Online vegetation parameter estimation using passive microwave remote sensing observations
USDA-ARS?s Scientific Manuscript database
In adaptive system identification the Kalman filter can be used to identify the coefficient of the observation operator of a linear system. Here the ensemble Kalman filter is tested for adaptive online estimation of the vegetation opacity parameter of a radiative transfer model. A state augmentatio...
Analysis and application of minimum variance discrete time system identification
NASA Technical Reports Server (NTRS)
Kaufman, H.; Kotob, S.
1975-01-01
An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
NASA Technical Reports Server (NTRS)
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-11-13
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-01-01
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231
A Review of System Identification Methods Applied to Aircraft
NASA Technical Reports Server (NTRS)
Klein, V.
1983-01-01
Airplane identification, equation error method, maximum likelihood method, parameter estimation in frequency domain, extended Kalman filter, aircraft equations of motion, aerodynamic model equations, criteria for the selection of a parsimonious model, and online aircraft identification are addressed.
System identification for modeling for control of flexible structures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Milman, Mark
1986-01-01
The major components of a design and operational flight strategy for flexible structure control systems are presented. In this strategy an initial distributed parameter control design is developed and implemented from available ground test data and on-orbit identification using sophisticated modeling and synthesis techniques. The reliability of this high performance controller is directly linked to the accuracy of the parameters on which the design is based. Because uncertainties inevitably grow without system monitoring, maintaining the control system requires an active on-line system identification function to supply parameter updates and covariance information. Control laws can then be modified to improve performance when the error envelopes are decreased. In terms of system safety and stability the covariance information is of equal importance as the parameter values themselves. If the on-line system ID function detects an increase in parameter error covariances, then corresponding adjustments must be made in the control laws to increase robustness. If the error covariances exceed some threshold, an autonomous calibration sequence could be initiated to restore the error enveloped to an acceptable level.
NASA Astrophysics Data System (ADS)
Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe
2014-09-01
Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.
On-line identification of fermentation processes for ethanol production.
Câmara, M M; Soares, R M; Feital, T; Naomi, P; Oki, S; Thevelein, J M; Amaral, M; Pinto, J C
2017-07-01
A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2006-01-01
The present invention is a method for identifying unknown parameters in a system having a set of governing equations describing its behavior that cannot be put into regression form with the unknown parameters linearly represented. In this method, the vector of unknown parameters is segmented into a plurality of groups where each individual group of unknown parameters may be isolated linearly by manipulation of said equations. Multiple concurrent and independent recursive least squares identification of each said group run, treating other unknown parameters appearing in their regression equation as if they were known perfectly, with said values provided by recursive least squares estimation from the other groups, thereby enabling the use of fast, compact, efficient linear algorithms to solve problems that would otherwise require nonlinear solution approaches. This invention is presented with application to identification of mass and thruster properties for a thruster-controlled spacecraft.
Computer aided design of digital controller for radial active magnetic bearings
NASA Technical Reports Server (NTRS)
Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin
1992-01-01
A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.
Smoluch, Marek; Mielczarek, Przemyslaw; Reszke, Edward; Hieftje, Gary M; Silberring, Jerzy
2014-09-07
The flowing atmospheric pressure afterglow (FAPA) ion source operates in the ambient atmosphere and has been proven to be a promising tool for direct and rapid determination of numerous compounds. Here we linked a FAPA-MS system to an electrochemical flow cell for the identification of drug metabolites generated electrochemically in order to study simulated metabolic pathways. Psychostimulants and their metabolites produced by electrochemistry (EC) were detected on-line by FAPA-MS. The FAPA source has never been used before for an on-line connection with liquid flow, neither for identification of products generated in an electrochemical flow cell. The system was optimized to achieve the highest ionization efficiency by adjusting several parameters, including distances and angles between the ion source and the outlet of the EC system, the high voltage for plasma generation, flow-rates, and EC parameters. Simulated metabolites from tested compounds [methamphetamine (MAF), para-methoxy-N-methylamphetamine (PMMA), dextromethorphan (DXM), and benzydamine (BAM)] were formed in the EC cell at various pH levels. In all cases the main products were oxidized substrates and compounds after N-demethylation. Generation of such products and their thorough on-line identification confirm that the cytochrome P450 - driven metabolism of pharmaceuticals can be efficiently simulated in an electrochemical cell; this approach may serve as a step towards predictive pharmacology using a fast and robust design.
Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring
Hu, Hai-Feng
2018-01-01
As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants’ multi-parameters and the bearings’ wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes. PMID:29621175
Evaluation for Bearing Wear States Based on Online Oil Multi-Parameters Monitoring.
Wang, Si-Yuan; Yang, Ding-Xin; Hu, Hai-Feng
2018-04-05
As bearings are critical components of a mechanical system, it is important to characterize their wear states and evaluate health conditions. In this paper, a novel approach for analyzing the relationship between online oil multi-parameter monitoring samples and bearing wear states has been proposed based on an improved gray k-means clustering model (G-KCM). First, an online monitoring system with multiple sensors for bearings is established, obtaining oil multi-parameter data and vibration signals for bearings through the whole lifetime. Secondly, a gray correlation degree distance matrix is generated using a gray correlation model (GCM) to express the relationship of oil monitoring samples at different times and then a KCM is applied to cluster the matrix. Analysis and experimental results show that there is an obvious correspondence that state changing coincides basically in time between the lubricants' multi-parameters and the bearings' wear states. It also has shown that online oil samples with multi-parameters have early wear failure prediction ability for bearings superior to vibration signals. It is expected to realize online oil monitoring and evaluation for bearing health condition and to provide a novel approach for early identification of bearing-related failure modes.
DC servomechanism parameter identification: a Closed Loop Input Error approach.
Garrido, Ruben; Miranda, Roger
2012-01-01
This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Study on feed forward neural network convex optimization for LiFePO4 battery parameters
NASA Astrophysics Data System (ADS)
Liu, Xuepeng; Zhao, Dongmei
2017-08-01
Based on the modern facility agriculture automatic walking equipment LiFePO4 Battery, the parameter identification of LiFePO4 Battery is analyzed. An improved method for the process model of li battery is proposed, and the on-line estimation algorithm is presented. The parameters of the battery are identified using feed forward network neural convex optimization algorithm.
Ligandbook: an online repository for small and drug-like molecule force field parameters.
Domanski, Jan; Beckstein, Oliver; Iorga, Bogdan I
2017-06-01
Ligandbook is a public database and archive for force field parameters of small and drug-like molecules. It is a repository for parameter sets that are part of published work but are not easily available to the community otherwise. Parameter sets can be downloaded and immediately used in molecular dynamics simulations. The sets of parameters are versioned with full histories and carry unique identifiers to facilitate reproducible research. Text-based search on rich metadata and chemical substructure search allow precise identification of desired compounds or functional groups. Ligandbook enables the rapid set up of reproducible molecular dynamics simulations of ligands and protein-ligand complexes. Ligandbook is available online at https://ligandbook.org and supports all modern browsers. Parameters can be searched and downloaded without registration, including access through a programmatic RESTful API. Deposition of files requires free user registration. Ligandbook is implemented in the PHP Symfony2 framework with TCL scripts using the CACTVS toolkit. oliver.beckstein@asu.edu or bogdan.iorga@cnrs.fr ; contact@ligandbook.org . Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Attitude identification for SCOLE using two infrared cameras
NASA Technical Reports Server (NTRS)
Shenhar, Joram
1991-01-01
An algorithm is presented that incorporates real time data from two infrared cameras and computes the attitude parameters of the Spacecraft COntrol Lab Experiment (SCOLE), a lab apparatus representing an offset feed antenna attached to the Space Shuttle by a flexible mast. The algorithm uses camera position data of three miniature light emitting diodes (LEDs), mounted on the SCOLE platform, permitting arbitrary camera placement and an on-line attitude extraction. The continuous nature of the algorithm allows identification of the placement of the two cameras with respect to some initial position of the three reference LEDs, followed by on-line six degrees of freedom attitude tracking, regardless of the attitude time history. A description is provided of the algorithm in the camera identification mode as well as the mode of target tracking. Experimental data from a reduced size SCOLE-like lab model, reflecting the performance of the camera identification and the tracking processes, are presented. Computer code for camera placement identification and SCOLE attitude tracking is listed.
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams-Hayes, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.
Kalman and particle filtering methods for full vehicle and tyre identification
NASA Astrophysics Data System (ADS)
Bogdanski, Karol; Best, Matthew C.
2018-05-01
This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Tseng, King Jet; Wai, Nyunt; Lim, Tuti Mariana; Skyllas-Kazacos, Maria
2016-11-01
Reliable state estimate depends largely on an accurate battery model. However, the parameters of battery model are time varying with operating condition variation and battery aging. The existing co-estimation methods address the model uncertainty by integrating the online model identification with state estimate and have shown improved accuracy. However, the cross interference may arise from the integrated framework to compromise numerical stability and accuracy. Thus this paper proposes the decoupling of model identification and state estimate to eliminate the possibility of cross interference. The model parameters are online adapted with the recursive least squares (RLS) method, based on which a novel joint estimator based on extended Kalman Filter (EKF) is formulated to estimate the state of charge (SOC) and capacity concurrently. The proposed joint estimator effectively compresses the filter order which leads to substantial improvement in the computational efficiency and numerical stability. Lab scale experiment on vanadium redox flow battery shows that the proposed method is highly authentic with good robustness to varying operating conditions and battery aging. The proposed method is further compared with some existing methods and shown to be superior in terms of accuracy, convergence speed, and computational cost.
NASA Astrophysics Data System (ADS)
Zhong, Chongquan; Lin, Yaoyao
2017-11-01
In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Fuzzy variable impedance control based on stiffness identification for human-robot cooperation
NASA Astrophysics Data System (ADS)
Mao, Dachao; Yang, Wenlong; Du, Zhijiang
2017-06-01
This paper presents a dynamic fuzzy variable impedance control algorithm for human-robot cooperation. In order to estimate the intention of human for co-manipulation, a fuzzy inference system is set up to adjust the impedance parameter. Aiming at regulating the output fuzzy universe based on the human arm’s stiffness, an online stiffness identification method is developed. A drag interaction task is conducted on a 5-DOF robot with variable impedance control. Experimental results demonstrate that the proposed algorithm is superior.
Dynamic neural networks based on-line identification and control of high performance motor drives
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Kotaru, Raj
1995-01-01
In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.
Differential surface models for tactile perception of shape and on-line tracking of features
NASA Technical Reports Server (NTRS)
Hemami, H.
1987-01-01
Tactile perception of shape involves an on-line controller and a shape perceptor. The purpose of the on-line controller is to maintain gliding or rolling contact with the surface, and collect information, or track specific features of the surface such as edges of a certain sharpness. The shape perceptor uses the information to perceive, estimate the parameters of, or recognize the shape. The differential surface model depends on the information collected and on the a priori information known about the robot and its physical parameters. These differential models are certain functionals that are projections of the dynamics of the robot onto the surface gradient or onto the tangent plane. A number of differential properties may be directly measured from present day tactile sensors. Others may have to be indirectly computed from measurements. Others may constitute design objectives for distributed tactile sensors of the future. A parameterization of the surface leads to linear and nonlinear sequential parameter estimation techniques for identification of the surface. Many interesting compromises between measurement and computation are possible.
Marini, G W; Wellguni, H
2003-01-01
The worsening environmental situation of the Brantas River, East Java, is addressed by a comprehensive basin management strategy which relies on accurate water quantity and quality data retrieved from a newly installed online monitoring network. Integrated into a Hydrological Information System, the continuously measured indicative parameters allow early warning, control and polluter identification. Additionally, long-term analyses have been initiated for improving modelling applications like flood forecasting, water resource management and pollutant propagation. Preliminary results illustrate the efficiency of the installed system.
TADtool: visual parameter identification for TAD-calling algorithms.
Kruse, Kai; Hug, Clemens B; Hernández-Rodríguez, Benjamín; Vaquerizas, Juan M
2016-10-15
Eukaryotic genomes are hierarchically organized into topologically associating domains (TADs). The computational identification of these domains and their associated properties critically depends on the choice of suitable parameters of TAD-calling algorithms. To reduce the element of trial-and-error in parameter selection, we have developed TADtool: an interactive plot to find robust TAD-calling parameters with immediate visual feedback. TADtool allows the direct export of TADs called with a chosen set of parameters for two of the most common TAD calling algorithms: directionality and insulation index. It can be used as an intuitive, standalone application or as a Python package for maximum flexibility. TADtool is available as a Python package from GitHub (https://github.com/vaquerizaslab/tadtool) or can be installed directly via PyPI, the Python package index (tadtool). kai.kruse@mpi-muenster.mpg.de, jmv@mpi-muenster.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System
NASA Technical Reports Server (NTRS)
Williams, Peggy S.
2004-01-01
The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team is to develop and flight-test control systems that use neural network technology to optimize the performance of the aircraft under nominal conditions as well as stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to the baseline aerodynamic derivatives in flight. This set of open-loop flight tests was performed in preparation for a future phase of flights in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed a pitch frequency sweep and an automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. An examination of flight data shows that addition of the flight-identified aerodynamic derivative increments into the simulation improved the pitch handling qualities of the aircraft.
NASA Astrophysics Data System (ADS)
Vachálek, Ján
2011-12-01
The paper compares the abilities of forgetting methods to track time varying parameters of two different simulated models with different types of excitation. The observed parameters in the simulations are the integral sum of the Euclidean norm, deviation of the parameter estimates from their true values and a selected band prediction error count. As supplementary information, we observe the eigenvalues of the covariance matrix. In the paper we used a modified method of Regularized Exponential Forgetting with Alternative Covariance Matrix (REFACM) along with Directional Forgetting (DF) and three standard regularized methods.
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Overview and benchmark analysis of fuel cell parameters estimation for energy management purposes
NASA Astrophysics Data System (ADS)
Kandidayeni, M.; Macias, A.; Amamou, A. A.; Boulon, L.; Kelouwani, S.; Chaoui, H.
2018-03-01
Proton exchange membrane fuel cells (PEMFCs) have become the center of attention for energy conversion in many areas such as automotive industry, where they confront a high dynamic behavior resulting in their characteristics variation. In order to ensure appropriate modeling of PEMFCs, accurate parameters estimation is in demand. However, parameter estimation of PEMFC models is highly challenging due to their multivariate, nonlinear, and complex essence. This paper comprehensively reviews PEMFC models parameters estimation methods with a specific view to online identification algorithms, which are considered as the basis of global energy management strategy design, to estimate the linear and nonlinear parameters of a PEMFC model in real time. In this respect, different PEMFC models with different categories and purposes are discussed first. Subsequently, a thorough investigation of PEMFC parameter estimation methods in the literature is conducted in terms of applicability. Three potential algorithms for online applications, Recursive Least Square (RLS), Kalman filter, and extended Kalman filter (EKF), which has escaped the attention in previous works, have been then utilized to identify the parameters of two well-known semi-empirical models in the literature, Squadrito et al. and Amphlett et al. Ultimately, the achieved results and future challenges are discussed.
NASA Astrophysics Data System (ADS)
Guo, Haotian; Duan, Fajie; Zhang, Jilong
2016-01-01
Blade tip-timing is the most effective method for blade vibration online measurement of turbomachinery. In this article a synchronous resonance vibration measurement method of blade based on tip-timing is presented. This method requires no once-per revolution sensor which makes it more generally applicable in the condition where this sensor is difficult to install, especially for the high-pressure rotors of dual-rotor engines. Only three casing mounted probes are required to identify the engine order, amplitude, natural frequency and the damping coefficient of the blade. A method is developed to identify the blade which a tip-timing data belongs to without once-per revolution sensor. Theoretical analyses of resonance parameter measurement are presented. Theoretic error of the method is investigated and corrected. Experiments are conducted and the results indicate that blade resonance parameter identification is achieved without once-per revolution sensor.
Nondestructive online testing method for friction stir welding using acoustic emission
NASA Astrophysics Data System (ADS)
Levikhina, Anastasiya
2017-12-01
The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.
Calibration of Reduced Dynamic Models of Power Systems using Phasor Measurement Unit (PMU) Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ning; Lu, Shuai; Singh, Ruchi
2011-09-23
Accuracy of a power system dynamic model is essential to the secure and efficient operation of the system. Lower confidence on model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, identification algorithms have been developed to calibrate parameters of individual components using measurement data from staged tests. To facilitate online dynamic studies for large power system interconnections, this paper proposes a model reduction and calibration approach using phasor measurement unit (PMU) data. First, a model reduction method is used to reduce the number of dynamic components. Then, a calibration algorithm is developed to estimatemore » parameters of the reduced model. This approach will help to maintain an accurate dynamic model suitable for online dynamic studies. The performance of the proposed method is verified through simulation studies.« less
NASA Astrophysics Data System (ADS)
Hoffstadt, Thorben; Griese, Martin; Maas, Jürgen
2014-10-01
Transducers based on dielectric electroactive polymers (DEAP) use electrostatic pressure to convert electric energy into strain energy or vice versa. Besides this, they are also designed for sensor applications in monitoring the actual stretch state on the basis of the deformation dependent capacitive-resistive behavior of the DEAP. In order to enable an efficient and proper closed loop control operation of these transducers, e.g. in positioning or energy harvesting applications, on the one hand, sensors based on DEAP material can be integrated into the transducers and evaluated externally, and on the other hand, the transducer itself can be used as a sensor, also in terms of self-sensing. For this purpose the characteristic electrical behavior of the transducer has to be evaluated in order to determine the mechanical state. Also, adequate online identification algorithms with sufficient accuracy and dynamics are required, independent from the sensor concept utilized, in order to determine the electrical DEAP parameters in real time. Therefore, in this contribution, algorithms are developed in the frequency domain for identifications of the capacitance as well as the electrode and polymer resistance of a DEAP, which are validated by measurements. These algorithms are designed for self-sensing applications, especially if the power electronics utilized is operated at a constant switching frequency, and parasitic harmonic oscillations are induced besides the desired DC value. These oscillations can be used for the online identification, so an additional superimposed excitation is no longer necessary. For this purpose a dual active bridge (DAB) is introduced to drive the DEAP transducer. The capabilities of the real-time identification algorithm in combination with the DAB are presented in detail and discussed, finally.
NASA Astrophysics Data System (ADS)
Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw
2016-11-01
In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.
Least-squares sequential parameter and state estimation for large space structures
NASA Technical Reports Server (NTRS)
Thau, F. E.; Eliazov, T.; Montgomery, R. C.
1982-01-01
This paper presents the formulation of simultaneous state and parameter estimation problems for flexible structures in terms of least-squares minimization problems. The approach combines an on-line order determination algorithm, with least-squares algorithms for finding estimates of modal approximation functions, modal amplitudes, and modal parameters. The approach combines previous results on separable nonlinear least squares estimation with a regression analysis formulation of the state estimation problem. The technique makes use of sequential Householder transformations. This allows for sequential accumulation of matrices required during the identification process. The technique is used to identify the modal prameters of a flexible beam.
Kazemi, Mahdi; Arefi, Mohammad Mehdi
2017-03-01
In this paper, an online identification algorithm is presented for nonlinear systems in the presence of output colored noise. The proposed method is based on extended recursive least squares (ERLS) algorithm, where the identified system is in polynomial Wiener form. To this end, an unknown intermediate signal is estimated by using an inner iterative algorithm. The iterative recursive algorithm adaptively modifies the vector of parameters of the presented Wiener model when the system parameters vary. In addition, to increase the robustness of the proposed method against variations, a robust RLS algorithm is applied to the model. Simulation results are provided to show the effectiveness of the proposed approach. Results confirm that the proposed method has fast convergence rate with robust characteristics, which increases the efficiency of the proposed model and identification approach. For instance, the FIT criterion will be achieved 92% in CSTR process where about 400 data is used. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Host-Based Systemic Network Obfuscation System for Windows
2011-06-01
speed, CPU speed, and memory size. These additional parameters are control variables and do not change throughout the experiment. The applications...physical median that passes the network traffic, such as a wireless signal or Ethernet cable and does not need obfuscation. The colored layers in Figure...Gul09] Ron Gula, “ Enchanced Operating System Identification with Nessus.” [Online]. Available: http://blog.tenablesecurity.com/2009/02
NASA Astrophysics Data System (ADS)
Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping
2017-05-01
To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
Physiological motion modeling for organ-mounted robots.
Wood, Nathan A; Schwartzman, David; Zenati, Marco A; Riviere, Cameron N
2017-12-01
Organ-mounted robots passively compensate heartbeat and respiratory motion. In model-guided procedures, this motion can be a significant source of information that can be used to aid in localization or to add dynamic information to static preoperative maps. Models for estimating periodic motion are proposed for both position and orientation. These models are then tested on animal data and optimal orders are identified. Finally, methods for online identification are demonstrated. Models using exponential coordinates and Euler-angle parameterizations are as accurate as models using quaternion representations, yet require a quarter fewer parameters. Models which incorporate more than four cardiac or three respiration harmonics are no more accurate. Finally, online methods estimate model parameters as accurately as offline methods within three respiration cycles. These methods provide a complete framework for accurately modelling the periodic deformation of points anywhere on the surface of the heart in a closed chest. Copyright © 2017 John Wiley & Sons, Ltd.
Self-Tuning Adaptive-Controller Using Online Frequency Identification
NASA Technical Reports Server (NTRS)
Chiang, W. W.; Cannon, R. H., Jr.
1985-01-01
A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods.
[A peak recognition algorithm designed for chromatographic peaks of transformer oil].
Ou, Linjun; Cao, Jian
2014-09-01
In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-09-02
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-01-01
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance. PMID:27598160
Online video game addiction: identification of addicted adolescent gamers.
Van Rooij, Antonius J; Schoenmakers, Tim M; Vermulst, Ad A; Van den Eijnden, Regina J J M; Van de Mheen, Dike
2011-01-01
To provide empirical data-driven identification of a group of addicted online gamers. Repeated cross-sectional survey study, comprising a longitudinal cohort, conducted in 2008 and 2009. Secondary schools in the Netherlands. Two large samples of Dutch schoolchildren (aged 13-16 years). Compulsive internet use scale, weekly hours of online gaming and psychosocial variables. This study confirms the existence of a small group of addicted online gamers (3%), representing about 1.5% of all children aged 13-16 years in the Netherlands. Although these gamers report addiction-like problems, relationships with decreased psychosocial health were less evident. The identification of a small group of addicted online gamers supports efforts to develop and validate questionnaire scales aimed at measuring the phenomenon of online video game addiction. The findings contribute to the discussion on the inclusion of non-substance addictions in the proposed unified concept of 'Addiction and Related Disorders' for the DSM-V by providing indirect identification and validation of a group of suspected online video game addicts. © 2010 The Authors, Addiction © 2010 Society for the Study of Addiction.
Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves
NASA Astrophysics Data System (ADS)
Wang, Qiang; Ma, Shuxian; Yue, Dong
2018-04-01
Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.
NASA Astrophysics Data System (ADS)
Magalhães, F.; Cunha, A.; Caetano, E.
2012-04-01
In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.
NASA Astrophysics Data System (ADS)
Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai
2017-10-01
With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.
Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission
Zhang, Zhiheng; Yang, Guoan; Hu, Kun
2018-01-01
Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556
Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.
Zhang, Zhiheng; Yang, Guoan; Hu, Kun
2018-04-25
Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.
An adaptive control scheme for a flexible manipulator
NASA Technical Reports Server (NTRS)
Yang, T. C.; Yang, J. C. S.; Kudva, P.
1987-01-01
The problem of controlling a single link flexible manipulator is considered. A self-tuning adaptive control scheme is proposed which consists of a least squares on-line parameter identification of an equivalent linear model followed by a tuning of the gains of a pole placement controller using the parameter estimates. Since the initial parameter values for this model are assumed unknown, the use of arbitrarily chosen initial parameter estimates in the adaptive controller would result in undesirable transient effects. Hence, the initial stage control is carried out with a PID controller. Once the identified parameters have converged, control is transferred to the adaptive controller. Naturally, the relevant issues in this scheme are tests for parameter convergence and minimization of overshoots during control switch-over. To demonstrate the effectiveness of the proposed scheme, simulation results are presented with an analytical nonlinear dynamic model of a single link flexible manipulator.
Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2017-01-01
The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.
An Adaptive Technique for a Redundant-Sensor Navigation System. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chien, T. T.
1972-01-01
An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. The gyro navigation system is modeled as a Gauss-Markov process, with degradation modes defined as changes in characteristics specified by parameters associated with the model. The adaptive system is formulated as a multistage stochastic process: (1) a detection system, (2) an identification system and (3) a compensation system. It is shown that the sufficient statistics for the partially observable process in the detection and identification system is the posterior measure of the state of degradation, conditioned on the measurement history.
NASA Astrophysics Data System (ADS)
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
Identification and control of plasma vertical position using neural network in Damavand tokamak.
Rasouli, H; Rasouli, C; Koohi, A
2013-02-01
In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.
Alves, Gelio; Yu, Yi-Kuo
2016-09-01
There is a growing trend for biomedical researchers to extract evidence and draw conclusions from mass spectrometry based proteomics experiments, the cornerstone of which is peptide identification. Inaccurate assignments of peptide identification confidence thus may have far-reaching and adverse consequences. Although some peptide identification methods report accurate statistics, they have been limited to certain types of scoring function. The extreme value statistics based method, while more general in the scoring functions it allows, demands accurate parameter estimates and requires, at least in its original design, excessive computational resources. Improving the parameter estimate accuracy and reducing the computational cost for this method has two advantages: it provides another feasible route to accurate significance assessment, and it could provide reliable statistics for scoring functions yet to be developed. We have formulated and implemented an efficient algorithm for calculating the extreme value statistics for peptide identification applicable to various scoring functions, bypassing the need for searching large random databases. The source code, implemented in C ++ on a linux system, is available for download at ftp://ftp.ncbi.nlm.nih.gov/pub/qmbp/qmbp_ms/RAId/RAId_Linux_64Bit yyu@ncbi.nlm.nih.gov Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.
Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter.
Vafamand, Navid; Arefi, Mohammad Mehdi; Khayatian, Alireza
2018-03-01
This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Observing Consistency in Online Communication Patterns for User Re-Identification.
Adeyemi, Ikuesan Richard; Razak, Shukor Abd; Salleh, Mazleena; Venter, Hein S
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas.
rTANDEM, an R/Bioconductor package for MS/MS protein identification.
Fournier, Frédéric; Joly Beauparlant, Charles; Paradis, René; Droit, Arnaud
2014-08-01
rTANDEM is an R/Bioconductor package that interfaces the X!Tandem protein identification algorithm. The package can run the multi-threaded algorithm on proteomic data files directly from R. It also provides functions to convert search parameters and results to/from R as well as functions to manipulate parameters and automate searches. An associated R package, shinyTANDEM, provides a web-based graphical interface to visualize and interpret the results. Together, those two packages form an entry point for a general MS/MS-based proteomic pipeline in R/Bioconductor. rTANDEM and shinyTANDEM are distributed in R/Bioconductor, http://bioconductor.org/packages/release/bioc/. The packages are under open licenses (GPL-3 and Artistice-1.0). frederic.fournier@crchuq.ulaval.ca or arnaud.droit@crchuq.ulaval.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.
Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P
2017-03-01
We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Observing Consistency in Online Communication Patterns for User Re-Identification
Venter, Hein S.
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas. PMID:27918593
NASA Astrophysics Data System (ADS)
Zima, W.
2008-12-01
FAMIAS (Frequency Analysis and Mode Identification for AsteroSeismology) is a collection of state-of-the-art software tools for the analysis of photometric and spectroscopic time series data. It is one of the deliverables of the Work Package NA5: Asteroseismology of the European Coordination Action in Helio- and Asteroseismology (HELAS1 ). Two main sets of tools are incorporated in FAMIAS. The first set allows to search for pe- riodicities in the data using Fourier and non-linear least-squares fitting algorithms. The other set allows to carry out a mode identification for the detected pulsation frequencies to deter- mine their pulsational quantum numbers, the harmonic degree, ℓ, and the azimuthal order, m. For the spectroscopic mode identification, the Fourier parameter fit method and the moment method are available. The photometric mode identification is based on pre-computed grids of atmospheric parameters and non-adiabatic observables, and uses the method of amplitude ratios and phase differences in different filters. The types of stars to which FAMIAS is appli- cable are main-sequence pulsators hotter than the Sun. This includes the Gamma Dor stars, Delta Sct stars, the slowly pulsating B stars and the Beta Cep stars - basically all pulsating main-sequence stars, for which empirical mode identification is required to successfully carry out asteroseismology. The complete manual for FAMIAS is published in a special issue of Communications in Asteroseismology, Vol 155. The homepage of FAMIAS2 provides the possibility to download the software and to read the on-line documentation.
Lee, Doohwang; Kim, Hyuk Soo; Kim, Jung Kyu
2011-01-01
The current study proposed and tested a theoretical model of consumers' online brand community engagement behaviors, with particular attention given to online brand community type (consumer vs. marketer-created). By integrating attribution and social identity theories, this study investigated the causal linkages between intrinsic motives of altruism, social identification motivations, and online brand community engagement behaviors. The results showed that consumers' online brand community engagement intentions were indirectly influenced by the different types of communities through different levels of consumers' attributions to intrinsic motives of altruism. This study also found that, in the attribution processes, consumers' intrinsic motives of altruism motivated them to identify themselves socially with the online communities they join. Finally, this study demonstrated that the intrinsic motives of altruism and social identification motivations provided strong social incentives to motivate consumers to engage in subsequent online brand community behaviors.
Gobbo-Neto, Leonardo; Lopes, Norberto P
2008-02-27
Lychnophora ericoides Mart. (Asteraceae, Vernonieae) is a plant, endemic to Brazil, with occurrence restricted to the "cerrado" biome. Traditional medicine employs alcoholic and aqueous-alcoholic preparations of leaves from this species for the treatment of wounds, inflammation, and pain. Furthermore, leaves of L. ericoides are also widely used as flavorings for the Brazilian traditional spirit "cachaça". A method has been developed for the extraction and HPLC-DAD analysis of the secondary metabolites of L. ericoides leaves. This analytical method was validated with 11 secondary metabolites chosen to represent the different classes and polarities of secondary metabolites occurring in L. ericoides leaves, and good responses were obtained for each validation parameter analyzed. The same HPLC analytical method was also employed for online secondary metabolite identification by HPLC-DAD-MS and HPLC-DAD-MS/MS, leading to the identification of di- C-glucosylflavones, coumaroylglucosylflavonols, flavone, flavanones, flavonols, chalcones, goyazensolide, and eremantholide-type sesquiterpene lactones and positional isomeric series of chlorogenic acids possessing caffeic and/or ferulic moieties. Among the 52 chromatographic peaks observed, 36 were fully identified and 8 were attributed to compounds belonging to series of caffeoylferuloylquinic and diferuloylquinic acids that could not be individualized from each other.
NASA Technical Reports Server (NTRS)
Chiang, W.-W.; Cannon, R. H., Jr.
1985-01-01
A fourth-order laboratory dynamic system featuring very low structural damping and a noncolocated actuator-sensor pair has been used to test a novel real-time adaptive controller, implemented in a minicomputer, which consists of a state estimator, a set of state feedback gains, and a frequency-locked loop for real-time parameter identification. The adaptation algorithm employed can correct controller error and stabilize the system for more than 50 percent variation in the plant's natural frequency, compared with a 10 percent stability margin in frequency variation for a fixed gain controller having the same performance as the nominal plant condition. The very rapid convergence achievable by this adaptive system is demonstrated experimentally, and proven with simple, root-locus methods.
Identification of Synchronous Machine Stability - Parameters: AN On-Line Time-Domain Approach.
NASA Astrophysics Data System (ADS)
Le, Loc Xuan
1987-09-01
A time-domain modeling approach is described which enables the stability-study parameters of the synchronous machine to be determined directly from input-output data measured at the terminals of the machine operating under normal conditions. The transient responses due to system perturbations are used to identify the parameters of the equivalent circuit models. The described models are verified by comparing their responses with the machine responses generated from the transient stability models of a small three-generator multi-bus power system and of a single -machine infinite-bus power network. The least-squares method is used for the solution of the model parameters. As a precaution against ill-conditioned problems, the singular value decomposition (SVD) is employed for its inherent numerical stability. In order to identify the equivalent-circuit parameters uniquely, the solution of a linear optimization problem with non-linear constraints is required. Here, the SVD appears to offer a simple solution to this otherwise difficult problem. Furthermore, the SVD yields solutions with small bias and, therefore, physically meaningful parameters even in the presence of noise in the data. The question concerning the need for a more advanced model of the synchronous machine which describes subtransient and even sub-subtransient behavior is dealt with sensibly by the concept of condition number. The concept provides a quantitative measure for determining whether such an advanced model is indeed necessary. Finally, the recursive SVD algorithm is described for real-time parameter identification and tracking of slowly time-variant parameters. The algorithm is applied to identify the dynamic equivalent power system model.
On-line training of recurrent neural networks with continuous topology adaptation.
Obradovic, D
1996-01-01
This paper presents an online procedure for training dynamic neural networks with input-output recurrences whose topology is continuously adjusted to the complexity of the target system dynamics. This is accomplished by changing the number of the elements of the network hidden layer whenever the existing topology cannot capture the dynamics presented by the new data. The training mechanism is based on the suitably altered extended Kalman filter (EKF) algorithm which is simultaneously used for the network parameter adjustment and for its state estimation. The network consists of a single hidden layer with Gaussian radial basis functions (GRBF), and a linear output layer. The choice of the GRBF is induced by the requirements of the online learning. The latter implies the network architecture which permits only local influence of the new data point in order not to forget the previously learned dynamics. The continuous topology adaptation is implemented in our algorithm to avoid memory and computational problems of using a regular grid of GRBF'S which covers the network input space. Furthermore, we show that the resulting parameter increase can be handled "smoothly" without interfering with the already acquired information. If the target system dynamics are changing over time, we show that a suitable forgetting factor can be used to "unlearn" the no longer-relevant dynamics. The quality of the recurrent network training algorithm is demonstrated on the identification of nonlinear dynamic systems.
An adaptive technique for a redundant-sensor navigation system.
NASA Technical Reports Server (NTRS)
Chien, T.-T.
1972-01-01
An on-line adaptive technique is developed to provide a self-contained redundant-sensor navigation system with a capability to utilize its full potentiality in reliability and performance. This adaptive system is structured as a multistage stochastic process of detection, identification, and compensation. It is shown that the detection system can be effectively constructed on the basis of a design value, specified by mission requirements, of the unknown parameter in the actual system, and of a degradation mode in the form of a constant bias jump. A suboptimal detection system on the basis of Wald's sequential analysis is developed using the concept of information value and information feedback. The developed system is easily implemented, and demonstrates a performance remarkably close to that of the optimal nonlinear detection system. An invariant transformation is derived to eliminate the effect of nuisance parameters such that the ambiguous identification system can be reduced to a set of disjoint simple hypotheses tests. By application of a technique of decoupled bias estimation in the compensation system the adaptive system can be operated without any complicated reorganization.
NASA Astrophysics Data System (ADS)
Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa
2017-05-01
This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.
PMAnalyzer: a new web interface for bacterial growth curve analysis.
Cuevas, Daniel A; Edwards, Robert A
2017-06-15
Bacterial growth curves are essential representations for characterizing bacteria metabolism within a variety of media compositions. Using high-throughput, spectrophotometers capable of processing tens of 96-well plates, quantitative phenotypic information can be easily integrated into the current data structures that describe a bacterial organism. The PMAnalyzer pipeline performs a growth curve analysis to parameterize the unique features occurring within microtiter wells containing specific growth media sources. We have expanded the pipeline capabilities and provide a user-friendly, online implementation of this automated pipeline. PMAnalyzer version 2.0 provides fast automatic growth curve parameter analysis, growth identification and high resolution figures of sample-replicate growth curves and several statistical analyses. PMAnalyzer v2.0 can be found at https://edwards.sdsu.edu/pmanalyzer/ . Source code for the pipeline can be found on GitHub at https://github.com/dacuevas/PMAnalyzer . Source code for the online implementation can be found on GitHub at https://github.com/dacuevas/PMAnalyzerWeb . dcuevas08@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Real-time diagnostics of the reusable rocket engine using on-line system identification
NASA Technical Reports Server (NTRS)
Guo, T.-H.; Merrill, W.; Duyar, A.
1990-01-01
A model-based failure diagnosis system has been proposed for real-time diagnosis of SSME failures. Actuation, sensor, and system degradation failure modes are all considered by the proposed system. In the case of SSME actuation failures, it was shown that real-time identification can effectively be used for failure diagnosis purposes. It is a direct approach since it reduces the detection, isolation, and the estimation of the extent of the failures to the comparison of parameter values before and after the failure. As with any model-based failure detection system, the proposed approach requires a fault model that embodies the essential characteristics of the failure process. The proposed diagnosis approach has the added advantage that it can be used as part of an intelligent control system for failure accommodation purposes.
Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent
2017-01-01
ABSTRACT The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. PMID:28179406
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2009-01-01
Plasma optical spectroscopy is widely employed in on-line welding diagnostics. The determination of the plasma electron temperature, which is typically selected as the output monitoring parameter, implies the identification of the atomic emission lines. As a consequence, additional processing stages are required with a direct impact on the real time performance of the technique. The line-to-continuum method is a feasible alternative spectroscopic approach and it is particularly interesting in terms of its computational efficiency. However, the monitoring signal highly depends on the chosen emission line. In this paper, a feature selection methodology is proposed to solve the uncertainty regarding the selection of the optimum spectral band, which allows the employment of the line-to-continuum method for on-line welding diagnostics. Field test results have been conducted to demonstrate the feasibility of the solution.
NASA Astrophysics Data System (ADS)
Cazzulani, Gabriele; Resta, Ferruccio; Ripamonti, Francesco
2012-04-01
During the last years, more and more mechanical applications saw the introduction of active control strategies. In particular, the need of improving the performances and/or the system health is very often associated to vibration suppression. This goal can be achieved considering both passive and active solutions. In this sense, many active control strategies have been developed, such as the Independent Modal Space Control (IMSC) or the resonant controllers (PPF, IRC, . . .). In all these cases, in order to tune and optimize the control strategy, the knowledge of the system dynamic behaviour is very important and it can be achieved both considering a numerical model of the system or through an experimental identification process. Anyway, dealing with non-linear or time-varying systems, a tool able to online identify the system parameters becomes a key-point for the control logic synthesis. The aim of the present work is the definition of a real-time technique, based on ARMAX models, that estimates the system parameters starting from the measurements of piezoelectric sensors. These parameters are returned to the control logic, that automatically adapts itself to the system dynamics. The problem is numerically investigated considering a carbon-fiber plate model forced through a piezoelectric patch.
Compensation of significant parametric uncertainties using sliding mode online learning
NASA Astrophysics Data System (ADS)
Schnetter, Philipp; Kruger, Thomas
An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.
Adaptive model reduction for continuous systems via recursive rational interpolation
NASA Technical Reports Server (NTRS)
Lilly, John H.
1994-01-01
A method for adaptive identification of reduced-order models for continuous stable SISO and MIMO plants is presented. The method recursively finds a model whose transfer function (matrix) matches that of the plant on a set of frequencies chosen by the designer. The algorithm utilizes the Moving Discrete Fourier Transform (MDFT) to continuously monitor the frequency-domain profile of the system input and output signals. The MDFT is an efficient method of monitoring discrete points in the frequency domain of an evolving function of time. The model parameters are estimated from MDFT data using standard recursive parameter estimation techniques. The algorithm has been shown in simulations to be quite robust to additive noise in the inputs and outputs. A significant advantage of the method is that it enables a type of on-line model validation. This is accomplished by simultaneously identifying a number of models and comparing each with the plant in the frequency domain. Simulations of the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant are presented. An example of on-line model validation applied to the SISO plant is also presented.
