durack, Conor; Patel, Shanon

    2012-01-01

    Cone beam computed tomography (CBCT) is a contemporary, radiological imaging system designed specifically for use on the maxillo-facial skeleton. The system overcomes many of the limitations of conventional radiography by producing undistorted, three-dimensional images of the area under examination. These properties make this form of imaging particularly suitable for use in endodontics. The clinician can obtain an enhanced appreciation of the anatomy being assessed, leading to an improvement in the detection of endodontic disease and resulting in more effective treatment planning. In addition, CBCT operates with a significantly lower effective radiation dose when compared with conventional computed tomography (CT). The purpose of this paper is to review the current literature relating to the limitations and potential applications of CBCT in endodontic practice.

  6. Accuracy of Ultrasound-Based Image Guidance for Daily Positioning of the Upper Abdomen: An Online Comparison With Cone Beam CT

    SciTech Connect

    Boda-Heggemann, Judit Mennemeyer, Philipp; Wertz, Hansjoerg; Riesenacker, Nadja; Kuepper, Beate; Lohr, Frank; Wenz, Frederik

    2009-07-01

    Purpose: Image-guided intensity-modulated radiotherapy can improve protection of organs at risk when large abdominal target volumes are irradiated. We estimated the daily positioning accuracy of ultrasound-based image guidance for abdominal target volumes by a direct comparison of daily imaging obtained with cone beam computed tomography (CBCT). Methods and Materials: Daily positioning (n = 83 positionings) of 15 patients was completed by using ultrasound guidance after an initial CBCT was obtained. Residual error after ultrasound was estimated by comparison with a second CBCT. Ultrasound image quality was visually rated using a scale of 1 to 4. Results: Of 15 patients, 7 patients had good sonographic imaging quality, 5 patients had satisfactory sonographic quality, and 3 patients were excluded because of unsatisfactory sonographic quality. When image quality was good, residual errors after ultrasound were -0.1 {+-} 3.11 mm in the x direction (left-right; group systematic error M = -0.09 mm; standard deviation [SD] of systematic error, {sigma} = 1.37 mm; SD of the random error, {sigma} = 2.99 mm), 0.93 {+-} 4.31 mm in the y direction (superior-inferior, M = 1.12 mm; {sigma} = 2.96 mm; {sigma} = 3.39 mm), and 0.71 {+-} 3.15 mm in the z direction (anteroposterior; M = 1.01 mm; {sigma} = 2.46 mm; {sigma} = 2.24 mm). For patients with satisfactory image quality, residual error after ultrasound was -0.6 {+-} 5.26 mm in the x (M = 0.07 mm; {sigma} = 5.67 mm; {sigma} = 4.86 mm), 1.76 {+-} 4.92 mm in the y (M = 3.54 mm; {sigma} = 4.1 mm; {sigma} = 5.29 mm), and 1.19 {+-} 4.75 mm in the z (M = 0.82 mm; {sigma} = 2.86 mm; {sigma} = 3.05 mm) directions. Conclusions: In patients from whom good sonographic image quality could be obtained, ultrasound improved daily positioning accuracy. In the case of satisfactory image quality, ultrasound guidance improved accuracy compared to that of skin marks only minimally. If sonographic image quality was unsatisfactory, daily CBCT

  7. Accuracy of Ultrasound-Based (BAT) Prostate-Repositioning: A Three-Dimensional On-Line Fiducial-Based Assessment With Cone-Beam Computed Tomography

    SciTech Connect

    Boda-Heggemann, Judit Koehler, Frederick Marc; Kuepper, Beate; Wolff, Dirk; Wertz, Hansjoerg; Mai, Sabine; Hesser, Juergen; Lohr, Frank; Wenz, Frederik

    2008-03-15

    Purpose: To assess the accuracy of ultrasound-based repositioning (BAT) before prostate radiation with fiducial-based three-dimensional matching with cone-beam computed tomography (CBCT). Patients and Methods: Fifty-four positionings in 8 patients with {sup 125}I seeds/intraprostatic calcifications as fiducials were evaluated. Patients were initially positioned according to skin marks and after this according to bony structures based on CBCT. Prostate position correction was then performed with BAT. Residual error after repositioning based on skin marks, bony anatomy, and BAT was estimated by a second CBCT based on user-independent automatic fiducial registration. Results: Overall mean value (MV {+-} SD) residual error after BAT based on fiducial registration by CBCT was 0.7 {+-} 1.7 mm in x (group systematic error [M] = 0.5 mm; SD of systematic error [{sigma}] = 0.8 mm; SD of random error [{sigma}] = 1.4 mm), 0.9 {+-} 3.3 mm in y (M = 0.5 mm, {sigma} = 2.2 mm, {sigma} = 2.8 mm), and -1.7 {+-} 3.4 mm in z (M = -1.7 mm, {sigma} = 2.3 mm, {sigma} = 3.0 mm) directions, whereas residual error relative to positioning based on skin marks was 2.1 {+-} 4.6 mm in x (M = 2.6 mm, {sigma} = 3.3 mm, {sigma} = 3.9 mm), -4.8 {+-} 8.5 mm in y (M = -4.4 mm, {sigma} = 3.7 mm, {sigma} = 6.7 mm), and -5.2 {+-} 3.6 mm in z (M = -4.8 mm, {sigma} = 1.7 mm, {sigma} = 3.5mm) directions and relative to positioning based on bony anatomy was 0 {+-} 1.8 mm in x (M = 0.2 mm, {sigma} = 0.9 mm, {sigma} = 1.1 mm), -3.5 {+-} 6.8 mm in y (M = -3.0 mm, {sigma} = 1.8 mm, {sigma} = 3.7 mm), and -1.9 {+-} 5.2 mm in z (M = -2.0 mm, {sigma} = 1.3 mm, {sigma} = 4.0 mm) directions. Conclusions: BAT improved the daily repositioning accuracy over skin marks or even bony anatomy. The results obtained with BAT are within the precision of extracranial stereotactic procedures and represent values that can be achieved with several users with different education levels. If sonographic visibility is insufficient

  8. Generalized Fourier slice theorem for cone-beam image reconstruction.

    PubMed

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  9. A collaborative analysis of stereotactic lung radiotherapy outcomes for early-stage non-small-cell lung cancer using daily online cone-beam computed tomography image-guided radiotherapy.

    PubMed

    Grills, Inga Siiner; Hope, Andrew J; Guckenberger, Matthias; Kestin, Larry L; Werner-Wasik, Maria; Yan, Di; Sonke, Jan-Jakob; Bissonnette, Jean-Pierre; Wilbert, Juergen; Xiao, Ying; Belderbos, Jose

    2012-09-01

    We report lung stereotactic-body radiotherapy (SBRT) outcomes for a large pooled cohort treated using daily online cone-beam computed tomography. Five hundred and five stage I-IIB (T1-3N0M0) non-small-cell lung cancer (NSCLC) cases underwent SBRT using cone-beam computed tomography image guidance at five international institutions from 1998 to 2010. Median age was 74 years (range, 42-92) whereas median forced expiratory volume in 1 second/diffusing lung capacity for carbon monoxide were 1.4 liter (65%) and 10.8 ml/min/mmHg (53%). Of the 505 cases, 64% were biopsy proven and 87% medically inoperable. Staging was: IA 63%, IB 33%, IIA 2%, and recurrent 1%. Median max tumor dimension was 2.6 cm (range, 0.9-8.5). Median heterogeneously calculated volumetric prescription dose (PD) was 54 Gy (range, 20-64 Gy) in three fractions (range, 1-15) over 8 days (range, 1-27). Median biologically equivalent PD biological equivalent doses (BED10) was 132 Gy (range, 60-180). With a median follow-up of 1.6 years (range, 0.1-7.3), the 2-year Kaplan-Meier local control (LC), regional control, and distant metastasis (DM) rates were 94%, 89%, and 20%, respectively, whereas cause-specific and overall survival were 87% and 60% (78% operable, 58% inoperable, p = 0.01), respectively. Stage, gross-tumor volume size (≥ 2.7 cm) and PD(BED10) predicted local relapse (LR) and DM. LR was 15% for BED10 less than 105 Gy versus 4% for BED10 of 105 Gy or more (p < 0.001); DM was 31% versus 18% for BED10 less than 105 versus 105 Gy or more (p = 0.01). On multivariate analysis, PD(BED10) and elapsed days during radiotherapy predicted LR; gross-tumor volume size predicted DM. Grade 2 or higher pneumonitis, rib fracture, myositis, and dermatitis were 7%, 3%, 1%, and 2%, respectively. In the largest early-stage NSCLC SBRT data set to date, a high rate of local control was achieved, which was correlated with a PD(BED10) of 105 Gy or more. Failures were primarily distant, severe toxicities were rare, and

  10. Skeletal dosimetry in cone beam computed tomography

    SciTech Connect

    Walters, B. R. B.; Ding, G. X.; Kramer, R.; Kawrakow, I.

    2009-07-15

    Cone beam computed tomography (CBCT) is a relatively new patient imaging technique that has proved invaluable for treatment target verification and patient positioning during image-guided radiotherapy (IGRT). It has been shown that CBCT results in additional dose to bone that may amount to 10% of the prescribed dose. In this study, voxelized human phantoms, FAX06 (adult female) and MAX06 (adult male), are used together with phase-space data collected from a realistic model of a CBCT imager to calculate dose in the red bone marrow (RBM) and bone surface cells (BSCs), the two organs at risk within the bone spongiosa, during simulated head and neck, chest and pelvis CBCT scans. The FAX06/MAX06 phantoms model spongiosa based on micro-CT images, filling the relevant phantom voxels, which are 0.12x0.12x0.12 cm{sup 3}, with 17x17x17 {mu}m{sup 3} microvoxels to form a micromatrix of trabecular bone and bone marrow. FAX06/MAX06 have already been implemented in an EGSnrc-based Monte Carlo code to simulate radiation transport in the phantoms; however, this study required significant modifications of the code to allow use of phase-space data from a simulated CBCT imager as a source and to allow scoring of total dose, RBM dose and BSC dose on a voxel-by-voxel basis. In simulated CBCT scans, the BSC dose is significantly greater than the dose to other organs at risk. For example, in a simulated head and neck scan, the average BSC dose is 25% higher than the average dose to eye lens ({approx}8.3 cGy), and 80% greater than the average dose to brain (5.7 cGy). Average dose to RBM, on the other hand, is typically only {approx}50% of the average BSC dose and less than the dose to other organs at risk (54% of the dose to eye lens and 76% of dose to brain in a head and neck scan). Thus, elevated dose in bone due to CBCT results in elevated BSC dose. This is potentially of concern when using CBCT in conjunction with radiotherapy treatment.

  11. Automated planning of breast radiotherapy using cone beam CT imaging

    SciTech Connect

    Amit, Guy; Purdie, Thomas G.

    2015-02-15

    Purpose: Develop and clinically validate a methodology for using cone beam computed tomography (CBCT) imaging in an automated treatment planning framework for breast IMRT. Methods: A technique for intensity correction of CBCT images was developed and evaluated. The technique is based on histogram matching of CBCT image sets, using information from “similar” planning CT image sets from a database of paired CBCT and CT image sets (n = 38). Automated treatment plans were generated for a testing subset (n = 15) on the planning CT and the corrected CBCT. The plans generated on the corrected CBCT were compared to the CT-based plans in terms of beam parameters, dosimetric indices, and dose distributions. Results: The corrected CBCT images showed considerable similarity to their corresponding planning CTs (average mutual information 1.0±0.1, average sum of absolute differences 185 ± 38). The automated CBCT-based plans were clinically acceptable, as well as equivalent to the CT-based plans with average gantry angle difference of 0.99°±1.1°, target volume overlap index (Dice) of 0.89±0.04 although with slightly higher maximum target doses (4482±90 vs 4560±84, P < 0.05). Gamma index analysis (3%, 3 mm) showed that the CBCT-based plans had the same dose distribution as plans calculated with the same beams on the registered planning CTs (average gamma index 0.12±0.04, gamma <1 in 99.4%±0.3%). Conclusions: The proposed method demonstrates the potential for a clinically feasible and efficient online adaptive breast IMRT planning method based on CBCT imaging, integrating automation.

  12. Concrescence: Cone-Beam Computed Tomography Imaging Perspective

    PubMed Central

    Alluri, LeelaSubhashini Choudary; Mallela, Dhiraj

    2016-01-01

    Concrescence is a form of twinning, formed by the confluence of cementum of two teeth at the root level. The diagnosis of concrescence has largely relied on the conventional 2D imaging. The 2D imaging has inherent limitations such as distortion and superimposition. Cone-Beam CT eliminates these limitations. The aim of this article was to describe a case of dental abnormality using Cone-Beam CT imaging modality. Volumetric data demonstrated confluence of left mandibular third molar with a paramolar, a supernumerary tooth. To our knowledge, this is the second case in the dental literature reported demonstrating the use of Cone-Beam CT in the diagnosis of concrescence. PMID:27800194

  13. [Accurate 3D free-form registration between fan-beam CT and cone-beam CT].

    PubMed

    Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun

    2012-06-01

    Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.

  14. Cone-beam image reconstruction using spherical harmonics.

    PubMed

    Taguchi, K; Zeng, G L; Gullberg, G T

    2001-06-01

    Image reconstruction from cone-beam projections is required for both x-ray computed tomography (CT) and single photon emission computed tomography (SPECT). Grangeat's algorithm accurately performs cone-beam reconstruction provided that Tuy's data sufficiency condition is satisfied and projections are complete. The algorithm consists of three stages: (a) Forming weighted plane integrals by calculating the line integrals on the cone-beam detector, and obtaining the first derivative of the plane integrals (3D Radon transform) by taking the derivative of the weighted plane integrals. (b) Rebinning the data and calculating the second derivative with respect to the normal to the plane. (c) Reconstructing the image using the 3D Radon backprojection. A new method for implementing the first stage of Grangeat's algorithm was developed using spherical harmonics. The method assumes that the detector is large enough to image the whole object without truncation. Computer simulations show that if the trajectory of the cone vertex satisfies Tuy's data sufficiency condition, the proposed algorithm provides an exact reconstruction.

  15. Cardiac cone-beam CT volume reconstruction using ART

    SciTech Connect

    Nielsen, T.; Manzke, R.; Proksa, R.; Grass, M.

    2005-04-01

    Modern computed tomography systems allow volume imaging of the heart. Up to now, approximately two-dimensional (2D) and 3D algorithms based on filtered backprojection are used for the reconstruction. These algorithms become more sensitive to artifacts when the cone angle of the x-ray beam increases as it is the current trend of computed tomography (CT) technology. In this paper, we investigate the potential of iterative reconstruction based on the algebraic reconstruction technique (ART) for helical cardiac cone-beam CT. Iterative reconstruction has the advantages that it takes the cone angle into account exactly and that it can be combined with retrospective cardiac gating fairly easily. We introduce a modified ART algorithm for cardiac CT reconstruction. We apply it to clinical cardiac data from a 16-slice CT scanner and compare the images to those obtained with a current analytical reconstruction method. In a second part, we investigate the potential of iterative reconstruction for a large area detector with 256 slices. For the clinical cases, iterative reconstruction produces excellent images of diagnostic quality. For the large area detector, iterative reconstruction produces images superior to analytical reconstruction in terms of cone-beam artifacts.

  16. WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction

    SciTech Connect

    Yan, H; Folkerts, M; Jiang, S; Jia, X; Wang, X; Bai, T; Lu, W

    2014-06-15

    Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistency between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)

  17. Use of cone beam computed tomography in otolaryngologic treatments.

    PubMed

    Cakli, Hamdi; Cingi, Cemal; Ay, Yazgi; Oghan, Fatih; Ozer, Torun; Kaya, Ercan

    2012-03-01

    Cone beam computed tomography (CBCT) allows us to evaluate 3-dimensional (3D) morphology of the maxillofacial skeleton and also used in dentomaxillofacial imaging to solve complex diagnostic and treatment planning problems such as craniofacial fractures, temporamandibular dysfunctions or sinus imaging. CBCT uses a rectangular or round 2D detector, which allows a single rotation of the gantry to generate a scan of the entire region of interest. Technological and application-specific factors such as development of compact, relatively low-cost, high-quality, large, flat-panel detector arrays; the availability of low-cost computers with processing power sufficient for cone beam image reconstruction; the fabrication of highly efficient radiograph tubes capable of multiple exposures necessary for cone beam scanning at prices lower than those currently used for fan beam CT; and limited volume scanning (e.g., head and neck) eliminating the need for subsecond gantry rotation speeds make this possible. The objective of this study is to review published evidence for CBCT having an important role in ORL treatments. We aimed to review all the available literature about the CBCT imagination in ORL treatments. Systematic literature search was performed using PubMed and Ovid. Additional literature was retrieved from reference lists in the articles. Systematic analysis of the literature from 1998 to 2010 was performed. A total of 40 abstracts were evaluated independently by two members of the project group, and 38 articles were included in the review.

  18. The frequency split method for helical cone-beam reconstruction.

    PubMed

    Shechter, G; Köhler, Th; Altman, A; Proksa, R

    2004-08-01

    A new approximate method for the utilization of redundant data in helical cone-beam CT is presented. It is based on the observation that the original WEDGE method provides excellent image quality if only little more than 180 degrees data are used for back-projection, and that significant low-frequency artifacts appear if a larger amount of redundant data are used. This degradation is compensated by the frequency split method: The low-frequency part of the image is reconstructed using little more than 180 degrees of data, while the high frequency part is reconstructed using all data. The resulting algorithm shows no cone-beam artifacts in a simulation of a 64-row scanner. It is further shown that the frequency split method hardly degrades the signal-to-noise ratio of the reconstructed images and that it behaves robustly in the presence of motion.

  19. [Radiation output evaluation of kilovoltage cone beam CT unit].

    PubMed

    Wang, Yunlai; Liao, Xiongfei; Ge, Ruigang

    2011-09-01

    To evaluate the radiation output and stability of linac-integrated kV cone beam CT unit. Air kermas in radiographic mode were measured with 0.6 cc ion chamber and Unidos electrometer for Synergy-integrated XVI kV cone beam CT unit. Air kermas vs image frames were measured in fluoroscopic mode. Output stability and depth doses were measured. The air kerma increased quadratically with the increased tube voltage, while increasing linearly with the tube current, exposure time, and number of frames. The radiation output stability and its change with the gantry angle were within +/-1%. The percentage depth dose increased with higher tube voltage. The radiation output of XVI is stable. The radiation outputs change considerably with the preset parameters. Parameters should be optimally chosen to reduce the patient dose.

  20. Use of Cone Beam Computed Tomography in Endodontics

    PubMed Central

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  1. Cone beam CT in orthodontics: the current picture.

    PubMed

    Makdissi, Jimmy

    2013-03-01

    The introduction of cone beam computed tomography (CBCT) technology to dentistry and orthodontics revolutionized the diagnosis, treatment and monitoring of orthodontic patients. This review article discusses the use of CBCT in diagnosis and treatment planning in orthodontics. The steps required to install and operate a CBCT facility within the orthodontic practice as well as the challenges are highlighted. The available guidelines in relation to the clinical applications of CBCT in orthodontics are explored.

  2. Cone beam computed tomography in Endodontics - a review.

    PubMed

    Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K

    2015-01-01

    Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics.

  3. Cone beam computed tomography scanning and diagnosis for dental implants.

    PubMed

    Greenberg, Alex M

    2015-05-01

    Cone beam computed tomography (CBCT) has become an important new technology for oral and maxillofacial surgery practitioners. CBCT provides improved office-based diagnostic capability and applications for surgical procedures, such as CT guidance through the use of computer-generated drill guides. A thorough knowledge of the basic science of CBCT as well as the ability to interpret the images correctly and thoroughly is essential to current practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cone Beam Computed Tomography for the Implant Patient

    PubMed Central

    Angelopoulos, Christos; Aghaloo, Tara

    2017-01-01

    Cone beam CT scanning has brought a new dimension to dentistry for the implant patient. In all aspects of diagnosis, treatment planning, surgical preparation and execution, follow-up, and management of complications, we now can treat our patients with increased precision and predictability. However, as with all new technology, we must consider the added cost to the overall treatment and the risks vs. benefits to each individual patient. PMID:21094723

  5. Cone beam 3D reconstruction with double circular trajectory

    SciTech Connect

    Rizo, P. CEA Centre d'Etudes Nucleaires de Grenoble, 38 . Lab. d'Electronique et de Technologie de l'Informatique); Grangeat, P.; Sire, P.; Lemasson, P. . Lab. d'Electronique et de Technologie de l'Informatique); Delageniere, S. )

    1990-11-01

    In x-ray cone beam tomography the only planar source trajectory which do not produce incomplete data is the infinite line. This kind of source trajectory is not experimentally doable. To ensure a complete data acquisition with cone beam radiographs, a set of non planar trajectory has been studied. Among the trajectories proposed in the literature a simple one is the set of 2 circular trajectories with intersection of the two circular trajectories with intersection of the two trajectory axis. The angle between the two axis is related to the maximum aperture of the cone beam. We propose here an exact method to perform this reconstruction using the 3D radon transform of the object. The modulation transfer function (MTF) of this algorithm remain identical to the MTF on the central slice of reconstruction with single circular trajectory. The density relative mean square error stays within 2% for an aperture of {plus minus}30{degree}. With single circular trajectory the relative mean square error may reach 20% at the same aperture. With double circular trajectory, horizontal artifacts are almost suppressed. 12 refs., 5 figs.

  6. Orthogonal-rotating tetrahedral scanning for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Ye, Ivan B.; Wang, Ge

    2012-10-01

    In this article, a cone-beam CT scanning mode is designed assuming four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite to each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. Several scanning schemes are proposed which consist of two rotations about orthogonal axes, such that each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired. Similar scanning schemes based on other regular or irregular polyhedra and various rotation speeds are also discussed.

  7. Commissioning kilovoltage cone-beam CT beams in a radiation therapy treatment planning system.

    PubMed

    Alaei, Parham; Spezi, Emiliano

    2012-11-08

    The feasibility of accounting of the dose from kilovoltage cone-beam CT in treatment planning has been discussed previously for a single cone-beam CT (CBCT) beam from one manufacturer. Modeling the beams and computing the dose from the full set of beams produced by a kilovoltage cone-beam CT system requires extensive beam data collection and verification, and is the purpose of this work. The beams generated by Elekta X-ray volume imaging (XVI) kilovoltage CBCT (kV CBCT) system for various cassettes and filters have been modeled in the Philips Pinnacle treatment planning system (TPS) and used to compute dose to stack and anthropomorphic phantoms. The results were then compared to measurements made using thermoluminescent dosimeters (TLDs) and Monte Carlo (MC) simulations. The agreement between modeled and measured depth-dose and cross profiles is within 2% at depths beyond 1 cm for depth-dose curves, and for regions within the beam (excluding penumbra) for cross profiles. The agreements between TPS-calculated doses, TLD measurements, and Monte Carlo simulations are generally within 5% in the stack phantom and 10% in the anthropomorphic phantom, with larger variations observed for some of the measurement/calculation points. Dose computation using modeled beams is reasonably accurate, except for regions that include bony anatomy. Inclusion of this dose in treatment plans can lead to more accurate dose prediction, especially when the doses to organs at risk are of importance.

  8. A One-Step Cone-Beam CT-Enabled Planning-to-Treatment Model for Palliative Radiotherapy-From Development to Implementation

    SciTech Connect

    Wong, Rebecca K.S.; Letourneau, Daniel; Varma, Anita; Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine; Martin, Melanie; Bezjak, Andrea; Panzarella, Tony; Gospodarowicz, Mary; Jaffray, David A.

    2012-11-01

    Purpose: To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. Methods and Materials: A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry ({<=}2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Results: Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% {+-} 11% and 97% {+-} 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% {+-} 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% {+-} 2% and 97% {+-} 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 {+-} 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. Conclusions: The cone-beam CT

  9. A one-step cone-beam CT-enabled planning-to-treatment model for palliative radiotherapy-from development to implementation.

    PubMed

    Wong, Rebecca K S; Letourneau, Daniel; Varma, Anita; Bissonnette, Jean Pierre; Fitzpatrick, David; Grabarz, Daniel; Elder, Christine; Martin, Melanie; Bezjak, Andrea; Panzarella, Tony; Gospodarowicz, Mary; Jaffray, David A

    2012-11-01

    To develop a cone-beam computed tomography (CT)-enabled one-step simulation-to-treatment process for the treatment of bone metastases. A three-phase prospective study was conducted. Patients requiring palliative radiotherapy to the spine, mediastinum, or abdomen/pelvis suitable for treatment with simple beam geometry (≤2 beams) were accrued. Phase A established the accuracy of cone-beam CT images for the purpose of gross tumor target volume (GTV) definition. Phase B evaluated the feasibility of implementing the cone-beam CT-enabled planning process at the treatment unit. Phase C evaluated the online cone-beam CT-enabled process for the planning and treatment of patients requiring radiotherapy for bone metastases. Eighty-four patients participated in this study. Phase A (n = 9) established the adequacy of cone-beam CT images for target definition. Phase B (n = 45) established the quality of treatment plans to be adequate for clinical implementation for bone metastases. When the process was applied clinically in bone metastases (Phase C), the degree of overlap between planning computed tomography (PCT) and cone-beam CT for GTV and between PCT and cone-beam CT for treatment field was 82% ± 11% and 97% ± 4%, respectively. The oncologist's decision to accept the plan under a time-pressured environment remained of high quality, with the cone-beam CT-generated treatment plan delivering at least 90% of the prescribed dose to 100% ± 0% of the cone-beam CT planning target volume (PTV). With the assumption that the PCT PTV is the gold-standard target, the cone-beam CT-generated treatment plan delivered at least 90% and at least 95% of dose to 98% ± 2% and 97% ± 5% of the PCT PTV, respectively. The mean time for the online planning and treatment process was 32.7 ± 4.0 minutes. Patient satisfaction was high, with a trend for superior satisfaction with the cone-beam CT-enabled process. The cone-beam CT-enabled palliative treatment process is feasible and is ready for

  10. Fundamentals of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2015-01-01

    Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10-70 s) and radiation dosages reportedly up to 15-100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  11. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  12. Rapidly converging multigrid reconstruction of cone-beam tomographic data

    NASA Astrophysics Data System (ADS)

    Myers, Glenn R.; Kingston, Andrew M.; Latham, Shane J.; Recur, Benoit; Li, Thomas; Turner, Michael L.; Beeching, Levi; Sheppard, Adrian P.

    2016-10-01

    In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.

  13. Auto calibration of a cone-beam-CT

    SciTech Connect

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-10-15

    Purpose: This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. Methods: The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, 'Geometric misalignment and calibration in cone-beam tomography,' Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, 'A geometric calibration method for cone beam CT systems,' Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to

  14. Auto calibration of a cone-beam-CT.

    PubMed

    Gross, Daniel; Heil, Ulrich; Schulze, Ralf; Schoemer, Elmar; Schwanecke, Ulrich

    2012-10-01

    This paper introduces a novel autocalibration method for cone-beam-CTs (CBCT) or flat-panel CTs, assuming a perfect rotation. The method is based on ellipse-fitting. Autocalibration refers to accurate recovery of the geometric alignment of a CBCT device from projection images alone, without any manual measurements. The authors use test objects containing small arbitrarily positioned radio-opaque markers. No information regarding the relative positions of the markers is used. In practice, the authors use three to eight metal ball bearings (diameter of 1 mm), e.g., positioned roughly in a vertical line such that their projection image curves on the detector preferably form large ellipses over the circular orbit. From this ellipse-to-curve mapping and also from its inversion the authors derive an explicit formula. Nonlinear optimization based on this mapping enables them to determine the six relevant parameters of the system up to the device rotation angle, which is sufficient to define the geometry of a CBCT-machine assuming a perfect rotational movement. These parameters also include out-of-plane rotations. The authors evaluate their method by simulation based on data used in two similar approaches [L. Smekal, M. Kachelriess, S. E, and K. Wa, "Geometric misalignment and calibration in cone-beam tomography," Med. Phys. 31(12), 3242-3266 (2004); K. Yang, A. L. C. Kwan, D. F. Miller, and J. M. Boone, "A geometric calibration method for cone beam CT systems," Med. Phys. 33(6), 1695-1706 (2006)]. This allows a direct comparison of accuracy. Furthermore, the authors present real-world 3D reconstructions of a dry human spine segment and an electronic device. The reconstructions were computed from projections taken with a commercial dental CBCT device having two different focus-to-detector distances that were both calibrated with their method. The authors compare their reconstruction with a reconstruction computed by the manufacturer of the CBCT device to demonstrate the

  15. Cone beam geometry for small objects in phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Jonas, P.; Louis, A. K.

    2013-09-01

    Phase contrast tomography has developed rapidly within the last ten years. The new method enables the reconstruction of the refraction index in addition to the attenuation coefficient and can therefore be very well applied to samples which are only weakly absorbing. First studies in phase contract tomography were done using synchrotron devices which are modeled by the so-called parallel geometry. Samples studied so far are special foams and fiber materials, see Cloetens et al (1999 App. Phys. Lett. 75 2912-4), which give almost no contrast due to absorption but provide excellent images in phase contrast. Recently tubes were successfully applied to a variety of applications. These laboratory devices no longer fulfil the requirement of a parallel geometry but need to be treated as a fan/cone beam geometry. In this paper we derive a mathematical model for cone beam geometry in phase contrast tomography in two and three dimensions for objects small compared to the two distances of object to detector and x-ray source to object. All approximations needed are analyzed and an efficient reconstruction method providing both phase and absorption in a single step is derived, based on the method by Louis and Maaß (1990 Inverse Problems 6 427-39). The reconstruction method is successfully tested using numerical examples with simulated phantom data.

  16. A unified framework for exact cone-beam reconstruction formulas.

    PubMed

    Zhao, Shiying; Yu, Hengyong; Wang, Ge

    2005-06-01

    In this paper, we present concise proofs of several recently developed exact cone-beam reconstruction methods in the Tuy inversion framework, including both filtered-backprojection and backprojection-filtration formulas in the cases of standard spiral, nonstandard spiral, and more general scanning loci. While a similar proof of the Katsevich formula was previously reported, we present a new proof of the Zou and Pan backprojection-filtration formula. Our proof combines both odd and even data extensions so that only the cone-beam transform itself is utilized in the backprojection-filtration inversion. More importantly, our formulation is valid for general smooth scanning curves, in agreement with an earlier paper from our group [Ye, Zhao, Yu, and Wang, Proc. SPIE 5535, 293-300 (Aug. 6 2004)]. As a consequence of that proof, we obtain a new inversion formula, which is in a two-dimensional filtering backprojection format. A possibility for generalization of the Katsevich filtered-backprojection reconstruction method is also discussed from the viewpoint of this framework.

  17. Development of a 3D CT scanner using cone beam

    NASA Astrophysics Data System (ADS)

    Endo, Masahiro; Kamagata, Nozomu; Sato, Kazumasa; Hattori, Yuichi; Kobayashi, Shigeo; Mizuno, Shinichi; Jimbo, Masao; Kusakabe, Masahiro

    1995-05-01

    In order to acquire 3D data of high contrast objects such as bone, lung and vessels enhanced by contrast media for use in 3D image processing, we have developed a 3D CT-scanner using cone beam x ray. The 3D CT-scanner consists of a gantry and a patient couch. The gantry consists of an x-ray tube designed for cone beam CT and a large area two-dimensional detector mounted on a single frame and rotated around an object in 12 seconds. The large area detector consists of a fluorescent plate and a charge coupled device video camera. The size of detection area was 600 mm X 450 mm capable of covering the total chest. While an x-ray tube was rotated around an object, pulsed x ray was exposed 30 times a second and 360 projected images were collected in a 12 second scan. A 256 X 256 X 256 matrix image (1.25 mm X 1.25 mm X 1.25 mm voxel) was reconstructed by a high-speed reconstruction engine. Reconstruction time was approximately 6 minutes. Cylindrical water phantoms, anesthetized rabbits with or without contrast media, and a Japanese macaque were scanned with the 3D CT-scanner. The results seem promising because they show high spatial resolution in three directions, though there existed several point to be improved. Possible improvements are discussed.

  18. Incidental Findings on Cone Beam Computed Tomography Images

    PubMed Central

    Allareddy, Veeratrishul; Vincent, Steven D.; Hellstein, John W.; Qian, Fang; Smoker, Wendy R. K.; Ruprecht, Axel

    2012-01-01

    Background. Cone beam computed tomography (CBCT) has gained widespread acceptance in dentistry for a variety of applications. Most dentists who are not radiologists/trained in radiology are generally not familiar with interpretation of anatomical structures and/or pathosis outside their area of primary interest, as often this was not within the scope of their training. Objectives. To assess that the number of incidental findings on a CBCT scan is high both within and outside of the primary area of interest, thereby emphasizing the importance of interpretation of all areas visualized on the scan. Materials and Methods. An oral and maxillofacial radiologist reviewed 1000 CBCT scans (382 males and 618 females) for findings both in- and outside the area of interest. Results. Of the 1000 subjects that were reviewed, 943 scans showed findings in the primary regions of interest and/or outside the regions of interest, and 76 different conditions were visualized in these scans both in and outside the areas of interest. Conclusion. From the wide scope of findings noted on these scans, it can be concluded that it is essential that a person trained in advanced interpretation techniques in radiology interprets cone beam computed tomography scans. PMID:23304148

  19. A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT.

    PubMed

    Li, Liang; Xing, Yuxiang; Chen, Zhiqiang; Zhang, Li; Kang, Kejun

    2011-01-01

    Circular cone-beam CT is one of the most popular configurations in both medical and industrial applications. The FDK algorithm is the most popular method for circular cone-beam CT. However, with increasing cone-angle the cone-beam artifacts associated with the FDK algorithm deteriorate because the circular trajectory does not satisfy the data sufficiency condition. Along with an experimental evaluation and verification, this paper proposed a curve-filtered FDK (C-FDK) algorithm. First, cone-parallel projections are rebinned from the native cone-beam geometry in two separate directions. C-FDK rebins and filters projections along different curves from T-FDK in the centrally virtual detector plane. Then, numerical experiments are done to validate the effectiveness of the proposed algorithm by comparing with both FDK and T-FDK reconstruction. Without any other extra trajectories supplemental to the circular orbit, C-FDK has a visible image quality improvement.

  20. Experimental studies of SPECT scintimammography with combined cone-beam and parallel-beam collimators

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Feiglin, David H.; Gangal, K. R.; Coman, Ioana L.; Salgado, Roberto B.; Lipson, Edward D.; Karczewski, Deborah A.; Thomas, Frank D.

    2003-05-01

    Conventional SPECT Tc-99m sestamibi scintimammography (STSM) has limited clinical utility due to fairly low radiopharmaceutical uptake in the breast tissue as compared to the heart and the liver. We investigated the use of a cone-beam collimator (CBC) to STSM. Each detector on a multi-headed gamma camera can be equipped with parallel-beam (PBC) or cone-beam collimators (CBC). PBC can provide truncation-free SPECT projection sets, while CBC offers increased sensitivity in a limited field-of-view (FOV). Combined PBC and CBC SPECT ddata acquisition may provide improved lesion contrast and overall better imaging performance within CBC FOV with significantly reduced truncation artifacts in the reconstructed images. In this paper we evaluate the combined CBC&PBC SPECT method using a limited number of confirmed breast cancer patients and female chest phantoms with simulated breast lesions. We envision the combined CBC&PBC SPECT as a useful clinical tool in scintimammography.

  1. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Garrett, John; Chen, Guang-Hong

    2016-03-01

    When an automatic exposure control is introduced in C-arm cone beam CT data acquisition, the spectral inconsistencies between acquired projection data are exacerbated. As a result, conventional water/bone correction schemes are not as effective as in conventional diagnostic x-ray CT acquisitions with a fixed tube potential. In this paper, a new method was proposed to reconstruct several images with different degrees of spectral consistency and thus different levels of beam hardening artifacts. The new method relies neither on prior knowledge of the x-ray beam spectrum nor on prior compositional information of the imaging object. Numerical simulations were used to validate the algorithm.

  2. Clinical utility of dental cone-beam computed tomography: current perspectives

    PubMed Central

    Jaju, Prashant P; Jaju, Sushma P

    2014-01-01

    Panoramic radiography and computed tomography were the pillars of maxillofacial diagnosis. With the advent of cone-beam computed tomography, dental practice has seen a paradigm shift. This review article highlights the potential applications of cone-beam computed tomography in the fields of dental implantology and forensic dentistry, and its limitations in maxillofacial diagnosis. PMID:24729729

  3. Handling data redundancy in helical cone beam reconstruction with a cone-angle-based window function and its asymptotic approximation

    SciTech Connect

    Tang Xiangyang; Hsieh Jiang

    2007-06-15

    A cone-angle-based window function is defined in this manuscript for image reconstruction using helical cone beam filtered backprojection (CB-FBP) algorithms. Rather than defining the window boundaries in a two-dimensional detector acquiring projection data for computed tomographic imaging, the cone-angle-based window function deals with data redundancy by selecting rays with the smallest cone angle relative to the reconstruction plane. To be computationally efficient, an asymptotic approximation of the cone-angle-based window function is also given and analyzed in this paper. The benefit of using such an asymptotic approximation also includes the avoidance of functional discontinuities that cause artifacts in reconstructed tomographic images. The cone-angle-based window function and its asymptotic approximation provide a way, equivalent to the Tam-Danielsson-window, for helical CB-FBP reconstruction algorithms to deal with data redundancy, regardless of where the helical pitch is constant or dynamically variable during a scan. By taking the cone-parallel geometry as an example, a computer simulation study is conducted to evaluate the proposed window function and its asymptotic approximation for helical CB-FBP reconstruction algorithm to handle data redundancy. The computer simulated Forbild head and thorax phantoms are utilized in the performance evaluation, showing that the proposed cone-angle-based window function and its asymptotic approximation can deal with data redundancy very well in cone beam image reconstruction from projection data acquired along helical source trajectories. Moreover, a numerical study carried out in this paper reveals that the proposed cone-angle-based window function is actually equivalent to the Tam-Danielsson-window, and rigorous mathematical proofs are being investigated.

  4. Applications of cone beam computed tomography for a prosthodontist.

    PubMed

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.

  5. Applications of cone beam computed tomography for a prosthodontist

    PubMed Central

    John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.

    2016-01-01

    Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice – from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors’ clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:27134420

  6. Quality control and patient dosimetry in dental cone beam CT.

    PubMed

    Vassileva, J; Stoyanov, D

    2010-01-01

    This paper presents the initial experience in performing quality control and patient dose measurements in a cone beam computed tomography (CT) scanner (ILUMA Ultra, IMTEC Imaging, USA) for oral and maxillofacial radiology. The X-ray tube and the generator were tested first, including the kVp accuracy and precision, and the half-value layer (HVL). The following tests specific for panoramic dental systems were also performed: tube output, beam size and beam alignment to the detector. The tests specific for CT included measurements of noise and CT numbers in water and in air, as well as the homogeneity of CT numbers. The most appropriate dose quantity was found to be the air kerma-area product (KAP) measured with a KAP-metre installed at the tube exit. KAP values were found to vary from 110 to 185 microGy m(2) for available adult protocols and to be 54 microGy m(2) for the paediatric protocol. The effective dose calculated with the software PCXMC (STUK, Finland) was 0.05 mSv for children and 0.09-0.16 mSv for adults.

  7. Cone beam CT: a current overview of devices

    PubMed Central

    Nemtoi, A; Czink, C; Haba, D; Gahleitner, A

    2013-01-01

    The purpose of this study was to review and compare the properties of all the available cone beam CT (CBCT) devices offered on the market, while focusing especially on Europe. In this study, we included all the different commonly used CBCT devices currently available on the European market. Information about the properties of each device was obtained from the manufacturers’ official available data, which was later confirmed by their representatives in cases where it was necessary. The main features of a total of 47 CBCT devices that are currently marketed by 20 companies were presented, compared and discussed in this study. All these CBCT devices differ in specific properties according to the companies that produce them. The summarized technical data from a large number of CBCT devices currently on the market offer a wide range of imaging possibilities in the oral and maxillofacial region. PMID:23818529

  8. Fossa navicularis magna detection on cone-beam computed tomography

    PubMed Central

    Mupparapu, Mel

    2016-01-01

    Herein, we report and discuss the detection of fossa navicularis magna, a close radiographic anatomic variant of canalis basilaris medianus of the basiocciput, as an incidental finding in cone-beam computed tomography (CBCT) imaging. The CBCT data of the patients in question were referred for the evaluation of implant sites and to rule out pathology in the maxilla and mandible. CBCT analysis showed osseous, notch-like defects on the inferior aspect of the clivus in all four cases. The appearance of fossa navicularis magna varied among the cases. In some, it was completely within the basiocciput and mimicked a small rounded, corticated, lytic defect, whereas it appeared as a notch in others. Fossa navicularis magna is an anatomical variant that occurs on the inferior aspect of the clivus. The pertinent literature on the anatomical variations occurring in this region was reviewed. PMID:27051639

  9. Intracranial physiological calcifications evaluated with cone beam CT.

    PubMed

    Sedghizadeh, P P; Nguyen, M; Enciso, R

    2012-12-01

    The purpose of this study was to evaluate cone beam CT (CBCT) scans for the presence of physiological and pathological intracranial calcifications. CBCT scans from male and female patients that met our ascertainment criteria were evaluated retrospectively (n=500) for the presence of either physiological or pathological intracranial calcifications. Out of the 500 patients evaluated, 176 had evidence of intracranial physiological calcification (35.2% prevalence), and none had evidence of pathological calcification. There was a 3:2 male-to-female ratio and no ethnic predilection; the ages of affected patients ranged from 13 years to 82 years with a mean age of 52 years. The majority of calcifications appeared in the pineal/habenular region (80%), with some also appearing in the choroid plexus region bilaterally (12%), and a smaller subset appearing in the petroclinoid ligament region bilaterally (8%). Intracranial physiological calcifications can be a common finding on CBCT scans, whereas pathological intracranial calcifications are rare.

  10. Cone beam CT: a current overview of devices.

    PubMed

    Nemtoi, A; Czink, C; Haba, D; Gahleitner, A

    2013-01-01

    The purpose of this study was to review and compare the properties of all the available cone beam CT (CBCT) devices offered on the market, while focusing especially on Europe. In this study, we included all the different commonly used CBCT devices currently available on the European market. Information about the properties of each device was obtained from the manufacturers' official available data, which was later confirmed by their representatives in cases where it was necessary. The main features of a total of 47 CBCT devices that are currently marketed by 20 companies were presented, compared and discussed in this study. All these CBCT devices differ in specific properties according to the companies that produce them. The summarized technical data from a large number of CBCT devices currently on the market offer a wide range of imaging possibilities in the oral and maxillofacial region.

  11. Cone Beam Computed Tomography Evaluation of Inverted Mesiodentes.

    PubMed

    Al-Sehaibany, Fares S; Marzouk, Hazem M; Salama, Fouad S

    2016-01-01

    A mesiodens is the most common type of supernumerary teeth. The purpose of this report is to present a rare occurrence of non-syndromic impacted inverted mesiodentes in an 8.5-year-old boy who presented with a chief complaint of delayed eruption of his permanent maxillary left central incisor. Occlusal and panoramic radiographs, as well as cone beam computed tomography (CBCT) with a three-dimensional (3-D) reconstruction image, confirmed that one supernumerary tooth had perforated the nasal fossa floor and the other was in close approximation to the to the same site. Surgical removal of both mesiodentes was indicated. Radiographic evidence of complete healing was observed 12 months following surgical removal. The use of CBCT with a 3-D reconstruction image as a tool in diagnosis and evaluation of healing after surgical removal is recommended.

  12. Sodium hypochlorite accident with evaluation by cone beam computed tomography.

    PubMed

    Behrents, K T; Speer, M L; Noujeim, M

    2012-05-01

    To show the radiographic manifestation of sodium hypochlorite after accidental injection past the apical foramen and into the soft tissues. A female patient was seen for an emergency visit after suffering a sodium hypochlorite accident at her general dentist's office. The patient was seen within 1 h of the accident and was in pain associated with facial swelling. Radiographs, including a Cone Beam Computed Tomography (CBCT), and photographs were taken. Endodontic emergency treatment was initiated. The patient was reassured and given pain medication and antibiotics. Follow-up visits were scheduled over 6 days when the swelling had resolved. • Importance of multiple radiographic images during preoperative endodontic evaluation when undertaking endodontic retreatment. • Knowledge of apical anatomy as related to surrounding structures. • Effect of sodium hypochlorite when injected in the soft tissues. © 2012 International Endodontic Journal.

  13. Computer aided breast density evaluation in cone beam breast CT

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohua; Ning, Ruola

    2011-03-01

    Cone Beam Breast CT is a three-dimensional breast imaging modality with high contrast resolution and no tissue overlap. With these advantages, it is possible to measure volumetric breast density accurately and quantitatively with CBBCT 3D images. Three major breast components need to be segmented: skin, fat and glandular tissue. In this research, a modified morphological processing is applied to the CBBCT images to detect and remove the skin of the breast. After the skin is removed, a 2-step fuzzy clustering scheme is applied to the CBBCT image volume to adaptively cluster the image voxels into fat and glandular tissue areas based on the intensity of each voxel. Finally, the CBBCT breast volume images are divided into three categories: skin, fat and glands. Clinical data is used and the quantitative CBBCT breast density evaluation results are compared with the mammogram-based BIRADS breast density categories.

  14. Dual resolution cone beam breast CT: A feasibility study

    PubMed Central

    Chen, Lingyun; Shen, Youtao; Lai, Chao-Jen; Han, Tao; Zhong, Yuncheng; Ge, Shuaiping; Liu, Xinming; Wang, Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C.

    2009-01-01

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp–Davis–Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 μm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI. PMID:19810473

  15. Dual resolution cone beam breast CT: a feasibility study.

    PubMed

    Chen, Lingyun; Shen, Youtao; Lai, Chao-Jen; Han, Tao; Zhong, Yuncheng; Ge, Shuaiping; Liu, Xinming; Wang, Tianpeng; Yang, Wei T; Whitman, Gary J; Shaw, Chris C

    2009-09-01

    In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 microm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  16. Iodine contrast cone beam CT imaging of breast cancer

    NASA Astrophysics Data System (ADS)

    Partain, Larry; Prionas, Stavros; Seppi, Edward; Virshup, Gary; Roos, Gerhard; Sutherland, Robert; Boone, John

    2007-03-01

    An iodine contrast agent, in conjunction with an X-ray cone beam CT imaging system, was used to clearly image three, biopsy verified, cancer lesions in two patients. The lesions were approximately in the 10 mm to 6 mm diameter range. Additional regions were also enhanced with approximate dimensions down to 1 mm or less in diameter. A flat panel detector, with 194 μm pixels in 2 x 2 binning mode, was used to obtain 500 projection images at 30 fps with an 80 kVp X-ray system operating at 112 mAs, for an 8-9 mGy dose - equivalent to two view mammography for these women. The patients were positioned prone, while the gantry rotated in the horizontal plane around the uncompressed, pendant breasts. This gantry rotated 360 degrees during the patient's 16.6 sec breath hold. A volume of 100 cc of 320 mg/ml iodine-contrast was power injected at 4 cc/sec, via catheter into the arm vein of the patient. The resulting 512 x 512 x 300 cone beam CT data set of Feldkamp reconstructed ~(0.3 mm) 3 voxels were analyzed. An interval of voxel contrast values, characteristic of the regions with iodine contrast enhancement, were used with surface rendering to clearly identify up to a total of 13 highlighted volumes. This included the three largest lesions, that were previously biopsied and confirmed to be malignant. The other ten highlighted regions, of smaller diameters, are likely areas of increased contrast trapping unrelated to cancer angiogenesis. However the technique itself is capable of resolving lesions that small.

  17. TH-A-18C-06: A Scatter Elimination Scheme for Cone Beam CT Using An Oscillating Narrow Beam

    SciTech Connect

    Yan, H; Folkerts, M; Jia, X; Jiang, S; Xu, Y

    2014-06-15

    Purpose: While cone beam CT (CBCT) has been widely used in image guided radiation therapy, its low image quality, primarily caused by scattered x-rays, hinders advanced clinical applications, e.g., CBCT based on-line adaptive re-planning. We propose in this abstract a new scheme called oscillating narrow beam CBCT (ONB-CBCT) to eliminate scatter signals. Methods: ONB-CBCT consists of two major components. 1) Oscillating narrow beam (ONB) scan and 2) partitioned flat panel containing multiple individual detector strips and their own readouts. Both the beam oscillation and detector partition are along the superior-inferior (SI) direction. During data acquisition, at a given projection, the narrow beam sweep through the detector region, and different portions of the detector acquires projection data in synchrony with the narrow beam. ONB can be generated by a rotating slit collimator design with conventional tube with single focal spot, or by directly using a new source with multiple focal spots. A proof-of-principle study via Monte Carlo simulation is conducted to demonstrate the feasibility of ONB-CBCT. Results: As the beam becomes narrower, more and more scatter signals are eliminated. For the case with a bowtie filter and using 15 ONBs, the maximum and the average intensity error due to scatter are below 20 and 10 HU, respectively. Conclusion: ONB yields a narrowed exposure field at each snapshot and hence an inherently negligible scatter effect. Meanwhile, the individualized detector units guarantee high frame rate detection and hence a same large volume coverage as that in conventional CBCT. In summary, ONB-CBCT is a promising design to achieve high-quality CBCT imaging. This study is supported in part by NIH (1R01CA154747-01)

  18. Current status of dental caries diagnosis using cone beam computed tomography

    PubMed Central

    Park, Young-Seok; Ahn, Jin-Soo; Kwon, Ho-Beom

    2011-01-01

    Purpose The purpose of this article is to review the current status of dental caries diagnosis using cone beam computed tomography (CBCT). Materials and Methods An online PubMed search was performed to identify studies on caries research using CBCT. Results Despite its usefulness, there were inherent limitations in the detection of caries lesions through conventional radiograph mainly due to the two-dimensional (2D) representation of caries lesions. Several efforts were made to investigate the three-dimensional (3D) image of lesion, only to gain little popularity. Recently, CBCT was introduced and has been used for diagnosis of caries in several reports. Some of them maintained the superiority of CBCT systems, however it is still under controversies. Conclusion The CBCT systems are promising, however they should not be considered as a primary choice of caries diagnosis in everyday practice yet. Further studies under more standardized condition should be performed in the near future. PMID:21977474

  19. Filtered region of interest cone-beam rotational angiography

    SciTech Connect

    Schafer, Sebastian; Noeel, Peter B.; Walczak, Alan M.; Hoffmann, Kenneth R.

    2010-02-15

    Purpose: Cone-beam rotational angiography (CBRA) is widely used in the modern clinical settings. In a number of procedures, the area of interest is often considerably smaller than the field of view (FOV) of the detector, subjecting the patient to potentially unnecessary x-ray dose. The authors therefore propose a filter-based method to reduce the dose in the regions of low interest, while supplying high image quality in the region of interest (ROI). Methods: For such procedures, the authors propose a method of filtered region of interest (FROI)-CBRA. In the authors' approach, a gadolinium filter with a circular central opening is placed into the x-ray beam during image acquisition. The central region is imaged with high contrast, while peripheral regions are subjected to a substantial lower intensity and dose through beam filtering. The resulting images contain a high contrast/intensity ROI, as well as a low contrast/intensity peripheral region, and a transition region in between. To equalize the two regions' intensities, the first projection of the acquisition is performed with and without the filter in place. The equalization relationship, based on Beer's law, is established through linear regression using corresponding filtered and nonfiltered data. The transition region is equalized based on radial profiles. Results: Evaluations in 2D and 3D show no visible difference between conventional FROI-CBRA projection images and reconstructions in the ROI. CNR evaluations show similar image quality in the ROI, with a reduced CNR in the reconstructed peripheral region. In all filtered projection images, the scatter fraction inside the ROI was reduced. Theoretical and experimental dose evaluations show a considerable dose reduction; using a ROI half the original FOV reduces the dose by 60% for the filter thickness of 1.29 mm. Conclusions: These results indicate the potential of FROI-CBRA to reduce the dose to the patient while supplying the physician with the desired

  20. Effective dose range for dental cone beam computed tomography scanners.

    PubMed

    Pauwels, Ruben; Beinsberger, Jilke; Collaert, Bruno; Theodorakou, Chrysoula; Rogers, Jessica; Walker, Anne; Cockmartin, Lesley; Bosmans, Hilde; Jacobs, Reinhilde; Bogaerts, Ria; Horner, Keith

    2012-02-01

    To estimate the absorbed organ dose and effective dose for a wide range of cone beam computed tomography scanners, using different exposure protocols and geometries. Two Alderson Radiation Therapy anthropomorphic phantoms were loaded with LiF detectors (TLD-100 and TLD-100 H) which were evenly distributed throughout the head and neck, covering all radiosensitive organs. Measurements were performed on 14 CBCT devices: 3D Accuitomo 170, Galileos Comfort, i-CAT Next Generation, Iluma Elite, Kodak 9000 3D, Kodak 9500, NewTom VG, NewTom VGi, Pax-Uni3D, Picasso Trio, ProMax 3D, Scanora 3D, SkyView, Veraviewepocs 3D. Effective dose was calculated using the ICRP 103 (2007) tissue weighting factors. Effective dose ranged between 19 and 368 μSv. The largest contributions to the effective dose were from the remainder tissues (37%), salivary glands (24%), and thyroid gland (21%). For all organs, there was a wide range of measured values apparent, due to differences in exposure factors, diameter and height of the primary beam, and positioning of the beam relative to the radiosensitive organs. The effective dose for different CBCT devices showed a 20-fold range. The results show that a distinction is needed between small-, medium-, and large-field CBCT scanners and protocols, as they are applied to different indication groups, the dose received being strongly related to field size. Furthermore, the dose should always be considered relative to technical and diagnostic image quality, seeing that image quality requirements also differ for patient groups. The results from the current study indicate that the optimisation of dose should be performed by an appropriate selection of exposure parameters and field size, depending on the diagnostic requirements. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Upright cone beam CT imaging using the onboard imager

    SciTech Connect

    Fave, Xenia Martin, Rachael; Yang, Jinzhong; Balter, Peter; Court, Laurence; Carvalho, Luis; Pan, Tinsu

    2014-06-15

    Purpose: Many patients could benefit from being treated in an upright position. The objectives of this study were to determine whether cone beam computed tomography (CBCT) could be used to acquire upright images for treatment planning and to demonstrate whether reconstruction of upright images maintained accurate geometry and Hounsfield units (HUs). Methods: A TrueBeam linac was programmed in developer mode to take upright CBCT images. The gantry head was positioned at 0°, and the couch was rotated to 270°. The x-ray source and detector arms were extended to their lateral positions. The x-ray source and gantry remained stationary as fluoroscopic projections were taken and the couch was rotated from 270° to 90°. The x-ray tube current was normalized to deposit the same dose (measured using a calibrated Farmer ion chamber) as that received during a clinical helical CT scan to the center of a cylindrical, polyethylene phantom. To extend the field of view, two couch rotation scans were taken with the detector offset 15 cm superiorly and then 15 cm inferiorly. The images from these two scans were stitched together before reconstruction. Upright reconstructions were compared to reconstructions from simulation CT scans of the same phantoms. Two methods were investigated for correcting the HUs, including direct calibration and mapping the values from a simulation CT. Results: Overall geometry, spatial linearity, and high contrast resolution were maintained in upright reconstructions. Some artifacts were created and HU accuracy was compromised; however, these limitations could be removed by mapping the HUs from a simulation CT to the upright reconstruction for treatment planning. Conclusions: The feasibility of using the TrueBeam linac to take upright CBCT images was demonstrated. This technique is straightforward to implement and could be of enormous benefit to patients with thoracic tumors or those who find a supine position difficult to endure.