AN ONLINE CATALOG OF CATACLYSMIC VARIABLE SPECTRA FROM THE FAR-ULTRAVIOLET SPECTROSCOPIC EXPLORER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godon, Patrick; Sion, Edward M.; Levay, Karen
2012-12-15
We present an online catalog containing spectra and supporting information for cataclysmic variables that have been observed with the Far-Ultraviolet Spectroscopic Explorer (FUSE). For each object in the catalog we list some of the basic system parameters such as (R.A., decl.), period, inclination, and white dwarf mass, as well as information on the available FUSE spectra: data ID, observation date and time, and exposure time. In addition, we provide parameters needed for the analysis of the FUSE spectra such as the reddening E(B - V), distance, and state (high, low, intermediate) of the system at the time it was observed.more » For some of these spectra we have carried out model fits to the continuum with synthetic stellar and/or disk spectra using the codes TLUSTY and SYNSPEC. We provide the parameters obtained from these model fits; this includes the white dwarf temperature, gravity, projected rotational velocity, and elemental abundances of C, Si, S, and N, together with the disk mass accretion rate, the resulting inclination, and model-derived distance (when unknown). For each object one or more figures are provided (as gif files) with line identification and model fit(s) when available. The FUSE spectra and the synthetic spectra are directly available for download as ASCII tables. References are provided for each object, as well as for the model fits. In this article we present 36 objects, and additional ones will be added to the online catalog in the future. In addition to cataclysmic variables, we also include a few related objects, such as a wind-accreting white dwarf, a pre-cataclysmic variable, and some symbiotics.« less
ERIC Educational Resources Information Center
Gómez-Rey, Pilar; Barbera, Elena; Fernández-Navarro, Francisco
2018-01-01
The topic of online instructors' roles has been of interest to the educational community since the late twentieth century. In previous studies, the identification of online instructors' roles was done using a top-down (deductive) approach. This study applied a bottom-up (inductive) procedure to examine not only the roles of online instructors from…
Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent; Meyer, Wieland
2017-04-01
The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. Copyright © 2017 American Society for Microbiology.
A distributed fault-detection and diagnosis system using on-line parameter estimation
NASA Technical Reports Server (NTRS)
Guo, T.-H.; Merrill, W.; Duyar, A.
1991-01-01
The development of a model-based fault-detection and diagnosis system (FDD) is reviewed. The system can be used as an integral part of an intelligent control system. It determines the faults of a system from comparison of the measurements of the system with a priori information represented by the model of the system. The method of modeling a complex system is described and a description of diagnosis models which include process faults is presented. There are three distinct classes of fault modes covered by the system performance model equation: actuator faults, sensor faults, and performance degradation. A system equation for a complete model that describes all three classes of faults is given. The strategy for detecting the fault and estimating the fault parameters using a distributed on-line parameter identification scheme is presented. A two-step approach is proposed. The first step is composed of a group of hypothesis testing modules, (HTM) in parallel processing to test each class of faults. The second step is the fault diagnosis module which checks all the information obtained from the HTM level, isolates the fault, and determines its magnitude. The proposed FDD system was demonstrated by applying it to detect actuator and sensor faults added to a simulation of the Space Shuttle Main Engine. The simulation results show that the proposed FDD system can adequately detect the faults and estimate their magnitudes.
Espina-Benitez, Maria; Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent
2017-07-07
A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE "acetonitrile stacking" preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L -1 and 2.91 and 3.86 µg∙L -1 , respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers.
Araujo, Lilia; Prieto, Avismelsi; Navalón, Alberto; Vílchez, José Luis; Valera, Paola; Zambrano, Ana; Dugas, Vincent
2017-01-01
A new analytical method coupling a (off-line) solid-phase microextraction with an on-line capillary electrophoresis (CE) sample enrichment technique was developed for the analysis of ketoprofen, naproxen and clofibric acid from water samples, which are known as contaminants of emerging concern in aquatic environments. New solid-phase microextraction fibers based on physical coupling of chromatographic supports onto epoxy glue coated needle were studied for the off-line preconcentration of these micropollutants. Identification and quantification of such acidic drugs were done by capillary zone electrophoresis (CZE) using ultraviolet diode array detection (DAD). Further enhancement of concentration sensitivity detection was achieved by on-line CE “acetonitrile stacking” preconcentration technique. Among the eight chromatographic supports investigated, Porapak Q sorbent showed higher extraction and preconcentration capacities. The screening of parameters that influence the microextraction process was carried out using a two-level fractional factorial. Optimization of the most relevant parameters was then done through a surface response three-factor Box-Behnken design. The limits of detection and limits of quantification for the three drugs ranged between 0.96 and 1.27 µg∙L−1 and 2.91 and 3.86 µg∙L−1, respectively. Recovery yields of approximately 95 to 104% were measured. The developed method is simple, precise, accurate, and allows quantification of residues of these micropollutants in Genil River water samples using inexpensive fibers. PMID:28686186
Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W
2014-01-01
A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.
2003-08-01
An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.
NASA Technical Reports Server (NTRS)
Carrier, Alain C.; Aubrun, Jean-Noel
1993-01-01
New frequency response measurement procedures, on-line modal tuning techniques, and off-line modal identification algorithms are developed and applied to the modal identification of the Advanced Structures/Controls Integrated Experiment (ASCIE), a generic segmented optics telescope test-bed representative of future complex space structures. The frequency response measurement procedure uses all the actuators simultaneously to excite the structure and all the sensors to measure the structural response so that all the transfer functions are measured simultaneously. Structural responses to sinusoidal excitations are measured and analyzed to calculate spectral responses. The spectral responses in turn are analyzed as the spectral data become available and, which is new, the results are used to maintain high quality measurements. Data acquisition, processing, and checking procedures are fully automated. As the acquisition of the frequency response progresses, an on-line algorithm keeps track of the actuator force distribution that maximizes the structural response to automatically tune to a structural mode when approaching a resonant frequency. This tuning is insensitive to delays, ill-conditioning, and nonproportional damping. Experimental results show that is useful for modal surveys even in high modal density regions. For thorough modeling, a constructive procedure is proposed to identify the dynamics of a complex system from its frequency response with the minimization of a least-squares cost function as a desirable objective. This procedure relies on off-line modal separation algorithms to extract modal information and on least-squares parameter subset optimization to combine the modal results and globally fit the modal parameters to the measured data. The modal separation algorithms resolved modal density of 5 modes/Hz in the ASCIE experiment. They promise to be useful in many challenging applications.
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass on-line blood gas monitor... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass on-line blood gas monitor...
21 CFR 870.4330 - Cardiopulmonary bypass on-line blood gas monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Cardiopulmonary bypass on-line blood gas monitor. (a) Identification. A cardiopulmonary bypass on-line blood gas monitor is a device used in conjunction with a blood gas sensor to measure the level of gases in the blood... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass on-line blood gas monitor...
Fusion of an Ensemble of Augmented Image Detectors for Robust Object Detection
Wei, Pan; Anderson, Derek T.
2018-01-01
A significant challenge in object detection is accurate identification of an object’s position in image space, whereas one algorithm with one set of parameters is usually not enough, and the fusion of multiple algorithms and/or parameters can lead to more robust results. Herein, a new computational intelligence fusion approach based on the dynamic analysis of agreement among object detection outputs is proposed. Furthermore, we propose an online versus just in training image augmentation strategy. Experiments comparing the results both with and without fusion are presented. We demonstrate that the augmented and fused combination results are the best, with respect to higher accuracy rates and reduction of outlier influences. The approach is demonstrated in the context of cone, pedestrian and box detection for Advanced Driver Assistance Systems (ADAS) applications. PMID:29562609
Three dimensional identification card and applications
NASA Astrophysics Data System (ADS)
Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao
2016-10-01
Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...
Stephens, Trevor K; Kong, Nathan J; Dockter, Rodney L; O'Neill, John J; Sweet, Robert M; Kowalewski, Timothy M
2018-06-01
Surgical robots are increasingly common, yet routine tasks such as tissue grasping remain potentially harmful with high occurrences of tissue crush injury due to the lack of force feedback from the grasper. This work aims to investigate whether a blended shared control framework which utilizes real-time identification of the object being grasped as part of the feedback may help address the prevalence of tissue crush injury in robotic surgeries. This work tests the proposed shared control framework and tissue identification algorithm on a custom surrogate surgical robotic grasping setup. This scheme utilizes identification of the object being grasped as part of the feedback to regulate to a desired force. The blended shared control is arbitrated between human and an implicit force controller based on a computed confidence in the identification of the grasped object. The online identification is performed using least squares based on a nonlinear tissue model. Testing was performed on five silicone tissue surrogates. Twenty grasps were conducted, with half of the grasps performed under manual control and half of the grasps performed with the proposed blended shared control, to test the efficacy of the control scheme. The identification method resulted in an average of 95% accuracy across all time samples of all tissue grasps using a full leave-grasp-out cross-validation. There was an average convergence time of [Formula: see text] ms across all training grasps for all tissue surrogates. Additionally, there was a reduction in peak forces induced during grasping for all tissue surrogates when applying blended shared control online. The blended shared control using online identification more successfully regulated grasping forces to the desired target force when compared with manual control. The preliminary work on this surrogate setup for surgical grasping merits further investigation on real surgical tools and with real human tissues.
Austen, Gail E; Bindemann, Markus; Griffiths, Richard A; Roberts, David L
2018-01-01
Emerging technologies have led to an increase in species observations being recorded via digital images. Such visual records are easily shared, and are often uploaded to online communities when help is required to identify or validate species. Although this is common practice, little is known about the accuracy of species identification from such images. Using online images of newts that are native and non-native to the UK, this study asked holders of great crested newt ( Triturus cristatus ) licences (issued by UK authorities to permit surveying for this species) to sort these images into groups, and to assign species names to those groups. All of these experts identified the native species, but agreement among these participants was low, with some being cautious in committing to definitive identifications. Individuals' accuracy was also independent of both their experience and self-assessed ability. Furthermore, mean accuracy was not uniform across species (69-96%). These findings demonstrate the difficulty of accurate identification of newts from a single image, and that expert judgements are variable, even within the same knowledgeable community. We suggest that identification decisions should be made on multiple images and verified by more than one expert, which could improve the reliability of species data.
Dynamic modeling of GMA fillet welding using cross-correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinga, M.; Huissoon, J.; Kerr, H.
1996-12-31
The feasibility of employing the cross-correlation system identification technique as a dynamic modeling method for the GMAW process was examined. This approach has the advantages of modeling speed, the ability to operate in low signal to noise environments, the ease of digital implementation, and the lack of model order assumption, making it ideal in a welding application. The width of the weld pool was the parameter investigated as a function of torch travel speed. Both on-line and off-line width measurements were used to identify the impulse response. Experimental results are presented and comparisons made with both step and ramp response.
ASTROPOP: ASTROnomical Polarimetry and Photometry pipeline
NASA Astrophysics Data System (ADS)
Campagnolo, Julio C. N.
2018-05-01
AstroPoP reduces almost any CCD photometry and image polarimetry data. For photometry reduction, the code performs source finding, aperture and PSF photometry, astrometry calibration using different automated and non-automated methods and automated source identification and magnitude calibration based on online and local catalogs. For polarimetry, the code resolves linear and circular Stokes parameters produced by image beam splitter or polarizer polarimeters. In addition to the modular functions, ready-to-use pipelines based in configuration files and header keys are also provided with the code. AstroPOP was initially developed to reduce the IAGPOL polarimeter data installed at Observatório Pico dos Dias (Brazil).
A Novel Degradation Identification Method for Wind Turbine Pitch System
NASA Astrophysics Data System (ADS)
Guo, Hui-Dong
2018-04-01
It’s difficult for traditional threshold value method to identify degradation of operating equipment accurately. An novel degradation evaluation method suitable for wind turbine condition maintenance strategy implementation was proposed in this paper. Based on the analysis of typical variable-speed pitch-to-feather control principle and monitoring parameters for pitch system, a multi input multi output (MIMO) regression model was applied to pitch system, where wind speed, power generation regarding as input parameters, wheel rotation speed, pitch angle and motor driving currency for three blades as output parameters. Then, the difference between the on-line measurement and the calculated value from the MIMO regression model applying least square support vector machines (LSSVM) method was defined as the Observed Vector of the system. The Gaussian mixture model (GMM) was applied to fitting the distribution of the multi dimension Observed Vectors. Applying the model established, the Degradation Index was calculated using the SCADA data of a wind turbine damaged its pitch bearing retainer and rolling body, which illustrated the feasibility of the provided method.
Becker, P.; Gabriel, F.; Cassagne, C.; Accoceberry, I.; Gari-Toussaint, M.; Hasseine, L.; De Geyter, D.; Pierard, D.; Surmont, I.; Djenad, F.; Donnadieu, J. L.; Piarroux, M.; Hendrickx, M.; Piarroux, R.
2017-01-01
ABSTRACT Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry has emerged as a reliable technique to identify molds involved in human diseases, including dermatophytes, provided that exhaustive reference databases are available. This study assessed an online identification application based on original algorithms and an extensive in-house reference database comprising 11,851 spectra (938 fungal species and 246 fungal genera). Validation criteria were established using an initial panel of 422 molds, including dermatophytes, previously identified via DNA sequencing (126 species). The application was further assessed using a separate panel of 501 cultured clinical isolates (88 mold taxa including dermatophytes) derived from five hospital laboratories. A total of 438 (87.35%) isolates were correctly identified at the species level, while 26 (5.22%) were assigned to the correct genus but the wrong species and 37 (7.43%) were not identified, since the defined threshold of 20 was not reached. The use of the Bruker Daltonics database included in the MALDI Biotyper software resulted in a much higher rate of unidentified isolates (39.76 and 74.30% using the score thresholds 1.7 and 2.0, respectively). Moreover, the identification delay of the online application remained compatible with real-time online queries (0.15 s per spectrum), and the application was faster than identifications using the MALDI Biotyper software. This is the first study to assess an online identification system based on MALDI-TOF spectrum analysis. We have successfully applied this approach to identify molds, including dermatophytes, for which diversity is insufficiently represented in commercial databases. This free-access application is available to medical mycologists to improve fungal identification. PMID:28637907
Normand, A C; Becker, P; Gabriel, F; Cassagne, C; Accoceberry, I; Gari-Toussaint, M; Hasseine, L; De Geyter, D; Pierard, D; Surmont, I; Djenad, F; Donnadieu, J L; Piarroux, M; Ranque, S; Hendrickx, M; Piarroux, R
2017-09-01
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry has emerged as a reliable technique to identify molds involved in human diseases, including dermatophytes, provided that exhaustive reference databases are available. This study assessed an online identification application based on original algorithms and an extensive in-house reference database comprising 11,851 spectra (938 fungal species and 246 fungal genera). Validation criteria were established using an initial panel of 422 molds, including dermatophytes, previously identified via DNA sequencing (126 species). The application was further assessed using a separate panel of 501 cultured clinical isolates (88 mold taxa including dermatophytes) derived from five hospital laboratories. A total of 438 (87.35%) isolates were correctly identified at the species level, while 26 (5.22%) were assigned to the correct genus but the wrong species and 37 (7.43%) were not identified, since the defined threshold of 20 was not reached. The use of the Bruker Daltonics database included in the MALDI Biotyper software resulted in a much higher rate of unidentified isolates (39.76 and 74.30% using the score thresholds 1.7 and 2.0, respectively). Moreover, the identification delay of the online application remained compatible with real-time online queries (0.15 s per spectrum), and the application was faster than identifications using the MALDI Biotyper software. This is the first study to assess an online identification system based on MALDI-TOF spectrum analysis. We have successfully applied this approach to identify molds, including dermatophytes, for which diversity is insufficiently represented in commercial databases. This free-access application is available to medical mycologists to improve fungal identification. Copyright © 2017 American Society for Microbiology.
Llorca, Marta; Rodríguez-Mozaz, Sara; Couillerot, Olivier; Panigoni, Karine; de Gunzburg, Jean; Bayer, Sally; Czaja, Rico; Barceló, Damià
2015-01-01
This work describes the formation of transformation products (TPs) by the enzymatic degradation at laboratory scale of two highly consumed antibiotics: tetracycline (Tc) and erythromycin (ERY). The analysis of the samples was carried out by a fast and simple method based on the novel configuration of the on-line turbulent flow system coupled to a hybrid linear ion trap - high resolution mass spectrometer. The method was optimized and validated for the complete analysis of ERY, Tc and their transformation products within 10 min without any other sample manipulation. Furthermore, the applicability of the on-line procedure was evaluated for 25 additional antibiotics, covering a wide range of chemical classes in different environmental waters with satisfactory quality parameters. Degradation rates obtained for Tc by laccase enzyme and ERY by EreB esterase enzyme without the presence of mediators were ∼78% and ∼50%, respectively. Concerning the identification of TPs, three suspected compounds for Tc and five of ERY have been proposed. In the case of Tc, the tentative molecular formulas with errors mass within 2 ppm have been based on the hypothesis of dehydroxylation, (bi)demethylation and oxidation of the rings A and C as major reactions. In contrast, the major TP detected for ERY has been identified as the "dehydration ERY-A", with the same molecular formula of its parent compound. In addition, the evaluation of the antibiotic activity of the samples along the enzymatic treatments showed a decrease around 100% in both cases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Herrero, P; Bäuerlein, P S; Emke, E; Pocurull, E; de Voogt, P
2014-08-22
In this short communication we report on the technical implementations of coupling an asymmetric flow field-flow fractionation (AF4) instrument to a high resolution mass spectrometer (Orbitrap) using an atmospheric photoionisation interface. This will allow for the first time online identification of different fullerenes in aqueous samples after their aggregates have been fractionated in the FFF channel. Quality parameters such as limits of detection (LODs), limits of quantification (LOQs) or linear range were evaluated and they were in the range of hundreds ng/L for LODs and LOQs and the detector response was linear in the range tested (up to ∼20 μg/L). The low detection and quantification limits make this technique useful for future environmental or ecotoxicology studies in which low concentration levels are expected for fullerenes and common on-line detectors such as UV or MALS do not have enough sensitivity and selectivity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... 100 – FAQ. Florida Hospital Cancer Institute, Clinical and Research Laboratories [On-line information]. Available online at http:// ...
Li, Hongkun; He, Changbo; Malekian, Reza; Li, Zhixiong
2018-04-19
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal.
Li, Hongkun; He, Changbo
2018-01-01
The Centrifugal compressor is a piece of key equipment for petrochemical factories. As the core component of a compressor, the blades suffer periodic vibration and flow induced excitation mechanism, which will lead to the occurrence of crack defect. Moreover, the induced blade defect usually has a serious impact on the normal operation of compressors and the safety of operators. Therefore, an effective blade crack identification method is particularly important for the reliable operation of compressors. Conventional non-destructive testing and evaluation (NDT&E) methods can detect the blade defect effectively, however, the compressors should shut down during the testing process which is time-consuming and costly. In addition, it can be known these methods are not suitable for the long-term on-line condition monitoring and cannot identify the blade defect in time. Therefore, the effective on-line condition monitoring and weak defect identification method should be further studied and proposed. Considering the blade vibration information is difficult to measure directly, pressure sensors mounted on the casing are used to sample airflow pressure pulsation signal on-line near the rotating impeller for the purpose of monitoring the blade condition indirectly in this paper. A big problem is that the blade abnormal vibration amplitude induced by the crack is always small and this feature information will be much weaker in the pressure signal. Therefore, it is usually difficult to identify blade defect characteristic frequency embedded in pressure pulsation signal by general signal processing methods due to the weakness of the feature information and the interference of strong noise. In this paper, continuous wavelet transform (CWT) is used to pre-process the sampled signal first. Then, the method of bistable stochastic resonance (SR) based on Woods-Saxon and Gaussian (WSG) potential is applied to enhance the weak characteristic frequency contained in the pressure pulsation signal. Genetic algorithm (GA) is used to obtain optimal parameters for this SR system to improve its feature enhancement performance. The analysis result of experimental signal shows the validity of the proposed method for the enhancement and identification of weak defect characteristic. In the end, strain test is carried out to further verify the accuracy and reliability of the analysis result obtained by pressure pulsation signal. PMID:29671821
An on-line modified least-mean-square algorithm for training neurofuzzy controllers.
Tan, Woei Wan
2007-04-01
The problem hindering the use of data-driven modelling methods for training controllers on-line is the lack of control over the amount by which the plant is excited. As the operating schedule determines the information available on-line, the knowledge of the process may degrade if the setpoint remains constant for an extended period. This paper proposes an identification algorithm that alleviates "learning interference" by incorporating fuzzy theory into the normalized least-mean-square update rule. The ability of the proposed methodology to achieve faster learning is examined by employing the algorithm to train a neurofuzzy feedforward controller for controlling a liquid level process. Since the proposed identification strategy has similarities with the normalized least-mean-square update rule and the recursive least-square estimator, the on-line learning rates of these algorithms are also compared.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-26
... International Law (ACPIL)--Online Dispute Resolution (ODR) Study Group The Office of the Assistant Legal Adviser... guidelines and minimum requirements for online dispute resolution providers and arbitrators, substantive... that the working group is addressing is the identification of security issues relating to use of the...
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
A recurrent self-organizing neural fuzzy inference network.
Juang, C F; Lin, C T
1999-01-01
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some feedback connections representing the memory elements to a feedforward neural fuzzy network. Each weight as well as node in the RSONFIN has its own meaning and represents a special element in a fuzzy rule. There are no hidden nodes (i.e., no membership functions and fuzzy rules) initially in the RSONFIN. They are created on-line via concurrent structure identification (the construction of dynamic fuzzy if-then rules) and parameter identification (the tuning of the free parameters of membership functions). The structure learning together with the parameter learning forms a fast learning algorithm for building a small, yet powerful, dynamic neural fuzzy network. Two major characteristics of the RSONFIN can thus be seen: 1) the recurrent property of the RSONFIN makes it suitable for dealing with temporal problems and 2) no predetermination, like the number of hidden nodes, must be given, since the RSONFIN can find its optimal structure and parameters automatically and quickly. Moreover, to reduce the number of fuzzy rules generated, a flexible input partition method, the aligned clustering-based algorithm, is proposed. Various simulations on temporal problems are done and performance comparisons with some existing recurrent networks are also made. Efficiency of the RSONFIN is verified from these results.
Books and Balls: Antecedents and Outcomes of College Identification
ERIC Educational Resources Information Center
Porter, Thomas; Hartman, Katherine; Johnson, John Seth
2011-01-01
Identification plays a central role in models of giving to an organization. This study presents and tests a general model of giving that highlights status based and affect based drivers of identification. The model was tested using a sample of 114 alumni from 74 different colleges participated in an online survey. Identification was found to…
[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
Assessment of Durability of Online and Multisensory Learning Using an Ophthalmology Model.
Lippa, Linda Mottow; Anderson, Craig L
2015-10-01
To explore the impact of online learning and multisensory small-group teaching on acquisition and retention of specialty knowledge and diagnostic skills during a third-year family medicine rotation. Exploratory, observational, longitudinal, and multiple-skill measures. Two medical school classes (n = 199) at a public medical school in California. Students engaged in online self-study, small-group interactive diagnostic sessions, picture identification of critical pathologic features, and funduscopic simulator examinations. The authors compared performance on testing immediately after online learning with testing at end-rotation, as well as picture identification versus simulator diagnostic ability in students with (n = 94) and without (n = 105) practice tracing contours on whiteboard projections of those same slides depicting fundus pathologic features of common systemic diseases. Picture identification, accuracy of funduscopic descriptions, online module post-tests, and end-rotation tests. Proprioceptive reinforcement of fundus pattern recognition significantly reduced the need for remediation for misdiagnosing optic disc edema during end-rotation funduscopic simulator testing, but it had no effect on fundus pattern recognition or diagnostic ability overall. Near-perfect immediate online post-test scores contrasted sharply with poor end-rotation scores on an in-house test (average, 59.4%). Rotation timing was not a factor because the patterns remained consistent throughout the academic school year. Neither multisensory teaching nor online self-study significantly improved retention of ophthalmic knowledge and diagnostic skills by the end of a month-long third-year rotation. Timing such training closer to internship when application is imminent may enhance students' appreciation for its value and perhaps may improve retention. Pulsed quizzes over time also may be necessary to motivate students to retain the knowledge gained. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Lu, Yingjie
2013-01-01
To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.
Enhancing On-Line Teaching with Verbal Immediacy through Self-Determination Theory
ERIC Educational Resources Information Center
Furlich, Stephen A.
2013-01-01
This paper explores the use of instructor verbal immediacy behaviors for on-line classes. Specifically, it demonstrates how instructor verbal immediacy behaviors found in face-to-face classes can also be displayed for on-line classes. It is argued that self-determination theory describes identification of the student as an important role in the…
Scalable Online Network Modeling and Simulation
2005-08-01
ONLINE NETWORK MODELING AND SIMULATION 6. AUTHOR(S) Boleslaw Szymanski , Shivkumar Kalyanaraman, Biplab Sikdar and Christopher Carothers 5...performance for a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature ...a wide range of parameter values (parameter sensitivity), understanding of protocol stability and dynamics, and studying feature interactions
El-Nagar, Ahmad M
2018-01-01
In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
We Are Not Numbers: The Use of Identification Codes in Online Learning
ERIC Educational Resources Information Center
Francis-Poscente, Krista; Moisey, Susan Darlene
2012-01-01
This paper discusses students' experiences with the use of identification codes in a graduate course delivered asynchronously via the Internet. While teaching an introductory masters level graduate course in distance learning, the authors discovered that the learning management system, Moodle, was programmed to display identification codes rather…
On the problem of modeling for parameter identification in distributed structures
NASA Technical Reports Server (NTRS)
Norris, Mark A.; Meirovitch, Leonard
1988-01-01
Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.
From local checklists to online identification portals: a case study on vascular plants.
Martellos, Stefano; Nimis, Pier Luigi
2015-01-01
Checklists, the result of time-consuming exploration and painstaking bibliographic research, can be easily converted into online databases, which have the advantage of being updatable online in real time, and of reaching a much wider audience. However, thousands of local checklists (Natural Parks, protected areas, etc.) are still available on paper only, and most of those published online appear as dry lists of latin names, which strongly reduces their outreach for a wider audience. The University of Trieste has recently started the publication of several local checklists in a way that may be more appealing for the general public, by linking species' names to archives of digital resources, and especially to digital identification tools produced by software FRIDA (FRiendly IDentificAtion). The query interfaces were developed on the basis of feedback from a wide range of users. The result is no longer a simple list of names accessible on the Web, but a veritable multimedial, interactive portal to the biodiversity of a given area. This paper provides an example of how relevant added value can be given to local lists of taxa by embedding them in a complex system of biodiversity-related resources, making them usable for a much wider audience than a restricted circle of specialists, as testified by the almost 1.000.000 unique visitors reached in 2014. A critical mass of digital resources is also put at disposal of the scientific community by releasing them under a Creative Commons license.
Djatmika, Rosalina; Hsieh, Chih-Chung; Chen, Jhih-Ming; Ding, Wang-Hsien
2016-11-15
An effective method for determining four commonly detected paraben preservatives (methyl, ethyl, propyl and butyl paraben) in marketed seafood is presented. This method employs matrix solid-phase dispersion (MSPD) before identification and quantification of the paraben preservatives via on-line acetylation gas chromatography-mass spectrometry (GC-MS). Parameters affecting the extraction efficiency of MSPD were optimized through a Box-Behnken design method. Under optimal condition, 0.5-g of freeze-dried seafood was mixed with 0.5-g of anhydrous sodium sulfate, and dispersed with 1.0-g of Florisil using vortex. After that, the blend was transferred to a glass column containing 1.5-g of silica gel+C18 (w/w, 9:1), which acted as clean-up co-sorbents. Then, target analytes were eluted with 12mL of acetonitrile. The extract was then derivatized on-line in the GC injection-port through reaction with acetic anhydride, and the identity and quantity of the target analytes were determined by the GC-MS system. The limits of quantitation (LOQs) were 0.2 to 1.0ng/g (dry weight). Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7ng/g (dry weight). Copyright © 2016 Elsevier B.V. All rights reserved.
Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter
NASA Astrophysics Data System (ADS)
Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao
2017-11-01
Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.
ERIC Educational Resources Information Center
Martin, Florence; Ndoye, Abdou; Wilkins, Patricia
2016-01-01
Quality Matters is recognized as a rigorous set of standards that guide the designer or instructor to design quality online courses. We explore how Quality Matters standards guide the identification and analysis of learning analytics data to monitor and improve online learning. Descriptive data were collected for frequency of use, time spent, and…
A signal-flow-graph approach to on-line gradient calculation.
Campolucci, P; Uncini, A; Piazza, F
2000-08-01
A large class of nonlinear dynamic adaptive systems such as dynamic recurrent neural networks can be effectively represented by signal flow graphs (SFGs). By this method, complex systems are described as a general connection of many simple components, each of them implementing a simple one-input, one-output transformation, as in an electrical circuit. Even if graph representations are popular in the neural network community, they are often used for qualitative description rather than for rigorous representation and computational purposes. In this article, a method for both on-line and batch-backward gradient computation of a system output or cost function with respect to system parameters is derived by the SFG representation theory and its known properties. The system can be any causal, in general nonlinear and time-variant, dynamic system represented by an SFG, in particular any feedforward, time-delay, or recurrent neural network. In this work, we use discrete-time notation, but the same theory holds for the continuous-time case. The gradient is obtained in a straightforward way by the analysis of two SFGs, the original one and its adjoint (obtained from the first by simple transformations), without the complex chain rule expansions of derivatives usually employed. This method can be used for sensitivity analysis and for learning both off-line and on-line. On-line learning is particularly important since it is required by many real applications, such as digital signal processing, system identification and control, channel equalization, and predistortion.
A continually online-trained neural network controller for brushless DC motor drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubaai, A.; Kotaru, R.; Kankam, M.D.
2000-04-01
In this paper, a high-performance controller with simultaneous online identification and control is designed for brushless dc motor drives. The dynamics of the motor/load are modeled online, and controlled using two different neural network based identification and control schemes, as the system is in operation. In the first scheme, an attempt is made to control the rotor angular speed, utilizing a single three-hidden-layer network. The second scheme attempts to control the stator currents, using a predetermined control law as a function of the estimated states. This schemes incorporates three multilayered feedforward neural networks that are online trained, using the Levenburg-Marquadtmore » training algorithm. The control of the direct and quadrature components of the stator current successfully tracked a wide variety of trajectories after relatively short online training periods. The control strategy adapts to the uncertainties of the motor/load dynamics and, in addition, learns their inherent nonlinearities. Simulation results illustrated that a neurocontroller used in conjunction with adaptive control schemes can result in a flexible control device which may be utilized in a wide range of environments.« less
Particle identification algorithms for the PANDA Endcap Disc DIRC
NASA Astrophysics Data System (ADS)
Schmidt, M.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Böhm, M.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Merle, O.; Rieke, J.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.
2017-12-01
The Endcap Disc DIRC has been developed to provide an excellent particle identification for the future PANDA experiment by separating pions and kaons up to a momentum of 4 GeV/c with a separation power of 3 standard deviations in the polar angle region from 5o to 22o. This goal will be achieved using dedicated particle identification algorithms based on likelihood methods and will be applied in an offline analysis and online event filtering. This paper evaluates the resulting PID performance using Monte-Carlo simulations to study basic single track PID as well as the analysis of complex physics channels. The online reconstruction algorithm has been tested with a Virtex4 FGPA card and optimized regarding the resulting constraints.
NASA Astrophysics Data System (ADS)
Chowdhary, Girish; Mühlegg, Maximilian; Johnson, Eric
2014-08-01
In model reference adaptive control (MRAC) the modelling uncertainty is often assumed to be parameterised with time-invariant unknown ideal parameters. The convergence of parameters of the adaptive element to these ideal parameters is beneficial, as it guarantees exponential stability, and makes an online learned model of the system available. Most MRAC methods, however, require persistent excitation of the states to guarantee that the adaptive parameters converge to the ideal values. Enforcing PE may be resource intensive and often infeasible in practice. This paper presents theoretical analysis and illustrative examples of an adaptive control method that leverages the increasing ability to record and process data online by using specifically selected and online recorded data concurrently with instantaneous data for adaptation. It is shown that when the system uncertainty can be modelled as a combination of known nonlinear bases, simultaneous exponential tracking and parameter error convergence can be guaranteed if the system states are exciting over finite intervals such that rich data can be recorded online; PE is not required. Furthermore, the rate of convergence is directly proportional to the minimum singular value of the matrix containing online recorded data. Consequently, an online algorithm to record and forget data is presented and its effects on the resulting switched closed-loop dynamics are analysed. It is also shown that when radial basis function neural networks (NNs) are used as adaptive elements, the method guarantees exponential convergence of the NN parameters to a compact neighbourhood of their ideal values without requiring PE. Flight test results on a fixed-wing unmanned aerial vehicle demonstrate the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Slamnoiu, Stefan; Vlad, Camelia; Stumbaum, Mihaela; Moise, Adrian; Lindner, Kathrin; Engel, Nicole; Vilanova, Mar; Diaz, Mireia; Karreman, Christiaan; Leist, Marcel; Ciossek, Thomas; Hengerer, Bastian; Vilaseca, Marta; Przybylski, Michael
2014-08-01
Bioaffinity analysis using a variety of biosensors has become an established tool for detection and quantification of biomolecular interactions. Biosensors, however, are generally limited by the lack of chemical structure information of affinity-bound ligands. On-line bioaffinity-mass spectrometry using a surface-acoustic wave biosensor (SAW-MS) is a new combination providing the simultaneous affinity detection, quantification, and mass spectrometric structural characterization of ligands. We describe here an on-line SAW-MS combination for direct identification and affinity determination, using a new interface for MS of the affinity-isolated ligand eluate. Key element of the SAW-MS combination is a microfluidic interface that integrates affinity-isolation on a gold chip, in-situ sample concentration, and desalting with a microcolumn for MS of the ligand eluate from the biosensor. Suitable MS- acquisition software has been developed that provides coupling of the SAW-MS interface to a Bruker Daltonics ion trap-MS, FTICR-MS, and Waters Synapt-QTOF- MS systems. Applications are presented for mass spectrometric identifications and affinity (KD) determinations of the neurodegenerative polypeptides, ß-amyloid (Aß), and pathophysiological and physiological synucleins (α- and ß-synucleins), two key polypeptide systems for Alzheimer's disease and Parkinson's disease, respectively. Moreover, first in vivo applications of αSyn polypeptides from brain homogenate show the feasibility of on-line affinity-MS to the direct analysis of biological material. These results demonstrate on-line SAW-bioaffinity-MS as a powerful tool for structural and quantitative analysis of biopolymer interactions.
ERIC Educational Resources Information Center
Hanley, Terry; Ersahin, Zehra; Sefi, Aaron; Hebron, Judith
2017-01-01
Online counselling is increasingly being used as an alternative to face-to-face student counselling. Using an exploratory mixed methods design, this project investigated the practice by examining the types of therapeutic goals that 11- to 25-year-olds identify online in routine practice. These goals were then compared to goals identified in…
AU-FREDI - AUTONOMOUS FREQUENCY DOMAIN IDENTIFICATION
NASA Technical Reports Server (NTRS)
Yam, Y.
1994-01-01
The Autonomous Frequency Domain Identification program, AU-FREDI, is a system of methods, algorithms and software that was developed for the identification of structural dynamic parameters and system transfer function characterization for control of large space platforms and flexible spacecraft. It was validated in the CALTECH/Jet Propulsion Laboratory's Large Spacecraft Control Laboratory. Due to the unique characteristics of this laboratory environment, and the environment-specific nature of many of the software's routines, AU-FREDI should be considered to be a collection of routines which can be modified and reassembled to suit system identification and control experiments on large flexible structures. The AU-FREDI software was originally designed to command plant excitation and handle subsequent input/output data transfer, and to conduct system identification based on the I/O data. Key features of the AU-FREDI methodology are as follows: 1. AU-FREDI has on-line digital filter design to support on-orbit optimal input design and data composition. 2. Data composition of experimental data in overlapping frequency bands overcomes finite actuator power constraints. 3. Recursive least squares sine-dwell estimation accurately handles digitized sinusoids and low frequency modes. 4. The system also includes automated estimation of model order using a product moment matrix. 5. A sample-data transfer function parametrization supports digital control design. 6. Minimum variance estimation is assured with a curve fitting algorithm with iterative reweighting. 7. Robust root solvers accurately factorize high order polynomials to determine frequency and damping estimates. 8. Output error characterization of model additive uncertainty supports robustness analysis. The research objectives associated with AU-FREDI were particularly useful in focusing the identification methodology for realistic on-orbit testing conditions. Rather than estimating the entire structure, as is typically done in ground structural testing, AU-FREDI identifies only the key transfer function parameters and uncertainty bounds that are necessary for on-line design and tuning of robust controllers. AU-FREDI's system identification algorithms are independent of the JPL-LSCL environment, and can easily be extracted and modified for use with input/output data files. The basic approach of AU-FREDI's system identification algorithms is to non-parametrically identify the sampled data in the frequency domain using either stochastic or sine-dwell input, and then to obtain a parametric model of the transfer function by curve-fitting techniques. A cross-spectral analysis of the output error is used to determine the additive uncertainty in the estimated transfer function. The nominal transfer function estimate and the estimate of the associated additive uncertainty can be used for robust control analysis and design. AU-FREDI's I/O data transfer routines are tailored to the environment of the CALTECH/ JPL-LSCL which included a special operating system to interface with the testbed. Input commands for a particular experiment (wideband, narrowband, or sine-dwell) were computed on-line and then issued to respective actuators by the operating system. The operating system also took measurements through displacement sensors and passed them back to the software for storage and off-line processing. In order to make use of AU-FREDI's I/O data transfer routines, a user would need to provide an operating system capable of overseeing such functions between the software and the experimental setup at hand. The program documentation contains information designed to support users in either providing such an operating system or modifying the system identification algorithms for use with input/output data files. It provides a history of the theoretical, algorithmic and software development efforts including operating system requirements and listings of some of the various special purpose subroutines which were developed and optimized for Lahey FORTRAN compilers on IBM PC-AT computers before the subroutines were integrated into the system software. Potential purchasers are encouraged to purchase and review the documentation before purchasing the AU-FREDI software. AU-FREDI is distributed in DEC VAX BACKUP format on a 1600 BPI 9-track magnetic tape (standard media) or a TK50 tape cartridge. AU-FREDI was developed in 1989 and is a copyrighted work with all copyright vested in NASA.
Model and Data Reduction for Control, Identification and Compressed Sensing
NASA Astrophysics Data System (ADS)
Kramer, Boris
This dissertation focuses on problems in design, optimization and control of complex, large-scale dynamical systems from different viewpoints. The goal is to develop new algorithms and methods, that solve real problems more efficiently, together with providing mathematical insight into the success of those methods. There are three main contributions in this dissertation. In Chapter 3, we provide a new method to solve large-scale algebraic Riccati equations, which arise in optimal control, filtering and model reduction. We present a projection based algorithm utilizing proper orthogonal decomposition, which is demonstrated to produce highly accurate solutions at low rank. The method is parallelizable, easy to implement for practitioners, and is a first step towards a matrix free approach to solve AREs. Numerical examples for n ≥ 106 unknowns are presented. In Chapter 4, we develop a system identification method which is motivated by tangential interpolation. This addresses the challenge of fitting linear time invariant systems to input-output responses of complex dynamics, where the number of inputs and outputs is relatively large. The method reduces the computational burden imposed by a full singular value decomposition, by carefully choosing directions on which to project the impulse response prior to assembly of the Hankel matrix. The identification and model reduction step follows from the eigensystem realization algorithm. We present three numerical examples, a mass spring damper system, a heat transfer problem, and a fluid dynamics system. We obtain error bounds and stability results for this method. Chapter 5 deals with control and observation design for parameter dependent dynamical systems. We address this by using local parametric reduced order models, which can be used online. Data available from simulations of the system at various configurations (parameters, boundary conditions) is used to extract a sparse basis to represent the dynamics (via dynamic mode decomposition). Subsequently, a new, compressed sensing based classification algorithm is developed which incorporates the extracted dynamic information into the sensing basis. We show that this augmented classification basis makes the method more robust to noise, and results in superior identification of the correct parameter. Numerical examples consist of a Navier-Stokes, as well as a Boussinesq flow application.
Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring
Faassen, Saskia M.; Hitzmann, Bernd
2015-01-01
On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables. PMID:25942644
Discovering latent commercial networks from online financial news articles
NASA Astrophysics Data System (ADS)
Xia, Yunqing; Su, Weifeng; Lau, Raymond Y. K.; Liu, Yi
2013-08-01
Unlike most online social networks where explicit links among individual users are defined, the relations among commercial entities (e.g. firms) may not be explicitly declared in commercial Web sites. One main contribution of this article is the development of a novel computational model for the discovery of the latent relations among commercial entities from online financial news. More specifically, a CRF model which can exploit both structural and contextual features is applied to commercial entity recognition. In addition, a point-wise mutual information (PMI)-based unsupervised learning method is developed for commercial relation identification. To evaluate the effectiveness of the proposed computational methods, a prototype system called CoNet has been developed. Based on the financial news articles crawled from Google finance, the CoNet system achieves average F-scores of 0.681 and 0.754 in commercial entity recognition and commercial relation identification, respectively. Our experimental results confirm that the proposed shallow natural language processing methods are effective for the discovery of latent commercial networks from online financial news.
Dynamic parameter identification of robot arms with servo-controlled electrical motors
NASA Astrophysics Data System (ADS)
Jiang, Zhao-Hui; Senda, Hiroshi
2005-12-01
This paper addresses the issue of dynamic parameter identification of the robot manipulator with servo-controlled electrical motors. An assumption is made that all kinematical parameters, such as link lengths, are known, and only dynamic parameters containing mass, moment of inertia, and their functions need to be identified. First, we derive dynamics of the robot arm with a linear form of the unknown dynamic parameters by taking dynamic characteristics of the motor and servo unit into consideration. Then, we implement the parameter identification approach to identify the unknown parameters with respect to individual link separately. A pseudo-inverse matrix is used for formulation of the parameter identification. The optimal solution is guaranteed in a sense of least-squares of the mean errors. A Direct Drive (DD) SCARA type industrial robot arm AdeptOne is used as an application example of the parameter identification. Simulations and experiments for both open loop and close loop controls are carried out. Comparison of the results confirms the correctness and usefulness of the parameter identification and the derived dynamic model.
NASA Astrophysics Data System (ADS)
Prawin, J.; Rama Mohan Rao, A.
2018-01-01
The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.
High-precision control of LSRM based X-Y table for industrial applications.
Pan, J F; Cheung, Norbert C; Zou, Yu
2013-01-01
The design of an X-Y table applying direct-drive linear switched reluctance motor (LSRM) principle is proposed in this paper. The proposed X-Y table has the characteristics of low cost, simple and stable mechanical structure. After the design procedure is introduced, an adaptive position control method based on online parameter identification and pole-placement regulation scheme is developed for the X-Y table. Experimental results prove the feasibility and its priority over a traditional PID controller with better dynamic response, static performance and robustness to disturbances. It is expected that the novel two-dimensional direct-drive system find its applications in high-precision manufacture area. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Hybrid adaptive ascent flight control for a flexible launch vehicle
NASA Astrophysics Data System (ADS)
Lefevre, Brian D.
For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.
ERIC Educational Resources Information Center
Cao, Yu
2017-01-01
With the rapid development of online communities of practice (CoPs), how to identify key knowledge spreader (KKS) in online CoPs has grown up to be a hot issue. In this paper, we construct a network with variable clustering based on Holme-Kim model to represent CoPs, a simple dynamics of knowledge sharing is considered. Kendall's Tau coefficient…
Single-Spin Magnetic Resonance Force Microscopy
2005-08-31
computational load and noise outside the passband and generating lock-in (synchronous detection) signals for online diagnostics, system identification... Online . 20. We thank J. Sidles, K. Holczer, and A. Hero for discussions and D. Pearson and M. Sherwood for technical assistance. This work was...Office. Supporting Online Material www.sciencemag.org/cgi/content/full/307/5708/408/ DC1 Materials and Methods Figs. S1 and S2 References 25 October 2004
Mears, Lisa; Stocks, Stuart M; Albaek, Mads O; Sin, Gürkan; Gernaey, Krist V
2017-03-01
A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including k L a, viscosity and partial pressure of CO 2 . State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation. The model is developed using a historical data set of 11 batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on 14 new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. Biotechnol. Bioeng. 2017;114: 589-599. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Online Survey Examining Practitioners’ Perceived Preparedness in the Early Identification of Autism
Pizur-Barnekow, Kris A.; Schefkind, Sandra
2014-01-01
The purpose of this study was to examine the perceived preparedness of practitioners in the early identification of children ages birth to 6 yr with autism spectrum disorder (ASD). Both occupational therapists and occupational therapy assistants were included in this survey study. The online survey instrument consisted of 29 questions within six sections capturing participant demographics, delivery of occupational therapy services, action when autism is suspected, service delivery experience, resource sharing, and barriers to conducting autism screening. The results of the study provide baseline information concerning identified skills, practices, and barriers among 1,396 practitioners. Additionally, opportunities are revealed for professional development necessary to support practitioners in the early identification of children at risk for ASD through surveillance and screening among children ages birth to 6 yr. PMID:24367965
Online: The Student Success Network.
ERIC Educational Resources Information Center
Griffin, Robert
2000-01-01
The Foothill-De Anza Community College District has digitalized student transcripts, and will create a Student Success Network (SSN) that will provide (1) online Individual Educational Plans for students; (2) electronic student portfolios to facilitate early identification of "at risk" students; and (3) a Counselor Web Portal for online…
Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC
Lu, Shaowu; Tang, Xiaoqi; Song, Bao
2013-01-01
To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results. PMID:23262481
Adaptive PIF control for permanent magnet synchronous motors based on GPC.
Lu, Shaowu; Tang, Xiaoqi; Song, Bao
2012-12-24
To enhance the control performance of permanent magnet synchronous motors (PMSMs), a generalized predictive control (GPC)-based proportional integral feedforward (PIF) controller is proposed for the speed control system. In this new approach, firstly, based on the online identification of controlled model parameters, a simplified GPC law supplies the PIF controller with suitable control parameters according to the uncertainties in the operating conditions. Secondly, the speed reference curve for PMSMs is usually required to be continuous and continuously differentiable according to the general servo system design requirements, so the adaptation of the speed reference is discussed in details in this paper. Hence, the performance of the speed control system using a GPC-based PIF controller is improved for tracking some specified signals. The main motivation of this paper is the extension of GPC law to replace the traditional PI or PIF controllers in industrial applications. The efficacy and usefulness of the proposed controller are verified through experimental results.
NASA Astrophysics Data System (ADS)
Zhao, Hui; Zheng, Mingwen; Li, Shudong; Wang, Weiping
2018-03-01
Some existing papers focused on finite-time parameter identification and synchronization, but provided incomplete theoretical analyses. Such works incorporated conflicting constraints for parameter identification, therefore, the practical significance could not be fully demonstrated. To overcome such limitations, the underlying paper presents new results of parameter identification and synchronization for uncertain complex dynamical networks with impulsive effect and stochastic perturbation based on finite-time stability theory. Novel results of parameter identification and synchronization control criteria are obtained in a finite time by utilizing Lyapunov function and linear matrix inequality respectively. Finally, numerical examples are presented to illustrate the effectiveness of our theoretical results.
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
Chayinska, Maria; Minescu, Anca; McGarty, Craig
2017-01-01
This paper explores the expression of multiple social identities through coordinated collective action. We propose that perceived compatibility between potentially contrasting identities and perceived legitimacy of protest serve as catalysts for collective action. The present paper maps the context of the “Euromaidan” anti-regime protests in Ukraine and reports data (N = 996) collected through an online survey following legislation to ban protests (March–May, 2014). We measured participants’ identification with three different groups (the Ukrainian nation, the online protest community, and the street movement), perception of compatibility between online protest and the street movement, perception of the legitimacy of protest, and intentions to take persuasive and confrontational collective action. We found evidence that the more social groups people “stood for,” the more they “fought” for their cause and that identifications predicted both forms of collective action to the degree that people saw the protest and the online movement as compatible with each other and believed protest to be legitimate. Collective action can be interpreted as the congruent expression of multiple identities that are rendered ideologically compatible both in online settings and on the street. PMID:28491046
Designing an Online, Introductory Gifted Education Course.
ERIC Educational Resources Information Center
Hull, Debra F.; Bull, Kay S.; Montgomery, Diane; May, James R.; Overton, Robert
Rural teachers are often undertrained in the identification and education of gifted students. This paper describes the principles and development of an online introductory course in gifted education that could meet the need for rural teacher training. Using the philosophy that learners construct their own knowing, the system for developing an…
An AI-based approach to structural damage identification by modal analysis
NASA Technical Reports Server (NTRS)
Glass, B. J.; Hanagud, S.
1990-01-01
Flexible-structure damage is presently addressed by a combined model- and parameter-identification approach which employs the AI methodologies of classification, heuristic search, and object-oriented model knowledge representation. The conditions for model-space search convergence to the best model are discussed in terms of search-tree organization and initial model parameter error. In the illustrative example of a truss structure presented, the use of both model and parameter identification is shown to lead to smaller parameter corrections than would be required by parameter identification alone.
Research on large-scale wind farm modeling
NASA Astrophysics Data System (ADS)
Ma, Longfei; Zhang, Baoqun; Gong, Cheng; Jiao, Ran; Shi, Rui; Chi, Zhongjun; Ding, Yifeng
2017-01-01
Due to intermittent and adulatory properties of wind energy, when large-scale wind farm connected to the grid, it will have much impact on the power system, which is different from traditional power plants. Therefore it is necessary to establish an effective wind farm model to simulate and analyze the influence wind farms have on the grid as well as the transient characteristics of the wind turbines when the grid is at fault. However we must first establish an effective WTGs model. As the doubly-fed VSCF wind turbine has become the mainstream wind turbine model currently, this article first investigates the research progress of doubly-fed VSCF wind turbine, and then describes the detailed building process of the model. After that investigating the common wind farm modeling methods and pointing out the problems encountered. As WAMS is widely used in the power system, which makes online parameter identification of the wind farm model based on off-output characteristics of wind farm be possible, with a focus on interpretation of the new idea of identification-based modeling of large wind farms, which can be realized by two concrete methods.
Performance of b-jet identification in the ATLAS experiment
Aad, G; Abbott, B; Abdallah, J; ...
2016-04-04
The identification of jets containing b hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Several algorithms to identify jets containing b hadrons are described, ranging from those based on the reconstruction of an inclusive secondary vertex or the presence of tracks with large impact parameters to combined tagging algorithms making use of multi-variate discriminants. An independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b-tagging algorithm used in the online trigger are also presented. The b-jet tagging efficiency, the c-jet tagging efficiency and the mistag ratemore » for light flavour jets in data have been measured with a number of complementary methods. The calibration results are presented as scale factors defined as the ratio of the efficiency (or mistag rate) in data to that in simulation. In the case of b jets, where more than one calibration method exists, the results from the various analyses have been combined taking into account the statistical correlation as well as the correlation of the sources of systematic uncertainty.« less
Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David
2013-06-01
We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.
2015-01-01
Large-scale proteomics often employs two orthogonal separation methods to fractionate complex peptide mixtures. Fractionation can involve ion exchange separation coupled to reversed-phase separation or, more recently, two reversed-phase separations performed at different pH values. When multidimensional separations are combined with tandem mass spectrometry for protein identification, the strategy is often referred to as multidimensional protein identification technology (MudPIT). MudPIT has been used in either an automated (online) or manual (offline) format. In this study, we evaluated the performance of different MudPIT strategies by both label-free and tandem mass tag (TMT) isobaric tagging. Our findings revealed that online MudPIT provided more peptide/protein identifications and higher sequence coverage than offline platforms. When employing an off-line fractionation method with direct loading of samples onto the column from an eppendorf tube via a high-pressure device, a 5.3% loss in protein identifications is observed. When off-line fractionated samples are loaded via an autosampler, a 44.5% loss in protein identifications is observed compared with direct loading of samples onto a triphasic capillary column. Moreover, peptide recovery was significantly lower after offline fractionation than in online fractionation. Signal-to-noise (S/N) ratio, however, was not significantly altered between experimental groups. It is likely that offline sample collection results in stochastic peptide loss due to noncovalent adsorption to solid surfaces. Therefore, the use of the offline approaches should be considered carefully when processing minute quantities of valuable samples. PMID:25040086
Banas, Kasia; Cruwys, Tegan; de Wit, John B F; Johnston, Marie; Haslam, S Alexander
2016-10-01
Three studies were conducted to examine the effect of group identification and normative content of social identities on healthy eating intentions and behaviour. In Study 1 (N = 87) Australian participants were shown images that portrayed a norm of healthy vs. unhealthy behaviour among Australians. Participants' choices from an online restaurant menu were used to calculate energy content as the dependent variable. In Study 2 (N = 117), female participants were assigned to a healthy or unhealthy norm condition. The dependent variable was the amount of food eaten in a taste test. Social group identification was measured in both studies. In Study 3 (N = 117), both American identification and healthiness norm were experimentally manipulated, and participants' choices from an online restaurant menu constituted the dependent variable. In all three studies, the healthiness norm presented interacted with participants' group identification to predict eating behaviour. Contrary to what would be predicted under the traditional normative social influence account, higher identifiers chose higher energy food from an online menu and ate more food in a taste test when presented with information about their in-group members behaving healthily. The exact psychological mechanism responsible for these results remains unclear, but the pattern of means can be interpreted as evidence of vicarious licensing, whereby participants feel less motivated to make healthy food choices after being presented with content suggesting that other in-group members are engaging in healthy behaviour. These results suggest a more complex interplay between group membership and norms than has previously been proposed. Copyright © 2016. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Litt, Jonathan; Kurtkaya, Mehmet; Duyar, Ahmet
1994-01-01
This paper presents an application of a fault detection and diagnosis scheme for the sensor faults of a helicopter engine. The scheme utilizes a model-based approach with real time identification and hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent control system will allow for accommodation of faults, reduce maintenance cost, and increase system availability. The scheme compares the measured outputs of the engine with the expected outputs of an engine whose sensor suite is functioning normally. If the differences between the real and expected outputs exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through a fault parameter isolation technique where parameters which model the faulty process are calculated on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their patterns can then be analyzed for diagnostic and accommodation purposes. The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are used with the scheme to detect, isolate, and estimate the magnitude of the faults.
Entrepreneurial Idea Identification through Online Social Networks
ERIC Educational Resources Information Center
Lang, Matthew C.
2010-01-01
The increasing use of social network websites may signal a change in the way the next generation of entrepreneurs identify entrepreneurial ideas. An important part of the entrepreneurship literature emphasizes how vital the use of social networks is to entrepreneurial idea identification, opportunity recognition, and ultimately new venture…
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Effect of the initial configuration for user-object reputation systems
NASA Astrophysics Data System (ADS)
Wu, Ying-Ying; Guo, Qiang; Liu, Jian-Guo; Zhang, Yi-Cheng
2018-07-01
Identifying the user reputation accurately is significant for the online social systems. For different fair rating parameter q, by changing the parameter values α and β of the beta probability distribution (RBPD) for ranking online user reputation, we investigate the effect of the initial configuration of the RBPD method for the online user ranking performance. Experimental results for the Netflix and MovieLens data sets show that when the parameter q equals to 0.8 and 0.9, the accuracy value AUC would increase about 4.5% and 3.5% for the Netflix data set, while the AUC value increases about 1.5% for the MovieLens data set when the parameter q is 0.9. Furthermore, we investigate the evolution characteristics of the AUC value for different α and β, and find that as the rating records increase, the AUC value increases about 0.2 and 0.16 for the Netflix and MovieLens data sets, indicating that online users' reputations will increase as they rate more and more objects.
Superville, Pierre-Jean; Pižeta, Ivanka; Omanović, Dario; Billon, Gabriel
2013-08-15
Based on automatic on-line measurements on the Deûle River that showed daily variation of a peak around -0.56V (vs Ag|AgCl 3M), identification of Reduced Sulphur Species (RSS) in oxic waters was performed applying cathodic stripping voltammetry (CSV) with the hanging mercury drop electrode (HMDE). Pseudopolarographic studies accompanied with increasing concentrations of copper revealed the presence of elemental sulphur S(0), thioacetamide (TA) and reduced glutathione (GSH) as the main sulphur compounds in the Deûle River. In order to resolve these three species, a simple procedure was developed and integrated in an automatic on-line monitoring system. During one week monitoring with hourly measurements, GSH and S(0) exhibited daily cycles whereas no consequential pattern was observed for TA. Copyright © 2013 Elsevier B.V. All rights reserved.
Guidelines for Online Assessment for Educators
ERIC Educational Resources Information Center
Westhuizen, Duan vd
2016-01-01
This work starts with a brief overview of education in developing countries, to contextualise the use of the guidelines. Although this document is intended to be a practical tool, it is necessary to include some theoretical analysis of the concept of online assessment. This is given in Sections 3 and 4, together with the identification and…
Terreaux, Christian; Wang, Qi; Ioset, Jean-Robert; Ndjoko, Karine; Grimminger, Wolf; Hostettmann, Kurt
2002-04-01
The hydroalcoholic extract of Tinnevelli senna is widely used as a laxative phytomedicine. In order to improve the knowledge of the chemical composition of this extract, LC/MS and LC/MS(n) studies were performed, allowing the on-line identification of most of the known constituents, i. e., flavonoids, anthraquinones and the typical dianthronic sennosides. However, the identity of four compounds could not be ascertained on-line under the given LC/MS conditions. These substances were isolated and their structures elucidated as kaempferol, the naphthalene derivative tinnevellin 8-glucoside and two new carboxylated benzophenone glucosides.
Scalable persistent identifier systems for dynamic datasets
NASA Astrophysics Data System (ADS)
Golodoniuc, P.; Cox, S. J. D.; Klump, J. F.
2016-12-01
Reliable and persistent identification of objects, whether tangible or not, is essential in information management. Many Internet-based systems have been developed to identify digital data objects, e.g., PURL, LSID, Handle, ARK. These were largely designed for identification of static digital objects. The amount of data made available online has grown exponentially over the last two decades and fine-grained identification of dynamically generated data objects within large datasets using conventional systems (e.g., PURL) has become impractical. We have compared capabilities of various technological solutions to enable resolvability of data objects in dynamic datasets, and developed a dataset-centric approach to resolution of identifiers. This is particularly important in Semantic Linked Data environments where dynamic frequently changing data is delivered live via web services, so registration of individual data objects to obtain identifiers is impractical. We use identifier patterns and pattern hierarchies for identification of data objects, which allows relationships between identifiers to be expressed, and also provides means for resolving a single identifier into multiple forms (i.e. views or representations of an object). The latter can be implemented through (a) HTTP content negotiation, or (b) use of URI querystring parameters. The pattern and hierarchy approach has been implemented in the Linked Data API supporting the United Nations Spatial Data Infrastructure (UNSDI) initiative and later in the implementation of geoscientific data delivery for the Capricorn Distal Footprints project using International Geo Sample Numbers (IGSN). This enables flexible resolution of multi-view persistent identifiers and provides a scalable solution for large heterogeneous datasets.
Energy awareness for supercapacitors using Kalman filter state-of-charge tracking
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Hassanalieragh, Moeen; Sharma, Gaurav; Soyata, Tolga
2015-11-01
Among energy buffering alternatives, supercapacitors can provide unmatched efficiency and durability. Additionally, the direct relation between a supercapacitor's terminal voltage and stored energy can improve energy awareness. However, a simple capacitive approximation cannot adequately represent the stored energy in a supercapacitor. It is shown that the three branch equivalent circuit model provides more accurate energy awareness. This equivalent circuit uses three capacitances and associated resistances to represent the supercapacitor's internal SOC (state-of-charge). However, the SOC cannot be determined from one observation of the terminal voltage, and must be tracked over time using inexact measurements. We present: 1) a Kalman filtering solution for tracking the SOC; 2) an on-line system identification procedure to efficiently estimate the equivalent circuit's parameters; and 3) experimental validation of both parameter estimation and SOC tracking for 5 F, 10 F, 50 F, and 350 F supercapacitors. Validation is done within the operating range of a solar powered application and the associated power variability due to energy harvesting. The proposed techniques are benchmarked against the simple capacitive model and prior parameter estimation techniques, and provide a 67% reduction in root-mean-square error for predicting usable buffered energy.
Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W.
2013-01-01
The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully. PMID:24253191
Modal parameter estimation and monitoring for on-line flight flutter analysis
NASA Astrophysics Data System (ADS)
Verboven, P.; Cauberghe, B.; Guillaume, P.; Vanlanduit, S.; Parloo, E.
2004-05-01
The clearance of the flight envelope of a new airplane by means of flight flutter testing is time consuming and expensive. Most common approach is to track the modal damping ratios during a number of flight conditions, and hence the accuracy of the damping estimates plays a crucial role. However, aircraft manufacturers desire to decrease the flight flutter testing time for practical, safety and economical reasons by evolving from discrete flight test points to a more continuous flight test pattern. Therefore, this paper presents an approach that provides modal parameter estimation and monitoring for an aircraft with a slowly time-varying structural behaviour that will be observed during a faster and more continuous exploration of the flight envelope. The proposed identification approach estimates the modal parameters directly from input/output Fourier data. This avoids the need for an averaging-based pre-processing of the data, which becomes inapplicable in the case that only short data records are measured. Instead of using a Hanning window to reduce effects of leakage, these transient effects are modelled simultaneously with the dynamical behaviour of the airplane. The method is validated for the monitoring of the system poles during flight flutter testing.
Shen, Changqing; Liu, Fang; Wang, Dong; Zhang, Ao; Kong, Fanrang; Tse, Peter W
2013-11-18
The condition of locomotive bearings, which are essential components in trains, is crucial to train safety. The Doppler effect significantly distorts acoustic signals during high movement speeds, substantially increasing the difficulty of monitoring locomotive bearings online. In this study, a new Doppler transient model based on the acoustic theory and the Laplace wavelet is presented for the identification of fault-related impact intervals embedded in acoustic signals. An envelope spectrum correlation assessment is conducted between the transient model and the real fault signal in the frequency domain to optimize the model parameters. The proposed method can identify the parameters used for simulated transients (periods in simulated transients) from acoustic signals. Thus, localized bearing faults can be detected successfully based on identified parameters, particularly period intervals. The performance of the proposed method is tested on a simulated signal suffering from the Doppler effect. Besides, the proposed method is used to analyze real acoustic signals of locomotive bearings with inner race and outer race faults, respectively. The results confirm that the periods between the transients, which represent locomotive bearing fault characteristics, can be detected successfully.
On Markov parameters in system identification
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Longman, Richard W.
1991-01-01
A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.
Sood, Mehak; Besson, Pierre; Muthalib, Makii; Jindal, Utkarsh; Perrey, Stephane; Dutta, Anirban; Hayashibe, Mitsuhiro
2016-12-01
Transcranial direct current stimulation (tDCS) has been shown to perturb both cortical neural activity and hemodynamics during (online) and after the stimulation, however mechanisms of these tDCS-induced online and after-effects are not known. Here, online resting-state spontaneous brain activation may be relevant to monitor tDCS neuromodulatory effects that can be measured using electroencephalography (EEG) in conjunction with near-infrared spectroscopy (NIRS). We present a Kalman Filter based online parameter estimation of an autoregressive (ARX) model to track the transient coupling relation between the changes in EEG power spectrum and NIRS signals during anodal tDCS (2mA, 10min) using a 4×1 ring high-definition montage. Our online ARX parameter estimation technique using the cross-correlation between log (base-10) transformed EEG band-power (0.5-11.25Hz) and NIRS oxy-hemoglobin signal in the low frequency (≤0.1Hz) range was shown in 5 healthy subjects to be sensitive to detect transient EEG-NIRS coupling changes in resting-state spontaneous brain activation during anodal tDCS. Conventional sliding window cross-correlation calculations suffer a fundamental problem in computing the phase relationship as the signal in the window is considered time-invariant and the choice of the window length and step size are subjective. Here, Kalman Filter based method allowed online ARX parameter estimation using time-varying signals that could capture transients in the coupling relationship between EEG and NIRS signals. Our new online ARX model based tracking method allows continuous assessment of the transient coupling between the electrophysiological (EEG) and the hemodynamic (NIRS) signals representing resting-state spontaneous brain activation during anodal tDCS. Published by Elsevier B.V.
Modeling, Real-Time Estimation, and Identification of UWB Indoor Wireless Channels
Olama, Mohammed M.; Djouadi, Seddik M.; Li, Yanyan; ...
2013-01-01
Stochastic differential equations (SDEs) are used to model ultrawideband (UWB) indoor wireless channels. We show that the impulse responses for time-varying indoor wireless channels can be approximated in a mean-square sense as close as desired by impulse responses that can be realized by SDEs. The state variables represent the inphase and quadrature components of the UWB channel. The expected maximization and extended Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Both resolvable and nonresolvable multipath received signals are considered and represented as small-scaled Nakagami fading. Themore » proposed models together with the estimation algorithm are tested using UWB indoor measurement data demonstrating the method’s viability and the results are presented.« less
NASA Technical Reports Server (NTRS)
Huynh, Loc C.; Duval, R. W.
1986-01-01
The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures.
Effect of Sex Identification on Instrument Assignment by Band Directors
ERIC Educational Resources Information Center
Johnson, Christopher M.; Stewart, Erin E.
2004-01-01
The purpose of this study was to investigate the effect of sex identification on the assignment of instruments to beginning band students. Participants were band directors solicited at music conferences and music education students solicited from major universities across the United States. Participants completed an online survey about instrument…
An online ID identification system for liquefied-gas cylinder plant
NASA Astrophysics Data System (ADS)
He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao
2017-11-01
An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.
On-line implementation of nonlinear parameter estimation for the Space Shuttle main engine
NASA Technical Reports Server (NTRS)
Buckland, Julia H.; Musgrave, Jeffrey L.; Walker, Bruce K.
1992-01-01
We investigate the performance of a nonlinear estimation scheme applied to the estimation of several parameters in a performance model of the Space Shuttle Main Engine. The nonlinear estimator is based upon the extended Kalman filter which has been augmented to provide estimates of several key performance variables. The estimated parameters are directly related to the efficiency of both the low pressure and high pressure fuel turbopumps. Decreases in the parameter estimates may be interpreted as degradations in turbine and/or pump efficiencies which can be useful measures for an online health monitoring algorithm. This paper extends previous work which has focused on off-line parameter estimation by investigating the filter's on-line potential from a computational standpoint. ln addition, we examine the robustness of the algorithm to unmodeled dynamics. The filter uses a reduced-order model of the engine that includes only fuel-side dynamics. The on-line results produced during this study are comparable to off-line results generated previously. The results show that the parameter estimates are sensitive to dynamics not included in the filter model. Off-line results using an extended Kalman filter with a full order engine model to address the robustness problems of the reduced-order model are also presented.
On-line catalogs of solar energetic protons at SRTI-BAS
NASA Astrophysics Data System (ADS)
Miteva, R.; Danov, D.
2017-08-01
We outline the status of the on-line catalogs of solar energetic particles supported by the Space Climate group at the Space Research and Technology, Bulgarian Academy of Sciences (SRTI-BAS). In addition to the already compiled proton catalog from Wind/EPACT instrument, in the current report we present preliminary results on the high energy SOHO/ERNE proton enhancement identifications as well as comparative analysis with two other proton lists. The future plans for the on-line catalogs are briefly summarized.
Mathematical correlation of modal parameter identification methods via system realization theory
NASA Technical Reports Server (NTRS)
Juang, J. N.
1986-01-01
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.
Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang
2017-03-01
This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
Glyceollin-related metabolites produced in rats following oral glyceollin administration were screened and identified by precursor and product ion scanning using liquid chromatography, coupled on-line with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), to identify all glyceollin me...
the IDNYC Online Application Portal IDNYC Launches New Online Application Portal! You can now save IDNYC: FaceBook Twitter Instagram 8 Million New Yorkers. 1 Card For All Of Us! IDNYC is the new, free identification card for all New York City residents, which gives all of us the opportunity to show who we are-New
ERIC Educational Resources Information Center
Perdian, David C.
2013-01-01
Two distinct student groups, in terms of academic performance, were identified early in the semester as either being under-performing students or over-performing students using an online homework system. The students who are identified as under-performing received, on average, lower grades than their fellow students but spent more time completing…
An Online Social Networking Approach to Reinforce Learning of Rocks and Minerals
ERIC Educational Resources Information Center
Kennelly, Patrick
2009-01-01
Numerous and varied methods are used in introductory Earth science and geology classes to help students learn about rocks and minerals, such as classroom lectures, laboratory specimen identification, and field trips. This paper reports on a method using online social networking. The choice of this forum was based on two criteria. First, many…
Comparison of Group Cohesion, Class Participation, and Exam Performance in Live and Online Classes
ERIC Educational Resources Information Center
Galyon, Charles E.; Heaton, Eleanore C. T.; Best, Tiffany L.; Williams, Robert L.
2016-01-01
Though class participation and group cohesion have shown some potential to promote student performance in conventional classrooms, their efficacy has not yet been demonstrated in an online-class setting. Group cohesion, defined as member attraction to and self-identification with a group, is thought to promote positive interdependence and the…
A Story Approach to Create Online College Courses
ERIC Educational Resources Information Center
Romero, Liz
2016-01-01
The purpose of this article is to describe the implementation of a story approach to create online courses in a college environment. The article describes the components of the approach and the implementation process to create a nursing and a language course. The implementation starts with the identification of the need and follows by creating a…
Research Note--A Pilot Cyber Counseling Course in a Graduate Social Work Program
ERIC Educational Resources Information Center
Mishna, Faye; Tufford, Lea; Cook, Charlene; Bogo, Marion
2013-01-01
Cyber counseling is a new and growing medium for offering mental health services to children and youth. However, there is a lack of identification of the core competencies required to provide effective online counseling. A school of social work, in partnership with a national service agency providing online counseling to children and youth,…
78 FR 27335 - Transportation Worker Identification Credential (TWIC)-Reader Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 101, 104, 105, and 106 [Docket No. USCG... comments and material online at http://www.regulations.gov , or by fax, mail, or hand delivery, but please use only one of these means. If you submit a comment online, it will be considered received by the...
Hatipkarasulu, Yilmaz; Gill, James H
2004-04-01
The increasing number of companies providing internet services and auction tools helped popularize the online reverse auction trend for purchasing commodities and services in the last decade. As a result, a number of owners, both public and private, accepted the online reverse auctions as the bidding technique for their construction projects. Owners, while trying to minimize their costs for construction projects, are also required to address their ethical responsibilities to the shareholders. In the case of online reverse auctions for construction projects, the ethical issues involved in the bidding technique directly reflects on the owner's ethical and social responsibilities to their shareholders. The goal of this paper is to identify the shareholder ethics and responsibilities in online reverse auctions for construction projects by analyzing the ethical issues for the parties involved in the process. The identification of the ethical issues and responsibilities requires clear definition and understanding of professional ethics and the roles of the involved parties. In this paper, first, the concept of professional ethics and social responsibility is described in a general form. To illustrate the ethical issues and responsibilities, a sample case of bidding for a construction project using online reverse auction techniques is presented in which the shareholders were actively involved in questioning the ethical issues. The issues involved in the bidding process and their reflection on the shareholder responsibilities are described and analyzed for each stage of the process. A brief discussion of the overall process is also included to address the general ethical issues involved in online reverse auctions.
Discipline Social Identification, Study Norms and Learning Approach in University Students
ERIC Educational Resources Information Center
Smyth, Lillian; Mavor, Kenneth I.; Platow, Michael J.; Grace, Diana M.; Reynolds, Katherine J.
2015-01-01
Adopting a deep approach to learning is associated with positive academic outcomes. In the current paper, we extend this analysis in a university context by recognising that learners are not isolated individuals, but share important social identifications with others. Using online surveys at an Australian university, we examine the effects of…
ERIC Educational Resources Information Center
Lo, Jia-Jiunn; Shu, Pai-Chuan
2005-01-01
Identification of individual learning style is important when developing adaptive educational hypermedia systems. Current systems ask learners to complete questionnaires to identify their learning styles, which might not be appropriate in some contexts. The goal of this research is to identify the learner's learning style by simply observing…
Non-targeted analysis (NTA) workflows in high-resolution mass spectrometry require mechanisms for compound identification. One strategy for tentative identification is the use of online chemical databases such as ChemSpider. Databases like this use molecular formulae and monois...
NASA Astrophysics Data System (ADS)
Erazo, Kalil; Nagarajaiah, Satish
2017-06-01
In this paper an offline approach for output-only Bayesian identification of stochastic nonlinear systems is presented. The approach is based on a re-parameterization of the joint posterior distribution of the parameters that define a postulated state-space stochastic model class. In the re-parameterization the state predictive distribution is included, marginalized, and estimated recursively in a state estimation step using an unscented Kalman filter, bypassing state augmentation as required by existing online methods. In applications expectations of functions of the parameters are of interest, which requires the evaluation of potentially high-dimensional integrals; Markov chain Monte Carlo is adopted to sample the posterior distribution and estimate the expectations. The proposed approach is suitable for nonlinear systems subjected to non-stationary inputs whose realization is unknown, and that are modeled as stochastic processes. Numerical verification and experimental validation examples illustrate the effectiveness and advantages of the approach, including: (i) an increased numerical stability with respect to augmented-state unscented Kalman filtering, avoiding divergence of the estimates when the forcing input is unmeasured; (ii) the ability to handle arbitrary prior and posterior distributions. The experimental validation of the approach is conducted using data from a large-scale structure tested on a shake table. It is shown that the approach is robust to inherent modeling errors in the description of the system and forcing input, providing accurate prediction of the dynamic response when the excitation history is unknown.
VizieR Online Data Catalog: M33 molecular clouds and young stellar clusters (Corbelli+, 2017)
NASA Astrophysics Data System (ADS)
Corbelli, E.; Braine, J.; Bandiera, R.; Brouillet, N.; Combes, F.; Druard, C.; Gratier, P.; Mata, J.; Schuster, K.; Xilouris, M.; Palla, F.
2017-04-01
Table 5 : Physical parameters for the 566 molecular clouds identified through the IRAM 30m CO J=2-1 survey of the star forming disk of M33. For each cloud the cloud type and the following properties are listed: celestial coordinates, galactocentric radius, cloud deconvolved effective radius and its uncertainty, CO(2-1) line velocity dispersion from CPROPS and its uncertainty, line velocity dispersion from a Gaussian fit, CO luminous mass and its uncertainty, and virial mass from a Gaussian fit. In the last column the identification number of the young stellar cluster candidates associated with the molecular cloud are listed. Notes: We identify up to four young stellar cluster candidates (YSCCs) associated with each molecular cloud and we list them according to the identification number of Sharma et al. (2011, Cat. J/A+A/545/A96) given also in Table 6. Table 6 : Physical parameters for the 630 young stellar cluster candidates identified via their mid-infrared emission in the star forming disk of M33. For each YSCC we list the type of source, the identified number of the molecular clouds associated with it (if any) and the corresponding cloud classes. In addition, for each YSCC we give the celestial coordinates, the bolometric, total infrared, FUV and Halpha luminosities, the estimated mass and age, the visual extinction, the galactocentric radius, the source size, and its flux at 24μm. (2 data files).
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
NASA Astrophysics Data System (ADS)
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Full-envelope aerodynamic modeling of the Harrier aircraft
NASA Technical Reports Server (NTRS)
Mcnally, B. David
1986-01-01
A project to identify a full-envelope model of the YAV-8B Harrier using flight-test and parameter identification techniques is described. As part of the research in advanced control and display concepts for V/STOL aircraft, a full-envelope aerodynamic model of the Harrier is identified, using mathematical model structures and parameter identification methods. A global-polynomial model structure is also used as a basis for the identification of the YAV-8B aerodynamic model. State estimation methods are used to ensure flight data consistency prior to parameter identification.Equation-error methods are used to identify model parameters. A fixed-base simulator is used extensively to develop flight test procedures and to validate parameter identification software. Using simple flight maneuvers, a simulated data set was created covering the YAV-8B flight envelope from about 0.3 to 0.7 Mach and about -5 to 15 deg angle of attack. A singular value decomposition implementation of the equation-error approach produced good parameter estimates based on this simulated data set.
Parameter identification for structural dynamics based on interval analysis algorithm
NASA Astrophysics Data System (ADS)
Yang, Chen; Lu, Zixing; Yang, Zhenyu; Liang, Ke
2018-04-01
A parameter identification method using interval analysis algorithm for structural dynamics is presented in this paper. The proposed uncertain identification method is investigated by using central difference method and ARMA system. With the help of the fixed memory least square method and matrix inverse lemma, a set-membership identification technology is applied to obtain the best estimation of the identified parameters in a tight and accurate region. To overcome the lack of insufficient statistical description of the uncertain parameters, this paper treats uncertainties as non-probabilistic intervals. As long as we know the bounds of uncertainties, this algorithm can obtain not only the center estimations of parameters, but also the bounds of errors. To improve the efficiency of the proposed method, a time-saving algorithm is presented by recursive formula. At last, to verify the accuracy of the proposed method, two numerical examples are applied and evaluated by three identification criteria respectively.
Interior Noise Reduction by Adaptive Feedback Vibration Control
NASA Technical Reports Server (NTRS)
Lim, Tae W.
1998-01-01
The objective of this project is to investigate the possible use of adaptive digital filtering techniques in simultaneous, multiple-mode identification of the modal parameters of a vibrating structure in real-time. It is intended that the results obtained from this project will be used for state estimation needed in adaptive structural acoustics control. The work done in this project is basically an extension of the work on real-time single mode identification, which was performed successfully using a digital signal processor (DSP) at NASA, Langley. Initially, in this investigation the single mode identification work was duplicated on a different processor, namely the Texas Instruments TMS32OC40 DSP. The system identification results for the single mode case were very good. Then an algorithm for simultaneous two mode identification was developed and tested using analytical simulation. When it successfully performed the expected tasks, it was implemented in real-time on the DSP system to identify the first two modes of vibration of a cantilever aluminum beam. The results of the simultaneous two mode case were good but some problems were identified related to frequency warping and spurious mode identification. The frequency warping problem was found to be due to the bilinear transformation used in the algorithm to convert the system transfer function from the continuous-time domain to the discrete-time domain. An alternative approach was developed to rectify the problem. The spurious mode identification problem was found to be associated with high sampling rates. Noise in the signal is suspected to be the cause of this problem but further investigation will be needed to clarify the cause. For simultaneous identification of more than two modes, it was found that theoretically an adaptive digital filter can be designed to identify the required number of modes, but the algebra became very complex which made it impossible to implement in the DSP system used in this study. The on-line identification algorithm developed in this research will be useful in constructing a state estimator for feedback vibration control.
NASA Technical Reports Server (NTRS)
1998-01-01
An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification is not required. A time-varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time-varying system consists of a stainless-steel plate which is bolted down on a rigid cavity opening where the cavity depth was changed with respect to time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. First, all the water was drained, the external disturbance frequency is swept with 1 Hz/sec. The result shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the water level is initially empty and then raised to 3/20 full in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreases and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.