  2. Practical patient dosimetry for partial rotation cone beam CT

    PubMed Central

    Podnieks, E C; Negus, I S

    2012-01-01

    Objectives This work investigates the validity of estimating effective dose for cone beam CT (CBCT) exposures from the weighted CT dose index (CTDIW) and irradiated length. Methods Measurements were made within cylindrical poly(methyl methacrylate) (PMMA) phantoms measuring 14 cm and 28 cm in length and 32 cm in diameter for the 200° DynaCT acquisition on the Siemens Artis zee fluoroscopy unit (Siemens Medical Solutions, Erlangen, Germany). An interpolated average dose was calculated to account for the partial rotation. Organ and effective doses were estimated by modelling projections in the Monte Carlo software programme PCXMC (STUK, Helsinki, Finland). Results The CTDIW was found to closely approximate the interpolated average dose if the positions of the measured doses reflected the X-ray beam rotation. The average dose was found to increase by 8% when the phantom length was increased from 14 to 28 cm. Using the interpolated average dose and the irradiated length for effective dose calculations gave similar values to PCXMC when a double-length (28-cm) CT dose index phantom was irradiated. Simplifying the estimation of effective dose with PCXMC by modelling just 4 projections around the abdomen gave effective doses that were only 7% different to those given when 41 projections were modelled. Calculated doses to key organs within the beam varied by as much as 27%. Conclusion Estimating effective dose from the CTDIW and the irradiated length is sufficiently accurate for CBCT if the chamber positions are considered carefully. A conversion factor can be used only if a single CT dose index phantom is available. The estimation of organ doses requires a large number of modelled projections in PCXMC. PMID:21304011

  3. Is there a role for the use of volumetric cone beam computed tomography in periodontics?

    PubMed

    du Bois, A H; Kardachi, B; Bartold, P M

    2012-03-01

    Volumetric computed cone beam tomography offers a number of significant advantages over conventional intraoral and extraoral panoramic radiography, as well as computed tomography. To date, periodontal diagnosis has relied heavily on the assessment of both intraoral radiographs and extraoral panoramic radiographs. With emerging technology in radiology there has been considerable interest in the role that volumetric cone beam computed tomography might play in periodontal diagnostics. This narrative reviews the current evidence and considers whether there is a role for volumetric cone beam computed tomography in periodontics.

  4. A new cone beam computerized tomography system for use in endodontic surgery.

    PubMed

    Tsurumachi, T; Honda, K

    2007-03-01

    To present a newly developed cone beam computerized tomography system (3DX Micro-CT) and its application in endodontic surgery. Cone beam CT has attracted considerable attention as a new diagnostic imaging technique in dentistry. The assessment of fractured endodontic instruments and the planning of endodontic surgery present challenges that conventional radiography cannot meet successfully. In this report, the value of the 3DX cone beam computerized radiography system is illustrated by the case of a fractured endodontic instrument protruding into the maxillary sinus.

  5. Performance studies of four-dimensional cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Qi, Zhihua; Chen, Guang-Hong

    2011-10-01

    Four-dimensional cone beam computed tomography (4DCBCT) has been proposed to characterize the breathing motion of tumors before radiotherapy treatment. However, when the acquired cone beam projection data are retrospectively gated into several respiratory phases, the available data to reconstruct each phase is under-sampled and thus causes streaking artifacts in the reconstructed images. To solve the under-sampling problem and improve image quality in 4DCBCT, various methods have been developed. This paper presents performance studies of three different 4DCBCT methods based on different reconstruction algorithms. The aims of this paper are to study (1) the relationship between the accuracy of the extracted motion trajectories and the data acquisition time of a 4DCBCT scan and (2) the relationship between the accuracy of the extracted motion trajectories and the number of phase bins used to sort projection data. These aims will be applied to three different 4DCBCT methods: conventional filtered backprojection reconstruction (FBP), FBP with McKinnon-Bates correction (MB) and prior image constrained compressed sensing (PICCS) reconstruction. A hybrid phantom consisting of realistic chest anatomy and a moving elliptical object with known 3D motion trajectories was constructed by superimposing the analytical projection data of the moving object to the simulated projection data from a chest CT volume dataset. CBCT scans with gantry rotation times from 1 to 4 min were simulated, and the generated projection data were sorted into 5, 10 and 20 phase bins before different methods were used to reconstruct 4D images. The motion trajectories of the moving object were extracted using a fast free-form deformable registration algorithm. The root mean square errors (RMSE) of the extracted motion trajectories were evaluated for all simulated cases to quantitatively study the performance. The results demonstrate (1) longer acquisition times result in more accurate motion delineation

  6. Dose calculation using megavoltage cone-beam CT

    SciTech Connect

    Morin, Olivier . E-mail: Morin@radonc17.ucsf.edu; Chen, Josephine; Aubin, Michele; Gillis, Amy; Aubry, Jean-Francois; Bose, Supratik; Chen Hong; Descovich, Martina; Xia Ping; Pouliot, Jean

    2007-03-15

    Purpose: To demonstrate the feasibility of performing dose calculation on megavoltage cone-beam CT (MVCBCT) of head-and-neck patients in order to track the dosimetric errors produced by anatomic changes. Methods and Materials: A simple geometric model was developed using a head-size water cylinder to correct an observed cupping artifact occurring with MVCBCT. The uniformity-corrected MVCBCT was calibrated for physical density. Beam arrangements and weights from the initial treatment plans defined using the conventional CT were applied to the MVCBCT image, and the dose distribution was recalculated. The dosimetric inaccuracies caused by the cupping artifact were evaluated on the water phantom images. An ideal test patient with no observable anatomic changes and a patient imaged with both CT and MVCBCT before and after considerable weight loss were used to clinically validate MVCBCT for dose calculation and to determine the dosimetric impact of large anatomic changes. Results: The nonuniformity of a head-size water phantom ({approx}30%) causes a dosimetric error of less than 5%. The uniformity correction method developed greatly reduces the cupping artifact, resulting in dosimetric inaccuracies of less than 1%. For the clinical cases, the agreement between the dose distributions calculated using MVCBCT and CT was better than 3% and 3 mm where all tissue was encompassed within the MVCBCT. Dose-volume histograms from the dose calculations on CT and MVCBCT were in excellent agreement. Conclusion: MVCBCT can be used to estimate the dosimetric impact of changing anatomy on several structures in the head-and-neck region.

  7. Use of cone beam computed tomography in identifying postmenopausal women with osteoporosis.

    PubMed

    Brasileiro, C B; Chalub, L L F H; Abreu, M H N G; Barreiros, I D; Amaral, T M P; Kakehasi, A M; Mesquita, R A

    2017-12-01

    The aim of this study is to correlate radiometric indices from cone beam computed tomography (CBCT) images and bone mineral density (BMD) in postmenopausal women. Quantitative CBCT indices can be used to screen for women with low BMD.

  8. FFT and cone-beam CT reconstruction on graphics hardware

    NASA Astrophysics Data System (ADS)

    Després, Philippe; Sun, Mingshan; Hasegawa, Bruce H.; Prevrhal, Sven

    2007-03-01

    Graphics processing units (GPUs) are increasingly used for general purpose calculations. Their pipelined architecture can be exploited to accelerate various parallelizable algorithms. Medical imaging applications are inherently well suited to benefit from the development of GPU-based computational platforms. We evaluate in this work the potential of GPUs to improve the execution speed of two common medical imaging tasks, namely Fourier transforms and tomographic reconstructions. A two-dimensional fast Fourier transform (FFT) algorithm was GPU-implemented and compared, in terms of execution speed, to two popular CPU-based FFT routines. Similarly, the Feldkamp, David and Kress (FDK) algorithm for cone-beam tomographic reconstruction was implemented on the GPU and its performance compared to a CPU version. Different reconstruction strategies were employed to assess the performance of various GPU memory layouts. For the specific hardware used, GPU implementations of the FFT were up to 20 times faster than their CPU counterparts, but slower than highly optimized CPU versions of the algorithm. Tomographic reconstructions were faster on the GPU by a factor up to 30, allowing 256 3 voxel reconstructions of 256 projections in about 20 seconds. Overall, GPUs are an attractive alternative to other imaging-dedicated computing hardware like application-specific integrated circuits (ASICs) and field programmable gate arrays (FPGAs) in terms of cost, simplicity and versatility. With the development of simpler language extensions and programming interfaces, GPUs are likely to become essential tools in medical imaging.

  9. Intracranial physiological calcifications evaluated with cone beam CT

    PubMed Central

    Sedghizadeh, P P; Nguyen, M; Enciso, R

    2012-01-01

    Objectives The purpose of this study was to evaluate cone beam CT (CBCT) scans for the presence of physiological and pathological intracranial calcifications. Methods CBCT scans from male and female patients that met our ascertainment criteria were evaluated retrospectively (n = 500) for the presence of either physiological or pathological intracranial calcifications. Results Out of the 500 patients evaluated, 176 had evidence of intracranial physiological calcification (35.2% prevalence), and none had evidence of pathological calcification. There was a 3:2 male-to-female ratio and no ethnic predilection; the ages of affected patients ranged from 13 years to 82 years with a mean age of 52 years. The majority of calcifications appeared in the pineal/habenular region (80%), with some also appearing in the choroid plexus region bilaterally (12%), and a smaller subset appearing in the petroclinoid ligament region bilaterally (8%). Conclusions Intracranial physiological calcifications can be a common finding on CBCT scans, whereas pathological intracranial calcifications are rare. PMID:22842632

  10. Effective dose from cone beam CT examinations in dentistry.

    PubMed

    Roberts, J A; Drage, N A; Davies, J; Thomas, D W

    2009-01-01

    Cone beam CT (CBCT) is becoming an increasingly utilized imaging modality for dental examinations in the UK. Previous studies have presented little information on patient dose for the range of fields of view (FOVs) that can be utilized. The purpose of the study was therefore to calculate the effective dose delivered to the patient during a selection of CBCT examinations performed in dentistry. In particular, the i-CAT CBCT scanner was investigated for several imaging protocols commonly used in clinical practice. A Rando phantom containing thermoluminescent dosemeters was scanned. Using both the 1990 and recently approved 2007 International Commission on Radiological Protection recommended tissue weighting factors, effective doses were calculated. The doses (E(1990), E(2007)) were: full FOV head (92.8 microSv, 206.2 microSv); 13 cm scan of the jaws (39.5 microSv, 133.9 microSv); 6 cm high-resolution mandible (47.2 microSv, 188.5 microSv); 6 cm high-resolution maxilla (18.5 microSv, 93.3 microSv); 6 cm standard mandible (23.9 microSv, 96.2 microSv); and 6 cm standard maxilla (9.7 microSv, 58.9 microSv). The doses from CBCT are low compared with conventional CT but significantly higher than conventional dental radiography techniques.

  11. Effective doses from cone beam CT investigation of the jaws

    PubMed Central

    Davies, J; Johnson, B; Drage, NA

    2012-01-01

    Objectives The purpose of the study was to calculate the effective dose delivered to the patient undergoing cone beam (CB) CT of the jaws and maxillofacial complex using the i-CAT Next Generation CBCT scanner (Imaging Sciences International, Hatfield, PA). Methods A RANDO® phantom (The Phantom Laboratory, Salem, NY) containing thermoluminence dosemeters were scanned 10 times for each of the 6 imaging protocols. Effective doses for each protocol were calculated using the 1990 and approved 2007 International Commission on Radiological Protection (ICRP) recommended tissue weighting factors (E1990, E2007). Results The effective dose for E1990 and E2007, respectively, were: full field of view (FOV) of the head, 47 μSv and 78 μSv; 13 cm scan of the jaws, 44 μSv and 77 μSv; 6 cm standard mandible, 35 μSv and 58 μSv; 6 cm high resolution mandible, 69 μSv and 113 μSv; 6 cm standard maxilla, 18 μSv and 32 μSv; and 6 cm high resolution maxilla, 35 μSv and 60 μSv. Conclusions Using the new generation of CBCT scanner, the effective dose is lower than the original generation machine for a similar FOV using the ICRP 2007 tissue weighting factors. PMID:22184626

  12. Effective dose span of ten different cone beam CT devices.

    PubMed

    Rottke, D; Patzelt, S; Poxleitner, P; Schulze, D

    2013-01-01

    Evaluation and reduction of dose are important issues. Since cone beam CT (CBCT) has been established now not just in dentistry, the number of acquired examinations continues to rise. Unfortunately, it is very difficult to compare the doses of available devices on the market owing to different exposition parameters, volumes and geometries. The aim of this study was to evaluate the spans of effective doses (EDs) of ten different CBCT devices. 48 thermoluminescent dosemeters were placed in 24 sites in a RANDO(®) head phantom. Protocols with lowest exposition parameters and protocols with highest exposition parameters were performed for each of the ten devices. The ED was calculated from the measured energy doses according to the International Commission on Radiological Protection 2007 recommendations for each protocol and device, and the statistical values were evaluated afterwards. The calculation of the ED resulted in values between 17.2 µSv and 396 µSv for the ten devices. The mean values for protocols with lowest and highest exposition parameters were 31.6 µSv and 209 µSv, respectively. It was not the aim of this study to evaluate the image quality depending on different exposition parameters but to define the spans of EDs in which different CBCT devices work. There is a wide span of ED for different CBCT devices depending on the selected exposition parameters, required spatial resolution and many other factors.

  13. Effective dose span of ten different cone beam CT devices

    PubMed Central

    Rottke, D; Patzelt, S; Poxleitner, P; Schulze, D

    2013-01-01

    Objectives: Evaluation and reduction of dose are important issues. Since cone beam CT (CBCT) has been established now not just in dentistry, the number of acquired examinations continues to rise. Unfortunately, it is very difficult to compare the doses of available devices on the market owing to different exposition parameters, volumes and geometries. The aim of this study was to evaluate the spans of effective doses (EDs) of ten different CBCT devices. Methods: 48 thermoluminescent dosemeters were placed in 24 sites in a RANDO® head phantom. Protocols with lowest exposition parameters and protocols with highest exposition parameters were performed for each of the ten devices. The ED was calculated from the measured energy doses according to the International Commission on Radiological Protection 2007 recommendations for each protocol and device, and the statistical values were evaluated afterwards. Results: The calculation of the ED resulted in values between 17.2 µSv and 396 µSv for the ten devices. The mean values for protocols with lowest and highest exposition parameters were 31.6 µSv and 209 µSv, respectively. Conclusions: It was not the aim of this study to evaluate the image quality depending on different exposition parameters but to define the spans of EDs in which different CBCT devices work. There is a wide span of ED for different CBCT devices depending on the selected exposition parameters, required spatial resolution and many other factors. PMID:23584925

  14. Operational principles for cone-beam computed tomography.

    PubMed

    Hatcher, David C

    2010-10-01

    Cone-beam computed tomography (CBCT) was introduced into the U.S. market in 2001. Today, there are more than 3,000 installed units in the United States. There are numerous CBCT manufacturers and types of units. To produce the best imaging results, clinicians need to be knowledgeable about the CBCT unit, the clinical issue being investigated and how to optimize the unit's operational parameters. The author identifies the variables that should be considered for each imaging session and addresses the building blocks required to design the appropriate imaging strategy. The remaining articles in this supplement address imaging for orthodontics, the investigation and localization of impacted teeth and implant planning, and customized imaging protocols designed to solve the clinical issues being presented. The author addresses CBCT from an operational point of view. An ideal imaging examination answers the clinical question while maintaining an acceptable radiation dose and cost. The quality and value of each imaging study is proportional to the protocol being used. The author also addresses imaging protocol variables (raw data frames, scan time, voxel size, field of view and milliampere settings) and their effects on the final image quality and radiation dose, as well as CBCT accuracy and the radiation dose. CBCT can provide image volumes of the maxillofacial region and can be useful in clinical dentistry. CBCT has been shown to be a precise imaging modality and is a valuable tool for use in dental applications. CBCT can be used for diagnosis and treatment planning for all of the dental specialties.

  15. Cone beam CT tumor vasculature dynamic study (Murine model)

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Ning, Ruola; Conover, David; Ricardo, Betancourt; Liu, Shaohua

    2008-03-01

    Tumor angiogenesis is the process by which new blood vessels are formed from the existing vessels in a tumor to promote tumor growth. Tumor angiogenesis has important implications in the diagnosis and treatment of various solid tumors. Flat panel detector based cone beam CT opens up a new way for detection of tumors, and tumor angiogenesis associated with functional CBCT has the potential to provide more information than traditional functional CT due to more overall coverage during the same scanning period and the reconstruction being isotropic resulting in a more accurate 3D volume intensity measurement. A functional study was conducted by using CBCT to determine the degree of the enhancement within the tumor after injecting the contrast agent intravenously. For typical doses of contrast material, the amount of enhancement is proportional to the concentration of this material within the region of interest. A series of images obtained at one location over time allows generation of time-attenuation data from which a number of semi-quantitative parameters, such as enhancement rate, can be determined. An in vivo mice study with and without mammo tumor was conducted on our prototype CBCT system, and half scan scheme is used to determine the time-intensity curve within the VOI of the mouse. The CBCT has an x-ray tube, a gantry with slip ring technology, and a 40×30 cm Varian Paxscan 4030CB real time FPD.

  16. Image quality of flat-panel cone beam CT

    NASA Astrophysics Data System (ADS)

    Rose, Georg; Wiegert, Jens; Schaefer, Dirk; Fiedler, Klaus; Conrads, Norbert; Timmer, Jan; Rasche, Volker; Noordhoek, Niels; Klotz, Erhard; Koppe, Reiner

    2003-06-01

    We present results on 3D image quality in terms of spatial resolution (MTF) and low contrast detectability, obtained on a flat dynamic X-ray detector (FD) based cone-beam CT (CB-CT) setup. Experiments have been performed on a high precision bench-top system with rotating object table, fixed X-ray tube and 176 x 176 mm2 active detector area (Trixell Pixium 4800). Several objects, including CT performance-, MTF- and pelvis phantoms, have been scanned under various conditions, including a high dose setup in order to explore the 3D performance limits. Under these optimal conditions, the system is capable of resolving less than 1% (~10 HU) contrast in a water background. Within a pelvis phantom, even inserts of muscle and fat equivalent are clearly distinguishable. This also holds for fast acquisitions of up to 40 fps. Focusing on the spatial resolution, we obtain an almost isotropic three-dimensional resolution of up to 30 lp/cm at 10% modulation.

  17. Use of cone beam computed tomography in periodontology.

    PubMed

    Acar, Buket; Kamburoğlu, Kıvanç

    2014-05-28

    Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination.

  18. Practical applications of cone-beam computed tomography in orthodontics.

    PubMed

    Mah, James K; Huang, John C; Choo, HyeRan

    2010-10-01

    Comprehensive visualization and records of the craniofacial complex have been goals in orthodontic imaging. These tasks have been performed by means of plaster, photographs and radiographs. These approaches have evolved across time, and cone-beam computed tomography (CBCT) has emerged as a comprehensive imaging modality for orthodontics. The authors provide a practical guide for applying CBCT in orthodontics, with an emphasis on situations in which conventional imaging is limited. These situations include dental development, limits of tooth movement, airway assessment, craniofacial morphology and superimposition. Complexities of the craniofacial complex, dentition and airway present challenges in obtaining conventional images. CBCT has image-fidelity advantages over conventional imaging that can lead to improved visualization. CBCT is changing orthodontics with respect to clinically assessing patients and is evolving with respect to diagnosis, clinical techniques and outcomes. The clinical value proposition of CBCT is to describe craniofacial anatomy accurately and provide comprehensive information regarding anatomical relationships and individual patient findings for improved diagnosis, treatment planning and prognostication.

  19. Use of dentomaxillofacial cone beam computed tomography in dentistry

    PubMed Central

    Kamburoğlu, Kıvanç

    2015-01-01

    Cone-beam computed tomography (CBCT) was developed and introduced specifically for dento-maxillofacial imaging. CBCT possesses a number of advantages over medical CT in clinical practice, such as lower effective radiation doses, lower costs, fewer space requirements, easier image acquisition, and interactive display modes such as mutiplanar reconstruction that are applicable to maxillofacial imaging. However, the disadvantages of CBCT include higher doses than two-dimensional imaging; the inability to accurately represent the internal structure of soft tissues and soft-tissue lesions; a limited correlation with Hounsfield Units for standardized quantification of bone density; and the presence of various types of image artifacts, mainly those produced by metal restorations. CBCT is now commonly used for a variety of purposes in oral implantology, dento-maxillofacial surgery, image-guided surgical procedures, endodontics, periodontics and orthodontics. CBCT applications provide obvious benefits in the assessment of dentomaxillofacial region, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination. PMID:26120381

  20. Cone beam CT for dental and maxillofacial imaging: dose matters.

    PubMed

    Pauwels, Ruben

    2015-07-01

    The widespread use of cone-beam CT (CBCT) in dentistry has led to increasing concern regarding justification and optimisation of CBCT exposures. When used as a substitute to multidetector CT (MDCT), CBCT can lead to significant dose reduction; however, low-dose protocols of current-generation MDCTs show that there is an overlap between CBCT and MDCT doses. More importantly, although the 3D information provided by CBCT can often lead to improved diagnosis and treatment compared with 2D radiographs, a routine or excessive use of CBCT would lead to a substantial increase of the collective patient dose. The potential use of CBCT for paediatric patients (e.g. developmental disorders, trauma and orthodontic treatment planning) further increases concern regarding its proper application. This paper provides an overview of justification and optimisation issues in dental and maxillofacial CBCT. The radiation dose in CBCT will be briefly reviewed. The European Commission's Evidence Based Guidelines prepared by the SEDENTEXCT Project Consortium will be summarised, and (in)appropriate use of CBCT will be illustrated for various dental applications.

  1. Streak artifact reduction in cardiac cone beam CT

    NASA Astrophysics Data System (ADS)

    Shechter, Gilad; Naveh, Galit; Lessick, Jonathan; Altman, Ami

    2005-04-01

    Cone beam reconstructed cardiac CT images suffer from characteristic streak artifacts that affect the quality of coronary artery imaging. These artifacts arise from inhomogeneous distribution of noise. While in non-tagged reconstruction inhomogeneity of noise distribution is mainly due to anisotropy of the attenuation of the scanned object (e.g. shoulders), in cardiac imaging it is largely influenced by the non-uniform distribution of the acquired data used for reconstructing the heart at a given phase. We use a cardiac adaptive filter to reduce these streaks. In difference to previous methods of adaptive filtering that locally smooth data points on the basis of their attenuation values, our filter is applied as a function of the noise distribution of the data as it is used in the phase selective reconstruction. We have reconstructed trans-axial images without adaptive filtering, with a regular adaptive filter and with the cardiac adaptive filter. With the cardiac adaptive filter significant reduction of streaks is achieved, and thus image quality is improved. The coronary vessel is much more pronounced in the cardiac adaptive filtered images, in slab MIP the main coronary artery branches are more visible, and non-calcified plaque is better differentiated from vessel wall. This improvement is accomplished without altering significantly the border definition of calcified plaques.

  2. Volumetric accuracy of cone-beam computed tomography.

    PubMed

    Park, Cheol-Woo; Kim, Jin-Ho; Seo, Yu-Kyeong; Lee, Sae-Rom; Kang, Ju-Hee; Oh, Song-Hee; Kim, Gyu-Tae; Choi, Yong-Suk; Hwang, Eui-Hwan

    2017-09-01

    This study was performed to investigate the influence of object shape and distance from the center of the image on the volumetric accuracy of cone-beam computed tomography (CBCT) scans, according to different parameters of tube voltage and current. Four geometric objects (cylinder, cube, pyramid, and hexagon) with predefined dimensions were fabricated. The objects consisted of Teflon-perfluoroalkoxy embedded in a hydrocolloid matrix (Dupli-Coe-Loid TM; GC America Inc., Alsip, IL, USA), encased in an acrylic resin cylinder assembly. An Alphard Vega Dental CT system (Asahi Roentgen Ind. Co., Ltd, Kyoto, Japan) was used to acquire CBCT images. OnDemand 3D (CyberMed Inc., Seoul, Korea) software was used for object segmentation and image analysis. The accuracy was expressed by the volume error (VE). The VE was calculated under 3 different exposure settings. The measured volumes of the objects were compared to the true volumes for statistical analysis. The mean VE ranged from -4.47% to 2.35%. There was no significant relationship between an object's shape and the VE. A significant correlation was found between the distance of the object to the center of the image and the VE. Tube voltage affected the volume measurements and the VE, but tube current did not. The evaluated CBCT device provided satisfactory volume measurements. To assess volume measurements, it might be sufficient to use serial scans with a high resolution, but a low dose. This information may provide useful guidance for assessing volume measurements.

  3. Forensic imaging of projectiles using cone-beam computed tomography.

    PubMed

    von See, Constantin; Bormann, Kai-Hendrik; Schumann, Paul; Goetz, Friedrich; Gellrich, Nils-Claudius; Rücker, Martin

    2009-09-10

    In patients with gunshot injuries, it is easy to detect a projectile within the body due to the high-density of the object, but artefacts make it difficult to obtain information about the deformation and the exact location of the projectile in surrounding tissues. Cone-beam computed tomography (CBCT) is a new radiological imaging modality that allows radio-opaque objects to be localised and assessed in three dimensions. The full potential of the use of CBCT in forensic medicine has not yet been explored. In this study, three different modern projectiles were fired into the heads of pig cadavers (n=6) under standardised conditions. Tissue destruction and the location of the projectiles were analysed separately using CBCT and multi-slice computed tomography (MDCT). The projectiles had the same kinetic energy but showed considerable differences in deformation behaviour. Within the study groups, tissue destruction was reproducible. CBCT is less severely affected by metallic artefacts than MDCT. Therefore CBCT is superior in visualising bone destruction in the immediate vicinity of the projectile and projectile deformation, whereas MDCT allows soft tissue to be evaluated in more detail. CBCT is an improved diagnostic tool for the evaluation of gunshot injuries. In particular, it is superior to MDCT in detecting structural hard-tissue damage in the immediate vicinity of high-density metal projectiles and in identifying the precise location of a projectile in the body.

  4. Noise suppression in scatter correction for cone-beam CT

    PubMed Central

    Zhu, Lei; Wang, Jing; Xing, Lei

    2009-01-01

    Scatter correction is crucial to the quality of reconstructed images in x-ray cone-beam computed tomography (CBCT). Most of existing scatter correction methods assume smooth scatter distributions. The high-frequency scatter noise remains in the projection images even after a perfect scatter correction. In this paper, using a clinical CBCT system and a measurement-based scatter correction, the authors show that a scatter correction alone does not provide satisfactory image quality and the loss of the contrast-to-noise ratio (CNR) of the scatter corrected image may overwrite the benefit of scatter removal. To circumvent the problem and truly gain from scatter correction, an effective scatter noise suppression method must be in place. They analyze the noise properties in the projections after scatter correction and propose to use a penalized weighted least-squares (PWLS) algorithm to reduce the noise in the reconstructed images. Experimental results on an evaluation phantom (Catphan©600) show that the proposed algorithm further reduces the reconstruction error in a scatter corrected image from 10.6% to 1.7% and increases the CNR by a factor of 3.6. Significant image quality improvement is also shown in the results on an anthropomorphic phantom, in which the global noise level is reduced and the local streaking artifacts around bones are suppressed. PMID:19378735

  5. A ray-tracing backprojection algorithm for cone beam CT

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Pan, Tinsu

    2007-03-01

    We have developed a ray-tracing backprojection (RTB) to back-project all the detector pixels into the image domain of cone beam CT (CBCT). The underlying mathematic framework is the FDK reconstruction. In this method, every ray recorded by the flat panel detector is traced back into the image space. In each voxel of the imaging domain, all the rays contributing to the formation of the CT image are summed together weighted by each rays' intersection length with the voxel. The RTB is similar to a reverse process of x-ray transmission imaging, as opposed to the conventional voxel-driven backprojection (VDB). In the RTB, we avoided interpolation and pixel binning approximations, achieved better spatial resolution and eliminated some image artifacts. We have successfully applied the RTB in phantom studies on the Varian On Board Imager CBCT. The images of the Catphan CTP404 module show more accurate representation of the oblique ramps in the measurement of slice thickness, and more accurate determination of slice thickness with the RTB than with VDB. The RTB also shows higher spatial resolution than the VDB in the studies of a high contrast resolution phantom.

  6. EVALUATION OF THYROID RADIATION DOSE USING CONE BEAM COMPUTED TOMOGRAPHY.

    PubMed

    Setti da Rocha, Anna Silvia Penteado; de Mello Aguiar, Guilherme; Tulio, Ana Paula; Ditzel, Alessandra S; Filipov, Danielle

    2017-07-01

    Cone beam computed tomography (CBCT) became common in various dental specialties over the past decade. This technology is used by dental professionals regarding the investigation of maxillofacial structures. Due to the diagnostic quality and possibility of 3D view, this method has become an additional method of human exposure to ionizing radiation. This study aims to evaluate the amount of ionizing radiation absorbed by thyroid gland using CBCT. Measurements were performed by LiF dosimeters (TLD-100), positioned on a phantom for head and neck, which was irradiated by Newtom 3G-CBCT. The average of phantom surface radiation dose at the thyroid gland was 0.48 mGy. The data obtained during this study are suitable to reference values; therefore, it is important to recall that the as low as reasonably achievable principle must be applied in all procedures, thereby safeguarding the patient and also the professional. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  8. Passive breath gating equipment for cone beam CT-guided RapidArc gastric cancer treatments.

    PubMed

    Hu, Weigang; Li, Guichao; Ye, Jinsong; Wang, Jiazhou; Peng, Jiayuan; Gong, Min; Yu, Xiaoli; Studentski, Matthew T; Xiao, Ying; Zhang, Zhen

    2015-01-01

    To report preliminary results of passive breath gating (PBG) equipment for cone-beam CT image-guided gated RapidArc gastric cancer treatments. Home-developed PBG equipment integrated with the real-time position management system (RPM) for passive patient breath hold was used in CT simulation, online partial breath hold (PBH) CBCT acquisition, and breath-hold gating (BHG) RapidArc delivery. The treatment was discontinuously delivered with beam on during BH and beam off for free breathing (FB). Pretreatment verification PBH CBCT was obtained with the PBG-RPM system. Additionally, the reproducibility of the gating accuracy was evaluated. A total of 375 fractions of breath-hold gating RapidArc treatments were successfully delivered and 233 PBH CBCTs were available for analysis. The PBH CBCT images were acquired with 2-3 breath holds and 1-2 FB breaks. The imaging time was the same for PBH CBCT and conventional FB CBCT (60s). Compared to FB CBCT, the motion artifacts seen in PBH CBCT images were remarkably reduced. The average BHG RapidArc delivery time was 103 s for one 270-degree arc and 269 s for two full arcs. The PBG-RPM based PBH CBCT verification and BHG RapidArc delivery was successfully implemented clinically. The BHG RapidArc treatment was accomplished using a conventional RapidArc machine with high delivery efficiency. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Dedicated Cone-Beam Breast CT: Feasibility Study with Surgical Mastectomy Specimens

    PubMed Central

    Yang, Wei Tse; Carkaci, Selin; Chen, Lingyun; Lai, Chao-Jen; Sahin, Aysegul; Whitman, Gary J.; Shaw, Chris C.

    2010-01-01

    OBJECTIVE The purpose of this study was to investigate the feasibility of diagnostic breast imaging using a flat-panel detector-based cone-beam CT system. CONCLUSION Imaging of 12 mastectomy specimens was performed at 50–80 kVp with a voxel size of 145 or 290 μm. Our study shows that cone-beam breast CT images have exceptional tissue contrast and can potentially reduce examination time with comparable radiation dose. PMID:18029864

  10. Radiation protection: protection of patients undergoing cone beam computed tomography examinations.

    PubMed

    Drage, Nicholas; Carmichael, Fiona; Brown, Jackie

    2010-10-01

    Cone beam computed tomography is becoming a popular imaging modality in dentistry. The effective dose from these examinations is generally higher than conventional plain film radiography. This article outlines the ways of protecting patients from the harmful effects of radiation. Cone beam computed tomography is an emerging imaging modality. The effective doses are generally higher than conventional radiography and it is therefore important that anyone requesting or performing these investigations understands how to keep the doses to patients as low as reasonably practicable.

  11. Comparison of full-scan and half-scan for cone beam breast CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Lai, Chao-jen; Altunbas, Mustafa C.; Wang, Tianpeng; Tu, Shu-ju; Liu, Xinming

    2006-03-01

    The half-scan cone beam technique, requiring a scan for 180° plus detector width only, can help achieve both shorter scan time as well as higher exposure in each individual projection image. This purpose of this paper is to investigate whether half-scan cone beam CT technique can provide acceptable images for clinical application. The half-scan cone beam reconstruction algorithm uses modified Parker's weighting function and reconstructs from slightly more than half of the projection views for full-scan, giving out promising results. A rotation phantom, stationary gantry bench top system was built to conduct experiments to evaluate half-scan cone beam breast CT technique. A post-mastectomy breast specimen, a stack of lunch meat slices embedded with various sizes of calcifications and a polycarbonate phantom inserted with glandular and adipose tissue equivalents are imaged and reconstructed for comparison study. A subset of full-scan projection images of a mastectomy specimen were extracted and used as the half-scan projection data for reconstruction. The results show half-scan reconstruction algorithm for cone beam breast CT images does not significantly degrade image quality when compared with the images of same or even half the radiation dose level. Our results are encouraging, emphasizing the potential advantages in the use of half-scan technique for cone beam breast imaging.

  12. Dynamic bowtie filter for cone-beam/multi-slice CT.

    PubMed

    Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    A pre-patient attenuator ("bowtie filter" or "bowtie") is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection.

  13. Dynamic Bowtie Filter for Cone-Beam/Multi-Slice CT

    PubMed Central

    Liu, Fenglin; Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2014-01-01

    A pre-patient attenuator (“bowtie filter” or “bowtie”) is used to modulate an incoming x-ray beam as a function of the angle of the x-ray with respect to a patient to balance the photon flux on a detector array. While the current dynamic bowtie design is focused on fan-beam geometry, in this study we propose a methodology for dynamic bowtie design in multi-slice/cone-beam geometry. The proposed 3D dynamic bowtie is an extension of the 2D prior art. The 3D bowtie consists of a highly attenuating bowtie (HB) filled in with heavy liquid and a weakly attenuating bowtie (WB) immersed in the liquid of the HB. The HB targets a balanced flux distribution on a detector array when no object is in the field of view (FOV). The WB compensates for an object in the FOV, and hence is a scaled-down version of the object. The WB is rotated and translated in synchrony with the source rotation and patient translation so that the overall flux balance is maintained on the detector array. First, the mathematical models of different scanning modes are established for an elliptical water phantom. Then, a numerical simulation study is performed to compare the performance of the scanning modes in the cases of the water phantom and a patient cross-section without any bowtie and with a dynamic bowtie. The dynamic bowtie can equalize the numbers of detected photons in the case of the water phantom. In practical cases, the dynamic bowtie can effectively reduce the dynamic range of detected signals inside the FOV. Furthermore, the WB can be individualized using a 3D printing technique as the gold standard. We have extended the dynamic bowtie concept from 2D to 3D by using highly attenuating liquid and moving a scale-reduced negative copy of an object being scanned. Our methodology can be applied to reduce radiation dose and facilitate photon-counting detection. PMID:25051067

  14. Adjustable hollow-cone output x-ray beam from an ellipsoidal monocapillary with a pinhole and a beam stop.

    PubMed

    Sun, Xue-Peng; Liu, Zhi-Gou; Yi, Long-Tao; Sun, Wei-Yun; Li, Fang-Zou; Jiang, Bo-Wen; Ma, Yong-Zhong; Sun, Tian-Xi

    2015-12-10

    A combined shading system (CSS) consisting of a beam stop and a pinhole is proposed to be used between an ellipsoidal monocapillary (EM) and a conventional laboratory x-ray source to obtain an adjustable hollow-cone output beam for different experiments with no need for changing the EM. The CSS can change the incident x-ray beam on the EM by adjusting the position of the beam stop and the pinhole, with the corresponding change of the output beam of the EM. In this study, the adjustable hollow-cone output x-ray beam of an 80-mm-long EM with a CSS was studied in detail with a laboratory Cu x-ray generator with a focal spot diameter of 50 μm. The adjustable range of the focal spot size of the EM was from 8.6 to 58.7 μm. The adjustable range of the gain of the focal spot of the EM was from 0 to 1350. The beam divergence of the hollow-cone output beam of the EM ranged from 6 to 16.75 mrad. The illumination angle of the hollow-cone output beam of the EM ranged from 0 to 5.95 mrad. In addition, the potential application of the proposed adjusting method in testing the performance of the EM is briefly discussed.

  15. Task-driven imaging in cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Gang, G. J.; Stayman, J. W.; Ouadah, S.; Ehtiati, T.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. Methods: The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered back-projection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Results: Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. Conclusions: This work demonstrated the potential of a task

  16. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    SciTech Connect

    Sailer, Anna M.; Schurink, Geert Willem H.; Wildberger, Joachim E. Graaf, Rick de Zwam, Willem H. van Haan, Michiel W. de Kemerink, Gerrit J. Jeukens, Cécile R. L. P. N.

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCT dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.

  17. 4D cone beam CT via spatiotemporal tensor framelet

    SciTech Connect

    Gao, Hao; Li, Ruijiang; Xing, Lei; Lin, Yuting

    2012-11-15

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  18. CT thermometry for cone-beam CT guided ablation

    NASA Astrophysics Data System (ADS)

    DeStefano, Zachary; Abi-Jaoudeh, Nadine; Li, Ming; Wood, Bradford J.; Summers, Ronald M.; Yao, Jianhua

    2016-03-01

    Monitoring temperature during a cone-beam CT (CBCT) guided ablation procedure is important for prevention of over-treatment and under-treatment. In order to accomplish ideal temperature monitoring, a thermometry map must be generated. Previously, this was attempted using CBCT scans of a pig shoulder undergoing ablation.1 We are extending this work by using CBCT scans of real patients and incorporating more processing steps. We register the scans before comparing them due to the movement and deformation of organs. We then automatically locate the needle tip and the ablation zone. We employ a robust change metric due to image noise and artifacts. This change metric takes windows around each pixel and uses an equation inspired by Time Delay Analysis to calculate the error between windows with the assumption that there is an ideal spatial offset. Once the change map is generated, we correlate change data with measured temperature data at the key points in the region. This allows us to transform our change map into a thermal map. This thermal map is then able to provide an estimate as to the size and temperature of the ablation zone. We evaluated our procedure on a data set of 12 patients who had a total of 24 ablation procedures performed. We were able to generate reasonable thermal maps with varying degrees of accuracy. The average error ranged from 2.7 to 16.2 degrees Celsius. In addition to providing estimates of the size of the ablation zone for surgical guidance, 3D visualizations of the ablation zone and needle are also produced.

  19. Dimensional stability in composite cone beam computed tomography.

    PubMed

    Kopp, S; Ottl, P

    2010-12-01

    An automated increase in the field of view (FOV) for multipurpose cone beam CT (CBCT) by "stitching" (joining) up to three component volumes to yield a larger composite volume must still ensure dimensional stability, especially if the image is to form the basis for a surgical splint. Dimensional stability, image discrepancies and the influence of movement artefacts between exposures were evaluated. The first consumer installation of the Kodak 9000 three-dimensional (3D) extraoral imaging system with stitching software was used for the evaluation of a human mandible with three endodontic instruments as markers. The distances between several reproducible points were measured directly and the results compared with the values measured on screen. Displacements of the mandible along all axes between exposures as well as angular displacements were conducted to test the capability of the system. The standard deviations (SD) of the results for the vertical distances varied between 0.212 mm and 0.409 mm (approximately 1-2 voxels; range, 0.6-1.3 mm) and may be considered the systematic error. The SD of the results for the horizontal and diagonal distances varied between 0.195 mm and 0.571 mm (approximately 1-3 voxels; range, 0.6-1.7 mm) if the group with overall horizontal angulations of 10° and a central rotation of 20° was omitted. In conclusion, the evaluated stitching software is a useful tool to expand the options of combined CBCT with an initial small FOV by allowing a merger of up to three component volumes to yield a larger FOV of about 80 × 80 × 37 mm. The dimensional stability was acceptable when seen in relation to the induced disturbance. Further evaluation of this composite CBCT/digital imaging and communications in medicine system for subsequent splint fabrication may yield promising results.

  20. Dimensional stability in composite cone beam computed tomography

    PubMed Central

    Kopp, S; Ottl, P

    2010-01-01

    An automated increase in the field of view (FOV) for multipurpose cone beam CT (CBCT) by “stitching” (joining) up to three component volumes to yield a larger composite volume must still ensure dimensional stability, especially if the image is to form the basis for a surgical splint. Dimensional stability, image discrepancies and the influence of movement artefacts between exposures were evaluated. The first consumer installation of the Kodak 9000 three-dimensional (3D) extraoral imaging system with stitching software was used for the evaluation of a human mandible with three endodontic instruments as markers. The distances between several reproducible points were measured directly and the results compared with the values measured on screen. Displacements of the mandible along all axes between exposures as well as angular displacements were conducted to test the capability of the system. The standard deviations (SD) of the results for the vertical distances varied between 0.212 mm and 0.409 mm (approximately 1–2 voxels; range, 0.6–1.3 mm) and may be considered the systematic error. The SD of the results for the horizontal and diagonal distances varied between 0.195 mm and 0.571 mm (approximately 1–3 voxels; range, 0.6–1.7 mm) if the group with overall horizontal angulations of 10° and a central rotation of 20° was omitted. In conclusion, the evaluated stitching software is a useful tool to expand the options of combined CBCT with an initial small FOV by allowing a merger of up to three component volumes to yield a larger FOV of about 80 × 80 × 37 mm. The dimensional stability was acceptable when seen in relation to the induced disturbance. Further evaluation of this composite CBCT/digital imaging and communications in medicine system for subsequent splint fabrication may yield promising results. PMID:21062945

  1. Task-driven imaging in cone-beam computed tomography

    PubMed Central

    Gang, G. J.; Stayman, J. W.; Ouadah, S.; Ehtiati, T.; Siewerdsen, J. H.

    2015-01-01

    Purpose Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. Methods The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Results Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. Conclusions This work demonstrated the potential of a task

  2. Cone-Beam Computed Tomography-Guided Percutaneous Radiologic Gastrostomy

    SciTech Connect

    Moehlenbruch, Markus; Nelles, Michael; Thomas, Daniel; Willinek, Winfried; Gerstner, Andreas; Schild, Hans H.; Wilhelm, Kai

    2010-04-15

    The purpose of this study was to investigate the feasibility of a flat-detector C-arm-guided radiographic technique (cone-beam computed tomography [CBCT]) for percutaneous radiologic gastrostomy (PRG) insertion. Eighteen patients (13 men and 5 women; mean age 62 years) in whom percutaneous endoscopic gastrostomy (PEG) had failed underwent CBCT-guided PRG insertion. PEG failure or unsuitability was caused by upper gastrointestinal tract obstruction in all cases. Indications for gastrostomy were esophageal and head and neck malignancies, respectively. Before the PRG procedure, initial C-arm CBCT scans were acquired. Three- and 2-dimensional soft-tissue reconstructions of the epigastrium region were generated on a dedicated workstation. Subsequently, gastropexy was performed with T-fasteners after CBCT-guided puncture of the stomach bubble, followed by insertion of an 14F balloon-retained catheter through a peel-away introducer. Puncture of the stomach bubble and PRG insertion was technically successful in all patients without alteration of the epigastric region. There was no malpositioning of the tube or other major periprocedural complications. In 2 patients, minor complications occurred during the first 30 days of follow-up (PRG malfunction: n = 1; slight infection: n = 1). Late complications, which were mainly tube disturbances, were observed in 2 patients. The mean follow-up time was 212 days. CBCT-guided PRG is a safe, well-tolerated, and successful method of gastrostomy insertion in patients in whom endoscopic gastrostomy is not feasible. CBCT provides detailed imaging of the soft tissue and surrounding structures of the epigastric region in one diagnostic tour and thus significantly improves the planning of PRG procedures.

  3. Cone-beam artifact evaluation of the factorization method

    SciTech Connect

    Dennerlein, Frank; Noo, Frederic

    2011-05-15

    Purpose: The authors investigate the CB artifact behavior of the factorization approach recently suggested for image reconstruction in circular cone-beam computed tomography. This investigation is carried out in a typical C-arm geometry and involves simulated data and for the first time also phantom and clinical CB data acquired with a commercially available angiographic system. Methods: The CB artifact level is first measured using quantitative figures-of-merit that are computed from the reconstructions of the mathematical FORBILD head phantom and of a modified disk phantom. The authors then show reconstructions from a physical thorax phantom and clinical head data sets for a visual assessment of image quality. The performance of the factorization method is primarily compared to that of short-scan FDK, but the authors also show the results obtained with the full-scan FDK and the virtual PI-line BPF method for the simulation studies, as a benchmark. Results: Quantitatively, the FORBILD head phantom reconstructions of both FDK methods show a spatially averaged bias of up to 1.2% in the axial slices about 9 cm away from the plane of the scan, which is placed 4 cm below the central slice through the phantom. The artifact level for the short-scan FDK method and the virtual PI-line BPF method noticeably depends on the scan orientation. The factorization approach can significantly reduce both, this dependency as well as the reconstruction bias. It also shows visually an improved quality of the clinical images compared to short-scan FDK, particularly close to the spine and in the subcranial regions of the clinical data sets. Conclusions: The factorization approach comes with noticeably lower reconstruction bias than the FDK methods and is least sensitive to the scan orientation among all considered short-scan methods. The data inconsistencies contained in the real data sets, such as scatter, beam hardening, or data truncation, show only little impact on the factorization

  4. Scatter correction for cone-beam CT in radiation therapy

    PubMed Central

    Zhu, Lei; Xie, Yaoqin; Wang, Jing; Xing, Lei

    2009-01-01

    Cone-beam CT (CBCT) is being increasingly used in modern radiation therapy for patient setup and adaptive replanning. However, due to the large volume of x-ray illumination, scatter becomes a rather serious problem and is considered as one of the fundamental limitations of CBCT image quality. Many scatter correction algorithms have been proposed in literature, while a standard practical solution still remains elusive. In radiation therapy, the same patient is scanned repetitively during a course of treatment, a natural question to ask is whether one can obtain the scatter distribution on the first day of treatment and then use the data for scatter correction in the subsequent scans on different days. To realize this scatter removal scheme, two technical pieces must be in place: (i) A strategy to obtain the scatter distribution in on-board CBCT imaging and (ii) a method to spatially match a prior scatter distribution with the on-treatment CBCT projection data for scatter subtraction. In this work, simple solutions to the two problems are provided. A partially blocked CBCT is used to extract the scatter distribution. The x-ray beam blocker has a strip pattern, such that partial volume can still be accurately reconstructed and the whole-field scatter distribution can be estimated from the detected signals in the shadow regions using interpolation∕extrapolation. In the subsequent scans, the patient transformation is determined using a rigid registration of the conventional CBCT and the prior partial CBCT. From the derived patient transformation, the measured scatter is then modified to adapt the new on-treatment patient geometry for scatter correction. The proposed method is evaluated using physical experiments on a clinical CBCT system. On the Catphan©600 phantom, the errors in Hounsfield unit (HU) in the selected regions of interest are reduced from about 350 to below 50 HU; on an anthropomorphic phantom, the error is reduced from 15.7% to 5.4%. The proposed

  5. Scatter correction for cone-beam CT in radiation therapy

    SciTech Connect

    Zhu Lei; Xie Yaoqin; Wang Jing; Xing Lei

    2009-06-15

    Cone-beam CT (CBCT) is being increasingly used in modern radiation therapy for patient setup and adaptive replanning. However, due to the large volume of x-ray illumination, scatter becomes a rather serious problem and is considered as one of the fundamental limitations of CBCT image quality. Many scatter correction algorithms have been proposed in literature, while a standard practical solution still remains elusive. In radiation therapy, the same patient is scanned repetitively during a course of treatment, a natural question to ask is whether one can obtain the scatter distribution on the first day of treatment and then use the data for scatter correction in the subsequent scans on different days. To realize this scatter removal scheme, two technical pieces must be in place: (i) A strategy to obtain the scatter distribution in on-board CBCT imaging and (ii) a method to spatially match a prior scatter distribution with the on-treatment CBCT projection data for scatter subtraction. In this work, simple solutions to the two problems are provided. A partially blocked CBCT is used to extract the scatter distribution. The x-ray beam blocker has a strip pattern, such that partial volume can still be accurately reconstructed and the whole-field scatter distribution can be estimated from the detected signals in the shadow regions using interpolation/extrapolation. In the subsequent scans, the patient transformation is determined using a rigid registration of the conventional CBCT and the prior partial CBCT. From the derived patient transformation, the measured scatter is then modified to adapt the new on-treatment patient geometry for scatter correction. The proposed method is evaluated using physical experiments on a clinical CBCT system. On the Catphan(c)600 phantom, the errors in Hounsfield unit (HU) in the selected regions of interest are reduced from about 350 to below 50 HU; on an anthropomorphic phantom, the error is reduced from 15.7% to 5.4%. The proposed method

  6. Exact cone beam reconstruction formulae for functions and their gradients for spherical and flat detectors

    NASA Astrophysics Data System (ADS)

    Louis, Alfred K.

    2016-11-01

    We derive unified inversion formulae for the cone beam transform similar to the Radon transform. Reinterpreting Grangeat’s formula we find a relation between the Radon transform of the gradient of the searched-for function and a quantity computable from cone beam data. This gives a uniqueness result for the cone beam transform of compactly supported functions under much weaker assumptions than the Tuy-Kirillov condition. Furthermore this relation leads to an exact formula for the direct calculation of derivatives of the density distribution; but here, similar to the classical Radon transform, complete Radon data are needed, hence the Tuy-Kirillov condition has to be imposed. Numerical experiments reported in Hahn B N et al (2013 Meas. Sci. Technol. 24 125601) indicate that these calculations are less corrupted by beam-hardening noise. Finally, we present flat detector versions for these results, which are mathematically less attractive but important for applications.

  7. Rotational artifacts in on-board cone beam computed tomography.

    PubMed

    Ali, E S M; Webb, R; Nyiri, B J

    2015-02-21

    Rotational artifacts in image guidance systems lead to registration errors that affect non-isocentric treatments and dose to off-axis organs-at-risk. This study investigates a rotational artifact in the images acquired with the on-board cone beam computed tomography system XVI (Elekta, Stockholm, Sweden). The goals of the study are to identify the cause of the artifact, to characterize its dependence on other quantities, and to investigate possible solutions. A 30 cm diameter cylindrical phantom is used to acquire clockwise and counterclockwise scans at five speeds (120 to 360 deg min(-1)) on six Elekta linear accelerators from three generations (MLCi, MLCi2 and Agility). Additional scans are acquired with different pulse widths and focal spot sizes for the same mAs. Image quality is evaluated using a common phantom with an in-house three dimensional contrast transfer function attachment. A robust, operator-independent analysis is developed which quantifies rotational artifacts with 0.02° accuracy and imaging system delays with 3 ms accuracy. Results show that the artifact is caused by mislabelling of the projections with a lagging angle due to various imaging system delays. For the most clinically used scan speed (360 deg min(-1)), the artifact is ∼0.5°, which corresponds to ∼0.25° error per scan direction with the standard Elekta procedure for angle calibration. This leads to a 0.5 mm registration error at 11 cm off-center. The artifact increases linearly with scan speed, indicating that the system delay is independent of scan speed. For the most commonly used pulse width of 40 ms, this delay is 34 ± 1 ms, part of which is half the pulse width. Results are consistent among the three linac generations. A software solution that corrects the angles of individual projections is shown to eliminate the rotational error for all scan speeds and directions. Until such a solution is available from the manufacturer, three clinical solutions are presented, which

  8. Rotational artifacts in on-board cone beam computed tomography

    NASA Astrophysics Data System (ADS)

    Ali, E. S. M.; Webb, R.; Nyiri, B. J.

    2015-02-01

    Rotational artifacts in image guidance systems lead to registration errors that affect non-isocentric treatments and dose to off-axis organs-at-risk. This study investigates a rotational artifact in the images acquired with the on-board cone beam computed tomography system XVI (Elekta, Stockholm, Sweden). The goals of the study are to identify the cause of the artifact, to characterize its dependence on other quantities, and to investigate possible solutions. A 30 cm diameter cylindrical phantom is used to acquire clockwise and counterclockwise scans at five speeds (120 to 360 deg min-1) on six Elekta linear accelerators from three generations (MLCi, MLCi2 and Agility). Additional scans are acquired with different pulse widths and focal spot sizes for the same mAs. Image quality is evaluated using a common phantom with an in-house three dimensional contrast transfer function attachment. A robust, operator-independent analysis is developed which quantifies rotational artifacts with 0.02° accuracy and imaging system delays with 3 ms accuracy. Results show that the artifact is caused by mislabelling of the projections with a lagging angle due to various imaging system delays. For the most clinically used scan speed (360 deg min-1), the artifact is ˜0.5°, which corresponds to ˜0.25° error per scan direction with the standard Elekta procedure for angle calibration. This leads to a 0.5 mm registration error at 11 cm off-center. The artifact increases linearly with scan speed, indicating that the system delay is independent of scan speed. For the most commonly used pulse width of 40 ms, this delay is 34 ± 1 ms, part of which is half the pulse width. Results are consistent among the three linac generations. A software solution that corrects the angles of individual projections is shown to eliminate the rotational error for all scan speeds and directions. Until such a solution is available from the manufacturer, three clinical solutions are presented, which reduce the

  9. Actively triggered 4d cone-beam CT acquisition

    SciTech Connect

    Fast, Martin F.; Wisotzky, Eric; Oelfke, Uwe; Nill, Simeon

    2013-09-15

    Purpose: 4d cone-beam computed tomography (CBCT) scans are usually reconstructed by extracting the motion information from the 2d projections or an external surrogate signal, and binning the individual projections into multiple respiratory phases. In this “after-the-fact” binning approach, however, projections are unevenly distributed over respiratory phases resulting in inefficient utilization of imaging dose. To avoid excess dose in certain respiratory phases, and poor image quality due to a lack of projections in others, the authors have developed a novel 4d CBCT acquisition framework which actively triggers 2d projections based on the forward-predicted position of the tumor.Methods: The forward-prediction of the tumor position was independently established using either (i) an electromagnetic (EM) tracking system based on implanted EM-transponders which act as a surrogate for the tumor position, or (ii) an external motion sensor measuring the chest-wall displacement and correlating this external motion to the phase-shifted diaphragm motion derived from the acquired images. In order to avoid EM-induced artifacts in the imaging detector, the authors devised a simple but effective “Faraday” shielding cage. The authors demonstrated the feasibility of their acquisition strategy by scanning an anthropomorphic lung phantom moving on 1d or 2d sinusoidal trajectories.Results: With both tumor position devices, the authors were able to acquire 4d CBCTs free of motion blurring. For scans based on the EM tracking system, reconstruction artifacts stemming from the presence of the EM-array and the EM-transponders were greatly reduced using newly developed correction algorithms. By tuning the imaging frequency independently for each respiratory phase prior to acquisition, it was possible to harmonize the number of projections over respiratory phases. Depending on the breathing period (3.5 or 5 s) and the gantry rotation time (4 or 5 min), between ∼90 and 145

  10. Design of metallic electron beam cones for an intraoperative therapy linear accelerator.

    PubMed

    Hogstrom, K R; Boyer, A L; Shiu, A S; Ochran, T G; Kirsner, S M; Krispel, F; Rich, T

    1990-05-01

    A set of circular collimators and treatment cones from 5 to 12 cm diameter has been designed for an intraoperative accelerator (6-18 MeV) that has an optical docking system. Electron beam scattering theory has been used to minimize their weight while minimizing leakage radiation. Both acrylic and brass were evaluated as possible materials; however, because of substantial electron leakage through the lateral cone wall for acrylic, we have concluded that 2 mm thick brass walls are more desirable than acrylic walls. At 18 MeV, isodose measurements beneath the cones showed hot spots as great as 120% for both materials. The placement and dimension of an internal trimmer ring inside the brass cone was studied as a method for reducing the hot spots, and it was found this could only be accomplished at the expense of decreasing coverage of the 90% isodose surface. The effects of 1 degree cone misalignment on the dose distribution has been studied and found to generate changes of less than 5% in the dose and 3 mm in position of the 90% isodose surface. In a study of the contribution of the cone and its matching collimator assembly to x-ray room leakage, it was noted that although the treatment cone had a negligible contribution, the upper annuli of the upper collimator assembly contributed as much as 80% of the leakage at 16 MeV for the 5-cm cone.

  11. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    SciTech Connect

    Chen, Dongmei; Zhu, Shouping Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-11-10

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging.

  12. Tetrahedron-based orthogonal simultaneous scan for cone-beam computed tomography.

    PubMed

    Ye, Ivan B; Wang, Ge

    2012-08-06

    In this article, a cone-beam computed tomography scanning mode is designed using four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite of each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. A proposed scanning scheme consists of two rotations about orthogonal axes, such that, each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired.

  13. Cone beam CT findings of retromolar canals: Report of cases and literature review

    PubMed Central

    Han, Sang-Sun

    2013-01-01

    A retromolar canal is an anatomical variation in the mandible. As it includes the neurovascular bundle, local anesthetic insufficiency can occur, and an injury of the retromolar canal during dental surgery in the mandible may result in excessive bleeding, paresthesia, and traumatic neuroma. Using imaging analysis software, we evaluated the cone-beam computed tomography (CT) images of two Korean patients who presented with retromolar canals. Retromolar canals were detectable on the sagittal and cross-sectional images of cone-beam CT, but not on the panoramic radiographs of the patients. Therefore, the clinician should pay particular attention to the identification of retromolar canals by preoperative radiographic examination, and additional cone beam CT scanning would be recommended. PMID:24380072

  14. Square wave cone beam scanning trajectory for data completeness in three-dimensional computerized tomography

    SciTech Connect

    Eberhard, J.W.; Hedengren, K.H.V.

    1991-12-17

    This paper describes a scanning and data acquisition method for three-dimensional computerized tomography (CT) imaging of a field of view containing at least a portion of an object illuminated by a cone beam source. It comprises: defining a source scanning trajectory as a path traversed by the source; employing the cone beam source fixed with reference to a two-dimensional array detector with both source and detector movably positioned relative to the object in order to scan about the object; specifying the source scanning trajectory as a square wave on a cylindrical surface surrounding the field of view such that each plane passing through the field of view intersects the scanning trajectory in at lease one point; and scanning at a plurality of positions along the source scanning trajectory to obtain cone beam projection data.

  15. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy

    PubMed Central

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2012-01-01

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes. PMID:21258140

  16. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    SciTech Connect

    Cai Weixing; Zhao Binghui; Conover, David; Liu Jiangkun; Ning Ruola

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow. From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.

  17. Cone beam computed tomography radiation dose and image quality assessments.

    PubMed

    Lofthag-Hansen, Sara

    2010-01-01

    Diagnostic radiology has undergone profound changes in the last 30 years. New technologies are available to the dental field, cone beam computed tomography (CBCT) as one of the most important. CBCT is a catch-all term for a technology comprising a variety of machines differing in many respects: patient positioning, volume size (FOV), radiation quality, image capturing and reconstruction, image resolution and radiation dose. When new technology is introduced one must make sure that diagnostic accuracy is better or at least as good as the one it can be expected to replace. The CBCT brand tested was two versions of Accuitomo (Morita, Japan): 3D Accuitomo with an image intensifier as detector, FOV 3 cm x 4 cm and 3D Accuitomo FPD with a flat panel detector, FOVs 4 cm x 4 cm and 6 cm x 6 cm. The 3D Accuitomo was compared with intra-oral radiography for endodontic diagnosis in 35 patients with 46 teeth analyzed, of which 41 were endodontically treated. Three observers assessed the images by consensus. The result showed that CBCT imaging was superior with a higher number of teeth diagnosed with periapical lesions (42 vs 32 teeth). When evaluating 3D Accuitomo examinations in the posterior mandible in 30 patients, visibility of marginal bone crest and mandibular canal, important anatomic structures for implant planning, was high with good observer agreement among seven observers. Radiographic techniques have to be evaluated concerning radiation dose, which requires well-defined and easy-to-use methods. Two methods: CT dose index (CTDI), prevailing method for CT units, and dose-area product (DAP) were evaluated for calculating effective dose (E) for both units. An asymmetric dose distribution was revealed when a clinical situation was simulated. Hence, the CTDI method was not applicable for these units with small FOVs. Based on DAP values from 90 patient examinations effective dose was estimated for three diagnostic tasks: implant planning in posterior mandible and

  18. Cone beam CT assisted re-treatment of class 3 invasive cervical resorption

    PubMed Central

    Krishnan, Unni; Moule, Alex J; Alawadhi, Abdulwahab

    2015-01-01

    Invasive cervical root resorption is an uncommon external root resorption which initiates at the cervical aspect of the tooth. This case report involves a case of cervical root resorption which was initially misdiagnosed and managed as cervical root caries. It was later diagnosed with cone beam CT and the lesion microsurgically removed and restored with resin modified glass ionomer cement. The importance of increasing awareness of this uncommon pathology and the role of cone beam CT in mapping the extent of the lesion is emphasised. PMID:25795743

  19. How I Do It: Cone-Beam CT during Transarterial Chemoembolization for Liver Cancer

    PubMed Central

    Tacher, Vania; Radaelli, Alessandro; Lin, MingDe

    2015-01-01

    Cone-beam computed tomography (CBCT) is an imaging technique that provides computed tomographic (CT) images from a rotational scan acquired with a C-arm equipped with a flat panel detector. Utilizing CBCT images during interventional procedures bridges the gap between the world of diagnostic imaging (typically three-dimensional imaging but performed separately from the procedure) and that of interventional radiology (typically two-dimensional imaging). CBCT is capable of providing more information than standard two-dimensional angiography in localizing and/or visualizing liver tumors (“seeing” the tumor) and targeting tumors though precise microcatheter placement in close proximity to the tumors (“reaching” the tumor). It can also be useful in evaluating treatment success at the time of procedure (“assessing” treatment success). CBCT technology is rapidly evolving along with the development of various contrast material injection protocols and multiphasic CBCT techniques. The purpose of this article is to provide a review of the principles of CBCT imaging, including purpose and clinical evidence of the different techniques, and to introduce a decision-making algorithm as a guide for the routine utilization of CBCT during transarterial chemoembolization of liver cancer. © RSNA, 2015 Online supplemental material is available for this article. PMID:25625741

  20. Single-slice reconstruction method for helical cone-beam differential phase-contrast CT.

    PubMed

    Fu, Jian; Chen, Liyuan

    2014-01-01

    X-ray phase-contrast computed tomography (PC-CT) can provide the internal structure information of biomedical specimens with high-quality cross-section images and has become an invaluable analysis tool. Here a simple and fast reconstruction algorithm is reported for helical cone-beam differential PC-CT (DPC-CT), which is called the DPC-CB-SSRB algorithm. It combines the existing CB-SSRB method of helical cone-beam absorption-contrast CT with the differential nature of DPC imaging. The reconstruction can be performed using 2D fan-beam filtered back projection algorithm with the Hilbert imaginary filter. The quality of the results for large helical pitches is surprisingly good. In particular, with this algorithm comparable quality is obtained using helical cone-beam DPC-CT data with a normalized pitch of 10 to that obtained using the traditional inter-row interpolation reconstruction with a normalized pitch of 2. This method will push the future medical helical cone-beam DPC-CT imaging applications.

  1. 3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography

    PubMed Central

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications. PMID:25775480

  2. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  3. Breath-Hold Target Localization With Simultaneous Kilovoltage/Megavoltage Cone-Beam Computed Tomography and Fast Reconstruction

    SciTech Connect

    Blessing, Manuel; Stsepankou, Dzmitry; Wertz, Hansjoerg; Arns, Anna; Lohr, Frank; Hesser, Juergen; Wenz, Frederik

    2010-11-15

    Purpose: Hypofractionated high-dose radiotherapy for small lung tumors has typically been based on stereotaxy. Cone-beam computed tomography and breath-hold techniques have provided a noninvasive basis for precise cranial and extracranial patient positioning. The cone-beam computed tomography acquisition time of 60 s, however, is beyond the breath-hold capacity of patients, resulting in respiratory motion artifacts. By combining megavoltage (MV) and kilovoltage (kV) photon sources (mounted perpendicularly on the linear accelerator) and accelerating the gantry rotation to the allowed limit, the data acquisition time could be reduced to 15 s. Methods and Materials: An Elekta Synergy 6-MV linear accelerator, with iViewGT as the MV- and XVI as the kV-imaging device, was used with a Catphan phantom and an anthropomorphic thorax phantom. Both image sources performed continuous image acquisition, passing an angle interval of 90{sup o} within 15 s. For reconstruction, filtered back projection on a graphics processor unit was used. It reconstructed 100 projections acquired to a 512 x 512 x 512 volume within 6 s. Results: The resolution in the Catphan phantom (CTP528 high-resolution module) was 3 lines/cm. The spatial accuracy was within 2-3 mm. The diameters of different tumor shapes in the thorax phantom were determined within an accuracy of 1.6 mm. The signal-to-noise ratio was 68% less than that with a 180{sup o}-kV scan. The dose generated to acquire the MV frames accumulated to 82.5 mGy, and the kV contribution was <6 mGy. Conclusion: The present results have shown that fast breath-hold, on-line volume imaging with a linear accelerator using simultaneous kV-MV cone-beam computed tomography is promising and can potentially be used for image-guided radiotherapy for lung cancer patients in the near future.

  4. Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner.

    PubMed

    Geleijns, J; Salvadó Artells, M; de Bruin, P W; Matter, R; Muramatsu, Y; McNitt-Gray, M F

    2009-05-21

    Computed tomography (CT) dosimetry should be adapted to the rapid developments in CT technology. Recently a 160 mm wide, 320 detector row, cone beam CT scanner that challenges the existing Computed Tomography Dose Index (CTDI) dosimetry paradigm was introduced. The purpose of this study was to assess dosimetric characteristics of this cone beam scanner, to study the appropriateness of existing CT dose metrics and to suggest a pragmatic approach for CT dosimetry for cone beam scanners. Dose measurements with a small Farmer-type ionization chamber and with 100 mm and 300 mm long pencil ionization chambers were performed free in air to characterize the cone beam. According to the most common dose metric in CT, namely CTDI, measurements were also performed in 150 mm and 350 mm long CT head and CT body dose phantoms with 100 mm and 300 mm long pencil ionization chambers, respectively. To explore effects that cannot be measured with ionization chambers, Monte Carlo (MC) simulations of the dose distribution in 150 mm, 350 mm and 700 mm long CT head and CT body phantoms were performed. To overcome inconsistencies in the definition of CTDI100 for the 160 mm wide cone beam CT scanner, doses were also expressed as the average absorbed dose within the pencil chamber (D100). Measurements free in air revealed excellent correspondence between CTDI300air and D100air, while CTDI100air substantially underestimates CTDI300air. Results of measurements in CT dose phantoms and corresponding MC simulations at centre and peripheral positions were weighted and revealed good agreement between CTDI300w, D100w and CTDI600w, while CTDI100w substantially underestimates CTDI300w. D100w provides a pragmatic metric for characterizing the dose of the 160 mm wide cone beam CT scanner. This quantity can be measured with the widely available 100 mm pencil ionization chamber within 150 mm long CT dose phantoms. CTDI300w measured in 350 mm long CT dose phantoms serves as an appropriate standard of

  5. Radiation Properties of Truncated Cones to Enhance the Beam Patterns of Air-coupled Transducers

    NASA Astrophysics Data System (ADS)

    Guarato, Francesco; Mulholland, Anthony J.; Windmill, James F.; Gachagan, Anthony

    Radiation properties of cones are used to steer energy from the side lobes toward the center of the beam pattern of an air-coupled source. Two structures of superposed truncated cones are designed and implemented in a finite element package to modify the beam pattern of a piston model simulating an air-coupled transducer. Results show how the energy from the sides of the beam is conveyed toward the center of it thus widening the main lobe angular domain and smoothing the beam curve. This work is intended to support methods for range estimation performed with air-coupled transducers and localization strategies with broadband ultrasonic signals, as well as to investigate mathematical relationships at the base of radiation properties of conical structures.

  6. Contours identification of elements in a cone beam computed tomography for investigating maxillary cysts

    NASA Astrophysics Data System (ADS)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.

  7. Simulation of mammograms and tomosynthesis imaging with cone beam breast CT images

    NASA Astrophysics Data System (ADS)

    Han, Tao; Shaw, Chris C.; Chen, Lingyun; Lai, Chao-jen; Liu, Xinming; Wang, Tianpeng

    2008-03-01

    The use of mammography techniques for the screening and diagnosis of breast cancers has been limited by the overlapping of cancer symptoms with normal tissue structures. To overcome this problem, two methods have been developed and actively investigated recently: digital tomosynthesis mammography and cone beam breast CT. Comparison study with these three techniques will be helpful to understand their difference and further might be supervise the direction of breast imaging. This paper describes and discusses about a technique using a general-purpose PC cluster to develop a parallel computer simulation model to simulate mammograms and tomosynthesis imaging with cone beam CT images of a mastectomy breast specimen. The breast model used in simulating mammography and tomosynthesis was developed by re-scaling the CT numbers of cone beam CT images from 80kVp to 20 kev. The compression of breast was simulated by deformation of the breast model. Re-projection software with parallel computation was developed and used to compute projection images of this simulated compressed breast for a stationary detector and a linearly shifted x-ray source. The resulting images were then used to reconstruct tomosynthesis mammograms using shift-and-add algorithms. It was found that MCs in cone beam CT images were not visible in regular mammograms but faintly visible in tomosynthesis images. The scatter signal and noise property needs to be simulated and incorporated in the future.

  8. Point spread function modeling and image restoration for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  9. The application of cone-beam CT in the aging of bone calluses: a new perspective?

    PubMed

    Cappella, A; Amadasi, A; Gaudio, D; Gibelli, D; Borgonovo, S; Di Giancamillo, M; Cattaneo, C

    2013-11-01

    In the forensic and anthropological fields, the assessment of the age of a bone callus can be crucial for a correct analysis of injuries in the skeleton. To our knowledge, the studies which have focused on this topic are mainly clinical and still leave much to be desired for forensic purposes, particularly in looking for better methods for aging calluses in view of criminalistic applications. This study aims at evaluating the aid cone-beam CT can give in the investigation of the inner structure of fractures and calluses, thus acquiring a better knowledge of the process of bone remodeling. A total of 13 fractures (three without callus formation and ten with visible callus) of known age from cadavers were subjected to radiological investigations with digital radiography (DR) (conventional radiography) and cone-beam CT with the major aim of investigating the differences between DR and tomographic images when studying the inner and outer structures of bone healing. Results showed how with cone-beam CT the structure of the callus is clearly visible with higher specificity and definition and much more information on mineralization in different sections and planes. These results could lay the foundation for new perspectives on bone callus evaluation and aging with cone-beam CT, a user-friendly and skillful technique which in some instances can also be used extensively on the living (e.g., in cases of child abuse) with reduced exposition to radiation.

  10. AAE and AAOMR Joint Position Statement: Use of Cone Beam Computed Tomography in Endodontics 2015 Update.

    PubMed

    2015-10-01

    The following statement was prepared by the Special Committee to Revise the Joint American Association of Endodontists/American Academy of Oral and Maxillofacial Radiology Position on Cone Beam Computed Tomography, and approved by the AAE Board of Directors and AAOMR Executive Council in May 2015. AAE members may reprint this position statement for distribution to patients or referring dentists.

  11. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics

    PubMed Central

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; Anitha, J; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation. PMID:26225116

  12. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics.

    PubMed

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; Anitha, J; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation.

  13. Region-of-interest image reconstruction in circular cone-beam microCT

    SciTech Connect

    Cho, Seungryong; Bian, Junguo; Pelizzari, Charles A.; Chen, C.-T.; He, T.-C.; Pan Xiaochuan

    2007-12-15

    Cone-beam microcomputed tomography (microCT) is one of the most popular choices for small animal imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest (ROI) imaging techniques in CT, which can reconstruct an ROI image from the projection data set of the ROI, can be used not only for reducing imaging-radiation exposure to the subject and scatters to the detector but also for potentially increasing spatial resolution of the reconstructed images. Increasing spatial resolution in microCT images can facilitate improved accuracy in many assessment tasks. A method proposed previously for increasing CT image spatial resolution entails the exploitation of the geometric magnification in cone-beam CT. Due to finite detector size, however, this method can lead to data truncation for a large geometric magnification. The Feldkamp-Davis-Kress (FDK) algorithm yields images with artifacts when truncated data are used, whereas the recently developed backprojection filtration (BPF) algorithm is capable of reconstructing ROI images without truncation artifacts from truncated cone-beam data. We apply the BPF algorithm to reconstructing ROI images from truncated data of three different objects acquired by our circular cone-beam microCT system. Reconstructed images by use of the FDK and BPF algorithms from both truncated and nontruncated cone-beam data are compared. The results of the experimental studies demonstrate that, from certain truncated data, the BPF algorithm can reconstruct ROI images with quality comparable to that reconstructed from nontruncated data. In contrast, the FDK algorithm yields ROI images with truncation artifacts. Therefore, an implication of the studies is that, when truncated data are acquired with a configuration of a large geometric magnification, the BPF algorithm can be used for effective enhancement of the spatial resolution of a ROI image.

  14. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT

    SciTech Connect

    Matenine, Dmitri Mascolo-Fortin, Julia; Goussard, Yves

    2015-11-15

    Purpose: The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. Methods: This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. Results: The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. Conclusions: The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can

  15. Evaluation of the OSC-TV iterative reconstruction algorithm for cone-beam optical CT.

    PubMed

    Matenine, Dmitri; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe

    2015-11-01

    The present work evaluates an iterative reconstruction approach, namely, the ordered subsets convex (OSC) algorithm with regularization via total variation (TV) minimization in the field of cone-beam optical computed tomography (optical CT). One of the uses of optical CT is gel-based 3D dosimetry for radiation therapy, where it is employed to map dose distributions in radiosensitive gels. Model-based iterative reconstruction may improve optical CT image quality and contribute to a wider use of optical CT in clinical gel dosimetry. This algorithm was evaluated using experimental data acquired by a cone-beam optical CT system, as well as complementary numerical simulations. A fast GPU implementation of OSC-TV was used to achieve reconstruction times comparable to those of conventional filtered backprojection. Images obtained via OSC-TV were compared with the corresponding filtered backprojections. Spatial resolution and uniformity phantoms were scanned and respective reconstructions were subject to evaluation of the modulation transfer function, image uniformity, and accuracy. The artifacts due to refraction and total signal loss from opaque objects were also studied. The cone-beam optical CT data reconstructions showed that OSC-TV outperforms filtered backprojection in terms of image quality, thanks to a model-based simulation of the photon attenuation process. It was shown to significantly improve the image spatial resolution and reduce image noise. The accuracy of the estimation of linear attenuation coefficients remained similar to that obtained via filtered backprojection. Certain image artifacts due to opaque objects were reduced. Nevertheless, the common artifact due to the gel container walls could not be eliminated. The use of iterative reconstruction improves cone-beam optical CT image quality in many ways. The comparisons between OSC-TV and filtered backprojection presented in this paper demonstrate that OSC-TV can potentially improve the rendering of

  16. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2016-04-07

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm(-1). For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm(-1). With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  17. Stray light in cone beam optical computed tomography: II. Reduction using a convergent light source

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone beam computed tomography (CBCT) using a broad beam and CCD camera is a fast method for densitometry of 3D optical gel dosimeters. However, diffuse light sources introduce considerable stray light into the imaging system, leading to underestimation of attenuation coefficients and non-uniformities in CT images unless corrections are applied to each projection image. In this study, the light source of a commercial optical CT scanner is replaced with a convergent cone beam source consisting of almost exclusively image forming primary rays. The convergent source is achieved using a small isotropic source and a Fresnel lens. To characterize stray light effects, full-field cone beam CT imaging is compared to fan beam CT (FBCT) using a 1 cm high fan beam aperture centered on the optic axis of the system. Attenuating liquids are scanned within a large 96 mm diameter uniform phantom and in a small 13.5 mm diameter finger phantom. For the uniform phantom, cone and fan beam CT attenuation coefficients agree within a maximum deviation of (1  ±  2)% between mean values over a wide range from 0.036 to 0.43 cm-1. For the finger phantom, agreement is found with a maximum deviation of (4  ±  2)% between mean values over a range of 0.1-0.47 cm-1. With the convergent source, artifacts associated with refractive index mismatch and vessel optical features are more pronounced. Further optimization of the source size to achieve a balance between quantitative accuracy and artifact reduction should enable practical, accurate 3D dosimetry, avoiding time consuming 3D scatter measurements.

  18. An intracavitary cone system for electron beam therapy using a Therac 20 linear accelerator.

    PubMed

    Wilson, D L; Sharma, S C; Jose, B

    1986-06-01

    The Therac 20 is an AECL medical linear accelerator that produces electron and photon beams. Electron fields are produced by a scanned beam; collimation is provided by two sets of primary collimators and further collimated by external electron trimmers located 11 cm above the plane of isocenter (100 cm). These collimators are not suitable for intracavitary treatment. To overcome this limitation, we have designed an intracavitary cone system that attaches to the electron trimmers. Since the trimmers do not have to be removed while this system is in use, there is no need to bypass the associated interlock system. The apparatus consists of a platform which slides onto the lower set of trimmers, onto which a lead insert is attached. Dosimetry measurements for 9, 13, and 17 MeV electron beams are reported for three different treatment cones.

  19. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  20. Cone-Beam Computed Tomography: Imaging Dose during CBCT Scan Acquisition and Accuracy of CBCT Based Dose Calculations

    NASA Astrophysics Data System (ADS)

    Giles, David Matthew

    Cone beam computed tomography (CBCT) is a recent development in radiotherapy for use in image guidance. Image guided radiotherapy using CBCT allows visualization of soft tissue targets and critical structures prior to treatment. Dose escalation is made possible by accurately localizing the target volume while reducing normal tissue toxicity. The kilovoltage x-rays of the cone beam imaging system contribute additional dose to the patient. In this study a 2D reference radiochromic film dosimetry method employing GAFCHROMIC(TM) model XR-QA film is used to measure point skin doses and dose profiles from the Elekta XVI CBCT system integrated onto the Synergy linac. The soft tissue contrast of the daily CBCT images makes adaptive radiotherapy possible in the clinic. In order to track dose to the patient or utilize on-line replanning for adaptive radiotherapy the CBCT images must be used to calculate dose. A Hounsfield unit calibration method for scatter correction is investigated for heterogeneity corrected dose calculation in CBCT images. Three Hounsfield unit to density calibration tables are used for each of four cases including patients and an anthropomorphic phantom, and the calculated dose from each is compared to results from the clinical standard fan beam CT. The dose from the scan acquisition is reported and the effect of scan geometry and total output of the x-ray tube on dose magnitude and distribution is shown. The ability to calculate dose with CBCT is shown to improve with the use of patient specific density tables for scatter correction, and for high beam energies the calculated dose agreement is within 1%.

  1. Tilted cone-beam reconstruction with row-wise fan-to-parallel rebinning

    NASA Astrophysics Data System (ADS)

    Hsieh, Jiang; Tang, Xiangyang

    2006-10-01

    Reconstruction algorithms for cone-beam CT have been the focus of many studies. Several exact and approximate reconstruction algorithms were proposed for step-and-shoot and helical scanning trajectories to combat cone-beam related artefacts. In this paper, we present a new closed-form cone-beam reconstruction formula for tilted gantry data acquisition. Although several algorithms were proposed in the past to combat errors induced by the gantry tilt, none of the algorithms addresses the scenario in which the cone-beam geometry is first rebinned to a set of parallel beams prior to the filtered backprojection. We show that the image quality advantages of the rebinned parallel-beam reconstruction are significant, which makes the development of such an algorithm necessary. Because of the rebinning process, the reconstruction algorithm becomes more complex and the amount of iso-centre adjustment depends not only on the projection and tilt angles, but also on the reconstructed pixel location. In this paper, we first demonstrate the advantages of the row-wise fan-to-parallel rebinning and derive a closed-form solution for the reconstruction algorithm for the step-and-shoot and constant-pitch helical scans. The proposed algorithm requires the 'warping' of the reconstruction matrix on a view-by-view basis prior to the backprojection step. We further extend the algorithm to the variable-pitch helical scans in which the patient table travels at non-constant speeds. The algorithm was tested extensively on both the 16- and 64-slice CT scanners. The efficacy of the algorithm is clearly demonstrated by multiple experiments.

  2. A theoretically exact reconstruction algorithm for helical cone-beam differential phase-contrast computed tomography.

    PubMed

    Li, Jing; Sun, Yi; Zhu, Peiping

    2013-08-21

    Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments.

  3. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    PubMed

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  4. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    PubMed

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Xing, Lei

    2016-08-26

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  5. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    SciTech Connect

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  6. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    PubMed Central

    Ding, Huanjun; Ducote, Justin L.; Molloi, Sabee

    2013-01-01

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of −11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis. PMID:23718593

  7. Optimizing 4D cone-beam CT acquisition protocol for external beam radiotherapy

    SciTech Connect

    Li Tianfang; Xing Lei . E-mail: lei@reyes.stanford.edu

    2007-03-15

    Purpose: Four-dimensional cone-beam computed tomography (4D-CBCT) imaging is sensitive to parameters such as gantry rotation speed, number of gantry rotations, X-ray pulse rate, and tube current, as well as a patient's breathing pattern. The aim of this study is to optimize the image acquisition on a patient-specific basis while minimizing the scan time and the radiation dose. Methods and Materials: More than 60 sets of 4D-CBCT images, each with a temporal resolution of 10 phases, were acquired using multiple-gantry rotation and slow-gantry rotation techniques. The image quality was quantified with a relative root mean-square error (RE) and correlated with various acquisition settings; specifically, varying gantry rotation speed, varying both the rotation speed and the number of rotations, and varying both the rotation speed and tube current to keep the radiation exposure constant. These experiments were repeated for three different respiratory periods. Results: With similar radiation dose, 4D-CBCT images acquired with low current and low rotation speed have better quality over images obtained with high current and high rotation speed. In general, a one-rotation low-speed scan is superior to a two-rotation double-speed scan, even though they provide the same number of projections. Furthermore, it is found that the image quality behaves monotonically with the relative speed as defined by the gantry rotation speed and the patient respiratory period. Conclusions: The RE curves established in this work can be used to predict the 4D-CBCT image quality before a scan. This allows the acquisition protocol to be optimized individually to balance the desired quality with the associated scanning time and patient radiation dose.

  8. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  9. MR cone-beam CT fusion image overlay for fluoroscopically guided percutaneous biopsies in pediatric patients.

    PubMed

    Thakor, Avnesh S; Patel, Premal A; Gu, Richard; Rea, Vanessa; Amaral, Joao; Connolly, Bairbre L

    2016-03-01

    Lesions only visible on magnetic resonance (MR) imaging cannot easily be targeted for image-guided biopsy using ultrasound or X-rays but instead require MR guidance with MR-compatible needles and long procedure times (acquisition of multiple MR sequences). We developed an alternative method for performing these difficult biopsies in a standard interventional suite, by fusing MR with cone-beam CT images. The MR cone-beam CT fusion image is then used as an overlay to guide a biopsy needle to the target area under live fluoroscopic guidance. Advantages of this technique include (i) the ability for it to be performed in a conventional interventional suite, (ii) three-dimensional planning of the needle trajectory using cross-sectional imaging, (iii) real-time fluoroscopic guidance for needle trajectory correction and (iv) targeting within heterogeneous lesions based on MR signal characteristics to maximize the potential biopsy yield.

  10. Cracked Tooth: A Report of Two Cases and Role of Cone Beam Computed Tomography in Diagnosis

    PubMed Central

    Kalyan Chakravarthy, Pishipati Vinayak; Telang, Lahari Ajay; Nerali, Jayashri; Telang, Ajay

    2012-01-01

    Cracked tooth is a distinct type of longitudinal tooth fracture which occurs very commonly and its diagnosis can be challenging. This type of fracture tends to grow and change over time. Clinical diagnosis is difficult because the signs and symptoms are variable or nonspecific and may even resemble post-treatment disease following root canal treatment or periodontal disease. This variety and unpredictability make the cracked tooth a challenging diagnostic entity. The use of cone beam computed tomography (CBCT) in diagnosis of complex endodontic cases has been well documented in the literature. In this paper we present two cases of cracked tooth and emphasise on the timely use of cone beam computed tomography as an aid in diagnosis and as a prognostic determinant. PMID:23198164

  11. Can cone-beam computed tomography superimposition help orthodontists better understand relapse in surgical patients?

    PubMed

    Porciúncula, Guilherme Machado; Koerich, Leonardo; Eidson, Lindsey; Gandini Junior, Luiz Gonzaga; Gonçalves, João Roberto

    2014-11-01

    This case report describes the interdisciplinary treatment of a 19-year-old Brazilian man with a Class I malocclusion, a hyperdivergent profile, an anterior open bite, and signs of temporomandibular joint internal derangement. The treatment plan included evaluation with a temporomandibular joint specialist and a rheumatologist, orthodontic appliances, and maxillomandibular surgical advancement with counterclockwise rotation. Cone-beam computed tomography images were taken before and after surgery at different times and superimposed at the cranial base to assess the changes after orthognathic surgery and to monitor quantitatively the internal derangement of the temporomandibular joints and surgical relapse. Our protocol can improve the orthodontist's understanding of surgical instability, demonstrate the clinical value of cone-beam computed tomography analysis beyond the multiplanar reconstruction, and guide patient management for the best outcome possible.

  12. Iterative image reconstruction for limited-angle inverse helical cone-beam computed tomography.

    PubMed

    Yu, Wei; Zeng, Li

    2016-01-01

    Helical trajectory satisfying the condition of exact reconstruction, has been widely utilized in the commercial computed tomography (CT). While limited by the scanning environment in some practical applications, the conventional helical cone-beam CT imaging is hard to complete, thus, developing an imaging system suited for long-object may be valuable. Three-dimensional C-arm CT is an innovative imaging technique which has been greatly concerned. Since there is a high degree of freedom of C-arm, more flexible image acquisition trajectories for 3D imaging can be achieved. In this work, a fast iterative reconstruction algorithm based on total variation minimization is developed for a trajectory of limited-angle inverse helical cone-beam CT, which can be applied to detect long-object without slip-ring technology. The experimental results show that the developed algorithm can yield reconstructed images of low noise level and high image quality.

  13. [Upper airway's 3D analysis of patients with obstructive sleep apnea using tomographic cone beam].

    PubMed

    Bruwier, A; Poirrier, A L; Limme, M; Poirrier, R

    2014-12-01

    The progress of medical imaging over the last decades has led to a better understanding of the upper airway structure in sleep-disordered patients. The Obstructive Sleep Apnea Syndrome (OSA) is attributed to a functional narrowing of the upper airway, particularly of the oropharynx, during sleep. This narrowing is multifactorial. We have shown that in 60% cases, the maxilla (nasal pyramid) seems too narrow. A mandible retroposition may also play a dominant role in 30% of the cases. Both scenarios can be combined. Cone Beam Computed Tomography (CBCT) is a new medical imaging technique that permits to visualize the upper airway with less ionizing radiation than the conventional scanner. To date, only five authors have performed an upper airway's 3D analysis of sleep apnea patients with cone beam. A better understanding of the affected segment of the upper airway should help refine treatment options.

  14. Cone beam computed tomography and intraoral radiography for diagnosis of dental abnormalities in dogs and cats

    PubMed Central

    Silva, Luiz Antonio F.; Barriviera, Mauricio; Januário, Alessandro L.; Bezerra, Ana Cristina B.; Fioravanti, Maria Clorinda S.

    2011-01-01

    The development of veterinary dentistry has substantially improved the ability to diagnose canine and feline dental abnormalities. Consequently, examinations previously performed only on humans are now available for small animals, thus improving the diagnostic quality. This has increased the need for technical qualification of veterinary professionals and increased technological investments. This study evaluated the use of cone beam computed tomography and intraoral radiography as complementary exams for diagnosing dental abnormalities in dogs and cats. Cone beam computed tomography was provided faster image acquisition with high image quality, was associated with low ionizing radiation levels, enabled image editing, and reduced the exam duration. Our results showed that radiography was an effective method for dental radiographic examination with low cost and fast execution times, and can be performed during surgical procedures. PMID:22122905

  15. 3D Multislice and Cone-beam Computed Tomography Systems for Dental Identification.

    PubMed

    Eliášová, Hana; Dostálová, Taťjana

    3D Multislice and Cone-beam computed tomography (CBCT) in forensic odontology has been shown to be useful not only in terms of one or a few of dead bodies but also in multiple fatality incidents. 3D Multislice and Cone-beam computed tomography and digital radiography were demonstrated in a forensic examination form. 3D images of the skull and teeth were analysed and validated for long ante mortem/post mortem intervals. The image acquisition was instantaneous; the images were able to be optically enlarged, measured, superimposed and compared prima vista or using special software and exported as a file. Digital radiology and computer tomography has been shown to be important both in common criminalistics practices and in multiple fatality incidents. Our study demonstrated that CBCT imaging offers less image artifacts, low image reconstruction times, mobility of the unit and considerably lower equipment cost.

  16. Comparative study of mandibular linear measurements obtained by cone beam computed tomography and digital calipers

    PubMed Central

    Tarazona-Álvarez, Pablo; Romero-Millán, Javier; Peñarrocha-Oltra, David; Fuster-Torres, María Á.; Tarazona, Beatriz

    2014-01-01

    Objectives: Cone beam computed tomography (CBCT) is an innovative dental of imaging system characterized by rapid volumetric imaging with patient exposure to a single dose of radiation. The present study was carried out to compare the linear measurements obtained with CBCT and digital caliper in 20 mandibles from human cadavers. Study design: A total of 4800 linear measurements were measured between different mandibular anatomical points with CBCT and digital caliper. The real measurements were defined as those obtained with the digital caliper. Posteriorly, the mandibles were scanned to obtain the CBCT images, with software-based measurements of the distances. Results: The measurements obtained with the digital caliper were greater. The CBCT technique underestimated distances greater than 100 mm. Conclusions: CBCT allows to obtain linear mandibular anatomical measurements equivalent to those obtained with digital caliper. The differences existing between both methods were clinically acceptable. Key words:Computed tomography, cone beam CT, accuracy, reliability, digital caliper. PMID:25136429

  17. Accuracy and Landmark Error Calculation Using Cone-Beam Computed Tomography–Generated Cephalograms

    PubMed Central

    Grauer, Dan; Cevidanes, Lucia S. H.; Styner, Martin A.; Heulfe, Inam; Harmon, Eric T.; Zhu, Hongtu; Proffit, William R.

    2010-01-01

    Objective To evaluate systematic differences in landmark position between cone-beam computed tomography (CBCT)–generated cephalograms and conventional digital cephalograms and to estimate how much variability should be taken into account when both modalities are used within the same longitudinal study. Materials and Methods Landmarks on homologous cone-beam computed tomographic–generated cephalograms and conventional digital cephalograms of 46 patients were digitized, registered, and compared via the Hotelling T2 test. Results There were no systematic differences between modalities in the position of most landmarks. Three landmarks showed statistically significant differences but did not reach clinical significance. A method for error calculation while combining both modalities in the same individual is presented. Conclusion In a longitudinal follow-up for assessment of treatment outcomes and growth of one individual, the error due to the combination of the two modalities might be larger than previously estimated. PMID:19905853

  18. SU-E-J-99: Reconstruction of Cone Beam CT Image Using Volumetric Modulated Arc Therapy Exit Beams

    SciTech Connect

    Jeong, K; Goddard, L; Savacool, M; Mynampati, D; Godoy Scripes, P; Tome', W; Kuo, H; Basavatia, A; Hong, L; Yaparpalvi, R; Kalnicki, S

    2014-06-01

    Purpose: To test the possibility of obtaining an image of the treated volume during volumetric modulated arc therapy (VMAT) with exit beams. Method: Using a Varian Clinac 21EX and MVCT detector the following three sets of detector projection data were obtained for cone beam CT reconstruction with and without a Catphan 504 phantom. 1) 72 projection images from 20 × 16 cm{sup 2} open beam with 3 MUs, 2) 72 projection images from 20 × 16 cm{sup 2} MLC closed beam with 14 MUs. 3) 137 projection images from a test RapicArc QA plan. All projection images were obtained in ‘integrated image’ mode. We used OSCaR code to reconstruct the cone beam CT images. No attempts were made to reduce scatter or artifacts. Results: With projection set 1) we obtained a good quality MV CBCT image by optimizing the reconstruction parameters. Using projection set 2) we were not able to obtain a CBCT image of the phantom, which was determined to be due to the variation of interleaf leakage with gantry angle. From projection set 3), we were able to obtain a weak but meaningful signal in the image, especially in the target area where open beam signals were dominant. This finding suggests that one might be able to acquire CBCT images with rough body shape and some details inside the irradiated target area. Conclusion: Obtaining patient images using the VMAT exit beam is challenging but possible. We were able to determine sources of image degradation such as gantry angle dependent interleaf leakage and beams with a large scatter component. We are actively working on improving image quality.

  19. Cone-beam computed tomography in the management of dentigerous cyst of the jaws: A report of two cases.

    PubMed

    Vidya, Lakshminarayanan; Ranganathan, Kannan; Praveen, B; Gunaseelan, Rajan; Shanmugasundaram, S

    2013-10-01

    Cone-beam computed tomography (CBCT) is an emerging technology finding application in all branches of dentistry. The current series highlights the application of CBCT in the preoperative assessment of dentigerous cyst of the jaws.

  20. Cone-beam computed tomography in the management of dentigerous cyst of the jaws: A report of two cases

    PubMed Central

    Vidya, Lakshminarayanan; Ranganathan, Kannan; Praveen, B; Gunaseelan, Rajan; Shanmugasundaram, S

    2013-01-01

    Cone-beam computed tomography (CBCT) is an emerging technology finding application in all branches of dentistry. The current series highlights the application of CBCT in the preoperative assessment of dentigerous cyst of the jaws. PMID:24604939

  1. History of imaging in orthodontics from Broadbent to cone-beam computed tomography.

    PubMed

    Hans, Mark G; Palomo, J Martin; Valiathan, Manish

    2015-12-01

    The history of imaging and orthodontics is a story of technology informing biology. Advances in imaging changed our thinking as our understanding of craniofacial growth and the impact of orthodontic treatment deepened. This article traces the history of imaging in orthodontics from the invention of the cephalometer by B. Holly Broadbent in 1930 to the introduction of low-cost, low-radiation-dose cone-beam computed tomography imaging in 2015.

  2. Dental cone beam CT image quality possibly reduced by patient movement.

    PubMed

    Donaldson, K; O'Connor, S; Heath, N

    2013-01-01

    Patient artefacts in dental cone beam CT scans can happen for various reasons. These range from artefacts from metal restorations to movement. An audit was carried out in the Glasgow Dental Hospital analysing how many scans showed signs of "motion artefact", and then to assess if there was any correlation between patient age and movement artefacts. Specific age demographics were then analysed to see if these cohorts were at a higher risk of "movement artefacts".

  3. Studying the Prevalence and Etiology of Class II Subdivision Malocclusion Utilizing Cone-Beam Computed Tomography

    DTIC Science & Technology

    2013-04-24

    Lackland AFB, TX April 24, 2013 The views expressed in this study are those of the authors and do not reflect the official policy of the United...Cone-Beam Computed Tomography’ 7. Intended publication/meeting: June 2013 8. "Required by" date: 1 July 2013 9. Date of submission for USU approval: 6...June 2013 CHAIR OR DEPARTMENT HEAD APPROVAL 1. Name: Curtis M. Marsh, Col, USAF, DMD 2. School/Dept. : AFPDS/Tri-Service Orthodontic Dental School

  4. The possible usability of three-dimensional cone beam computed dental tomography in dental research

    NASA Astrophysics Data System (ADS)

    Yavuz, I.; Rizal, M. F.; Kiswanjaya, B.

    2017-08-01

    The innovations and advantages of three-dimensional cone beam computed dental tomography (3D CBCT) are continually growing for its potential use in dental research. Imaging techniques are important for planning research in dentistry. Newly improved 3D CBCT imaging systems and accessory computer programs have recently been proven effective for use in dental research. The aim of this study is to introduce 3D CBCT and open a window for future research possibilities that should be given attention in dental research.

  5. The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature

    PubMed Central

    Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta

    2015-01-01

    By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential applications of CBCT in endodontics. PMID:25598804

  6. Dental implants in bilateral bifid canal and compromised interocclusal space using cone beam computerized tomography

    PubMed Central

    Ahmed, Nizar; Arunachalam, Lalitha Tanjore; Jacob, Caroline Annette; Kumar, Suresh Anand

    2016-01-01

    Knowledge of various anatomic landmarks is pivotal for important success. Bifid canals pose a challenge and can lead to difficulties while performing implant surgery in the mandible. Bifid canals can be diagnosed with panoramic radiography and more accurately with cone beam computerized tomography (CBCT). This case report details the placement of the implant in a patient with bilateral bifid canal and compromised interocclusal space, which was successfully treated using CBCT. PMID:27433073

  7. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.

    PubMed

    Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T

    2012-02-01

    The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.

  8. [The study of associated reconstruction using MV linear accelerator and cone-beam CT].

    PubMed

    Liu, Zun-gang; Zhao, Jun; Zhuang, Tian-ge

    2006-07-01

    In this paper, we proposed a new scan mode and image reconstruction method, which combines the data from both the linear accelerator and the cone-beam CT to reconstruct the volume with a limited rotation angle and low sampling rate. The classical filtered backprojection method and the iterative method are utilized to reconstruct the volume. The reconstruction results of the two methods are compared with each other with a relavant anlysis given here.

  9. C-arm cone-beam computed tomography in interventional oncology: technical aspects and clinical applications

    PubMed Central

    Floridi, Chiara; Radaelli, Alessandro; Abi-Jaoudeh, Nadine; Grass, Micheal; Lin, Ming De; Chiaradia, Melanie; Geschwind, Jean-Francois; Kobeiter, Hishman; Squillaci, Ettore; Maleux, Geert; Giovagnoni, Andrea; Brunese, Luca; Wood, Bradford; Carrafiello, Gianpaolo; Rotondo, Antonio

    2014-01-01

    C-arm cone-beam computed tomography (CBCT) is a new imaging technology integrated in modern angiographic systems. Due to its ability to obtain cross-sectional imaging and the possibility to use dedicated planning and navigation software, it provides an informed platform for interventional oncology procedures. In this paper, we highlight the technical aspects and clinical applications of CBCT imaging and navigation in the most common loco-regional oncological treatments. PMID:25012472

  10. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Thomas, T. Hannah Mary; Devakumar, D.; Purnima, S.; Ravindran, B. Paul

    2009-04-01

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm × 10 cm beam at a gantry angle of 0° and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between ±6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  11. The adaptation of megavoltage cone beam CT for use in standard radiotherapy treatment planning.

    PubMed

    Thomas, T Hannah Mary; Devakumar, D; Purnima, S; Ravindran, B Paul

    2009-04-07

    Potential areas where megavoltage computed tomography (MVCT) could be used are second- and third-phase treatment planning in 3D conformal radiotherapy and IMRT, adaptive radiation therapy, single fraction palliative treatment and for the treatment of patients with metal prostheses. A feasibility study was done on using MV cone beam CT (CBCT) images generated by proprietary 3D reconstruction software based on the FDK algorithm for megavoltage treatment planning. The reconstructed images were converted to a DICOM file set. The pixel values of megavoltage cone beam computed tomography (MV CBCT) were rescaled to those of kV CT for use with a treatment planning system. A calibration phantom was designed and developed for verification of geometric accuracy and CT number calibration. The distance measured between two marker points on the CBCT image and the physical dimension on the phantom were in good agreement. Point dose verification for a 10 cm x 10 cm beam at a gantry angle of 0 degrees and SAD of 100 cm were performed for a 6 MV beam for both kV and MV CBCT images. The point doses were found to vary between +/-6.1% of the dose calculated from the kV CT image. The isodose curves for 6 MV for both kV CT and MV CBCT images were within 2% and 3 mm distance-to-agreement. A plan with three beams was performed on MV CBCT, simulating a treatment plan for cancer of the pituitary. The distribution obtained was compared with those corresponding to that obtained using the kV CT. This study has shown that treatment planning with MV cone beam CT images is feasible.

  12. A Monte Carlo investigation of dual-planar circular-orbit cone-beam SPECT

    NASA Astrophysics Data System (ADS)

    Lalush, David S.; Di Meo, Andrew J.

    2002-12-01

    We use Monte Carlo simulations to study the imaging properties of a design for a dual-planar cone-beam (DPCB) single-photon emission computed tomography (SPECT) system. A dual-planar system uses a dual-camera SPECT system and two cone-beam collimators with foci in different axial planes to increase the effective axial field of view (FOV). We simulated nearly noise-free projection data from a computerized brain phantom and a phantom consisting of a series of points. Four configurations were simulated: parallel-beam low-energy high-resolution (LEHR) as a standard for comparison and DPCB at three radii of rotation (ROR) corresponding to the smallest, average and largest ROR required to clear patients' shoulders based on ergonomic data. We compared global measures of average resolution and total acquired counts for the four configurations. We also estimated local spatial frequency response for reconstructions of point sources. Finally, we estimated a local noise power spectrum by simulating 1000 noise realizations of the brain phantom and estimating a local noise covariance at selected points. The noise power spectra were used to estimate spectral signal to noise ratio (SNR) for each configuration. The resolution in the reconstructed image space ranges from 7.2 mm full-width at half-maximum (FWHM) at the minimum ROR to 9.4 mm FWHM at the maximum ROR. The efficiency is inversely related, ranging from 1.5 times that of parallel LEHR at minimum ROR to 2.5 times that of LEHR at maximum ROR. Estimates of system frequency response roughly correspond to the global resolution estimates, but the cone-beam techniques exhibit an unusual secondary peak in the axial-direction response. Estimates of spectral SNR show that the cone-beam configurations almost always result in higher SNR at all spatial frequencies regardless of ROR. The very largest ROR may be an exception. A larger ROR results in significantly higher SNR for low spatial frequencies with small reductions in SNR for mid

  13. Region-of-interest reconstruction for a cone-beam dental CT with a circular trajectory

    NASA Astrophysics Data System (ADS)

    Hu, Zhanli; Zou, Jing; Gui, Jianbao; Zheng, Hairong; Xia, Dan

    2013-04-01

    Dental CT is the most appropriate and accurate device for preoperative evaluation of dental implantation. It can demonstrate the quantity of bone in three dimensions (3D), the location of important adjacent anatomic structures and the quality of available bone with minimal geometric distortion. Nevertheless, with the rapid increase of dental CT examinations, we are facing the problem of dose reduction without loss of image quality. In this work, backprojection-filtration (BPF) and Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct the 3D full image and region-of-interest (ROI) image from complete and truncated circular cone-beam data respectively by computer-simulation. In addition, the BPF algorithm was evaluated based on the 3D ROI-image reconstruction from real data, which was acquired from our developed circular cone-beam prototype dental CT system. The results demonstrated that the ROI-image quality reconstructed from truncated data using the BPF algorithm was comparable to that reconstructed from complete data. The FDK algorithm, however, created artifacts while reconstructing ROI-image. Thus it can be seen, for circular cone-beam dental CT, reducing scanning angular range of the BPF algorithm used for ROI-image reconstruction are helpful for reducing the radiation dose and scanning time. Finally, an analytical method was developed for estimation of the ROI projection area on the detector before CT scanning, which would help doctors to roughly estimate the total radiation dose before the CT examination.

  14. An improved exact inversion formula for solenoidal fields in cone beam vector tomography

    NASA Astrophysics Data System (ADS)

    Katsevich, Alexander; Rothermel, Dimitri; Schuster, Thomas

    2017-06-01

    In this paper we present an improved inversion formula for the 3D cone beam transform of vector fields supported in the unit ball which is exact for solenoidal fields. It is well known that only the solenoidal part of a vector field can be determined from the longitudinal ray transform of a vector field in cone beam geometry. The inversion formula, as it was developed in Katsevich and Schuster (2013 An exact inversion formula for cone beam vector tomography Inverse Problems 29 065013), consists of two parts. The first part is of the filtered backprojection type, whereas the second part is a costly 4D integration and very inefficient. In this article we tackle this second term and obtain an improved formula, which is easy to implement and saves one order of integration. We also show that the first part contains all information about the curl of the field, whereas the second part has information about the boundary values. More precisely, the second part vanishes if the solenoidal part of the original field is tangential at the boundary. A number of numerical tests presented in the paper confirm the theoretical results and the exactness of the formula. Also, we obtain an inversion algorithm that works for general convex domains.

  15. A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography

    SciTech Connect

    Altunbas, M. C.; Shaw, C. C.; Chen, L.; Lai, C.; Liu, X.; Han, T.; Wang, T.

    2007-07-15

    In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear as background nonuniformities, which impair efficient gray scale windowing and pose a problem in threshold based volume visualization/segmentation. To overcome this problem, we have developed a background nonuniformity correction method specifically designed for cone beam breast CT. With this technique, the cupping artifact is modeled as an additive background signal profile in the reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the additive background signal profile was also assumed to be circularly symmetric. The radial variation of the background signals was estimated by measuring the spatial variation of adipose tissue signals in front view breast images. To extract adipose tissue signals in an automated manner, a signal sampling scheme in polar coordinates and a background trend fitting algorithm were implemented. The background fits compared with targeted adipose tissue signal value (constant throughout the breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we applied the technique to cone beam CT images of mastectomy specimens. After correction, the images demonstrated significantly improved signal uniformity in both front and side view slices. The reduction of both intraslice and interslice variations in adipose tissue CT numbers supported our observations.

  16. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization

    PubMed Central

    Sidky, Emil Y.; Pan, Xiaochuan

    2009-01-01

    An iterative algorithm, based on recent work in compressive sensing, is developed for volume image reconstruction from a circular cone-beam scan. The algorithm minimizes the total-variation (TV) of the image subject to the constraint that the estimated projection data is within a specified tolerance of the available data and that the values of the volume image are non-negative. The constraints are enforced by use of projection onto convex sets (POCS) and the TV objective is minimized by steepest descent with an adaptive step-size. The algorithm is referred to as adaptive-steepest-descent-POCS (ASD-POCS). It appears to be robust against cone-beam artifacts, and may be particularly useful when the angular range is limited or when the angular sampling rate is low. The ASD-POCS algorithm is tested with the Defrise disk and jaw computerized phantoms. Some comparisons are performed with the POCS and expectation-maximization (EM) algorithms. Although the algorithm is presented in the context of circular cone-beam image reconstruction, it can also be applied to scanning geometries involving other x-ray source trajectories. PMID:18701771

  17. Evaluation of the mandibular canal visibility on cone-beam computed tomography images of the mandible.

    PubMed

    Shokri, Abbas; Shakibaei, Zahra; Langaroodi, Adineh Javadian; Safaei, Mehran

    2014-05-01

    The mandibular canal (MC) is an important and necessary landmark that should be considered before any surgery in the posterior region of the mandible. This study is aimed to evaluate the visibility and position of the MC in an Iranian population using cone-beam computed tomography. In this cross-sectional study, cone-beam computed tomography images of 69 patients, which were available as soft copies in the archives of the databases in the Department of Oral Radiology at Hamadan University of Medical Sciences (Hamadan, Iran), were analyzed. The visibility, corticalization, and position of the MC were assessed by 2 expert oral radiologists independently. The χ2 test, unpaired t test, and 1-way analysis of variance were used for analysis. The right and left MCs were clearly visible in 89.6% and 84.7% of the cases, respectively. Among 87.5% of cases, the MC was observed simultaneously in 2 sides. Position of the MC in relation to surrounding structures showed lowest asymmetry at the second premolar area. There were no statistically significant difference between sex and the evaluated parameters. Cone-beam computed tomography was successful in most cases in displaying the MC. The areas with most MC visibility in the right and left sides were the second and third molar regions, respectively. This visibility declined forwardly in both sides.

  18. SPECT reconstruction of combined cone beam and parallel hole collimation with experimental data

    NASA Astrophysics Data System (ADS)

    Li, Jianying; Jaszczak, Ronald J.; Turkington, Timothy G.; Greer, Kim L.; Coleman, R. Edward

    1993-06-01

    We have developed three methods to combine parallel and cone beam (P & CB) SPECT data using modified Maximum Likelihood-Expectation Maximization (ML-EM) algorithms. The first combination method applies both parallel and cone beam data sets to reconstruct a single intermediate image after each iteration using the ML-EL algorithm. The other two iterative methods combine the intermediate beam (PB) and cone (CB) source estimates to enhance the uniformity of images. These two methods are ad hoc methods. In earlier studies using computer Monte Carlo simulation, we suggested that improved images might be obtained by reconstructing combined P & CB SPECT data. These combined collimation methods are qualitatively evaluated using experimental data. An attenuation compensation is performed by including the effects of attenuation in the transition matrix as a multiplicative factor. The combined P&CB images are compared with CB-only images and the results indicate that the combined P&CB approaches suppress artifacts caused by truncated projections and correct for the distortions of the CB-only images.

  19. Bone Forming Potential of An-Organic Bovine Bone Graft: A Cone Beam CT study.

    PubMed

    Uzbek, Usman Haider; Rahman, Shaifulizan Ab; Alam, Mohammad Khursheed; Gillani, Syed Wasif

    2014-12-01

    An-organic bovine bone graft is a xenograft with the potential of bone formation. The aim of this study was to evaluate the bone density using cone beam computed tomography scans around functional endosseous implant in the region of both augmented maxillary sinus with the an-organic bovine bone graft and the alveolar bone over which the graft was placed to provide space for the implants. Sterile freeze dried bovine bone graft produced by National Tissue Bank, University Sains, Malaysia was used for stage-1 implant placement with maxillary sinus augmentation in a total of 19 subjects with 19 implants. The age of all subjects ranged between 40-60 years with a mean age 51±4.70. All subjects underwent a follow up CT scan using PlanmecaPromax 3D(®) Cone beam computed tomography scanner at the Radiology department, Hospital University Sains, Malaysia. The collected data was then analysed to evaluate bone density in Hounsfield Units using PlanmecaRomexis" Imaging Software 2.2(®) which is specialized accompanying software of the cone beam computed tomography machine. There was bone formation seen at the site of the augmented sinus. A significant increase (p<0.005) in bone density was reported at the augmented site compared to the bone density of the existing alveolar bone. An-organic bovine bone graft is an osteoconductive material that can be used for the purpose of maxillary sinus augmentation.

  20. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  1. Bone Forming Potential of An-Organic Bovine Bone Graft: A Cone Beam CT study

    PubMed Central

    Rahman, Shaifulizan AB.; Alam, Mohammad Khursheed; Gillani, Syed Wasif

    2014-01-01

    Purpose: An-organic bovine bone graft is a xenograft with the potential of bone formation. The aim of this study was to evaluate the bone density using cone beam computed tomography scans around functional endosseous implant in the region of both augmented maxillary sinus with the an-organic bovine bone graft and the alveolar bone over which the graft was placed to provide space for the implants. Materials and Methods: Sterile freeze dried bovine bone graft produced by National Tissue Bank, University Sains, Malaysia was used for stage-1 implant placement with maxillary sinus augmentation in a total of 19 subjects with 19 implants. The age of all subjects ranged between 40-60 years with a mean age 51±4.70. All subjects underwent a follow up CT scan using PlanmecaPromax 3D® Cone beam computed tomography scanner at the Radiology department, Hospital University Sains, Malaysia. The collected data was then analysed to evaluate bone density in Hounsfield Units using PlanmecaRomexis” Imaging Software 2.2® which is specialized accompanying software of the cone beam computed tomography machine. Results: There was bone formation seen at the site of the augmented sinus. A significant increase (p<0.005) in bone density was reported at the augmented site compared to the bone density of the existing alveolar bone. Conclusion: An-organic bovine bone graft is an osteoconductive material that can be used for the purpose of maxillary sinus augmentation. PMID:25654037

  2. Exact Reconstruction From Uniformly Attenuated Helical Cone-Beam Projections in SPECT

    SciTech Connect

    Gullberg, Grant T; Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L.

    2008-12-18

    In recent years the development of cone-beam reconstruction algorithms has been an active research area in x-ray computed tomography (CT), and significant progress has been made in the advancement of algorithms. Theoretically exact and computationally efficient analytical algorithms can be found in the literature. However, in single photon emission computed tomography (SPECT), published cone-beam reconstruction algorithms are either approximate or involve iterative methods. The SPECT reconstruction problem is more complicated due to degradations in the imaging detection process, one of which is the effect of attenuation of gamma ray photons. Attenuation should be compensated for to obtain quantitative results. In this paper, an analytical reconstruction algorithm for uniformly attenuated cone-beam projection data is presented for SPECT imaging. The algorithm adopts the DBH method, a procedure consisting of differentiation and backprojection followed by a finite inverse cosh-weighted Hilbert transform. The significance of the proposed approach is that a selected region of interest can be reconstructed even with a detector with a reduced field of view. The algorithm is designed for a general trajectory. However, to validate the algorithm, a numerical study was performed using a helical trajectory. The implementation is efficient and the simulation result is promising.