Kung, Carmen; Chwilla, Dorothee J; Schriefers, Herbert
2014-01-01
In two ERP experiments, we investigate the on-line interplay of lexical tone, intonation and semantic context during spoken word recognition in Cantonese Chinese. Experiment 1 shows that lexical tone and intonation interact immediately. Words with a low lexical tone at the end of questions (with a rising question intonation) lead to a processing conflict. This is reflected in a low accuracy in lexical identification and in a P600 effect compared to the same words at the end of a statement. Experiment 2 shows that a strongly biasing semantic context leads to much better lexical-identification performance for words with a low tone at the end of questions and to a disappearance of the P600 effect. These results support the claim that semantic context plays a major role in disentangling the tonal information from the intonational information, and thus, in resolving the on-line conflict between intonation and tone. However, the ERP data indicate that the introduction of a semantic context does not entirely eliminate on-line processing problems for words at the end of questions. This is revealed by the presence of an N400 effect for words with a low lexical tone and for words with a high-mid lexical tone at the end of questions. The ERP data thus show that, while semantic context helps in the eventual lexical identification, it makes the deviation of the contextually expected lexical tone from the actual acoustic signal more salient. © 2013 Published by Elsevier Ltd.
2016-01-01
Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111
Social identity threat motivates science-discrediting online comments.
Nauroth, Peter; Gollwitzer, Mario; Bender, Jens; Rothmund, Tobias
2015-01-01
Experiencing social identity threat from scientific findings can lead people to cognitively devalue the respective findings. Three studies examined whether potentially threatening scientific findings motivate group members to take action against the respective findings by publicly discrediting them on the Web. Results show that strongly (vs. weakly) identified group members (i.e., people who identified as "gamers") were particularly likely to discredit social identity threatening findings publicly (i.e., studies that found an effect of playing violent video games on aggression). A content analytical evaluation of online comments revealed that social identification specifically predicted critiques of the methodology employed in potentially threatening, but not in non-threatening research (Study 2). Furthermore, when participants were collectively (vs. self-) affirmed, identification did no longer predict discrediting posting behavior (Study 3). These findings contribute to the understanding of the formation of online collective action and add to the burgeoning literature on the question why certain scientific findings sometimes face a broad public opposition.
Social Identity Threat Motivates Science-Discrediting Online Comments
Nauroth, Peter; Gollwitzer, Mario; Bender, Jens; Rothmund, Tobias
2015-01-01
Experiencing social identity threat from scientific findings can lead people to cognitively devalue the respective findings. Three studies examined whether potentially threatening scientific findings motivate group members to take action against the respective findings by publicly discrediting them on the Web. Results show that strongly (vs. weakly) identified group members (i.e., people who identified as “gamers”) were particularly likely to discredit social identity threatening findings publicly (i.e., studies that found an effect of playing violent video games on aggression). A content analytical evaluation of online comments revealed that social identification specifically predicted critiques of the methodology employed in potentially threatening, but not in non-threatening research (Study 2). Furthermore, when participants were collectively (vs. self-) affirmed, identification did no longer predict discrediting posting behavior (Study 3). These findings contribute to the understanding of the formation of online collective action and add to the burgeoning literature on the question why certain scientific findings sometimes face a broad public opposition. PMID:25646725
NASA Astrophysics Data System (ADS)
Zhou, Daming; Al-Durra, Ahmed; Gao, Fei; Ravey, Alexandre; Matraji, Imad; Godoy Simões, Marcelo
2017-10-01
Energy management strategy plays a key role for Fuel Cell Hybrid Electric Vehicles (FCHEVs), it directly affects the efficiency and performance of energy storages in FCHEVs. For example, by using a suitable energy distribution controller, the fuel cell system can be maintained in a high efficiency region and thus saving hydrogen consumption. In this paper, an energy management strategy for online driving cycles is proposed based on a combination of the parameters from three offline optimized fuzzy logic controllers using data fusion approach. The fuzzy logic controllers are respectively optimized for three typical driving scenarios: highway, suburban and city in offline. To classify patterns of online driving cycles, a Probabilistic Support Vector Machine (PSVM) is used to provide probabilistic classification results. Based on the classification results of the online driving cycle, the parameters of each offline optimized fuzzy logic controllers are then fused using Dempster-Shafer (DS) evidence theory, in order to calculate the final parameters for the online fuzzy logic controller. Three experimental validations using Hardware-In-the-Loop (HIL) platform with different-sized FCHEVs have been performed. Experimental comparison results show that, the proposed PSVM-DS based online controller can achieve a relatively stable operation and a higher efficiency of fuel cell system in real driving cycles.
Adaptive MPC based on MIMO ARX-Laguerre model.
Ben Abdelwahed, Imen; Mbarek, Abdelkader; Bouzrara, Kais
2017-03-01
This paper proposes a method for synthesizing an adaptive predictive controller using a reduced complexity model. This latter is given by the projection of the ARX model on Laguerre bases. The resulting model is entitled MIMO ARX-Laguerre and it is characterized by an easy recursive representation. The adaptive predictive control law is computed based on multi-step-ahead finite-element predictors, identified directly from experimental input/output data. The model is tuned in each iteration by an online identification algorithms of both model parameters and Laguerre poles. The proposed approach avoids time consuming numerical optimization algorithms associated with most common linear predictive control strategies, which makes it suitable for real-time implementation. The method is used to synthesize and test in numerical simulations adaptive predictive controllers for the CSTR process benchmark. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Spectral features of solar plasma flows
NASA Astrophysics Data System (ADS)
Barkhatov, N. A.; Revunov, S. E.
2014-11-01
Research to the identification of plasma flows in the Solar wind by spectral characteristics of solar plasma flows in the range of magnetohydrodynamics is devoted. To do this, the wavelet skeleton pattern of Solar wind parameters recorded on Earth orbit by patrol spacecraft and then executed their neural network classification differentiated by bandwidths is carry out. This analysis of spectral features of Solar plasma flows in the form of magnetic clouds (MC), corotating interaction regions (CIR), shock waves (Shocks) and highspeed streams from coronal holes (HSS) was made. The proposed data processing and the original correlation-spectral method for processing information about the Solar wind flows for further classification as online monitoring of near space can be used. This approach will allow on early stages in the Solar wind flow detect geoeffective structure to predict global geomagnetic disturbances.
Monitoring of patients treated with lithium for bipolar disorder: an international survey.
Nederlof, M; Heerdink, E R; Egberts, A C G; Wilting, I; Stoker, L J; Hoekstra, R; Kupka, R W
2018-04-14
Adequate monitoring of patients using lithium is needed for optimal dosing and for early identification of patients with (potential) ADEs. The objective was to internationally assess how health care professionals monitor patients treated with lithium for bipolar disorder. Using networks of various professional organizations, an anonymous online survey was conducted among health care professionals prescribing lithium. Target lithium serum levels and frequency of monitoring was assessed together with monitoring of physical and laboratory parameters. Reasons to and not to monitor and use of guidelines and institutional protocols, and local monitoring systems were investigated. The survey was completed by 117 health care professionals incorporating responses from twenty-four countries. All prescribers reported to monitor lithium serum levels on a regular basis, with varying target ranges. Almost all (> 97%) monitored thyroid and renal function before start and during maintenance treatment. Reported monitoring of other laboratory and physical parameters was variable. The majority of respondents (74%) used guidelines or institutional protocols for monitoring. In general, the prescriber was responsible for monitoring, had to request every monitoring parameter separately and only a minority of patients was automatically invited. Lithium serum levels, renal and thyroid function were monitored by (almost) all physicians. However, there was considerable variation in other monitoring parameters. Our results help to understand why prescribers of lithium monitor patients and what their main reasons are not to monitor patients using lithium.
Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María
2018-01-30
Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species identification in remote malaria diagnosis.
Conducting spoken word recognition research online: Validation and a new timing method.
Slote, Joseph; Strand, Julia F
2016-06-01
Models of spoken word recognition typically make predictions that are then tested in the laboratory against the word recognition scores of human subjects (e.g., Luce & Pisoni Ear and Hearing, 19, 1-36, 1998). Unfortunately, laboratory collection of large sets of word recognition data can be costly and time-consuming. Due to the numerous advantages of online research in speed, cost, and participant diversity, some labs have begun to explore the use of online platforms such as Amazon's Mechanical Turk (AMT) to source participation and collect data (Buhrmester, Kwang, & Gosling Perspectives on Psychological Science, 6, 3-5, 2011). Many classic findings in cognitive psychology have been successfully replicated online, including the Stroop effect, task-switching costs, and Simon and flanker interference (Crump, McDonnell, & Gureckis PLoS ONE, 8, e57410, 2013). However, tasks requiring auditory stimulus delivery have not typically made use of AMT. In the present study, we evaluated the use of AMT for collecting spoken word identification and auditory lexical decision data. Although online users were faster and less accurate than participants in the lab, the results revealed strong correlations between the online and laboratory measures for both word identification accuracy and lexical decision speed. In addition, the scores obtained in the lab and online were equivalently correlated with factors that have been well established to predict word recognition, including word frequency and phonological neighborhood density. We also present and analyze a method for precise auditory reaction timing that is novel to behavioral research. Taken together, these findings suggest that AMT can be a viable alternative to the traditional laboratory setting as a source of participation for some spoken word recognition research.
Xu, Jing; Wang, Zhongbin; Tan, Chao; Liu, Xinhua
2018-01-01
As a sound signal has the advantages of non-contacted measurement, compact structure, and low power consumption, it has resulted in much attention in many fields. In this paper, the sound signal of the coal mining shearer is analyzed to realize the accurate online cutting pattern identification and guarantee the safety quality of the working face. The original acoustic signal is first collected through an industrial microphone and decomposed by adaptive ensemble empirical mode decomposition (EEMD). A 13-dimensional set composed by the normalized energy of each level is extracted as the feature vector in the next step. Then, a swarm intelligence optimization algorithm inspired by bat foraging behavior is applied to determine key parameters of the traditional variable translation wavelet neural network (VTWNN). Moreover, a disturbance coefficient is introduced into the basic bat algorithm (BA) to overcome the disadvantage of easily falling into local extremum and limited exploration ability. The VTWNN optimized by the modified BA (VTWNN-MBA) is used as the cutting pattern recognizer. Finally, a simulation example, with an accuracy of 95.25%, and a series of comparisons are conducted to prove the effectiveness and superiority of the proposed method. PMID:29382120
Becht, Etienne; Simoni, Yannick; Coustan-Smith, Elaine; Maximilien, Evrard; Cheng, Yang; Ng, Lai Guan; Campana, Dario; Newell, Evan
2018-06-21
Recent flow and mass cytometers generate datasets of dimensions 20 to 40 and a million single cells. From these, many tools facilitate the discovery of new cell populations associated with diseases or physiology. These new cell populations require the identification of new gating strategies, but gating strategies become exponentially more difficult to optimize when dimensionality increases. To facilitate this step, we developed Hypergate, an algorithm which given a cell population of interest identifies a gating strategy optimized for high yield and purity. Hypergate achieves higher yield and purity than human experts, Support Vector Machines and Random-Forests on public datasets. We use it to revisit some established gating strategies for the identification of innate lymphoid cells, which identifies concise and efficient strategies that allow gating these cells with fewer parameters but higher yield and purity than the current standards. For phenotypic description, Hypergate's outputs are consistent with fields' knowledge and sparser than those from a competing method. Hypergate is implemented in R and available on CRAN. The source code is published at http://github.com/ebecht/hypergate under an Open Source Initiative-compliant licence. Supplementary data are available at Bioinformatics online.
Identification of metal ion binding sites based on amino acid sequences
Cao, Xiaoyong; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua
2017-01-01
The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html. PMID:28854211
Identification of metal ion binding sites based on amino acid sequences.
Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua
2017-01-01
The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.
Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.
Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar
2006-04-01
This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.
Identification and stochastic control of helicopter dynamic modes
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Bar-Shalom, Y.
1983-01-01
A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.
On-line algorithms for forecasting hourly loads of an electric utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemuri, S.; Huang, W.L.; Nelson, D.J.
A method that lends itself to on-line forecasting of hourly electric loads is presented, and the results of its use are compared to models developed using the Box-Jenkins method. The method consits of processing the historical hourly loads with a sequential least-squares estimator to identify a finite-order autoregressive model which, in turn, is used to obtain a parsimonious autoregressive-moving average model. The method presented has several advantages in comparison with the Box-Jenkins method including much-less human intervention, improved model identification, and better results. The method is also more robust in that greater confidence can be placed in the accuracy ofmore » models based upon the various measures available at the identification stage.« less
Evaluating an Online Resourcefulness Training Intervention Pilot Test Using Six Critical Parameters.
Musil, Carol M; Zauszniewski, Jaclene A; Burant, Christopher J; Toly, Valerie B; Warner, Camille B
2015-12-01
Few resources are available to help grandmother caregivers to grandchildren manage their complex family situations that may have immediate and long-term consequences for themselves and their families. Resourcefulness training is an intervention designed to help grandmothers improve their ability to deal with these problems. The purpose of this pilot study was to evaluate the necessity, feasibility, acceptability, fidelity, safety, and effectiveness (i.e., effect sizes) of an online, computer-based resourcefulness training intervention that was adapted from a face-to-face intervention. Twelve grandmothers raising or living with grandchildren participated in the pilot intervention that included (a) watching an instructional video on resourcefulness, (b) completing two online questionnaires over a 6-week time period, and (c) writing in an online journal every day for 4 weeks. Data are evaluated within the context of the six parameters important to intervention development. Qualitative and quantitative results provide initial support for all six parameters. Recommendations to improve aspects of the intervention are discussed. © The Author(s) 2015.
Guo, Tian-Chao; Li, Xuemei
2016-11-01
Previous studies have reported conflicting results regarding the relationship between individuality and social identity, indicating this area requires further examination. This study constructed a research model to help understand the positive role of individualized behavior and social identity in virtual communities. The results of an online survey conducted to assess our theoretical research model indicated that social identity can be expressed in two ways: self-categorization and social identification. Furthermore, we found individualized behavior was positively related to social identification, while self-categorization was directly derived from social identification.
Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo
2017-01-01
Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
NASA Astrophysics Data System (ADS)
Ramgraber, M.; Schirmer, M.
2017-12-01
As computational power grows and wireless sensor networks find their way into common practice, it becomes increasingly feasible to pursue on-line numerical groundwater modelling. The reconciliation of model predictions with sensor measurements often necessitates the application of Sequential Monte Carlo (SMC) techniques, most prominently represented by the Ensemble Kalman Filter. In the pursuit of on-line predictions it seems advantageous to transcend the scope of pure data assimilation and incorporate on-line parameter calibration as well. Unfortunately, the interplay between shifting model parameters and transient states is non-trivial. Several recent publications (e.g. Chopin et al., 2013, Kantas et al., 2015) in the field of statistics discuss potential algorithms addressing this issue. However, most of these are computationally intractable for on-line application. In this study, we investigate to what extent compromises between mathematical rigour and computational restrictions can be made within the framework of on-line numerical modelling of groundwater. Preliminary studies are conducted in a synthetic setting, with the goal of transferring the conclusions drawn into application in a real-world setting. To this end, a wireless sensor network has been established in the valley aquifer around Fehraltorf, characterized by a highly dynamic groundwater system and located about 20 km to the East of Zürich, Switzerland. By providing continuous probabilistic estimates of the state and parameter distribution, a steady base for branched-off predictive scenario modelling could be established, providing water authorities with advanced tools for assessing the impact of groundwater management practices. Chopin, N., Jacob, P.E. and Papaspiliopoulos, O. (2013): SMC2: an efficient algorithm for sequential analysis of state space models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75 (3), p. 397-426. Kantas, N., Doucet, A., Singh, S.S., Maciejowski, J., and Chopin, N. (2015): On Particle Methods for Parameter Estimation in State-Space Models. Statistical Science, 30 (3), p. 328.-351.
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Qu, Jing; Hu, You-cai; Li, Jian-bei; Wang, Ying-hong; Zhang, Jin-lan; Abliz, Zeper; Yu, Shi-shan; Liu, Yun-bao
2008-01-01
A combination of electrospray ionization tandem mass spectrometry with high-performance liquid chromatography (HPLC/ESI-MSn), and hyphenation of liquid chromatography to nuclear magnetic resonance spectroscopy (HPLC/NMR), have been extensively utilized for on-line analysis of natural products, analyzing metabolite and drug impurity. In our last paper, we reported an on-line analytical method for structural identification of trace alkaloids in the same class. However, the structural types of the constituents in plants were various, such as flavanoids, terpenoids and steroids. It is important to establish an effective analytical method for on-line structural identification of constituents with molecular diversity in extracts of plants. So, in the present study, the fragmentation patterns of some isolated stilbenes, phloroglucinols and flavanoids from Lysidice rhodostegia were investigated by ESI-MSn. Their fragmentation rules and UV characteristics are summarized, and the relationship between the spectral characteristics, rules and the structures is described. According to the fragmentation rules, NMR and UV spectral characteristics, 24 constituents of different types in the fractions from L. brevicalyx of the same genus were structurally characterized on the basis of HPLC/HRMS, HPLC-UV/ESI-MSn, HPLC/1H NMR and HPLC/1H-1H COSY rapidly. Of these, six (10, 13, 14, 16, 17 and 23) are new compounds and all of them are reported from L. brevicalyx for the first time. The aim is to develop an effective analytical method for on-line structural identification of natural products with molecular diversity in plants, and to guide the rapid and direct isolation of novel compounds by chemical screening.
Parizotto, Daniele R; Pires, Amanda Ciprandi; Mise, Kleber Makoto; Ferreira, Rodrigo Lopes
2017-12-19
Troglobitic species are those organisms restricted to caves that frequently present unique morphological features related to these environments. In order to study its ecology, evolution and biogeography, it is first required to properly recognize them. However, especially in Brazil, the basic knowledge is still incipient, with few taxonomic studies such as identification keys for this group of organisms. In addition, since the troglobitic species belong to different taxonomic groups, the information to properly recognize them is often sparse and difficult to access. Considering this, an interactive multi entry taxonomic key available online is an interesting approach, as it makes identifications easier. This study aims to construct a multi-access interactive identification key to the troglobitic invertebrates of Brazil, using morphological characters obtained from literature and direct observations of specimens. The key was made in Lucid version 3.3, containing figures of most characters. It comprises seventy-eight species of troglobitic invertebrates that occur in Brazil, forming a matrix of 231 morphological characters and more than 200 images to support identification. The key is freely available online on lucid central (http://keys.lucidcentral.org/keys/v3/troglobitic_invertebrates/troglobitic_invertebrates.html). Since Brazilian laws regarding cave conservation has change in 2008, allowing even the destruction of caves, this multi-access identification key is step to reduce the existing taxonomic impediment and also an important tool for identification of troglobites, especially for non-specialists.
Carvalho, Maria L; Doma, Jemimah; Sztyler, Magdalena; Beech, Iwona; Cristiani, Pierangela
2014-06-01
The present paper reports the on-line monitoring of corrosion behavior of the CuNi 70:30 and Al brass alloys exposed to seawater and complementary offline microbiological analyses. An electrochemical equipment with sensors specifically set for industrial application and suitable to estimate the corrosion (by linear polarization resistance technique), the biofilm growth (by the BIOX electrochemical probe), the chlorination treatment and other physical-chemical parameters of the water has been used for the on-line monitoring. In order to identify and better characterize the bacteria community present on copper alloys, tube samples were collected after a long period (1year) and short period (2days) of exposition to treated natural seawater (TNSW) and natural seawater (NSW). From the collected samples, molecular techniques such as DNA extraction, polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE) and identification by sequencing were performed to better characterize and identify the microbial biodiversity present in the samples. The monitoring data confirmed the significant role played by biofouling deposition against the passivity of these Cu alloys in seawater and the positive influence of antifouling treatments based on low level dosages. Molecular analysis indicated biodiversity with the presence of Marinobacter, Alteromonas and Pseudomonas species. Copyright © 2013 Elsevier B.V. All rights reserved.
Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey; Chiew, Yeong Shiong; Möller, Knut
2014-05-01
Accurate model parameter identification relies on accurate forward model simulations to guide convergence. However, some forward simulation methodologies lack the precision required to properly define the local objective surface and can cause failed parameter identification. The role of objective surface smoothness in identification of a pulmonary mechanics model was assessed using forward simulation from a novel error-stepping method and a proprietary Runge-Kutta method. The objective surfaces were compared via the identified parameter discrepancy generated in a Monte Carlo simulation and the local smoothness of the objective surfaces they generate. The error-stepping method generated significantly smoother error surfaces in each of the cases tested (p<0.0001) and more accurate model parameter estimates than the Runge-Kutta method in three of the four cases tested (p<0.0001) despite a 75% reduction in computational cost. Of note, parameter discrepancy in most cases was limited to a particular oblique plane, indicating a non-intuitive multi-parameter trade-off was occurring. The error-stepping method consistently improved or equalled the outcomes of the Runge-Kutta time-integration method for forward simulations of the pulmonary mechanics model. This study indicates that accurate parameter identification relies on accurate definition of the local objective function, and that parameter trade-off can occur on oblique planes resulting prematurely halted parameter convergence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Load compensation in a lean burn natural gas vehicle
NASA Astrophysics Data System (ADS)
Gangopadhyay, Anupam
A new multivariable PI tuning technique is developed in this research that is primarily developed for regulation purposes. Design guidelines are developed based on closed-loop stability. The new multivariable design is applied in a natural gas vehicle to combine idle and A/F ratio control loops. This results in better recovery during low idle operation of a vehicle under external step torques. A powertrain model of a natural gas engine is developed and validated for steady-state and transient operation. The nonlinear model has three states: engine speed, intake manifold pressure and fuel fraction in the intake manifold. The model includes the effect of fuel partial pressure in the intake manifold filling and emptying dynamics. Due to the inclusion of fuel fraction as a state, fuel flow rate into the cylinders is also accurately modeled. A linear system identification is performed on the nonlinear model. The linear model structure is predicted analytically from the nonlinear model and the coefficients of the predicted transfer function are shown to be functions of key physical parameters in the plant. Simulations of linear system and model parameter identification is shown to converge to the predicted values of the model coefficients. The multivariable controller developed in this research could be designed in an algebraic fashion once the plant model is known. It is thus possible to implement the multivariable PI design in an adaptive fashion combining the controller with identified plant model on-line. This will result in a self-tuning regulator (STR) type controller where the underlying design criteria is the multivariable tuning technique designed in this research.
Pareek, Gyan; Acharya, U Rajendra; Sree, S Vinitha; Swapna, G; Yantri, Ratna; Martis, Roshan Joy; Saba, Luca; Krishnamurthi, Ganapathy; Mallarini, Giorgio; El-Baz, Ayman; Al Ekish, Shadi; Beland, Michael; Suri, Jasjit S
2013-12-01
In this work, we have proposed an on-line computer-aided diagnostic system called "UroImage" that classifies a Transrectal Ultrasound (TRUS) image into cancerous or non-cancerous with the help of non-linear Higher Order Spectra (HOS) features and Discrete Wavelet Transform (DWT) coefficients. The UroImage system consists of an on-line system where five significant features (one DWT-based feature and four HOS-based features) are extracted from the test image. These on-line features are transformed by the classifier parameters obtained using the training dataset to determine the class. We trained and tested six classifiers. The dataset used for evaluation had 144 TRUS images which were split into training and testing sets. Three-fold and ten-fold cross-validation protocols were adopted for training and estimating the accuracy of the classifiers. The ground truth used for training was obtained using the biopsy results. Among the six classifiers, using 10-fold cross-validation technique, Support Vector Machine and Fuzzy Sugeno classifiers presented the best classification accuracy of 97.9% with equally high values for sensitivity, specificity and positive predictive value. Our proposed automated system, which achieved more than 95% values for all the performance measures, can be an adjunct tool to provide an initial diagnosis for the identification of patients with prostate cancer. The technique, however, is limited by the limitations of 2D ultrasound guided biopsy, and we intend to improve our technique by using 3D TRUS images in the future.
Online fingerprint verification.
Upendra, K; Singh, S; Kumar, V; Verma, H K
2007-01-01
As organizations search for more secure authentication methods for user access, e-commerce, and other security applications, biometrics is gaining increasing attention. With an increasing emphasis on the emerging automatic personal identification applications, fingerprint based identification is becoming more popular. The most widely used fingerprint representation is the minutiae based representation. The main drawback with this representation is that it does not utilize a significant component of the rich discriminatory information available in the fingerprints. Local ridge structures cannot be completely characterized by minutiae. Also, it is difficult quickly to match two fingerprint images containing different number of unregistered minutiae points. In this study filter bank based representation, which eliminates these weakness, is implemented and the overall performance of the developed system is tested. The results have shown that this system can be used effectively for secure online verification applications.
NASA Astrophysics Data System (ADS)
Sachau, D.; Jukkert, S.; Hövelmann, N.
2016-08-01
This paper presents the development and experimental validation of an ANC (active noise control)-system designed for a particular application in the exhaust line of a submarine. Thereby, tonal components of the exhaust noise in the frequency band from 75 Hz to 120 Hz are reduced by more than 30 dB. The ANC-system is based on the feedforward leaky FxLMS-algorithm. The observability of the sound pressure in standing wave field is ensured by using two error microphones. The noninvasive online plant identification method is used to increase the robustness of the controller. Online plant identification is extended by a time-varying convergence gain to improve the performance in the presence of slight error in the frequency of the reference signal.
NASA Astrophysics Data System (ADS)
Ding, Liang; Gao, Haibo; Liu, Zhen; Deng, Zongquan; Liu, Guangjun
2015-12-01
Identifying the mechanical property parameters of planetary soil based on terramechanics models using in-situ data obtained from autonomous planetary exploration rovers is both an important scientific goal and essential for control strategy optimization and high-fidelity simulations of rovers. However, identifying all the terrain parameters is a challenging task because of the nonlinear and coupling nature of the involved functions. Three parameter identification methods are presented in this paper to serve different purposes based on an improved terramechanics model that takes into account the effects of slip, wheel lugs, etc. Parameter sensitivity and coupling of the equations are analyzed, and the parameters are grouped according to their sensitivity to the normal force, resistance moment and drawbar pull. An iterative identification method using the original integral model is developed first. In order to realize real-time identification, the model is then simplified by linearizing the normal and shearing stresses to derive decoupled closed-form analytical equations. Each equation contains one or two groups of soil parameters, making step-by-step identification of all the unknowns feasible. Experiments were performed using six different types of single-wheels as well as a four-wheeled rover moving on planetary soil simulant. All the unknown model parameters were identified using the measured data and compared with the values obtained by conventional experiments. It is verified that the proposed iterative identification method provides improved accuracy, making it suitable for scientific studies of soil properties, whereas the step-by-step identification methods based on simplified models require less calculation time, making them more suitable for real-time applications. The models have less than 10% margin of error comparing with the measured results when predicting the interaction forces and moments using the corresponding identified parameters.
The hierarchical expert tuning of PID controllers using tools of soft computing.
Karray, F; Gueaieb, W; Al-Sharhan, S
2002-01-01
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.
Xiang, Yang; Delbarre, Hervé; Sauvage, Stéphane; Léonardis, Thierry; Fourmentin, Marc; Augustin, Patrick; Locoge, Nadine
2012-03-01
During summer 2009, online measurements of 25 Volatile Organic Compounds (VOCs) from C6 to C10 as well as micro-meteorological parameters were simultaneously performed in the industrial city of Dunkerque. With the obtained data set, we developed a methodology to examine how the contributions of different source categories depend on atmospheric turbulences, and the results provided identification of emission modes. Eight factors were resolved by using Positive Matrix Factorization model and three of them were associated with mixed sources. The observed behaviours of contributions with turbulences lead to attribute some factors with sources at ground level, and some other factors with sources in the upper part of surface layer. The impact of vertical turbulence on the pollutant dispersion is also affected by the distance between sources and receptor site. Copyright © 2011 Elsevier Ltd. All rights reserved.
VizieR Online Data Catalog: Multiwavelength photometry of CDFS X-ray sources (Brusa+, 2009)
NASA Astrophysics Data System (ADS)
Brusa, M.; Fiore, F.; Santini, P.; Grazian, A.; Comastri, A.; Zamorani, G.; Hasinger, G.; Merloni, A.; Civano, F.; Fontana, A.; Mainieri, V.
2010-03-01
The co-evolution of host galaxies and the active black holes which reside in their centre is one of the most important topics in modern observational cosmology. Here we present a study of the properties of obscured active galactic nuclei (AGN) detected in the CDFS 1 Ms observation and their host galaxies. We limited the analysis to the MUSIC area, for which deep K-band observations obtained with ISAAC@VLT are available, ensuring accurate identifications of the counterparts of the X-ray sources as well as reliable determination of photometric redshifts and galaxy parameters, such as stellar masses and star formation rates. In particular, we: 1) refined the X-ray/infrared/optical association of 179 sources in the MUSIC area detected in the Chandra observation; 2) studied the host galaxies observed and rest frame colors and properties. (2 data files).
NASA Astrophysics Data System (ADS)
Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing
2018-05-01
We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng
2017-10-01
Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.
... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... 1995-2011). Unit Code 80289: Methylmalonic Acid (MMA), Quantitative, Serum. Mayo Clinic Mayo Medical Laboratories [On-line ...
Chaves, Paula; Simões, Daniela; Paço, Maria; Pinho, Francisco; Duarte, José Alberto; Ribeiro, Fernando
2017-12-01
Deep friction massage is one of several physiotherapy interventions suggested for the management of tendinopathy. To determine the prevalence of deep friction massage use in clinical practice, to characterize the application parameters used by physiotherapists, and to identify empirical model-based patterns of deep friction massage application in degenerative tendinopathy. observational, analytical, cross-sectional and national web-based survey. 478 physiotherapists were selected through snow-ball sampling method. The participants completed an online questionnaire about personal and professional characteristics as well as specific questions regarding the use of deep friction massage. Characterization of deep friction massage parameters used by physiotherapists were presented as counts and proportions. Latent class analysis was used to identify the empirical model-based patterns. Crude and adjusted odds ratios and 95% confidence intervals were computed. The use of deep friction massage was reported by 88.1% of the participants; tendinopathy was the clinical condition where it was most frequently used (84.9%) and, from these, 55.9% reported its use in degenerative tendinopathy. The "duration of application" parameters in chronic phase and "frequency of application" in acute and chronic phases are those that diverge most from those recommended by the author of deep friction massage. We found a high prevalence of deep friction massage use, namely in degenerative tendinopathy. Our results have shown that the application parameters are heterogeneous and diverse. This is reflected by the identification of two application patterns, although none is in complete agreement with Cyriax's description. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification of Bouc-Wen hysteretic parameters based on enhanced response sensitivity approach
NASA Astrophysics Data System (ADS)
Wang, Li; Lu, Zhong-Rong
2017-05-01
This paper aims to identify parameters of Bouc-Wen hysteretic model using time-domain measured data. It follows a general inverse identification procedure, that is, identifying model parameters is treated as an optimization problem with the nonlinear least squares objective function. Then, the enhanced response sensitivity approach, which has been shown convergent and proper for such kind of problems, is adopted to solve the optimization problem. Numerical tests are undertaken to verify the proposed identification approach.
Analyzing the Social Networks of High- and Low-Performing Students in Online Discussion Forums
ERIC Educational Resources Information Center
Ghadirian, Hajar; Salehi, Keyvan; Ayub, Ahmad Fauzi Mohd
2018-01-01
An ego network is an individual's social network relationships with core members. In this study, the ego network parameters in online discussion spaces of high- and low-performing students were compared. The extent to which students' ego networks changed over the course were also analyzed. Participation in 7 weeks of online discussions were…
Red Blood Cell Antibody Identification
... cause a transfusion reaction (is not clinically significant). Examples of RBC antibodies and their clinical significance are ... online at http://chapters.redcross.org/ca/socal/research/circular.html. Accessed June 2009. Oren, E. and ...
Adaptive Modal Identification for Flutter Suppression Control
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Drew, Michael; Swei, Sean S.
2016-01-01
In this paper, we will develop an adaptive modal identification method for identifying the frequencies and damping of a flutter mode based on model-reference adaptive control (MRAC) and least-squares methods. The least-squares parameter estimation will achieve parameter convergence in the presence of persistent excitation whereas the MRAC parameter estimation does not guarantee parameter convergence. Two adaptive flutter suppression control approaches are developed: one based on MRAC and the other based on the least-squares method. The MRAC flutter suppression control is designed as an integral part of the parameter estimation where the feedback signal is used to estimate the modal information. On the other hand, the separation principle of control and estimation is applied to the least-squares method. The least-squares modal identification is used to perform parameter estimation.
Linear Parameter Varying Control for Actuator Failure
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Wu, N. Eva; Belcastro, Christine; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
A robust linear parameter varying (LPV) control synthesis is carried out for an HiMAT vehicle subject to loss of control effectiveness. The scheduling parameter is selected to be a function of the estimates of the control effectiveness factors. The estimates are provided on-line by a two-stage Kalman estimator. The inherent conservatism of the LPV design is reducing through the use of a scaling factor on the uncertainty block that represents the estimation errors of the effectiveness factors. Simulations of the controlled system with the on-line estimator show that a superior fault-tolerance can be achieved.
Experiments in structural dynamics and control using a grid
NASA Technical Reports Server (NTRS)
Montgomery, R. C.
1985-01-01
Future spacecraft are being conceived that are highly flexible and of extreme size. The two features of flexibility and size pose new problems in control system design. Since large scale structures are not testable in ground based facilities, the decision on component placement must be made prior to full-scale tests on the spacecraft. Control law research is directed at solving problems of inadequate modelling knowledge prior to operation required to achieve peak performance. Another crucial problem addressed is accommodating failures in systems with smart components that are physically distributed on highly flexible structures. Parameter adaptive control is a method of promise that provides on-orbit tuning of the control system to improve performance by upgrading the mathematical model of the spacecraft during operation. Two specific questions are answered in this work. They are: What limits does on-line parameter identification with realistic sensors and actuators place on the ultimate achievable performance of a system in the highly flexible environment? Also, how well must the mathematical model used in on-board analytic redundancy be known and what are the reasonable expectations for advanced redundancy management schemes in the highly flexible and distributed component environment?
NASA Astrophysics Data System (ADS)
Mauntz, M.; Peuser, J.
2017-05-01
The demand for wind energy grows at exponential rates. At the same time improving reliability, reduced operation and maintenance costs are the key priorities in wind tur-bine maintenance strategies [1]. This paper provides information about a novel online oil condition monitoring system to give a solution to the mentioned priorities. The presented sensor system enables damage prevention of the wind turbine gear-box by an advanced warning time of critical operation conditions and an enhanced oil exchange interval realized by a precise measurement of the electrical conductivity, the relative permittivity and the oil temperature. A new parameter, the WearSens® Index (WSi) is introduced. The mathematical model of the WSi combines all measured values and its gradients in one single parameter for a comprehensive monitoring to prevent wind turbines from damage. Furthermore, the WSi enables a long-term prognosis on the next oil change by 24/7 server data logging. Corrective procedures and/or maintenance can be carried out before actual damage occurs. First WSi results of an onshore wind turbine installation compared to traditional vibration monitoring are shown.
Traceable measurements of the electrical parameters of solid-state lighting products
NASA Astrophysics Data System (ADS)
Zhao, D.; Rietveld, G.; Braun, J.-P.; Overney, F.; Lippert, T.; Christensen, A.
2016-12-01
In order to perform traceable measurements of the electrical parameters of solid-state lighting (SSL) products, it is necessary to technically adequately define the measurement procedures and to identify the relevant uncertainty sources. The present published written standard for SSL products specifies test conditions, but it lacks an explanation of how adequate these test conditions are. More specifically, both an identification of uncertainty sources and a quantitative uncertainty analysis are absent. This paper fills the related gap in the present written standard. New uncertainty sources with respect to conventional lighting sources are determined and their effects are quantified. It shows that for power measurements, the main uncertainty sources are temperature deviation, power supply voltage distortion, and instability of the SSL product. For current RMS measurements, the influence of bandwidth, shunt resistor, power supply source impedance and ac frequency flatness are significant as well. The measurement uncertainty depends not only on the test equipment but is also a function of the characteristics of the device under test (DUT), for example, current harmonics spectrum and input impedance. Therefore, an online calculation tool is provided to help non-electrical experts. Following our procedures, unrealistic uncertainty estimations, unnecessary procedures and expensive equipment can be prevented.
#KidsAnxiety and Social Media: A Review.
Glover, Jenna; Fritsch, Sandra L
2018-04-01
This article reviews the available literature regarding the interaction between child and adolescent anxiety and electronic media. It reviews current research contributing to understanding of the correlation of youth anxiety with engagement in social media and other online platforms, including risk and protective factors. mHealth and eHealth prevention and treatment options, available via various digital resources, are discussed. Suggestions for mental health clinicians' assessment of client's online behaviors and a review of novel treatment options are provided. The article concludes with proposing healthy online technology interventions, including popups for overuse and identification of digitally enhanced posts. Copyright © 2017 Elsevier Inc. All rights reserved.
VizieR Online Data Catalog: Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016)
NASA Astrophysics Data System (ADS)
Kirk, B.; Conroy, K.; Prsa, A.; Abdul-Masih, M.; Kochoska, A.; Matijevic, G.; Hambleton, K.; Barclay, T.; Bloemen, S.; Boyajian, T.; Doyle, L. R.; Fulton, B. J.; Hoekstra, A. J.; Jek, K.; Kane, S. R.; Kostov, V.; Latham, D.; Mazeh, T.; Orosz, J. A.; Pepper, J.; Quarles, B.; Ragozzine, D.; Shporer, A.; Southworth, J.; Stassun, K.; Thompson, S. E.; Welsh, W. F.; Agol, E.; Derekas, A.; Devor, J.; Fischer, D.; Green, G.; Gropp, J.; Jacobs, T.; Johnston, C.; Lacourse, D. M.; Saetre, K.; Schwengeler, H.; Toczyski, J.; Werner, G.; Garrett, M.; Gore, J.; Martinez, A. O.; Spitzer, I.; Stevick, J.; Thomadis, P. C.; Vrijmoet, E. H.; Yenawine, M.; Batalha, N.; Borucki, W.
2016-07-01
The Kepler Eclipsing Binary Catalog lists the stellar parameters from the Kepler Input Catalog (KIC) augmented by: primary and secondary eclipse depth, eclipse width, separation of eclipse, ephemeris, morphological classification parameter, and principal parameters determined by geometric analysis of the phased light curve. The previous release of the Catalog (Paper II; Slawson et al. 2011, cat. J/AJ/142/160) contained 2165 objects, through the second Kepler data release (Q0-Q2). In this release, 2878 objects are identified and analyzed from the entire data set of the primary Kepler mission (Q0-Q17). The online version of the Catalog is currently maintained at http://keplerEBs.villanova.edu/. A static version of the online Catalog associated with this paper is maintained at MAST https://archive.stsci.edu/kepler/eclipsing_binaries.html. (10 data files).
Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria.
Danz, H; Stoyanova, S; Wippich, P; Brattström, A; Hamburger, M
2001-07-01
Various extracts prepared from the traditional dye and medicinal plant Isatis tinctoria L. were submitted to a broad in vitro screening against 16 anti-inflammatory targets. Dichloromethane (DCM) extracts from dried leaves showed a marked cyclooxygenase (COX) inhibitory activity with a preferential effect on COX-2 catalysed prostaglandin synthesis. A supercritical fluid extraction (SFE) procedure employing CO2-modifier mixtures was developed by which the bioactivity profile and chromatographic fingerprint of the DCM extract could be reproduced. High-resolution activity directed on-line identification of the COX-2 inhibitory principle, using a combination of LC-DAD-MS with a microtitre-based bioassay, led to the identification of tryptanthrin (1) as the constituent responsible for essentially all COX-2 inhibitory activity in the crude extract. Following on-line identification, 1 was isolated at preparative scale and its structure confirmed by comparison with synthetic tryptanthrin. In an assay with lipopolysaccharide stimulated Mono Mac 6 cells, tryptanthrin (1) was of comparable potency (IC50 = 64 nM) than the preferential COX-2 inhibitors nimesulide (IC50 = 39 nM) and NS 398 (IC50 = 2 nM). The SFE extract and 1 showed no cytotoxicity in Mono Mac 6 and RAW 264.7 cells when tested at 100 microg/ml and 10 microM, respectively.