  3. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology

    PubMed Central

    Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-01-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews. PMID:24968749

  4. Current role of hybrid CT/angiography system compared with C-arm cone beam CT for interventional oncology.

    PubMed

    Tanaka, T; Arai, Y; Inaba, Y; Inoue, M; Nishiofuku, H; Anai, H; Hori, S; Sakaguchi, H; Kichikawa, K

    2014-09-01

    Hybrid CT/angiography (angiography) system and C-arm cone beam CT provide cross-sectional imaging as an adjunct to angiography. Current interventional oncological procedures can be conducted precisely using these two technologies. In this article, several cases using a hybrid CT/angiography system are shown first, and then the advantages and disadvantages of the hybrid CT/angiography and C-arm cone beam CT are discussed with literature reviews.

  5. Technical Note: Suppression of artifacts arising from simultaneous cone-beam imaging and RF transponder tracking in prostate radiotherapy

    SciTech Connect

    Poludniowski, Gavin; Webb, Steve; Evans, Philip M.

    2012-03-15

    Purpose: Artifacts in treatment-room cone-beam reconstructions have been observed at the authors' center when cone-beam acquisition is simultaneous with radio frequency (RF) transponder tracking using the Calypso 4D system (Calypso Medical, Seattle, WA). These artifacts manifest as CT-number modulations and increased CT-noise. The authors present a method for the suppression of the artifacts. Methods: The authors propose a three-stage postprocessing technique that can be applied to image volumes previously reconstructed by a cone-beam system. The stages are (1) segmentation of voxels into air, soft-tissue, and bone; (2) application of a 2D spatial-filter in the axial plane to the soft-tissue voxels; and (3) normalization to remove streaking along the axial-direction. The algorithm was tested on patient data acquired with Synergy XVI cone-beam CT systems (Elekta, Crawley, United Kingdom). Results: The computational demands of the suggested correction are small, taking less than 15 s per cone-beam reconstruction on a desktop PC. For a moderate loss of spatial-resolution, the artifacts are strongly suppressed and low-contrast visibility is improved. Conclusions: The correction technique proposed is fast and effective in removing the artifacts caused by simultaneous cone-beam imaging and RF-transponder tracking.

  6. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  7. An index of beam hardening artifact for two-dimensional cone-beam CT tomographic images: establishment and preliminary evaluation

    NASA Astrophysics Data System (ADS)

    Yuan, Fusong; Lv, Peijun; Yang, Huifang; Wang, Yong; Sun, Yuchun

    2015-07-01

    Objectives: Based on the pixel gray value measurements, establish a beam-hardening artifacts index of the cone-beam CT tomographic image, and preliminarily evaluate its applicability. Methods: The 5mm-diameter metal ball and resin ball were fixed on the light-cured resin base plate respectively, while four vitro molars were fixed above and below the ball, on the left and right respectively, which have 10mm distance with the metal ball. Then, cone beam CT was used to scan the fixed base plate twice. The same layer tomographic images were selected from the two data and imported into the Photoshop software. The circle boundary was built through the determination of the center and radius of the circle, according to the artifact-free images section. Grayscale measurement tools were used to measure the internal boundary gray value G0, gray value G1 and G2 of 1mm and 20mm artifacts outside the circular boundary, the length L1 of the arc with artifacts in the circular boundary, the circumference L2. Hardening artifacts index was set A = (G1 / G0) * 0.5 + (G2 / G1) * 0.4 + (L2 / L1) * 0.1. Then, the A values of metal and resin materials were calculated respectively. Results: The A value of cobalt-chromium alloy material is 1, and resin material is 0. Conclusion: The A value reflects comprehensively the three factors of hardening artifacts influencing normal oral tissue image sharpness of cone beam CT. The three factors include relative gray value, the decay rate and range of artifacts.

  8. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy.

    PubMed

    Ding, George X; Duggan, Dennis M; Coffey, Charles W

    2007-03-21

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.

  9. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy

    NASA Astrophysics Data System (ADS)

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2007-03-01

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality.

  10. Effects of the irradiation of a finite number of laser beams on the implosion of a cone-guided target

    NASA Astrophysics Data System (ADS)

    Yanagawa, T.; Sakagami, H.; Nagatomo, H.; Sunahara, A.

    2016-03-01

    In direct drive laser fusion, the non-uniformity of the laser absorption on the target surface caused by the irradiation of a finite number of laser beams is a sever problem. GekkoXII laser at Osaka University has twelve laser beams and is irradiated to the target with a dodecahedron orientation, in which the distribution of the laser absorption on the target surface becomes non-uniform. Furthermore, in the case of a cone-guided target, the laser irradiation orientation is more limited. In this paper, we conducted implosion simulations of the cone- guided target based on GekkoXII irradiation orientation and compared the case of using the twelve beams and nine beams where the three beams irradiating the cone region are cut. The implosion simulations were conducted by a three-dimensional pure hydro code.

  11. Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula

    PubMed Central

    Chen, Zikuan; Calhoun, Vince D.; Chang, Shengjiang

    2009-01-01

    The Feldkamp–David–Kress (FDK) algorithm is widely adopted for cone-beam reconstruction due to its one-dimensional filtered backprojection structure and parallel implementation. In a reconstruction volume, the conspicuous cone-beam artifact manifests as intensity fall-off along the longitudinal direction (the gantry rotation axis). This effect is inherent to circular cone-beam tomography due to the fact that a cone-beam dataset acquired from circular scanning fails to meet the data sufficiency condition for volume reconstruction. Upon observations of the intensity fall-off phenomenon associated with the FDK reconstruction of a ball phantom, we propose an empirical weight formula to compensate for the fall-off degradation. Specifically, a reciprocal cosine can be used to compensate the voxel values along longitudinal direction during three-dimensional backprojection reconstruction, in particular for boosting the values of voxels at positions with large cone angles. The intensity degradation within the z plane, albeit insignificant, can also be compensated by using the same weight formula through a parameter for radial distance dependence. Computer simulations and phantom experiments are presented to demonstrate the compensation effectiveness of the fall-off effect inherent in circular cone-beam tomography. PMID:19002227

  12. Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Wertz, Hansjoerg; Stsepankou, Dzmitry; Blessing, Manuel; Rossi, Michael; Knox, Chris; Brown, Kevin; Gros, Uwe; Boda-Heggemann, Judit; Walter, Cornelia; Hesser, Juergen; Lohr, Frank; Wenz, Frederik

    2010-08-01

    Long image acquisition times of 60-120 s for cone-beam CT (CBCT) limit the number of patients with lung cancer who can undergo volume image guidance under breathhold. We developed a low-dose dual-energy kilovoltage-megavoltage-cone-beam CT (kVMV-CBCT) based on a clinical treatment unit reducing imaging time to <=15 s. Simultaneous kVMV-imaging was achieved by dedicated synchronization hardware controlling the output of the linear accelerator (linac) based on detector panel readout signals, preventing imaging artifacts from interference of the linac's MV-irradiation and panel readouts. Optimization was performed to minimize the imaging dose. Single MV-projections, reconstructed MV-CBCT images and images of simultaneous 90° kV- and 90° MV-CBCT (180° kVMV-CBCT) were acquired with different parameters. Image quality and imaging dose were evaluated and compared to kV-imaging. Hardware-based kVMV synchronization resulted in artifact-free projections. A combined 180° kVMV-CBCT scan with a total MV-dose of 5 monitor units was acquired in 15 s and with sufficient image quality. The resolution was 5-6 line pairs cm-1 (Catphan phantom). The combined kVMV-scan dose was equivalent to a kV-radiation scan dose of ~33 mGy. kVMV-CBCT based on a standard linac is promising and can provide ultra-fast online volume image guidance with low imaging dose and sufficient image quality for fast and accurate patient positioning for patients with lung cancer under breathhold.

  13. MODELING THE FREQUENCY DEPENDENCE OF RADIO BEAMS FOR CONE-DOMINANT PULSARS

    SciTech Connect

    Wang, P. F.; Han, J. L.; Wang, C. E-mail: hjl@nao.cas.cn

    2013-05-10

    Beam radii for cone-dominant pulsars follow a power-law relation with frequency, thetav = ({nu}/{nu}{sub 0}) {sup k} + thetav{sub 0}, which has not been well explained in previous works. We study this frequency dependence of beam radius (FDB) for cone-dominant pulsars by using the curvature radiation mechanism. Considering various density and energy distributions of particles in the pulsar open field-line region, we numerically simulate the emission intensity distribution across emission height and rotation phase, get integrated profiles at different frequencies, and obtain the FDB curves. For the density model of a conal-like distribution, the simulated profiles always shrink to one component at high frequencies. In the density model with two separated density patches, the profiles generally have two distinct components, and the power-law indices k are found to be in the range from -0.1 to -2.5, consistent with observational results. Energy distributions of streaming particles have significant influence on the frequency-dependence behavior. Radial energy decay of particles is desired to get proper thetav{sub 0} in models. We conclude that by using the curvature radiation mechanism, the observed FDB for the cone-dominant pulsars can only be explained by the emission model of particles in two density patches with a Gaussian energy distribution and a radial energy loss.

  14. 3D In Vivo Dosimetry Using Megavoltage Cone-Beam CT and EPID Dosimetry

    SciTech Connect

    Elmpt, Wouter van Nijsten, Sebastiaan; Petit, Steven; Mijnheer, Ben; Lambin, Philippe; Dekker, Andre

    2009-04-01

    Purpose: To develop a method that reconstructs, independently of previous (planning) information, the dose delivered to patients by combining in-room imaging with transit dose measurements during treatment. Methods and Materials: A megavoltage cone-beam CT scan of the patient anatomy was acquired with the patient in treatment position. During treatment, delivered fields were measured behind the patient with an electronic portal imaging device. The dose information in these images was back-projected through the cone-beam CT scan and used for Monte Carlo simulation of the dose distribution inside the cone-beam CT scan. Validation was performed using various phantoms for conformal and IMRT plans. Clinical applicability is shown for a head-and-neck cancer patient treated with IMRT. Results: For single IMRT beams and a seven-field IMRT step-and-shoot plan, the dose distribution was reconstructed within 3%/3mm compared with the measured or planned dose. A three-dimensional conformal plan, verified using eight point-dose measurements, resulted in a difference of 1.3 {+-} 3.3% (1 SD) compared with the reconstructed dose. For the patient case, planned and reconstructed dose distribution was within 3%/3mm for about 95% of the points within the 20% isodose line. Reconstructed mean dose values, obtained from dose-volume histograms, were within 3% of prescribed values for target volumes and normal tissues. Conclusions: We present a new method that verifies the dose delivered to a patient by combining in-room imaging with the transit dose measured during treatment. This verification procedure opens possibilities for offline adaptive radiotherapy and dose-guided radiotherapy strategies taking into account the dose distribution delivered during treatment sessions.

  15. Investigation of the dose distribution for a cone beam CT system dedicated to breast imaging.

    PubMed

    Lanconelli, Nico; Mettivier, Giovanni; Lo Meo, Sergio; Russo, Paolo

    2013-06-01

    Cone-beam breast Computed Tomography (bCT) is an X-ray imaging technique for breast cancer diagnosis, in principle capable of delivering a much more homogeneous dose spatial pattern to the breast volume than conventional mammography, at dose levels comparable to two-view mammography. We present an investigation of the three-dimensional dose distribution for a cone-beam CT system dedicated to breast imaging. We employed Monte Carlo simulations for estimating the dose deposited within a breast phantom having a hemiellipsoidal shape placed on a cylinder of 3.5 cm thickness that simulates the chest wall. This phantom represents a pendulant breast in a bCT exam with the average diameter at chest wall, assumed to correspond to a 5-cm-thick compressed breast in mammography. The phantom is irradiated in a circular orbit with an X-ray cone beam selected from four different techniques: 50, 60, 70, and 80 kVp from a tube with tungsten anode, 1.8 mm Al inherent filtration and additional filtration of 0.2 mm Cu. Using the Monte Carlo code GEANT4 we simulated a system similar to the experimental apparatus available in our lab. Simulations were performed at a constant free-in-air air kerma at the isocenter (1 μGy); the corresponding total number of photon histories per scan was 288 million at 80 kVp. We found that the more energetic beams provide a more uniform dose distribution than at low energy: the 50 kVp beam presents a frequency distribution of absorbed dose values with a coefficient of variation almost double than that for the 80 kVp beam. This is confirmed by the analysis of the relative dose profiles along the radial (i.e. parallel to the "chest wall") and longitudinal (i.e. from "chest wall" to "nipple") directions. Maximum radial deviations are on the order of 25% for the 80 kVp beam, whereas for the 50 kVp beam variations around 43% were observed, with the lowest dose values being found along the central longitudinal axis of the phantom. Copyright © 2012

  16. Maxillary first molar with 7 root canals diagnosed using cone-beam computed tomography

    PubMed Central

    Rodrigues, Evaldo; Braitt, Antônio Henrique; Galvão, Bruno Ferraz

    2017-01-01

    Root canal anatomy is complex, and the recognition of anatomic variations could be a challenge for clinicians. This case report describes the importance of cone beam computed tomographyic (CBCT) imaging during endodontic treatment. A 23 year old woman was referred by her general dental practitioner with the chief complaint of spontaneous pain in her right posterior maxilla. From the clinical and radiographic findings, a diagnosis of symptomatic irreversible pulpitis was made and endodontic treatment was suggested to the patient. The patient underwent CBCT examination, and CBCT scan slices revealed seven canals: three mesiobuccal (MB1, MB2, and MB3), two distobuccal (DB1 and DB2), and two palatal (P1 and P2). Canals were successfully treated with reciprocating files and filled using single-cone filling technique. Precise knowledge of root canal morphology and its variation is important during root canal treatment. CBCT examination is an excellent tool for identifying and managing these complex root canal systems. PMID:28194366

  17. Experimental Scatter Correction Methods in Industrial X-Ray Cone-Beam CT

    NASA Astrophysics Data System (ADS)

    Schörner, K.; Goldammer, M.; Stephan, J.

    2011-06-01

    Scattered radiation presents a major source of image degradation in industrial cone-beam computed tomography systems. Scatter artifacts introduce streaks, cupping and a loss of contrast in the reconstructed CT-volumes. In order to overcome scatter artifacts, we present two complementary experimental correction methods: the beam-stop array (BSA) and an inverse technique we call beam-hole array (BHA). Both correction methods are examined in comparative measurements where it is shown that the aperture-based BHA technique has practical and scatter-reducing advantages over the BSA. The proposed BHA correction method is successfully applied to a large-scale industrial specimen whereby scatter artifacts are reduced and contrast is enhanced significantly.

  18. Modulation transfer function determination using the edge technique for cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Rong, Junyan; Liu, Wenlei; Gao, Peng; Liao, Qimei; Lu, Hongbing

    2016-03-01

    Evaluating spatial resolution is an essential work for cone-beam computed tomography (CBCT) manufacturers, prototype designers or equipment users. To investigate the cross-sectional spatial resolution for different transaxial slices with CBCT, the slanted edge technique with a 3D slanted edge phantom are proposed and implemented on a prototype cone-beam micro-CT. Three transaxial slices with different cone angles are under investigation. An over-sampled edge response function (ERF) is firstly generated from the intensity of the slightly tiled air to plastic edge in each row of the transaxial reconstruction image. Then the oversampled ESF is binned and smoothed. The derivative of the binned and smoothed ERF gives the line spread function (LSF). At last the presampled modulation transfer function (MTF) is calculated by taking the modulus of the Fourier transform of the LSF. The spatial resolution is quantified with the spatial frequencies at 10% MTF level and full-width-half-maximum (FWHM) value. The spatial frequencies at 10% of MTFs are 3.1+/-0.08mm-1, 3.0+/-0.05mm-1, and 3.2+/-0.04mm-1 for the three transaxial slices at cone angles of 3.8°, 0°, and -3.8° respectively. The corresponding FWHMs are 252.8μm, 261.7μm and 253.6μm. Results indicate that cross-sectional spatial resolution has no much differences when transaxial slices being 3.8° away from z=0 plane for the prototype conebeam micro-CT.

  19. A Survey of Cone-beam Computed Tomographic Use among Endodontic Practitioners in the United States.

    PubMed

    Setzer, Frank C; Hinckley, Nathan; Kohli, Meetu R; Karabucak, Bekir

    2017-05-01

    Cone-beam computed tomographic (CBCT) imaging is an emerging technology for clinical endodontic practice. The aim of this study was to investigate the acceptance, accessibility, and usage of CBCT imaging among American Association of Endodontists members in the United States by means of an online survey. An invitation to participate in a web-based survey was sent to 3076 members of the American Association of Endodontists. The survey consisted of 8 questions on demographics, access to CBCT machines, field of view (FOV), frequency of use for particular applications, and reasons in case CBCT was not used. A total of 1083 participants completed the survey, giving an overall completed response rate of 35.2%; 80.30% of the participants had access to a CBCT scan, of which 50.69% (n = 443) were on-site and 49.31% (n = 431) were off-site, and 19.30% of all respondents denied having access to CBCT imaging. Limited FOV was used by 55.26% participants, 22.37% used larger FOV formats, and the remaining 22.37% were not sure about the format. There was a significantly greater usage of CBCT technology in residency programs (n = 78/84 [92.86%]) compared with practitioners who had finished an endodontic specialty program (n = 796/999 [79.68%]) (χ(2) = 10.30, P = .02). Practitioners used CBCT imaging "frequent" or "always" for internal or external resorptions (47.28%), preoperatively for surgical retreatment or intentional replantation (45.34%), missing canals (25.39%), preoperatively for nonsurgical retreatments (24.91%), differential diagnosis (21.16%), identifying periradicular lesions (18.26%), calcified cases (13.54%), immature teeth (4.71%), and to assess healing (3.87%). There was a significant difference in on-site and off-site CBCT imaging use for any of these applications (P < .001). Prevalent reasons for not using CBCT technology were cost (53.79%) and lack of installation space (8.29%). General concerns were expressed about resolution limitations, radiation

  20. Three-Dimensional Reconstruction from Cone-Beam Projections for Flat and Curved Detectors: Reconstruction Method Development.

    NASA Astrophysics Data System (ADS)

    Hu, Hui

    This dissertation is principally concerned with improving the performance of a prototype image-intensifier -based cone-beam volume computed tomography system by removing or partially removing two of its restricting factors, namely, the inaccuracy of current cone-beam reconstruction algorithm and the image distortion associated with the curved detecting surface of the image intensifier. To improve the accuracy of cone-beam reconstruction, first, the currently most accurate and computationally efficient cone-beam reconstruction method, the Feldkamp algorithm, is investigated by studying the relation of an original unknown function with its Feldkamp estimate. From this study, a partial knowledge on the unknown function can be derived in the Fourier domain from its Feldkamp estimate. Then, based on the Gerchberg-Papoulis algorithm, a modified iterative algorithm efficiently incorporating the Fourier knowledge as well as the a priori spatial knowledge on the unknown function is devised and tested to improve the cone-beam reconstruction accuracy by postprocessing the Feldkamp estimate. Two methods are developed to remove the distortion associated with the curved surface of image intensifier. A calibrating method based on a rubber-sheet remapping is designed and implemented. As an alternative, the curvature can be considered in the reconstruction algorithm. As an initial effort along this direction, a generalized convolution -backprojection reconstruction algorithm for fan-beam and any circular detector arrays is derived and studied.

  1. Evaluation of an in situ, on-line purging system for the cone penetrometer

    SciTech Connect

    Doskey, P.V.; Aldstadt, J.H.; Kuo, J.M.; Costanza, M.S.

    1996-11-01

    Materials that will be used to construct an in situ, on-line purging system for the cone penetrometer were evaluated. Transfer efficiencies for volatile organic compounds (VOCs) through stainless steel, nickel, aluminum, and Teflon tubings were determined using a gas-phase mixture of VOCs containing trichloromethane, tetrachloromethane, 1,1,1-trichloroethene, tetrachloroethene, hexane, benzene, toluene, and 1,2-dimethylbenzene. The water content of the gas stream had an insignificant effect on the quantitative transfer of VOCs through Teflon tubing but was critical to efficiently transfer the compounds through metal tubing, particularly nickel. Transfer efficiencies for all eight analytes in moist gas streams through stainless steel were greater than 95%. Toluene, tetrachloroethene, and 1,2-dimethybenzene were transferred with 93%, 81%, and 80% efficiency, respectively, when they were drawn through Teflon PFA (perfluoroalkoxy) tubing. In general, the retention of the VOCs by Teflon increases with decreasing aqueous solubility of the analyte. The efficiencies at which VOCs were purged from aqueous standards in Teflon PFA, Type 304 stainless steel, and glass vessels were similar. Stainless steel was superior to nickel, aluminum, and the Teflon polymers as a material for an in situ, on-line purging system for the cone penetrometer. 12 refs., 2 tabs.

  2. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals

    PubMed Central

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method. PMID:27868068

  3. Minimal residual cone-beam reconstruction with attenuation correction in SPECT.

    PubMed

    La, V; Grangeat, P

    1998-04-01

    This paper presents an iterative method based on the minimal residual algorithm for tomographic attenuation compensated reconstruction from attenuated cone-beam projections given the attenuation distribution. Unlike conjugate-gradient based reconstruction techniques, the proposed minimal residual based algorithm solves directly a quasisymmetric linear system, which is a preconditioned system. Thus it avoids the use of normal equations, which improves the convergence rate. Two main contributions are introduced. First, a regularization method is derived for quasisymmetric problems, based on a Tikhonov-Phillips regularization applied to the factorization of the symmetric part of the system matrix. This regularization is made spatially adaptive to avoid smoothing the region of interest. Second, our existing reconstruction algorithm for attenuation correction in parallel-beam geometry is extended to cone-beam geometry. A circular orbit is considered. Two preconditioning operators are proposed: the first one is Grangeat's inversion formula and the second one is Feldkamp's inversion formula. Experimental results obtained on simulated data are presented and the shadow zone effect on attenuated data is illustrated.

  4. Minimal residual cone-beam reconstruction with attenuation correction in SPECT

    NASA Astrophysics Data System (ADS)

    La, Valérie; Grangeat, Pierre

    1998-04-01

    This paper presents an iterative method based on the minimal residual algorithm for tomographic attenuation compensated reconstruction from attenuated cone-beam projections given the attenuation distribution. Unlike conjugate-gradient based reconstruction techniques, the proposed minimal residual based algorithm solves directly a quasisymmetric linear system, which is a preconditioned system. Thus it avoids the use of normal equations, which improves the convergence rate. Two main contributions are introduced. First, a regularization method is derived for quasisymmetric problems, based on a Tikhonov-Phillips regularization applied to the factorization of the symmetric part of the system matrix. This regularization is made spatially adaptive to avoid smoothing the region of interest. Second, our existing reconstruction algorithm for attenuation correction in parallel-beam geometry is extended to cone-beam geometry. A circular orbit is considered. Two preconditioning operators are proposed: the first one is Grangeat's inversion formula and the second one is Feldkamp's inversion formula. Experimental results obtained on simulated data are presented and the shadow zone effect on attenuated data is illustrated.

  5. Comparative study of a low-Z cone-beam computed tomography system

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Hansen, V. N.; Thompson, M. G.; Poludniowski, G.; Niven, A.; Seco, J.; Evans, P. M.

    2011-07-01

    Computed tomography images have been acquired using an experimental (low atomic number (Z) insert) megavoltage cone-beam imaging system. These images have been compared with standard megavoltage and kilovoltage imaging systems. The experimental system requires a simple modification to the 4 MeV electron beam from an Elekta Precise linac. Low-energy photons are produced in the standard medium-Z electron window and a low-Z carbon electron absorber located after the window. The carbon electron absorber produces photons as well as ensuring that all remaining electrons from the source are removed. A detector sensitive to diagnostic x-ray energies is also employed. Quantitative assessment of cone-beam computed tomography (CBCT) contrast shows that the low-Z imaging system is an order of magnitude or more superior to a standard 6 MV imaging system. CBCT data with the same contrast-to-noise ratio as a kilovoltage imaging system (0.15 cGy) can be obtained in doses of 11 and 244 cGy for the experimental and standard 6 MV systems, respectively. Whilst these doses are high for everyday imaging, qualitative images indicate that kilovoltage like images suitable for patient positioning can be acquired in radiation doses of 1-8 cGy with the experimental low-Z system.

  6. Motion correction for improved target localization with on-board cone-beam computed tomography.

    PubMed

    Li, T; Schreibmann, E; Yang, Y; Xing, L

    2006-01-21

    On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360 degrees scan) in acquiring the CBCT projection data, the patient's respiratory motion causes serious problems such as blurring, doubling, streaking and distortion in the reconstructed images, which heavily degrade the image quality and the target localization. In this work, we present a motion compensation method for slow-rotating CBCT scans by incorporating into image reconstruction a patient-specific motion model, which is derived from previously obtained four-dimensional (4D) treatment planning CT images of the same patient via deformable registration. The registration of the 4D CT phases results in transformations representing a temporal sequence of three-dimensional (3D) deformation fields, or in other words, a 4D model of organ motion. The algorithm was developed heuristically in two-dimensional (2D) parallel-beam geometry and extended to 3D cone-beam geometry. By simulations with digital phantoms capable of translational motion and other complex motion, we demonstrated that the algorithm can reduce the motion artefacts locally, and restore the tumour size and shape, which may thereby improve the accuracy of target localization and patient positioning when CBCT is used as the treatment guidance.

  7. WE-G-18A-06: Sinogram Restoration in Helical Cone-Beam CT

    SciTech Connect

    Little, K; Riviere, P La

    2014-06-15

    Purpose: To extend CT sinogram restoration, which has been shown in 2D to reduce noise and to correct for geometric effects and other degradations at a low computational cost, from 2D to a 3D helical cone-beam geometry. Methods: A method for calculating sinogram degradation coefficients for a helical cone-beam geometry was proposed. These values were used to perform penalized-likelihood sinogram restoration on simulated data that were generated from the FORBILD thorax phantom. Sinogram restorations were performed using both a quadratic penalty and the edge-preserving Huber penalty. After sinogram restoration, Fourier-based analytical methods were used to obtain reconstructions. Resolution-variance trade-offs were investigated for several locations within the reconstructions for the purpose of comparing sinogram restoration to no restoration. In order to compare potential differences, reconstructions were performed using different groups of neighbors in the penalty, two analytical reconstruction methods (Katsevich and single-slice rebinning), and differing helical pitches. Results: The resolution-variance properties of reconstructions restored using sinogram restoration with a Huber penalty outperformed those of reconstructions with no restoration. However, the use of a quadratic sinogram restoration penalty did not lead to an improvement over performing no restoration at the outer regions of the phantom. Application of the Huber penalty to neighbors both within a view and across views did not perform as well as only applying the penalty to neighbors within a view. General improvements in resolution-variance properties using sinogram restoration with the Huber penalty were not dependent on the reconstruction method used or the magnitude of the helical pitch. Conclusion: Sinogram restoration for noise and degradation effects for helical cone-beam CT is feasible and should be able to be applied to clinical data. When applied with the edge-preserving Huber penalty

  8. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT

    SciTech Connect

    Matenine, Dmitri; Goussard, Yves

    2015-04-15

    Purpose: The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. Methods: The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it is implemented on a graphics processing unit, using parallelization to accelerate computations. Results: The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1–2 min and are compatible with the typical clinical workflow for nonreal-time applications. Conclusions: Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.

  9. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    PubMed Central

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  10. GPU-accelerated regularized iterative reconstruction for few-view cone beam CT.

    PubMed

    Matenine, Dmitri; Goussard, Yves; Després, Philippe

    2015-04-01

    The present work proposes an iterative reconstruction technique designed for x-ray transmission computed tomography (CT). The main objective is to provide a model-based solution to the cone-beam CT reconstruction problem, yielding accurate low-dose images via few-views acquisitions in clinically acceptable time frames. The proposed technique combines a modified ordered subsets convex (OSC) algorithm and the total variation minimization (TV) regularization technique and is called OSC-TV. The number of subsets of each OSC iteration follows a reduction pattern in order to ensure the best performance of the regularization method. Considering the high computational cost of the algorithm, it is implemented on a graphics processing unit, using parallelization to accelerate computations. The reconstructions were performed on computer-simulated as well as human pelvic cone-beam CT projection data and image quality was assessed. In terms of convergence and image quality, OSC-TV performs well in reconstruction of low-dose cone-beam CT data obtained via a few-view acquisition protocol. It compares favorably to the few-view TV-regularized projections onto convex sets (POCS-TV) algorithm. It also appears to be a viable alternative to full-dataset filtered backprojection. Execution times are of 1-2 min and are compatible with the typical clinical workflow for nonreal-time applications. Considering the image quality and execution times, this method may be useful for reconstruction of low-dose clinical acquisitions. It may be of particular benefit to patients who undergo multiple acquisitions by reducing the overall imaging radiation dose and associated risks.

  11. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography

    PubMed Central

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections. PMID:27601835

  12. Florid cemento-osseous dysplasia: A rare case report evaluated with cone-beam computed tomography.

    PubMed

    Yildirim, Eren; Bağlar, Serdar; Ciftci, Mehmet Ertugrul; Ozcan, Erdal

    2016-01-01

    A 29-year-old systemically healthy female patient presented to our department. Cone-beam computed tomographic images showed multiple well-defined sclerotic masses with radiolucent border in both right and left molar regions of the mandible. These sclerotic masses were surrounded by a thin radiolucent border. We diagnosed the present pathology as florid cemento-osseous dysplasia and decided to follow the patient without taking biopsy. For the patient, who did not have any clinical complaints, radiographic followupis recommended twice a year. The responsibility of the dentist is to ensure the follow-up of the diagnosed patients and take necessary measures for preventing the infections.

  13. Cone Beam Computed Tomography Image Guidance System for a Dedicated Intracranial Radiosurgery Treatment Unit

    SciTech Connect

    Ruschin, Mark; Komljenovic, Philip T.; Ansell, Steve; Menard, Cynthia; Bootsma, Gregory; Cho, Young-Bin; Chung, Caroline; Jaffray, David

    2013-01-01

    Purpose: Image guidance has improved the precision of fractionated radiation treatment delivery on linear accelerators. Precise radiation delivery is particularly critical when high doses are delivered to complex shapes with steep dose gradients near critical structures, as is the case for intracranial radiosurgery. To reduce potential geometric uncertainties, a cone beam computed tomography (CT) image guidance system was developed in-house to generate high-resolution images of the head at the time of treatment, using a dedicated radiosurgery unit. The performance and initial clinical use of this imaging system are described. Methods and Materials: A kilovoltage cone beam CT system was integrated with a Leksell Gamma Knife Perfexion radiosurgery unit. The X-ray tube and flat-panel detector are mounted on a translational arm, which is parked above the treatment unit when not in use. Upon descent, a rotational axis provides 210 Degree-Sign of rotation for cone beam CT scans. Mechanical integrity of the system was evaluated over a 6-month period. Subsequent clinical commissioning included end-to-end testing of targeting performance and subjective image quality performance in phantoms. The system has been used to image 2 patients, 1 of whom received single-fraction radiosurgery and 1 who received 3 fractions, using a relocatable head frame. Results: Images of phantoms demonstrated soft tissue contrast visibility and submillimeter spatial resolution. A contrast difference of 35 HU was easily detected at a calibration dose of 1.2 cGy (center of head phantom). The shape of the mechanical flex vs scan angle was highly reproducible and exhibited <0.2 mm peak-to-peak variation. With a 0.5-mm voxel pitch, the maximum targeting error was 0.4 mm. Images of 2 patients were analyzed offline and submillimeter agreement was confirmed with conventional frame. Conclusions: A cone beam CT image guidance system was successfully adapted to a radiosurgery unit. The system is capable of

  14. [Radiographic evaluation of cone-beam computed tomography for oral implants: maxillary sinus].

    PubMed

    Wang, Hu

    2015-08-01

    Cone-beam computed tomography (CBCT) has an important function in understanding implant operations. CBCT can be used to evaluate the basic condition of implant site before implant operation and decide whether it is suitable for implanting. CBCT also ensures whether the direction of implant and the operation method are satisfactory. CBCT can be used pre- or post-operation as long as the case involves the maxillary sinus. Clinical implant cases using CBCT were introduced to evaluate the maxillary sinus pre- or post-operation.

  15. Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography.

    PubMed

    Swennen, Gwen R J; Schutyser, Filip

    2006-09-01

    Three-dimensional (3D) craniofacial imaging techniques are becoming increasingly popular and have opened new possibilities for orthodontic assessment, treatment, and follow-up. Recently, a new 3D cephalometric method based on spiral multi-slice (MS) computed tomography (CT) was developed and validated by our research group. This innovative 3D virtual approach is a bridge between conventional cephalometry and modern craniofacial imaging techniques and provides high-quality, accurate, and reliable quantitative 3D data. The aim of this article was to describe the advantages and the disadvantages of spiral MS-CT 3D cephalometry and to discuss the potential of cone-beam CT 3D cephalometry.

  16. Automated volume of interest delineation and rendering of cone beam CT images in interventional cardiology

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Schäfer, Dirk; Eshuis, Peter; Carroll, John; Grass, Michael

    2012-02-01

    Interventional C-arm systems allow the efficient acquisition of 3D cone beam CT images. They can be used for intervention planning, navigation, and outcome assessment. We present a fast and completely automated volume of interest (VOI) delineation for cardiac interventions, covering the whole visceral cavity including mediastinum and lungs but leaving out rib-cage and spine. The problem is addressed in a model based approach. The procedure has been evaluated on 22 patient cases and achieves an average surface error below 2mm. The method is able to cope with varying image intensities, varying truncations due to the limited reconstruction volume, and partially with heavy metal and motion artifacts.

  17. A multiscale filter for noise reduction of low-dose cone beam projections

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Farr, Jonathan B.

    2015-08-01

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, \\text{exp}≤ft(-{{x}2}/2σ f2\\right) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of {σf} , which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ f2 is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  18. A method for determining the gantry angle for megavoltage cone beam imaging.

    PubMed

    Sillanpaa, J; Chang, J; Amols, H; Mageras, G

    2005-02-01

    Accurate knowledge of gantry angle is essential in megavoltage cone beam imaging (MVCBI) with an electronic portal imager. We present a method for determining the gantry angle by detecting multileaf collimator (MLC) leaf positions in projection images. During image acquisition the gantry moves continuously and the MLC operates in dynamic arc mode. Our algorithm detects the leaf positions in the images and compares them with a stationary reference leaf. Comparison of the algorithm against angles determined from the locations of fiducial markers shows the accuracy (0.26 degrees rms error) to be sufficient for MVCBI.

  19. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    PubMed

    Cohenca, Nestor; Shemesh, Hagay

    2015-06-01

    Cone beam computed tomography (CBCT) is a new technology that produces three-dimensional (3D) digital imaging at reduced cost and less radiation for the patient than traditional CT scans. It also delivers faster and easier image acquisition. By providing a 3D representation of the maxillofacial tissues in a cost- and dose-efficient manner, a better preoperative assessment can be obtained for diagnosis and treatment. This comprehensive review presents current applications of CBCT in endodontics. Specific case examples illustrate the difference in treatment planning with traditional periapical radiography versus CBCT technology.

  20. Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.

    PubMed

    Cohenca, Nestor; Shemesh, Hagay

    2015-09-01

    The use of cone beam computed tomography (CBCT) in endodontics has been extensively reported in the literature. Compared with the traditional spiral computed tomography, limited field of view (FOV) CBCT results in a fraction of the effective absorbed dose of radiation. The purpose of this manuscript is to review the application and advantages associated with advanced endodontic problems and complications, while reducing radiation exposure during complex endodontic procedures. The benefits of the added diagnostic information provided by intraoperative CBCT images in select cases justify the risk associated with the limited level of radiation exposure.

  1. Cone beam computed tomography aided diagnosis and treatment of endodontic cases: Critical analysis

    PubMed Central

    Yılmaz, Funda; Kamburoglu, Kıvanç; Yeta, Naz Yakar; Öztan, Meltem Dartar

    2016-01-01

    Although intraoral radiographs still remain the imaging method of choice for the evaluation of endodontic patients, in recent years, the utilization of cone beam computed tomography (CBCT) in endodontics showed a significant jump. This case series presentation shows the importance of CBCT aided diagnosis and treatment of complex endodontic cases such as; root resorption, missed extra canal, fusion, oblique root fracture, non-diagnosed periapical pathology and horizontal root fracture. CBCT may be a useful diagnostic method in several endodontic cases where intraoral radiography and clinical examination alone are unable to provide sufficient information. PMID:27551342

  2. Conservative Management of Type III Dens in Dente Using Cone Beam Computed Tomography.

    PubMed

    Pradeep, K; Charlie, M; Kuttappa, M A; Rao, Prasana Kumar

    2012-01-01

    Dens in dente, also known as dens invaginatus, dilated composite odontoma, or deep foramen caecum, is a developmental malformation that usually affects maxillary incisor teeth, particularly lateral incisors. It may occur in teeth anywhere within the jaws, other locations are comparatively rare. It can occur within both the crown and the root, although crown invaginations are more common. The use of cone beam computed tomography (CBCT) is very helpful in endodontic diagnosis of complex anatomic variations. In this case we demonstrate the use of CBCT in the evaluation and endodontic management of a Type III dens in dente (Oehler's Type III).

  3. A multiscale filter for noise reduction of low-dose cone beam projections.

    PubMed

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  4. Stafne bone cavity and cone-beam computed tomography: a report of two cases.

    PubMed

    Venkatesh, Elluru

    2015-06-01

    In 1942 Stafne reported 35 asymptomatic, radiolucent cavities that were unilaterally located in the posterior region of the mandible between the mandibular angle and the third molar, and below the mandibular canal. The term Stafne bone cavity (SBC) is now used for such asymptomatic lingual bone depressions of the lower jaw. Since then there have been many reports of SBCs but very fews tudies have used cone-beam computed tomography (CBCT) for their diagnosis. The aim of this paper is to describe the clinical and radiological characteristics of two cases of SBCs and the importance of limited CBCT in confirming the diagnosis.

  5. Cone-beam computed tomography: Time to move from ALARA to ALADA.

    PubMed

    Jaju, Prashant P; Jaju, Sushma P

    2015-12-01

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of "as low as reasonably achievable" (ALARA) to "as low as diagnostically acceptable" (ALADA).

  6. Cone-beam computed tomography: Time to move from ALARA to ALADA

    PubMed Central

    Jaju, Sushma P.

    2015-01-01

    Cone-beam computed tomography (CBCT) is routinely recommended for dental diagnosis and treatment planning. CBCT exposes patients to less radiation than does conventional CT. Still, lack of proper education among dentists and specialists is resulting in improper referral for CBCT. In addition, aiming to generate high-quality images, operators may increase the radiation dose, which can expose the patient to unnecessary risk. This letter advocates appropriate radiation dosing during CBCT to the benefit of both patients and dentists, and supports moving from the concept of "as low as reasonably achievable" (ALARA) to "as low as diagnostically acceptable" (ALADA). PMID:26730375

  7. Brain SPECT with short focal-length cone-beam collimation

    SciTech Connect

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-07-15

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR{sub CRB}) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR{sub CRB}, compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR{sub CRB} increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR{sub CRB} were relatively

  8. Enhancement of breast calcification visualization and detection using a modified PG method in Cone Beam Breast CT.

    PubMed

    Liu, Jiangkun; Ning, Ruola; Cai, Weixing; Benitez, Ricardo Betancourt

    2012-01-01

    Cone Beam Breast CT is a promising diagnostic modality in breast imaging. Its isotropic 3D spatial resolution enhances the characterization of micro-calcifications in breasts that might not be easily distinguishable in mammography. However, due to dose level considerations, it is beneficial to further enhance the visualization of calcifications in Cone Beam Breast CT images that might be masked by noise. In this work, the Papoulis-Gerchberg method was modified and implemented in Cone Beam Breast CT images to improve the visualization and detectability of calcifications. First, the PG method was modified and applied to the projections acquired during the scanning process; its effects on the reconstructed images were analyzed by measuring the Modulation Transfer Function and the Noise Power Spectrum. Second, Cone Beam Breast CT images acquired at different dose levels were pre-processed using this technique to enhance the visualization of calcification. Finally, a computer-aided diagnostic algorithm was utilized to evaluate the efficacy of this method to improve calcification detectability. The results demonstrated that this technique can effectively improve image quality by improving the Modulation Transfer Function with a minor increase in noise level. Consequently, the visualization and detectability of calcifications were improved in Cone Beam Breast CT images. This technique was also proved to be useful in reducing the x-ray dose without degrading visualization and detectability of calcifications.

  9. Enhancement of Breast Calcification Visualization and Detection Using a Modified PG Method in Cone Beam Breast CT

    PubMed Central

    Liu, Jiangkun; Cai, Weixing; Benitez, Ricardo Betancourt

    2012-01-01

    Cone Beam Breast CT is a promising diagnostic modality in breast imaging. Its isotropic 3D spatial resolution enhances the characterization of micro-calcifications in breasts that might not be easily distinguishable in mammography. However, due to dose level considerations, it is beneficial to further enhance the visualization of calcifications in Cone Beam Breast CT images that might be masked by noise. In this work, the Papoulis-Gerchberg method was modified and implemented in Cone Beam Breast CT images to improve the visualization and detectability of calcifications. First, the PG method was modified and applied to the projections acquired during the scanning process; its effects on the reconstructed images were analyzed by measuring the Modulation Transfer Function and the Noise Power Spectrum. Second, Cone Beam Breast CT images acquired at different dose levels were pre-processed using this technique to enhance the visualization of calcification. Finally, a computer-aided diagnostic algorithm was utilized to evaluate the efficacy of this method to improve calcification detectability. The results demonstrated that this technique can effectively improve image quality by improving the Modulation Transfer Function with a minor increase in noise level. Consequently, the visualization and detectability of calcifications were improved in Cone Beam Breast CT images. This technique was also proved to be useful in reducing the x-ray dose without degrading visualization and detectability of calcifications. PMID:22398591

  10. Iterative reconstruction optimisations for high angle cone-beam micro-CT

    NASA Astrophysics Data System (ADS)

    Recur, B.; Fauconneau, M.; Kingston, A.; Myers, G.; Sheppard, A.

    2014-09-01

    We address several acquisition questions that have arisen for the high cone-angle helical-scanning micro-CT facility developed at the Australian National University. These challenges are generally known in medical and industrial cone-beam scanners but can be neglected in these systems. For our large datasets, with more than 20483 voxels, minimising the number of operations (or iterations) is crucial. Large cone-angles enable high signal-to-noise ratio imaging and a large helical pitch to be used. This introduces two challenges: (i) non-uniform resolution throughout the reconstruction, (ii) over-scan beyond the region-of-interest significantly increases re- quired reconstructed volume size. Challenge (i) can be addressed by using a double-helix or lower pitch helix but both solutions slow down iterations. Challenge (ii) can also be improved by using a lower pitch helix but results in more projections slowing down iterations. This may be overcome using less projections per revolution but leads to more iterations required. Here we assume a given total time for acquisition and a given reconstruction technique (SART) and seek to identify the optimal trajectory and number of projections per revolution in order to produce the best tomogram, minimise reconstruction time required, and minimise memory requirements.

  11. Characterization and correction of cupping effect artefacts in cone beam CT

    PubMed Central

    Hunter, AK; McDavid, WD

    2012-01-01

    Objective The purpose of this study was to demonstrate and correct the cupping effect artefact that occurs owing to the presence of beam hardening and scatter radiation during image acquisition in cone beam CT (CBCT). Methods A uniform aluminium cylinder (6061) was used to demonstrate the cupping effect artefact on the Planmeca Promax 3D CBCT unit (Planmeca OY, Helsinki, Finland). The cupping effect was studied using a line profile plot of the grey level values using ImageJ software (National Institutes of Health, Bethesda, MD). A hardware-based correction method using copper pre-filtration was used to address this artefact caused by beam hardening and a software-based subtraction algorithm was used to address scatter contamination. Results The hardware-based correction used to address the effects of beam hardening suppressed the cupping effect artefact but did not eliminate it. The software-based correction used to address the effects of scatter resulted in elimination of the cupping effect artefact. Conclusion Compensating for the presence of beam hardening and scatter radiation improves grey level uniformity in CBCT. PMID:22378754

  12. Characterization and correction of cupping effect artefacts in cone beam CT.

    PubMed

    Hunter, A K; McDavid, W D

    2012-03-01

    The purpose of this study was to demonstrate and correct the cupping effect artefact that occurs owing to the presence of beam hardening and scatter radiation during image acquisition in cone beam CT (CBCT). A uniform aluminium cylinder (6061) was used to demonstrate the cupping effect artefact on the Planmeca Promax 3D CBCT unit (Planmeca OY, Helsinki, Finland). The cupping effect was studied using a line profile plot of the grey level values using ImageJ software (National Institutes of Health, Bethesda, MD). A hardware-based correction method using copper pre-filtration was used to address this artefact caused by beam hardening and a software-based subtraction algorithm was used to address scatter contamination. The hardware-based correction used to address the effects of beam hardening suppressed the cupping effect artefact but did not eliminate it. The software-based correction used to address the effects of scatter resulted in elimination of the cupping effect artefact. Compensating for the presence of beam hardening and scatter radiation improves grey level uniformity in CBCT.

  13. Radiobiologically optimized couch shift: A new localization paradigm using cone-beam CT for prostate radiotherapy

    SciTech Connect

    Huang, Yimei Gardner, Stephen J.; Wen, Ning; Zhao, Bo; Gordon, James; Brown, Stephen; Chetty, Indrin J.

    2015-10-15

    Purpose: To present a novel positioning strategy which optimizes radiation delivery by utilizing radiobiological response knowledge and evaluate its use during prostate external beam radiotherapy. Methods: Five patients with low or intermediate risk prostate cancer were evaluated retrospectively in this IRB-approved study. For each patient, a VMAT plan with one 358° arc was generated on the planning CT (PCT) to deliver 78 Gy in 39 fractions. Five representative pretreatment cone beam CTs (CBCT) were selected for each patient. The CBCT images were registered to PCT by a human observer, which consisted of an initial automated registration with three degrees-of-freedom, followed by manual adjustment for agreement at the prostate/rectal wall interface. To determine the optimal treatment position for each CBCT, a search was performed centering on the observer-matched position (OM-position) utilizing a score function based on radiobiological and dosimetric indices (EUD{sub prostate}, D99{sub prostate}, NTCP{sub rectum}, and NTCP{sub bladder}) for the prostate, rectum, and bladder. We termed the optimal treatment position the radiobiologically optimized couch shift position (ROCS-position). Results: The dosimetric indices, averaged over the five patients’ treatment plans, were (mean ± SD) 79.5 ± 0.3 Gy (EUD{sub prostate}), 78.2 ± 0.4 Gy (D99{sub prostate}), 11.1% ± 2.7% (NTCP{sub rectum}), and 46.9% ± 7.6% (NTCP{sub bladder}). The corresponding values from CBCT at the OM-positions were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.8 ± 0.7 Gy (D99{sub prostate}), 12.1% ± 5.6% (NTCP{sub rectum}), and 51.6% ± 15.2% (NTCP{sub bladder}), respectively. In comparison, from CBCT at the ROCS-positions, the dosimetric indices were 79.5 ± 0.6 Gy (EUD{sub prostate}), 77.3 ± 0.6 Gy (D99{sub prostate}), 8.0% ± 3.3% (NTCP{sub rectum}), and 46.9% ± 15.7% (NTCP{sub bladder}). Excessive NTCP{sub rectum} was observed on Patient 5 (19.5% ± 6.6%) corresponding to localization at OM

  14. Reconstruction-plane-dependent weighted FDK algorithm for cone beam volumetric CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang

    2005-04-01

    The original FDK algorithm has been extensively employed in medical and industrial imaging applications. With an increased cone angle, cone beam (CB) artifacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few "circular plus" trajectories have been proposed in the past to reduce CB artifacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artifacts of the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle. The inconsistence between conjugate rays is pixel dependent, i.e., it varies dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artifacts that can be avoided if appropriate view weighting strategy is exercised. In this paper, a modified FDK algorithm is proposed, along with an experimental evaluation and verification, in which the helical body phantom and a humanoid head phantom scanned by a volumetric CT (64 x 0.625 mm) are utilized. Without extra trajectories supplemental to the circular trajectory, the modified FDK algorithm applies reconstruction-plane-dependent view weighting on projection data before 3D backprojection, which reduces the inconsistency between conjugate rays by suppressing the contribution of one of the conjugate rays with a larger cone angle. Both computer-simulated and real phantom studies show that, up to a moderate cone angle, the CB artifacts can be substantially suppressed by the modified FDK algorithm, while advantages of the original FDK algorithm, such as the filtered backprojection algorithm structure, 1D ramp filtering, and data manipulation efficiency, can be

  15. Symmetry Experiments on Omega with LMJ like Multiple Beam Cones Irradation

    SciTech Connect

    Richard, A L; Jadaud, J P; Dague, N; Monteil, M C; Turner, R E; Bradley, D; Wallace, R J; Landen, O L; Soures, J M; Morse, S; Pien, G

    2000-07-17

    We carried out a set of experiments on the Omega laser facility at Rochester with Laser MegaJoule (LMJ) like indirect drive irradiation. We studied the irradiation non-uniformity with the foam ball radiography technique and the implosion symmetry with (D{sub 2} + Argon) filled capsules core emission. Cylindrical ''Nova scale 1'' thin wall hohlraums were used. Forty of the Omega beams, arranged in three cones on each side of the hohlraum (5, 5, and lo), were used to create the X-ray drive. Eight additional beams were used on a Ti source to radiograph the foam balls. The shaped laser pulse was about 3 ns duration. The radiation drive was measured on each shot. The images were recorded with a 5 prn resolution Gated X-ray Imager coupled to a CCD camera.

  16. Analytical cone-beam reconstruction using a multi-source inverse geometry CT system

    NASA Astrophysics Data System (ADS)

    Yin, Zhye; De Man, Bruno; Pack, Jed

    2007-03-01

    In a 3rd generation CT system, a single source projects the entire field of view (FOV) onto a large detector opposite the source. In multi-source CT imaging, a multitude of sources sequentially project a part of the FOV on a much smaller detector. These sources may be distributed in both the trans-axial and axial directions in order to jointly cover the entire FOV. Scan data from multiple sources in the axial direction provide complementary information, which is not available in a conventional single-source CT system. In this work, an analytical 3D cone-beam reconstruction algorithm for multi-source CT is proposed. This approach has three distinctive features. First, multi-source data are re-binned transaxially to multiple offset third-generation datasets. Second, data points in sinograms from multiple source sets are either accepted or rejected for contribution to the backprojection of a given voxel. Third, instead of using a ramp filter, a Hilbert transform is combined with a parallel derivative to form the filtering mechanism. Phantom simulations are performed using a multi-source CT geometry and compared to conventional 3rd generation CT geometry. We show that multi-source CT can extend the axial scan coverage to 120mm without cone-beam artifacts, while a third-generation geometry results in compromised image quality at 60mm of axial coverage. Moreover, given that the cone-angle in the proposed geometry is limited to 7 degrees, there are no degrading effects such as the Heel effect and scattered radiation, unlike in a third-generation geometry with comparable coverage. An additional benefit is the uniform flux profile resulting in uniform image noise throughout the FOV and a uniform dose absorption profile.

  17. Few-view and limited-angle cone-beam megavoltage CT for breast localization in radiation therapy

    NASA Astrophysics Data System (ADS)

    Yu, Lifeng; Pan, Xiaochuan; Pelizzari, Charles A.; Martel, Mary

    2004-05-01

    In radiation therapy for breast cancer treatment, information about the external (skin) and internal (lung) boundaries is highly useful for determining the relative locations of the target and lung. In this work, we investigate the feasibility of tomographic reconstruction from few-view and limited-angle cone-beam projections acquired in radiation therapy unit for obtaining critical boundary information. From the few-view and limited-angle projections acquired directly in the treatment machine with an amorphous silicon electronic portal imaging device (EPID), We compared and evaluated the performance of the conventional cone-beam FDK algorithm and an iterative algorithm based upon the maximum-likelihood method for transmission tomography (ML-TR). Preliminary results demonstrated that the ML-TR algorithm is more promising than is the cone-beam FDK algorithm. Useful boundary information for breast localization can be obtained with very few projections in a limited angle range from the reconstruction of ML-TR algorithm.

  18. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction

    SciTech Connect

    Min, Jonghwan; Pua, Rizza; Cho, Seungryong; Kim, Insoo; Han, Bumsoo

    2015-11-15

    Purpose: A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. Methods: The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. Results: The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. Conclusions: The authors have successfully demonstrated that the

  19. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction.

    PubMed

    Min, Jonghwan; Pua, Rizza; Kim, Insoo; Han, Bumsoo; Cho, Seungryong

    2015-11-01

    A beam-blocker composed of multiple strips is a useful gadget for scatter correction and/or for dose reduction in cone-beam CT (CBCT). However, the use of such a beam-blocker would yield cone-beam data that can be challenging for accurate image reconstruction from a single scan in the filtered-backprojection framework. The focus of the work was to develop an analytic image reconstruction method for CBCT that can be directly applied to partially blocked cone-beam data in conjunction with the scatter correction. The authors developed a rebinned backprojection-filteration (BPF) algorithm for reconstructing images from the partially blocked cone-beam data in a circular scan. The authors also proposed a beam-blocking geometry considering data redundancy such that an efficient scatter estimate can be acquired and sufficient data for BPF image reconstruction can be secured at the same time from a single scan without using any blocker motion. Additionally, scatter correction method and noise reduction scheme have been developed. The authors have performed both simulation and experimental studies to validate the rebinned BPF algorithm for image reconstruction from partially blocked cone-beam data. Quantitative evaluations of the reconstructed image quality were performed in the experimental studies. The simulation study revealed that the developed reconstruction algorithm successfully reconstructs the images from the partial cone-beam data. In the experimental study, the proposed method effectively corrected for the scatter in each projection and reconstructed scatter-corrected images from a single scan. Reduction of cupping artifacts and an enhancement of the image contrast have been demonstrated. The image contrast has increased by a factor of about 2, and the image accuracy in terms of root-mean-square-error with respect to the fan-beam CT image has increased by more than 30%. The authors have successfully demonstrated that the proposed scanning method and image

  20. A novel image-domain-based cone-beam computed tomography enhancement algorithm.

    PubMed

    Li, Xiang; Li, Tianfang; Yang, Yong; Heron, Dwight E; Huq, M Saiful

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  1. Composite modulation transfer function evaluation of a cone beam computed tomography breast imaging system

    NASA Astrophysics Data System (ADS)

    Betancourt-Benítez, Ricardo; Ning, Ruola; Liu, Shaohua

    2009-11-01

    Several factors during the scanning process, image reconstruction and geometry of an imaging system, influence the spatial resolution of a computed tomography imaging system. In this work, the spatial resolution of a state of the art flat panel detector-based cone beam computed tomography breast imaging system is evaluated. First, scattering, exposure level, voltage, voxel size, pixel size, back-projection filter, reconstruction algorithm, and number of projections are varied to evaluate their effect on spatial resolution. Second, its uniformity throughout the whole field of view is evaluated as a function of radius along the x-y plane and as a function of z at the center of rotation. The results of the study suggest that the modulation transfer function is mainly influenced by the pixel, back-projection filter, and number of projections used. The evaluation of spatial resolution throughout the field of view also suggests that this imaging system does have a 3-D quasi-isotropic spatial resolution in a cylindrical region of radius equal to 40 mm centered at the axis of rotation. Overall, this study provides a useful tool to determine the optimal parameters for the best possible use of this cone beam computed tomography breast imaging system.

  2. Development of a quality control program for a cone beam CT imaging system

    NASA Astrophysics Data System (ADS)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David; Zhang, Yan; Cai, Weixing

    2008-03-01

    Routine quality control assessments of medical equipment are crucial for an accurate patient medical treatment as well as for the safety of the patient and staff involved. These regular evaluations become especially important when dealing with radiation-emitting equipment. Therefore, a quality control (QC) program has been developed to quantitatively evaluate imaging systems by measuring standard parameters related to image quality such as the Modulation Transfer Function (MTF), the Noise Power Spectrum (NPS), uniformity, linearity and noise level among others. First, the methods of evaluating the aforementioned parameters have been investigated using a cone beam CT imaging system. Different exposure techniques, phantoms, acquisition modes of the flat panel detector (FPD) and reconstruction algorithms relevant to a clinical environment were all included in this investigation. Second, using the results of the first part of this study, a set of parameters for the QC program was established that yields both, an accurate depiction of the system image quality and an integrated program for easy and practical implementation. Lastly, this QC program will be implemented and practiced in our cone beam CT imaging system. The results using our available phantoms demonstrate that the QC program is adequate to evaluate stability and image quality of this system since it provides comparable parameters to other QC programs.

  3. Augmented reality and cone beam CT guidance for transoral robotic surgery.

    PubMed

    Liu, Wen P; Richmon, Jeremy D; Sorger, Jonathan M; Azizian, Mahdi; Taylor, Russell H

    2015-09-01

    In transoral robotic surgery preoperative image data do not reflect large deformations of the operative workspace from perioperative setup. To address this challenge, in this study we explore image guidance with cone beam computed tomographic angiography to guide the dissection of critical vascular landmarks and resection of base-of-tongue neoplasms with adequate margins for transoral robotic surgery. We identify critical vascular landmarks from perioperative c-arm imaging to augment the stereoscopic view of a da Vinci si robot in addition to incorporating visual feedback from relative tool positions. Experiments resecting base-of-tongue mock tumors were conducted on a series of ex vivo and in vivo animal models comparing the proposed workflow for video augmentation to standard non-augmented practice and alternative, fluoroscopy-based image guidance. Accurate identification of registered augmented critical anatomy during controlled arterial dissection and en bloc mock tumor resection was possible with the augmented reality system. The proposed image-guided robotic system also achieved improved resection ratios of mock tumor margins (1.00) when compared to control scenarios (0.0) and alternative methods of image guidance (0.58). The experimental results show the feasibility of the proposed workflow and advantages of cone beam computed tomography image guidance through video augmentation of the primary stereo endoscopy as compared to control and alternative navigation methods.

  4. Augmented reality and cone beam CT guidance for transoral robotic surgery

    PubMed Central

    Richmon, Jeremy D.; Sorger, Jonathan M.; Azizian, Mahdi; Taylor, Russell H.

    2015-01-01

    In transoral robotic surgery preoperative image data do not reflect large deformations of the operative workspace from perioperative setup. To address this challenge, in this study we explore image guidance with cone beam computed tomographic angiography to guide the dissection of critical vascular landmarks and resection of base-of-tongue neoplasms with adequate margins for transoral robotic surgery. We identify critical vascular landmarks from perioperative c-arm imaging to augment the stereoscopic view of a da Vinci si robot in addition to incorporating visual feedback from relative tool positions. Experiments resecting base-of-tongue mock tumors were conducted on a series of ex vivo and in vivo animal models comparing the proposed workflow for video augmentation to standard non-augmented practice and alternative, fluoroscopy-based image guidance. Accurate identification of registered augmented critical anatomy during controlled arterial dissection and en bloc mock tumor resection was possible with the augmented reality system. The proposed image-guided robotic system also achieved improved resection ratios of mock tumor margins (1.00) when compared to control scenarios (0.0) and alternative methods of image guidance (0.58). The experimental results show the feasibility of the proposed workflow and advantages of cone beam computed tomography image guidance through video augmentation of the primary stereo endoscopy as compared to control and alternative navigation methods. PMID:26531203

  5. An analytical geometric calibration method for circular cone-beam geometry.

    PubMed

    Xu, Jingyan; Tsui, Benjamin M W

    2013-09-01

    This work is a continuation of our previous work on geometric calibration in the circular cone-beam geometry. It is well known that seven parameters completely describe such a geometry in either flat-panel X-ray computed tomography or single pinhole SPECT imaging. Previously we developed a graphical procedure to determine the detector in-plane rotation angle independently of the other six parameters. Using the discovered geometrical relationships, in this paper we determine the remaining six parameters using the cone-beam projections of a minimum of three point objects. Our method is analytical. It makes use of the parameters of the fitted ellipse from the calibration data. The parameter estimation is accurate in the noise-free case or when there is moderate projection data truncation or shorter calibration scan range ( ≤ 360°). We perform numerical evaluations to study the robustness of the proposed method under different projection noise levels and using different data acquisition ranges. Using a full 360° scan range, the estimation accuracy and precision of our method are comparable or superior to previous methods. Using a shorter acquisition range, there may be bias in the ellipse parameters obtained by simple algebraic fitting methods. This bias will propagate to the estimated geometric parameters. Such bias can be mostly eliminated by using a more sophisticated fitting algorithm. At the same noise level, the geometric parameter estimation accuracies are comparable, but the estimation precision degrades, as the acquisition range becomes shorter.

  6. Initial Experience with a Cone-beam Breast Computed Tomography-guided Biopsy System

    PubMed Central

    Seifert, Posy J; Morgan, Renee C; Conover, David L; Arieno, Andrea L

    2017-01-01

    Objective: To evaluate our initial experience with a cone-beam breast computed tomography (BCT)-guided breast biopsy system for lesion retrieval in phantom studies for use with a cone-beam BCT imaging system. Materials and Methods: Under the Institutional Review Board approval, a phantom biopsy study was performed using a dedicated BCT-guided biopsy system. Fifteen biopsies were performed on each of the small, medium, and large anthropomorphic breast phantoms with both BCT and stereotactic guidance for comparison. Each set of the 45 phantoms contained masses and calcification clusters of varying sizes. Data included mass/calcium retrieval rate and dose and length of procedure time for phantom studies. Results: Phantom mass and calcium retrieval rate were 100% for BCT and stereotactic biopsy. BCT dose for small and medium breast phantoms was found to be equivalent to or less than the corresponding stereotactic approach. Stereotactic-guided biopsy dose was 34.2 and 62.5 mGy for small and medium breast phantoms, respectively. BCT-guided biopsy dose was 15.4 and 30.0 mGy for small and medium breast phantoms, respectively. Both computed tomography biopsy and stereotactic biopsy study time ranged from 10 to 20 min. Conclusion: Initial experience with a BCT-guided biopsy system has shown to be comparable to stereotactic biopsy in phantom studies with equivalent or decreased dose. PMID:28217404

  7. Planar cone-beam computed tomography with a flat-panel detector

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Kim, D. W.; Youn, H.; Kim, D.; Kam, S.; Jeon, H.; Kim, H. K.

    2015-12-01

    For a dedicated x-ray inspection of printed-circuit boards (PCBs), a bench-top planar cone-beam computed tomography (pCT) system with a flat-panel detector has been built in the laboratory. The system adopts the tomosynthesis technique that can produce cross-sectional images parallel to the axis of rotation for a limited angular range. For the optimal operation of the system and further improvement in the next design, we have evaluated imaging performances, such as modulation-transfer function, noise-power spectrum, and noise-equivalent number of quanta. The performances are comparatively evaluated with the coventional cone-beam CT (CBCT) acquisition for various scanning angular ranges, applied tube voltages, and geometrical magnification factors. The pCT scan shows a poorer noise performance than the conventional CBCT scan because of less number of projection views used for reconstruction. However, the pCT shows a better spatial-resolution performance than the CBCT. Because the image noise can be compensated by an elevated exposure level during scanning, the pCT can be a useful modality for the PCB inspection that requires higher spatial-resolution performance.

  8. Influence of enhancement filters in apical bone loss measurement: A cone-beam computed tomography study.

    PubMed

    de Sousa, Emerson-Tavares; Pinheiro, Mayara-Abreu; Maciel, Patrícia-Pereira; Sales, Marcelo-Augusto-Oliveira

    2017-04-01

    The use of cone-beam computed tomography images (CBCT) providing a better assessment of bone injuries, although the sensibility of lesions measurement might be improved by the use of enhancement filters. Objective: This study aimed to analyze the influence of enhancement filters in apical bone loss measurement. Eighteen CBCT cases randomly selected of apical bone loss were evaluated. The analyses were carried out following the evaluation in axial, coronal and sagittal protocols, using enhancement filters as Hard, Normal, and Very Sharp. The variables were statistically analyzed by Friedman and Wilcoxon test, Spearman's rho, and intraclass correlation coefficient. The differences between filters in axial and sagittal protocols were significant (p<0.05); however, this was not observed in the coronal slice. The use of Hard filter demonstrates better results than Very Sharp and Normal filter, improving significantly the bone loss measurement. A strong, significant and positive correlation was noted for all filters (with p< 0.001), such as a strong agreement between the variables, when the Normal filter was used as a reference. The use of enhancement filters increases the sensitivity of alveolar bone loss measurement, with relative advantage for Hard filter. Key words:Cone-Beam computed tomography. endodontics. periapical periodontitis. image enhancement. alveolar bone loss.

  9. Supergridded cone-beam reconstruction and its application to point-spread function calculation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Ning, Ruola

    2005-08-01

    In cone-beam computed tomography (CBCT), the volumetric reconstruction may in principle assume an arbitrarily fine grid. The supergridded cone-beam reconstruction refers to reconstructing the object domain or a subvolume thereof with a grid that is finer than the proper computed tomography sampling grid (as determined by gantry geometry and detector discreteness). This technique can naturally reduce the voxelization effect, thereby retaining more details for object reproduction. The grid refinement is usually limited to two or three refinement levels because the detail pursuit is eventually limited by the detector discreteness. The volume reconstruction is usually targeted to a local volume of interest due to the cubic growth in a three-dimensional (3D) array size. As an application, we used this technique for 3D point-spread function (PSF) measurement of a CBCT system by reconstructing edge spread profiles in a refined grid. Through an experiment with a Teflon ball on a CBCT system, we demonstrated the supergridded volume reconstruction (based on a Feldcamp algorithm) and the CBCT PSF measurement (based on an edge-blurring technique). In comparison with a postreconstruction image refinement technique (upsampling and interpolation), the supergridded reconstruction could produce better PSFs (in terms of a smaller FWHM and PSF fitting error).

  10. Electron beams and loss cones in the auroral regions of Jupiter

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Bagenal, F.; Bolton, S.; Connerney, J.; Clark, G.; Ebert, R. W.; Kim, T. K.; Kurth, W. S.; Levin, S.; Louarn, P.; Mauk, B.; McComas, D. J.; Pollock, C.; Ranquist, D.; Reno, M.; Szalay, J. R.; Thomsen, M. F.; Valek, P.; Weidner, S.; Wilson, R. J.; Zink, J. L.

    2017-07-01

    We report on the first observations of 100 eV to 100 keV electrons over the auroral regions of Jupiter by the Jovian Auroral Distributions Experiment (JADE) on board the Juno mission. The focus is on the regions that were magnetically connected to the main auroral oval. Amongst the most remarkable features, JADE observed electron beams, mostly upward going but also some downward going in the south, at latitudes from 69° to 72° and -66° to -70° corresponding to M shells ("M" for magnetic) from 18 to 54 and 28 to 61, respectively. The beams were replaced by upward loss cones at lower latitudes. There was no evidence of strongly accelerated downward electrons analogous to the auroral "inverted Vs" at Earth. Rather, the presence of upward loss cones suggests a diffuse aurora process. The energy spectra resemble tails of distributions or power laws (suggestive of a stochastic acceleration process) but can also have some clear enhancements or even peaks generally between 1 and 10 keV. Electron intensities change on timescales of a second or less at times implying that auroral structures can be of the order of a few tens of kilometers.

  11. Parallel computing methods for x-ray cone beam tomography with large array sizes

    SciTech Connect

    Reimann, D.A. ||; Flynn, M.J.; Sethi, I.K.

    1996-12-31

    Cone beam geometries are increasingly of interest for x-ray CT applications to improve imaging efficiency. In this paper, we describe our practical experience implementing circular orbit cone beam backprojection on workstation clusters. The reconstruction problem is computationally intensive, particularly for arrays of 512 voxels; in each direction. A voxel driven approach is described where the reconstruction volume is partitioned into variable width slabs and each slab given to a workstation. Each projection is filtered by one workstation and then sent to the others for backprojection. While most computation is done in the backprojection step, a significant amount of time must be spent in sending projectional data. A method is detailed to further reduce the communication overhead by restricting the amount of projection sent to only what is required by each backprojecting workstation. Furthermore, if the shape of the backprojection slabs is made as square as possible, the total communication requirement can be minimized. By the reduction of communication requirement, an overall improvement in processor utilization was observed, and the crossover point where communications dominates was improved.

  12. External cervical resorption: an analysis using cone beam and microfocus computed tomography and scanning electron microscopy.

    PubMed

    Gunst, V; Mavridou, A; Huybrechts, B; Van Gorp, G; Bergmans, L; Lambrechts, P

    2013-09-01

    To provide a three-dimensional representation of external cervical resorption (ECR) with microscopy, stereo microscopy, cone beam computed tomography (CT), microfocus CT and scanning electron microscopy (SEM). External cervical resorption is an aggressive form of root resorption, leading to a loss of dental hard tissues. This is due to clastic action, activated by a damage of the covering cementum and stimulated probably by infection. Clinically, it is a challenging situation as it is characterized by a late symptomatology. This is due to the pericanalar protection from a resorption-resistant sheet, composed of pre-dentine and surrounding dentine. The clastic activity is often associated with an attempt to repair, seen by the formation of osteoid tissue. Cone beam CT is extremely useful in the diagnoses and treatment planning of ECR. SEM analyses provide a better insight into the activity of osteoclasts. The root canal is surrounded by a layer of dentine that is resistant to resorption. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  13. Dry skull positioning device for extra-oral radiology and cone-beam CT.

    PubMed

    Beaini, Thiago Leite; Dias, Paulo Eduardo Miamoto; Melani, Rodolfo Francisco Haltenhoff

    2014-01-01

    Extra-oral radiographs of dry skulls on scientific or forensic context have head position as a critical procedure. The aims of this article are to present a multi-purposed head-positioning device, and to describe the new method of image acquirement using the device to adequately keep the head in a correct and safe position during radiological or tomographic exam. The design was created from an average-sized skull and then tested in 20 others with different morphologies, sizes, weights, and structural state of preservation. A series of digital and analog orthopantomographies followed by a cone-beam computer tomography were obtained to assure that the correct positioning standards and anatomical visualization were achievable. The developed device properly kept adult skulls in position for all extra-oral radiographic exams, providing to operators a secure and facilitated way to achieve the proper position standards. The device did not impair the visualization of the anatomical structures neither on radiographs nor in cone-beam computer tomography.

  14. Evaluation of mandibular volume classified by vertical skeletal dimensions with cone-beam computed tomography.

    PubMed

    Nakawaki, Takatoshi; Yamaguchi, Tetsutaro; Tomita, Daisuke; Hikita, Yu; Adel, Mohamed; Katayama, Koshu; Maki, Koutaro

    2016-11-01

     To investigate the relationship between anteroposterior and vertical differences in maxillofacial morphology and mandibular volume.  Subjects comprised 213 Japanese adults (84 males and 129 females) who were divided into three groups based on mandibular basal arch (ANB) and Wits, measured in a cephalometric analysis: Class I (-1° ≤ ANB < 4°,-1 mm ≤ Wits < 0 mm), Class II (ANB ≥ 4°, Wits ≥ 0), and Class III (ANB <-1°, Wits <-1 mm). Subjects were also divided into three groups based on the mandibular plane angle (Mp), as follows: hypodivergent (Mp < 23°), normodivergent (Mp  =  23-30°), and hyperdivergent (Mp > 30°) groups. Mandibular volume was measured from cone-beam computed tomographic images that were analyzed using Analyze™ image processing software and compared among the three groups in each classification.  No significant differences were noted in mandibular volume among Classes I, II, and III. An inverse relationship was found between mandibular volume and Mp, and a significant difference was noted in mandibular volume between the hypodivergent and hyperdivergent groups.  In addition to two-dimensional analysis, such as lateral cephalometry, three-dimensional information such as volume, provided by cone-beam computed tomography, contributes to a more detailed assessment of maxillofacial morphology.

  15. Cone Beam Computed Tomographic Evaluation of Mandibular Asymmetry in Patients With Cleft Lip and Palate.

    PubMed

    Paknahad, Maryam; Shahidi, Shoaleh; Bahrampour, Ehsan; Beladi, Amir Saied; Khojastepour, Leila

    2016-07-21

      The purpose of the present study was to compare mandibular vertical asymmetry in patients with unilateral and bilateral cleft lip and palate and subjects with normal occlusion.   Cone beam computed tomography scans of three groups consisting of 20 patients with unilateral cleft lip and palate, 20 patients affected by bilateral cleft lip and palate, and a control group of 20 subjects with normal occlusion were analyzed for this study. Condylar, ramal, and condylar plus ramal asymmetry indices were measured for all subjects using the method of Habets et al. Kruskal-Wallis and Mann-Whitney tests were used to determine any significant differences between the groups for all indices at the 95% level of confidence.   There were no significant differences regarding sex for all mandibular asymmetry indices in all three groups. All Asymmetry indices (condylar, ramal, and condylar plus ramal asymmetry) were significantly higher in the unilateral cleft group compared with the other two groups.   Cone beam computed tomography images showed that patients with cleft lip and palate suffered from mandibular asymmetry. Subjects with unilateral cleft lip and palate had a more asymmetric mandible compared with the bilateral cleft lip and palate and control groups. Therefore, the mandible appears to be the leading factor in facial asymmetry in subjects with unilateral cleft lip and palate.

  16. Cone beam CT evaluation of the presence of anatomic accessory canals in the jaws

    PubMed Central

    Eshak, M; Brooks, S; Abdel-Wahed, N

    2014-01-01

    Objectives: To assess the prevalence, location and anatomical course of accessory canals of the jaws using cone beam CT. Methods: A retrospective analysis of 4200 successive cone beam CT scans, for patients of both genders and ages ranging from 7 to 88 years, was performed. They were exposed at the School of Dentistry, University of Michigan, Ann Arbor, MI. After applying the exclusion criteria (the presence of severe ridge resorption, pre-existing implants, a previously reported history of craniofacial malformations or syndromes, a previous history of trauma or surgery, inadequate image quality and subsequent scans from the same individuals), 4051 scans were ultimately included in this study. Results: Of the 4051 scans (2306 females and 1745 males) that qualified for inclusion in this study, accessory canals were identified in 1737 cases (42.9%; 1004 females and 733 males). 532 scans were in the maxilla (13.1%; 296 females and 236 males) and 1205 in the mandible (29.8%; 708 females and 497 males). Conclusions: A network of accessory canals bringing into communication the inner and outer cortical plates of the jaws was identified. In light of these findings, clinicians should carefully assess for the presence of accessory canals prior to any surgical intervention to decrease the risk for complications. PMID:24670010

  17. Does cone beam CT actually ameliorate stab wound analysis in bone?

    PubMed

    Gaudio, D; Di Giancamillo, M; Gibelli, D; Galassi, A; Cerutti, E; Cattaneo, C

    2014-01-01

    This study aims at verifying the potential of a recent radiological technology, cone beam CT (CBCT), for the reproduction of digital 3D models which may allow the user to verify the inner morphology of sharp force wounds within the bone tissue. Several sharp force wounds were produced by both single and double cutting edge weapons on cancellous and cortical bone, and then acquired by cone beam CT scan. The lesions were analysed by different software (a DICOM file viewer and reverse engineering software). Results verified the limited performances of such technology for lesions made on cortical bone, whereas on cancellous bone reliable models were obtained, and the precise morphology within the bone tissues was visible. On the basis of such results, a method for differential diagnosis between cutmarks by sharp tools with a single and two cutting edges can be proposed. On the other hand, the metrical computerised analysis of lesions highlights a clear increase of error range for measurements under 3 mm. Metric data taken by different operators shows a strong dispersion (% relative standard deviation). This pilot study shows that the use of CBCT technology can improve the investigation of morphological stab wounds on cancellous bone. Conversely metric analysis of the lesions as well as morphological analysis of wound dimension under 3 mm do not seem to be reliable.

  18. Analysis of Cone-Beam Artifacts in off-Centered Circular CT for Four Reconstruction Methods

    PubMed Central

    Peyrin, F.; Sappey-Marinier, D.

    2006-01-01

    Cone-beam (CB) acquisition is increasingly used for truly three-dimensional X-ray computerized tomography (CT). However, tomographic reconstruction from data collected along a circular trajectory with the popular Feldkamp algorithm is known to produce the so-called CB artifacts. These artifacts result from the incompleteness of the source trajectory and the resulting missing data in the Radon space increasing with the distance to the plane containing the source orbit. In the context of the development of integrated PET/CT microscanners, we introduced a novel off-centered circular CT cone-beam geometry. We proposed a generalized Feldkamp formula (α-FDK) adapted to this geometry, but reconstructions suffer from increased CB artifacts. In this paper, we evaluate and compare four different reconstruction methods for correcting CB artifacts in off-centered geometry. We consider the α-FDK algorithm, the shift-variant FBP method derived from the T-FDK, an FBP method based on the Grangeat formula, and an iterative algebraic method (SART). The results show that the low contrast artifacts can be efficiently corrected by the shift-variant method and the SART method to achieve good quality images at the expense of increased computation time, but the geometrical deformations are still not compensated for by these techniques. PMID:23165048

  19. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  20. Differences between panoramic and Cone Beam-CT in the surgical evaluation of lower third molars

    PubMed Central

    Rodriguez y Baena, Ruggero; Beltrami, Riccardo; Tagliabo, Angelo; Rizzo, Silvana

    2017-01-01

    Background The aim of this study was to evaluate the ability to identify the contiguity between the root of the mandibular third molar and the mandibular canal (MC) in panoramic radiographs compared with Cone Beam-CT. Material and Methods Panoramic radiographs of 326 third molars and CBCT radiographs of 86 cases indicated for surgery and considered at risk were evaluated. The following signs were assessed in panoramic radiographs as risk factors: radiolucent band, loss of MC border, change in MC direction, MC narrowing, root narrowing, root deviation, bifid apex, superimposition, and contact between the root third molar and the MC. Results Radiographic signs associated with absence of MC cortical bone are: radiolucent band, loss of MC border, change in MC direction, and superimposition. The number of risk factors was significantly increased with an increasing depth of inclusion. CBCT revealed a significant association between the absence of MC cortical bone and a lingual or interradicular position of the MC. Conclusions In cases in which panoramic radiographs do not exclude contiguity between the MC and tooth, careful assessment the signs and risks on CBCT radiographs is indicated for proper identification of the relationships between anatomic structures. Key words:Panoramic radiography, Cone-Beam computed tomography, third molar, mandibular nerve. PMID:28210446

  1. A denoising algorithm for projection measurements in cone-beam computed tomography.

    PubMed

    Karimi, Davood; Ward, Rabab

    2016-02-01

    The ability to reduce the radiation dose in computed tomography (CT) is limited by the excessive quantum noise present in the projection measurements. Sinogram denoising is, therefore, an essential step towards reconstructing high-quality images, especially in low-dose CT. Effective denoising requires accurate modeling of the photon statistics and of the prior knowledge about the characteristics of the projection measurements. This paper proposes an algorithm for denoising low-dose sinograms in cone-beam CT. The proposed algorithm is based on minimizing a cost function that includes a measurement consistency term and two regularizations in terms of the gradient and the Hessian of the sinogram. This choice of the regularization is motivated by the nature of CT projections. We use a split Bregman algorithm to minimize the proposed cost function. We apply the algorithm on simulated and real cone-beam projections and compare the results with another algorithm based on bilateral filtering. Our experiments with simulated and real data demonstrate the effectiveness of the proposed algorithm. Denoising of the projections with the proposed algorithm leads to a significant reduction of the noise in the reconstructed images without oversmoothing the edges or introducing artifacts.

  2. Characteristics of anatomical landmarks in the mandibular interforaminal region: A cone-beam computed tomography study

    PubMed Central

    Parnia, Fereidoun; Hafezeqoran, Ali; Mahboub, Farhang; Mojaver-Kahnamoui, Haniye

    2012-01-01

    Objectives: This study was conducted to assess appearance, visibility, location and course of anatomical landmarks in mandibular interforaminal region using cone-beam computed tomography (CBCT). Study design: A total of 96 CBCT examinations was re-evaluated to exploit anatomical landmarks. The examinations used the Promax 3D CBCT unit. A sole examiner carried out all the measurements. Visibilities of the anatomical landmarks were scored using a four-point rating scale. Results: The mandibular foramen, anterior loop, incisive canal and lingual foramen were observed in 100,84,83,49 % of the images, respectively. The mean size, diameter and width of anterior loop, incisive canal and lingual foramen were obtained 3.54± 1.41, 1.47±0.50 and 0.8 ± 0.09mm, respectively. Conclusion: It is not safe to recommend any definite distance mesially from the mental foramen. The diameter of the canals and foramens should be determined on a case-by-case basis to exploit the appropriate location for each individual. Key words:Anatomical landmarks, cone-beam computed tomography, implant surgery, radiographic evaluation, surgical complications. PMID:22143718

  3. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Li, Tianfang; Yang, Yong; Heron, Dwight E.; Saiful Huq, M.

    2011-05-01

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  4. Frequency of Root Canal Isthmi in Human Permanent Teeth Determined by Cone-beam Computed Tomography.

    PubMed

    Estrela, Carlos; Rabelo, Luiz Eduardo G; de Souza, João Batista; Alencar, Ana Helena G; Estrela, Cyntia R A; Sousa Neto, Manoel Damião; Pécora, Jesus Djalma

    2015-09-01

    This study evaluated the frequency of root canal isthmi (RCIs) in human permanent teeth by using cone-beam computed tomography. A sample of 1400 teeth of 618 patients (394 women; mean age, 43.4 years) was selected. RCIs were detected longitudinally on 0.1-mm/0.1-mm axial slices of cone-beam computed tomography images of roots scanned from the pulp orifice to the apex, and findings were classified into 7 categories according to RCIs beginning and end: (1) both in the cervical third, (2) begin in the cervical third and end in the middle third, (3) begin in the cervical third and end in the apical third, (4) both in the middle third, (5) begin in the middle third and end in the apical third, (6) both in the apical third, or (7) no isthmus. A χ(2) test with Yates correction or the Fisher exact test was used to analyze categorical variables, described as frequencies (%). The Student t test was used to compare quantitative variables. RCI is a common anatomic structure in human permanent teeth, except in maxillary anterior teeth. The higher frequencies of RCIs (87.9%) were found in mandibular first molars. The frequencies of RCIs according to mean age and tooth group were not significantly different (P > .05), except in mandibular central incisors. RCIs were less frequent among older patients. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target.

    PubMed

    Faddegon, Bruce A; Wu, Vincent; Pouliot, Jean; Gangadharan, Bijumon; Bani-Hashemi, Ali

    2008-12-01

    Megavoltage cone beam computed tomography (MVCBCT) is routinely used for visualizing anatomical structures and implanted fiducials for patient positioning in radiotherapy. MVCBCT using a 6 MV treatment beam with high atomic number (Z) target and flattening filter in the beamline, as done conventionally, has lower image quality than can be achieved with a MV beam due to heavy filtration of the low-energy bremsstrahlung. The unflattened beam of a low Z target has an abundance of diagnostic energy photons, detected with modern flat panel detectors with much higher efficiency given the same dose to the patient. This principle guided the development of a new megavoltage imaging beamline (IBL) for a commercial radiotherapy linear accelerator. A carbon target was placed in one of the electron primary scattering foil slots on the target-foil slide. A PROM on a function controller board was programed to put the carbon target in place for MVCBCT. A low accelerating potential of 4.2 MV was used for the IBL to restrict leakage of primary electrons through the target such that dose from x rays dominated the signal in the monitor chamber and the patient surface dose. Results from phantom and cadaver images demonstrated that the IBL had much improved image quality over the treatment beam. For similar imaging dose, the IBL improved the contrast-to-noise ratio by as much as a factor of 3 in soft tissue over that of the treatment beam. The IBL increased the spatial resolution by about a factor of 2, allowing the visualization of finer anatomical details. Images of the cadaver contained useful information with doses as low as 1 cGy. The IBL may be installed on certain models of linear accelerators without mechanical modification and results in significant improvement in the image quality with the same dose, or images of the same quality with less than one-third of the dose.

  6. Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target

    SciTech Connect

    Faddegon, Bruce A.; Wu, Vincent; Pouliot, Jean; Gangadharan, Bijumon; Bani-Hashemi, Ali

    2008-12-15

    Megavoltage cone beam computed tomography (MVCBCT) is routinely used for visualizing anatomical structures and implanted fiducials for patient positioning in radiotherapy. MVCBCT using a 6 MV treatment beam with high atomic number (Z) target and flattening filter in the beamline, as done conventionally, has lower image quality than can be achieved with a MV beam due to heavy filtration of the low-energy bremsstrahlung. The unflattened beam of a low Z target has an abundance of diagnostic energy photons, detected with modern flat panel detectors with much higher efficiency given the same dose to the patient. This principle guided the development of a new megavoltage imaging beamline (IBL) for a commercial radiotherapy linear accelerator. A carbon target was placed in one of the electron primary scattering foil slots on the target-foil slide. A PROM on a function controller board was programed to put the carbon target in place for MVCBCT. A low accelerating potential of 4.2 MV was used for the IBL to restrict leakage of primary electrons through the target such that dose from x rays dominated the signal in the monitor chamber and the patient surface dose. Results from phantom and cadaver images demonstrated that the IBL had much improved image quality over the treatment beam. For similar imaging dose, the IBL improved the contrast-to-noise ratio by as much as a factor of 3 in soft tissue over that of the treatment beam. The IBL increased the spatial resolution by about a factor of 2, allowing the visualization of finer anatomical details. Images of the cadaver contained useful information with doses as low as 1 cGy. The IBL may be installed on certain models of linear accelerators without mechanical modification and results in significant improvement in the image quality with the same dose, or images of the same quality with less than one-third of the dose.

  7. Algorithm for x-ray beam hardening and scatter correction in low-dose cone-beam CT: phantom studies

    NASA Astrophysics Data System (ADS)

    Liu, Wenlei; Rong, Junyan; Gao, Peng; Liao, Qimei; Lu, HongBing

    2016-03-01

    X-ray scatter poses a significant limitation to image quality in cone-beam CT (CBCT), as well as beam hardening, resulting in image artifacts, contrast reduction, and lack of CT number accuracy. Meanwhile the x-ray radiation dose is also non-ignorable. Considerable scatter or beam hardening correction methods have been developed, independently, and rarely combined with low-dose CT reconstruction. In this paper, we combine scatter suppression with beam hardening correction for sparse-view CT reconstruction to improve CT image quality and reduce CT radiation. Firstly, scatter was measured, estimated, and removed using measurement-based methods, assuming that signal in the lead blocker shadow is only attributable to x-ray scatter. Secondly, beam hardening was modeled by estimating an equivalent attenuation coefficient at the effective energy, which was integrated into the forward projector of the algebraic reconstruction technique (ART). Finally, the compressed sensing (CS) iterative reconstruction is carried out for sparse-view CT reconstruction to reduce the CT radiation. Preliminary Monte Carlo simulated experiments indicate that with only about 25% of conventional dose, our method reduces the magnitude of cupping artifact by a factor of 6.1, increases the contrast by a factor of 1.4 and the CNR by a factor of 15. The proposed method could provide good reconstructed image from a few view projections, with effective suppression of artifacts caused by scatter and beam hardening, as well as reducing the radiation dose. With this proposed framework and modeling, it may provide a new way for low-dose CT imaging.

  8. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    SciTech Connect

    Zhang, Wen-shuai; Cai, Hong-bo; Zhu, Shao-ping

    2015-10-15

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition. Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.

  9. [The potential of cone beam computed tomography of the temporal bones in the patients presenting with otosclerosis].

    PubMed

    Karpishchenko, S A; Zubareva, A A; Filimonov, V N; Shavgulidze, M A; Azovtseva, E A

    The objective of the present study was to analyze the potential of cone beam computed tomography of the temporal bones in the patients presenting with otosclerosis for the detection of surgically significant specific structural features of the labyrinth wall of the tympanic cavity. More than 400 tomograms of the temporal bones were obtained with the use of a cone beam tomographwere available for the investigation during the period from 2012 till 2016. The study was carried out in several steps, viz. the search for the optimal (for the given instrument) position of the patient, the experimental stage, the retrospective analysis of the tomograms and the comparison of the temporal bones of different types (pneumatic, mixed, and sclerotic) in individual patients, the comparison of the results of cone beam computed tomography (CBCT) with the intraoperative observations, and the modification of the algorithm for the analysis of temporal bone cone beam tomograms. The study included a total of 16 patients (15 women at the age from 32 to 56 years and one managed 58 years) presenting with the clinical diagnosis of otosclerosis. The results of the study were used to elaborate the algorithm for the analysis of cone beam tomograms of the temporal bones to be performed inthe stage by stage manner including the qualitative analysis of tomograms, evaluation of their quantitative parameters and additional characteristics to be taken into consideration when planning the surgical interventions on the labyrinth wall and the tympanic cavity as a preparation for the stapedoplastic treatment. The results of CBCT obtained in the present study were compared with the surgical observations. The diagnostic sensitivity and specificity of the method were estimated to be 100% and 83% respectively. It is concluded that cone beam computed tomography can be employed as a component of the diagnostic algorithm prior to the planning of surgical interventions onthe medial wall of the tympanic cavity

  10. The value of cone beam CT in assessing and managing a dilated odontome of a maxillary canine.

    PubMed

    Wall, Aoibheann; Ng, Suk; Djemal, Serpil

    2015-03-01

    A case of an unusual anomaly in a maxillary canine is described. A deep enamel invagination resulted in pulpal necrosis, longstanding infection and development of an associated radicular cyst. Diagnostic X-ray imaging was invaluable in demonstrating the complex root anatomy of the dilated odontome. In particular, a cone beam CT scan helped in the formulation of an appropriate treatment plan. Clinical Relevance: Three-dimensional imaging using cone beam CT was valuable in this case to demonstrate the complicated anatomy of a rare dental anomaly, and to help plan treatment.

  11. Does cone-beam CT alter treatment plans? Comparison of preoperative implant planning using panoramic versus cone-beam CT images

    PubMed Central

    Guerrero, Maria Eugenia; Noriega, Jorge; Castro, Carmen

    2014-01-01

    Purpose The present study was performed to compare the planning of implant placement based on panoramic radiography (PAN) and cone-beam computed tomography (CBCT) images, and to study the impact of the image dataset on the treatment planning. Materials and Methods One hundred five partially edentulous patients (77 males, 28 females, mean age: 46 years, range: 26-67 years) seeking oral implant rehabilitation were referred for presurgical imaging. Imaging consisted of PAN and CBCT imaging. Four observers planned implant treatment based on the two-dimensional (2D) image datasets and at least one month later on the three-dimensional (3D) image dataset. Apart from presurgical diagnostic and dimensional measurement tasks, the observers needed to indicate the surgical confidence levels and assess the image quality in relation to the presurgical needs. Results All observers confirmed that both imaging modalities (PAN and CBCT) gave similar values when planning implant diameter. Also, the results showed no differences between both imaging modalities for the length of implants with an anterior location. However, significant differences were found in the length of implants with a posterior location. For implant dimensions, longer lengths of the implants were planned with PAN, as confirmed by two observers. CBCT provided images with improved scores for subjective image quality and surgical confidence levels. Conclusion Within the limitations of this study, there was a trend toward PAN-based preoperative planning of implant placement leading towards the use of longer implants within the posterior jaw bone. PMID:24944961

  12. Motion compensation for cone-beam CT using Fourier consistency conditions

    NASA Astrophysics Data System (ADS)

    Berger, M.; Xia, Y.; Aichinger, W.; Mentl, K.; Unberath, M.; Aichert, A.; Riess, C.; Hornegger, J.; Fahrig, R.; Maier, A.

    2017-09-01

    In cone-beam CT, involuntary patient motion and inaccurate or irreproducible scanner motion substantially degrades image quality. To avoid artifacts this motion needs to be estimated and compensated during image reconstruction. In previous work we showed that Fourier consistency conditions (FCC) can be used in fan-beam CT to estimate motion in the sinogram domain. This work extends the FCC to 3\\text{D} cone-beam CT. We derive an efficient cost function to compensate for 3\\text{D} motion using 2\\text{D} detector translations. The extended FCC method have been tested with five translational motion patterns, using a challenging numerical phantom. We evaluated the root-mean-square-error and the structural-similarity-index between motion corrected and motion-free reconstructions. Additionally, we computed the mean-absolute-difference (MAD) between the estimated and the ground-truth motion. The practical applicability of the method is demonstrated by application to respiratory motion estimation in rotational angiography, but also to motion correction for weight-bearing imaging of knees. Where the latter makes use of a specifically modified FCC version which is robust to axial truncation. The results show a great reduction of motion artifacts. Accurate estimation results were achieved with a maximum MAD value of 708 μm and 1184 μm for motion along the vertical and horizontal detector direction, respectively. The image quality of reconstructions obtained with the proposed method is close to that of motion corrected reconstructions based on the ground-truth motion. Simulations using noise-free and noisy data demonstrate that FCC are robust to noise. Even high-frequency motion was accurately estimated leading to a considerable reduction of streaking artifacts. The method is purely image-based and therefore independent of any auxiliary data.

  13. Absorbed and effective doses from cone beam volumetric imaging for implant planning.

    PubMed

    Okano, T; Harata, Y; Sugihara, Y; Sakaino, R; Tsuchida, R; Iwai, K; Seki, K; Araki, K

    2009-02-01

    Volumetric CT using a cone beam has been developed by several manufacturers for dentomaxillofacial imaging. The purpose of this study was to measure doses for implant planning with cone beam volumetric imaging (CBVI) in comparison with conventional multidetector CT (MDCT). The two CBVI systems used were a 3D Accuitomo (J. Morita), including an image-intensifier type (II) and a flat-panel type (FPD), and a CB MercuRay (Hitachi). The 3D Accuitomo operated at 80 kV, 5 mA and 18 s. The CB MercuRay operated at 120 kV, 15 mA, 9.8 s. The MDCT used was a HiSpeed QX/i (GE), operated at 120 kV, 100 mA and 0.7 s, and its scan length was 77 mm for both jaws. Measurement of the absorbed tissue and organ doses was performed with an Alderson phantom, embedding the radiophotoluminescence glass dosemeter into the organs/tissues. The values obtained were converted into the absorbed dose. The effective dose as defined by the International Commission on Radiological Protection was then calculated. The absorbed doses of the 3D Accuitomo of the organs in the primary beam ranged from 1-5 mGy, and were several to ten times lower than other doses. The effective dose of the 3D Accuitomo ranged from 18 muSv to 66 muSv, and was an order of magnitude smaller than the others. In conclusion, these results show that the dose in the 3D Accuitomo is lower than the CB MercuRay and much less than MDCT.

  14. Data consistency-driven scatter kernel optimization for x-ray cone-beam CT

    NASA Astrophysics Data System (ADS)

    Kim, Changhwan; Park, Miran; Sung, Younghun; Lee, Jaehak; Choi, Jiyoung; Cho, Seungryong

    2015-08-01

    Accurate and efficient scatter correction is essential for acquisition of high-quality x-ray cone-beam CT (CBCT) images for various applications. This study was conducted to demonstrate the feasibility of using the data consistency condition (DCC) as a criterion for scatter kernel optimization in scatter deconvolution methods in CBCT. As in CBCT, data consistency in the mid-plane is primarily challenged by scatter, we utilized data consistency to confirm the degree of scatter correction and to steer the update in iterative kernel optimization. By means of the parallel-beam DCC via fan-parallel rebinning, we iteratively optimized the scatter kernel parameters, using a particle swarm optimization algorithm for its computational efficiency and excellent convergence. The proposed method was validated by a simulation study using the XCAT numerical phantom and also by experimental studies using the ACS head phantom and the pelvic part of the Rando phantom. The results showed that the proposed method can effectively improve the accuracy of deconvolution-based scatter correction. Quantitative assessments of image quality parameters such as contrast and structure similarity (SSIM) revealed that the optimally selected scatter kernel improves the contrast of scatter-free images by up to 99.5%, 94.4%, and 84.4%, and of the SSIM in an XCAT study, an ACS head phantom study, and a pelvis phantom study by up to 96.7%, 90.5%, and 87.8%, respectively. The proposed method can achieve accurate and efficient scatter correction from a single cone-beam scan without need of any auxiliary hardware or additional experimentation.

  15. Translational and rotational localization errors in cone-beam CT based image-guided lung stereotactic radiotherapy.

    PubMed

    Garibaldi, Cristina; Piperno, Gaia; Ferrari, Annamaria; Surgo, Alessia; Muto, Matteo; Ronchi, Sara; Bazani, Alessia; Pansini, Floriana; Cremonesi, Marta; Jereczek-Fossa, Barbara Alicja; Orecchia, Roberto

    2016-07-01

    Accurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins. The internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors. The mean 3D vector at initial set-up was 6.6±2.3mm, which was significantly reduced to 1.6±0.8mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3mm in the LR, SI and AP directions, respectively. On-line image guidance with the ITV-CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Accurate patient dosimetry of kilovoltage cone-beam CT in radiation therapy

    SciTech Connect

    Ding, George X.; Duggan, Dennis M.; Coffey, Charles W.

    2008-03-15

    The increased utilization of x-ray imaging in image-guided radiotherapy has dramatically improved the radiation treatment and the lives of cancer patients. Daily imaging procedures, such as cone-beam computed tomography (CBCT), for patient setup may significantly increase the dose to the patient's normal tissues. This study investigates the dosimetry from a kilovoltage (kV) CBCT for real patient geometries. Monte Carlo simulations were used to study the kV beams from a Varian on-board imager integrated into the Trilogy accelerator. The Monte Carlo calculated results were benchmarked against measurements and good agreement was obtained. The authors developed a novel method to calibrate Monte Carlo simulated beams with measurements using an ionization chamber in which the air-kerma calibration factors are obtained from an Accredited Dosimetry Calibration Laboratory. The authors have introduced a new Monte Carlo calibration factor, f{sub MCcal}, which is determined from the calibration procedure. The accuracy of the new method was validated by experiment. When a Monte Carlo simulated beam has been calibrated, the simulated beam can be used to accurately predict absolute dose distributions in the irradiated media. Using this method the authors calculated dose distributions to patient anatomies from a typical CBCT acquisition for different treatment sites, such as head and neck, lung, and pelvis. Their results have shown that, from a typical head and neck CBCT, doses to soft tissues, such as eye, spinal cord, and brain can be up to 8, 6, and 5 cGy, respectively. The dose to the bone, due to the photoelectric effect, can be as much as 25 cGy, about three times the dose to the soft tissue. The study provides detailed information on the additional doses to the normal tissues of a patient from a typical kV CBCT acquisition. The methodology of the Monte Carlo beam calibration developed and introduced in this study allows the user to calculate both relative and absolute

  17. Anti-aliased three-dimensional cone-beam reconstruction of low-contrast objects with algebraic methods.

    PubMed

    Mueller, K; Yagel, R; Wheller, J J

    1999-06-01

    This paper examines the use of the algebraic reconstruction technique (ART) and related techniques to reconstruct 3-D objects from a relatively sparse set of cone-beam projections. Although ART has been widely used for cone-beam reconstruction of high-contrast objects, e.g., in computed angiography, the work presented here explores the more challenging low-contrast case which represents a little-investigated scenario for ART. Preliminary experiments indicate that for cone angles greater than 20 degrees, traditional ART produces reconstructions with strong aliasing artifacts. These artifacts are in addition to the usual off-midplane inaccuracies of cone-beam tomography with planar orbits. We find that the source of these artifacts is the nonuniform reconstruction grid sampling and correction by the cone-beam rays during the ART projection-backprojection procedure. A new method to compute the weights of the reconstruction matrix is devised, which replaces the usual constant-size interpolation filter by one whose size and amplitude is dependent on the source-voxel distance. This enables the generation of reconstructions free of cone-beam aliasing artifacts, at only little extra cost. An alternative analysis reveals that simultaneous ART (SART) also produces reconstructions without aliasing artifacts, however, at greater computational cost. Finally, we thoroughly investigate the influence of various ART parameters, such as volume initialization, relaxation coefficient lambda, correction scheme, number of iterations, and noise in the projection data on reconstruction quality. We find that ART typically requires only three iterations to render satisfactory reconstruction results.

  18. TREK: an integrated system architecture for intraoperative cone-beam CT-guided surgery.

    PubMed

    Uneri, A; Schafer, S; Mirota, D J; Nithiananthan, S; Otake, Y; Taylor, R H; Gallia, G L; Khanna, A J; Lee, S; Reh, D D; Siewerdsen, J H

    2012-01-01

    A system architecture has been developed for integration of intraoperative 3D imaging [viz., mobile C-arm cone-beam CT (CBCT)] with surgical navigation (e.g., trackers, endoscopy, and preoperative image and planning data). The goal of this paper is to describe the architecture and its handling of a broad variety of data sources in modular tool development for streamlined use of CBCT guidance in application-specific surgical scenarios. The architecture builds on two proven open-source software packages, namely the cisst package (Johns Hopkins University, Baltimore, MD) and 3D Slicer (Brigham and Women's Hospital, Boston, MA), and combines data sources common to image-guided procedures with intraoperative 3D imaging. Integration at the software component level is achieved through language bindings to a scripting language (Python) and an object-oriented approach to abstract and simplify the use of devices with varying characteristics. The platform aims to minimize offline data processing and to expose quantitative tools that analyze and communicate factors of geometric precision online. Modular tools are defined to accomplish specific surgical tasks, demonstrated in three clinical scenarios (temporal bone, skull base, and spine surgery) that involve a progressively increased level of complexity in toolset requirements. The resulting architecture (referred to as "TREK") hosts a collection of modules developed according to application-specific surgical tasks, emphasizing streamlined integration with intraoperative CBCT. These include multi-modality image display; 3D-3D rigid and deformable registration to bring preoperative image and planning data to the most up-to-date CBCT; 3D-2D registration of planning and image data to real-time fluoroscopy; infrared, electromagnetic, and video-based trackers used individually or in hybrid arrangements; augmented overlay of image and planning data in endoscopic or in-room video; and real-time "virtual fluoroscopy" computed from GPU

  19. Cone beam CT--anatomic assessment and legal issues: the new standards of care.

    PubMed

    Curley, Arthur; Hatcher, David C

    2010-01-01

    Until the recent introduction of cone beam computed tomography scanners, standard 2-D imaging provided a moderate contribution to overall treatment planning when considering the diagnostic potential, costs of study and risks to the patient. Cone beam computed tomography-dedicated maxillofacial imaging scanners provide broader imaging tools for anatomic assessment and have become widely available. This article discusses the uses and benefits of 3-D imaging, as well as the impact on the standard of care. Many phases of patient care involve imaging to assist with diagnosis, treatment planning, risk assessment and treatment. Techniques employing X-rays, visible light, ultrasound, lasers and magnetic fields have been used in medicine and dentistry to create images. All forms of imaging require a coupled system of emitters and sensors. For example, a cephalometric image is produced using an X-ray emitter and film sensor. Imaging systems can be categorized in many different ways based upon emitter or output type (examples; film-based, digital, 2-D and 3-D images). The resultant images can be used to evaluate the anatomy of interest, including surface and subsurface. The ultimate quest of all forms of imaging is to reveal the anatomic truth; that is, to portray the anatomy as it exists in nature. Thoughtful clinical application of image acquisition requires matching the uses and limitations of the available imaging choices to achieve the desired diagnostic information (imaging goal) while keeping the risks and costs to the patient as low as possible. Imaging data must provide a benefit at an acceptable cost and risk. Two-dimensional representation of 3-D anatomies creates images that have poor spatial accuracy, are static in space and time, and contain information voids. These 2-D measurements have propagated legacy databases of inaccurate morphometric measurements. Current development in imaging technology for dentistry includes digital imaging and improved sensor

  20. Development of Kilovoltage X-ray Dosimetry Methods and Their Application to Cone Beam Computed Tomography

    NASA Astrophysics Data System (ADS)

    Lawless, Michael J.

    The increase in popularity of pre-treatment imaging procedures in radiation therapy, such as kilovoltage cone beam computed tomography (CBCT), has been accompanied by an increase in the dose delivered to the patient from these imaging procedures. The measurement of dose from CBCT scans is complicated, as currently available kilovoltage dosimetry protocols are based on air-kerma standards and radiation detectors exhibit large energy responses at the low photon energies used in the imaging procedures. This work aims to provide the tools and methodology needed to measure the dose from these scans more accurately and precisely. Through the use of a validated Monte Carlo (MC) model of the moderately filtered (M-series) x-ray beams at the University of Wisconsin Accredited Dosimetry Calibration Laboratory, dose-to-water rates were obtained in a water phantom for the M-series x-ray beams with tube potentials from 40-250 kVp. The resulting dose-to-water rates were consistent with previously established methods, but had significantly reduced uncertainties. While detectors are commonly used to measure dose in phantom, previous investigations of the energy response of common detectors in the kilovoltage energy range have been limited to in-air geometries. The newly determined dose-to-water rates were used to characterize the in-phantom energy and depth response of thermoluminescent dosimeters and ionization chambers. When compared to previous investigations of the in-air detector response, the impact of scatter and absorption of the photon beam by the water medium was found to have a significant impact on the response of certain detectors. The dose to water in the NIST-traceable M-series x-ray beams was transferred to clinical CBCT beams and the resulting doses agreed with other dose-to-water measurement techniques. The dose to water in the CBCT beams was used to characterize the energy and depth responses of a number of detectors. The energy response in the CBCT beams agreed

  1. Cone Beam CT Image Guidance for Intracranial Stereotactic Treatments: Comparison With a Frame Guided Set-Up

    SciTech Connect

    Masi, Laura Casamassima, Franco; Polli, Caterina; Menichelli, Claudia; Bonucci, Ivano; Cavedon, Carlo

    2008-07-01

    Purpose: An analysis is performed of the setup errors measured by a kV cone beam computed tomography (CBCT) for intracranial stereotactic radiotherapy (SRT) patients immobilized by a thermoplastic mask and a bite-block and positioned using stereotactic coordinates. We evaluated the overall positioning precision and accuracy of the immobilizing and localizing systems. The potential of image-guided radiotherapy to replace stereotactic methods is discussed. Methods and Materials: Fifty-seven patients received brain SRT. After a frame-guided setup, before each fraction (131 fractions), a CBCT was acquired and the detected displacements corrected online. Translational and rotational errors were analyzed calculating overall mean and standard deviation. A separate analysis was performed for bite-block (in conjunction with mask) and for simple thermoplastic mask. Interobserver variability for CBCT three-dimensional registration was assessed. The residual error after correction and intrafractional motion were calculated. Results: The mean module of the three-dimensional displacement vector was 3.0 {+-} 1.4 mm. Setup errors for bite block and mask were smaller (2.9 {+-} 1.3 mm) than those for thermoplastic mask alone (3.2 {+-} 1.5 mm), but statistical significance was not reached (p = 0.15). Interobserver variability was negligible. The maximum margin calculated for residual errors and intra fraction motion was small but not negligible (1.57 mm). Conclusions: Considering the detected setup errors, daily image guidance is essential for the efficacy of SRT treatments when mask immobilization is used, and even when a bite-block is used in conjunction. The frame setup is still used as a starting point for the opportunity of rotational corrections. Residual margins after on-line corrections must be evaluated.

  2. Cone beam CT image guidance for intracranial stereotactic treatments: comparison with a frame guided set-up.

    PubMed

    Masi, Laura; Casamassima, Franco; Polli, Caterina; Menichelli, Claudia; Bonucci, Ivano; Cavedon, Carlo

    2008-07-01

    An analysis is performed of the setup errors measured by a kV cone beam computed tomography (CBCT) for intracranial stereotactic radiotherapy (SRT) patients immobilized by a thermoplastic mask and a bite-block and positioned using stereotactic coordinates. We evaluated the overall positioning precision and accuracy of the immobilizing and localizing systems. The potential of image-guided radiotherapy to replace stereotactic methods is discussed. Fifty-seven patients received brain SRT. After a frame-guided setup, before each fraction (131 fractions), a CBCT was acquired and the detected displacements corrected online. Translational and rotational errors were analyzed calculating overall mean and standard deviation. A separate analysis was performed for bite-block (in conjunction with mask) and for simple thermoplastic mask. Interobserver variability for CBCT three-dimensional registration was assessed. The residual error after correction and intrafractional motion were calculated. The mean module of the three-dimensional displacement vector was 3.0 +/- 1.4 mm. Setup errors for bite block and mask were smaller (2.9 +/- 1.3 mm) than those for thermoplastic mask alone (3.2 +/- 1.5 mm), but statistical significance was not reached (p = 0.15). Interobserver variability was negligible. The maximum margin calculated for residual errors and intra fraction motion was small but not negligible (1.57 mm). Considering the detected setup errors, daily image guidance is essential for the efficacy of SRT treatments when mask immobilization is used, and even when a bite-block is used in conjunction. The frame setup is still used as a starting point for the opportunity of rotational corrections. Residual margins after on-line corrections must be evaluated.

  3. Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers.

    PubMed

    Qiao, B; Foord, M E; Wei, M S; Stephens, R B; Key, M H; McLean, H; Patel, P K; Beg, F N

    2013-01-01

    Acceleration and focusing of high-energy proton beams from fast-ignition (FI) -related hemisphere-cone assembled targets have been numerically studied by hybrid particle-in-cell simulations and compared with those from planar-foil and open-hemisphere targets. The whole physical process including the laser-plasma interaction has been self-consistently modeled for 15 ps, at which time the protons reach asymptotic motion. It is found that the achievable focus of proton beams is limited by the thermal pressure gradients in the co-moving hot electrons, which induce a transverse defocusing electric field that bends proton trajectories near the axis. For the advanced hemisphere-cone target, the flow of hot electrons along the cone wall induces a local transverse focusing sheath field, resulting in a clear enhancement in proton focusing; however, it leads to a significant loss of longitudinal sheath potential, reducing the total conversion efficiency from laser to protons.

  4. Single-scan scatter correction for cone-beam CT using a stationary beam blocker: a preliminary study

    NASA Astrophysics Data System (ADS)

    Niu, Tianye; Zhu, Lei

    2011-03-01

    The performance of cone-beam CT (CBCT) is greatly limited by scatter artifacts. The existing measurement-based methods have promising advantages as a standard scatter correction solution, except that they currently require multiple scans or moving the beam blocker during data acquisition to compensate for the missing primary data. These approaches are therefore unpractical in clinical applications. In this work, we propose a new measurement-based scatter correction method to achieve accurate reconstruction with one single scan and a stationary beam blocker, two seemingly incompatible features which enable simple and effective scatter correction without increase of scan time or patient dose. Based on CT reconstruction theory, we distribute the blocked areas over one projection where primary signals are considered to be redundant in a full scan. The CT image quality is not degraded even with primary loss. Scatter is accurately estimated by interpolation and scatter-corrected CT images are obtained using an FDK-based reconstruction. In a Monte Carlo simulation study, we first optimize the beam blocker geometry using projections on the Shepp-Logan phantom and then carry out a complete simulation of a CBCT scan on a water phantom. With the scatter-to-primary ratio around 1.0, our method reduces the CT number error from 293 to 2.9 Hounsfield unit (HU) around the phantom center. The proposed approach is further evaluated on a CBCT tabletop system. On the Catphan©600 phantom, the reconstruction error is reduced from 202 to 10 HU in the selected region of interest after the proposed correction.

  5. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images.