Halbert, Caitlin; Kriebel, Richard; Cuzzolino, Robert; Coughlin, Patrick; Fresa-Dillon, Kerin
2011-01-01
The benefit of online learning materials in medical education is not well defined. The study correlated certain self-identified learning styles with the use of self-selected online learning materials. First-year osteopathic medical students were given access to review and/or summary materials via an online course management system (CMS) while enrolled in a pre-clinical course. At the end of the course, students completed a self-assessment of learning style based on the Index of Learning Styles and a brief survey regarding their usage and perceived advantage of the online learning materials. Students who accessed the online materials earned equivalent grades to those who did not. However, the study found that students who described their learning styles as active, intuitive, global, and/or visual were more likely to use online educational resources than those who identified their learning style as reflective, sensing, sequential, and/or verbal. Identification of a student's learning style can help medical educators direct students to learning resources that best suit their individual needs.
Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.
Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz
2017-07-01
This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.
Goldstone radio spectrum signal identification, March 1980 - March 1982
NASA Technical Reports Server (NTRS)
Gaudian, B. A.
1982-01-01
The signal identification process is described. The Goldstone radio spectrum environment contains signals that are a potential source of electromagnetic interference to the Goldstone tracking receivers. The identification of these signals is accomplished by the use of signal parameters and environment parameters. Statistical data on the Goldstone radio spectrum environment from 2285 to 2305 MHz are provided.
FSH (Follicle-Stimulating Hormone) Test
... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... National Institutes of Health Office of Rare Diseases Research. Klinefelter Syndrome. Available online at http://rarediseases.info. ...
Khan, Shaheer; Liu, Jenkuei; Szabo, Zoltan; Kunnummal, Baburaj; Han, Xiaorui; Ouyang, Yilan; Linhardt, Robert J; Xia, Qiangwei
2018-06-15
N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins. Copyright © 2018 John Wiley & Sons, Ltd.
Selection of noisy measurement locations for error reduction in static parameter identification
NASA Astrophysics Data System (ADS)
Sanayei, Masoud; Onipede, Oladipo; Babu, Suresh R.
1992-09-01
An incomplete set of noisy static force and displacement measurements is used for parameter identification of structures at the element level. Measurement location and the level of accuracy in the measured data can drastically affect the accuracy of the identified parameters. A heuristic method is presented to select a limited number of degrees of freedom (DOF) to perform a successful parameter identification and to reduce the impact of measurement errors on the identified parameters. This pretest simulation uses an error sensitivity analysis to determine the effect of measurement errors on the parameter estimates. The selected DOF can be used for nondestructive testing and health monitoring of structures. Two numerical examples, one for a truss and one for a frame, are presented to demonstrate that using the measurements at the selected subset of DOF can limit the error in the parameter estimates.
NASA Technical Reports Server (NTRS)
Greenwood, Eric, II; Schmitz, Fredric H.
2010-01-01
A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.
Lin, Tung-Cheng
2013-11-01
Online game playing may induce physiological effects. However, the physical mechanisms that cause these effects remain unclear. The purpose of this study was to examine the physiological effects of long-hour online gaming from an autonomic nervous system (ANS) perspective. Heart rate variability (HRV), a valid and noninvasive electrocardiographic method widely used to investigate ANS balance, was used to measure physiological effect parameters. This study used a five-time, repeated measures, mixed factorial design. Results found that playing violent games causes significantly higher sympathetic activity and diastolic blood pressure than playing nonviolent games. Long-hour online game playing resulted in the gradual dominance of the parasympathetic nervous system due to physical exhaustion. Gaming workload was found to modulate the gender effects, with males registering significantly higher sympathetic activity and females significantly higher parasympathetic activity in the higher gaming workload group.
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
Böl, Markus; Kruse, Roland; Ehret, Alexander E; Leichsenring, Kay; Siebert, Tobias
2012-10-11
Due to the increasing developments in modelling of biological material, adequate parameter identification techniques are urgently needed. The majority of recent contributions on passive muscle tissue identify material parameters solely by comparing characteristic, compressive stress-stretch curves from experiments and simulation. In doing so, different assumptions concerning e.g. the sample geometry or the degree of friction between the sample and the platens are required. In most cases these assumptions are grossly simplified leading to incorrect material parameters. In order to overcome such oversimplifications, in this paper a more reliable parameter identification technique is presented: we use the inverse finite element method (iFEM) to identify the optimal parameter set by comparison of the compressive stress-stretch response including the realistic geometries of the samples and the presence of friction at the compressed sample faces. Moreover, we judge the quality of the parameter identification by comparing the simulated and experimental deformed shapes of the samples. Besides this, the study includes a comprehensive set of compressive stress-stretch data on rabbit soleus muscle and the determination of static friction coefficients between muscle and PTFE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Identification of drought in Dhalai river watershed using MCDM and ANN models
NASA Astrophysics Data System (ADS)
Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy
2017-03-01
An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.
Fast online generalized multiscale finite element method using constraint energy minimization
NASA Astrophysics Data System (ADS)
Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat
2018-02-01
Local multiscale methods often construct multiscale basis functions in the offline stage without taking into account input parameters, such as source terms, boundary conditions, and so on. These basis functions are then used in the online stage with a specific input parameter to solve the global problem at a reduced computational cost. Recently, online approaches have been introduced, where multiscale basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number of offline basis functions, the error reduction can be made independent of physical parameters, such as scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach [4] and special online basis construction in oversampled regions, we show that the error reduction can be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show that one can achieve a three order of magnitude error reduction, which is better than our previous methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In our adaptive method, we show that the convergence rate can be determined by a user-defined parameter and we confirm this by numerical simulations. The analysis of the method is presented.
Identification of quasi-steady compressor characteristics from transient data
NASA Technical Reports Server (NTRS)
Nunes, K. B.; Rock, S. M.
1984-01-01
The principal goal was to demonstrate that nonlinear compressor map parameters, which govern an in-stall response, can be identified from test data using parameter identification techniques. The tasks included developing and then applying an identification procedure to data generated by NASA LeRC on a hybrid computer. Two levels of model detail were employed. First was a lumped compressor rig model; second was a simplified turbofan model. The main outputs are the tools and procedures generated to accomplish the identification.
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria
2017-03-01
An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.
Maltby, John; Day, Liz; Hatcher, Ruth M; Tazzyman, Sarah; Flowe, Heather D; Palmer, Emma J; Frosch, Caren A; O'Reilly, Michelle; Jones, Ceri; Buckley, Chloe; Knieps, Melanie; Cutts, Katie
2016-08-01
Three studies were conducted to investigate people's conceptions of online trolls, particularly conceptions associated with psychological resilience to trolling. In Study 1, a factor analysis of participants' ratings of characteristics of online trolls found a replicable bifactor model of conceptions of online trolls, with a general factor of general conceptions towards online trolls being identified, but five group factors (attention-conflict seeking, low self-confidence, viciousness, uneducated, amusement) as most salient. In Study 2, participants evaluated hypothetical profiles of online trolling messages to establish the validity of the five factors. Three constructs (attention-conflict seeking, viciousness, and uneducated) were actively employed when people considered profiles of online trolling scenarios. Study 3 introduced a 20-item 'Conceptions of Online Trolls scale' to examine the extent to which the five group factors were associated with resilience to trolling. Results indicated that viewing online trolls as seeking conflict or attention was associated with a decrease in individuals' negative affect around previous trolling incidents. Overall, the findings suggest that adopting an implicit theories approach can further our understanding and measurement of conceptions towards trolling through the identification of five salient factors, of which at least one factor may act as a resilience strategy. © 2015 The British Psychological Society.
LUST ON-LINE CALCULATOR INTRODUCTION
EPA has developed a suite of on-line calculators to assist in performing site assessment and modeling calculations for leaking underground storage tank sites (http://www.epa.gov/athens/onsite). The calculators are divided into four types: parameter estimation, models, scientific...
Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D
2013-03-01
For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study of parameter identification
NASA Technical Reports Server (NTRS)
Herget, C. J.; Patterson, R. E., III
1978-01-01
A set of definitions for deterministic parameter identification ability were proposed. Deterministic parameter identificability properties are presented based on four system characteristics: direct parameter recoverability, properties of the system transfer function, properties of output distinguishability, and uniqueness properties of a quadratic cost functional. Stochastic parameter identifiability was defined in terms of the existence of an estimation sequence for the unknown parameters which is consistent in probability. Stochastic parameter identifiability properties are presented based on the following characteristics: convergence properties of the maximum likelihood estimate, properties of the joint probability density functions of the observations, and properties of the information matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Kenneth Paul
Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonancemore » (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.« less
Estimation of hysteretic damping of structures by stochastic subspace identification
NASA Astrophysics Data System (ADS)
Bajrić, Anela; Høgsberg, Jan
2018-05-01
Output-only system identification techniques can estimate modal parameters of structures represented by linear time-invariant systems. However, the extension of the techniques to structures exhibiting non-linear behavior has not received much attention. This paper presents an output-only system identification method suitable for random response of dynamic systems with hysteretic damping. The method applies the concept of Stochastic Subspace Identification (SSI) to estimate the model parameters of a dynamic system with hysteretic damping. The restoring force is represented by the Bouc-Wen model, for which an equivalent linear relaxation model is derived. Hysteretic properties can be encountered in engineering structures exposed to severe cyclic environmental loads, as well as in vibration mitigation devices, such as Magneto-Rheological (MR) dampers. The identification technique incorporates the equivalent linear damper model in the estimation procedure. Synthetic data, representing the random vibrations of systems with hysteresis, validate the estimated system parameters by the presented identification method at low and high-levels of excitation amplitudes.
Online Sequential Projection Vector Machine with Adaptive Data Mean Update
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958
Online Sequential Projection Vector Machine with Adaptive Data Mean Update.
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.
Identification of internal properties of fibres and micro-swimmers
NASA Astrophysics Data System (ADS)
Plouraboué, Franck; Thiam, E. Ibrahima; Delmotte, Blaise; Climent, Eric
2017-01-01
In this paper, we address the identifiability of constitutive parameters of passive or active micro-swimmers. We first present a general framework for describing fibres or micro-swimmers using a bead-model description. Using a kinematic constraint formulation to describe fibres, flagellum or cilia, we find explicit linear relationship between elastic constitutive parameters and generalized velocities from computing contact forces. This linear formulation then permits one to address explicitly identifiability conditions and solve for parameter identification. We show that both active forcing and passive parameters are both identifiable independently but not simultaneously. We also provide unbiased estimators for generalized elastic parameters in the presence of Langevin-like forcing with Gaussian noise using a Bayesian approach. These theoretical results are illustrated in various configurations showing the efficiency of the proposed approach for direct parameter identification. The convergence of the proposed estimators is successfully tested numerically.
JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.
Li, Ke; Liu, Yi; Wang, Quanxin; Wu, Yalei; Song, Shimin; Sun, Yi; Liu, Tengchong; Wang, Jun; Li, Yang; Du, Shaoyi
2015-01-01
This paper proposes a novel multi-label classification method for resolving the spacecraft electrical characteristics problems which involve many unlabeled test data processing, high-dimensional features, long computing time and identification of slow rate. Firstly, both the fuzzy c-means (FCM) offline clustering and the principal component feature extraction algorithms are applied for the feature selection process. Secondly, the approximate weighted proximal support vector machine (WPSVM) online classification algorithms is used to reduce the feature dimension and further improve the rate of recognition for electrical characteristics spacecraft. Finally, the data capture contribution method by using thresholds is proposed to guarantee the validity and consistency of the data selection. The experimental results indicate that the method proposed can obtain better data features of the spacecraft electrical characteristics, improve the accuracy of identification and shorten the computing time effectively. PMID:26544549
Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L
2016-12-08
Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
The beam diagnostic instruments in Beijing radioactive ion-beam facilities isotope separator on-line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Y., E-mail: yjma@ciae.ac.cn; Cui, B.; Ma, R.
The beam diagnostic instruments for Beijing Radioactive Ion-beam Facilities Isotope Separator On-Line are introduced [B. Q. Cui, Z. H. Peng, Y. J. Ma, R. G. Ma, B. Tang, T. Zhang, and W. S. Jiang, Nucl. Instrum. Methods 266, 4113 (2008); T. J. Zhang, X. L. Guan, and B. Q. Cui, in Proceedings of APAC 2004, Gyeongju, Korea, 2004, http://www.jacow.org , p. 267]. For low intensity ion beam [30–300 keV/1 pA–10 μA], the beam profile monitor, the emittance measurement unit, and the analyzing slit will be installed. For the primary proton beam [100 MeV/200 μA], the beam profile scanner will bemore » installed. For identification of the nuclide, a beam identification unit will be installed. The details of prototype of the beam diagnostic units and some experiment results will be described in this article.« less
Shi, Shu Yun; Zhang, Yu Ping; Zhou, Hong Hao; Huang, Ke Long; Jiang, Xin Yu
2010-01-01
An online rapid screening method, the high-performance liquid chromatography (HPLC)-diode array detector (DAD)-radical scavenging detection (RSD)-electrospray ionization (ESI)-mass spectroscopy (MS)/MS system, was developed for the screening and identification of radical scavengers from Neo-Taraxacum siphonanthum, a new species found in China in 1989. For further characterization, the target compounds were isolated by silica column chromatography, preparative high-performance liquid chromatography (HPLC), HSCCC, and Sephadex LH-20 column chromatography and elucidated on the basis of ultraviolet (UV), ESI-MS/MS, and nuclear magnetic resonance (NMR) spectroscopy, as well as the chemical analysis. Eighteen antioxidative polyphenols (5 caffeic acid derivatives and 13 flavonoid derivatives) were characterized from Neo-T. siphonanthum. The distribution of all compounds was discussed in a chemosystematic context, which suggested that the genera Neo-Taraxacum and Taraxacum might relate chemosystematically.
Tan, Liang; Geng, Dan-dan; Hu, Feng-zu; Dong, Qi
2016-01-01
In this study, the 10 accessions of rhubarb seeds from different habitats in China were investigated. Lipids were removed using petroleum ether, and the effective components were then separated using accelerated solvent extraction with 80% aqueous methanol. An off-line 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method was used as the marker to evaluate the total antioxidant capability of extracts. On-line high-performance liquid chromatography-diode-array detectors-electrospray ionization-tandem mass spectrometry (HPLC-DAD-ESI-MS(n)) and HPLC-DAD-DPPH assays were developed for rapid identification and quantification of individual free-radical scavengers in extracts of rhubarb seeds. Ten free-radical scavengers from methanolic extracts of the rhubarb seeds were screened, five of which were identified and quantitatively analyzed: epicatechin, myricetin, hyperoside, quercitrin and quercetin. All were identified in rhubarb seeds for the first time and can be regarded as the major potent antioxidants in rhubarb seeds due to representing most of the total free-radical scavenging activity. Preliminary analysis of structures was performed for another five antioxidants. Based on our validation results, the developed method can be used for rapid separation, convenient identification and quantification of the multiple antioxidative constituents in rhubarb seeds, featuring good quantification parameters, accuracy and precision. The results are important to clarify the material basis and therapeutic mechanism of rhubarb seeds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
De-identification of Medical Images with Retention of Scientific Research Value
Maffitt, David R.; Smith, Kirk E.; Kirby, Justin S.; Clark, Kenneth W.; Freymann, John B.; Vendt, Bruce A.; Tarbox, Lawrence R.; Prior, Fred W.
2015-01-01
Online public repositories for sharing research data allow investigators to validate existing research or perform secondary research without the expense of collecting new data. Patient data made publicly available through such repositories may constitute a breach of personally identifiable information if not properly de-identified. Imaging data are especially at risk because some intricacies of the Digital Imaging and Communications in Medicine (DICOM) format are not widely understood by researchers. If imaging data still containing protected health information (PHI) were released through a public repository, a number of different parties could be held liable, including the original researcher who collected and submitted the data, the original researcher’s institution, and the organization managing the repository. To minimize these risks through proper de-identification of image data, one must understand what PHI exists and where that PHI resides, and one must have the tools to remove PHI without compromising the scientific integrity of the data. DICOM public elements are defined by the DICOM Standard. Modality vendors use private elements to encode acquisition parameters that are not yet defined by the DICOM Standard, or the vendor may not have updated an existing software product after DICOM defined new public elements. Because private elements are not standardized, a common de-identification practice is to delete all private elements, removing scientifically useful data as well as PHI. Researchers and publishers of imaging data can use the tools and process described in this article to de-identify DICOM images according to current best practices. ©RSNA, 2015 PMID:25969931
Approximate, computationally efficient online learning in Bayesian spiking neurons.
Kuhlmann, Levin; Hauser-Raspe, Michael; Manton, Jonathan H; Grayden, David B; Tapson, Jonathan; van Schaik, André
2014-03-01
Bayesian spiking neurons (BSNs) provide a probabilistic interpretation of how neurons perform inference and learning. Online learning in BSNs typically involves parameter estimation based on maximum-likelihood expectation-maximization (ML-EM) which is computationally slow and limits the potential of studying networks of BSNs. An online learning algorithm, fast learning (FL), is presented that is more computationally efficient than the benchmark ML-EM for a fixed number of time steps as the number of inputs to a BSN increases (e.g., 16.5 times faster run times for 20 inputs). Although ML-EM appears to converge 2.0 to 3.6 times faster than FL, the computational cost of ML-EM means that ML-EM takes longer to simulate to convergence than FL. FL also provides reasonable convergence performance that is robust to initialization of parameter estimates that are far from the true parameter values. However, parameter estimation depends on the range of true parameter values. Nevertheless, for a physiologically meaningful range of parameter values, FL gives very good average estimation accuracy, despite its approximate nature. The FL algorithm therefore provides an efficient tool, complementary to ML-EM, for exploring BSN networks in more detail in order to better understand their biological relevance. Moreover, the simplicity of the FL algorithm means it can be easily implemented in neuromorphic VLSI such that one can take advantage of the energy-efficient spike coding of BSNs.
Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J
2015-04-21
A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.
Online Discussion and the Moral Pathway to Identity Politicization and Collective Action
Alberici, Augusta Isabella; Milesi, Patrizia
2018-01-01
Research on the mobilizing potential of the Internet has produced some controversy between optimistic vs. skeptical perspectives. Although some attention has been paid to the effects of online discussions on collective participation, very little is known about how people’s experience of online interactions affects the key psychosocial predictors of collective action. The present research investigated whether use of the Internet as a channel for deliberation influenced the moral pathway to collective mobilization by shaping users’ politicized identity, thereby indirectly influencing collective action. Results showed that when people perceived online discussions as a constructive communication context, their politicized identity was imbued with the meaning of responding to a moral obligation, and willingness to participate in collective action was sustained. However, when participants perceived that online discussions were not constructive, their identification with the movement did not refer to moral obligation, and intention to participate in collective action was not sustained. Our discussion focuses on the need to deepen investigation of how people experience the particularities of interacting online, and on how this can affect psychosocial processes leading to collective action.
Adolescent Online Romantic Relationship Initiation: Differences by Sexual and Gender Identification
Korchmaros, Josephine D.; Ybarra, Michele L.; Mitchell, Kimberly J.
2015-01-01
Data from the national Teen Health and Technology Study of adolescents 13-18 years old (N = 5,091) were used to examine online formation of romantic relationships. Results show that lesbian, gay, bisexual, transgender, and queer (LGBTQ) and non-LGBTQ adolescents similarly were most likely to have met their most recent boy/girlfriend in the past 12 months at school. However, they differed on many characteristics of romantic relationship initiation, including the extent to which they initiated romantic relationships online. LGBTQ and non-LGBTQ adolescents also differed on level of offline access to potential partners, offline popularity, and numerous other factors possibly related to online relationship initiation (e.g., Internet use and demographic factors). Even after adjusting for differences in these factors, LGBTQ adolescents were more likely than non-LGBTQ adolescents to find boy/girlfriends online in the past 12 months. The results support the rich-get-richer hypothesis as well as the social compensation hypothesis. PMID:25625753
Zhang, Xiaoxia; Lin, Zongtao; Fang, Jinggui; Liu, Meixian; Niu, Yanyan; Chen, Shizhong; Wang, Hong
2015-10-02
An on-line high-performance liquid chromatography-diode-array detector-electrospray ionization-ion-trap-time-of-flight-mass spectrometry-total antioxidant capacity detection (HPLC-DAD-ESI-IT-TOF-MS-TACD) system was created for identification and evaluation of antioxidants in Prunus (P.) mume flowers. Applying this system, the HPLC fingerprint, ultraviolet (UV) spectra, mass fragmentations, active profiles against 1,1-diphenylpicryl-2-hydrazyl radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) of each complex sample were obtained simultaneously after one injection. Synchronous structure identification and activities screening of complex samples were thus accomplished. In this study, 78 compounds were identified from P. mume flowers by their chromatographic behaviors, UV spectra and MS data with the assistance of standard compounds and literature reports. The DPPH and FRAP activity of 24 samples (23 different P. mume varieties and 1 related herbal medicine) were then quantified by their detailed activity profiles from the on-line system, and by the total activity of each sample extract from off-line 96-well plate method. As a result, 21 and 32 compounds in the on-line system showed anti-oxidative effects against DPPH and FRAP, respectively. The established on-line system is efficient, sensitive and reliable to tell the DPPH and FRAP antioxidant activities of individual compound in complex samples, and therefore would be a useful and promising technique for antioxidant screening from different food and medicinal matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Identification of a new degradation product of the antifouling agent Irgarol 1051 in natural samples
Ferrer, I.; Barcelo, D.
2001-01-01
A main degradation product of Irgarol [2-(methylthio)-4-(tert-butylamino)-6-(cyclopropylamino)-s-triazine], one of the most widely used compounds in antifouling paints, was detected at trace levels in seawater and sediment samples collected from several marinas on the Mediterranean coast. This degradation product was identified as 2-methylthio-4-tert-butylamino-s-triazine. The unequivocal identification of this compound in seawater samples was carried out by solid-phase extraction (SPE) coupled on-line with liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). SPE was carried out by passing 150 ml of seawater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 92 to 108% (n=5). Using LC-MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of this compound in natural samples. Method detection limits were in the range of 0.002 to 0.005 ??g/l. Overall, the combination of on-line SPE and LC-APCI-MS represents an important advance in environmental analysis of herbicide degradation products in seawater, since it demonstrates that trace amounts of new polar metabolites may be determined rapidly. This paper reports the LC-MS identification of the main degradation product of Irgarol in seawater and sediment samples. ?? 2001 Elsevier Science B.V. All rights reserved.
Optimized tuner selection for engine performance estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)
2013-01-01
A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.
NASA Astrophysics Data System (ADS)
Chu, Zhongyi; Ma, Ye; Hou, Yueyang; Wang, Fengwen
2017-02-01
This paper presents a novel identification method for the intact inertial parameters of an unknown object in space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling existing in the robotic system, the inertial parameter identification of the unknown object is essential for the ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations. Conventional studies merely refer to the principle and theory of identification, and an error analysis process of identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on identification is illustrated first, and the accumulation of measurement or estimation errors causing poor identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable identification property. Finally, to verify the validity of the proposed identification method, the co-simulation of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the numerical results show a precise and stable identification performance, which is able to guarantee the execution of aerospace operations and prevent failed control strategies.
Zietek, Jerzy; Sikora, Jerzy; Horoba, Krzysztof; Matonia, Adam; Jezewski, Janusz; Magnucki, Jacek; Kobielska, Lucyna
2009-03-01
To record and analyse bioelectrical activity of the uterine muscle in the course of physiological pregnancy, labour and threatening premature labour; to define which parameters from the analysis of both electrohysterogram and mechanical activity signal allow us to predict threatening premature labour. Material comprised 62 pregnant women: Group I--27 patients in their first physiological pregnancy, Group II--21 patients in their first pregnancy with symptoms of threatening premature labour, and Group III--14 patients in the first labour period. The on-line analysis of the mechanical (TOCO) and electrical (EHG) contraction activity relied on determination of quantitative parameters of detected uterine contractions. The obtained statistical results demonstrated a possibility to differentiate between Group I and II through the amplitude and contraction area for EHG signal, and only the contraction amplitude for TOCO signal. Additionally, significant differentiating parameters for electrohysterogram are: contraction power and its median frequency. Analyzing Group I and III, significant differences were noted for contraction amplitude and area obtained both from EHG and TOCO signals. Similarly, the contraction power (from EHG) enables us to assign the contractions either to records from Group I or to labour type. There was no significant difference noted between Group II and III. Identification of pregnant women at risk of premature labour should lead to their inclusion in rigorous perinatal surveillance. This requires novel, more sensitive methods that are able to detect early symptoms of the uterine contraction activity increase. Electrohysterography provides complete information on principles of bioelectrical uterine activity. Quantitative parameters of EHG analysis enable the detection of records (contractions) with the symptoms of premature uterine contraction activity.
EPA'S ON-LINE CALCULATORS AND TRAINING COURSE
EPA has developed a suite of on-line calculators called "OnSite" for assessing transport of environmental contaminants int the subsurface. The calculators are available on the Internet at http://www.epa.gov/athens/onsite, and are divided into four categories: Parameter Estimate...
NASA Astrophysics Data System (ADS)
Chhikara, Sudesh
On-line shopping is a recent phenomenon in the field of E-Business and is definitely going to be the future of shopping in the world. Most of the companies are running their on-line portals to sell their products/services. Though online shopping is very common outside India, its growth in Indian Market, which is a large and strategic consumer market, is still not in line with the global market. The potential growth of on-line shopping has triggered the idea of conducting a study on on-line shopping in India. The present research paper has used exploratory study to depict and highlight the various categories of factors and variables impacting the behavior of consumers towards on-line shopping in India. The data was collected through in-depth interviews on a sample of 41 respondents from Delhi, Mumbai, Chennai and Bangalore. The results of the study show that on-line shopping in India is basically impacted by five categories of factors like demographics factor, Psychographics factor, Online shopping feature and policies, Technological factor, Security factor. The results of the study are used to present a comprehensive model of on-line shopping which could be further used by the researchers and practitioners for conducting future studies in the similar area. A brief operational definition of all the factors and variables impacting on-line shopping in India is also described. And finally practical implications of the study are also elucidated.
A plea for a global natural history collection - online
USDA-ARS?s Scientific Manuscript database
Species are the currency of comparative biology: scientists from many biological disciplines, including community ecology, conservation biology, pest management, and biological control rely on scientifically sound, objective species data. However, large-scale species identifications are often not fe...
NASA Astrophysics Data System (ADS)
Wang, Xu; Bi, Fengrong; Du, Haiping
2018-05-01
This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.
Open source tools for standardized privacy protection of medical images
NASA Astrophysics Data System (ADS)
Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas
2011-03-01
In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.
Finite-time master-slave synchronization and parameter identification for uncertain Lurie systems.
Wang, Tianbo; Zhao, Shouwei; Zhou, Wuneng; Yu, Weiqin
2014-07-01
This paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances. An adaptive controller and update laws which ensures the synchronization and parameter identification to be realized in finite time are constructed. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Improving substructure identification accuracy of shear structures using virtual control system
NASA Astrophysics Data System (ADS)
Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui
2018-02-01
Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.
Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact olives.
Salguero-Chaparro, Lourdes; Baeten, Vincent; Fernández-Pierna, Juan A; Peña-Rodríguez, Francisco
2013-08-15
The acidity, moisture and fat content in intact olive fruits were determined on-line using a NIR diode array instrument, operating on a conveyor belt. Four sets of calibrations models were obtained by means of different combinations from samples collected during 2009-2010 and 2010-2011, using full-cross and external validation. Several preprocessing treatments such as derivatives and scatter correction were investigated by using the root mean square error of cross-validation (RMSECV) and prediction (RMSEP), as control parameters. The results obtained showed RMSECV values of 2.54-3.26 for moisture, 2.35-2.71 for fat content and 2.50-3.26 for acidity parameters, depending on the calibration model developed. Calibrations for moisture, fat content and acidity gave residual predictive deviation (RPD) values of 2.76, 2.37 and 1.60, respectively. Although, it is concluded that the on-line NIRS prediction results were acceptable for the three parameters measured in intact olive samples in movement, the models developed must be improved in order to increase their accuracy before final NIRS implementation at mills. Copyright © 2013 Elsevier Ltd. All rights reserved.
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...
Methods for using a biometric parameter in the identification of persons
Hively, Lee M [Philadelphia, TN
2011-11-22
Brain waves are used as a biometric parameter to provide for authentication and identification of personnel. The brain waves are sampled using EEG equipment and are processed using phase-space distribution functions to compare digital signature data from enrollment of authorized individuals to data taken from a test subject to determine if the data from the test subject matches the signature data to a degree to support positive identification.
Integrated identification and control for nanosatellites reclaiming failed satellite
NASA Astrophysics Data System (ADS)
Han, Nan; Luo, Jianjun; Ma, Weihua; Yuan, Jianping
2018-05-01
Using nanosatellites to reclaim a failed satellite needs nanosatellites to attach to its surface to take over its attitude control function. This is challenging, since parameters including the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites with respect to the given body-fixed frame of the failed satellite are all unknown after the attachment. Besides, if the total control capacity needs to be increased during the reclaiming process by new nanosatellites, real-time parameters updating will be necessary. For these reasons, an integrated identification and control method is proposed in this paper, which enables the real-time parameters identification and attitude takeover control to be conducted concurrently. Identification of the inertia matrix of the combined spacecraft and the relative attitude information of attached nanosatellites are both considered. To guarantee sufficient excitation for the identification of the inertia matrix, a modified identification equation is established by filtering out sample points leading to ill-conditioned identification, and the identification performance of the inertia matrix is improved. Based on the real-time estimated inertia matrix, an attitude takeover controller is designed, the stability of the controller is analysed using Lyapunov method. The commanded control torques are allocated to each nanosatellite while the control saturation constraint being satisfied using the Quadratic Programming (QP) method. Numerical simulations are carried out to demonstrate the feasibility and effectiveness of the proposed integrated identification and control method.
Madi, Mahmoud K; Karameh, Fadi N
2018-05-11
Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.
VizieR Online Data Catalog: de Houtman, Kepler and Halley star catalogs (Verbunt+ 2011)
NASA Astrophysics Data System (ADS)
Verbunt, F.; van Gent, R. H.
2011-04-01
We present Machine-readable versions of the star catalogues of de Houtman (1602), Kepler (1627: Secunda Classis and Tertia Classis) and Halley (1679). In addition to the data from the Historical catalogue, the machine-readable version contains the modern identification with a Hipparcos star and the latter's magnitude, and based on this identification the positional accuracy. For Kepler's catalogues we also give cross references to the catalogue of Ptolemaios (in the edition by Toomer 1998). (4 data files).
Lim, C K; Yuan, Z X; Jones, R M; White, I N; Smith, L L
1997-06-01
On-line high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI MS) and tandem mass spectrometry (MS/MS) have been applied to the study of tamoxifen metabolism in liver microsomes and to the identification of potentially genotoxic metabolites. The results showed that the hydroxylated derivatives, including 4-hydroxytamoxifen and alpha-hydroxytamoxifen are detoxication metabolites, while arene oxides, their free radical precursors or metabolic intermediates, are the most probable species involved in DNA-adduct formation.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1990-01-01
Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.
NASA Astrophysics Data System (ADS)
Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano
2017-11-01
The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.
An Eigensystem Realization Algorithm (ERA) for modal parameter identification and model reduction
NASA Technical Reports Server (NTRS)
Juang, J. N.; Pappa, R. S.
1985-01-01
A method, called the Eigensystem Realization Algorithm (ERA), is developed for modal parameter identification and model reduction of dynamic systems from test data. A new approach is introduced in conjunction with the singular value decomposition technique to derive the basic formulation of minimum order realization which is an extended version of the Ho-Kalman algorithm. The basic formulation is then transformed into modal space for modal parameter identification. Two accuracy indicators are developed to quantitatively identify the system modes and noise modes. For illustration of the algorithm, examples are shown using simulation data and experimental data for a rectangular grid structure.
Identification of internal properties of fibers and micro-swimmers
NASA Astrophysics Data System (ADS)
Plouraboue, Franck; Thiam, Ibrahima; Delmotte, Blaise; Climent, Eric; PSC Collaboration
2016-11-01
In this presentation we discuss the identifiability of constitutive parameters of passive or active micro-swimmers. We first present a general framework for describing fibers or micro-swimmers using a bead-model description. Using a kinematic constraint formulation to describe fibers, flagellum or cilia, we find explicit linear relationship between elastic constitutive parameters and generalised velocities from computing contact forces. This linear formulation then permits to address explicitly identifiability conditions and solve for parameter identification. We show that both active forcing and passive parameters are both identifiable independently but not simultaneously. We also provide unbiased estimators for elastic parameters as well as active ones in the presence of Langevin-like forcing with Gaussian noise using normal linear regression models and maximum likelihood method. These theoretical results are illustrated in various configurations of relaxed or actuated passives fibers, and active filament of known passive properties, showing the efficiency of the proposed approach for direct parameter identification. The convergence of the proposed estimators is successfully tested numerically.
NASA Technical Reports Server (NTRS)
Kanning, G.
1975-01-01
A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.
NASA Astrophysics Data System (ADS)
Hilbelink, Amy Joanne
2007-12-01
The primary purpose of this study was to determine the effectiveness of implementing desktop 3-dimensional (3D) stereo images of human anatomy into an undergraduate human anatomy distance laboratory. User perceptions of 2D and 3D images were gathered via questionnaire in order to determine ease of use and level of satisfaction associated with the 3D software in the online learning environment. Mayer's (2001, p. 184) principles of design were used to develop the study materials that consisted of PowerPoint presentations and AVI files accessed via Blackboard. The research design employed a mixed-methods approach. Volunteers each were administered a demographic survey and were then stratified into groups based upon pre-test scores. A total sample size of 62 pairs was available for combined data analysis. Quantitative research questions regarding the effectiveness of 2D versus the 3D treatment were analyzed using a doubly-multivariate repeated measures (Doubly-MANOVA) design. Paired test scores achieved by undergraduates on a laboratory practical of identification and spatial relationships of the bones and features of a human skull were used in the analysis. The questionnaire designed to gather user perceptions consisted of quantitative and qualitative questions. Response frequencies were analyzed for the two groups and common themes were noted. Results revealed a statistically significant difference in group means for the main effect of the treatment groups 2D and 3D and for the variables of identification and relationship with the 3D group outperforming the 2D group on both dependent variables. Effect sizes were determined to be small, 0.215 for the identification variable and 0.359 for the relationship variable. Overall, all students liked the convenience of using PowerPoint and AVI files online. The 3D group felt their PowerPoint was more realistic than did the 2D group and both groups appreciated the detailed labeling of the online images. One third of the volunteers in the 3D group indicated that "eye strain" was what they liked least about working with the 3D images. Results indicate that desktop, stereo imaging may be incorporated effectively into online anatomy and physiology courses, but that more work needs to be done to ensure less eye strain.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Rosen, I. G.
1985-01-01
An approximation scheme is developed for the identification of hybrid systems describing the transverse vibrations of flexible beams with attached tip bodies. In particular, problems involving the estimation of functional parameters are considered. The identification problem is formulated as a least squares fit to data subject to the coupled system of partial and ordinary differential equations describing the transverse displacement of the beam and the motion of the tip bodies respectively. A cubic spline-based Galerkin method applied to the state equations in weak form and the discretization of the admissible parameter space yield a sequence of approximating finite dimensional identification problems. It is shown that each of the approximating problems admits a solution and that from the resulting sequence of optimal solutions a convergent subsequence can be extracted, the limit of which is a solution to the original identification problem. The approximating identification problems can be solved using standard techniques and readily available software.
Tension Cutoff and Parameter Identification for the Viscoplastic Cap Model.
1983-04-01
computer program "VPDRVR" which employs a Crank-Nicolson time integration scheme and a Newton-Raphson iterative solution procedure. Numerical studies were...parameters was illustrated for triaxial stress and uniaxial strain loading for a well- studied sand material (McCormick Ranch Sand). Lastly, a finite element...viscoplastic tension-cutoff cri- terion and to establish parameter identification techniques with experimental data. Herein lies the impetus of this study
NASA Astrophysics Data System (ADS)
Dubreuil, S.; Salaün, M.; Rodriguez, E.; Petitjean, F.
2018-01-01
This study investigates the construction and identification of the probability distribution of random modal parameters (natural frequencies and effective parameters) in structural dynamics. As these parameters present various types of dependence structures, the retained approach is based on pair copula construction (PCC). A literature review leads us to choose a D-Vine model for the construction of modal parameters probability distributions. Identification of this model is based on likelihood maximization which makes it sensitive to the dimension of the distribution, namely the number of considered modes in our context. To this respect, a mode selection preprocessing step is proposed. It allows the selection of the relevant random modes for a given transfer function. The second point, addressed in this study, concerns the choice of the D-Vine model. Indeed, D-Vine model is not uniquely defined. Two strategies are proposed and compared. The first one is based on the context of the study whereas the second one is purely based on statistical considerations. Finally, the proposed approaches are numerically studied and compared with respect to their capabilities, first in the identification of the probability distribution of random modal parameters and second in the estimation of the 99 % quantiles of some transfer functions.
Rotating optical geometry sensor for inner pipe-surface reconstruction
NASA Astrophysics Data System (ADS)
Ritter, Moritz; Frey, Christan W.
2010-01-01
The inspection of sewer or fresh water pipes is usually carried out by a remotely controlled inspection vehicle equipped with a high resolution camera and a lightning system. This operator-oriented approach based on offline analysis of the recorded images is highly subjective and prone to errors. Beside the subjective classification of pipe defects through the operator standard closed circuit television (CCTV) technology is not suitable for detecting geometrical deformations resulting from e.g. structural mechanical weakness of the pipe, corrosion of e.g. cast-iron material or sedimentations. At Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB) in Karlsruhe, Germany, a new Rotating Optical Geometry Sensor (ROGS) for pipe inspection has been developed which is capable of measuring the inner pipe geometry very precisely over the whole pipe length. This paper describes the developed ROGS system and the online adaption strategy for choosing the optimal system parameters. These parameters are the rotation and traveling speed dependent from the pipe diameter. Furthermore, a practicable calibration methodology is presented which guarantees an identification of the several internal sensor parameters. ROGS has been integrated in two different systems: A rod based system for small fresh water pipes and a standard inspection vehicle based system for large sewer Pipes. These systems have been successfully applied to different pipe systems. With this measurement method the geometric information can be used efficiently for an objective repeatable quality evaluation. Results and experiences in the area of fresh water pipe inspection will be presented.
Optimization of multilayer neural network parameters for speaker recognition
NASA Astrophysics Data System (ADS)
Tovarek, Jaromir; Partila, Pavol; Rozhon, Jan; Voznak, Miroslav; Skapa, Jan; Uhrin, Dominik; Chmelikova, Zdenka
2016-05-01
This article discusses the impact of multilayer neural network parameters for speaker identification. The main task of speaker identification is to find a specific person in the known set of speakers. It means that the voice of an unknown speaker (wanted person) belongs to a group of reference speakers from the voice database. One of the requests was to develop the text-independent system, which means to classify wanted person regardless of content and language. Multilayer neural network has been used for speaker identification in this research. Artificial neural network (ANN) needs to set parameters like activation function of neurons, steepness of activation functions, learning rate, the maximum number of iterations and a number of neurons in the hidden and output layers. ANN accuracy and validation time are directly influenced by the parameter settings. Different roles require different settings. Identification accuracy and ANN validation time were evaluated with the same input data but different parameter settings. The goal was to find parameters for the neural network with the highest precision and shortest validation time. Input data of neural networks are a Mel-frequency cepstral coefficients (MFCC). These parameters describe the properties of the vocal tract. Audio samples were recorded for all speakers in a laboratory environment. Training, testing and validation data set were split into 70, 15 and 15 %. The result of the research described in this article is different parameter setting for the multilayer neural network for four speakers.