    PubMed

    Vasconcelos, Taruska Ventorini; Bechara, Boulos B; McMahan, Clyde Alex; Freitas, Deborah Queiroz; Noujeim, Marcel

    2017-02-01

    To evaluate zirconium implant artifact production in cone beam computed tomography images obtained with different protocols. One zirconium implant was inserted in an edentulous mandible. Twenty scans were acquired with a ProMax 3D unit (Planmeca Oy, Helsinki, Finland), with acquisition settings ranging from 70 to 90 peak kilovoltage (kVp) and voxel sizes of 0.32 and 0.16 mm. A metal artifact reduction (MAR) tool was activated in half of the scans. An axial slice through the middle region of the implant was selected for each dataset. Gray values (mean ± standard deviation) were measured in two regions of interest, one close to and the other distant from the implant (control area). The contrast-to-noise ratio was also calculated. Standard deviation decreased with greater kVp and when the MAR tool was used. The contrast-to-noise ratio was significantly higher when the MAR tool was turned off, except for low resolution with kVp values above 80. Selection of the MAR tool and greater kVp resulted in an overall reduction of artifacts in images acquired with low resolution. Although zirconium implants do produce image artifacts in cone-bean computed tomography scans, the setting that best controlled artifact generation by zirconium implants was 90 kVp at low resolution and with the MAR tool turned on. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. TU-F-BRE-08: Significant Variations in Measured Small Cone Output Factor for FFF Beams

    SciTech Connect

    Sudhyadhom, A; Ma, L; Kirby, N

    2014-06-15

    Purpose: To evaluate the measurement accuracy of several dosimeters for small cone output factors in two SRS/SBRT dedicated systems with Flattening Filter Free (FFF) beams: a Varian TrueBeam STx (TB) and an Accuray CyberKnife VSI (CK). Output factors (OFs) were measured for both machines and for CK, compared against a Monte Carlo model. Methods: Dose measurements were taken using three different FFF beams (TB 6XFFF, TB 10XFFF, and CK 6XFFF). Three commonly used types of dosimeters were examined in this work: a micro-ion chamber (Exradin A16), two shielded diodes (PTW TN60008 and PTW TN60017), and radiochromic film (Gafchromic EBT2). Measured OFs from these dosimeters were compared with each other and OFs measured with an Exradin W1 scintillator. Monte Carlo determined correction factors for the CK beam for the micro-ion chamber and diodes were applied to the respective OF measurements and compared against scintillator measured OFs corrected for volume averaging. Results: OFs measured for the smallest fields using the micro-ion chamber, diodes, scintillator, and film varied substantially (with up to a 16% difference between dosimeters). Micro-ion chamber and film OF measurements were up to 9% and 10%, respectively, lower than scintillator measurements for the smallest fields. OF measurements by diode were up to 6% greater than scintillator measurements for the smallest fields. With correction factors, the micro-ion chamber and diode measured OFs showed good agreement with scintillator measured OFs for the CK 6XFFF beam (within 3% and 1.5%, respectively). Conclusion: Uncorrected small field OFs vary significantly with dosimeter. The accuracy of scintillator measurements for small field OFs may be greater than the other dosimeters studied in this work (when uncorrected). Measurements involving EBT2 film may Result in lower accuracy for smaller fields (less than 10mm). Care should be taken in the choice of the dosimeter used for small field OF measurements.

  7. Laser cone beam computed tomography scanner geometry for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Jordan, K. J.; Turnbull, D.; Batista, J. J.

    2013-06-01

    A new scanner geometry for fast optical cone-beam computed tomography is reported. The system consists of a low power laser beam, raster scanned, under computer control, through a transparent object in a refractive index matching aquarium. The transmitted beam is scattered from a diffuser screen and detected by a photomultiplier tube. Modest stray light is present in the projection images since only a single ray is present in the object during measurement and there is no imaging optics to introduce further stray light in the form of glare. A scan time of 30 minutes was required for 512 projections with a field of view of 12 × 18 cm. Initial performance from scanning a 15 cm diameter jar with black solutions is presented. Averaged reconstruction coefficients are within 2% along the height of the jar and within the central 85% of diameter, due to the index mismatch of the jar. Agreement with spectrometer measurements was better than 0.5% for a minimum transmission of 4% and within 4% for a dark, 0.1% transmission sample. This geometry's advantages include high dynamic range and low cost of scaling to larger (>15 cm) fields of view.

  8. Dose distribution for dental cone beam CT and its implication for defining a dose index

    PubMed Central

    Pauwels, R; Theodorakou, C; Walker, A; Bosmans, H; Jacobs, R; Horner, K; Bogaerts, R

    2012-01-01

    Objectives To characterize the dose distribution for a range of cone beam CT (CBCT) units, investigating different field of view sizes, central and off-axis geometries, full or partial rotations of the X-ray tube and different clinically applied beam qualities. The implications of the dose distributions on the definition and practicality of a CBCT dose index were assessed. Methods Dose measurements on CBCT devices were performed by scanning cylindrical head-size water and polymethyl methacrylate phantoms, using thermoluminescent dosemeters, a small-volume ion chamber and radiochromic films. Results It was found that the dose distribution can be asymmetrical for dental CBCT exposures throughout a homogeneous phantom, owing to an asymmetrical positioning of the isocentre and/or partial rotation of the X-ray source. Furthermore, the scatter tail along the z-axis was found to have a distinct shape, generally resulting in a strong drop (90%) in absorbed dose outside the primary beam. Conclusions There is no optimal dose index available owing to the complicated exposure geometry of CBCT and the practical aspects of quality control measurements. Practical validation of different possible dose indices is needed, as well as the definition of conversion factors to patient dose. PMID:22752320

  9. Influence of lead apron shielding on absorbed doses from cone-beam computed tomography.

    PubMed

    Rottke, Dennis; Andersson, Jonas; Ejima, Ken-Ichiro; Sawada, Kunihiko; Schulze, Dirk

    2016-09-24

    The aim of the present work was to investigate absorbed and to calculate effective doses (EDs) in cone-beam computed tomography (CBCT). The study was conducted using examination protocols with and without lead apron shielding. A full-body male RANDO(®) phantom was loaded with 110 GR200A thermoluminescence dosemeter chips at 55 different sites and set up in two different CBCT systems (CS 9500(®), ProMax(®) 3D). Two different protocols were performed: the phantom was set up (1) with and (2) without a lead apron. No statistically significant differences in organ and absorbed doses from regions outside the primary beam could be found when comparing results from exposures with and without lead apron shielding. Consequently, calculating the ED showed no significant differences between the examination protocols with and without lead apron shielding. For the ProMax(®) 3D with shielding, the ED was 149 µSv, and for the examination protocol without shielding 148 µSv (SD = 0.31 µSv). For the CS 9500(®), the ED was 88 and 86 µSv (SD = 0.95 µSv), respectively, with and without lead apron shielding. The results revealed no statistically significant differences in the absorbed doses between examination with and without lead apron shielding, especially in organs outside the primary beam.

  10. Radiologic evaluation of an unusually sized complex odontoma involving the maxillary sinus by cone beam computed tomography.

    PubMed

    Isler, Sabri Cemil; Demircan, Sabit; Soluk, Merva; Cebi, Zerrin

    2009-01-01

    As a group, odontomas are the most common odontogenic neoplasms. This case report illustrates the benefits of cone beam computed tomography, in terms of treatment planning and surgical technique, to localize a large maxillary odontoma and accurately establish its relationship with the maxillary sinus and molar.

  11. Filtered-backprojection reconstruction for a cone-beam computed tomography scanner with independent source and detector rotations

    SciTech Connect

    Rit, Simon; Clackdoyle, Rolf; Keuschnigg, Peter; Steininger, Philipp

    2016-05-15

    Purpose: A new cone-beam CT scanner for image-guided radiotherapy (IGRT) can independently rotate the source and the detector along circular trajectories. Existing reconstruction algorithms are not suitable for this scanning geometry. The authors propose and evaluate a three-dimensional (3D) filtered-backprojection reconstruction for this situation. Methods: The source and the detector trajectories are tuned to image a field-of-view (FOV) that is offset with respect to the center-of-rotation. The new reconstruction formula is derived from the Feldkamp algorithm and results in a similar three-step algorithm: projection weighting, ramp filtering, and weighted backprojection. Simulations of a Shepp Logan digital phantom were used to evaluate the new algorithm with a 10 cm-offset FOV. A real cone-beam CT image with an 8.5 cm-offset FOV was also obtained from projections of an anthropomorphic head phantom. Results: The quality of the cone-beam CT images reconstructed using the new algorithm was similar to those using the Feldkamp algorithm which is used in conventional cone-beam CT. The real image of the head phantom exhibited comparable image quality to that of existing systems. Conclusions: The authors have proposed a 3D filtered-backprojection reconstruction for scanners with independent source and detector rotations that is practical and effective. This algorithm forms the basis for exploiting the scanner’s unique capabilities in IGRT protocols.

  12. C-arm Cone Beam Computed Tomographic Needle Path Overlay for Fluoroscopic-Guided Placement of Translumbar Central Venous Catheters

    SciTech Connect

    Tam, Alda; Mohamed, Ashraf; Pfister, Marcus; Rohm, Esther; Wallace, Michael J.

    2009-07-15

    C-arm cone beam computed tomography is an advanced 3D imaging technology that is currently available on state-of-the-art flat-panel-based angiography systems. The overlay of cross-sectional imaging information can now be integrated with real-time fluoroscopy. This overlay technology was used to guide the placement of three percutaneous translumbar inferior vena cava catheters.

  13. [Periinterventional cone-beam-CT: application at transarterial chemoembolization of liver tumors].

    PubMed

    Adamus, R; Uder, M; Wilhelm, M; Loose, R W

    2011-07-01

    Periinterventional Cone-Beam CT (CBCT) today is a valuable tool in complex radiological interventions. Only little experience exists about CBCT in transarterial chemoembolisations (TACE) of liver tumors. 25 patients underwent periinterventional CBCT. We used a C-arc DSA with 30 × 40 cm flat panel detector. Image data with axial, coronal and 3D-reconstruction were acquired by 217° rotation in 8 seconds. In all 25 cases CBCT had an influence on the TACE regarding the decision which vessels to catheterize, the amount of retention of the embolisation agent or an abort because of insufficient vascularisation. In comparison with DSA alone, CBCT allows a better visualisation of tumour vessels, simplifies selective catheterisation, the decision whether an embolisation is possible and enables a good visualisation of Lipiodol retention. Hence, CBCT is a helpful periinterventional tool but cannot substitute CT and MRI in follow up.

  14. Cone beam computed tomography for the nasal cavity and paranasal sinuses.

    PubMed

    Parks, Edwin T

    2014-07-01

    The paranasal sinuses are 4 paired airspaces that border the nasal cavity. Dental professionals are most familiar with the maxillary sinuses as viewed in 2-D imaging (eg, periapical, panoramic projections). With increasing implementation of 3-D imaging, specifically cone beam CT, there is a high probability that much or all of the paranasal sinuses and nasal cavity will be captured in a scan. It is incumbent on practitioners to be familiar with all the structures contained within a scanned area. The purpose of this article is to provide an overview of the anatomy of the nasal cavity as well as common anatomic variants and pathologic entities. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Cone Beam Computed Tomography (CBCT) in the Field of Interventional Oncology of the Liver

    SciTech Connect

    Bapst, Blanche Lagadec, Matthieu; Breguet, Romain; Vilgrain, Valérie Ronot, Maxime

    2016-01-15

    Cone beam computed tomography (CBCT) is an imaging modality that provides computed tomographic images using a rotational C-arm equipped with a flat panel detector as part of the Angiography suite. The aim of this technique is to provide additional information to conventional 2D imaging to improve the performance of interventional liver oncology procedures (intraarterial treatments such as chemoembolization or selective internal radiation therapy, and percutaneous tumor ablation). CBCT provides accurate tumor detection and targeting, periprocedural guidance, and post-procedural evaluation of treatment success. This technique can be performed during intraarterial or intravenous contrast agent administration with various acquisition protocols to highlight liver tumors, liver vessels, or the liver parenchyma. The purpose of this review is to present an extensive overview of published data on CBCT in interventional oncology of the liver, for both percutaneous ablation and intraarterial procedures.

  16. Endodontic management of mandibular first molar with seven canals using cone-beam computed tomography

    PubMed Central

    Banode, Ankur Mahesh; Gade, Vandana; Patil, Sanjay; Gade, Jaykumar

    2016-01-01

    The endodontic treatment of a mandibular molar with aberrant canal configuration can be diagnostically and clinically challenging. Successful endodontic therapy thus depends on the clinician's ability to anticipate and look for these aberrant variations. A mandibular first molar with seven canals represents a rare anatomical variant, particularly when four canals are found in distal root. Based on in vitro studies, its incidence is reported to be between 0.2% and 3%. With the advent of cone-beam computed tomography (CBCT) as an adjunctive diagnostic aid, the determination of root canal anatomy in teeth with complex canal configurations has become more precise. The present case report discusses successful nonsurgical management of radix entomolaris along with middle mesial canal and middle distal canal in mandibular first molar with seven canals (four canals in distal and three in mesial) employing CBCT as an adjunctive diagnostic aid to conventional radiography. PMID:27307680

  17. Evaluation of enamel pearls by cone-beam computed tomography (CBCT).

    PubMed

    Akgül, N; Caglayan, F; Durna, N; Sümbüllü, M-A; Akgül, H-M; Durna, D

    2012-03-01

    The aim of this study was to evaluate the frequency of enamel pearls according to population, sex and tooth groups on Cone-Beam Computed Tomography (CBCT) or Dental Volumetric Tomography (DVT) scans of patients, retrospectively. In this study, 15185 teeth belonging to 768 patients, 430 female and 338 male, was performed cross-sectional examination by CBCT. The volumetric Computed Tomography used in the study is Newton FP based on flat-panel. The data were analyzed with Pearson chi-squared test. Enamel pearls were detected in 36 subjects (4.69%). Of these enamel pearls, 19 were detected in male and 17 were in male. There was no statistically a significant association between prevalence of enamel pearls and sex. All of enamel pearls were detected in molar teeth, for prevalence 0.83%. All of enamel pearls are found upper and lower molar teeth, especially the most commonly in maxillary second and third molars.

  18. Patient radiation dose and protection from cone-beam computed tomography.

    PubMed

    Li, Gang

    2013-06-01

    After over one decade development, cone beam computed tomography (CBCT) has been widely accepted for clinical application in almost every field of dentistry. Meanwhile, the radiation dose of CBCT to patient has also caused broad concern. According to the literature, the effective radiation doses of CBCTs in nowadays market fall into a considerably wide range that is from 19 µSv to 1073 µSv and closely related to the imaging detector, field of view, and voxel sizes used for scanning. To deeply understand the potential risk from CBCT, this report also reviewed the effective doses from literatures on intra-oral radiograph, panoramic radiograph, lateral and posteroanterior cephalometric radiograph, multi-slice CT, and so on. The protection effect of thyroid collar and leaded glasses were also reviewed.

  19. Implant planning and placement using optical scanning and cone beam CT technology.

    PubMed

    van der Zel, Jef M

    2008-08-01

    There is a growing interest in minimally invasive implant therapy as a standard prosthodontic treatment, providing complete restoration of occlusal function. A new treatment method (CADDIMA), which combines both computerized tomographic (CT) and optical laser-scan data for planning and design of surgical guides, implant abutments, and prosthetic devices, is described. Imaging using a "NewTom 3G" cone beam CT scanner and a modified laser triangulation scanner "D200c" is discussed, as are impression and surgical guide fabrication, which allow for flapless, precise implant placement and an accurate provisional prosthesis. The new approach gives the operator full control over the design of the implant prosthesis for planning of proper occlusal relations and shows promise for further evaluation.

  20. Scattered radiation in flat-detector based cone-beam CT: analysis of voxelized patient simulations

    NASA Astrophysics Data System (ADS)

    Wiegert, Jens; Bertram, Matthias

    2006-03-01

    This paper presents a systematic assessment of scattered radiation in flat-detector based cone-beam CT. The analysis is based on simulated scatter projections of voxelized CT images of different body regions allowing to accurately quantify scattered radiation of realistic and clinically relevant patient geometries. Using analytically computed primary projection data of high spatial resolution in combination with Monte-Carlo simulated scattered radiation, practically noise-free reference data sets are computed with and without inclusion of scatter. The impact of scatter is studied both in the projection data and in the reconstructed volume for the head, thorax, and pelvis regions. Currently available anti-scatter grid geometries do not sufficiently compensate scatter induced cupping and streak artifacts, requiring additional software-based scatter correction. The required accuracy of scatter compensation approaches increases with increasing patient size.

  1. Cone-Beam Computed Tomography contrast validation of an artificial periodontal phantom for use in endodontics.

    PubMed

    Michetti, Jerome; Basarab, Adrian; Tran, Michel; Diemer, Franck; Kouame, Denis

    2015-01-01

    Validation of image processing techniques such as endodontic segmentations in cone-beam computed tomography (CBCT) is a challenging issue because of the lack of ground truth in in vivo experiments. The purpose of our study was to design an artificial surrounding tissues phantom able to provide CBCT image quality of real extracted teeth, similar to in vivo conditions. Note that these extracted teeth could be previously scanned using micro computed tomography (μCT) to access true quantitative measurements of the root canal anatomy. Different design settings are assessed in our study by comparison to in vivo images, in terms of the contrast-to-noise ratio (CNR) obtained between different anatomical structures. Concerning the root canal and the dentine, the best design setup allowed our phantom to provide a CNR difference of only 3% compared to clinical cases.

  2. Cone-beam computed tomography in endodontics: are we there yet?

    PubMed

    Nesari, Royeen; Rossman, Louis E; Kratchman, Samuel I

    2009-01-01

    From digital radiography units to office computer systems, there are several pieces of equipment that make up today's high-tech dental office. Recently, advances in dental imaging have allowed cone-beam computed tomography (CBCT), which is a form of 3-dimensional radiography, to gain increasing popularity as another major office component. In consideration of the current economic conditions, cost has become a definite obstacle for many practitioners. With several brands available, this technology has nonetheless generated considerable attention for use in presurgical treatment planning and diagnosis. However, is there enough evidence for its use in endodontics? This article aims to bring to light the many exciting features of CBCT, including its operation, impact, and feasibility in endodontics.

  3. Cone beam CT for diagnosis and treatment planning in trauma cases.

    PubMed

    Palomo, Leena; Palomo, J Martin

    2009-10-01

    Three-dimensional imaging offers many advantages in making diagnoses and planning treatment. This article focuses on cone beam CT (CBCT) for making diagnoses and planning treatment in trauma-related cases. CBCT equipment is smaller and less expensive than traditional medical CT equipment and is tailored to address challenges specific to the dentoalveolar environment. Like medical CT, CBCT offers a three-dimensional view that conventional two-dimensional dental radiography fails to provide. CBCT combines the strengths of medical CT with those of conventional dental radiography to accommodate unique diagnostic and treatment-planning applications that have particular utility in dentoalveolar trauma cases. CBCT is useful, for example, in identifying tooth fractures relative to surrounding alveolar bone, in determining alveolar fracture location and morphology, in analyzing ridge-defect height and width, and in imaging temporomandibular joints. Treatment-planning applications include those involving extraction of fractured teeth, placement of implants, exposure of impacted teeth, and analyses of airways.

  4. [Use of Cone Beam Computed Tomography in endodontics: rational case selection criteria].

    PubMed

    Rosen, E; Tsesis, I

    2016-01-01

    To present rational case selection criteria for the use of CBCT (Cone Beam Computed Tomography) in endodontics. This article reviews the literature concerning the benefits of CBCT in endodontics, alongside its radiation risks, and present case selection criteria for referral of endodontic patients to CBCT. Up to date, the expected ultimate benefit of CBCT to the endodontic patient is yet uncertain, and the current literature is mainly restricted to its technical efficacy. In addition, the potential radiation risks of CBCT scan are stochastic in nature and uncertain, and are worrying especially in pediatric patients. Both the efficacy of CBCT in supporting the endodontic practitioner decision making and in affecting treatment outcomes, and its long term potential radiation risks are yet uncertain. Therefore, a cautious rational decision making is essential when a CBCT scan is considered in endodontics. Risk-benefit considerations are presented.

  5. Dacryocystography using cone beam CT in patients with lacrimal drainage system obstruction.

    PubMed

    Tschopp, Markus; Bornstein, Michael M; Sendi, Pedram; Jacobs, Reinhilde; Goldblum, David

    2014-01-01

    To assess the usefulness of cone beam CT (CBCT) for dacryocystography (DCG) using either direct syringing or passive application of contrast medium. Ten consecutive patients with epiphora who had CBCT-DCG in a sitting position were retrospectively analyzed. CBCT-DCGs were performed using 2 techniques: direct syringing with contrast medium or using the passive technique, where patients received 3 drops of contrast medium into the conjunctival sac before CBCT-DCG. Clinical and radiologic diagnoses were compared for both groups. The 10 patients (men = 3) had a mean age of 63.2 years. Both techniques proved to be simple procedures with good delineation of the bone, soft tissue, and the contrast medium in the lacrimal system. No side effects were noted. CBCT-DCG is a useful alternative to determine the localization of stenosis in patients with chronic epiphora.

  6. Limited-angle reverse helical cone-beam CT for pipeline with low rank decomposition

    NASA Astrophysics Data System (ADS)

    Wu, Dong; Zeng, Li

    2014-10-01

    In this paper, tomographic imaging of pipeline in service by cone-beam computed tomography (CBCT) is studied. With the developed scanning strategy and image model, the quality of reconstructed image is improved. First, a limited-angle reverse helical scanning strategy based on C-arm computed tomography (C-arm CT) is developed for the projection data acquisition of pipeline in service. Then, an image model which considering the resemblance among slices of pipeline is developed. Finally, split Bregman method based algorithm is implemented in solving the model aforementioned. Preliminary results of simulation experiments show that the projection data acquisition strategy and reconstruction method are efficient and feasible, and our method is superior to Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART).

  7. Artefacts in Cone Beam CT Mimicking an Extrapalatal Canal of Root-Filled Maxillary Molar.

    PubMed

    Camilo, Carla Cristina; Brito-Júnior, Manoel; Faria-E-Silva, André Luis; Quintino, Alex Carvalho; de Paula, Adrianne Freire; Cruz-Filho, Antônio Miranda; Sousa-Neto, Manoel Damião

    2013-01-01

    Despite the advantages of cone-beam computed tomography (CBCT), the images provided by this diagnostic tool can produce artifacts and compromise accurate diagnostic assessment. This paper describes an endodontic treatment of a maxillary molar where CBCT images suggested the presence of a nonexistent third root canal in the palatal root. An endodontic treatment was performed in a first maxillary molar with palatal canals, and the tooth was restored with a cast metal crown. The patient returned four years later presenting with a discomfort in chewing, which was reduced after occlusal adjustment. CBCT was prescribed to verify additional diagnostic information. Axial scans on coronal, middle, and apical palatal root sections showed images similar to a third root canal. However, sagittal scans demonstrated that these images were artifacts caused by root canal fillings. A careful interpretation of CBCT images in root-filled teeth must be done to avoid mistakes in treatment.

  8. Diagnosis and Treatment of a Type III Dens Invagination Using Cone-Beam Computed Tomography

    PubMed Central

    Bahmani, Mohsen; Adl, Alireza; Javanmardi, Samane; Naghizadeh, Sina

    2016-01-01

    A 20-year-old man presented with the history of pain and swelling in the anterior maxillary segment. The periapical radiography was indicative of a dental anomaly in right maxillary lateral incisor. Due to the insufficient information from conventional radiography, cone-beam computed tomography (CBCT) was ordered. CBCT showed apical root resorption, large apical lucency and two separate canals with distinct apical foramen (Oehlers type III dens invagination). The CBCT image was used as a guide for dentine removal with an ultrasonic tip. Conventional root canal therapy was done using lateral compaction technique. One-and two-year follow-up radiographies revealed periapical repair and absence of symptoms. PMID:27790268

  9. Cone Beam Computed Tomographic Evaluation and Diagnosis of Mandibular First Molar with 6 Canals

    PubMed Central

    Pasha, Shiraz; Chaitanya, Bathula Vimala; Somisetty, Kusum Valli

    2016-01-01

    Root canal treatment of tooth with aberrant root canal morphology is very challenging. So thorough knowledge of both the external and internal anatomy of teeth is an important aspect of root canal treatment. With the advancement in technology it is imperative to use modern diagnostic tools such as magnification devices, CBCT, microscopes, and RVG to confirm the presence of these aberrant configurations. However, in everyday endodontic practice, clinicians have to treat teeth with atypical configurations for root canal treatment to be successful. This case report presents the management of a mandibular first molar with six root canals, four in mesial and two in distal root, and also emphasizes the use and importance of Cone Beam Computed Tomography (CBCT) as a diagnostic tool in endodontics. PMID:26904310

  10. Cone Beam Computed Tomography Findings in Calcifying Cystic Odontogenic Tumor Associated with Odontome: A Case Report

    PubMed Central

    Phulambrikar, Tushar; Vilas Kant, Sanchita; Kode, Manasi; Magar, Shaliputra

    2015-01-01

    The calcifying cystic odontogenic tumor (CCOT) is a rare cystic odontogenic neoplasm frequently found in association with odontome. This report documents a case of CCOT associated with an odontome arising in the anterior maxilla in a 28-year-old man. Conventional radiographs showed internal calcification within the lesion but were unable to visualize its relation with the adjacent structures and its accurate extent. In this case cone beam computed tomography (CBCT) could accurately reveal the extent and the internal structure of the lesion which aided the presumptive diagnosis of the lesion as CCOT. This advanced imaging technique proved to be extremely useful in the radiographic assessment and management of this neoplasm of the maxilla. PMID:26636128

  11. Responsible use of cone beam computed tomography: minimising medico-legal risks.

    PubMed

    Noffke, C E E; Farman, A G; Van der Linde, A; Nel, S

    2013-07-01

    This communication highlights some of the ethical and possible legal responsibilities which pertain to the taking, reading, reporting, and communication of findings from cone-beam computed tomography (CBCT) scans. The importance of knowledge of head and neck anatomy and pathology to reduce the likelihood of incorrect interpretation is emphasised. Failure to detect critical findings in any diagnostic image can potentially result in medico-legal consequences. CBCT is no exception to this rule. Dental schools are advised to include CBCT imaging as a diagnostic tool in their under- and postgraduate curricula thereby equipping graduates to use 3D imaging in general and CBCT in particular. Existing dental practitioners are advised to seek continuing education on 3D imaging as part of their required lifelong learning.

  12. Reproducibility of facial soft tissue thicknesses for craniofacial reconstruction using cone-beam CT images.

    PubMed

    Hwang, Hyeon-Shik; Kim, Kyul; Moon, Da-Nal; Kim, Jae-Hyung; Wilkinson, Caroline

    2012-03-01

    The purpose of this study was to evaluate the reproducibility of the soft tissue (ST) thicknesses at 31 landmarks using the cone-beam computed tomography (CBCT) images obtained from 20 adult subjects. Four observers carried out ST thickness measurements using Skull Measure software, and the inter- and intra-observer error rates were evaluated. Only five of 31 landmarks showed significant differences in recorded ST thickness between the observers. When excluding inexperienced observers, only one landmark showed a significant difference between the observers. Regarding the intra-observer reproducibility, the ST thickness measurements at three landmarks showed low correlation coefficients. The results of this study indicate that CBCT images can be used to measure ST thickness with high reproducibility. However, some landmarks need to be redefined to reliably measure ST thickness on CBCT images.

  13. Rare appearance of an odontogenic myxoma in cone-beam computed tomography: a case report

    PubMed Central

    Dabbaghi, Arash; Nikkerdar, Nafiseh; Bayati, Soheyla; Golshah, Amin

    2016-01-01

    Odontogenic myxoma (OM) is an infiltrative benign bone tumor that occurs almost exclusively in the facial skeleton. The radiographic characteristics of odontogenic myxoma may produce several patterns, making diagnosis difficult. Cone-beam computed tomography (CBCT) may prove extremely useful in clarifying the intraosseous extent of the tumor and its effects on surrounding structures. Here, we report a case of odontogenic myxoma of the mandible in a 27-year-old female. The patient exhibited a slight swelling in the left mandible. Surgical resection was performed. No recurrence was noted. In the CBCT sections, we observed perforation of the cortical plate and radiopaque line that extended from the periosteum, resembling "sunray" appearance—a rare feature of OM—which could not be assessed by panoramic radiography. PMID:27092217

  14. Developmental salivary gland depression in the ascending mandibular ramus: A cone-beam computed tomography study

    PubMed Central

    Chen, Christine A.; Ahn, Yoonhee; Odell, Scott; Graham, David Mattew

    2016-01-01

    A static, unilateral, and focal bone depression located lingually within the ascending ramus, identical to the Stafne's bone cavity of the angle of the mandible, is being reported. During development of the mandible, submandibular gland inclusion may lead to the formation of a lingual concavity, which could contain fatty tissue, blood vessels, or soft tissue. However, similar occurrences in the ascending ramus at the level of the parotid gland are extremely rare. Similar cases were previously reported in dry, excavated mandibles, and 3 cases were reported in living patients. A 52-year-old African American male patient was seen for pain in the mandibular teeth. Panoramic radiography showed an unusual concavity within the left ascending ramus. Cone-beam computed tomography confirmed this incidental finding. The patient was cleared for the extraction of non-restorable teeth and scheduled for annual follow-up. PMID:27672619

  15. Cone Beam CT in Diagnosis and Surgical Planning of Dentigerous Cyst

    PubMed Central

    Deana, Naira Figueiredo

    2017-01-01

    Diagnosis and preoperative planning are critical in the execution of any surgical procedure. Panoramic radiography is a routine method used in dentistry to assist clinical diagnosis; however, with this technique 3D anatomical structures are compressed into 2D images, resulting in overlapping of structures which are of interest in the diagnosis. In this study we report the case of a patient who presented with a dentigerous cyst of expressive dimensions in the body of the mandible region. The surgery was planned and executed after observing the margins of the lesion by Cone Beam Computed Tomography (CBCT). We conclude that CBCT is a precise method to help diagnosis; it provides greater accuracy in surgical treatment planning through 3D image display, allowing more effective results. PMID:28293442

  16. Evaluation of Dose Homogeneity in Cone-Beam Breast Computed Tomography.

    PubMed

    Mettivier, Giovanni; Costa, Matilde; Lanconelli, Nico; Ianiro, Anna; Pugliese, Mariagabriella; Quarto, Maria; Russo, Paolo

    2017-01-10

    The aim of this study is to determine, via measurements on phantoms and Monte Carlo (MC) simulations, the dose distribution of absorbed dose in a cone-beam breast computed tomography scan. The absorbed dose volume distribution was measured inside a polyethylene cylindrical phantom, simulating adipose breast tissue, using LiF:Mg,Ti thermoluminescence dosimeters. A reasonable agreement (between 2 and 8%) between the simulated and measured data was observed. The 3D distribution of absorbed dose was evaluated at 40, 60 and 80 kV in a phantom simulating a pendant breast. MC simulations indicate a significantly lower spread of volume dose than in mammography. The dose variation along the radial distance in the simulated phantoms was in the range of 4‒14%. These findings might be useful when devising models for breast imaging dose assessment that take into account the uneven distribution of the glandular mass in the breast volume.

  17. Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography.

    PubMed

    Molteni, Roberto

    2013-07-01

    Limitations in rendering of tissue density in Hounsfield units (HUs) for cone beam computed tomography (CBCT) are described and illustrated using a phantom and two CBCT systems to demonstrate grayscale measurement variability. The basis of the HU scale, its correlation with measured computed tomography (CT) numbers, and the limitations in the accuracy of such correlation due to artifacts are discussed. Rendering of tissue densities based on HU values of two CBCT systems [NewTom VGi and Hyperion X9, respectively large and small field of view (FOV)] are measured using a phantom. Data produced from small FOV CBCT acquisition are generally less affected by artifacts compared with large FOV CBCT. Artifacts challenge the accurate conversion of density values into HUs. Care should be taken when interpreting quantitative density measurements obtained with CBCT. With more advanced software and methods, it may be possible to improve the consistency and accuracy of density measurements. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Cone-beam computed tomography exploration and surgical management of palatal, inverted, and impacted mesiodens.

    PubMed

    Omami, Mounir; Chokri, Abdellatif; Hentati, Hajer; Selmi, Jamil

    2015-09-01

    Supernumerary teeth are extra teeth or toothlike structures which may have either erupted or unerupted in addition to the 20 deciduous teeth and the 32 permanent teeth. Mesiodens is one of these located in the midline between the two central incisors. Their presence may give rise to a variety of clinical problems. This paper describes a rare case of palatal placed, inverted and impacted mesiodens associated to two supernumerary teeth which were detected during a radiographic examination for delayed eruption of permanent central incisors in the case of a healthy 8-year-old girl monitored at the oral surgery service while discussing the usefulness of cone beam computed tomography for accurate diagnosis and management.

  19. Cone-beam computed tomography exploration and surgical management of palatal, inverted, and impacted mesiodens

    PubMed Central

    Omami, Mounir; Chokri, Abdellatif; Hentati, Hajer; Selmi, Jamil

    2015-01-01

    Supernumerary teeth are extra teeth or toothlike structures which may have either erupted or unerupted in addition to the 20 deciduous teeth and the 32 permanent teeth. Mesiodens is one of these located in the midline between the two central incisors. Their presence may give rise to a variety of clinical problems. This paper describes a rare case of palatal placed, inverted and impacted mesiodens associated to two supernumerary teeth which were detected during a radiographic examination for delayed eruption of permanent central incisors in the case of a healthy 8-year-old girl monitored at the oral surgery service while discussing the usefulness of cone beam computed tomography for accurate diagnosis and management. PMID:26604591

  20. Rare Root Canal Configuration of Bilateral Maxillary Second Molar Using Cone-beam Computed Tomographic Scanning.

    PubMed

    Zeng, Chang; Shen, Ya; Guan, Xiaoyue; Wang, Xin; Fan, Mingwen; Li, Yuhong

    2016-04-01

    The aim of this article was to present a right maxillary second molar with an unusual root canal morphology of 4 roots and 5 canals as confirmed by cone-beam computed tomographic (CBCT) imaging. The tooth had a C-shaped mesiobuccal root (CBCT imaging revealed that the root was closer to the palate than the buccal side) with 2 canals, 2 fused distobuccal roots with 2 separate canals, and 1 normal bulky palatal root with 1 canal. After thoroughly examining the rare anatomy, root canal treatment was applied on the tooth. This article shows the complexity of maxillary second molar variation and shows the significance of CBCT imaging in the confirmation of the 3-dimensional anatomy of teeth and endodontic treatment. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. [Application of elastic registration based on Demons algorithm in cone beam CT].

    PubMed

    Pang, Haowen; Sun, Xiaoyang

    2014-02-01

    We applied Demons and accelerated Demons elastic registration algorithm in radiotherapy cone beam CT (CBCT) images, We provided software support for real-time understanding of organ changes during radiotherapy. We wrote a 3D CBCT image elastic registration program using Matlab software, and we tested and verified the images of two patients with cervical cancer 3D CBCT images for elastic registration, based on the classic Demons algorithm, minimum mean square error (MSE) decreased 59.7%, correlation coefficient (CC) increased 11.0%. While for the accelerated Demons algorithm, MSE decreased 40.1%, CC increased 7.2%. The experimental verification with two methods of Demons algorithm obtained the desired results, but the small difference appeared to be lack of precision, and the total registration time was a little long. All these problems need to be further improved for accuracy and reducing of time.

  2. High-quality image acquisition by double exposure overlap in dental cone beam computed tomography.

    PubMed

    Plachtovics, Mark; Bujtar, Peter; Nagy, Katalin; Mommaerts, Maurice

    2014-06-01

    With a double exposure overlapping cone beam computed tomography (CBCT) scan technique, using CBCT acquisition radiation dose, the objective was to obtain apparent density similar to that of multidetector computed tomography (MDCT). Factory quality-assurance phantom and water phantom were used for the evaluation of apparent density fidelity of iCAT scans in different modes. Each scan's apparent density was analyzed for identical regions using ImageJ, version 1.42q. The iCAT Classic extended height acquisition with 4-cm central overlap and reconstruction of 2 groups of 300 projections per rotation for the water and quality-assurance CBCT phantoms resulted in improved apparent density fidelity. This apparent density accuracy was superior to that of iCAT scan at high resolution (600 projections during 1 rotation). Using double exposure overlapping CBCT scans allows the analysis quality to be comparable with that of MDCT. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Artefacts in Cone Beam CT Mimicking an Extrapalatal Canal of Root-Filled Maxillary Molar

    PubMed Central

    Camilo, Carla Cristina; Brito-Júnior, Manoel; Faria-e-Silva, André Luis; Quintino, Alex Carvalho; de Paula, Adrianne Freire; Cruz-Filho, Antônio Miranda; Sousa-Neto, Manoel Damião

    2013-01-01

    Despite the advantages of cone-beam computed tomography (CBCT), the images provided by this diagnostic tool can produce artifacts and compromise accurate diagnostic assessment. This paper describes an endodontic treatment of a maxillary molar where CBCT images suggested the presence of a nonexistent third root canal in the palatal root. An endodontic treatment was performed in a first maxillary molar with palatal canals, and the tooth was restored with a cast metal crown. The patient returned four years later presenting with a discomfort in chewing, which was reduced after occlusal adjustment. CBCT was prescribed to verify additional diagnostic information. Axial scans on coronal, middle, and apical palatal root sections showed images similar to a third root canal. However, sagittal scans demonstrated that these images were artifacts caused by root canal fillings. A careful interpretation of CBCT images in root-filled teeth must be done to avoid mistakes in treatment. PMID:23606995

  4. Enlarged longitudinal dose profiles in cone-beam CT and the need for modified dosimetry

    SciTech Connect

    Mori, Shinichiro; Endo, Masahiro; Nishizawa, Kanae; Tsunoo, Takanori; Aoyama, Takahiko; Fujiwara, Hideaki; Murase, Kenya

    2005-04-01

    In order to examine phantom length necessary to assess radiation dose delivered to patients in cone-beam CT with an enlarged beamwidth, we measured dose profiles in cylindrical phantoms of sufficient length using a prototype 256-slice CT-scanner developed at our institute. Dose profiles parallel to the rotation axis were measured at the central and peripheral positions in PMMA (polymethylmethacrylate) phantoms of 160 or 320 mm diameter and 900 mm length. For practical application, we joined unit cylinders (150 mm long) together to provide phantoms of 900 mm length. Dose profiles were measured with a pin photodiode sensor having a sensitive region of approximately 2.8x2.8 mm{sup 2} and 2.7 mm thickness. Beamwidths of the scanner were varied from 20 to 138 mm. Dose profile integrals (DPI) were calculated using the measured dose profiles for various beamwidths and integration ranges. For the body phantom (320-mm-diam phantom), 76% of the DPI was represented for a 20 mm beamwidth and 60% was represented for a 138 mm beamwidth if dose profiles were integrated over a 100 mm range, while more than 90% of the DPI was represented for beamwidths between 20 and 138 mm if integration was carried out over a 300 mm range. The phantom length and integration range for dosimetry of cone-beam CT needed to be more than 300 mm to represent more than 90% of the DPI for the body phantom with the beamwidth of more than 20 mm. Although we reached this conclusion using the prototype 256-slice CT-scanner, it may be applied to other multislice CT-scanners as well.

  5. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    PubMed Central

    Jain, A; Takemoto, H; Silver, M D; Nagesh, S V S; Ionita, C N; Bednarek, D R; Rudin, S

    2015-01-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm × 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested. PMID:26877577

  6. Evaluation of radiation dose and image quality for the Varian cone beam computed tomography system.

    PubMed

    Cheng, Harry C Y; Wu, Vincent W C; Liu, Eva S F; Kwong, Dora L W

    2011-05-01

    To compare the image quality and dosimetry on the Varian cone beam computed tomography (CBCT) system between software Version 1.4.13 and Version 1.4.11 (referred to as "new" and "old" protocols, respectively, in the following text). This study investigated organ absorbed dose, total effective dose, and image quality of the CBCT system for the head-and-neck and pelvic regions. A calibrated Farmer chamber and two standard cylindrical Perspex CT dosimetry phantoms with diameter of 16 cm (head phantom) and 32 cm (body phantom) were used to measure the weighted cone-beam computed tomography dose index (CBCTDIw) of the Varian CBCT system. The absorbed dose of different organs was measured in a female anthropomorphic phantom with thermoluminescent dosimeters (TLD) and the total effective dose was estimated according to International Commission on Radiological Protection (ICRP) Publication 103. The dose measurement and image quality were studied for head-and-neck and pelvic regions, and comparison was made between the new and old protocols. The values of the new CBCTDIw head-and-neck and pelvic protocols were 36.6 and 29.4 mGy, respectively. The total effective doses from the new head-and-neck and pelvic protocols were 1.7 and 8.2 mSv, respectively. The absorbed doses of lens for the new 200° and old 360° head-and-neck protocols were 3.8 and 59.4 mGy, respectively. The additional secondary cancer risk from daily CBCT might be up to 2.8%. The new Varian CBCT provided volumetric information for image guidance with acceptable image quality and lower radiation dose. This imaging tool gave a better standard for patient daily setup verification. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Iterative image-domain ring artifact removal in cone-beam CT

    NASA Astrophysics Data System (ADS)

    Liang, Xiaokun; Zhang, Zhicheng; Niu, Tianye; Yu, Shaode; Wu, Shibin; Li, Zhicheng; Zhang, Huailing; Xie, Yaoqin

    2017-07-01

    Ring artifacts in cone beam computed tomography (CBCT) images are caused by pixel gain variations using flat-panel detectors, and may lead to structured non-uniformities and deterioration of image quality. The purpose of this study is to propose a method of general ring artifact removal in CBCT images. This method is based on the polar coordinate system, where the ring artifacts manifest as stripe artifacts. Using relative total variation, the CBCT images are first smoothed to generate template images with fewer image details and ring artifacts. By subtracting the template images from the CBCT images, residual images with image details and ring artifacts are generated. As the ring artifact manifests as a stripe artifact in a polar coordinate system, the artifact image can be extracted by mean value from the residual image; the image details are generated by subtracting the artifact image from the residual image. Finally, the image details are compensated to the template image to generate the corrected images. The proposed framework is iterated until the differences in the extracted ring artifacts are minimized. We use a 3D Shepp-Logan phantom, Catphan©504 phantom, uniform acrylic cylinder, and images from a head patient to evaluate the proposed method. In the experiments using simulated data, the spatial uniformity is increased by 1.68 times and the structural similarity index is increased from 87.12% to 95.50% using the proposed method. In the experiment using clinical data, our method shows high efficiency in ring artifact removal while preserving the image structure and detail. The iterative approach we propose for ring artifact removal in cone-beam CT is practical and attractive for CBCT guided radiation therapy.

  8. Evaluation of bone changes in the temporomandibular joint using cone beam CT

    PubMed Central

    dos Anjos Pontual, ML; Freire, JSL; Barbosa, JMN; Frazão, MAG; dos Anjos Pontual, A; Fonseca da Silveira, MM

    2012-01-01

    Objective The aim of this study was to assess bone changes and mobility in temporomandibular joints (TMJs) using cone beam CT (CBCT) in a population sample in Recife, PE, Brazil. Methods The TMJ images of patients treated by a radiologist at a private dental radiology service over a period of 1 year were retrieved from the computer database and assessed using a computer with a 21-inch monitor and the iCAT Cone Beam 3D Dental Imaging System Workstation program (Imaging Sciences International, Hatfield, PA). The Pearson χ2 test was used to analyse the differences in percentage of bone changes among the categories of mobility (p ≤ 0.05). The McNemar test was used to compare the presence of bone changes in TMJs on the right and left sides (p ≤ 0.05). Results An adjusted logistic regression model was used to assess the effect of age and gender on the occurrence of bone changes (p ≤ 0.05). Bone changes were present in 227 (71%) patients. Age group and gender showed a statistically significant association with presence of bone changes (p ≤ 0.05). There was no significant difference between the right and left sides (p = 0.556) and in condylar mobility (p = 0.925) with regard to the presence of degenerative bone changes. Conclusions There is a high prevalence of degenerative bone alteration in TMJs, which is more frequent in women and mostly located in the condyle. The prevalence of degenerative bone changes increases with age. There is no correlation between condylar mobility and the presence of degenerative bony changes in TMJs. PMID:22184625

  9. Automatic tracking of implanted fiducial markers in cone beam CT projection images

    SciTech Connect

    Marchant, T. E.; Skalski, A.; Matuszewski, B. J.

    2012-03-15

    Purpose: This paper describes a novel method for simultaneous intrafraction tracking of multiple fiducial markers. Although the proposed method is generic and can be adopted for a number of applications including fluoroscopy based patient position monitoring and gated radiotherapy, the tracking results presented in this paper are specific to tracking fiducial markers in a sequence of cone beam CT projection images. Methods: The proposed method is accurate and robust thanks to utilizing the mean shift and random sampling principles, respectively. The performance of the proposed method was evaluated with qualitative and quantitative methods, using data from two pancreatic and one prostate cancer patients and a moving phantom. The ground truth, for quantitative evaluation, was calculated based on manual tracking preformed by three observers. Results: The average dispersion of marker position error calculated from the tracking results for pancreas data (six markers tracked over 640 frames, 3840 marker identifications) was 0.25 mm (at iscoenter), compared with an average dispersion for the manual ground truth estimated at 0.22 mm. For prostate data (three markers tracked over 366 frames, 1098 marker identifications), the average error was 0.34 mm. The estimated tracking error in the pancreas data was < 1 mm (2 pixels) in 97.6% of cases where nearby image clutter was detected and in 100.0% of cases with no nearby image clutter. Conclusions: The proposed method has accuracy comparable to that of manual tracking and, in combination with the proposed batch postprocessing, superior robustness. Marker tracking in cone beam CT (CBCT) projections is useful for a variety of purposes, such as providing data for assessment of intrafraction motion, target tracking during rotational treatment delivery, motion correction of CBCT, and phase sorting for 4D CBCT.

  10. Accuracy and reliability of facial soft tissue depth measurements using cone beam computer tomography.

    PubMed

    Fourie, Zacharias; Damstra, Janalt; Gerrits, Peter O; Ren, Yijin

    2010-06-15

    It is important to have accurate and reliable measurements of soft tissue thickness for specific landmarks of the face and scalp when producing a facial reconstruction. In the past several methods have been created to measure facial soft tissue thickness (FSTT) in cadavers and in the living. The conventional spiral CT is mostly used to determine the FSTT but is associated with high radiation doses. The cone beam CT (CBCT) is a relatively new computer tomography system that focuses on head and neck regions and has much lower radiation doses. The aim of this study is to determine the accuracy and reliability of CBCT scans to measure the soft tissue thicknesses of the face. Seven cadaver heads were used. Eleven soft tissue landmarks were identified on each head and a punch hole was made on each landmark using a dermal biopsy punch. The seven cadaver heads were scanned in the CBCT with 0.3 and 0.4mm resolution. The FSTT at the 11 different sites (soft tissue landmarks) were measured using SimPlant-ortho volumetric software. These measurements were compared to the physical measurements. Statistical analysis for the reliability was done by means of the interclass coefficient (ICC) and the accuracy by means of the absolute error (AE) and absolute percentage error (APE). The intra-observer (0.976-0.999) and inter-observer (0.982-0.997) correlations of the CBCT and physical measurements were very high. There was no clinical significant difference between the measurements made on the CBCT images and the physical measurements. Increasing the voxel size from 0.4 to 0.3mm resulted in a slight increase of accuracy. Cone beam CT images of the face using routine scanning protocols are reliable for measuring soft tissue thickness in the facial region and give a good representation of the facial soft tissues. For more accurate data collection the 0.3mm voxel size should be considered.

  11. In-treatment 4D cone-beam CT with image-based respiratory phase recognition.

    PubMed

    Kida, Satoshi; Masutani, Yoshitaka; Yamashita, Hideomi; Imae, Toshikazu; Matsuura, Taeko; Saotome, Naoya; Ohtomo, Kuni; Nakagawa, Keiichi; Haga, Akihiro

    2012-07-01

    The use of respiration-correlated cone-beam computed tomography (4D-CBCT) appears to be crucial for implementing precise radiation therapy of lung cancer patients. The reconstruction of 4D-CBCT images requires a respiratory phase. In this paper, we propose a novel method based on an image-based phase recognition technique using normalized cross correlation (NCC). We constructed the respiratory phase by searching for a region in an adjacent projection that achieves the maximum correlation with a region in a reference projection along the cranio-caudal direction. The data on 12 lung cancer patients acquired just prior to treatment and on 3 lung cancer patients acquired during volumetric modulated arc therapy treatment were analyzed in the search for the effective area of cone-beam projection images for performing NCC with 12 combinations of registration area and segment size. The evaluation was done by a "recognition rate" defined as the ratio of the number of peak inhales detected with our method to that detected by eye (manual tracking). The average recognition rate of peak inhale with the most efficient area in the present method was 96.4%. The present method was feasible even when the diaphragm was outside the field of view. With the most efficient area, we reconstructed in-treatment 4D-CBCT by dividing the breathing signal into four phase bins; peak exhale, peak inhale, and two intermediate phases. With in-treatment 4D-CBCT images, it was possible to identify the tumor position and the tumor size in moments of inspiration and expiration, in contrast to in-treatment CBCT reconstructed with all projections.

  12. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector.

    PubMed

    Jain, A; Takemoto, H; Silver, M D; Nagesh, S V S; Ionita, C N; Bednarek, D R; Rudin, S

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm × 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  13. Region-of-interest cone beam computed tomography (ROI CBCT) with a high resolution CMOS detector

    NASA Astrophysics Data System (ADS)

    Jain, A.; Takemoto, H.; Silver, M. D.; Nagesh, S. V. S.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Cone beam computed tomography (CBCT) systems with rotational gantries that have standard flat panel detectors (FPD) are widely used for the 3D rendering of vascular structures using Feldkamp cone beam reconstruction algorithms. One of the inherent limitations of these systems is limited resolution (<3 lp/mm). There are systems available with higher resolution but their small FOV limits them to small animal imaging only. In this work, we report on region-of-interest (ROI) CBCT with a high resolution CMOS detector (75 μm pixels, 600 μm HR-CsI) mounted with motorized detector changer on a commercial FPD-based C-arm angiography gantry (194 μm pixels, 600 μm HL-CsI). A cylindrical CT phantom and neuro stents were imaged with both detectors. For each detector a total of 209 images were acquired in a rotational protocol. The technique parameters chosen for the FPD by the imaging system were used for the CMOS detector. The anti-scatter grid was removed and the incident scatter was kept the same for both detectors with identical collimator settings. The FPD images were reconstructed for the 10 cm x10 cm FOV and the CMOS images were reconstructed for a 3.84 cm x 3.84 cm FOV. Although the reconstructed images from the CMOS detector demonstrated comparable contrast to the FPD images, the reconstructed 3D images of the neuro stent clearly showed that the CMOS detector improved delineation of smaller objects such as the stent struts (~70 μm) compared to the FPD. Further development and the potential for substantial clinical impact are suggested.

  14. An online, energy-resolving beam profile detector for laser-driven proton beams

    SciTech Connect

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U.; Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P.; Karsch, L.

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  15. Online optimization of storage ring nonlinear beam dynamics

    DOE PAGES

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  16. SU-E-J-69: Evaluation of the Lens Dose On the Cone Beam IGRT Procedures

    SciTech Connect

    Palomo-Llinares, R; Gimeno-Olmos, J; Carmona Meseguer, V; Lliso-Valverde, F; Candela-Juan, C; Perez-Calatayud, J; Pujades, M; Ballester, F

    2014-06-01

    Purpose: With the establishment of the IGRT as a standard technique, the extra dose that is given to the patients should be taken into account. Furthermore, it has been a recent decrease of the dose threshold in the lens, reduced to 0.5 Gy (ICRP ref 4825-3093-1464 on 21st April, 2011).The purpose of this work was to evaluate the extra dose that the lens is receive due to the Cone-Beam (CBCT) location systems in Head-and-Neck treatments. Methods: The On-Board Imaging (OBI) v 1.5 of the two Varian accelerators, one Clinac iX and one True Beam, were used to obtain the dose that this OBI version give to the lens in the Head-and-Neck location treatments. All CBCT scans were acquired with the Standard Dose Head protocol (100 kVp, 80 mA, 8 ms and 200 degree of rotation).The measurements were taken with thermoluminescence (TLD) EXTRAD (Harshaw) dosimeters placed in an anthropomorphic phantom over the eye and under 3 mm of bolus material to mimic the lens position. The center of the head was placed at the isocenter. To reduce TLD energy dependence, they were calibrated at the used beam quality. Results: The average lens dose at the lens in the OBI v 1.5 systems of the Clinac iX and the True Beam is 0.071 and 0.076 cGy/CBCT, respectively. Conclusions: The extra absorbed doses that receive the eye lenses due to one CBCT acquisition with the studied protocol is far below the new ICRP recommended threshold for the lens. However, the addition effect of several CBCT acquisition during the whole treatment should be taken into account.

  17. A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.

  18. The use of cone beam computed tomography for the assessment of trichorhinophalangeal syndrome, type I – a case report

    PubMed Central

    Ghoneima, Ahmed; Sachdeva, Kanwar; Hartsfield, James; Weaver, David; Kula, Katherine

    2016-01-01

    Trichorhinophalangeal syndrome type I is a rare autosomal dominant disorder characterized by cone-shaped epiphysis, sparse fine hair, pear-shaped nose and variable growth retardation. The typical craniofacial features include thin upper lip, elongated philtrum, large outstanding ears, shortened posterior facial height associated with short mandibular ramus and reduced and superiorly deflected posterior cranial base. This report describes a 17-year-old male patient with trichorhinophalangeal syndrome type I and a detailed description of the craniofacial radiographic findings, including the use of cone beam computed tomography images for determination of the airway and temporomandibular joint discrepancies. PMID:23524547

  19. Dose-guided radiation therapy with megavoltage cone-beam CT.

    PubMed

    Chen, J; Morin, O; Aubin, M; Bucci, M K; Chuang, C F; Pouliot, J

    2006-09-01

    Recent advances in fractionated external beam radiation therapy have increased our ability to deliver radiation doses that conform more tightly to the tumour volume. The steeper dose gradients delivered in these treatments make it increasingly important to set precisely the positions of the patient and the internal organs. For this reason, considerable research now focuses on methods using three-dimensional images of the patient on the treatment table to adapt either the patient position or the treatment plan, to account for variable organ locations. In this article, we briefly review the different adaptive methods being explored and discuss a proposed dose-guided radiation therapy strategy that adapts the treatment for future fractions to compensate for dosimetric errors from past fractions. The main component of this strategy is a procedure to reconstruct the dose delivered to the patient based on treatment-time portal images and pre-treatment megavoltage cone-beam computed tomography (MV CBCT) images of the patient. We describe the work to date performed to develop our dose reconstruction procedure, including the implementation of a MV CBCT system for clinical use, experiments performed to calibrate MV CBCT for electron density and to use the calibrated MV CBCT for dose calculations, and the dosimetric calibration of the portal imager. We also present an example of a reconstructed patient dose using a preliminary reconstruction program and discuss the technical challenges that remain to full implementation of dose reconstruction and dose-guided therapy.

  20. Quality assurance for the geometric accuracy of cone-beam CT guidance in radiation therapy.

    PubMed

    Bissonnette, Jean-Pierre; Moseley, Doug; White, Elizabeth; Sharpe, Michael; Purdie, Tom; Jaffray, David A

    2008-01-01

    The introduction of volumetric X-ray image-guided radiotherapy systems allows improved management of geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, we propose a daily quality assurance (QA) program for cone-beam computed tomography (CBCT) integrated with a linear accelerator. The image-guided system used in this work combines a linear accelerator with conventional X-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis. This article focuses on daily QA protocols germane to geometric accuracy of the CBCT systems and proposes tolerance levels on the basis of more than 3 years of experience with seven CBCT systems used in our clinic. Monthly geometric calibration tests demonstrate the long-term stability of the flex movements, which are reproducible within +/-0.5 mm (95% confidence interval). The daily QA procedure demonstrates that, for rigid phantoms, the accuracy of the image-guided process can be within 1 mm on average, with a 99% confidence interval of +/-2 mm.

  1. Fractionated changes in prostate cancer radiotherapy using cone-beam computed tomography

    SciTech Connect

    Huang, Tzung-Chi; Chou, Kuei-Ting; Yang, Shih-Neng; Chang, Chih-Kai; Liang, Ji-An; Zhang, Geoffrey

    2015-10-01

    The high mobility of the bladder and the rectum causes uncertainty in radiation doses prescribed to patients with prostate cancer who undergo radiotherapy (RT) multifraction treatments. The purpose of this study was to estimate the dose received by the bladder, rectum, and prostate from multifraction treatments using daily cone-beam computed tomography (CBCT). Overall, 28 patients with prostate cancer who planned to receive radiation treatments were enrolled in the study. The acquired CBCT before the treatment delivery was registered with the planning CT to map the dose distribution used in the treatment plan for estimating the received dose during clinical treatment. For all 28 patients with 112 data sets, the mean percentage differences (± standard deviation) in the volume and radiation dose were 44% (± 41) and 18% (± 17) for the bladder, 20% (± 21) and 2% (± 2) for the prostate, and 36% (± 29) and 22% (± 15) for the rectum, respectively. Substantial differences between the volumes and radiation dose and those specified in treatment plans were observed. Besides the use of image-guided RT to improve patient setup accuracy, further consideration of large changes in bladder and rectum volumes is strongly suggested when using external beam radiation for prostate cancer.

  2. Hybrid simulation of scatter intensity in industrial cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Thierry, R.; Miceli, A.; Hofmann, J.; Flisch, A.; Sennhauser, U.

    2009-01-01

    A cone-beam computed tomography (CT) system using a 450 kV X-ray tube has been developed to challenge the three-dimensional imaging of parts of the automotive industry in short acquisition time. Because the probability of detecting scattered photons is high regarding the energy range and the area of detection, a scattering correction becomes mandatory for generating reliable images with enhanced contrast detectability. In this paper, we present a hybrid simulator for the fast and accurate calculation of the scattering intensity distribution. The full acquisition chain, from the generation of a polyenergetic photon beam, its interaction with the scanned object and the energy deposit in the detector is simulated. Object phantoms can be spatially described in form of voxels, mathematical primitives or CAD models. Uncollided radiation is treated with a ray-tracing method and scattered radiation is split into single and multiple scattering. The single scattering is calculated with a deterministic approach accelerated with a forced detection method. The residual noisy signal is subsequently deconvoluted with the iterative Richardson-Lucy method. Finally the multiple scattering is addressed with a coarse Monte Carlo (MC) simulation. The proposed hybrid method has been validated on aluminium phantoms with varying size and object-to-detector distance, and found in good agreement with the MC code Geant4. The acceleration achieved by the hybrid method over the standard MC on a single projection is approximately of three orders of magnitude.

  3. Cone beam computed tomography in paediatric dentistry: overview of recent literature.

    PubMed

    Aps, J K M

    2013-06-01

    The use of cone beam computed tomography (CBCT) in paediatric dentistry has been mentioned in numerous publications and case reports. The indications for the use of CBCT in paediatric dentistry, however, have not yet been properly addressed. On the other hand, the three basic principles of radiation protection (justification, limitation and optimisation) should suffice. A review of the current literature was used to assess the indications and contra-indications for the use of CBCT in paediatric dentistry. Paramount is the fact that CBCT generates a higher effective dose to the tissues than traditional dental radiographic exposures do. The effective radiation dose should not be underestimated, especially not in children, who are much more susceptible to stochastic biological effects. The thyroid gland in particular should be kept out of the primary beam as much as possible. As with any other radiographical technique, routine use of CBCT is not acceptable clinical practice. CBCT certainly has a place in paediatric dentistry, but its use must be justified on a patient case individual basis.

  4. Assessment of the effective doses from two dental cone beam CT devices

    PubMed Central

    Schilling, R; Geibel, M-A

    2013-01-01

    Objectives: This study compares the effective dose for different fields of view (FOVs), resolutions and X-ray parameters from two cone beam CT units: the KaVo 3D (three-dimensional) eXam and the KaVo Pan eXam Plus 3D (KaVo Dental, Biberach, Germany). Methods: Measurements were made using thermoluminescent dosemeter chips in a radiation analog dosimetry head and neck phantom. The calculations of effective doses are based on the ICRP 60 and ICRP 103 recommendations of the International Commission on Radiological Protection. Results: Effective doses from the 3D eXam ranged between 32.8 µSv and 169.8 µSv, and for the Pan eXam Plus effective doses ranged between 40.2 µSv and 183.7 µSv; these were measured using ICRP 103 weighting factors in each case. The increase in effective dose between ICRP 60 and ICRP 103 recommendations averaged 157% for all measurements. Conclusions: Effective doses can be reduced significantly with the choice of lower resolutions and mAs settings as well as smaller FOVs to avoid tissues sensitive to radiation being inside the direct beam. Larger FOVs do not necessarily lead to higher effective doses. PMID:23420855

  5. Assessment of the effective doses from two dental cone beam CT devices.

    PubMed

    Schilling, R; Geibel, M-A

    2013-01-01

    This study compares the effective dose for different fields of view (FOVs), resolutions and X-ray parameters from two cone beam CT units: the KaVo 3D (three-dimensional) eXam and the KaVo Pan eXam Plus 3D (KaVo Dental, Biberach, Germany). Measurements were made using thermoluminescent dosemeter chips in a radiation analog dosimetry head and neck phantom. The calculations of effective doses are based on the ICRP 60 and ICRP 103 recommendations of the International Commission on Radiological Protection. Effective doses from the 3D eXam ranged between 32.8 µSv and 169.8 µSv, and for the Pan eXam Plus effective doses ranged between 40.2 µSv and 183.7 µSv; these were measured using ICRP 103 weighting factors in each case. The increase in effective dose between ICRP 60 and ICRP 103 recommendations averaged 157% for all measurements. Effective doses can be reduced significantly with the choice of lower resolutions and mAs settings as well as smaller FOVs to avoid tissues sensitive to radiation being inside the direct beam. Larger FOVs do not necessarily lead to higher effective doses.

  6. X-Ray Scatter Correction on Soft Tissue Images for Portable Cone Beam CT.

    PubMed

    Aootaphao, Sorapong; Thongvigitmanee, Saowapak S; Rajruangrabin, Jartuwat; Thanasupsombat, Chalinee; Srivongsa, Tanapon; Thajchayapong, Pairash

    2016-01-01

    Soft tissue images from portable cone beam computed tomography (CBCT) scanners can be used for diagnosis and detection of tumor, cancer, intracerebral hemorrhage, and so forth. Due to large field of view, X-ray scattering which is the main cause of artifacts degrades image quality, such as cupping artifacts, CT number inaccuracy, and low contrast, especially on soft tissue images. In this work, we propose the X-ray scatter correction method for improving soft tissue images. The X-ray scatter correction scheme to estimate X-ray scatter signals is based on the deconvolution technique using the maximum likelihood estimation maximization (MLEM) method. The scatter kernels are obtained by simulating the PMMA sheet on the Monte Carlo simulation (MCS) software. In the experiment, we used the QRM phantom to quantitatively compare with fan-beam CT (FBCT) data in terms of CT number values, contrast to noise ratio, cupping artifacts, and low contrast detectability. Moreover, the PH3 angiography phantom was also used to mimic human soft tissues in the brain. The reconstructed images with our proposed scatter correction show significant improvement on image quality. Thus the proposed scatter correction technique has high potential to detect soft tissues in the brain.

  7. A Method to Improve Electron Density Measurement of Cone-Beam CT Using Dual Energy Technique

    PubMed Central

    Men, Kuo; Dai, Jian-Rong; Li, Ming-Hui; Chen, Xin-Yuan; Zhang, Ke; Tian, Yuan; Huang, Peng; Xu, Ying-Jie

    2015-01-01

    Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device. Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images. Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously. Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation. PMID:26346510

  8. Interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme

    NASA Astrophysics Data System (ADS)

    Saedjalil, N.; Mehrangiz, M.; Jafari, S.; Ghasemizad, A.

    2016-06-01

    In this paper, the interaction of a self-focused laser beam with a DT fusion target in a plasma-loaded cone-guided ICF scheme has been presented. We propose here to merge a plasma-loaded cone with the precompressed DT target in order to strongly focus the incident laser beam on the core to improve the fusion gain. The WKB approximation is used to derive a differential equation that governs the evolution of beamwidth of the incident laser beam with the distance of propagation in the plasma medium. The effects of initial plasma and laser parameters, such as initial plasma electron temperature, initial radius of the laser beam, initial laser beam intensity and plasma density, on self-focusing and defocusing of the Gaussian laser beam have been studied. Numerical results indicate that with increasing the plasma frequency (or plasma density) in the cone, the laser beam will be self-focused noticeably, while for a thinner laser beam (with small radius), it will diverge as propagate in the cone. By evaluating the energy deposition of the relativistic electron ignitors in the fuel, the importance of electron transportation in the cone-attached shell was demonstrated. Moreover, by lessening the least energy needed for ignition, the electrons coupling with the pellet enhances. Therefore, it increases the fusion efficiency. In this scheme, with employing a plasma-loaded cone, the fusion process improves without needing an ultrahigh-intensity laser beam in a conventional ICF.

  9. Algorithm for X-ray scatter, beam-hardening, and beam profile correction in diagnostic (kilovoltage) and treatment (megavoltage) cone beam CT.

    PubMed

    Maltz, Jonathan S; Gangadharan, Bijumon; Bose, Supratik; Hristov, Dimitre H; Faddegon, Bruce A; Paidi, Ajay; Bani-Hashemi, Ali R

    2008-12-01

    Quantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow. Scatter kernel superposition (SKS) methods offer a balance between accuracy and computational practicality. We show how a single SKS algorithm can be employed to correct both kilovoltage (kV) energy (diagnostic) and megavoltage (MV) energy (treatment) X-ray images. Using MC models of kV and MV imaging systems, we map intensities recorded on an amorphous silicon flat panel detector to water-equivalent thicknesses (WETs). Scattergrams are derived from acquired projection images using scatter kernels indexed by the local WET values and are then iteratively refined using a scatter magnitude bounding scheme that allows the algorithm to accommodate the very high scatter-to-primary ratios encountered in kV imaging. The algorithm recovers radiological thicknesses to within 9% of the true value at both kV and megavolt energies. Nonuniformity in CT reconstructions of homogeneous phantoms is reduced by an average of 76% over a wide range of beam energies and phantom geometries.

  10. Direct cone-beam cardiac reconstruction algorithm with cardiac banding artifact correction

    SciTech Connect

    Taguchi, Katsuyuki; Chiang, Beshan S.; Hein, Ilmar A.

    2006-02-15

    Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multi-planar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A {beta}-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction.

  11. Flat panel detector-based cone-beam volume CT angiography imaging: system evaluation.

    PubMed

    Ning, R; Chen, B; Yu, R; Conover, D; Tang, X; Ning, Y

    2000-09-01

    Preliminary evaluation of recently developed large-area flat panel detectors (FPDs) indicates that FPDs have some potential advantages: compactness, absence of geometric distortion and veiling glare with the benefits of high resolution, high detective quantum efficiency (DQE), high frame rate and high dynamic range, small image lag (< 1%), and excellent linearity (approximately 1%). The advantages of the new FPD make it a promising candidate for cone-beam volume computed tomography (CT) angiography (CBVCTA) imaging. The purpose of this study is to characterize a prototype FPD-based imaging system for CBVCTA applications. A prototype FPD-based CBVCTA imaging system has been designed and constructed around a modified GE 8800 CT scanner. This system is evaluated for a CBVCTA imaging task in the head and neck using four phantoms and a frozen rat. The system is first characterized in terms of linearity and dynamic range of the detector. Then, the optimal selection of kVps for CBVCTA is determined and the effect of image lag and scatter on the image quality of the CBVCTA system is evaluated. Next, low-contrast resolution and high-contrast spatial resolution are measured. Finally, the example reconstruction images of a frozen rat are presented. The results indicate that the FPD-based CBVCT can achieve 2.75-lp/mm spatial resolution at 0% modulation transfer function (MTF) and provide more than enough low-contrast resolution for intravenous CBVCTA imaging in the head and neck with clinically acceptable entrance exposure level. The results also suggest that to use an FPD for large cone-angle applications, such as body angiography, further investigations are required.

  12. Comparison measurements of DQE for two flat panel detectors: fluoroscopic detector vs. cone beam CT detector

    NASA Astrophysics Data System (ADS)

    Betancourt Benítez, Ricardo; Ning, Ruola; Conover, David

    2006-03-01

    The physical performance of two flat panel detectors (FPD) has been evaluated using a standard x-ray beam quality set by IEC, namely RQA5. The FPDs evaluated in this study are based on an amorphous silicon photodiode array that is coupled to a thallium-doped Cesium Iodide scintillator and to a thin film transistor (TFT) array. One detector is the PaxScan 2520 that is designed for fluoro imaging, and has a small dynamic range and a large image lag. The other detector is the PaxScan 4030CB that is designed for cone beam CT, and has a large dynamic range (>16-bit), a reduced image lag and many imaging modes. Varian Medical Systems manufactured both detectors. The linearity of the FPDs was investigated by using an ionization chamber and aluminum filtration in order to obtain the beam quality. Since the FPDs are used in fluoroscopic mode, image lag of the FPD was measured in order to investigate its effect on this study, especially its effect on DQE. The spatial resolution of the FPDs was determined by obtaining the pre-sampling modulation transfer function for each detector. A sharp edge was used in accordance to IEC 62220-1. Next, the Normalized Noise Power Spectrum (NNPS) was calculated for various exposures levels at RQA5 radiation quality. Finally, the DQE of each FPD was obtained with a modified version of the international standard set by IEC 62220-1. The results show that the physical performance in DQE and MTF of the PaxScan 4030CB is superior to that of PaxScan2520.

  13. Evaluating the image quality of cone beam CT acquired during rotational delivery

    PubMed Central

    Maria Das, K J; Maria Midunvaleja, K; Gowtham Raj, D; Agarwal, Arpita; Velmurugan, J; Kumar, Shaleen

    2015-01-01

    Objective: The aim of this work was to evaluate the quality of kilovoltage (kV) cone beam CT (CBCT) images acquired during arc delivery. Methods: Arc plans were delivered on a Catphan® 600 phantom (The Phantom Laboratory Inc., Salem, NY), and kV CBCT images were acquired during the treatment. The megavoltage (MV) scatter effect on kV CBCT image quality was evaluated using parameters such as Hounsfield unit (HU) accuracy, spatial resolution, contrast-to-noise ratio (CNR) and spatial non-uniformity (SNU). These CBCT images were compared with reference scans acquired with the same acquisition parameters without MV “beam on”. This evaluation was carried out for different photon beams (6 and 15 MV), arc types (half vs full arc), static field sizes (10 × 10 and 25 × 25 cm2) and source-to-imager distances (SID) (150 and 170 cm). Results and Conclusion: HU accuracy, CNR and SNU were considerably affected by MV scatter, and this effect was increased with increasing field size and decreasing photon energy, whereas the spatial resolution was almost unchanged. The MV scatter effect was observed to be more for full-rotation arc delivery than for half-arc delivery. In addition, increasing the SID resulted in decreased MV scatter effect and improved the image quality. Advances in knowledge: Nowadays, volumetric modulated arc therapy (VMAT) is increasingly used in clinics, and this arc therapy enables us to acquire CBCT imaging simultaneously. But, the main issue of concurrent imaging is the “MV scatter” effect on CBCT imaging. This study aims to experimentally quantify the effect of MV scatter on CBCT image quality. PMID:26226396

  14. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  15. Lipiodol: A Potential Direct Surrogate for Cone-Beam Computed Tomography Image Guidance in Radiotherapy of Liver Tumor

    SciTech Connect

    Yue Jinbo; Sun Xindong; Cai Jing; Yin Fangfang; Yin Yong; Zhu Jian; Lu Jie; Liu Tonghai; Yu Jinming; Shi Xuetao; Song Jinlong

    2012-02-01

    Purpose: To investigate the feasibility of using lipiodol as a direct surrogate for target localization using cone-beam CT (CBCT) image guidance in radiotherapy (RT) of patients with unresectable liver tumors after transarterial chemoembolization. Methods and Materials: Forty-six patients with an unresectable solitary liver tumor were enrolled for RT using active breathing control (ABC) and CBCT image guidance after transarterial chemoembolization. Each patient had pre- and posttreatment CBCT in the first 10 fractions of treatment. Lipiodol retention was evaluated using daily CBCT scans, and volume of lipiodol retention in the liver was calculated and compared between planning CT and post-RT CT. Influence of lipiodol on dosimetry was evaluated by measuring doses using an ion chamber with and without the presence of lipiodol. Margin analysis was performed on the basis of both inter- and intrafractional target localization errors. Results: Twenty-eight patients successfully completed the study. The shape and size of lipiodol retention did not vary substantially during the course of treatment. The mean Dice similarity coefficient for the lipiodol volume in pretreatment CT and that in posttreatment CT was 0.836 (range, 0.817-0.885). The maximum change (ratio of the lipiodol volume in pretreatment CT to that in posttreatment CT) was 1.045. The mean dose changes with the presence of <10 mL lipiodol were -1.44% and 0.13% for 6 MV and 15 MV, respectively. With ABC and online CBCT image guidance, clinical target volume-planning target volume margins were determined to be 2.5 mm in the mediolateral direction, 2.9 mm in the anteroposterior direction, and 4.0 mm in the craniocaudal direction. Conclusions: Lipiodol could be used as a direct surrogate for CBCT image guidance to improve the localization accuracy for RT of liver tumors. Combination of ABC and CBCT image guidance with lipiodol can potentially reduce the clinical target volume-planning target volume margin.

  16. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    NASA Astrophysics Data System (ADS)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  17. Task-driven image acquisition and reconstruction in cone-beam CT

    PubMed Central

    Gang, Grace J.; Stayman, J. Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H.

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters and in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e., the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  18. Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study

    SciTech Connect

    Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C.

    2011-02-15

    Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms

  19. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  20. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob

    2017-03-01

    The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.

  1. Task-driven image acquisition and reconstruction in cone-beam CT

    NASA Astrophysics Data System (ADS)

    Gang, Grace J.; Webster Stayman, J.; Ehtiati, Tina; Siewerdsen, Jeffrey H.

    2015-04-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d‧) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d‧ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d‧ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  2. Imaging doses in radiation therapy from kilovoltage cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Hyer, Daniel Ellis

    Advances in radiation treatment delivery, such as intensity modulated radiation therapy (IMRT), have made it possible to deliver large doses of radiation with a high degree of conformity. While highly conformal treatments offers the advantage of sparing surrounding normal tissue, this benefit can only be realized if the patient is accurately positioned during each treatment fraction. The need to accurately position the patient has led to the development and use of gantry mounted kilovoltage cone-beam computed tomography (kV-CBCT) systems. These systems are used to acquire high resolution volumetric images of the patient which are then digitally registered with the planning CT dataset to confirm alignment of the patient on the treatment table. While kV-CBCT is a very useful tool for aligning the patient prior to treatment, daily use in a high fraction therapy regimen results in a substantial radiation dose. In order to quantify the radiation dose associated with CBCT imaging, an anthropomorphic phantom representing a 50th percentile adult male and a fiber-optic coupled (FOC) dosimetry system were both constructed as part of this dissertation. These tools were then used to directly measure organ doses incurred during clinical protocols for the head, chest, and pelvis. For completeness, the dose delivered from both the X-ray Volumetric Imager (XVI, Elekta Oncology Systems, Crawley, UK) and the On-Board Imager (OBI, Varian Medical Systems, Palo Alto, CA) were investigated. While this study provided a direct measure of organ doses for estimating risk to the patient, a practical method for estimating organ doses that could be performed with phantoms and dosimeters currently available at most clinics was also desired. To accomplish this goal, a 100 mm pencil ion chamber was used to measure the "cone beam dose index" (CBDI) inside standard CT dose index (CTDI) acrylic phantoms. A weighted CBDI (CBDIw), similar to the weighted CT dose index (CTDIw), was then calculated to

  3. Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed.

    PubMed

    Yoganathan, S A; Maria Das, K J; Mohamed Ali, Shajahan; Agarwal, Arpita; Mishra, Surendra P; Kumar, Shaleen

    2016-01-01

    The purpose of this work was to evaluate the four-dimensional cone beam CT (4DCBCT) imaging with different gantry rotation speed. All the 4DCBCT image acquisitions were carried out in Elekta XVI Symmetry™ system (Elekta AB, Stockholm, Sweden). A dynamic thorax phantom with tumour mimicking inserts of diameter 1, 2 and 3 cm was programmed to simulate the respiratory motion (4 s) of the target. 4DCBCT images were acquired with different gantry rotation speeds (36°, 50°, 75°, 100°, 150° and 200° min(-1)). Owing to the technical limitation of 4DCBCT system, average cone beam CT (CBCT) images derived from the 10 phases of 4DCBCT were used for the internal target volume (ITV) contouring. ITVs obtained from average CBCT were compared with the four-dimensional CT (4DCT). In addition, the image quality of 4DCBCT was also evaluated for various gantry rotation speeds using Catphan(®) 600 (The Phantom Laboratory Inc., Salem, NY). Compared to 4DCT, the average CBCT underestimated the ITV. The ITV deviation increased with increasing gantry speed (-10.8% vs -17.8% for 36° and 200° min(-1) in 3-cm target) and decreasing target size (-17.8% vs -26.8% for target diameter 3 and 1 cm in 200° min(-1)). Similarly, the image quality indicators such as spatial resolution, contrast-to-noise ratio and uniformity also degraded with increasing gantry rotation speed. The impact of gantry rotation speed has to be considered when using 4DCBCT for ITV definition. The phantom study demonstrated that 4DCBCT with slow gantry rotation showed better image quality and less ITV deviation. Usually, the gantry rotation period of Elekta 4DCBCT system is kept constant at 4 min (50° min(-1)) for acquisition, and any attempt of decreasing/increasing the acquisition duration requires careful investigation. In this study, the 4DCBCT images with different gantry rotation speed were evaluated.

  4. Quantification of dental prostheses on cone-beam CT images by the Taguchi method.

    PubMed

    Kuo, Rong-Fu; Fang, Kwang-Ming; Ty, Wong; Hu, Chia Yu

    2016-01-08

    The gray values accuracy of dental cone-beam computed tomography (CBCT) is affected by dental metal prostheses. The distortion of dental CBCT gray values could lead to inaccuracies of orthodontic and implant treatment. The aim of this study was to quantify the effect of scanning parameters and dental metal prostheses on the accuracy of dental cone-beam computed tomography (CBCT) gray values using the Taguchi method. Eight dental model casts of an upper jaw including prostheses, and a ninth prosthesis-free dental model cast, were scanned by two dental CBCT devices. The mean gray value of the selected circular regions of interest (ROIs) were measured using dental CBCT images of eight dental model casts and were compared with those measured from CBCT images of the prosthesis-free dental model cast. For each image set, four consecutive slices of gingiva were selected. The seven factors (CBCTs, occlusal plane canting, implant connection, prosthesis position, coping material, coping thickness, and types of dental restoration) were used to evaluate scanning parameter and dental prostheses effects. Statistical methods of signal to noise ratio (S/N) and analysis of variance (ANOVA) with 95% confidence were applied to quantify the effects of scanning parameters and dental prostheses on dental CBCT gray values accuracy. For ROIs surrounding dental prostheses, the accuracy of CBCT gray values were affected primarily by implant connection (42%), followed by type of restoration (29%), prostheses position (19%), coping material (4%), and coping thickness (4%). For a single crown prosthesis (without support of implants) placed in dental model casts, gray value differences for ROIs 1-9 were below 12% and gray value differences for ROIs 13-18 away from pros-theses were below 10%. We found the gray value differences set to be between 7% and 8% for regions next to a single implant-supported titanium prosthesis, and between 46% and 59% for regions between double implant

  5. Imaging doses from the Elekta Synergy X-ray cone beam CT system.

    PubMed

    Amer, A; Marchant, T; Sykes, J; Czajka, J; Moore, C

    2007-06-01

    The Elekta Synergy is a radiotherapy treatment machine with integrated kilovoltage (kV) X-ray imaging system capable of producing cone beam CT (CBCT) images of the patient in the treatment position. The aim of this study is to assess the additional imaging dose. Cone beam CT dose index (CBDI) is introduced and measured inside standard CTDI phantoms for several sites (head: 100 kV, 38 mAs, lung: 120 kV, 152 mAs and pelvis: 130 kV, 456 mAs). The measured weighted doses were compared with thermoluminescent dosimeter (TLD) measurements at various locations in a Rando phantom and at patients' surfaces. The measured CBDIs in-air at the isocentre were 9.2 mGy 100 mAs(-1), 7.3 mGy 100 mAs(-1) and 5.3 mGy 100 mAs(-1) for 130 kV, 120 kV and 100 kV, respectively. The body phantom weighted CBDI were 5.5 mGy 100 mAs(-1) and 3.8 mGy 100 mAs(-1 )for 130 kV and 120 kV. The head phantom weighted CBDI was 4.3 mGy 100 mAs(-1) for 100 kV. The weighted doses for the Christie Hospital CBCT imaging techniques were 1.6 mGy, 6 mGy and 22 mGy for the head, lung and pelvis. The measured CBDIs were used to estimate the total effective dose for the Synergy system using the ImPACT CT Patient Dosimetry Calculator. Measured CBCT doses using the Christie Hospital protocols are low for head and lung scans whether compared with electronic portal imaging (EPI), commonly used for treatment verification, or single and multiple slice CT. For the pelvis, doses are similar to EPI but higher than CT. Repeated use of CBCT for treatment verification is likely and hence the total patient dose needs to be carefully considered. It is important to consider further development of low dose CBCT techniques to keep additional doses as low as reasonably practicable.

  6. Investigation of gated cone-beam CT to reduce respiratory motion blurring

    PubMed Central

    Kincaid, Russell E.; Yorke, Ellen D.; Goodman, Karyn A.; Rimner, Andreas; Wu, Abraham J.; Mageras, Gig S.

    2013-01-01

    Purpose: Methods of reducing respiratory motion blurring in cone-beam CT (CBCT) have been limited to lung where soft tissue contrast is large. Respiration-correlated cone-beam CT uses slow continuous gantry rotation but image quality is limited by uneven projection spacing. This study investigates the efficacy of a novel gated CBCT technique. Methods: In gated CBCT, the linac is programmed such that gantry rotation and kV image acquisition occur within a gate around end expiration and are triggered by an external respiratory monitor. Standard CBCT and gated CBCT scans are performed in 22 patients (11 thoracic, 11 abdominal) and a respiration-correlated CT (RCCT) scan, acquired on a standard CT scanner, from the same day serves as a criterion standard. Image quality is compared by calculating contrast-to-noise ratios (CNR) for tumors in lung, gastroesophageal junction (GEJ) tissue, and pancreas tissue, relative to surrounding background tissue. Congruence between the object in the CBCT images and that in the RCCT is measured by calculating the optimized normalized cross-correlation (NCC) following CBCT-to-RCCT rigid registrations. Results: Gated CBCT results in reduced motion artifacts relative to standard CBCT, with better visualization of tumors in lung, and of abdominal organs including GEJ, pancreas, and organs at risk. CNR of lung tumors is larger in gated CBCT in 6 of 11 cases relative to standard CBCT. A paired two-tailed t-test of lung patient mean CNR shows no statistical significance (p = 0.133). In 4 of 5 cases where CNR is not increased, lung tumor motion observed in RCCT is small (range 1.3–5.2 mm). CNR is increased and becomes statistically significant for 6 out of 7 lung patients with > 5 mm tumor motion (p = 0.044). CNR is larger in gated CBCT in 5 of 7 GEJ cases and 3 of 4 pancreas cases (p = 0.082 and 0.192). Gated CBCT yields improvement with lower NCC relative to standard CBCT in 10 of 11, 7 of 7, and 3 of 4 patients for lung, GEJ, and pancreas

  7. Task-driven image acquisition and reconstruction in cone-beam CT.

    PubMed

    Gang, Grace J; Stayman, J Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H

    2015-04-21

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ± 30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the tilt

  8. Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed

    PubMed Central

    Maria Das, K J; Mohamed Ali, Shajahan; Agarwal, Arpita; Mishra, Surendra P; Kumar, Shaleen

    2016-01-01

    Objective: The purpose of this work was to evaluate the four-dimensional cone beam CT (4DCBCT) imaging with different gantry rotation speed. Methods: All the 4DCBCT image acquisitions were carried out in Elekta XVI Symmetry™ system (Elekta AB, Stockholm, Sweden). A dynamic thorax phantom with tumour mimicking inserts of diameter 1, 2 and 3 cm was programmed to simulate the respiratory motion (4 s) of the target. 4DCBCT images were acquired with different gantry rotation speeds (36°, 50°, 75°, 100°, 150° and 200° min−1). Owing to the technical limitation of 4DCBCT system, average cone beam CT (CBCT) images derived from the 10 phases of 4DCBCT were used for the internal target volume (ITV) contouring. ITVs obtained from average CBCT were compared with the four-dimensional CT (4DCT). In addition, the image quality of 4DCBCT was also evaluated for various gantry rotation speeds using Catphan® 600 (The Phantom Laboratory Inc., Salem, NY). Results: Compared to 4DCT, the average CBCT underestimated the ITV. The ITV deviation increased with increasing gantry speed (−10.8% vs −17.8% for 36° and 200° min−1 in 3-cm target) and decreasing target size (−17.8% vs −26.8% for target diameter 3 and 1 cm in 200° min−1). Similarly, the image quality indicators such as spatial resolution, contrast-to-noise ratio and uniformity also degraded with increasing gantry rotation speed. Conclusion: The impact of gantry rotation speed has to be considered when using 4DCBCT for ITV definition. The phantom study demonstrated that 4DCBCT with slow gantry rotation showed better image quality and less ITV deviation. Advances in knowledge: Usually, the gantry rotation period of Elekta 4DCBCT system is kept constant at 4 min (50° min−1) for acquisition, and any attempt of decreasing/increasing the acquisition duration requires careful investigation. In this study, the 4DCBCT images with different gantry rotation speed were evaluated. PMID:26916281

  9. Respiratory motion guided four dimensional cone beam computed tomography: encompassing irregular breathing

    NASA Astrophysics Data System (ADS)

    O'Brien, Ricky T.; Cooper, Benjamin J.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.

    2014-02-01

    Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient’s respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s2, a velocity up to 100°/s and the acquisition of 80 projections per second

  10. Clinical introduction of image lag correction for a cone beam CT system

    SciTech Connect

    Stankovic, Uros; Ploeger, Lennert S.; Sonke, Jan-Jakob Herk, Marcel van

    2016-03-15

    Purpose: Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate the effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Methods: Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors’ in-house developed clinical CBCT reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Results: Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to

  11. Local filtration based scatter correction for cone-beam CT using primary modulation.

    PubMed

    Zhu, Lei

    2016-11-01

    Excessive scatter contamination fundamentally limits the image quality of cone-beam CT (CBCT), hindering its quantitative use in clinical applications. The author has previously proposed an effective scatter correction method for CBCT using primary modulation. A Fourier transform-based algorithm (FTPM) was implemented to estimate scatter from modulated projections, with a few limitations including the assumption of uniform modulation frequency and magnitude that becomes less accurate in the presence of beam-hardening and other nonideal effects. This paper aims to overcome the above drawbacks by developing a new algorithm for the primary modulation method with improved accuracy and reliability. Incident x-ray intensities for each detector pixel with and without the interception of the modulator blocker are estimated from a modulated flat-field image. A new signal relationship is then developed to obtain a first scatter estimate from a modulated projection using a spatially varying modulation distribution. The method empirically adjusts the effective modulation magnitude for each projection ray to account for the beam-hardening effects. Estimated scatter signals with high expected errors are discarded in the generation of the final scatter distribution. The author proposes a technique of local filtration to accelerate major portions of the signal processing, and the new algorithm is referred to as local filtration based primary modulation (LFPM). The study on the Catphan® 600 phantom shows that LFPM effectively removes scatter-induced cupping artifacts on CBCT images and reduces the CT image error from 222 to 15 HU. In addition, the image contrast on eight contrast rods of the phantom is enhanced by a factor of 2 on average. On an anthropomorphic head phantom, LFPM reduces the CT image error from 153 to 18 HU and eliminates the streak artifacts observed on the result of FTPM with substantially improved image uniformity. On the Rando® phantom, LFPM reduces the CT

  12. Impacted lower third molar fused with a supernumerary tooth--diagnosis and treatment planning using cone-beam computed tomography.

    PubMed

    Ferreira-Junior, Osny; de Avila, Luciana Dorigatti; Sampieri, Marcelo Bonifácio da Silva; Dias-Ribeiro, Eduardo; Chen, Wei-liang; Fan, Song

    2009-12-01

    This paper reported a case of fusion between an impacted third molar and a supernumerary tooth, in which a surgical intervention was carried out, with the objective of removing the dental elements. The panoramic radiography was complemented by the Donovan's radiographic technique; but because of the proximity of the dental element to the mandibular ramus, it was not possible to have a final fusion diagnosis. Hence, the Cone-Beam Computed Tomography-which provides precise three-dimensional information-was used to determinate the fusion diagnosis and also to help in the surgical planning. In this case report we observed that the periapical, occlusal and panoramic were not able to show details which could only be examined through the cone-beam computed tomography.

  13. Small peripheral developing odontoma of the maxilla in a 3-year-old patient depicted on cone-beam tomograms.

    PubMed

    Friedrich, Reinhard E; Fuhrmann, Andreas; Scheuer, Hanna A; Zustin, Jozef

    2010-01-01

    A 3-year-old male patient was referred to the Maxillofacial Surgery Clinic due to a painless swelling of the right palatal region. Conventional radiographs revealed no alteration of the dentition and did not delineate a lesion in the region of interest. Cone-beam tomography depicted small radiopaque, extraosseous deposits inside the palatal space. Histological examination revealed a minute mixed epithelial-mesenchymal lesion of odontogenic origin. We made the diagnosis of a peripheral developing odontoma, taking into consideration the components and arrangements of structures of the lesion. Early intervention is advisable to prevent these odontogenic lesions from eventually deforming the jaw and displacing adjacent teeth. Cone-beam tomography was a valuable pre-operative diagnostic tool to assess the lesion as being composed in part of hard tissue.

  14. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography in modern radiation therapy: A review

    PubMed Central

    Srinivasan, Kavitha; Mohammadi, Mohammad; Shepherd, Justin

    2014-01-01

    Summary The use of Cone-beam Computed Tomography (CBCT) in radiotherapy is increasing due to the widespread implementation of kilovoltage systems on the currently available linear accelerators. Cone beam CT acts as an effective Image-Guided Radiotherapy (IGRT) tool for the verification of patient position. It also opens up the possibility of real-time re-optimization of treatment plans for Adaptive Radiotherapy (ART). This paper reviews the most prominent applications of CBCT (linac-mounted) in radiation therapy, focusing on CBCT-based planning and dose calculation studies. This is followed by a concise review of the main issues associated with CBCT, such as imaging artifacts, dose and image quality. It explores how medical physicists and oncologists can best apply CBCT for therapeutic applications. PMID:25006356

  15. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  16. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    PubMed

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  17. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    PubMed Central

    Glaser, Adam K.; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2015-01-01

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water. PMID:26133613

  18. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.

    PubMed

    Yang, Ching-Ching

    2016-01-01

    Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.

  19. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    PubMed Central

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry

  20. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy

    SciTech Connect

    Bissonnette, Jean-Pierre; Moseley, Douglas J.; Jaffray, David A.

    2008-05-15

    The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.

  1. A quality assurance program for image quality of cone-beam CT guidance in radiation therapy.

    PubMed

    Bissonnette, Jean-Pierre; Moseley, Douglas J; Jaffray, David A

    2008-05-01

    The clinical introduction of volumetric x-ray image-guided radiotherapy systems necessitates formal commissioning of the hardware and image-guided processes to be used and drafts quality assurance (QA) for both hardware and processes. Satisfying both requirements provides confidence on the system's ability to manage geometric variations in patient setup and internal organ motion. As these systems become a routine clinical modality, the authors present data from their QA program tracking the image quality performance of ten volumetric systems over a period of 3 years. These data are subsequently used to establish evidence-based tolerances for a QA program. The volumetric imaging systems used in this work combines a linear accelerator with conventional x-ray tube and an amorphous silicon flat-panel detector mounted orthogonally from the accelerator central beam axis, in a cone-beam computed tomography (CBCT) configuration. In the spirit of the AAPM Report No. 74, the present work presents the image quality portion of their QA program; the aspects of the QA protocol addressing imaging geometry have been presented elsewhere. Specifically, the authors are presenting data demonstrating the high linearity of CT numbers, the uniformity of axial reconstructions, and the high contrast spatial resolution of ten CBCT systems (1-2 mm) from two commercial vendors. They are also presenting data accumulated over the period of several months demonstrating the long-term stability of the flat-panel detector and of the distances measured on reconstructed volumetric images. Their tests demonstrate that each specific CBCT system has unique performance. In addition, scattered x rays are shown to influence the imaging performance in terms of spatial resolution, axial reconstruction uniformity, and the linearity of CT numbers.

  2. An investigation into factors affecting electron density calibration for a megavoltage cone-beam CT system.

    PubMed

    Hughes, Jessica; Holloway, Lois C; Quinn, Alexandra; Fielding, Andrew

    2012-09-06

    There is a growing interest in the use of megavoltage cone-beam computed tomography (MV CBCT) data for radiotherapy treatment planning. To calculate accurate dose distributions, knowledge of the electron density (ED) of the tissues being irradiated is required. In the case of MV CBCT, it is necessary to determine a calibration-relating CT number to ED, utilizing the photon beam produced for MV CBCT. A number of different parameters can affect this calibration. This study was undertaken on the Siemens MV CBCT system, MVision, to evaluate the effect of the following parameters on the reconstructed CT pixel value to ED calibration: the number of monitor units (MUs) used (5, 8, 15 and 60 MUs), the image reconstruction filter (head and neck, and pelvis), reconstruction matrix size (256 by 256 and 512 by 512), and the addition of extra solid water surrounding the ED phantom. A Gammex electron density CT phantom containing EDs from 0.292 to 1.707 was imaged under each of these conditions. The linear relationship between MV CBCT pixel value and ED was demonstrated for all MU settings and over the range of EDs. Changes in MU number did not dramatically alter the MV CBCT ED calibration. The use of different reconstruction filters was found to affect the MV CBCT ED calibration, as was the addition of solid water surrounding the phantom. Dose distributions from treatment plans calculated with simulated image data from a 15 MU head and neck reconstruction filter MV CBCT image and a MV CBCT ED calibration curve from the image data parameters and a 15 MU pelvis reconstruction filter showed small and clinically insignificant differences. Thus, the use of a single MV CBCT ED calibration curve is unlikely to result in any clinical differences. However, to ensure minimal uncertainties in dose reporting, MV CBCT ED calibration measurements could be carried out using parameter-specific calibration measurements.

  3. Four-dimensional cone-beam computed tomography using an on-board imager.

    PubMed

    Li, Tianfang; Xing, Lei; Munro, Peter; McGuinness, Christopher; Chao, Ming; Yang, Yong; Loo, Bill; Koong, Albert

    2006-10-01

    On-board cone-beam computed tomography (CBCT) has recently become available to provide volumetric information of a patient in the treatment position, and holds promises for improved target localization and irradiation dose verification. The design of currently available on-board CBCT, however, is far from optimal. Its quality is adversely influenced by many factors, such as scatter, beam hardening, and intra-scanning organ motion. In this work we quantitatively study the influence of organ motion on CBCT imaging and investigate a strategy to acquire high quality phase-resolved [four-dimensional (4D)] CBCT images based on phase binning of the CBCT projection data. An efficient and robust method for binning CBCT data according to the patient's respiratory phase derived in the projection space was developed. The phase-binned projections were reconstructed using the conventional Feldkamp algorithm to yield 4D CBCT images. Both phantom and patient studies were carried out to validate the technique and to optimize the 4D CBCT data acquisition protocol. Several factors that are important to the clinical implementation of the technique, such as the image quality, scanning time, number of projections, and radiation dose, were analyzed for various scanning schemes. The general references drawn from this study are: (i) reliable phase binning of CBCT projections is accomplishable with the aid of external or internal marker and simple analysis of its trace in the projection space, and (ii) artifact-free 4D CBCT images can be obtained without increasing the patient radiation dose as compared to the current 3D CBCT scan.

  4. Robust primary modulation-based scatter estimation for cone-beam CT

    SciTech Connect

    Ritschl, Ludwig; Fahrig, Rebecca; Knaup, Michael; Maier, Joscha; Kachelrieß, Marc

    2015-01-15

    Purpose: Scattered radiation is one of the major problems facing image quality in flat detector cone-beam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. Methods: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation. Results: All reconstructions show strong improvements of image quality. To quantify the results, all images are compared to reference images (ideal simulations and collimated scans). Conclusions: The proposed modulator-based scatter reduction algorithm may open the field of flat detector-based imaging to become a quantitative modality. This may have significant impact on C-arm imaging and on image-guided radiation therapy.

  5. Radiation Dose From Cone Beam Computed Tomography for Image-Guided Radiation Therapy

    SciTech Connect

    Kan, Monica W.K. Leung, Lucullus H.T.; Wong, Wicger; Lam, Nelson

    2008-01-01

    Purpose: To perform a comprehensive study on organ absorbed doses and effective doses from cone beam computed tomography (CBCT) for three different treatment sites. Methods and Materials: An extensive set of dosimetric measurements were performed using a widely used CBCT system, the On-Board Imager (OBI). Measurements were performed using a female anthropomorphic phantom with thermoluminescent dosimeters (TLD). The effective doses to the body and the absorbed doses to 26 organs were reported using two different technical settings, namely, the standard mode and the low-dose mode. The measurements were repeated for three different scan sites: head and neck, chest, and pelvis. Comparisons of patient doses as well as image quality were performed among the standard mode CBCT, low-dose mode CBCT, and fan beam CT. Results: The mean skin doses from standard mode CBCT to head and neck, chest and pelvis were 6.7, 6.4, and 5.4 cGy per scan, respectively. The effective doses to the body from standard mode CBCT for imaging of head and neck, chest, and pelvis were 10.3, 23.7, and 22.7 mSv per scan, respectively. Patient doses from low-dose mode CBCT were approximately one fifth of those from standard mode CBCT. Conclusions: Patient position verification by standard mode CBCT acquired by OBI on a daily basis could increase the secondary cancer risk by up to 2% to 4%. Therefore lower mAs settings for daily CBCT should be considered, especially when bony anatomy is the main interest.

  6. Radiation Dose From Kilovoltage Cone Beam Computed Tomography in an Image-Guided Radiotherapy Procedure

    SciTech Connect

    Ding, George X. Coffey, Charles W.

    2009-02-01

    Purpose: Image-guided radiation therapy has emerged as the new paradigm in radiotherapy. This work is to provide detailed information concerning the additional imaging doses to patients' radiosensitive organs from a kilovoltage cone beam computed tomography (kV CBCT) scan procedure. Methods and Materials: The Vanderbilt-Monte-Carlo-Beam-Calibration (VMCBC; Vanderbilt University, Nashville, TN) algorithm was used to calculate radiation dose to organs resulting from a kV CBCT imaging guidance procedure. Eight patients, including 3 pediatric and 5 adult patients, were investigated. The CBCT scans in both full- and half-fan modes were studied. Results: For a head-and-neck scan in half-fan mode, dose-volume histogram analyses show mean doses of 7 and 8 cGy to the eyes, 5 and 6 cGy to the spinal cord, 5 and 6 cGy to the brain, and 18 and 23 cGy to the cervical vertebrae for an adult and a 29-month-old child, respectively. The dose from a scan in full-fan mode is 10-20% lower than that in half-fan mode. For an abdominal scan, mean doses are 3 and 7 cGy to prostate and 7 and 17 cGy to femoral heads for a large adult patient and a 31-month-old pediatric patient, respectively. Conclusions: Doses to radiosensitive organs can total 300 cGy accrued over an entire treatment course if kV CBCT scans are acquired daily. These findings provide needed data for clinicians to make informed decisions concerning additional imaging doses. The dose to bone is two to four times greater than dose to soft tissue for kV x-rays, which should be considered, especially for pediatric patients.

  7. The influence of bowtie filtration on x-ray photons distribution in cone beam CT

    NASA Astrophysics Data System (ADS)

    Jiang, Shanghai; Feng, Peng; Wei, Biao; He, Peng; Deng, Luzhen; Zhang, Wei

    2015-10-01

    Bowtie filters are used to modulate an incoming x-ray beam as a function of the angle of the x-ray to balance the photon flux on a detector array. Because of their key roles in radiation dose reduction and multi-energy imaging, bowtie filters have attracted a major attention in modern X-ray computed tomography (CT). However, few researches are concerned on the effects of the structure and materials for the bowtie filter in the Cone Beam CT (CBCT). In this study, the influence of bowtie filters' structure and materials on X-ray photons distribution are analyzed using Monte Carlo (MC) simulations by MCNP5 code. In the current model, the phantom was radiated by virtual X-ray source (its' energy spectrum calculated by SpekCalc program) filtered using bowtie, then all photons were collected through array photoncounting detectors. In the process above, two bowtie filters' parameters which include center thickness (B), edge thickness (controlled by A), changed respectively. Two kinds of situation are simulated: 1) A=0.036, B=1, 2, 3, 4, 5, 6mm and the material is aluminum; 2) A=0.016, 0.036, 0.056, 0.076, 0.096, B=2mm and the material is aluminum. All the X-ray photons' distribution are measured through MCNP. The results show that reduction in center thickness and edge thickness can reduce the number of background photons in CBCT. Our preliminary research shows that structure parameters of bowtie filter can influence X-ray photons, furthermore, radiation dose distribution, which provide some evidences in design of bowtie filter for reducing radiation dose in CBCT.

  8. Evaluation of Root Fracture in endodontically treated Teeth using Cone Beam Computed Tomography.

    PubMed

    Tiepo, Mariana; Magrin, Gabriel; Kovalik, Ana C; Marmora, Belkiss; Silva, Milena F; Raitz, Ricardo

    2017-02-01

    Our objective was to perform an in vitro evaluation of root fracture in endodontically treated teeth using two cone beam computed tomography (CBCT) machines. The sample comprised 86 single-rooted human premolars that had been fractured by a universal testing machine. The tomographic images were acquired using an Orthopantomograph OP300(®) and an Orthophos XG 3D(®) and evaluated by three examiners, by means of specific software. The teeth were classified into presence or absence of root fracture, then the root third where the fracture occurred, was determined. With regard to the detection of the fracture, the Kappa statistic was used for intra and interexaminer repro-ducibility at two distinct points in time. Chi-squared test was employed to analyze the sensitivity and specificity of the two tomographs (p < 0.05). The results showed a good or excellent Kappa index between examiners. As for the absolute frequency, the sensitivity (0.6) of the Orthophos XG 3D(®) equipment was superior, while specificity (0.91) was higher with the Orthopantomograph OP300(®). On the receiver operating characteristics curve, moderate performance was found with an accuracy of 0.73 (OrthopantomographOP300(®)) and 0.74 (Orthophos XG 3D(®)) respectively. As far as the location of the root fracture is concerned, moderate agreement was verified using the Kappa statistic (k = 0.56). Although the regular CBCTs represent the imaging examination of choice for assisting root fracture diagnosis in endodontically treated teeth, their performance in this study demonstrated an imprecise diagnosis of fractures in a good many cases, irrespective of the tomography machine used. An early and precise detection of root fractures is of the utmost clinical importance, but the radiopaque and/or metallic filling materials in the CBCT viewing field may generate artifacts, known as the beam-hardening effect, which could compromise root fracture detection.

  9. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Yidong; Armour, Michael; Kang-Hsin Wang, Ken; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  10. Robust primary modulation-based scatter estimation for cone-beam CT

    PubMed Central

    Ritschl, Ludwig; Fahrig, Rebecca; Knaup, Michael; Maier, Joscha; Kachelrieß, Marc

    2015-01-01

    Purpose: Scattered radiation is one of the major problems facing image quality in flat detector cone-beam computed tomography (CBCT). Previously, a new scatter estimation and correction method using primary beam modulation has been proposed. The original image processing technique used a frequency-domain-based analysis, which proved to be sensitive to the accuracy of the modulator pattern both spatially and in amplitude as well as to the frequency of the modulation pattern. In addition, it cannot account for penumbra effects that occur, for example, due to the finite focal spot size and the scatter estimate can be degraded by high-frequency components of the primary image. Methods: In this paper, the authors present a new way to estimate the scatter using primary modulation. It is less sensitive to modulator nonidealities and most importantly can handle arbitrary modulator shapes and changes in modulator attenuation. The main idea is that the scatter estimation can be expressed as an optimization problem, which yields a separation of the scatter and the primary image. The method is evaluated using simulated and experimental CBCT data. The scattering properties of the modulator itself are analyzed using a Monte Carlo simulation. Results: All reconstructions show strong improvements of image quality. To quantify the results, all images are compared to reference images (ideal simulations and collimated scans). Conclusions: The proposed modulator-based scatter reduction algorithm may open the field of flat detector-based imaging to become a quantitative modality. This may have significant impact on C-arm imaging and on image-guided radiation therapy. PMID:25563286

  11. A patient set-up protocol based on partially blocked cone-beam CT.

    PubMed

    Zhu, Lei; Wang, Jing; Xie, Yaoqin; Starman, Jared; Fahrig, Rebecca; Xing, Lei

    2010-04-01

    Three-dimensional x-ray cone-beam CT (CBCT) is being increasingly used in radiation therapy. Since the whole treatment course typically lasts several weeks, the repetitive x-ray imaging results in large radiation dose delivered on the patient. In the current radiation therapy treatment, CBCT is mainly used for patient set-up, and a rigid transformation of the CBCT data from the planning CT data is also assumed. For an accurate rigid registration, it is not necessary to acquire a full 3D image. In this paper, we propose a patient set-up protocol based on partially blocked CBCT. A sheet of lead strips is inserted between the x-ray source and the scanned patient. From the incomplete projection data, only several axial slices are reconstructed and used in the image registration for patient set-up. Since the radiation is partially blocked, the dose delivered onto the patient is significantly reduced, with an additional benefit of reduced scatter signals. The proposed approach is validated using experiments on two anthropomorphic phantoms. As x-ray beam blocking ratio increases, more dose reduction is achieved, while the patient set-up error also increases. To investigate this tradeoff, two lead sheets with different strip widths are implemented, which correspond to radiation dose reduction of approximately 6 and approximately 11, respectively. We compare the registration results using the partially blocked CBCT with those using the regular CBCT. Both lead sheets achieve high patient set-up accuracies. It is seen that, using the lead sheet with radiation dose reduction by a factor of approximately 11, the patient set-up error is still less than 1mm in translation and less than 0.2 degrees in rotation. The comparison of the reconstructed images also shows that the image quality of the illuminated slices in the partially blocked CBCT is much improved over that in the regular CBCT.

  12. Noise suppression in reconstruction of low-Z target megavoltage cone-beam CT images

    SciTech Connect

    Wang Jing; Robar, James; Guan Huaiqun

    2012-08-15

    Purpose: To improve the image contrast-to-noise (CNR) ratio for low-Z target megavoltage cone-beam CT (MV CBCT) using a statistical projection noise suppression algorithm based on the penalized weighted least-squares (PWLS) criterion. Methods: Projection images of a contrast phantom, a CatPhan{sup Registered-Sign} 600 phantom and a head phantom were acquired by a Varian 2100EX LINAC with a low-Z (Al) target and low energy x-ray beam (2.5 MeV) at a low-dose level and at a high-dose level. The projections were then processed by minimizing the PWLS objective function. The weighted least square (WLS) term models the noise of measured projection and the penalty term enforces the smoothing constraints of the projection image. The variance of projection data was chosen as the weight for the PWLS objective function and it determined the contribution of each measurement. An anisotropic quadratic form penalty that incorporates the gradient information of projection image was used to preserve edges during noise reduction. Low-Z target MV CBCT images were reconstructed by the FDK algorithm after each projection was processed by the PWLS smoothing. Results: Noise in low-Z target MV CBCT images were greatly suppressed after the PWLS projection smoothing, without noticeable sacrifice of the spatial resolution. Depending on the choice of smoothing parameter, the CNR of selected regions of interest in the PWLS processed low-dose low-Z target MV CBCT image can be higher than the corresponding high-dose image.Conclusion: The CNR of low-Z target MV CBCT images was substantially improved by using PWLS projection smoothing. The PWLS projection smoothing algorithm allows the reconstruction of high contrast low-Z target MV CBCT image with a total dose of as low as 2.3 cGy.

  13. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    PubMed

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  14. Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography

    PubMed Central

    Yang, Ching-Ching

    2016-01-01

    Purpose Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Methods Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Results Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Conclusions Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice. PMID:26950435

  15. Management of synodontia between dilacerated permanent maxillary central incisor and supernumerary tooth with aid of cone-beam computed tomography

    PubMed Central

    Das, Suroopa; Warhadpande, Manjusha M.; Redij, Saurabh Anil; Sabir, Husain; Shirude, Tushar

    2015-01-01

    A malformed tooth characterized by one or more developmental disturbances is often difficult to treat. When such teeth are present in anterior region, they pose a technical challenge for the clinician to restore esthetics as well as function. This case describes endodontic, surgical, and restorative management of fused and dilacerated maxillary central incisor. Cone-beam computed tomography (CBCT) was used in the present case to aid in understanding of complicated tooth morphology and managing the case successfully. PMID:25829699

  16. Surface analysis of study models generated from OrthoCAD and cone-beam computed tomography imaging.

    PubMed

    Lightheart, Kurtis G; English, Jeryl D; Kau, Chung H; Akyalcin, Sercan; Bussa, Harry I; McGrory, Kathleen R; McGrory, Kevin J

    2012-06-01

    The purpose of this research was to determine the accuracy of digital models generated by cone-beam computed tomography and compare it with that of OrthoCAD models (Cadent, Carlstadt, NJ) for orthodontic diagnosis and treatment planning by using surface area analysis. Two sets of maxillary and mandibular digital models of 30 subjects were obtained. The models were made from impressions scanned with OrthoCAD and by conversion of related cone-beam computed tomography files. Each patient's matched pairs of maxillary and mandibular models were superimposed by using a software program and a best-fit algorithm; surface-to-surface analysis was then performed. The average linear differences between the 2 files at all points on the surfaces were measured, and tolerance levels of 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 mm were set to determine the surface correlation amounts between the 2 files. Additionally, 6 linear measurements from predetermined landmarks were also measured and analyzed. The average maxillary model linear difference was 0.28 to 0.60 mm, whereas the average mandibular model linear difference ranged between 0.34 and 0.61 mm. Greater than a 90% surface correlation was obtained on average at 1.00 mm in the maxillary models and at 1.25 mm in the mandibular models. The mean differences obtained from the linear measurements of the maxillary and mandibular models were 0.071 and 0.018 mm, respectively. Surface-to-surface analysis of OrthoCAD and digital models generated by cone-beam computed tomography pointed to a fair overlap between the protocols. The accuracy of digital models generated by cone-beam computed tomography is adequate for initial diagnosis and treatment planning in orthodontics. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  17. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  18. Conservative Treatment of an Invaginated Maxillary Lateral Incisor with a C-shaped Canal Using Cone-Beam Computed Tomography

    PubMed Central

    Forghani, Maryam; Moghim Farooji, Elaheh; Abuchenari, Javad; Bidar, Maryam; Eslami, Neda

    2015-01-01

    This report describes the non-surgical treatment of an invaginated maxillary lateral incisor with two fused roots. The mesial root had a C-shaped canal, while the distal one had a type III dens invagination. Cone-beam computed tomography (CBCT) was used to help with the diagnosis and treatment decision making. Clinical and radiographic follow-up revealed satisfactory periapical repair and absence of symptoms after 15 months. PMID:26576164

  19. Evaluation of the validity of the Bolton Index using cone-beam computed tomography (CBCT)

    PubMed Central

    Llamas, José M.; Cibrián, Rosa; Gandía, José L.; Paredes, Vanessa

    2012-01-01

    Aims: To evaluate the reliability and reproducibility of calculating the Bolton Index using cone-beam computed tomography (CBCT), and to compare this with measurements obtained using the 2D Digital Method. Material and Methods: Traditional study models were obtained from 50 patients, which were then digitized in order to be able to measure them using the Digital Method. Likewise, CBCTs of those same patients were undertaken using the Dental Picasso Master 3D® and the images obtained were then analysed using the InVivoDental programme. Results: By determining the regression lines for both measurement methods, as well as the difference between both of their values, the two methods are shown to be comparable, despite the fact that the measurements analysed presented statistically significant differences. Conclusions: The three-dimensional models obtained from the CBCT are as accurate and reproducible as the digital models obtained from the plaster study casts for calculating the Bolton Index. The differences existing between both methods were clinically acceptable. Key words:Tooth-size, digital models, bolton index, CBCT. PMID:22549690

  20. Simultaneous calibration phantom commission and geometry calibration in cone beam CT

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-09-01

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm-1. The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  1. Iterative reconstruction of cone-beam CT data on a cluster

    NASA Astrophysics Data System (ADS)

    Benson, Thomas M.; Gregor, Jens

    2007-02-01

    Three-dimensional iterative reconstruction of large CT data sets poses several challenges in terms of the associated computational and memory requirements. In this paper, we present results obtained by implementing a computational framework for reconstructing axial cone-beam CT data using a cluster of inexpensive dualprocessor PCs. In particular, we discuss our parallelization approach, which uses POSIX threads and message passing (MPI) for local and remote load distribution, as well as the interaction of that load distribution with the implementation of ordered subset based algorithms. We also consider a heuristic data-driven 3D focus of attention algorithm that reduces the amount of data that must be considered for many data sets. Furthermore, we present a modification to the SIRT algorithm that reduces the amount of data that must be communicated between processes. Finally, we introduce a method of separating the work in such a way that some computation can be overlapped with the MPI communication thus further reducing the overall run-time. We summarize the performance results using reconstructions of experimental data.