NASA Astrophysics Data System (ADS)
Grammatikos, S. A.; Kordatos, E. Z.; Aggelis, D. G.; Matikas, T. E.; Paipetis, A. S.
2012-04-01
Infrared Thermography (IrT) has been shown to be capable of detecting and monitoring service induced damage of repair composite structures. Full-field imaging, along with portability are the primary benefits of the thermographic technique. On-line lock-in thermography has been reported to successfully monitor damage propagation or/and stress concentration in composite coupons, as mechanical stresses in structures induce heat concentration phenomena around flaws. During mechanical fatigue, cyclic loading plays the role of the heating source and this allows for critical and subcritical damage identification and monitoring using thermography. The Electrical Potential Change Technique (EPCT) is a new method for damage identification and monitoring during loading. The measurement of electrical potential changes at specific points of Carbon Fiber Reinforced Polymers (CFRPs) under load are reported to enable the monitoring of strain or/and damage accumulation. Along with the aforementioned techniques Finally, Acoustic Emission (AE) method is well known to provide information about the location and type of damage. Damage accumulation due to cyclic loading imposes differentiation of certain parameters of AE like duration and energy. Within the scope of this study, infrared thermography is employed along with AE and EPCT methods in order to assess the integrity of bonded repair patches on composite substrates and to monitor critical and subcritical damage induced by the mechanical loading. The combined methodologies were effective in identifying damage initiation and propagation of bonded composite repairs.
7 CFR 42.132 - Determining cumulative sum values.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 2 2011-01-01 2011-01-01 false Determining cumulative sum values. 42.132 Section 42... REGULATIONS STANDARDS FOR CONDITION OF FOOD CONTAINERS On-Line Sampling and Inspection Procedures § 42.132 Determining cumulative sum values. (a) The parameters for the on-line cumulative sum sampling plans for AQL's...
DOT National Transportation Integrated Search
2013-08-01
This report summarizes research conducted at Penn State, Virginia Tech, and West Virginia University on the development of algorithms based on the generalized polynomial chaos (gpc) expansion for the online estimation of automotive and transportation...
VizieR Online Data Catalog: Vyssotsky's Catalogues 1950.0 (Vyssotsky+ 1943-58)
NASA Astrophysics Data System (ADS)
Vyssotsky, A. N.
1997-11-01
This catalog includes the results of a complete survey of the McCormick objective prism plates for M dwarf stars. catalog.dat includes identifications, magnitudes, proper motions in RA and Dec, spectral types and parallaxes. (1 data file).
Versatile analog pulse height computer performs real-time arithmetic operations
NASA Technical Reports Server (NTRS)
Brenner, R.; Strauss, M. G.
1967-01-01
Multipurpose analog pulse height computer performs real-time arithmetic operations on relatively fast pulses. This computer can be used for identification of charged particles, pulse shape discrimination, division of signals from position sensitive detectors, and other on-line data reduction techniques.
Remote Monitoring, Inorganic Monitoring
This chapter provides an overview of applicability, amenability, and operating parameter ranges for various inorganic parameters:this chapter will also provide a compilation of existing and new online technologies for determining inorganic compounds in water samples. A wide vari...
Aerial robot intelligent control method based on back-stepping
NASA Astrophysics Data System (ADS)
Zhou, Jian; Xue, Qian
2018-05-01
The aerial robot is characterized as strong nonlinearity, high coupling and parameter uncertainty, a self-adaptive back-stepping control method based on neural network is proposed in this paper. The uncertain part of the aerial robot model is compensated online by the neural network of Cerebellum Model Articulation Controller and robust control items are designed to overcome the uncertainty error of the system during online learning. At the same time, particle swarm algorithm is used to optimize and fix parameters so as to improve the dynamic performance, and control law is obtained by the recursion of back-stepping regression. Simulation results show that the designed control law has desired attitude tracking performance and good robustness in case of uncertainties and large errors in the model parameters.
Liang, Xuejuan; Zhang, Yuping; Chen, Wei; Cai, Ping; Zhang, Shuihan; Chen, Xiaoqin; Shi, Shuyun
2015-03-13
A challenge in coupling high-speed counter-current chromatography (HSCCC) online with high performance liquid chromatography (HPLC) for purity analysis was their time incompatibility. Consequently, HSCCC-HPLC was conducted by either controlling HPLC analysis time and HSCCC flow rate or using stop-and-go scheme. For natural products containing compounds with a wide range of polarities, the former would optimize experimental conditions, while the latter required more time. Here, a novel HSCCC-HPLC-diode array detector-mass spectrometry (HSCCC-HPLC-DAD-MS) was developed for undisrupted purification, analysis and identification of multi-compounds from natural products. Two six-port injection valves and a six-port switching valve were used as interface for collecting key HSCCC effluents alternatively for HPLC-DAD-MS analysis and identification. The ethyl acetate extract of Malus doumeri was performed on the hyphenated system to verify its efficacy. Five main flavonoids, 3-hydroxyphloridzin (1), phloridzin (2), 4',6'-dihydroxyhydrochalcone-2'-O-β-D-glucopyranoside (3, first found in M. doumeri), phloretin (4), and chrysin (5), were purified with purities over 99% by extrusion elution and/or stepwise elution mode in two-step HSCCC, and 25mM ammonium acetate solution was selected instead of water to depress emulsification in the first HSCCC. The online system shortened manipulation time largely compared with off-line analysis procedure and stop-and-go scheme. The results indicated that the present method could serve as a simple, rapid and effective way to achieve target compounds with high purity from natural products. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi
2013-04-01
This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.
Identification procedure for epistemic uncertainties using inverse fuzzy arithmetic
NASA Astrophysics Data System (ADS)
Haag, T.; Herrmann, J.; Hanss, M.
2010-10-01
For the mathematical representation of systems with epistemic uncertainties, arising, for example, from simplifications in the modeling procedure, models with fuzzy-valued parameters prove to be a suitable and promising approach. In practice, however, the determination of these parameters turns out to be a non-trivial problem. The identification procedure to appropriately update these parameters on the basis of a reference output (measurement or output of an advanced model) requires the solution of an inverse problem. Against this background, an inverse method for the computation of the fuzzy-valued parameters of a model with epistemic uncertainties is presented. This method stands out due to the fact that it only uses feedforward simulations of the model, based on the transformation method of fuzzy arithmetic, along with the reference output. An inversion of the system equations is not necessary. The advancement of the method presented in this paper consists of the identification of multiple input parameters based on a single reference output or measurement. An optimization is used to solve the resulting underdetermined problems by minimizing the uncertainty of the identified parameters. Regions where the identification procedure is reliable are determined by the computation of a feasibility criterion which is also based on the output data of the transformation method only. For a frequency response function of a mechanical system, this criterion allows a restriction of the identification process to some special range of frequency where its solution can be guaranteed. Finally, the practicability of the method is demonstrated by covering the measured output of a fluid-filled piping system by the corresponding uncertain FE model in a conservative way.
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
Application of physical parameter identification to finite-element models
NASA Technical Reports Server (NTRS)
Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.
1987-01-01
The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.
Parameter identification of civil engineering structures
NASA Technical Reports Server (NTRS)
Juang, J. N.; Sun, C. T.
1980-01-01
This paper concerns the development of an identification method required in determining structural parameter variations for systems subjected to an extended exposure to the environment. The concept of structural identifiability of a large scale structural system in the absence of damping is presented. Three criteria are established indicating that a large number of system parameters (the coefficient parameters of the differential equations) can be identified by a few actuators and sensors. An eight-bay-fifteen-story frame structure is used as example. A simple model is employed for analyzing the dynamic response of the frame structure.
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua
2014-11-01
Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.
Miller, Douglass R.; Rung, Alessandra; Parikh, Grishma
2014-01-01
Abstract We provide a general overview of features and technical specifications of an online, interactive tool for the identification of scale insects of concern to the U.S.A. ports-of-entry. Full lists of terminal taxa included in the keys (of which there are four), a list of features used in them, and a discussion of the structure of the tool are provided. We also briefly discuss the advantages of interactive keys for the identification of potential scale insect pests. The interactive key is freely accessible on http://idtools.org/id/scales/index.php PMID:25152668
Optimal Design of Material and Process Parameters in Powder Injection Molding
NASA Astrophysics Data System (ADS)
Ayad, G.; Barriere, T.; Gelin, J. C.; Song, J.; Liu, B.
2007-04-01
The paper is concerned with optimization and parametric identification for the different stages in Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders part by solid state diffusion. In the first part, one describes an original methodology to optimize the process and geometry parameters in injection stage based on the combination of design of experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometeric curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization of material and process parameters for manufacturing a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.
NASA Astrophysics Data System (ADS)
Marzban, Hamid Reza
2018-05-01
In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.
Fan, Dong-Dong; Kuang, Yan-Hui; Dong, Li-Hua; Ye, Xiao; Chen, Liang-Mian; Zhang, Dong; Ma, Zhen-Shan; Wang, Jin-Yu; Zhu, Jing-Jing; Wang, Zhi-Min; Wang, De-Qin; Li, Chu-Yuan
2017-04-01
To optimize the purification process of gynostemma pentaphyllum saponins (GPS) based on "adjoint marker" online control technology with GPS as the testing index. UPLC-QTOF-MS technology was used for qualitative analysis. "Adjoint marker" online control results showed that the end point of load sample was that the UV absorbance of effluent liquid was equal to half of that of load sample solution, and the absorbance was basically stable when the end point was stable. In UPLC-QTOF-MS qualitative analysis, 16 saponins were identified from GPS, including 13 known gynostemma saponins and 3 new saponins. This optimized method was proved to be simple, scientific, reasonable, easy for online determination, real-time record, and can be better applied to the mass production and automation of production. The results of qualitative analysis indicated that the "adjoint marker" online control technology can well retain main efficacy components of medicinal materials, and provide analysis tools for the process control and quality traceability. Copyright© by the Chinese Pharmaceutical Association.
Language in Online Dating Texts: Trait Identification, Homophily, and their Effect on Attraction.
Fox Hamilton, Nicola; Fullwood, Chris; Kirwan, Grainne
2015-01-01
Research has indicated that online daters may pick up on language cues connected to personality traits in online dating profile texts, and act upon those cues. This research seeks to investigate the level of accuracy of detection of personality in dating profile texts, and the extent to which perceived or actual similarity of personality has an effect on attractiveness of the author. An online survey was conducted collecting the Ten Item Personality Inventory (TIPI) for each participant and text author, a peer-report TIPI score by participants for each text author, and an attractiveness rating on a Likert scale for each author. Participants correctly identified Extraversion, though the effect size was small. Contrary to the hypotheses, participants preferred texts when written by an author with a personality they perceived as dissimilar to their own, specifically in Openness and Conscientiousness, and no relationship was found between actual similarity of personality and attractiveness. Online daters may choose partners with complementary or desirable traits rather than similar traits, or other factors in attraction may be more salient in the initial stages of determining attraction.
NASA Astrophysics Data System (ADS)
Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes
2014-06-01
Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.
Boe, Kanokwan; Steyer, Jean-Philippe; Angelidaki, Irini
2008-01-01
Simple logic control algorithms were tested for automatic control of a lab-scale CSTR manure digester. Using an online VFA monitoring system, propionate concentration in the reactor was used as parameter for control of the biogas process. The propionate concentration was kept below a threshold of 10 mM by manipulating the feed flow. Other online parameters such as pH, biogas production, total VFA, and other individual VFA were also measured to examine process performance. The experimental results showed that a simple logic control can successfully prevent the reactor from overload, but with fluctuations of the propionate level due to the nature of control approach. The fluctuation of propionate concentration could be reduced, by adding a lower feed flow limit into the control algorithm to prevent undershooting of propionate response. It was found that use of the biogas production as a main control parameter, rather than propionate can give a more stable process, since propionate was very persistent and only responded very slowly to the decrease of the feed flow which lead to high fluctuation of biogas production. Propionate, however, was still an excellent parameter to indicate process stress under gradual overload and thus recommended as an alarm in the control algorithm. Copyright IWA Publishing 2008.
NASA Astrophysics Data System (ADS)
Bu, Haifeng; Wang, Dansheng; Zhou, Pin; Zhu, Hongping
2018-04-01
An improved wavelet-Galerkin (IWG) method based on the Daubechies wavelet is proposed for reconstructing the dynamic responses of shear structures. The proposed method flexibly manages wavelet resolution level according to excitation, thereby avoiding the weakness of the wavelet-Galerkin multiresolution analysis (WGMA) method in terms of resolution and the requirement of external excitation. IWG is implemented by this work in certain case studies, involving single- and n-degree-of-freedom frame structures subjected to a determined discrete excitation. Results demonstrate that IWG performs better than WGMA in terms of accuracy and computation efficiency. Furthermore, a new method for parameter identification based on IWG and an optimization algorithm are also developed for shear frame structures, and a simultaneous identification of structural parameters and excitation is implemented. Numerical results demonstrate that the proposed identification method is effective for shear frame structures.
An approximation theory for the identification of nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1988-01-01
An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.
Real-time flutter identification
NASA Technical Reports Server (NTRS)
Roy, R.; Walker, R.
1985-01-01
The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.
A method of online quantitative interpretation of diffuse reflection profiles of biological tissues
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-02-01
We have developed a method of combined interpretation of spectral and spatial characteristics of diffuse reflection of biological tissues, which makes it possible to determine biophysical parameters of the tissue with a high accuracy in real time under conditions of their general variability. Using the Monte Carlo method, we have modeled a statistical ensemble of profiles of diffuse reflection coefficients of skin, which corresponds to a wave variation of its biophysical parameters. On its basis, we have estimated the retrieval accuracy of biophysical parameters using the developed method and investigated the stability of the method to errors of optical measurements. We have showed that it is possible to determine online the concentrations of melanin, hemoglobin, bilirubin, oxygen saturation of blood, and structural parameters of skin from measurements of its diffuse reflection in the spectral range 450-800 nm at three distances between the radiation source and detector.
Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics.
Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel
2009-01-01
A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques.
Gutierrez-Villalobos, Jose M.; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A.; Martínez-Hernández, Moisés A.
2015-01-01
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor. PMID:26131677
Gutierrez-Villalobos, Jose M; Rodriguez-Resendiz, Juvenal; Rivas-Araiza, Edgar A; Martínez-Hernández, Moisés A
2015-06-29
Three-phase induction motor drive requires high accuracy in high performance processes in industrial applications. Field oriented control, which is one of the most employed control schemes for induction motors, bases its function on the electrical parameter estimation coming from the motor. These parameters make an electrical machine driver work improperly, since these electrical parameter values change at low speeds, temperature changes, and especially with load and duty changes. The focus of this paper is the real-time and on-line electrical parameters with a CMAC-ADALINE block added in the standard FOC scheme to improve the IM driver performance and endure the driver and the induction motor lifetime. Two kinds of neural network structures are used; one to estimate rotor speed and the other one to estimate rotor resistance of an induction motor.
Robust Online Hamiltonian Learning
NASA Astrophysics Data System (ADS)
Granade, Christopher; Ferrie, Christopher; Wiebe, Nathan; Cory, David
2013-05-01
In this talk, we introduce a machine-learning algorithm for the problem of inferring the dynamical parameters of a quantum system, and discuss this algorithm in the example of estimating the precession frequency of a single qubit in a static field. Our algorithm is designed with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online, during experimental data collection, or can be used as a tool for post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. Finally, we discuss the performance of the our algorithm by appeal to the Cramer-Rao bound. This work was financially supported by the Canadian government through NSERC and CERC and by the United States government through DARPA. NW would like to acknowledge funding from USARO-DTO.
Use of the Plasma Spectrum RMS Signal for Arc-Welding Diagnostics
Mirapeix, Jesus; Cobo, Adolfo; Fuentes, Jose; Davila, Marta; Etayo, Juan Maria; Lopez-Higuera, Jose-Miguel
2009-01-01
A new spectroscopic parameter is used in this paper for on-line arc-welding quality monitoring. Plasma spectroscopy applied to welding diagnostics has typically relied on the estimation of the plasma electronic temperature, as there is a known correlation between this parameter and the quality of the seams. However, the practical use of this parameter gives rise to some uncertainties that could provoke ambiguous results. For an efficient on-line welding monitoring system, it is essential to prevent the appearance of false alarms, as well as to detect all the possible defects. In this regard, we propose the use of the root mean square signal of the welding plasma spectra, as this parameter will be proven to exhibit a good correlation with the quality of the resulting seams. Results corresponding to several arc-welding field tests performed on Inconel and titanium specimens will be discussed and compared to non-destructive evaluation techniques. PMID:22346696
Online quantitative analysis of multispectral images of human body tissues
NASA Astrophysics Data System (ADS)
Lisenko, S. A.
2013-08-01
A method is developed for online monitoring of structural and morphological parameters of biological tissues (haemoglobin concentration, degree of blood oxygenation, average diameter of capillaries and the parameter characterising the average size of tissue scatterers), which involves multispectral tissue imaging, image normalisation to one of its spectral layers and determination of unknown parameters based on their stable regression relation with the spectral characteristics of the normalised image. Regression is obtained by simulating numerically the diffuse reflectance spectrum of the tissue by the Monte Carlo method at a wide variation of model parameters. The correctness of the model calculations is confirmed by the good agreement with the experimental data. The error of the method is estimated under conditions of general variability of structural and morphological parameters of the tissue. The method developed is compared with the traditional methods of interpretation of multispectral images of biological tissues, based on the solution of the inverse problem for each pixel of the image in the approximation of different analytical models.
Resources for Functional Genomics Studies in Drosophila melanogaster
Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert
2014-01-01
Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003
Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm
NASA Technical Reports Server (NTRS)
Mitra, Sunanda; Pemmaraju, Surya
1992-01-01
Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.
NASA Astrophysics Data System (ADS)
Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu
2017-03-01
In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.
NASA Astrophysics Data System (ADS)
Llorens-Chiralt, R.; Weiss, P.; Mikonsaari, I.
2014-05-01
Material characterization is one of the key steps when conductive polymers are developed. The dispersion of carbon nanotubes (CNTs) in a polymeric matrix using melt mixing influence final composite properties. The compounding becomes trial and error using a huge amount of materials, spending time and money to obtain competitive composites. Traditional methods to carry out electrical conductivity characterization include compression and injection molding. Both methods need extra equipments and moulds to obtain standard bars. This study aims to investigate the accuracy of the data obtained from absolute resistance recorded during the melt compounding, using an on-line setup developed by our group, and to correlate these values with off-line characterization and processing parameters (screw/barrel configuration, throughput, screw speed, temperature profile and CNTs percentage). Compounds developed with different percentages of multi walled carbon nanotubes (MWCNTs) and polycarbonate has been characterized during and after extrusion. Measurements, on-line resistance and off-line resistivity, showed parallel response and reproducibility, confirming method validity. The significance of the results obtained stems from the fact that we are able to measure on-line resistance and to change compounding parameters during production to achieve reference values reducing production/testing cost and ensuring material quality. Also, this method removes errors which can be found in test bars development, showing better correlation with compounding parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Analysis of Search Results for the Clarification and Identification of Technology Emergence (AR-CITE) computer code examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e. scholarly publications and citation, world patents, news archives, and on-line mapping networks) are assembled to become one collective networkmore » (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the subject domain to be clarified and identified.« less
Fang, Ching; Liu, Ju-Tsung; Lin, Cheng-Huang
2003-03-01
This work describes a novel method for the accurate determination of lysergic acid diethylamide (LSD) in tablets. A technique involving sweeping-micellar electrokinetic chromatography (MEKC) was used for the initial on-line concentration and separation, after which a cryogenic molecular fluorescence experiment was performed at 77 K. Using this approach, not only the separation of LSD from the tablet extract was achieved, but on-line spectra were readily distinguishable and could be unambiguously assigned. The results are in agreement with analyses by gas chromatography-mass spectrometry (GC-MS). Thus, this method, which was found to be accurate, sensitive and rapid, has the potential for use as a reliable complementary method to GC-MS in such analyses.
NASA Astrophysics Data System (ADS)
Krishnanathan, Kirubhakaran; Anderson, Sean R.; Billings, Stephen A.; Kadirkamanathan, Visakan
2016-11-01
In this paper, we derive a system identification framework for continuous-time nonlinear systems, for the first time using a simulation-focused computational Bayesian approach. Simulation approaches to nonlinear system identification have been shown to outperform regression methods under certain conditions, such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computation (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the following main advantages: (1) parameter distributions are intrinsically generated, giving the user a clear description of uncertainty, (2) the simulation approach avoids the difficult problem of estimating signal derivatives as is common with other continuous-time methods, and (3) as noted above, the simulation approach improves identification under conditions of non-persistently exciting inputs and fast-sampling. Term selection is performed by judging parameter significance using parameter distributions that are intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate that the method performs well in noisy scenarios, especially in comparison to competing techniques that rely on signal derivative estimation.
Ares I-X In-Flight Modal Identification
NASA Technical Reports Server (NTRS)
Bartkowicz, Theodore J.; James, George H., III
2011-01-01
Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.
Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin
2015-04-22
Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.
2010-01-01
Background Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2. Results A key concept of the MZmine 2 software design is the strict separation of core functionality and data processing modules, with emphasis on easy usability and support for high-resolution spectra processing. Data processing modules take advantage of embedded visualization tools, allowing for immediate previews of parameter settings. Newly introduced functionality includes the identification of peaks using online databases, MSn data support, improved isotope pattern support, scatter plot visualization, and a new method for peak list alignment based on the random sample consensus (RANSAC) algorithm. The performance of the RANSAC alignment was evaluated using synthetic datasets as well as actual experimental data, and the results were compared to those obtained using other alignment algorithms. Conclusions MZmine 2 is freely available under a GNU GPL license and can be obtained from the project website at: http://mzmine.sourceforge.net/. The current version of MZmine 2 is suitable for processing large batches of data and has been applied to both targeted and non-targeted metabolomic analyses. PMID:20650010
Yang, Yun-Yun; Tang, You-Zhi; Fan, Chun-Lin; Luo, Hui-Tai; Guo, Peng-Ran; Chen, Jian-Xin
2010-07-01
A method based on accelerated solvent extraction combined with rapid-resolution LC-MS for efficient extraction, rapid separation, online identification and accurate determination of the saikosaponins (SSs) in Radix bupleuri (RB) was developed. The RB samples were extracted by accelerated solvent extraction using 70% aqueous ethanol v/v as solvent, at a temperature of 120 degrees C and pressure of 100 bar, with 10 min of static extraction time and three extraction cycles. Rapid-resolution LC separation was performed by using a C(18) column at gradient elution of water (containing 0.5% formic acid) and acetonitrile, and the major constituents were well separated within 20 min. A TOF-MS and an IT-MS were used for online identification of the major constituents, and 27 SSs were identified or tentatively identified. Five major bioactive SSs (SSa, SSc, SSd, 6''-O-acetyl-SSa and 6''-O-acetyl-SSd) with obvious peak areas and good resolution were chosen as benchmark substances, and a triple quadrupole MS operating in multiple-reaction monitoring mode was used for their quantitative analysis. A total of 16 RB samples from different regions of China were analyzed. The results indicated that the method was rapid, efficient, accurate and suitable for use in the quality control of RB.
Self-concept deficits in massively multiplayer online role-playing games addiction.
Leménager, Tagrid; Gwodz, Alexander; Richter, Anne; Reinhard, Iris; Kämmerer, Nina; Sell, Madlen; Mann, Karl
2013-01-01
Previous studies on Internet addiction point towards a particular constellation of personality traits and deficits in social competence of players addicted to massively multiplayer online role-playing games (MMORPGs), which are hypothesized to result from impairments in self-concept. The aim of this study was to examine differences in self-concept and degree of avatar identification in World of Warcraft addicted, non-addicted and naive (nonexperienced) participants. Participants (n = 45) completed interviews and self-report questionnaires on social, emotional and physical aspects of self-concept. Attributes of participants' 'actual self', 'ideal self' and their avatar were assessed using the Giessen test. The extent of avatar identification was examined by assessing differences between 'ideal self' and avatar evaluations. In contrast to nonaddicted and naive participants, addicted players showed a more negative body appraisal and lower self-esteem as well as lower permeability, social response, general mood and social potency on the Giessen test subscales. They further showed significantly lower discrepancies between 'ideal self' and avatar ratings on nearly all Giessen test subscales. The results point towards impairments in self-concept and a higher degree in avatar identification in addicted MMORPG players compared to the remaining participants. These results could have important implications for the treatment of addicted MMORPG players. Copyright © 2013 S. Karger AG, Basel.
Meng, Jun; Shi, Lin; Luan, Yushi
2014-01-01
Background Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions. Results Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species. Conclusions The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided. PMID:25051153
A neural network device for on-line particle identification in cosmic ray experiments
NASA Astrophysics Data System (ADS)
Scrimaglio, R.; Finetti, N.; D'Altorio, L.; Rantucci, E.; Raso, M.; Segreto, E.; Tassoni, A.; Cardarilli, G. C.
2004-05-01
On-line particle identification is one of the main goals of many experiments in space both for rare event studies and for optimizing measurements along the orbital trajectory. Neural networks can be a useful tool for signal processing and real time data analysis in such experiments. In this document we report on the performances of a programmable neural device which was developed in VLSI analog/digital technology. Neurons and synapses were accomplished by making use of Operational Transconductance Amplifier (OTA) structures. In this paper we report on the results of measurements performed in order to verify the agreement of the characteristic curves of each elementary cell with simulations and on the device performances obtained by implementing simple neural structures on the VLSI chip. A feed-forward neural network (Multi-Layer Perceptron, MLP) was implemented on the VLSI chip and trained to identify particles by processing the signals of two-dimensional position-sensitive Si detectors. The radiation monitoring device consisted of three double-sided silicon strip detectors. From the analysis of a set of simulated data it was found that the MLP implemented on the neural device gave results comparable with those obtained with the standard method of analysis confirming that the implemented neural network could be employed for real time particle identification.
Davidson, Shaun M; Docherty, Paul D; Murray, Rua
2017-03-01
Parameter identification is an important and widely used process across the field of biomedical engineering. However, it is susceptible to a number of potential difficulties, such as parameter trade-off, causing premature convergence at non-optimal parameter values. The proposed Dimensional Reduction Method (DRM) addresses this issue by iteratively reducing the dimension of hyperplanes where trade off occurs, and running subsequent identification processes within these hyperplanes. The DRM was validated using clinical data to optimize 4 parameters of the widely used Bergman Minimal Model of glucose and insulin kinetics, as well as in-silico data to optimize 5 parameters of the Pulmonary Recruitment (PR) Model. Results were compared with the popular Levenberg-Marquardt (LMQ) Algorithm using a Monte-Carlo methodology, with both methods afforded equivalent computational resources. The DRM converged to a lower or equal residual value in all tests run using the Bergman Minimal Model and actual patient data. For the PR model, the DRM attained significantly lower overall median parameter error values and lower residuals in the vast majority of tests. This shows the DRM has potential to provide better resolution of optimum parameter values for the variety of biomedical models in which significant levels of parameter trade-off occur. Copyright © 2017 Elsevier Inc. All rights reserved.
Online Psychology: Trial and Error in Course Development
ERIC Educational Resources Information Center
Harman, Marsha J.
2009-01-01
Online courses appear to be the future if colleges and universities choose to increase enrollments with students who need more flexibility in scheduling. The challenge has been to create a course that is rigorous with the limitations to physical presence of the instructor and the parameters inherent in technological delivery. This article relates…
Li, Chen; Nagasaki, Masao; Koh, Chuan Hock; Miyano, Satoru
2011-05-01
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
Online Denoising Based on the Second-Order Adaptive Statistics Model.
Yi, Sheng-Lun; Jin, Xue-Bo; Su, Ting-Li; Tang, Zhen-Yun; Wang, Fa-Fa; Xiang, Na; Kong, Jian-Lei
2017-07-20
Online denoising is motivated by real-time applications in the industrial process, where the data must be utilizable soon after it is collected. Since the noise in practical process is usually colored, it is quite a challenge for denoising techniques. In this paper, a novel online denoising method was proposed to achieve the processing of the practical measurement data with colored noise, and the characteristics of the colored noise were considered in the dynamic model via an adaptive parameter. The proposed method consists of two parts within a closed loop: the first one is to estimate the system state based on the second-order adaptive statistics model and the other is to update the adaptive parameter in the model using the Yule-Walker algorithm. Specifically, the state estimation process was implemented via the Kalman filter in a recursive way, and the online purpose was therefore attained. Experimental data in a reinforced concrete structure test was used to verify the effectiveness of the proposed method. Results show the proposed method not only dealt with the signals with colored noise, but also achieved a tradeoff between efficiency and accuracy.
Motion capture based identification of the human body inertial parameters.
Venture, Gentiane; Ayusawa, Ko; Nakamura, Yoshihiko
2008-01-01
Identification of body inertia, masses and center of mass is an important data to simulate, monitor and understand dynamics of motion, to personalize rehabilitation programs. This paper proposes an original method to identify the inertial parameters of the human body, making use of motion capture data and contact forces measurements. It allows in-vivo painless estimation and monitoring of the inertial parameters. The method is described and then obtained experimental results are presented and discussed.
Online boosting for vehicle detection.
Chang, Wen-Chung; Cho, Chih-Wei
2010-06-01
This paper presents a real-time vision-based vehicle detection system employing an online boosting algorithm. It is an online AdaBoost approach for a cascade of strong classifiers instead of a single strong classifier. Most existing cascades of classifiers must be trained offline and cannot effectively be updated when online tuning is required. The idea is to develop a cascade of strong classifiers for vehicle detection that is capable of being online trained in response to changing traffic environments. To make the online algorithm tractable, the proposed system must efficiently tune parameters based on incoming images and up-to-date performance of each weak classifier. The proposed online boosting method can improve system adaptability and accuracy to deal with novel types of vehicles and unfamiliar environments, whereas existing offline methods rely much more on extensive training processes to reach comparable results and cannot further be updated online. Our approach has been successfully validated in real traffic environments by performing experiments with an onboard charge-coupled-device camera in a roadway vehicle.
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-04-01
System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.
A Gender Identification System for Customers in a Shop Using Infrared Area Scanners
NASA Astrophysics Data System (ADS)
Tajima, Takuya; Kimura, Haruhiko; Abe, Takehiko; Abe, Koji; Nakamoto, Yoshinori
Information about customers in shops plays an important role in marketing analysis. Currently, in convenience stores and supermarkets, the identification of customer's gender is examined by clerks. On the other hand, gender identification systems using camera images are investigated. However, these systems have a problem of invading human privacies in identifying attributes of customers. The proposed system identifies gender by using infrared area scanners and Bayesian network. In the proposed system, since infrared area scanners do not take customers' images directly, invasion of privacies are not occurred. The proposed method uses three parameters of height, walking speed and pace for humans. In general, it is shown that these parameters have factors of sexual distinction in humans, and Bayesian network is designed with these three parameters. The proposed method resolves the existent problems of restricting the locations where the systems are set and invading human privacies. Experimental results using data obtained from 450 people show that the identification rate for the proposed method was 91.3% on the average of both of male and female identifications.
Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen
2005-03-01
Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria.
Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen
2005-01-01
Microorganisms, such as bacteria, which might be present as contamination inside an industrial food or pharmaceutical clean room process need to be identified on short time scales in order to minimize possible health hazards as well as production downtimes causing financial deficits. Here we describe the first results of single-particle micro-Raman measurements in combination with a classification method, the so-called support vector machine technique, allowing for a fast, reliable, and nondestructive online identification method for single bacteria. PMID:15746368
VizieR Online Data Catalog: Catalog of Suspected Nearby Young Stars (Riedel+, 2017)
NASA Astrophysics Data System (ADS)
Riedel, A. R.; Blunt, S. C.; Lambrides, E. L.; Rice, E. L.; Cruz, K. L.; Faherty, J. K.
2018-04-01
LocAting Constituent mEmbers In Nearby Groups (LACEwING) is a frequentist observation space kinematic moving group identification code. Using the spatial and kinematic information available about a target object (α, δ, Dist, μα, μδ, and γ), it determines the probability that the object is a member of each of the known nearby young moving groups (NYMGs). As with other moving group identification codes, LACEwING is capable of estimating memberships for stars with incomplete kinematic and spatial information. (2 data files).
Myths about Technology-Supported Professional Learning
ERIC Educational Resources Information Center
Killion, Joellen; Treacy, Barbara
2014-01-01
The future of professional learning is shaped by its present and past. As new technologies emerge to increase affordability, access, and appropriateness of professional learning, three beliefs are visible in current practices related to online learning. Each contains a premise that merits identification and examination. The authors call these…
USDA-ARS?s Scientific Manuscript database
The iPhyClassifier is an Internet-based research tool for quick identification and classification of diverse phytoplasmas. The iPhyClassifier simulates laboratory restriction enzyme digestions and subsequent gel electrophoresis and generates virtual restriction fragment length polymorphism (RFLP) p...
CADDIS is an online application that helps scientists and engineers in the Regions, States, and Tribes find, access, organize, use, and share information to conduct causal evaluations in aquatic systems. It is based on the USEPA stressor identification process, a formal method fo...
Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning
2014-01-01
Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
On-line estimation of error covariance parameters for atmospheric data assimilation
NASA Technical Reports Server (NTRS)
Dee, Dick P.
1995-01-01
A simple scheme is presented for on-line estimation of covariance parameters in statistical data assimilation systems. The scheme is based on a maximum-likelihood approach in which estimates are produced on the basis of a single batch of simultaneous observations. Simple-sample covariance estimation is reasonable as long as the number of available observations exceeds the number of tunable parameters by two or three orders of magnitude. Not much is known at present about model error associated with actual forecast systems. Our scheme can be used to estimate some important statistical model error parameters such as regionally averaged variances or characteristic correlation length scales. The advantage of the single-sample approach is that it does not rely on any assumptions about the temporal behavior of the covariance parameters: time-dependent parameter estimates can be continuously adjusted on the basis of current observations. This is of practical importance since it is likely to be the case that both model error and observation error strongly depend on the actual state of the atmosphere. The single-sample estimation scheme can be incorporated into any four-dimensional statistical data assimilation system that involves explicit calculation of forecast error covariances, including optimal interpolation (OI) and the simplified Kalman filter (SKF). The computational cost of the scheme is high but not prohibitive; on-line estimation of one or two covariance parameters in each analysis box of an operational bozed-OI system is currently feasible. A number of numerical experiments performed with an adaptive SKF and an adaptive version of OI, using a linear two-dimensional shallow-water model and artificially generated model error are described. The performance of the nonadaptive versions of these methods turns out to depend rather strongly on correct specification of model error parameters. These parameters are estimated under a variety of conditions, including uniformly distributed model error and time-dependent model error statistics.
Poels, Karolien; De Cock, Nele; Malliet, Steven
2012-11-01
This study addresses the female player of massively multiplayer online (role-playing) games and investigates how gender identity (GI), indicating a person's identification with characteristics that are traditionally defined as masculine or feminine, can be used to explain playing patterns within the female gender group. Results from an online survey (n=466) show that females' player motivations and play styles vary as a function of their GI, indicating that it is a relevant and additional predictor of play behavior and confirming that female play behavior cannot be generalized based on stereotypical male/female conceptions.
Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente
2016-05-01
Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.
Aerodynamic parameter estimation via Fourier modulating function techniques
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1995-01-01
Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
Modal parameter identification using the log decrement method and band-pass filters
NASA Astrophysics Data System (ADS)
Liao, Yabin; Wells, Valana
2011-10-01
This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
Howard, Barbara J; Sturner, Raymond
2017-12-01
To describe benefits and problems with screening and addressing developmental and behavioral problems in primary care and using an online clinical process support system as a solution. Screening has been found to have various implementation barriers including time costs, accuracy, workflow and knowledge of tools. In addition, training of clinicians in dealing with identified issues is lacking. Patients disclose more to and prefer computerized screening. An online clinical process support system (CHADIS) shows promise in addressing these issues. Use of a comprehensive panel of online pre-visit screens; linked decision support to provide moment-of-care training; and post-visit activities and resources for patient-specific education, monitoring and care coordination is an efficient way to make the entire process of screening and follow up care feasible in primary care. CHADIS fulfills these requirements and provides Maintenance of Certification credit to physicians as well as added income for screening efforts.
Online analysis: Deeper insights into water quality dynamics in spring water.
Page, Rebecca M; Besmer, Michael D; Epting, Jannis; Sigrist, Jürg A; Hammes, Frederik; Huggenberger, Peter
2017-12-01
We have studied the dynamics of water quality in three karst springs taking advantage of new technological developments that enable high-resolution measurements of bacterial load (total cell concentration: TCC) as well as online measurements of abiotic parameters. We developed a novel data analysis approach, using self-organizing maps and non-linear projection methods, to approximate the TCC dynamics using the multivariate data sets of abiotic parameter time-series, thus providing a method that could be implemented in an online water quality management system for water suppliers. The (TCC) data, obtained over several months, provided a good basis to study the microbiological dynamics in detail. Alongside the TCC measurements, online abiotic parameter time-series, including spring discharge, turbidity, spectral absorption coefficient at 254nm (SAC254) and electrical conductivity, were obtained. High-density sampling over an extended period of time, i.e. every 45min for 3months, allowed a detailed analysis of the dynamics in karst spring water quality. Substantial increases in both the TCC and the abiotic parameters followed precipitation events in the catchment area. Differences between the parameter fluctuations were only apparent when analyzed at a high temporal scale. Spring discharge was always the first to react to precipitation events in the catchment area. Lag times between the onset of precipitation and a change in discharge varied between 0.2 and 6.7h, depending on the spring and event. TCC mostly reacted second or approximately concurrent with turbidity and SAC254, whereby the fastest observed reaction in the TCC time series occurred after 2.3h. The methodological approach described here enables a better understanding of bacterial dynamics in karst springs, which can be used to estimate risks and management options to avoid contamination of the drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, R; Wunderle, K; Lingenfelter, M
Purpose: Transitioning from a paper based to an online system for tracking fluoroscopic case information required by state regulation and to conform to NCRP patient dose tracking suggestions. Methods: State regulations require documentation of operator, equipment, and some metric of tube output for fluoroscopy exams. This information was previously collected in paper logs, which was cumbersome and inefficient for the large number of fluoroscopic units across multiple locations within the system. The “tech notes” feature within Siemens’ Syngo workflow RIS was utilized to create an entry form for technologists to input case information, which was sent to a third partymore » vendor for archiving and display though an online web based portal. Results: Over 55k cases were logged in the first year of implementation, with approximately 6,500 cases per month once fully online. A system was built for area managers to oversee and correct data, which has increased the accuracy of inputted values. A high-dose report was built to automatically send notifications when patients exceed trigger levels. In addition to meeting regulatory requirements, the new system allows for larger scale QC in fluoroscopic cases by allowing comparison of data from specific procedures, locations, equipment, and operators so that instances that fall outside of reference levels can be identified for further evaluation. The system has also drastically improved identification of operators without documented equipment specific training. Conclusion: The transition to online fluoroscopy logs has improved efficiency in meeting state regulatory requirements as well as allowed for identification of particular procedures, equipment, and operators in need of additional attention in order to optimize patient and personnel doses, while high dose alerts improve patient care and follow up. Future efforts are focused on incorporating case information from outside of radiology, as well as on automating processes for increased efficiencies.« less
The role of automated feedback in training and retaining biological recorders for citizen science.
van der Wal, René; Sharma, Nirwan; Mellish, Chris; Robinson, Annie; Siddharthan, Advaith
2016-06-01
The rapid rise of citizen science, with lay people forming often extensive biodiversity sensor networks, is seen as a solution to the mismatch between data demand and supply while simultaneously engaging citizens with environmental topics. However, citizen science recording schemes require careful consideration of how to motivate, train, and retain volunteers. We evaluated a novel computing science framework that allowed for the automated generation of feedback to citizen scientists using natural language generation (NLG) technology. We worked with a photo-based citizen science program in which users also volunteer species identification aided by an online key. Feedback is provided after photo (and identification) submission and is aimed to improve volunteer species identification skills and to enhance volunteer experience and retention. To assess the utility of NLG feedback, we conducted two experiments with novices to assess short-term (single session) and longer-term (5 sessions in 2 months) learning, respectively. Participants identified a specimen in a series of photos. One group received only the correct answer after each identification, and the other group received the correct answer and NLG feedback explaining reasons for misidentification and highlighting key features that facilitate correct identification. We then developed an identification training tool with NLG feedback as part of the citizen science program BeeWatch and analyzed learning by users. Finally, we implemented NLG feedback in the live program and evaluated this by randomly allocating all BeeWatch users to treatment groups that received different types of feedback upon identification submission. After 6 months separate surveys were sent out to assess whether views on the citizen science program and its feedback differed among the groups. Identification accuracy and retention of novices were higher for those who received automated feedback than for those who received only confirmation of the correct identification without explanation. The value of NLG feedback in the live program, captured through questionnaires and evaluation of the online photo-based training tool, likewise showed that the automated generation of informative feedback fostered learning and volunteer engagement and thus paves the way for productive and long-lived citizen science projects. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Estimation and identification study for flexible vehicles
NASA Technical Reports Server (NTRS)
Jazwinski, A. H.; Englar, T. S., Jr.