  2. Three-dimensional focus of attention for iterative cone-beam micro-CT reconstruction

    NASA Astrophysics Data System (ADS)

    Benson, T. M.; Gregor, J.

    2006-09-01

    Three-dimensional iterative reconstruction of high-resolution, circular orbit cone-beam x-ray CT data is often considered impractical due to the demand for vast amounts of computer cycles and associated memory. In this paper, we show that the computational burden can be reduced by limiting the reconstruction to a small, well-defined portion of the image volume. We first discuss using the support region defined by the set of voxels covered by all of the projection views. We then present a data-driven preprocessing technique called focus of attention that heuristically separates both image and projection data into object and background before reconstruction, thereby further reducing the reconstruction region of interest. We present experimental results for both methods based on mouse data and a parallelized implementation of the SIRT algorithm. The computational savings associated with the support region are substantial. However, the results for focus of attention are even more impressive in that only about one quarter of the computer cycles and memory are needed compared with reconstruction of the entire image volume. The image quality is not compromised by either method.

  3. Cone beam computed tomography of plastinated hearts for instruction of radiological anatomy.

    PubMed

    Chang, Chih-Wei; Atkinson, Gregory; Gandhi, Niket; Farrell, Michael L; Labrash, Steven; Smith, Alice B; Norton, Neil S; Matsui, Takashi; Lozanoff, Scott

    2016-09-01

    Radiological anatomy education is an important aspect of the medical curriculum. The purpose of this study was to establish and demonstrate the use of plastinated anatomical specimens, specifically human hearts, for use in radiological anatomy education. Four human hearts were processed with routine plastination procedures at room temperature. Specimens were subjected to cone beam computed tomography and a graphics program (ER3D) was applied to generate 3D cardiac models. A comparison was conducted between plastinated hearts and their corresponding computer models based on a list of morphological cardiac features commonly studied in the gross anatomy laboratory. Results showed significant correspondence between plastinations and CBCT-generated 3D models (98 %; p < .01) for external structures and 100 % for internal cardiac features, while 85 % correspondence was achieved between plastinations and 2D CBCT slices. Complete correspondence (100 %) was achieved between key observations on the plastinations and internal radiological findings typically required of medical student. All pathologic features seen on the plastinated hearts were also visualized internally with the CBCT-generated models and 2D slices. These results suggest that CBCT-derived slices and models can be successfully generated from plastinated material and provide accurate representations for radiological anatomy education.

  4. Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program

    NASA Astrophysics Data System (ADS)

    Gonzalez, Albin; Bauer, Lisa; Kinney, Vicki; Crooks, Cheryl

    2008-03-01

    Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as "Image Guided Radiation Therapy" or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house

  5. Accuracy of digital periapical radiography and cone-beam computed tomography in detecting external root resorption

    PubMed Central

    Geha, Hassem; Sankar, Vidya; Teixeira, Fabricio B.; McMahan, Clyde Alex; Noujeim, Marcel

    2015-01-01

    Purpose The purpose of this study was to evaluate and compare the efficacy of cone-beam computed tomography (CBCT) and digital intraoral radiography in diagnosing simulated small external root resorption cavities. Materials and Methods Cavities were drilled in 159 roots using a small spherical bur at different root levels and on all surfaces. The teeth were imaged both with intraoral digital radiography using image plates and with CBCT. Two sets of intraoral images were acquired per tooth: orthogonal (PA) which was the conventional periapical radiograph and mesioangulated (SET). Four readers were asked to rate their confidence level in detecting and locating the lesions. Receiver operating characteristic (ROC) analysis was performed to assess the accuracy of each modality in detecting the presence of lesions, the affected surface, and the affected level. Analysis of variation was used to compare the results and kappa analysis was used to evaluate interobserver agreement. Results A significant difference in the area under the ROC curves was found among the three modalities (P=0.0002), with CBCT (0.81) having a significantly higher value than PA (0.71) or SET (0.71). PA was slightly more accurate than SET, but the difference was not statistically significant. CBCT was also superior in locating the affected surface and level. Conclusion CBCT has already proven its superiority in detecting multiple dental conditions, and this study shows it to likewise be superior in detecting and locating incipient external root resorption. PMID:26389057

  6. Imaging characteristics of distance-driven method in a prototype cone-beam computed tomography (CBCT)

    NASA Astrophysics Data System (ADS)

    Choi, Sunghoon; Kim, Ye-seul; Lee, Haenghwa; Lee, Donghoon; Seo, Chang-Woo; Kim, Hee-Joung

    2016-03-01

    Cone-beam computed tomography (CBCT) has widely been used and studied in both medical imaging and radiation therapy. The aim of this study was to evaluate our newly developed CBCT system by implementing a distance-driven system modeling technique in order to produce excellent and accurate cross-sectional images. For the purpose of comparing the performance of the distance-driven methods, we also performed pixel-driven and ray-driven techniques when conducting forward- and back-projection schemes. We conducted the Feldkamp-Davis-Kress (FDK) algorithm and simultaneous algebraic reconstruction technique (SART) to retrieve a volumetric information of scanned chest phantom. The results indicated that contrast-to-noise (CNR) of the reconstructed images by using FDK and SART showed 8.02 and 15.78 for distance-driven, whereas 4.02 and 5.16 for pixel-driven scheme and 7.81 and 13.01 for ray-driven scheme, respectively. This could demonstrate that distance-driven method described more closely the chest phantom compared to pixel- and ray-driven. However, both elapsed time for modeling a system matrix and reconstruction time took longer time when performing the distance-driven scheme. Therefore, future works will be directed toward reducing computational time to acceptable limits for real applications.

  7. Deformable Image Registration of CT and Truncated Cone-beam CT for Adaptive Radiation Therapy*

    PubMed Central

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-01-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between CT and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. PMID:24169817

  8. A level set method for cupping artifact correction in cone-beam CT

    SciTech Connect

    Xie, Shipeng; Li, Haibo; Ge, Qi; Li, Chunming

    2015-08-15

    Purpose: To reduce cupping artifacts and improve the contrast-to-noise ratio in cone-beam computed tomography (CBCT). Methods: A level set method is proposed to reduce cupping artifacts in the reconstructed image of CBCT. The authors derive a local intensity clustering property of the CBCT image and define a local clustering criterion function of the image intensities in a neighborhood of each point. This criterion function defines an energy in terms of the level set functions, which represent a segmentation result and the cupping artifacts. The cupping artifacts are estimated as a result of minimizing this energy. Results: The cupping artifacts in CBCT are reduced by an average of 90%. The results indicate that the level set-based algorithm is practical and effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. Conclusions: The proposed method focuses on the reconstructed image without requiring any additional physical equipment, is easily implemented, and provides cupping correction through a single-scan acquisition. The experimental results demonstrate that the proposed method successfully reduces the cupping artifacts.

  9. Understanding the formation of maxillary sinus in Japanese human foetuses using cone beam CT

    PubMed Central

    Asaumi, Rieko; Miwa, Yoko; Imura, Kosuke; Sunohara, Masataka; Kawai, Taisuke; Yosue, Takashi

    2010-01-01

    The formation of the maxillary sinus (MS) is tied to the maturation of the craniofacial bones during development. The MS and surrounding bone matrices in Japanese foetal specimens were inspected using cone beam computed tomography relative to the nasal cavity (NC) and the surrounding bones, including the palatine bone, maxillary process, inferior nasal concha and lacrimal bone. The human foetuses analysed were 223.2 ± 25.9 mm in crown-rump length (CRL) and ranged in estimated age from 20 to 30 weeks of gestation. The amount of bone in the maxilla surrounding the MS increased gradually between 20 and 30 weeks of gestation. Various calcified structures that formed the bone matrix were found in the cortical bone of the maxilla, and these calcified structures specifically surrounded the deciduous tooth germs. By 30 weeks of gestation, the uncinate process of the ethmoid bone formed a border with the maxilla. The distance from the midline to the maximum lateral surface border of the MS combined with the width from the midline to the maximum lateral surface border of the inferior nasal concha showed a high positive correlation with CRL in Japanese foetuses. There appears to be a complex correlation between the MS and NC formation during development in the Japanese foetus. Examination of the surrounding bone indicated that MS formation influences maturation of the maxilla and the uncinate process of the ethmoid bone during craniofacial bone development. PMID:20490493

  10. Simultaneous calibration phantom commission and geometry calibration in cone beam CT.

    PubMed

    Xu, Yuan; Yang, Shuai; Ma, Jianhui; Li, Bin; Wu, Shuyu; Qi, Hongliang; Zhou, Linghong

    2017-08-09

    Geometry calibration is a vital step for describing the geometry of a cone beam computed tomography (CBCT) system and is a prerequisite for CBCT reconstruction. In current methods, calibration phantom commission and geometry calibration are divided into two independent tasks. Small errors in ball-bearing (BB) positioning in the phantom-making step will severely degrade the quality of phantom calibration. To solve this problem, we propose an integrated method to simultaneously realize geometry phantom commission and geometry calibration. Instead of assuming the accuracy of the geometry phantom, the integrated method considers BB centers in the phantom as an optimized parameter in the workflow. Specifically, an evaluation phantom and the corresponding evaluation contrast index are used to evaluate geometry artifacts for optimizing the BB coordinates in the geometry phantom. After utilizing particle swarm optimization, the CBCT geometry and BB coordinates in the geometry phantom are calibrated accurately and are then directly used for the next geometry calibration task in other CBCT systems. To evaluate the proposed method, both qualitative and quantitative studies were performed on simulated and realistic CBCT data. The spatial resolution of reconstructed images using dental CBCT can reach up to 15 line pair cm(-1). The proposed method is also superior to the Wiesent method in experiments. This paper shows that the proposed method is attractive for simultaneous and accurate geometry phantom commission and geometry calibration.

  11. Multiscale registration of planning CT and daily cone beam CT images for adaptive radiation therapy

    SciTech Connect

    Paquin, Dana; Levy, Doron; Xing Lei

    2009-01-15

    Adaptive radiation therapy (ART) is the incorporation of daily images in the radiotherapy treatment process so that the treatment plan can be evaluated and modified to maximize the amount of radiation dose to the tumor while minimizing the amount of radiation delivered to healthy tissue. Registration of planning images with daily images is thus an important component of ART. In this article, the authors report their research on multiscale registration of planning computed tomography (CT) images with daily cone beam CT (CBCT) images. The multiscale algorithm is based on the hierarchical multiscale image decomposition of E. Tadmor, S. Nezzar, and L. Vese [Multiscale Model. Simul. 2(4), pp. 554-579 (2004)]. Registration is achieved by decomposing the images to be registered into a series of scales using the (BV, L{sup 2}) decomposition and initially registering the coarsest scales of the image using a landmark-based registration algorithm. The resulting transformation is then used as a starting point to deformably register the next coarse scales with one another. This procedure is iterated at each stage using the transformation computed by the previous scale registration as the starting point for the current registration. The authors present the results of studies of rectum, head-neck, and prostate CT-CBCT registration, and validate their registration method quantitatively using synthetic results in which the exact transformations our known, and qualitatively using clinical deformations in which the exact results are not known.

  12. Idiosyncratic Presentation of Cemento-Osseous Dysplasia - An in Depth Analysis Using Cone Beam Computed Tomography.

    PubMed

    Chennoju, Sai Kiran; Pachigolla, Ramaswamy; Govada, Vanya Mahitha; Alapati, Satish; Balla, Smitha

    2016-05-01

    Bone dysplasias comprise of a condition where the normal bone is replaced with fibrous tissue. Periapical Cemento-Osseous Dysplasia (PCOD) is a benign fibro-osseous condition where bone tissue is supplanted with fibrous tissue and cementum-like material. This condition affects mostly mandibular anterior region and rarely occurs in the maxilla. PCOD is seen above 30 years of age and has slight female predilection. Generally the teeth related to such lesions appear to be vital and are usually asymptomatic. These lesions are mostly seen during routine radiographic examination whose presentation may vary from complete radiolucency to dense radiopacity. The advent of Cone Beam Computed Tomography (CBCT) has brought a massive change in the field of dentistry which has become an important tool for diagnosis. Hence we hereby present an unusual case of cemento-osseous dysplasia in an unfamiliar location with an atypical presentation. The shape of the pathology was completely idiosyncratic and different from an orthodox lesion of COD, as the lesion was observed to grow out of the palatal surface with a prominent palatal expansion. This case highlights the importance of CBCT in radiographic diagnosis and in evaluating the characteristics of such lesion, which present with high diagnostic dilemma.

  13. Digital replacement of the distorted dentition acquired by cone beam computed tomography (CBCT): a pilot study.

    PubMed

    Nairn, N J; Ayoub, A F; Barbenel, J; Moos, K; Naudi, K; Ju, X; Khambay, B S

    2013-11-01

    During cone beam computed tomography (CBCT) scanning, intra-oral metallic objects may produce streak artefacts, which impair the occlusal surface of the teeth. This study aimed to determine the accuracy of replacement of the CBCT dentition with a more accurate dentition and to determine the clinical feasibility of the method. Impressions of the teeth of six cadaveric skulls with unrestored dentitions were taken and acrylic base plates constructed incorporating radiopaque registration markers. Each appliance was fitted to the skull and a CBCT performed. Impressions were taken of the dentition with the devices in situ and dental models were produced. These were CBCT-scanned and the images of the skulls and models imported into computer-aided design/computer-aided manufacturing (CAD/CAM) software and aligned on the registration markers. The occlusal surfaces of each dentition were then replaced with the occlusal image of the corresponding model. The absolute mean distance between the registration markers in the skulls and the dental models was 0.09±0.02mm, and for the dentition was 0.24±0.09mm. When the method was applied to patients, the distance between markers was 0.12±0.04mm for the maxilla and 0.16±0.02mm for the mandible. It is possible to replace the inaccurate dentition on a CBCT scan using this method and to create a composite skull which is clinically acceptable.

  14. Analysis of Interfraction Prostate Motion Using Megavoltage Cone Beam Computed Tomography

    SciTech Connect

    Bylund, Kevin C. Bayouth, John E.; Smith, Mark C.; Hass, A. Curtis; Bhatia, Sudershan K.; Buatti, John M..

    2008-11-01

    Purpose: Determine the degree of interfraction prostate motion and its components measured by using daily megavoltage (MV) cone beam computed tomography (CBCT) imaging. Methods and Materials: A total of 984 daily MV CBCT images from 24 patients undergoing definitive intensity-modulated radiotherapy for localized prostate cancer were analyzed retrospectively. Pretreatment couch shifts, based on physician registration of MV CBCT to planning CT data sets, were used as a measure of daily interfraction motion. Off-line bony registration was performed to separate bony misalignment from internal organ motion. Interobserver and intraobserver variation studies were performed on 20 MV CBCT images. Results: Mean interfraction prostate motion was 6.7 mm, with the greatest single-axis deviation in the anterior-posterior (AP) direction. The largest positional inaccuracy was accounted for by systematic deviations in bony misalignment, whereas random deviations occurred from bony misalignment and internal prostate motion. In the aggregate, AP motion did not correlate with days elapsed since beginning therapy or on average with rectal size at treatment planning. Interobserver variation was greatest in the AP direction, decreased in experienced observers, and further decreased in intraobserver studies. Mean interfraction motion during the first 6 days of therapy, when used as a subsequent offset, reduced acceptable AP planning target volume margins by 50%. Conclusion: The MV CBCT is a practical direct method of daily localization that shows significant interfraction motion with respect to conventional three-dimensional conformal and intensity-modulated radiotherapy margins, similar to that measured in other modalities.

  15. Configuration of the inferior alveolar canal as detected by cone beam computed tomography

    PubMed Central

    Nair, Umadevi P; Yazdi, Mehran H; Nayar, Gautam M; Parry, Heath; Katkar, Rujuta A; Nair, Madhu K

    2013-01-01

    Aims: The aim of this study is to evaluate the course of the inferior alveolar canal (IAC) including its frequently seen variations in relation to root apices and the cortices of the mandible at fixed pre-determined anatomic reference points using cone beam volumetric computed tomography (CBVCT). Material and Methods: This retrospective study utilized CBVCT images from 44 patients to obtain quantifiable data to localize the IAC. Measurements to the IAC were made from the buccal and lingual cortical plates (BCP/LCP), inferior border of the mandible and the root apices of the mandibular posterior teeth and canine. Descriptive analysis was used to map out the course of the IAC. Results: IACs were noted to course superiorly toward the root apices from the second molar to the first premolar and closer to the buccal cortical plate anteriorly. The canal was closest to the LCP at the level of the second molar. In 32.95% of the cases, the canal was seen at the level of the canine. Conclusions: This study indicates that caution needs to be exercised during endodontic surgical procedures in the mandible even at the level of the canine. CBVCT seems to provide an optimal, low-dose, 3D imaging modality to help address the complexities in canal configuration. PMID:24347885

  16. Descriptive study of the bifid mandibular canals and retromolar foramina: cone beam CT vs panoramic radiography

    PubMed Central

    Muinelo-Lorenzo, J; Suárez-Quintanilla, J A; Fernández-Alonso, A; Marsillas-Rascado, S

    2014-01-01

    Objectives: To examine the presence and morphologic characteristics of bifid mandibular canals (BMCs) and retromolar foramens (RFs) using cone beam CT (CBCT) and to determine their visualization on panoramic radiographs (PANs). Methods: A sample of 225 CBCT examinations was analysed for the presence of BMCs, as well as length, height, diameter and angle. The diameter of the RF was also determined. Subsequently, corresponding PANs were analysed to determine whether the BMCs and RFs were visible or not. Results: The BMCs were observed on CBCT in 83 out of the 225 patients (36.8%). With respect to gender, statistically significant differences were found in the number of BMCs. There were also significant differences in anatomical characteristics of the types of BMCs. Only 37.8% of the BMCs and 32.5% of the RFs identified on CBCT were also visible on PANs. The diameter had a significant effect on the capability of PANs to visualize BMCs and RFs (B = 0.791, p = 0.035; B = 1.900, p = 0.017, respectively). Conclusions: PANs are unable to sufficiently identify BMCs and RFs. The diameter of these anatomical landmarks represents a relevant factor for visualization on PANs. Pre-operative images using only PANs may lead to underestimation of the presence of BMCs and to surgical complications and anaesthetic failures, which could have been avoided. For true determination of BMCs, a CBCT device should be considered better than a PAN. PMID:24785820

  17. Bilateral and pseudobilateral tonsilloliths: Three dimensional imaging with cone-beam computed tomography

    PubMed Central

    Mısırlıoglu, Melda; Nalcaci, Rana; Yardımcı, Selmi

    2013-01-01

    Purpose Tonsilloliths are calcifications found in the crypts of the palatal tonsils and can be detected on routine panoramic examinations. This study was performed to highlight the benefits of cone-beam computed tomography (CBCT) in the diagnosis of tonsilloliths appearing bilaterally on panoramic radiographs. Materials and Methods The sample group consisted of 7 patients who had bilateral radiopaque lesions at the area of the ascending ramus on panoramic radiographs. CBCT images for every patient were obtained from both sides of the jaw to determine the exact locations of the lesions and to rule out other calcifications. The calcifications were evaluated on the CBCT images using Ez3D2009 software. Additionally, the obtained images in DICOM format were transferred to ITK SNAP 2.4.0 pc software for semiautomatic segmentation. Segmentation was performed using contrast differences between the soft tissues and calcifications on grayscale images, and the volume in mm3 of the segmented three dimensional models were obtained. Results CBCT scans revealed that what appeared on panoramic radiographs as bilateral images were in fact unilateral lesions in 2 cases. The total volume of the calcifications ranged from 7.92 to 302.5mm3. The patients with bilaterally multiple and large calcifications were found to be symptomatic. Conclusion The cases provided the evidence that tonsilloliths should be considered in the differential diagnosis of radiopaque masses involving the mandibular ramus, and they highlight the need for a CBCT scan to differentiate pseudo- or ghost images from true bilateral pathologies. PMID:24083209

  18. 3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation

    PubMed Central

    Cai, Ailong; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Guan, Min; Li, Jianxin

    2014-01-01

    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction. The applied proximal technique avoids the horrible pseudoinverse computation of big matrix which makes the proposed algorithm applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of 512 × 512. PMID:25045400

  19. Comparative adoption of cone beam computed tomography and panoramic radiography machines across Australia.

    PubMed

    Zhang, A; Critchley, S; Monsour, P A

    2016-12-01

    The aim of the present study was to assess the current adoption of cone beam computed tomography (CBCT) and panoramic radiography (PR) machines across Australia. Information regarding registered CBCT and PR machines was obtained from radiation regulators across Australia. The number of X-ray machines was correlated with the population size, the number of dentists, and the gross state product (GSP) per capita, to determine the best fitting regression model(s). In 2014, there were 232 CBCT and 1681 PR machines registered in Australia. Based on absolute counts, Queensland had the largest number of CBCT and PR machines whereas the Northern Territory had the smallest number. However, when based on accessibility in terms of the population size and the number of dentists, the Australian Capital Territory had the most CBCT machines and Western Australia had the most PR machines. The number of X-ray machines correlated strongly with both the population size and the number of dentists, but not with the GSP per capita. In 2014, the ratio of PR to CBCT machines was approximately 7:1. Projected increases in either the population size or the number of dentists could positively impact on the adoption of PR and CBCT machines in Australia. © 2016 Australian Dental Association.

  20. Deriving Hounsfield units using grey levels in cone beam computed tomography

    PubMed Central

    Mah, P; Reeves, T E; McDavid, W D

    2010-01-01

    Objectives An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners. Methods A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated. Results It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation. Conclusions HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step. PMID:20729181

  1. Occurrence of maxillary sinus abnormalities detected by cone beam CT in asymptomatic patients

    PubMed Central

    2012-01-01

    Background Although cone beam computed tomography (CBCT) images of the maxillofacial region allow the inspection of the entire volume of the maxillary sinus (MS), identifying anatomic variations and abnormalities in the image volume, this is frequently neglected by oral radiologists when interpreting images of areas at a distance from the dentoalveolar region, such as the full anatomical aspect of the MS. The aim of this study was to investigate maxillary sinus abnormalities in asymptomatic patients by using CBCT. Methods 1113 CBCT were evaluated by two examiners and identification of abnormalities, the presence of periapical lesions and proximity to the lower sinus wall were recorded. Data were analyzed using descriptive statistics, chi-square tests and Kappa statistics. Results Abnormalities were diagnosed in 68.2% of cases (kappa = 0.83). There was a significant difference between genders (p < 0.001) and there was no difference in age groups. Mucosal thickening was the most prevalent abnormality (66%), followed by retention cysts (10.1%) and opacification (7.8%). No association was observed between the proximity of periapical lesions and the presence and type of inflammatory abnormalities (p = 0.124). Conclusions Abnormalities in maxillary sinus emphasizes how important it is for the dentomaxillofacial radiologist to undertake an interpretation of the whole volume of CBCT images. PMID:22883529

  2. Three-dimensional analysis of deciduous maxillary anterior teeth using cone-beam computed tomography.

    PubMed

    Jung, M-S; Lee, S-P; Kim, G-T; Choi, S-C; Park, J-H; Kim, J-W

    2012-03-01

    The recent introduction of cone-beam computed tomography (CBCT) into the medical field has allowed the nondestructive investigation of internal structures at relatively low cost and radiation exposure. The accuracy of CBCT in both two and three dimensions has been demonstrated, and CBCT has been used successfully for craniofacial anatomy. Knowing the anatomical structure of deciduous teeth is essential for clinical dentistry. However, the root structure of deciduous teeth is rarely reported because of the scarcity of intact deciduous teeth without root resorption. The aim of this study was to evaluate the intact root form of deciduous teeth using CBCT. Data from 38 young children was analyzed using an image-analyzing program. The degree of buccal dilacerations was 26.3° for deciduous maxillary central incisors (DMA), 16.5° for deciduous maxillary lateral incisors (DMB), and 17.5° for deciduous maxillary canines (DMC) in about half of the root length. The crown-to-root ratios were 0.52 for DMA, 0.48 for DMB, and 0.52 for DMC. These data will be helpful for understanding the development of dentition, and for clinical dentistry.

  3. Three-dimensional maxillary and mandibular regional superimposition using cone beam computed tomography: a validation study.

    PubMed

    Koerich, L; Burns, D; Weissheimer, A; Claus, J D P

    2016-05-01

    This study aimed to validate a novel method for fast regional superimposition of cone beam computed tomography (CBCT) scans. The method can be used with smaller field of view scans, thereby allowing for a lower radiation dose. This retrospective study used two dry skulls and secondary data from 15 patients who had more than one scan taken using the same machine. Two observers tested two types of regional voxel-based superimposition: maxillary and mandibular. The registration took 10-15s. Three-dimensional surface models of the maxillas and mandibles were generated via standardized threshold segmentation, and the accuracy and reproducibility of the superimpositions were assessed using the iterative closest point technique to measure the root mean square (RMS) distance between the images. Five areas were measured and a RMS≤0.25 was considered successful. Descriptive statistics and the intra-class correlation coefficient (ICC) were used to compare the intra-observer measurement reproducibility. The ICC was ≥0.980 for all of the variables and the highest RMS found was 0.241. The inter-observer reproducibility was assessed case by case and was perfect (RMS 0) for 68% (23 out of 34) of the superimpositions done and not clinically significant (RMS≤0.25) for the other 32%. The method is fast, accurate, and reproducible and is an alternative to cranial base superimposition.

  4. Assessment of maxillary third molars with panoramic radiography and cone-beam computed tomography

    PubMed Central

    Jung, Yun-Hoa

    2015-01-01

    Purpose This study investigated maxillary third molars and their relation to the maxillary sinus using panoramic radiography and cone-beam computed tomography (CBCT). Materials and Methods A total of 395 maxillary third molars in 234 patients were examined using panoramic radiographs and CBCT images. We examined the eruption level of the maxillary third molars, the available retromolar space, the angulation, the relationship to the second molars, the number of roots, and the relationship between the roots and the sinus. Results Females had a higher frequency of maxillary third molars with occlusal planes apical to the cervical line of the second molar (Level C) than males. All third molars with insufficient retromolar space were Level C. The most common angulation was vertical, followed by buccoangular. Almost all of the Level C molars were in contact with the roots of the second molar. Erupted teeth most commonly had three roots, and completely impacted teeth most commonly had one root. The superimposition of one third of the root and the sinus floor was most commonly associated with the sinus floor being located on the buccal side of the root. Conclusion Eruption levels were differently distributed according to gender. A statistically significant association was found between the eruption level and the available retromolar space. When panoramic radiographs showed a superimposition of the roots and the sinus floor, expansion of the sinus to the buccal side of the root was generally observed in CBCT images. PMID:26730371

  5. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma

    2015-10-01

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P  <  0.05) diagnostic ability for hepatic tumors compared to UCBCT or PBV image data. The detectability of small hepatic tumors (<5 mm) was significantly reduced (all P  <  0.05) using UCBCT cross-sectional images compared to MRI or fused image data; however, PBV improved tumor detectability using a color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.

  6. Evaluation of canalis basilaris medianus using cone-beam computed tomography

    PubMed Central

    Zahedpasha, Samir; Rathore, Sonali A.; Mupparapu, Mel

    2016-01-01

    The aim of this report is to present two cases of canalis basilaris medianus as identified on cone-beam computed tomography (CBCT) in the base of the skull. The CBCT data sets were sent for radiographic consultation. In both cases, multi-planar views revealed an osseous defect in the base of the skull in the clivus region, the sagittal view showed a unilateral, well-defined, non-corticated, track-like low-attenuation osseous defect in the clivus. The appearance of the defect was highly reminiscent of a fracture of the clivus. The borders of osseous defect were smooth, and no other radiographic signs suggestive of osteolytic destructive processes were noted. Based on the overall radiographic examination, a radiographic impression of canalis basilaris medianus was made. Canalis basilaris medianus is a rare anatomical variant and is generally observed on the clivus. Due to its potential association with meningitis, it should be recognized and reported to avoid potential complications. PMID:27358822

  7. Skeletal maturity assessment with the use of cone-beam computerized tomography.

    PubMed

    Joshi, Vajendra; Yamaguchi, Tetsutaro; Matsuda, Yukiko; Kaneko, Norikazu; Maki, Kotarou; Okano, Tomohiro

    2012-06-01

    The aim of the study was to compare cervical vertebrae maturity assessed with the use of cone-beam computerized tomography (CBCT) with the hand-wrist maturation method and cervical vertebrae maturation assessed with the use of lateral cephalography for the assessment of skeletal maturity. Assessment of skeletal maturation was done using skeletal maturity indicators (SMI) from hand-wrist radiography, cervical vertebrae maturity index (CVMI) from CBCT and lateral cephalography (cephalo-CVMI). The Spearman correlation coefficient was used for statistical analysis. We observed a significant relationship between CBCT-CVMI and cephalo-CVMI as well as between CBCT-CVMI and SMI stages. The Spearman correlation coefficient value between CBCT-CVMI and cephalo-CVMI was 0.975 (P < .0001) and between CBCT-CVMI and SMI was 0.961(P < .0001). Cervical vertebrae maturity assessment with CBCT provided a reliable assessment of pubertal growth spurt, and therefore CBCT can be used to assess skeletal maturity. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhen, Xin; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.

    2013-11-01

    Truncation of a cone-beam computed tomography (CBCT) image, mainly caused by the limited field of view (FOV) of CBCT imaging, poses challenges to the problem of deformable image registration (DIR) between computed tomography (CT) and CBCT images in adaptive radiation therapy (ART). The missing information outside the CBCT FOV usually causes incorrect deformations when a conventional DIR algorithm is utilized, which may introduce significant errors in subsequent operations such as dose calculation. In this paper, based on the observation that the missing information in the CBCT image domain does exist in the projection image domain, we propose to solve this problem by developing a hybrid deformation/reconstruction algorithm. As opposed to deforming the CT image to match the truncated CBCT image, the CT image is deformed such that its projections match all the corresponding projection images for the CBCT image. An iterative forward-backward projection algorithm is developed. Six head-and-neck cancer patient cases are used to evaluate our algorithm, five with simulated truncation and one with real truncation. It is found that our method can accurately register the CT image to the truncated CBCT image and is robust against image truncation when the portion of the truncated image is less than 40% of the total image. Part of this work was presented at the 54th AAPM Annual Meeting (Charlotte, NC, USA, 29 July-2 August 2012).

  9. Influence of anatomical location on CT numbers in cone beam computed tomography.

    PubMed

    Oliveira, Matheus L; Tosoni, Guilherme M; Lindsey, David H; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M

    2013-04-01

    To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K₂HPO₄) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K₂HPO₄ phantoms were measured, and the relationship between CT numbers and K₂HPO₄ concentration was examined. The measured CT numbers of the K₂HPO₄ phantoms were compared between anatomical sites. At all six anatomical locations, there was a strong linear relationship between CT numbers and K₂HPO₄ concentration (R(2)>0.93). However, the absolute CT numbers varied considerably with the anatomical location. The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  11. Assessment of the central artifact in cone beam CT imaging with an offset geometry

    NASA Astrophysics Data System (ADS)

    Zhang, Guozhi; Jacobs, Reinhilde; Nuyts, Johan; Bosmans, Hilde

    2012-03-01

    The 'central artefact' is commonly seen in cone beam computed tomography (CBCT) images in case of an offset scanning geometry. This study evaluates the hypothesis that such artefact is caused by the rotationally asymmetric distribution of scatter. Predictions were examined by use of a hybrid simulation model in conjunction with a simple experimental design. The model accounted for the entire imaging chain of CBCT and was parameterized according to the Scanora 3D CBCT system (Soredex-PaloDEx, Finland). Computational cylinder phantoms of different cross-sections and internal structures were simulated under various symmetric and asymmetric settings. The integrated commercial software tool was employed for image reconstruction. Results confirmed that the scatter was the sole source for the central artefact. It was also found that the artefact was particularly apparent with the algebraic iterative reconstruction. The degree of asymmetry, by either the object's structure or eccentric placement, was much more influential than the effect of the truncated imaging field of view. The findings have also been further proved with a computational anatomical phantom of an adult human head. The computer simulation approach, as adopted in this study, is efficient and has broad applications to CBCT.

  12. Cone-Beam Computed Tomography and Radiographs in Dentistry: Aspects Related to Radiation Dose

    PubMed Central

    Lorenzoni, Diego Coelho; Bolognese, Ana Maria; Garib, Daniela Gamba; Guedes, Fabio Ribeiro; Sant'Anna, Eduardo Franzotti

    2012-01-01

    Introduction. The aim of this study was to discuss the radiation doses associated with plain radiographs, cone-beam computed tomography (CBCT), and conventional computed tomography (CT) in dentistry, with a special focus on orthodontics. Methods. A systematic search for articles was realized by MEDLINE from 1997–March 2011. Results. Twenty-seven articles met the established criteria. The data of these papers were grouped in a table and discussed. Conclusions. Increases in kV, mA, exposure time, and field of view (FOV) increase the radiation dose. The dose for CT is greater than other modalities. When the full-mouth series (FMX) is performed with round collimation, the orthodontic radiographs transmit higher dose than most of the large FOV CBCT, but it can be reduced if used rectangular collimation, showing lower effective dose than large FOV CBCT. Despite the image quality, the CBCT does not replace the FMX. In addition to the radiation dose, image quality and diagnostic needs should be strongly taken into account. PMID:22548064

  13. Assessment of the relationship between the maxillary molars and adjacent structures using cone beam computed tomography

    PubMed Central

    Jung, Yun-Hoa

    2012-01-01

    Purpose This study investigated the relationship between the roots of the maxillary molars and the maxillary sinus using cone beam computed tomography (CBCT), and measured the distances between the roots of the maxillary molars and the sinus floor as well as the thickness of the bone between the root and the alveolar cortical plate. Materials and Methods The study sample consisted of 83 patients with normally erupted bilateral maxillary first and second molars. A total of 332 maxillary molars were examined using CBCT images. The vertical relationship of each root with the maxillary sinus was classified into four types on CBCT cross-sectional images. The distance between the sinus floor and root and the bone thickness between the root and alveolar cortical plate were measured. Results In the buccal roots of the maxillary molars, a root protruding into the sinus occurred most frequently. A root projecting laterally along the sinus cavity was most common in the palatal roots of the maxillary first molars. The mesiobuccal roots of the maxillary second molar were closest to the sinus. The mesiobuccal roots of the first molars were closest to the cortical plate. Conclusion The relationship between the roots of the maxillary molars and the sinus differed between the buccal and palatal roots. A root protruding into the sinus occurred more frequent in the buccal roots of the maxillary molars. The mesiobuccal root of the maxillary second molar was closest to the maxillary sinus floor and farthest from the alveolar cortical plate. PMID:23301207

  14. Breast density quantification with cone-beam CT: a post-mortem study.

    PubMed

    Johnson, Travis; Ding, Huanjun; Le, Huy Q; Ducote, Justin L; Molloi, Sabee

    2013-12-07

    Forty post-mortem breasts were imaged with a flat-panel based cone-beam x-ray CT system at 50 kVp. The feasibility of breast density quantification has been investigated using standard histogram thresholding and an automatic segmentation method based on the fuzzy c-means algorithm (FCM). The breasts were chemically decomposed into water, lipid, and protein immediately after image acquisition was completed. The per cent fibroglandular volume (%FGV) from chemical analysis was used as the gold standard for breast density comparison. Both image-based segmentation techniques showed good precision in breast density quantification with high linear coefficients between the right and left breast of each pair. When comparing with the gold standard using %FGV from chemical analysis, Pearson's r-values were estimated to be 0.983 and 0.968 for the FCM clustering and the histogram thresholding techniques, respectively. The standard error of the estimate was also reduced from 3.92% to 2.45% by applying the automatic clustering technique. The results of the postmortem study suggested that breast tissue can be characterized in terms of water, lipid and protein contents with high accuracy by using chemical analysis, which offers a gold standard for breast density studies comparing different techniques. In the investigated image segmentation techniques, the FCM algorithm had high precision and accuracy in breast density quantification. In comparison to conventional histogram thresholding, it was more efficient and reduced inter-observer variation.

  15. Comparative study between conventional and cone beam CT-synthesized half and total skull cephalograms

    PubMed Central

    Liedke, GS; Delamare, EL; Vizzotto, MB; da Silveira, HLD; Prietsch, JR; Dutra, V; da Silveira, HED

    2012-01-01

    Objectives The aim of this study was to compare cephalometric measurements obtained from conventional cephalograms with total and half-skull synthesized cone beam CT (CBCT) cephalograms. Methods Cephalometric analyses of 30 clinically symmetric patients were conducted by a calibrated examiner on conventional and CBCT-synthesized cephalograms (total, right and left). Reproducibility was investigated using the intraclass correlation coefficient (ICC). The Bland–Altman analysis was used to assess the agreement of the measurements from each factor obtained by conventional, total, right and left CBCT-synthesized cephalograms. Results The ICC was above 0.9 for most of the 40 cephalometric factors analysed, revealing similar levels of reproducibility. When the measurements obtained from conventional and CBCT-synthesized cephalograms were compared, the Bland–Altman analysis showed a strong agreement between them. Conclusions Half-skull CBCT-synthesized cephalograms offer the same diagnostic performance and equivalent reproducibility in terms of cephalometric analysis as observed in conventional and total CBCT-synthesized cephalograms. PMID:22301638

  16. Observer Reliability of Three-Dimensional Cephalometric Landmark Identification on Cone-Beam CT

    PubMed Central

    de Oliveira, Ana Emilia F.; Cevidanes, Lucia Helena S.; Phillips, Ceib; Motta, Alexandre; Burke, Brandon; Tyndall, Donald

    2009-01-01

    Objective To evaluate reliability in 3D landmark identification using Cone-Beam CT. Study Design Twelve pre-surgery CBCTs were randomly selected from 159 orthognathic surgery patients. Three observers independently repeated three times the identification of 30 landmarks in the sagittal, coronal, and axial slices. A mixed effects ANOVA model estimated the Intraclass Correlations (ICC) and assessed systematic bias. Results The ICC was >0.9 for 86% of intra-observer assessments and 66% of inter-observer assessments. Only 1% of intra-observer and 3% of inter-observer coefficients were <0.45. The systematic difference among observers was greater in X and Z than in Y dimensions, but the maximum mean difference was quite small. Conclusion Overall, the intra- and inter-observer reliability was excellent. 3D landmark identification using CBCT can offer consistent and reproducible data, if a protocol for operator training and calibration is followed. This is particularly important for landmarks not easily specified in all three planes of space. PMID:18718796

  17. Preliminary evaluation of cone beam computed tomography in three-dimensional cephalometry for clinical application

    PubMed Central

    Li, Na; Hu, Bo; Mi, Fanglin; Song, Jinlin

    2017-01-01

    The present study was conducted to evaluate the three-dimensional (3D) cephalometry accuracy of cone-beam computed tomography (CBCT). A total of 40 newly diagnosed orthodontic patients (including 18 males and 22 females; age range, 12–18 years) were subjected to CBCT scanning and X-ray imaging in order to obtain lateral cephalograms. The 3D CBCT cephalograms were reconstructed and measured with in vivo 5.1 software, and compared with the results from the conventional 2D lateral cephalograms. Measurements in the two images were performed twice using the Steiner and Tweed standards and a single analyzer paired t-test was used to analyze the differences between the two cephalometric methods. The results indicated that the two methods showed significant differences in all 12 angle and 5 linear measurements (P<0.05). These findings indicated that CBCT is a more accurate technique compared with the conventional 2D method. In conclusion, CBCT may provide diagnostic and treatment information for maxillofacial deformities by using fast computer-aided analysis platform. PMID:28565862

  18. Integration of Digital Dental Casts in Cone-Beam Computed Tomography Scans

    PubMed Central

    Rangel, Frits A.; Maal, Thomas J. J.; Bergé, Stefaan J.; Kuijpers-Jagtman, Anne Marie

    2012-01-01

    Cone-beam computed tomography (CBCT) is widely used in maxillofacial surgery. The CBCT image of the dental arches, however, is of insufficient quality to use in digital planning of orthognathic surgery. Several authors have described methods to integrate digital dental casts into CBCT scans, but all reported methods have drawbacks. The aim of this feasibility study is to present a new simplified method to integrate digital dental casts into CBCT scans. In a patient scheduled for orthognathic surgery, titanium markers were glued to the gingiva. Next, a CBCT scan and dental impressions were made. During the impression-taking procedure, the titanium markers were transferred to the impression. The impressions were scanned, and all CBCT datasets were exported in DICOM format. The two datasets were matched, and the dentition derived from the scanned impressions was transferred to the CBCT of the patient. After matching the two datasets, the average distance between the corresponding markers was 0.1 mm. This novel method allows for the integration of digital dental casts into CBCT scans, overcoming problems such as unwanted extra radiation exposure, distortion of soft tissues due to the use of bite jigs, and time-consuming digital data handling. PMID:23050159

  19. Assessment of Mandibular Distraction Regenerate Using Ultrasonography and Cone Beam Computed Tomography: A Clinical Study

    PubMed Central

    Dabas, Jitender; Mohanty, Sujata; Chaudhary, Zainab; Rani, Amita

    2015-01-01

    Distraction osteogenesis (DO) is becoming a popular method of reconstruction for maxillofacial bony deformities or defects secondary to trauma or surgical tumor ablation. However, the technique is very sensitive in terms of the rate and rhythm of distraction. Because of this, there is a need for monitoring of the distraction regenerate during the distraction as well as the consolidation period. The present study was conducted to assess the regenerate using two imaging modalities, namely, ultrasonography (USG) and cone beam computed tomography (CBCT) to determine their relative efficacies and to weigh their clinical usefulness in assessment of DO regenerate. The study was conducted on 12 patients (18 sites) who underwent mandibular distraction for correction of facial deformities. The results showed that overall USG correlated better with the condition of regenerate (r = 0.606) as compared with CBCT (r = 0.476). However, USG was less effective as compared with CBCT in assessing the regenerate once corticomedullary differentiation occurred in the bone. PMID:26889351

  20. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    PubMed Central

    Byun, Bo-Ram; Kim, Yong-Il; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6–18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R2 had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status. PMID:25878721

  1. Cone-beam CT analysis of patients with obstructive sleep apnea compared to normal controls

    PubMed Central

    Cohen, Ruben; Looney, Stephen; Kalathingal, Sajitha; De Rossi, Scott

    2016-01-01

    Purpose To evaluate the upper airway dimensions of obstructive sleep apnea (OSA) and control subjects using a cone-beam computed tomography (CBCT) unit commonly applied in clinical practice in order to assess airway dimensions in the same fashion as that routinely employed in a clinical setting. Materials and Methods This was a retrospective analysis utilizing existing CBCT scans to evaluate the dimensions of the upper airway in OSA and control subjects. The CBCT data of sixteen OSA and sixteen control subjects were compared. The average area, average volume, total volume, and total length of the upper airway were computed. Width and anterior-posterior (AP) measurements were obtained on the smallest axial slice. Results OSA subjects had a significantly smaller average airway area, average airway volume, total airway volume, and mean airway width. OSA subjects had a significantly larger airway length measurement. The mean A-P distance was not significantly different between groups. Conclusion OSA subjects have a smaller upper airway compared to controls with the exception of airway length. The lack of a significant difference in the mean A-P distance may indicate that patient position during imaging (upright vs. supine) can affect this measurement. Comparison of this study with a future prospective study design will allow for validation of these results. PMID:27051634

  2. Detection of Procedural Errors during Root Canal Instrumentation using Cone Beam Computed Tomography

    PubMed Central

    Guedes, Orlando Aguirre; da Costa, Marcus Vinícius Corrêa; Dorilêo, Maura Cristiane Gonçales Orçati; de Oliveira, Helder Fernandes; Pedro, Fábio Luis Miranda; Bandeca, Matheus Coelho; Borges, Álvaro Henrique

    2015-01-01

    Background: This study investigated procedural errors made during root canal preparation with nickel-titanium (NiTi) instruments, using cone beam computed tomography (CBCT) imaging method. Materials and Methods: A total of 100 human mandibular molars were divided into five groups (n = 20) according to the NiTi system used for root canal preparation: Group 1 - BioRaCe, Group 2 - K3, Group 3 - ProTaper, Group 4 - Mtwo and Group 5 - Hero Shaper. CBCT images were obtained to detect procedural errors made during root canal preparation. Two examiners evaluated the presence or absence of fractured instruments, perforations, and canal transportations. Chi-square test was used for statistical analyzes. The significance level was set at a=5%. Results: In a total of 300 prepared root canals, 43 (14.33%) procedural errors were detected. Perforation was the procedural errors most commonly observed (58.14%). Most of the procedural errors were observed in the mesiobuccal root canal (48.84%). In the analysis of procedural errors, there was a significant difference (P < 0.05) between the groups of NiTi instruments. The root canals instrumented with BioRaCe had significantly less procedural errors. Conclusions: CBCT permitted the detection of procedural errors during root canal preparation. The frequency of procedural errors was low when root canals preparation was accomplished with BioRaCe system. PMID:25878475

  3. Digital panoramic radiography versus cone beam computed tomography in the delineation of maxillomandibular tumors.

    PubMed

    Almeida-Barros, Renata Quirino de; Abilio, Vanessa Maria Freire; Yamamoto, Angela Toshie Araki; Melo, Daniela Pita de; Godoy, Gustavo Pina; Bento, Patricia Meira

    2015-01-01

    This research aimed to compare the efficacy of digital panoramic radiography (DPR) with that of cone beam computed tomography (CBCT) for delineation of odontogenic and nonodontogenic tumors. From November 2009 through March 2011, 23 tumors in the maxillomandibular complex were diagnosed by histopathological examination. All DPRs and CBCTs were obtained and analyzed by a single previously calibrated radiologist, who considered the following radiographic aspects: clarity of the lesion edges, relation with dental elements, involvement of adjacent anatomical structures, cortical bone expansion and disruption, and, if present, type of involved anatomical structures and site of bone expansion and disruption. Of 23 patients, 15 (65.2%) were male and 8 (34.8%) were female. The tumor was classified as odontogenic in 73.9% of patients and nonodontogenic in 26.1% of patients. Analysis revealed that 56.5% of the tumors were located in the mandible, 34.8% in the maxilla, and 8.7% in both arches. For all analyzed variables, CBCTs offered more accurate details than did DPRs. Panoramic radiography should not be the examination of choice to visualize lesions in the maxillomandibular complex.

  4. Prevalence and Morphologic Characteristics of Ponticulus Posticus: Analysis Using Cone-Beam Computed Tomography

    PubMed Central

    Sekerci, Ahmet Ercan; Soylu, Emrah; Arikan, Mehtap Payveren; Ozcan, Gozde; Amuk, Mehmet; Kocoglu, Fatma

    2015-01-01

    Objective This study evaluated the prevalence and morphologic characteristics of ponticulus posticus (PP) by using cervical 3-dimensional (3-D) cone-beam computed tomography (CBCT) scan images. Methods This was a retrospective study conducted by selecting cervical 3-D CBCT images of 698 patients, which were examined for the presence and types of PP. Results In 257 patients, 438 PPs, complete or partial, bilateral or unilateral, were identified on the 698 cervical 3-D CBCT scans; therefore, the prevalence was 36.8%. Bilateral complete PP and partial PP were observed in 6.3% and 16.2% of subjects, respectively. There was a significant difference in the prevalence between males and females (P = .001) and between the right and left sides between males and females, but not between age groups. Conclusion Ponticulus posticus is a relatively common anomaly in this Turkish sample, which may have implications for those who perform clinical procedures on the upper cervical spine. PMID:26778928

  5. Normal Variations of Sphenoid Sinus and the Adjacent Structures Detected in Cone Beam Computed Tomography

    PubMed Central

    Rahmati, Azadeh; Ghafari, Roshanak; AnjomShoa, Maryam

    2016-01-01

    Statement of the Problem The sphenoid sinus is a common target of paranasal surgery. Functional endoscopic sinus surgery is likely to endanger the anatomic variations of vital structures adjacent to the sphenoid sinus. Purpose The aim of this study was to determine the variations of sphenoid sinus and the related structures by using cone-beam computed tomography (CBCT). Materials and Method In this descriptive-analytic study, CBCT images of 103 patients aged above 20-years were selected (206 sides). Degree of pneumatization of sphenoid sinus, pneumatization of the anterior clinoid process, pterygoid process, protrusion of optic canal, vidian canal, and foramen rotundum, as well as prevalence of sinus septa were recorded. Examinations were performed using On-Demand software (Version 1); data were analyzed by using chi-square test. Results There was a statistically significant correlation between the pterygoid pneumatization and vidian canal protrusion (p< 0.001), and foramen rotundum protrusion (p< 0.001). The optic canal protrusion was found to be significantly associated with the anterior clinoid pneumatization and pterygoid process (p< 0.001). Statistically significant relationship was also observed between the carotid canal protrusion and pterygoid process pneumatization (p< 0.001). Conclusion The anatomical variations of the sphenoid sinus tend to give rise to a complexity of symptoms and potentially serious complications. This variability necessitates a comprehensive understanding of the regional sphenoid sinus anatomy by a detailed CBCT sinus examination. PMID:26966706

  6. CUSTOMISATION OF A MONTE CARLO DOSIMETRY TOOL FOR DENTAL CONE-BEAM CT SYSTEMS.

    PubMed

    Stratis, A; Zhang, G; Lopez-Rendon, X; Jacobs, R; Bogaerts, R; Bosmans, H

    2016-06-01

    A versatile EGSnrc Monte Carlo (MC) framework, initially designed to explicitly simulate X-ray tubes and record the output data into phase space data files, was modified towards dental cone-beam computed tomography (CBCT) dosimetric applications by introducing equivalent sources. Half value layer (HVL) measurements were conducted to specify protocol-specific energy spectra. Air kerma measurements were carried out with an ionisation chamber positioned against the X-ray tube to obtain the total filtration attenuation characteristics. The framework is applicable to bowtie and non-bowtie inherent filtrations, and it accounts for the anode heel effect and the total filtration of the tube housing. The code was adjusted to the Promax 3D Max (Planmeca, Helsinki, Finland) dental CBCT scanner. For each clinical protocol, calibration factors were produced to allow absolute MC dose calculations. The framework was validated by comparing MC calculated doses and measured doses in a cylindrical water phantom. Validation results demonstrate the reliability of the framework for dental CBCT dosimetry purposes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effect of anatomical backgrounds on detectability in volumetric cone beam CT images

    NASA Astrophysics Data System (ADS)

    Han, Minah; Park, Subok; Baek, Jongduk

    2016-03-01

    As anatomical noise is often a dominating factor affecting signal detection in medical imaging, we investigate the effects of anatomical backgrounds on signal detection in volumetric cone beam CT images. Signal detection performances are compared between transverse and longitudinal planes with either uniform or anatomical backgrounds. Sphere objects with diameters of 1mm, 5mm, 8mm, and 11mm are used as the signals. Three-dimensional (3D) anatomical backgrounds are generated using an anatomical noise power spectrum, 1/fβ, with β=3, equivalent to mammographic background [1]. The mean voxel value of the 3D anatomical backgrounds is used as an attenuation coefficient of the uniform background. Noisy projection data are acquired by the forward projection of the uniform and anatomical 3D backgrounds with/without sphere lesions and by the addition of quantum noise. Then, images are reconstructed by an FDK algorithm [2]. For each signal size, signal detection performances in transverse and longitudinal planes are measured by calculating the task SNR of a channelized Hotelling observer with Laguerre-Gauss channels. In the uniform background case, transverse planes yield higher task SNR values for all sphere diameters but 1mm. In the anatomical background case, longitudinal planes yield higher task SNR values for all signal diameters. The results indicate that it is beneficial to use longitudinal planes to detect spherical signals in anatomical backgrounds.

  8. Investigation on location dependent detectability in cone beam CT images with uniform and anatomical backgrounds

    NASA Astrophysics Data System (ADS)

    Han, Minah; Baek, Jongduk

    2017-03-01

    We investigate location dependent lesion detectability of cone beam computed tomography images for different background types (i.e., uniform and anatomical), image planes (i.e., transverse and longitudinal) and slice thicknesses. Anatomical backgrounds are generated using a power law spectrum of breast anatomy, 1/f3. Spherical object with a 5mm diameter is used as a signal. CT projection data are acquired by the forward projection of uniform and anatomical backgrounds with and without the signal. Then, projection data are reconstructed using the FDK algorithm. Detectability is evaluated by a channelized Hotelling observer with dense difference-of-Gaussian channels. For uniform background, off-centered images yield higher detectability than iso-centered images for the transverse plane, while for the longitudinal plane, detectability of iso-centered and off-centered images are similar. For anatomical background, off-centered images yield higher detectability for the transverse plane, while iso-centered images yield higher detectability for the longitudinal plane, when the slice thickness is smaller than 1.9mm. The optimal slice thickness is 3.8mm for all tasks, and the transverse plane at the off-center (iso-center and off-center) produces the highest detectability for uniform (anatomical) background.

  9. Task-Based Regularization Design for Detection of Intracranial Hemorrhage in Cone-Beam CT

    PubMed Central

    Dang, H.; Stayman, J. W.; Xu, J.; Sisniega, A.; Zbijewski, W.; Wang, X.; Foos, D. H.; Aygun, N.; Koliatsos, V. E.; Siewerdsen, J. H.

    2016-01-01

    Prompt and reliable detection of acute intracranial hemorrhage (ICH) is critical to treatment of a number of neurological disorders. Cone-beam CT (CBCT) systems are potentially suitable for detecting ICH (contrast 40-80 HU, size down to 1 mm) at the point of care but face major challenges in image quality requirements. Statistical reconstruction demonstrates improved noise-resolution tradeoffs in CBCT head imaging, but its capability in improving image quality with respect to the task of ICH detection remains to be fully investigated. Moreover, statistical reconstruction typically exhibits nonuniform spatial resolution and noise characteristics, leading to spatially varying detectability of ICH for a conventional penalty. In this work, we propose a spatially varying penalty design that maximizes detectability of ICH at each location throughout the image. We leverage theoretical analysis of spatial resolution and noise for a penalized weighted least-squares (PWLS) estimator, and employ a task-based imaging performance descriptor in terms of detectability index using a nonprewhitening observer model. Performance prediction was validated using a 3D anthropomorphic head phantom. The proposed penalty achieved superior detectability throughout the head and improved detectability in regions adjacent to the skull base by ~10% compared to a conventional uniform penalty. PWLS reconstruction with the proposed penalty demonstrated excellent visualization of simulated ICH in different regions of the head and provides further support for development of dedicated CBCT head scanning at the point-of-care in the neuro ICU and OR.

  10. Implementation of sensitivity and resolution modeling for SPECT with cone-beam collimator

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Kunniyur, Vikram R.; Lee, Wei; Gangal, Kedar R.; Coman, Ioana L.; Lipson, Edward D.; Karczewski, Deborah A.; Thomas, F. Deaver; Feiglin, David H.

    2005-04-01

    We implemented a fully-3D ordered-subsets expectation-maximization (OSEM) algorithm with attenuation compensation, distance-dependent blurring (DDB), and sensitivity modeling for SPECT performed with a cone-beam collimator (CBC). The experimentally obtained detector response to point sources across FOV was fitted to a two-dimensional Gaussian function with its width (FWHM) varying linearly with the source-to-detector distance and with very weak sensitivity dependence on the emission angle. We obtained CBC SPECT scans of a physical point-source phantom, a Defrise phantom, and a female patient, and we investigated performance of our algorithm. To correctly simulate DDB and sensitivity, a blurring kernel with a radius of up to 10 elements had to be used for a 128¥128 acquisition matrix, and volumetric ray tracing rather than line-element-based ray tracing has to be implemented. In the point-source phantom reconstruction we evaluated the uniformity of FWHM for the radial, tangential and longitudinal directions, and sensitivity vs. distance. An isotropic and stationary resolution was obtained at any location by OSEM with DDB and sensitivity modeling, only when volumetric ray tracing was used. We analyzed axial and transaxial profiles obtained for the Defrise phantom and evaluated the reconstructed breast SPECT patient images. The proposed fully-3D OSEM reconstruction algorithm with DBB and sensitivity modeling, and attenuation compensation with volumetric rays tracing is efficient and effective with significant resolution and sensitivity recovery.

  11. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    PubMed Central

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-01