1973-01-01
Techniques are studied for the estimation of rigid body and bending states and the identification of model parameters associated with the single-axis attitude dynamics of a flexible vehicle. This problem is highly nonlinear but completely observable provided sufficient attitude and attitude rate data is available and provided all system bending modes are excited in the observation interval. A sequential estimator tracks the system states in the presence of model parameter errors. A batch estimator identifies all model parameters with high accuracy.
NASA Astrophysics Data System (ADS)
Maslakov, M. L.
2018-04-01
This paper examines the solution of convolution-type integral equations of the first kind by applying the Tikhonov regularization method with two-parameter stabilizing functions. The class of stabilizing functions is expanded in order to improve the accuracy of the resulting solution. The features of the problem formulation for identification and adaptive signal correction are described. A method for choosing regularization parameters in problems of identification and adaptive signal correction is suggested.
A Method of Predicting Queuing at Library Online PCs
ERIC Educational Resources Information Center
Beranek, Lea G.
2006-01-01
On-campus networked personal computer (PC) usage at La Trobe University Library was surveyed during September 2005. The survey's objectives were to confirm peak usage times, to measure some of the relevant parameters of online PC usage, and to determine the effect that 24 new networked PCs had on service quality. The survey found that clients…
Wireless lysimeters for real-time online soil water monitoring
USDA-ARS?s Scientific Manuscript database
Identification of nitrate-nitrogen (NO3-N) in drainage water allows accessing the effectiveness of water quality management. A passive capillary wick-type lysimeter (PCAPs) was used to monitor water flux and NO3-N leached below the root zone under an irrigated cropping system. Wireless lysimeters we...
Proteomics: Protein Identification Using Online Databases
ERIC Educational Resources Information Center
Eurich, Chris; Fields, Peter A.; Rice, Elizabeth
2012-01-01
Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…
International Co-Operation in Control Engineering Education Using Online Experiments
ERIC Educational Resources Information Center
Henry, Jim; Schaedel, Herbert M.
2005-01-01
This paper describes the international co-operation experience in teaching control engineering with laboratories being conducted remotely by students via the Internet. This paper describes how the students ran the experiments and their personal experiences with the laboratory. A tool for process identification and controller tuning based on…
A Case-Based Approach Improves Science Students' Experimental Variable Identification Skills
ERIC Educational Resources Information Center
Grunwald, Sandra; Hartman, Andrew
2010-01-01
Incorporation of experimental case studies into the laboratory curriculum increases students' abilities to identify experimental variables that affect the outcome of an experiment. Here the authors describe how such case studies were incorporated using an online course management system into a biochemistry laboratory curriculum and the assessment…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinoski, H.T.; Udseth, H.R.; Wright, B.W.
1986-10-01
The application of on-line supercritical fluid extraction with chemical ionization mass spectrometry and collision induced dissociation tandem mass spectrometry for the rapid identification of parts-per-million levels of several trichothecene mycotoxins is demonstrated. Supercritical carbon dioxide is shown to allow identification of mycotoxins with minimum sample handling in complex natural matrices (e.g., wheat). Tandem mass spectrometry techniques are employed for unambiguous identification of compounds of varying polarity, and false positives from isobaric compounds are avoided. Capillary column supercritical fluid chromatography-mass spectrometry of a supercritical fluid extract of the same sample was also performed and detection limits in the parts-per-billion range appearmore » feasible.« less
Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin
2015-01-01
Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust. PMID:25912350
Meher, Prabina Kumar; Sahu, Tanmaya Kumar; Rao, A R
2016-11-05
DNA barcoding is a molecular diagnostic method that allows automated and accurate identification of species based on a short and standardized fragment of DNA. To this end, an attempt has been made in this study to develop a computational approach for identifying the species by comparing its barcode with the barcode sequence of known species present in the reference library. Each barcode sequence was first mapped onto a numeric feature vector based on k-mer frequencies and then Random forest methodology was employed on the transformed dataset for species identification. The proposed approach outperformed similarity-based, tree-based, diagnostic-based approaches and found comparable with existing supervised learning based approaches in terms of species identification success rate, while compared using real and simulated datasets. Based on the proposed approach, an online web interface SPIDBAR has also been developed and made freely available at http://cabgrid.res.in:8080/spidbar/ for species identification by the taxonomists. Copyright © 2016 Elsevier B.V. All rights reserved.
Malherbe, Christiaan J.; de Beer, Dalene; Joubert, Elizabeth
2012-01-01
Biochemical detection (BCD) methods are commonly used to screen plant extracts for specific biological activities in batch assays. Traditionally, bioactives in the most active extracts were identified through time-consuming bio-assay guided fractionation until single active compounds could be isolated. Not only are isolation procedures often tedious, but they could also lead to artifact formation. On-line coupling of BCD assays to high performance liquid chromatography (HPLC) is gaining ground as a high resolution screening technique to overcome problems associated with pre-isolation by measuring the effects of compounds post-column directly after separation. To date, several on-line HPLC-BCD assays, applied to whole plant extracts and mixtures, have been published. In this review the focus will fall on enzyme-based, receptor-based and antioxidant assays. PMID:22489144
On-Line Modal State Monitoring of Slowly Time-Varying Structures
NASA Technical Reports Server (NTRS)
Johnson, Erik A.; Bergman, Lawrence A.; Voulgaris, Petros G.
1997-01-01
Monitoring the dynamic response of structures is often performed for a variety of reasons. These reasons include condition-based maintenance, health monitoring, performance improvements, and control. In many cases the data analysis that is performed is part of a repetitive decision-making process, and in these cases the development of effective on-line monitoring schemes help to speed the decision-making process and reduce the risk of erroneous decisions. This report investigates the use of spatial modal filters for tracking the dynamics of slowly time-varying linear structures. The report includes an overview of modal filter theory followed by an overview of several structural system identification methods. Included in this discussion and comparison are H-infinity, eigensystem realization, and several time-domain least squares approaches. Finally, a two-stage adaptive on-line monitoring scheme is developed and evaluated.
NASA Astrophysics Data System (ADS)
Perdian, David C.
2013-10-01
Two distinct student groups, in terms of academic performance, were identified early in the semester as either being under-performing students or over-performing students using an online homework system. The students who are identified as under-performing received, on average, lower grades than their fellow students but spent more time completing the homework assignments. These students are great candidates for targeted advertisement of student resources such as tutoring services. The students who are identified in the over-performing student population received higher grades than their fellow students, but spent less time completing the homework assignments. These students are great candidates for honors programs, independent research projects, and peer-tutoring programs. Incorporating these evaluation criteria to online homework systems will allow instructors to quickly identify students in these academic student populations.
Downer, Jason T.; Locasale-Crouch, Jennifer; Hamre, Bridget; Pianta, Robert
2014-01-01
This paper is a natural follow-up to intent-to-treat findings indicating that the MyTeachingPartner Consultancy, inclusive of on-line video resources and web-mediated consultation, improved the quality of pre-k teachers’ interactions with children. This study takes a close look at implementation fidelity within the effective MTP Consultancy condition over both years of implementation, in order to learn more about the ingredients of professional development that may have contributed to the success of the intervention. Variation in teachers’ responsiveness (e.g., ratings of Consultancy worth) and exposure to the intervention (e.g., number of consultation cycles completed) are examined, with particular interest in the identification of teacher factors that may serve as supports or barriers to successfully implementing consultation supports and on-line professional development resources. PMID:25419081
Du, Fuying; Liu, Ting; Liu, Tian; Wang, Yongwei; Wan, Yakun; Xing, Jie
2011-10-30
Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.
Health monitoring system for transmission shafts based on adaptive parameter identification
NASA Astrophysics Data System (ADS)
Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.
2018-05-01
A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.
An Integrated Approach for Aircraft Engine Performance Estimation and Fault Diagnostics
NASA Technical Reports Server (NTRS)
imon, Donald L.; Armstrong, Jeffrey B.
2012-01-01
A Kalman filter-based approach for integrated on-line aircraft engine performance estimation and gas path fault diagnostics is presented. This technique is specifically designed for underdetermined estimation problems where there are more unknown system parameters representing deterioration and faults than available sensor measurements. A previously developed methodology is applied to optimally design a Kalman filter to estimate a vector of tuning parameters, appropriately sized to enable estimation. The estimated tuning parameters can then be transformed into a larger vector of health parameters representing system performance deterioration and fault effects. The results of this study show that basing fault isolation decisions solely on the estimated health parameter vector does not provide ideal results. Furthermore, expanding the number of the health parameters to address additional gas path faults causes a decrease in the estimation accuracy of those health parameters representative of turbomachinery performance deterioration. However, improved fault isolation performance is demonstrated through direct analysis of the estimated tuning parameters produced by the Kalman filter. This was found to provide equivalent or superior accuracy compared to the conventional fault isolation approach based on the analysis of sensed engine outputs, while simplifying online implementation requirements. Results from the application of these techniques to an aircraft engine simulation are presented and discussed.
Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V
2016-07-15
A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.
NASA Technical Reports Server (NTRS)
Liu, Zhong; Heo, Gil
2015-01-01
Data quality (DQ) has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.) How to obtain DQ info fast and easily, especially quantified info in ROI Existing parameters (random error), literature, DIY, etc.How to apply the knowledge in research and applications.Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.
Research on On-Line Modeling of Fed-Batch Fermentation Process Based on v-SVR
NASA Astrophysics Data System (ADS)
Ma, Yongjun
The fermentation process is very complex and non-linear, many parameters are not easy to measure directly on line, soft sensor modeling is a good solution. This paper introduces v-support vector regression (v-SVR) for soft sensor modeling of fed-batch fermentation process. v-SVR is a novel type of learning machine. It can control the accuracy of fitness and prediction error by adjusting the parameter v. An on-line training algorithm is discussed in detail to reduce the training complexity of v-SVR. The experimental results show that v-SVR has low error rate and better generalization with appropriate v.
An adaptive observer for on-line tool wear estimation in turning, Part I: Theory
NASA Astrophysics Data System (ADS)
Danai, Kourosh; Ulsoy, A. Galip
1987-04-01
On-line sensing of tool wear has been a long-standing goal of the manufacturing engineering community. In the absence of any reliable on-line tool wear sensors, a new model-based approach for tool wear estimation has been proposed. This approach is an adaptive observer, based on force measurement, which uses both parameter and state estimation techniques. The design of the adaptive observer is based upon a dynamic state model of tool wear in turning. This paper (Part I) presents the model, and explains its use as the basis for the adaptive observer design. This model uses flank wear and crater wear as state variables, feed as the input, and the cutting force as the output. The suitability of the model as the basis for adaptive observation is also verified. The implementation of the adaptive observer requires the design of a state observer and a parameter estimator. To obtain the model parameters for tuning the adaptive observer procedures for linearisation of the non-linear model are specified. The implementation of the adaptive observer in turning and experimental results are presented in a companion paper (Part II).
Bootstrap percolation on spatial networks
NASA Astrophysics Data System (ADS)
Gao, Jian; Zhou, Tao; Hu, Yanqing
2015-10-01
Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phisherman is an online software tool that was created to help experimenters study phishing. It can potentially be re-purposed to run other human studies. Phisherman enables studies to be run online, so that users can participate from their own computers. This means that experimenters can get data from subjects in their natural settings. Alternatively, an experimenter can also run the app online in a lab-based setting, if that is desired. The software enables the online deployment of a study that is comprised of three main parts: (1) a consent page, (2) a survey, and (3) an identification task, with instruction/transitionmore » screens between each part, allowing the experimenter to provide the user with instructions and messages. Upon logging in, the subject is taken to the permission page, where they agree to or do not agree to take part in the study. If the subject agrees to participate, then the software randomly chooses between doing the survey first (and identification task second) or the identification task first (and survey second). This is to balance possible order effects in the data. Procedurally, in the identification task, the software shows the stimuli to the subject, and asks if she thinks it is a phish (yes/no) and how confident she is about her answer. The subject is given 5 levels of certainty to select from, labeled "low" (1), to "medium" (3), to "high" (5), with the option of picking a level between low and medium (2), and between medium and high (4). After selecting his/her confidence level, then the "Next" button activates, allowing a user to move to the next email. The software saves a given subject's progress in the identification task, so that she may log in and out of the site. The consent page is a space for the experimenter to provide the subject with human studies board /internal review board information, and to formally consent to participate in the study. The survey is a space for the experimenter to provide questions and spaces for the users to input answers (allowing both multiple-choice and free-answer options). Phisherman includes administrative pages for managing the stimuli and users. This includes a tool for the experimenter to create, preview, edit, delete (if desired), and manage stimuli (emails). The stimuli may include pictures (uploaded to an appropriate folder) and links, for realism. The software includes a safety feature that prevents the user from going to any link location or opening a file/image. Instead of re-directing the subject's browser, the software provides a pop-up box with the URL location of where the user would have gone. Another administrative page may be used to create fake subject accounts for testing the software prior to deployment, as well as to delete subject accounts when necessary. Data from the experiment can be downloaded from another administrative page.« less
NASA Astrophysics Data System (ADS)
Lim, Sungsoo; Lee, Seohyung; Kim, Jun-geon; Lee, Daeho
2018-01-01
The around-view monitoring (AVM) system is one of the major applications of advanced driver assistance systems and intelligent transportation systems. We propose an on-line calibration method, which can compensate misalignments for AVM systems. Most AVM systems use fisheye undistortion, inverse perspective transformation, and geometrical registration methods. To perform these procedures, the parameters for each process must be known; the procedure by which the parameters are estimated is referred to as the initial calibration. However, when only using the initial calibration data, we cannot compensate misalignments, caused by changing equilibria of cars. Moreover, even small changes such as tire pressure levels, passenger weight, or road conditions can affect a car's equilibrium. Therefore, to compensate for this misalignment, additional techniques are necessary, specifically an on-line calibration method. On-line calibration can recalculate homographies, which can correct any degree of misalignment using the unique features of ordinary parking lanes. To extract features from the parking lanes, this method uses corner detection and a pattern matching algorithm. From the extracted features, homographies are estimated using random sample consensus and parameter estimation. Finally, the misaligned epipolar geographies are compensated via the estimated homographies. Thus, the proposed method can render image planes parallel to the ground. This method does not require any designated patterns and can be used whenever cars are placed in a parking lot. The experimental results show the robustness and efficiency of the method.
Tsui, Chun Sing Louis; Gan, John Q; Roberts, Stephen J
2009-03-01
Due to the non-stationarity of EEG signals, online training and adaptation are essential to EEG based brain-computer interface (BCI) systems. Self-paced BCIs offer more natural human-machine interaction than synchronous BCIs, but it is a great challenge to train and adapt a self-paced BCI online because the user's control intention and timing are usually unknown. This paper proposes a novel motor imagery based self-paced BCI paradigm for controlling a simulated robot in a specifically designed environment which is able to provide user's control intention and timing during online experiments, so that online training and adaptation of the motor imagery based self-paced BCI can be effectively investigated. We demonstrate the usefulness of the proposed paradigm with an extended Kalman filter based method to adapt the BCI classifier parameters, with experimental results of online self-paced BCI training with four subjects.
Cavity parameters identification for TESLA control system development
NASA Astrophysics Data System (ADS)
Czarski, Tomasz; Pozniak, Krysztof T.; Romaniuk, Ryszard S.; Simrock, Stefan
2005-08-01
Aim of the control system development for TESLA cavity is a more efficient stabilization of the pulsed, accelerating EM field inside resonator. Cavity parameters identification is an essential task for the comprehensive control algorithm. TESLA cavity simulator has been successfully implemented using high-speed FPGA technology. Electromechanical model of the cavity resonator includes Lorentz force detuning and beam loading. The parameters identification is based on the electrical model of the cavity. The model is represented by state space equation for envelope of the cavity voltage driven by current generator and beam loading. For a given model structure, the over-determined matrix equation is created covering long enough measurement range with the solution according to the least-squares method. A low-degree polynomial approximation is applied to estimate the time-varying cavity detuning during the pulse. The measurement channel distortion is considered, leading to the external cavity model seen by the controller. The comprehensive algorithm of the cavity parameters identification was implemented in the Matlab system with different modes of operation. Some experimental results were presented for different cavity operational conditions. The following considerations have lead to the synthesis of the efficient algorithm for the cavity control system predicted for the potential FPGA technology implementation.
Melkonian, Alexander J; Ham, Lindsay S; Bridges, Ana J; Fugitt, Jessica L
2017-10-01
High rates of sexual victimization among college students necessitate further study of factors associated with sexual assault risk detection. The present study examined how social information processing relates to sexual assault risk detection as a function of sexual assault victimization history. 225 undergraduates (M age = 19.12, SD = 1.44; 66% women). Participants completed an online questionnaire assessing victimization history, an emotion identification task, and a sexual assault risk detection task between June 2013 and May 2014. Emotion identification moderated the association between victimization history and risk detection such that sexual assault survivors with lower emotion identification accuracy also reported the least risk in a sexual assault vignette. Findings suggest that differences in social information processing, specifically recognition of others' emotions, are associated with sexual assault risk detection. College prevention programs could incorporate emotional awareness strategies, particularly for men and women who are sexual assault survivors.
NASA Technical Reports Server (NTRS)
Sliwa, S. M.
1984-01-01
A prime obstacle to the widespread use of adaptive control is the degradation of performance and possible instability resulting from the presence of unmodeled dynamics. The approach taken is to explicitly include the unstructured model uncertainty in the output error identification algorithm. The order of the compensator is successively increased by including identified modes. During this model building stage, heuristic rules are used to test for convergence prior to designing compensators. Additionally, the recursive identification algorithm as extended to multi-input, multi-output systems. Enhancements were also made to reduce the computational burden of an algorithm for obtaining minimal state space realizations from the inexact, multivariate transfer functions which result from the identification process. A number of potential adaptive control applications for this approach are illustrated using computer simulations. Results indicated that when speed of adaptation and plant stability are not critical, the proposed schemes converge to enhance system performance.
On the identifiability of inertia parameters of planar Multi-Body Space Systems
NASA Astrophysics Data System (ADS)
Nabavi-Chashmi, Seyed Yaser; Malaek, Seyed Mohammad-Bagher
2018-04-01
This work describes a new formulation to study the identifiability characteristics of Serially Linked Multi-body Space Systems (SLMBSS). The process exploits the so called "Lagrange Formulation" to develop a linear form of Equations of Motion w.r.t the system Inertia Parameters (IPs). Having developed a specific form of regressor matrix, we aim to expedite the identification process. The new approach allows analytical as well as numerical identification and identifiability analysis for different SLMBSSs' configurations. Moreover, the explicit forms of SLMBSSs identifiable parameters are derived by analyzing the identifiability characteristics of the robot. We further show that any SLMBSS designed with Variable Configurations Joint allows all IPs to be identifiable through comparing two successive identification outcomes. This feature paves the way to design new class of SLMBSS for which accurate identification of all IPs is at hand. Different case studies reveal that proposed formulation provides fast and accurate results, as required by the space applications. Further studies might be necessary for cases where planar-body assumption becomes inaccurate.
System IDentification Programs for AirCraft (SIDPAC)
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2002-01-01
A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.
Online selective kernel-based temporal difference learning.
Chen, Xingguo; Gao, Yang; Wang, Ruili
2013-12-01
In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.
Chuanxiang, Wu; Lian, Xia; Lijie, Liu; Fengli, Qu; Zhiwei, Sun; Xianen, Zhao; Jinmao, You
2016-02-01
A sensitive and efficient method of high performance liquid chromatography using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatization reagent coupled with UV detection (HPLC-UV) and online mass spectrometry identification was established for determination of the most common N-Acetylhexosamines (N-acetyl-d-glucosamine (GlcNAc) and N-acetyl-d-galactosamine (GalNAc)) and N-acetylneuraminic acid (Neu5Ac). In order to obtain the highest liberation level of the three monosaccharides without destruction of Neu5Ac or conversion of GlcNAc/GalNAc to GlcN/GalN in the hydrolysis procedure, the pivotal parameters affecting the liberation of N-acetylhexosamines/Neu5Ac from sample were investigated with response surface methodology (RSM). Under the optimized condition, maximum yield was obtained. The effects of key parameters on derivatization, separation and detection were also investigated. At optimized conditions, three monosaccharides were labeled fast and entirely, and all derivatives exhibited a good baseline resolution and high detection sensitivity. The developed method was linear over the calibration range 0.25-12μM, with R(2)>0.9991. The detection limits of the method were between 0.48 and 2.01pmol. Intra- and inter-day precisions for the three monosaccharides (GlcNAc, GalNAc and Neu5Ac) were found to be in the range of 3.07-4.02% and 3.69-4.67%, respectively. Individual monosaccharide recovery from spiked milk was in the range of 81%-97%. The sensitivity of the method, the facility of the derivatization procedure and the reliability of the hydrolysis conditions suggest the proposed method has a high potential for utilization in routine trace N-acetylhexosamines and Neu5Ac analysis in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.
MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yipeng
In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-upmore » injection efficiency is also improved.« less
Performance Evaluation and Parameter Identification on DROID III
NASA Technical Reports Server (NTRS)
Plumb, Julianna J.
2011-01-01
The DROID III project consisted of two main parts. The former, performance evaluation, focused on the performance characteristics of the aircraft such as lift to drag ratio, thrust required for level flight, and rate of climb. The latter, parameter identification, focused on finding the aerodynamic coefficients for the aircraft using a system that creates a mathematical model to match the flight data of doublet maneuvers and the aircraft s response. Both portions of the project called for flight testing and that data is now available on account of this project. The conclusion of the project is that the performance evaluation data is well-within desired standards but could be improved with a thrust model, and that parameter identification is still in need of more data processing but seems to produce reasonable results thus far.
NASA Astrophysics Data System (ADS)
Chen, B.; Su, J. H.; Guo, L.; Chen, J.
2017-06-01
This paper puts forward a maximum power estimation method based on the photovoltaic array (PVA) model to solve the optimization problems about group control of the PV water pumping systems (PVWPS) at the maximum power point (MPP). This method uses the improved genetic algorithm (GA) for model parameters estimation and identification in view of multi P-V characteristic curves of a PVA model, and then corrects the identification results through least square method. On this basis, the irradiation level and operating temperature under any condition are able to estimate so an accurate PVA model is established and the MPP none-disturbance estimation is achieved. The simulation adopts the proposed GA to determine parameters, and the results verify the accuracy and practicability of the methods.
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Cooper, J. E.; Wright, J. R.
1987-01-01
A modification to the Eigensystem Realization Algorithm (ERA) for modal parameter identification is presented in this paper. The ERA minimum order realization approach using singular value decomposition is combined with the philosophy of the Correlation Fit method in state space form such that response data correlations rather than actual response values are used for modal parameter identification. This new method, the ERA using data correlations (ERA/DC), reduces bias errors due to noise corruption significantly without the need for model overspecification. This method is tested using simulated five-degree-of-freedom system responses corrupted by measurement noise. It is found for this case that, when model overspecification is permitted and a minimum order solution obtained via singular value truncation, the results from the two methods are of similar quality.
Mazumder, Avik; Gupta, Hemendra K; Garg, Prabhat; Jain, Rajeev; Dubey, Devendra K
2009-07-03
This paper details an on-flow liquid chromatography-ultraviolet-nuclear magnetic resonance (LC-UV-NMR) method for the retrospective detection and identification of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the markers of the toxic nerve agents for verification of the Chemical Weapons Convention (CWC). Initially, the LC-UV-NMR parameters were optimized for benzyl derivatives of the APAs and AAPAs. The optimized parameters include stationary phase C(18), mobile phase methanol:water 78:22 (v/v), UV detection at 268nm and (1)H NMR acquisition conditions. The protocol described herein allowed the detection of analytes through acquisition of high quality NMR spectra from the aqueous solution of the APAs and AAPAs with high concentrations of interfering background chemicals which have been removed by preceding sample preparation. The reported standard deviation for the quantification is related to the UV detector which showed relative standard deviations (RSDs) for quantification within +/-1.1%, while lower limit of detection upto 16mug (in mug absolute) for the NMR detector. Finally the developed LC-UV-NMR method was applied to identify the APAs and AAPAs in real water samples, consequent to solid phase extraction and derivatization. The method is fast (total experiment time approximately 2h), sensitive, rugged and efficient.
Online social network data as sociometric markers.
Binder, Jens F; Buglass, Sarah L; Betts, Lucy R; Underwood, Jean D M
2017-10-01
Data from online social networks carry enormous potential for psychological research, yet their use and the ethical implications thereof are currently hotly debated. The present work aims to outline in detail the unique information richness of this data type and, in doing so, to support researchers when deciding on ethically appropriate ways of collecting, storing, publishing, and sharing data from online sources. Focusing on the very nature of social networks, their structural characteristics, and depth of information, we provide a detailed and accessible account of the challenges associated with data management and data storage. In particular, the general nonanonymity of network data sets is discussed, and an approach is developed to quantify the level of uniqueness that a particular online network bestows upon the individual maintaining it. Using graph enumeration techniques, we show that comparatively sparse information on a network is suitable as a sociometric marker that allows for the identification of an individual from the global population of online users. The impossibility of anonymizing specific types of network data carries implications for ethical guidelines and research practice. At the same time, network uniqueness opens up opportunities for novel research in psychology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Workflow for Criticality Assessment Applied in Biopharmaceutical Process Validation Stage 1.
Zahel, Thomas; Marschall, Lukas; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Mueller, Eric M; Murphy, Patrick; Natschläger, Thomas; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph
2017-10-12
Identification of critical process parameters that impact product quality is a central task during regulatory requested process validation. Commonly, this is done via design of experiments and identification of parameters significantly impacting product quality (rejection of the null hypothesis that the effect equals 0). However, parameters which show a large uncertainty and might result in an undesirable product quality limit critical to the product, may be missed. This might occur during the evaluation of experiments since residual/un-modelled variance in the experiments is larger than expected a priori. Estimation of such a risk is the task of the presented novel retrospective power analysis permutation test. This is evaluated using a data set for two unit operations established during characterization of a biopharmaceutical process in industry. The results show that, for one unit operation, the observed variance in the experiments is much larger than expected a priori, resulting in low power levels for all non-significant parameters. Moreover, we present a workflow of how to mitigate the risk associated with overlooked parameter effects. This enables a statistically sound identification of critical process parameters. The developed workflow will substantially support industry in delivering constant product quality, reduce process variance and increase patient safety.
Identification of influential users by neighbors in online social networks
NASA Astrophysics Data System (ADS)
Sheikhahmadi, Amir; Nematbakhsh, Mohammad Ali; Zareie, Ahmad
2017-11-01
Identification and ranking of influential users in social networks for the sake of news spreading and advertising has recently become an attractive field of research. Given the large number of users in social networks and also the various relations that exist among them, providing an effective method to identify influential users has been gradually considered as an essential factor. In most of the already-provided methods, those users who are located in an appropriate structural position of the network are regarded as influential users. These methods do not usually pay attention to the interactions among users, and also consider those relations as being binary in nature. This paper, therefore, proposes a new method to identify influential users in a social network by considering those interactions that exist among the users. Since users tend to act within the frame of communities, the network is initially divided into different communities. Then the amount of interaction among users is used as a parameter to set the weight of relations existing within the network. Afterward, by determining the neighbors' role for each user, a two-level method is proposed for both detecting users' influence and also ranking them. Simulation and experimental results on twitter data shows that those users who are selected by the proposed method, comparing to other existing ones, are distributed in a more appropriate distance. Moreover, the proposed method outperforms the other ones in terms of both the influential speed and capacity of the users it selects.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
Identification and Forecasting in Mortality Models
Nielsen, Jens P.
2014-01-01
Mortality models often have inbuilt identification issues challenging the statistician. The statistician can choose to work with well-defined freely varying parameters, derived as maximal invariants in this paper, or with ad hoc identified parameters which at first glance seem more intuitive, but which can introduce a number of unnecessary challenges. In this paper we describe the methodological advantages from using the maximal invariant parameterisation and we go through the extra methodological challenges a statistician has to deal with when insisting on working with ad hoc identifications. These challenges are broadly similar in frequentist and in Bayesian setups. We also go through a number of examples from the literature where ad hoc identifications have been preferred in the statistical analyses. PMID:24987729
Forsyth, Craig; Mason, Barbara
2017-05-01
Despite the proposed benefits of applying shared and distributed leadership models in healthcare, few studies have explored the leadership beliefs of clinicians and ascertained whether differences exist between professions. The current article aims to address these gaps and, additionally, examine whether clinicians' leadership beliefs are associated with the strength of their professional and team identifications. An online survey was responded to by 229 healthcare workers from community interprofessional teams in mental health settings across the East of England. No differences emerged between professional groups in their leadership beliefs; all professions reported a high level of agreement with shared leadership. A positive association emerged between professional identification and shared leadership in that participants who expressed the strongest level of profession identification also reported the greatest agreement with shared leadership. The same association was demonstrated for team identification and shared leadership. The findings highlight the important link between group identification and leadership beliefs, suggesting that strategies that promote strong professional and team identifications in interprofessional teams are likely to be conducive to clinicians supporting principles of shared leadership. Future research is needed to strengthen this link and examine the leadership practices of healthcare workers.
THE ON-SITE ON-LINE TOOL FOR SITE ASSESSMENT CALCULATIONS
State and Federal Agency personnel often receive modeling reports with undocumented parameter values. The reports give parameter values, but often no indication if the value was measured, taken from the literature, the result of calibration, or some type of estimate. Recent examp...
NASA Astrophysics Data System (ADS)
Zhang, Zhongya; Pan, Bing; Grédiac, Michel; Song, Weidong
2018-04-01
The virtual fields method (VFM) is generally used with two-dimensional digital image correlation (2D-DIC) or grid method (GM) for identifying constitutive parameters. However, when small out-of-plane translation/rotation occurs to the test specimen, 2D-DIC and GM are prone to yield inaccurate measurements, which further lessen the accuracy of the parameter identification using VFM. In this work, an easy-to-implement but effective "special" stereo-DIC (SS-DIC) method is proposed for accuracy-enhanced VFM identification. The SS-DIC can not only deliver accurate deformation measurement without being affected by unavoidable out-of-plane movement/rotation of a test specimen, but can also ensure evenly distributed calculation data in space, which leads to simple data processing. Based on the accurate kinematics fields with evenly distributed measured points determined by SS-DIC method, constitutive parameters can be identified by VFM with enhanced accuracy. Uniaxial tensile tests of a perforated aluminum plate and pure shear tests of a prismatic aluminum specimen verified the effectiveness and accuracy of the proposed method. Experimental results show that the constitutive parameters identified by VFM using SS-DIC are more accurate and stable than those identified by VFM using 2D-DIC. It is suggested that the proposed SS-DIC can be used as a standard measuring tool for mechanical identification using VFM.
Zhang, Zhi-Feng; Gao, Zhan; Liu, Yuan-Yuan; Jiang, Feng-Chun; Yang, Yan-Li; Ren, Yu-Fen; Yang, Hong-Jun; Yang, Kun; Zhang, Xiao-Dong
2012-01-01
Train wheel sets must be periodically inspected for possible or actual premature failures and it is very significant to record the wear history for the full life of utilization of wheel sets. This means that an online measuring system could be of great benefit to overall process control. An online non-contact method for measuring a wheel set's geometric parameters based on the opto-electronic measuring technique is presented in this paper. A charge coupled device (CCD) camera with a selected optical lens and a frame grabber was used to capture the image of the light profile of the wheel set illuminated by a linear laser. The analogue signals of the image were transformed into corresponding digital grey level values. The 'mapping function method' is used to transform an image pixel coordinate to a space coordinate. The images of wheel sets were captured when the train passed through the measuring system. The rim inside thickness and flange thickness were measured and analyzed. The spatial resolution of the whole image capturing system is about 0.33 mm. Theoretic and experimental results show that the online measurement system based on computer vision can meet wheel set measurement requirements.
Robust linear parameter-varying control of blood pressure using vasoactive drugs
NASA Astrophysics Data System (ADS)
Luspay, Tamas; Grigoriadis, Karolos
2015-10-01
Resuscitation of emergency care patients requires fast restoration of blood pressure to a target value to achieve hemodynamic stability and vital organ perfusion. A robust control design methodology is presented in this paper for regulating the blood pressure of hypotensive patients by means of the closed-loop administration of vasoactive drugs. To this end, a dynamic first-order delay model is utilised to describe the vasoactive drug response with varying parameters that represent intra-patient and inter-patient variability. The proposed framework consists of two components: first, an online model parameter estimation is carried out using a multiple-model extended Kalman-filter. Second, the estimated model parameters are used for continuously scheduling a robust linear parameter-varying (LPV) controller. The closed-loop behaviour is characterised by parameter-varying dynamic weights designed to regulate the mean arterial pressure to a target value. Experimental data of blood pressure response of anesthetised pigs to phenylephrine injection are used for validating the LPV blood pressure models. Simulation studies are provided to validate the online model estimation and the LPV blood pressure control using phenylephrine drug injection models representing patients showing sensitive, nominal and insensitive response to the drug.
On the identification of cohesive parameters for printed metal-polymer interfaces
NASA Astrophysics Data System (ADS)
Heinrich, Felix; Langner, Hauke H.; Lammering, Rolf
2017-05-01
The mechanical behavior of printed electronics on fiber reinforced composites is investigated. A methodology based on cohesive zone models is employed, considering interfacial strengths, stiffnesses and critical strain energy release rates. A double cantilever beam test and an end notched flexure test are carried out to experimentally determine critical strain energy release rates under fracture modes I and II. Numerical simulations are performed in Abaqus 6.13 to model both tests. Applying the simulations, an inverse parameter identification is run to determine the full set of cohesive parameters.
NASA Astrophysics Data System (ADS)
Singh, Rupinder
2018-02-01
Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.
Zenker, Sven
2010-08-01
Combining mechanistic mathematical models of physiology with quantitative observations using probabilistic inference may offer advantages over established approaches to computerized decision support in acute care medicine. Particle filters (PF) can perform such inference successively as data becomes available. The potential of PF for real-time state estimation (SE) for a model of cardiovascular physiology is explored using parallel computers and the ability to achieve joint state and parameter estimation (JSPE) given minimal prior knowledge tested. A parallelized sequential importance sampling/resampling algorithm was implemented and its scalability for the pure SE problem for a non-linear five-dimensional ODE model of the cardiovascular system evaluated on a Cray XT3 using up to 1,024 cores. JSPE was implemented using a state augmentation approach with artificial stochastic evolution of the parameters. Its performance when simultaneously estimating the 5 states and 18 unknown parameters when given observations only of arterial pressure, central venous pressure, heart rate, and, optionally, cardiac output, was evaluated in a simulated bleeding/resuscitation scenario. SE was successful and scaled up to 1,024 cores with appropriate algorithm parametrization, with real-time equivalent performance for up to 10 million particles. JSPE in the described underdetermined scenario achieved excellent reproduction of observables and qualitative tracking of enddiastolic ventricular volumes and sympathetic nervous activity. However, only a subset of the posterior distributions of parameters concentrated around the true values for parts of the estimated trajectories. Parallelized PF's performance makes their application to complex mathematical models of physiology for the purpose of clinical data interpretation, prediction, and therapy optimization appear promising. JSPE in the described extremely underdetermined scenario nevertheless extracted information of potential clinical relevance from the data in this simulation setting. However, fully satisfactory resolution of this problem when minimal prior knowledge about parameter values is available will require further methodological improvements, which are discussed.
A free-access online key to identify Amazonian ferns.
Zuquim, Gabriela; Tuomisto, Hanna; Prado, Jefferson
2017-01-01
There is urgent need for more data on species distributions in order to improve conservation planning. A crucial but challenging aspect of producing high-quality data is the correct identification of organisms. Traditional printed floras and dichotomous keys are difficult to use for someone not familiar with the technical jargon. In poorly known areas, such as Amazonia, they also become quickly outdated as new species are described or ranges extended. Recently, online tools have allowed developing dynamic, interactive, and accessible keys that make species identification possible for a broader public. In order to facilitate identifying plants collected in field inventories, we developed an internet-based free-access tool to identify Amazonian fern species. We focused on ferns, because they are easy to collect and their edaphic affinities are relatively well known, so they can be used as an indicator group for habitat mapping. Our key includes 302 terrestrial and aquatic entities mainly from lowland Amazonian forests. It is a free-access key, so the user can freely choose which morphological features to use and in which order to assess them. All taxa are richly illustrated, so specimens can be identified by a combination of character choices, visual comparison, and written descriptions. The identification tool was developed in Lucid 3.5 software and it is available at http://keyserver.lucidcentral.org:8080/sandbox/keys.jsp.
Freedom, invisibility, and community: a qualitative study of self-identification with asexuality.
MacNeela, Pádraig; Murphy, Aisling
2015-04-01
A significant body of research is now emerging on the subjective meaning of asexuality. This study explored how self-identification as asexual is managed, both as a threat to the self-concept and a source of personal meaning. A total of 66 self-identified asexuals were recruited from an asexuality internet community and responded to open-ended questions on an online survey. Of these, 31 participants identified as female, 15 as male, 18 gave a different label such as genderqueer or androgynous, and two did not provide information on gender. A thematic analysis of the transcripts resulted in three themes. Socially, asexuality attracted denial and resistance due to incompatibility with heteronormative societal expectations. Despite the threat to self-integrity arising from asexuality being socially rejected, it was typically assimilated as a valued and meaningful orientation on an intra-personal level, aided by information and support from the online community. A second level of threat to self arose whereby other self-identifications, especially gender, had to be reconciled with a non-sexual persona. The accommodation made to other elements of the self was reflected in complex sub-identities. The findings were interpreted using identity process theory to understand how threats arising from self-identifying as asexual are managed. Although asexuality emerges as an orientation to sexuality that can be reconciled with the self, its invisibility or outright rejection in society constitute an on-going challenge.
A free-access online key to identify Amazonian ferns
Zuquim, Gabriela; Tuomisto, Hanna; Prado, Jefferson
2017-01-01
Abstract There is urgent need for more data on species distributions in order to improve conservation planning. A crucial but challenging aspect of producing high-quality data is the correct identification of organisms. Traditional printed floras and dichotomous keys are difficult to use for someone not familiar with the technical jargon. In poorly known areas, such as Amazonia, they also become quickly outdated as new species are described or ranges extended. Recently, online tools have allowed developing dynamic, interactive, and accessible keys that make species identification possible for a broader public. In order to facilitate identifying plants collected in field inventories, we developed an internet-based free-access tool to identify Amazonian fern species. We focused on ferns, because they are easy to collect and their edaphic affinities are relatively well known, so they can be used as an indicator group for habitat mapping. Our key includes 302 terrestrial and aquatic entities mainly from lowland Amazonian forests. It is a free-access key, so the user can freely choose which morphological features to use and in which order to assess them. All taxa are richly illustrated, so specimens can be identified by a combination of character choices, visual comparison, and written descriptions. The identification tool was developed in Lucid 3.5 software and it is available at http://keyserver.lucidcentral.org:8080/sandbox/keys.jsp. PMID:28781548
Simultaneous Intrinsic and Extrinsic Parameter Identification of a Hand-Mounted Laser-Vision Sensor
Lee, Jong Kwang; Kim, Kiho; Lee, Yongseok; Jeong, Taikyeong
2011-01-01
In this paper, we propose a simultaneous intrinsic and extrinsic parameter identification of a hand-mounted laser-vision sensor (HMLVS). A laser-vision sensor (LVS), consisting of a camera and a laser stripe projector, is used as a sensor component of the robotic measurement system, and it measures the range data with respect to the robot base frame using the robot forward kinematics and the optical triangulation principle. For the optimal estimation of the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. Best-fit parameters, including both the intrinsic and extrinsic parameters of the HMLVS, are simultaneously obtained based on the least-squares criterion. From the simulation and experimental results, it is shown that the parameter identification problem considered was characterized by a highly multimodal landscape; thus, the global optimization technique such as a particle swarm optimization can be a promising tool to identify the model parameters for a HMLVS, while the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum. The proposed optimization method does not require good initial guesses of the system parameters to converge at a very stable solution and it could be applied to a kinematically dissimilar robot system without loss of generality. PMID:22164104
Gait Characteristic Analysis and Identification Based on the iPhone's Accelerometer and Gyrometer
Sun, Bing; Wang, Yang; Banda, Jacob
2014-01-01
Gait identification is a valuable approach to identify humans at a distance. In this paper, gait characteristics are analyzed based on an iPhone's accelerometer and gyrometer, and a new approach is proposed for gait identification. Specifically, gait datasets are collected by the triaxial accelerometer and gyrometer embedded in an iPhone. Then, the datasets are processed to extract gait characteristic parameters which include gait frequency, symmetry coefficient, dynamic range and similarity coefficient of characteristic curves. Finally, a weighted voting scheme dependent upon the gait characteristic parameters is proposed for gait identification. Four experiments are implemented to validate the proposed scheme. The attitude and acceleration solutions are verified by simulation. Then the gait characteristics are analyzed by comparing two sets of actual data, and the performance of the weighted voting identification scheme is verified by 40 datasets of 10 subjects. PMID:25222034
Xie, Yuanlong; Tang, Xiaoqi; Song, Bao; Zhou, Xiangdong; Guo, Yixuan
2018-04-01
In this paper, data-driven adaptive fractional order proportional integral (AFOPI) control is presented for permanent magnet synchronous motor (PMSM) servo system perturbed by measurement noise and data dropouts. The proposed method directly exploits the closed-loop process data for the AFOPI controller design under unknown noise distribution and data missing probability. Firstly, the proposed method constructs the AFOPI controller tuning problem as a parameter identification problem using the modified l p norm virtual reference feedback tuning (VRFT). Then, iteratively reweighted least squares is integrated into the l p norm VRFT to give a consistent compensation solution for the AFOPI controller. The measurement noise and data dropouts are estimated and eliminated by feedback compensation periodically, so that the AFOPI controller is updated online to accommodate the time-varying operating conditions. Moreover, the convergence and stability are guaranteed by mathematical analysis. Finally, the effectiveness of the proposed method is demonstrated both on simulations and experiments implemented on a practical PMSM servo system. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Lei; Yan, Jihong; Chen, Wanqun; An, Shi
2018-03-01
This paper proposed a novel spatial frequency analysis method for the investigation of potassium dihydrogen phosphate (KDP) crystal surface based on an improved bidimensional empirical mode decomposition (BEMD) method. Aiming to eliminate end effects of the BEMD method and improve the intrinsic mode functions (IMFs) for the efficient identification of texture features, a denoising process was embedded in the sifting iteration of BEMD method. With removing redundant information in decomposed sub-components of KDP crystal surface, middle spatial frequencies of the cutting and feeding processes were identified. Comparative study with the power spectral density method, two-dimensional wavelet transform (2D-WT), as well as the traditional BEMD method, demonstrated that the method developed in this paper can efficiently extract texture features and reveal gradient development of KDP crystal surface. Furthermore, the proposed method was a self-adaptive data driven technique without prior knowledge, which overcame shortcomings of the 2D-WT model such as the parameters selection. Additionally, the proposed method was a promising tool for the application of online monitoring and optimal control of precision machining process.
Person-Centered Emotional Support and Gender Attributions in Computer-Mediated Communication
ERIC Educational Resources Information Center
Spottswood, Erin L.; Walther, Joseph B.; Holmstrom, Amanda J.; Ellison, Nicole B.
2013-01-01
Without physical appearance, identification in computer-mediated communication is relatively ambiguous and may depend on verbal cues such as usernames, content, and/or style. This is important when gender-linked differences exist in the effects of messages, as in emotional support. This study examined gender attribution for online support…
ERIC Educational Resources Information Center
Wladis, Claire; Offenholley, Kathleen; George, Michael
2014-01-01
This study hypothesizes that course passing rates in remedial mathematics classes can be improved through early identification of at-risk students using a department-wide midterm, followed by a mandated set of online intervention assignments incorporating immediate and elaborate feedback for all students identified as "at-risk" by their…
High-throughput non-targeted analyses (NTA) rely on chemical reference databases for tentative identification of observed chemical features. Many of these databases and online resources incorporate chemical structure data not in a form that is readily observed by mass spectromet...
Bee Mite ID - an online resource on identification of mites associated with bees of the World
USDA-ARS?s Scientific Manuscript database
Parasitic mites are known to be a factor in recent declines in bee pollinator populations. In particular, Varroa destructor, an introduced parasite and disease vector, has decimated colonies of the western honey bee, one of the most important agricultural pollinators in the world. Further, global tr...
Links are provided for the National Wetlands Inventory, National Hydrography Dataset, and the WorldClim-Global Climate Data source data websitesThis dataset is associated with the following publication:Lane , C., and E. D'Amico. Identification of Putative Geographically Isolated Wetlands of the Conterminous United States. JAWRA. American Water Resources Association, Middleburg, VA, USA, online, (2016).
Benchmark Eye Movement Effects during Natural Reading in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Howard, Philippa L.; Liversedge, Simon P.; Benson, Valerie
2017-01-01
In 2 experiments, eye tracking methodology was used to assess on-line lexical, syntactic and semantic processing in autism spectrum disorder (ASD). In Experiment 1, lexical identification was examined by manipulating the frequency of target words. Both typically developed (TD) and ASD readers showed normal frequency effects, suggesting that the…
ERIC Educational Resources Information Center
Makitalo-Siegl, Kati; Fischer, Frank
2011-01-01
This special section focuses on help seeking in a wide range of learning environments, from classrooms to online forums. Previous research has rather restrictively focused on the identification of personal characteristics that predict whether or not learners seek help under certain conditions. However, help-seeking research has begun to broaden…
ERIC Educational Resources Information Center
Pai, Pei-Yu; Tsai, Hsien-Tung
2011-01-01
Extant studies generally recognise that virtual community building is an effective marketing programme for forging deep and enduring affective bonds with consumers. This study extends previous research by proposing and testing a model that investigates key mediating processes (via trust, satisfaction and identification) that underlie the…
Figeys, Daniel; Fai, Stephen; Bennett, Steffany A. L.
2013-01-01
Motivation: Establishing phospholipid identities in large lipidomic datasets is a labour-intensive process. Where genomics and proteomics capitalize on sequence-based signatures, glycerophospholipids lack easily definable molecular fingerprints. Carbon chain length, degree of unsaturation, linkage, and polar head group identity must be calculated from mass to charge (m/z) ratios under defined mass spectrometry (MS) conditions. Given increasing MS sensitivity, many m/z values are not represented in existing prediction engines. To address this need, Visualization and Phospholipid Identification is a web-based application that returns all theoretically possible phospholipids for any m/z value and MS condition. Visualization algorithms produce multiple chemical structure files for each species. Curated lipids detected by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics are provided as high-resolution structures. Availability: VaLID is available through the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics resources web site at https://www.med.uottawa.ca/lipidomics/resources.html. Contacts: lipawrd@uottawa.ca Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23162086
Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng
2013-07-01
In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.
1993-08-01
Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.
Real-time energy-saving metro train rescheduling with primary delay identification
Li, Keping; Schonfeld, Paul
2018-01-01
This paper aims to reschedule online metro trains in delay scenarios. A graph representation and a mixed integer programming model are proposed to formulate the optimization problem. The solution approach is a two-stage optimization method. In the first stage, based on a proposed train state graph and system analysis, the primary and flow-on delays are specifically analyzed and identified with a critical path algorithm. For the second stage a hybrid genetic algorithm is designed to optimize the schedule, with the delay identification results as input. Then, based on the infrastructure data of Beijing Subway Line 4 of China, case studies are presented to demonstrate the effectiveness and efficiency of the solution approach. The results show that the algorithm can quickly and accurately identify primary delays among different types of delays. The economic cost of energy consumption and total delay is considerably reduced (by more than 10% in each case). The computation time of the Hybrid-GA is low enough for rescheduling online. Sensitivity analyses further demonstrate that the proposed approach can be used as a decision-making support tool for operators. PMID:29474471
Development and system identification of a light unmanned aircraft for flying qualities research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, M.E.; Andrisani, D. II
This paper describes the design, construction, flight testing and system identification of a light weight remotely piloted aircraft and its use in studying flying qualities in the longitudinal axis. The short period approximation to the longitudinal dynamics of the aircraft was used. Parameters in this model were determined a priori using various empirical estimators. These parameters were then estimated from flight data using a maximum likelihood parameter identification method. A comparison of the parameter values revealed that the stability derivatives obtained from the empirical estimators were reasonably close to the flight test results. However, the control derivatives determined by themore » empirical estimators were too large by a factor of two. The aircraft was also flown to determine how the longitudinal flying qualities of light weight remotely piloted aircraft compared to full size manned aircraft. It was shown that light weight remotely piloted aircraft require much faster short period dynamics to achieve level I flying qualities in an up-and-away flight task.« less
Modern control concepts in hydrology
NASA Technical Reports Server (NTRS)
Duong, N.; Johnson, G. R.; Winn, C. B.
1974-01-01
Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
Linear system identification via backward-time observer models
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1992-01-01
Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.
On-line hemodiafiltration. Gold standard or top therapy?
Passlick-Deetjen, Jutta; Pohlmeier, Robert
2002-01-01
In summary, on-line HDF is an extracorporeal blood purification therapy with increased convective removal of uremic toxins as compared to the most frequently used low- or high-flux HD therapy. The clinical advantages of on-line HDF have shown to be dose dependent, which makes on-line HDF superior to other therapies with less convective solute removal. Among the therapies with high convective solute removal, i.e. on-line HDF, on-line HF and double high-flux dialysis, it is difficult to finally decide on the best therapy, as direct comparisons of these therapies are not performed. Theoretical considerations like the relative to on-line HDF lower achievable Kt/Vurea with on-line HF, allow to state that on-line HDF is the top therapy now available for patients with ESRD. A gold standard may be defined as something with which everything else is compared if one tries to establish it in the respective field. In order to declare on-line HDF as the gold standard in renal replacement therapy, we need more direct comparisons of on-line HDF with other therapies, including mortality as an outcome parameter. However, based on our current knowledge, it does not seem to be too speculative that high-quality clinical studies will establish on-line HDF in the next years as the new gold standard in renal replacement therapy.
Optimization of parameters for coverage of low molecular weight proteins
Müller, Stephan A.; Kohajda, Tibor; Findeiß, Sven; Stadler, Peter F.; Washietl, Stefan; Kellis, Manolis; von Bergen, Martin
2010-01-01
Proteins with molecular weights of <25 kDa are involved in major biological processes such as ribosome formation, stress adaption (e.g., temperature reduction) and cell cycle control. Despite their importance, the coverage of smaller proteins in standard proteome studies is rather sparse. Here we investigated biochemical and mass spectrometric parameters that influence coverage and validity of identification. The underrepresentation of low molecular weight (LMW) proteins may be attributed to the low numbers of proteolytic peptides formed by tryptic digestion as well as their tendency to be lost in protein separation and concentration/desalting procedures. In a systematic investigation of the LMW proteome of Escherichia coli, a total of 455 LMW proteins (27% of the 1672 listed in the SwissProt protein database) were identified, corresponding to a coverage of 62% of the known cytosolic LMW proteins. Of these proteins, 93 had not yet been functionally classified, and five had not previously been confirmed at the protein level. In this study, the influences of protein extraction (either urea or TFA), proteolytic digestion (solely, and the combined usage of trypsin and AspN as endoproteases) and protein separation (gel- or non-gel-based) were investigated. Compared to the standard procedure based solely on the use of urea lysis buffer, in-gel separation and tryptic digestion, the complementary use of TFA for extraction or endoprotease AspN for proteolysis permits the identification of an extra 72 (32%) and 51 proteins (23%), respectively. Regarding mass spectrometry analysis with an LTQ Orbitrap mass spectrometer, collision-induced fragmentation (CID and HCD) and electron transfer dissociation using the linear ion trap (IT) or the Orbitrap as the analyzer were compared. IT-CID was found to yield the best identification rate, whereas IT-ETD provided almost comparable results in terms of LMW proteome coverage. The high overlap between the proteins identified with IT-CID and IT-ETD allowed the validation of 75% of the identified proteins using this orthogonal fragmentation technique. Furthermore, a new approach to evaluating and improving the completeness of protein databases that utilizes the program RNAcode was introduced and examined. Electronic supplementary material The online version of this article (doi:10.1007/s00216-010-4093-x) contains supplementary material, which is available to authorized users. PMID:20803007
NASA Astrophysics Data System (ADS)
Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas
2014-05-01
Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.
Blind identification of the kinetic parameters in three-compartment models
NASA Astrophysics Data System (ADS)
Riabkov, Dmitri Y.; Di Bella, Edward V. R.
2004-03-01
Quantified knowledge of tissue kinetic parameters in the regions of the brain and other organs can offer information useful in clinical and research applications. Dynamic medical imaging with injection of radioactive or paramagnetic tracer can be used for this measurement. The kinetics of some widely used tracers such as [18F]2-fluoro-2-deoxy-D-glucose can be described by a three-compartment physiological model. The kinetic parameters of the tissue can be estimated from dynamically acquired images. Feasibility of estimation by blind identification, which does not require knowledge of the blood input, is considered analytically and numerically in this work for the three-compartment type of tissue response. The non-uniqueness of the two-region case for blind identification of kinetic parameters in three-compartment model is shown; at least three regions are needed for the blind identification to be unique. Numerical results for the accuracy of these blind identification methods in different conditions were considered. Both a separable variables least-squares (SLS) approach and an eigenvector-based algorithm for multichannel blind deconvolution approach were used. The latter showed poor accuracy. Modifications for non-uniform time sampling were also developed. Also, another method which uses a model for the blood input was compared. Results for the macroparameter K, which reflects the metabolic rate of glucose usage, using three regions with noise showed comparable accuracy for the separable variables least squares method and for the input model-based method, and slightly worse accuracy for SLS with the non-uniform sampling modification.
Experimental validation of a new heterogeneous mechanical test design
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.
Adaptive control of nonlinear system using online error minimum neural networks.
Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei
2016-11-01
In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Automatic identification of abstract online groups
Engel, David W; Gregory, Michelle L; Bell, Eric B; Cowell, Andrew J; Piatt, Andrew W
2014-04-15
Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.
Mathematics and online learning experiences: a gateway site for engineering students
NASA Astrophysics Data System (ADS)
Masouros, Spyridon D.; Alpay, Esat
2010-03-01
This paper focuses on the preliminary design of a multifaceted computer-based mathematics resource for undergraduate and pre-entry engineering students. Online maths resources, while attractive in their flexibility of delivery, have seen variable interest from students and teachers alike. Through student surveys and wide consultations, guidelines have been developed for effectively collating and integrating learning, support, application and diagnostic tools to produce an Engineer's Mathematics Gateway. Specific recommendations include: the development of a shared database of engineering discipline-specific problems and examples; the identification of, and resource development for, troublesome mathematics topics which encompass ideas of threshold concepts and mastery components; the use of motivational and promotional material to raise student interest in learning mathematics in an engineering context; the use of general and lecture-specific concept maps and matrices to identify the needs and relevance of mathematics to engineering topics; and further exploration of the facilitation of peer-based learning through online resources.
Online-Based Approaches to Identify Real Journals and Publishers from Hijacked Ones.
Asadi, Amin; Rahbar, Nader; Asadi, Meisam; Asadi, Fahime; Khalili Paji, Kokab
2017-02-01
The aim of the present paper was to introduce some online-based approaches to evaluate scientific journals and publishers and to differentiate them from the hijacked ones, regardless of their disciplines. With the advent of open-access journals, many hijacked journals and publishers have deceitfully assumed the mantle of authenticity in order to take advantage of researchers and students. Although these hijacked journals and publishers can be identified through checking their advertisement techniques and their websites, these ways do not always result in their identification. There exist certain online-based approaches, such as using Master Journal List provided by Thomson Reuters, and Scopus database, and using the DOI of a paper, to certify the realness of a journal or publisher. It is indispensable that inexperienced students and researchers know these methods so as to identify hijacked journals and publishers with a higher level of probability.
Novel Psychoactive Substances (NPS): a Study on Persian Language Websites.
Bigdeli, Imanollah; Corazza, Ornella; Aslanpour, Zoe; Schifano, Fabrizio
2013-01-01
During the past few years, there has been an increasing recognition that Internet is playing a significant role in the synthesis, the distribution and the consumption of Novel Psychoactive Substances (NPS).The aim of this study was to assess the online availability of NPS in Persian language websites. The Google search engine was used to carry out an accurate qualitative assessment of information available on NPS in a sample of 104 websites. The monitoring has led to the identification of 14 NPS including herbal, synthetic, pharmaceutical and combination drugs that have been sold online. The availability of online marketing of NPS in Persian language websites may constitute a public health challenge at least across three Farsi-speaking countries in the Middle East. Hence, descriptions of this phenomenon are valuable to clinicians and health professional in this region. Further international collaborative efforts may be able to tackle the growth and expansion of regular offer of NPS.
On-Line Tracking Controller for Brushless DC Motor Drives Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed
1996-01-01
A real-time control architecture is developed for time-varying nonlinear brushless dc motors operating in a high performance drives environment. The developed control architecture possesses the capabilities of simultaneous on-line identification and control. The dynamics of the motor are modeled on-line and controlled using an artificial neural network, as the system runs. The control architecture combines the experience and dependability of adaptive tracking systems with potential and promise of the neural computing technology. The sensitivity of real-time controller to parametric changes that occur during training is investigated. Such changes are usually manifested by rapid changes in the load of the brushless motor drives. This sudden change in the external load is simulated for the sigmoidal and sinusoidal reference tracks. The ability of the neuro-controller to maintain reasonable tracking accuracy in the presence of external noise is also verified for a number of desired reference trajectories.
Concussion Management in the Classroom.
Graff, Danielle M; Caperell, Kerry S
2016-12-01
There is a new emphasis on the team approach to pediatric concussion management, particularly in the classroom. However, it is expected that educators are unfamiliar with the "Returning to Learning" recommendations. The authors' primary objective was to assess and improve high school educators' knowledge regarding concussions and management interventions using an online education tool. A total of 247 high school educators completed a 12 question pretest to assess core knowledge of concussions and classroom management followed by a 20-minute online literature-based education module. Participants then completed an identical posttest. The improvement in core knowledge was statistically significant (P < .001). Initial areas of weakness were the description and identification of concussions. Questions regarding concussion classroom management also showed a statistically significant increase in scores (P < .001). This study identifies the deficits in the knowledge of educators regarding concussions and classroom management as well as the significant improvement after an online educational module. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao
2013-04-01
According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.
Parameter identification using a creeping-random-search algorithm
NASA Technical Reports Server (NTRS)
Parrish, R. V.
1971-01-01
A creeping-random-search algorithm is applied to different types of problems in the field of parameter identification. The studies are intended to demonstrate that a random-search algorithm can be applied successfully to these various problems, which often cannot be handled by conventional deterministic methods, and, also, to introduce methods that speed convergence to an extremal of the problem under investigation. Six two-parameter identification problems with analytic solutions are solved, and two application problems are discussed in some detail. Results of the study show that a modified version of the basic creeping-random-search algorithm chosen does speed convergence in comparison with the unmodified version. The results also show that the algorithm can successfully solve problems that contain limits on state or control variables, inequality constraints (both independent and dependent, and linear and nonlinear), or stochastic models.
Willemse, Chandré M; Stander, Maria A; Vestner, Jochen; Tredoux, Andreas G J; de Villiers, André
2015-12-15
Changes in anthocyanin chemistry represent some of the most important transformations involved in red wine aging. However, accurate analysis of the derived pigments, as required to study the evolution of anthocyanins and tannins during aging, is hampered by their extreme structural diversity, low levels, and the fact that many of these compounds have identical mass spectral characteristics. In this context, chromatographic separation is critical. In this contribution, the application of online hydrophilic interaction chromatography (HILIC) × reversed-phase liquid chromatography (RP-LC) separation coupled to high-resolution mass spectrometry (MS) is described for the detailed characterization of anthocyanins and their derived pigments in aged red wine. A systematic approach was followed for the optimization of HILIC × RP-LC separation parameters using a capillary liquid chromatography (LC) system in the first dimension and an ultrahigh-pressure LC system in the second dimension to ensure maximum sensitivity and performance. Ninety four (94) anthocyanin-derived pigments were tentatively identified in one- and six-year-old Pinotage wines using accurate mass and fragmentation information obtained using quadrupole-time-of-flight mass spectrometry (Q-TOF-MS). Online HILIC × RP-LC-MS was found to offer high-resolution separation, because of the combination of two different separation modes, while the structured elution order observed improved the certainty in compound identification. Therefore, this approach shows promise for the detailed elucidation of the chemical alteration of anthocyanins during wine aging.
NASA Astrophysics Data System (ADS)
Riabkov, Dmitri
Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of identification that assumes that FDG blood input in the brain can be modeled as a function of time and several parameters (IFM) is analyzed also. Nonuniform sampling SLS (NSLS) is developed due to the rapid change of the FDG concentration in the blood during the early postinjection stage. Comparisons of accuracy of EVAM, SLS, NSLS and IFM identification techniques are made.
Fast machine-learning online optimization of ultra-cold-atom experiments.
Wigley, P B; Everitt, P J; van den Hengel, A; Bastian, J W; Sooriyabandara, M A; McDonald, G D; Hardman, K S; Quinlivan, C D; Manju, P; Kuhn, C C N; Petersen, I R; Luiten, A N; Hope, J J; Robins, N P; Hush, M R
2016-05-16
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our 'learner' discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system.
Fast machine-learning online optimization of ultra-cold-atom experiments
Wigley, P. B.; Everitt, P. J.; van den Hengel, A.; Bastian, J. W.; Sooriyabandara, M. A.; McDonald, G. D.; Hardman, K. S.; Quinlivan, C. D.; Manju, P.; Kuhn, C. C. N.; Petersen, I. R.; Luiten, A. N.; Hope, J. J.; Robins, N. P.; Hush, M. R.
2016-01-01
We apply an online optimization process based on machine learning to the production of Bose-Einstein condensates (BEC). BEC is typically created with an exponential evaporation ramp that is optimal for ergodic dynamics with two-body s-wave interactions and no other loss rates, but likely sub-optimal for real experiments. Through repeated machine-controlled scientific experimentation and observations our ‘learner’ discovers an optimal evaporation ramp for BEC production. In contrast to previous work, our learner uses a Gaussian process to develop a statistical model of the relationship between the parameters it controls and the quality of the BEC produced. We demonstrate that the Gaussian process machine learner is able to discover a ramp that produces high quality BECs in 10 times fewer iterations than a previously used online optimization technique. Furthermore, we show the internal model developed can be used to determine which parameters are essential in BEC creation and which are unimportant, providing insight into the optimization process of the system. PMID:27180805
Donahue, Steven; Schwien, Michael; LaVallee, Danielle
2018-05-17
Hospitalization is one of the few circumstances in which the lives of trafficking victims intersect with the general population. Based on survivor testimonies, the majority of human trafficking victims may receive medical treatment in a hospital's emergency department while in captivity. With evidenced-based training, ED personnel have a better opportunity to screen persons who are being trafficked and intervene on their behalf. This project examined the efficacy of an innovative, evidence-based online training module (HTEmergency.com) created by the project team. Participants completed a pre-survey to determine learning needs and a post-survey to determine the effectiveness of the online education. The learning module contained a PowerPoint presentation, identification and treatment guidelines, and 2 realistic case studies. Data were collected among ED personnel in 2 suburban hospitals located near a northeast metropolitan city. Seventy-five employees participated in the survey and education. Staff completing the education included nurses, physicians, nurse practitioners/physician assistants, registration, and ED technicians. Results indicated that 89% of participants had not received previous human trafficking training. Less than half of the participants stated that they had a comprehensive understanding of human trafficking before the intervention, with an increase to 93% after education. The training module significantly increased confidence in identification (from an average confidence level of 4/10 to 7/10) and treatment (from an average confidence level of 4/10 to 8/10) of human trafficking victims within the emergency department; 96% found the educational module to be useful in their work setting. Participants reported that they are more confident in identifying a possible trafficking victim and are more likely to screen patients for human trafficking after participation in the online training module. The proposed general guideline for care provided ED personnel with a useful tool in perpetuity. The results of this project, coupled with the growth of worldwide human trafficking, highlights the need for focused human trafficking education within the hospital setting. Copyright © 2018. Published by Elsevier Inc.
Abbaspour, Alireza; Aboutalebi, Payam; Yen, Kang K; Sargolzaei, Arman
2017-03-01
A new online detection strategy is developed to detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In this design, the weighting parameters of the Neural Network (NN) are updated by using the Extended Kalman Filter (EKF). Online adaptation of these weighting parameters helps to detect abrupt, intermittent, and incipient faults accurately. We apply the proposed fault detection system to a nonlinear dynamic model of the WVU YF-22 unmanned aircraft for its evaluation. The simulation results show that the new method has better performance in comparison with conventional recurrent neural network-based fault detection strategies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng
2014-04-10
Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.
Online determination of biophysical parameters of mucous membranes of a human body
NASA Astrophysics Data System (ADS)
Lisenko, S. A.; Kugeiko, M. M.
2013-07-01
We have developed a method for online determination of biophysical parameters of mucous membranes (MMs) of a human body (transport scattering coefficient, scattering anisotropy factor, haemoglobin concentration, degrees of blood oxygenation, average diameter of capillaries with blood) from measurements of spectral and spatial characteristics of diffuse reflection. The method is based on regression relationships between linearly independent components of the measured light signals and the unknown parameters of MMs, obtained by simulation of the radiation transfer in the MM under conditions of its general variability. We have proposed and justified the calibration-free fibre-optic method for determining the concentration of haemoglobin in MMs by measuring the light signals diffusely reflected by the tissue in four spectral regions at two different distances from the illumination spot. We have selected the optimal wavelengths of optical probing for the implementation of the method.
NASA Astrophysics Data System (ADS)
Tiator, Lothar
2018-05-01
The MAID project is a collection of theoretical models for pseudoscalar meson photo- and electroproduction from nucleons. It is online available and produces results in real time calculations. In addition to kinematical variables also model parameters, especially for baryon resonances, can be online changed and investigated. Over 20 years MAID has become quite popular and the MAID web pages have been called more than 7.7 million times.
Unsteady hovering wake parameters identified from dynamic model tests, part 1
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1977-01-01
The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.
Public Claims about Automatic External Defibrillators: An Online Consumer Opinions Study
2011-01-01
Background Patients are no longer passive recipients of health care, and increasingly engage in health communications outside of the traditional patient and health care professional relationship. As a result, patient opinions and health related judgements are now being informed by a wide range of social, media, and online information sources. Government initiatives recognise self-delivery of health care as a valuable means of responding to the anticipated increased global demand for health resources. Automated External Defibrillators (AEDs), designed for the treatment of Sudden Cardiac Arrest (SCA), have recently become available for 'over the counter' purchase with no need for a prescription. This paper explores the claims and argumentation of lay persons and health care practitioners and professionals relating to these, and how these may impact on the acceptance, adoption and use of these devices within the home context. Methods We carry out a thematic content analysis of a novel form of Internet-based data: online consumer opinions of AED devices posted on Amazon.com, the world's largest online retailer. A total of #83 online consumer reviews of home AEDs are analysed. The analysis is both inductive, identifying themes that emerged from the data, exploring the parameters of public debate relating to these devices, and also driven by theory, centring around the parameters that may impact upon the acceptance, adoption and use of these devices within the home as indicated by the Technology Acceptance Model (TAM). Results Five high-level themes around which arguments for and against the adoption of home AEDs are identified and considered in the context of TAM. These include opinions relating to device usability, usefulness, cost, emotional implications of device ownership, and individual patient risk status. Emotional implications associated with AED acceptance, adoption and use emerged as a notable factor that is not currently reflected within the existing TAM. Conclusions The value, credibility and implications of the findings of this study are considered within the context of existing AED research, and related to technology acceptance theory. From a methodological perspective, this study demonstrates the potential value of online consumer reviews as a novel data source for exploring the parameters of public debate relating to emerging health care technologies. PMID:21592349
Public claims about automatic external defibrillators: an online consumer opinions study.
Money, Arthur G; Barnett, Julie; Kuljis, Jasna
2011-05-18
Patients are no longer passive recipients of health care, and increasingly engage in health communications outside of the traditional patient and health care professional relationship. As a result, patient opinions and health related judgements are now being informed by a wide range of social, media, and online information sources. Government initiatives recognise self-delivery of health care as a valuable means of responding to the anticipated increased global demand for health resources. Automated External Defibrillators (AEDs), designed for the treatment of Sudden Cardiac Arrest (SCA), have recently become available for 'over the counter' purchase with no need for a prescription. This paper explores the claims and argumentation of lay persons and health care practitioners and professionals relating to these, and how these may impact on the acceptance, adoption and use of these devices within the home context. We carry out a thematic content analysis of a novel form of Internet-based data: online consumer opinions of AED devices posted on Amazon.com, the world's largest online retailer. A total of #83 online consumer reviews of home AEDs are analysed. The analysis is both inductive, identifying themes that emerged from the data, exploring the parameters of public debate relating to these devices, and also driven by theory, centring around the parameters that may impact upon the acceptance, adoption and use of these devices within the home as indicated by the Technology Acceptance Model (TAM). Five high-level themes around which arguments for and against the adoption of home AEDs are identified and considered in the context of TAM. These include opinions relating to device usability, usefulness, cost, emotional implications of device ownership, and individual patient risk status. Emotional implications associated with AED acceptance, adoption and use emerged as a notable factor that is not currently reflected within the existing TAM. The value, credibility and implications of the findings of this study are considered within the context of existing AED research, and related to technology acceptance theory. From a methodological perspective, this study demonstrates the potential value of online consumer reviews as a novel data source for exploring the parameters of public debate relating to emerging health care technologies.
NASA Technical Reports Server (NTRS)
Hall, W. E., Jr.; Gupta, N. K.; Hansen, R. S.
1978-01-01
An integrated approach to rotorcraft system identification is described. This approach consists of sequential application of (1) data filtering to estimate states of the system and sensor errors, (2) model structure estimation to isolate significant model effects, and (3) parameter identification to quantify the coefficient of the model. An input design algorithm is described which can be used to design control inputs which maximize parameter estimation accuracy. Details of each aspect of the rotorcraft identification approach are given. Examples of both simulated and actual flight data processing are given to illustrate each phase of processing. The procedure is shown to provide means of calibrating sensor errors in flight data, quantifying high order state variable models from the flight data, and consequently computing related stability and control design models.
Numerical studies of identification in nonlinear distributed parameter systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Lo, C. K.; Reich, Simeon; Rosen, I. G.
1989-01-01
An abstract approximation framework and convergence theory for the identification of first and second order nonlinear distributed parameter systems developed previously by the authors and reported on in detail elsewhere are summarized and discussed. The theory is based upon results for systems whose dynamics can be described by monotone operators in Hilbert space and an abstract approximation theorem for the resulting nonlinear evolution system. The application of the theory together with numerical evidence demonstrating the feasibility of the general approach are discussed in the context of the identification of a first order quasi-linear parabolic model for one dimensional heat conduction/mass transport and the identification of a nonlinear dissipation mechanism (i.e., damping) in a second order one dimensional wave equation. Computational and implementational considerations, in particular, with regard to supercomputing, are addressed.
NASA Astrophysics Data System (ADS)
Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.
2007-04-01
In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.
Local Spatial Obesity Analysis and Estimation Using Online Social Network Sensors.
Sun, Qindong; Wang, Nan; Li, Shancang; Zhou, Hongyi
2018-03-15
Recently, the online social networks (OSNs) have received considerable attentions as a revolutionary platform to offer users massive social interaction among users that enables users to be more involved in their own healthcare. The OSNs have also promoted increasing interests in the generation of analytical, data models in health informatics. This paper aims at developing an obesity identification, analysis, and estimation model, in which each individual user is regarded as an online social network 'sensor' that can provide valuable health information. The OSN-based obesity analytic model requires each sensor node in an OSN to provide associated features, including dietary habit, physical activity, integral/incidental emotions, and self-consciousness. Based on the detailed measurements on the correlation of obesity and proposed features, the OSN obesity analytic model is able to estimate the obesity rate in certain urban areas and the experimental results demonstrate a high success estimation rate. The measurements and estimation experimental findings created by the proposed obesity analytic model show that the online social networks could be used in analyzing the local spatial obesity problems effectively. Copyright © 2018. Published by Elsevier Inc.
The online Tabloid Proteome: an annotated database of protein associations
Turan, Demet; Tavernier, Jan
2018-01-01
Abstract A complete knowledge of the proteome can only be attained by determining the associations between proteins, along with the nature of these associations (e.g. physical contact in protein–protein interactions, participation in complex formation or different roles in the same pathway). Despite extensive efforts in elucidating direct protein interactions, our knowledge on the complete spectrum of protein associations remains limited. We therefore developed a new approach that detects protein associations from identifications obtained after re-processing of large-scale, public mass spectrometry-based proteomics data. Our approach infers protein association based on the co-occurrence of proteins across many different proteomics experiments, and provides information that is almost completely complementary to traditional direct protein interaction studies. We here present a web interface to query and explore the associations derived from this method, called the online Tabloid Proteome. The online Tabloid Proteome also integrates biological knowledge from several existing resources to annotate our derived protein associations. The online Tabloid Proteome is freely available through a user-friendly web interface, which provides intuitive navigation and data exploration options for the user at http://iomics.ugent.be/tabloidproteome. PMID:29040688
Object-Oriented Control System Design Using On-Line Training of Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed
1997-01-01
This report deals with the object-oriented model development of a neuro-controller design for permanent magnet (PM) dc motor drives. The system under study is described as a collection of interacting objects. Each object module describes the object behaviors, called methods. The characteristics of the object are included in its variables. The knowledge of the object exists within its variables, and the performance is determined by its methods. This structure maps well to the real world objects that comprise the system being modeled. A dynamic learning architecture that possesses the capabilities of simultaneous on-line identification and control is incorporated to enforce constraints on connections and control the dynamics of the motor. The control action is implemented "on-line", in "real time" in such a way that the predicted trajectory follows a specified reference model. A design example of controlling a PM dc motor drive on-line shows the effectiveness of the design tool. This will therefore be very useful in aerospace applications. It is expected to provide an innovative and noval software model for the rocket engine numerical simulator executive.
NASA Technical Reports Server (NTRS)
Banks, H. T.; Kunisch, K.
1982-01-01
Approximation results from linear semigroup theory are used to develop a general framework for convergence of approximation schemes in parameter estimation and optimal control problems for nonlinear partial differential equations. These ideas are used to establish theoretical convergence results for parameter identification using modal (eigenfunction) approximation techniques. Results from numerical investigations of these schemes for both hyperbolic and parabolic systems are given.
Synthesizing spatiotemporally sparse smartphone sensor data for bridge modal identification
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Maria Q.
2016-08-01
Smartphones as vibration measurement instruments form a large-scale, citizen-induced, and mobile wireless sensor network (WSN) for system identification and structural health monitoring (SHM) applications. Crowdsourcing-based SHM is possible with a decentralized system granting citizens with operational responsibility and control. Yet, citizen initiatives introduce device mobility, drastically changing SHM results due to uncertainties in the time and the space domains. This paper proposes a modal identification strategy that fuses spatiotemporally sparse SHM data collected by smartphone-based WSNs. Multichannel data sampled with the time and the space independence is used to compose the modal identification parameters such as frequencies and mode shapes. Structural response time history can be gathered by smartphone accelerometers and converted into Fourier spectra by the processor units. Timestamp, data length, energy to power conversion address temporal variation, whereas spatial uncertainties are reduced by geolocation services or determining node identity via QR code labels. Then, parameters collected from each distributed network component can be extended to global behavior to deduce modal parameters without the need of a centralized and synchronous data acquisition system. The proposed method is tested on a pedestrian bridge and compared with a conventional reference monitoring system. The results show that the spatiotemporally sparse mobile WSN data can be used to infer modal parameters despite non-overlapping sensor operation schedule.
VizieR Online Data Catalog: Formation of MW halo and its dwarf satellites (Mashonkina+, 2017)
NASA Astrophysics Data System (ADS)
Mashonkina, L.; Jablonka, P.; Pakhomov, Yu; Sitnova, T.; North, P.
2017-04-01
Tables A.1 and A.2 from the article are presented. The first table contains atomic parameters of FeI/II and TiI/II lines. The second atmospheric parameters and FeI/II, TiI/II nLTE abundances. (2 data files).
State-space self-tuner for on-line adaptive control
NASA Technical Reports Server (NTRS)
Shieh, L. S.
1994-01-01
Dynamic systems, such as flight vehicles, satellites and space stations, operating in real environments, constantly face parameter and/or structural variations owing to nonlinear behavior of actuators, failure of sensors, changes in operating conditions, disturbances acting on the system, etc. In the past three decades, adaptive control has been shown to be effective in dealing with dynamic systems in the presence of parameter uncertainties, structural perturbations, random disturbances and environmental variations. Among the existing adaptive control methodologies, the state-space self-tuning control methods, initially proposed by us, are shown to be effective in designing advanced adaptive controllers for multivariable systems. In our approaches, we have embedded the standard Kalman state-estimation algorithm into an online parameter estimation algorithm. Thus, the advanced state-feedback controllers can be easily established for digital adaptive control of continuous-time stochastic multivariable systems. A state-space self-tuner for a general multivariable stochastic system has been developed and successfully applied to the space station for on-line adaptive control. Also, a technique for multistage design of an optimal momentum management controller for the space station has been developed and reported in. Moreover, we have successfully developed various digital redesign techniques which can convert a continuous-time controller to an equivalent digital controller. As a result, the expensive and unreliable continuous-time controller can be implemented using low-cost and high performance microprocessors. Recently, we have developed a new hybrid state-space self tuner using a new dual-rate sampling scheme for on-line adaptive control of continuous-time uncertain systems.
Wan, Bo; Fu, Guicui; Li, Yanruoyue; Zhao, Youhu
2016-08-10
The cementing manufacturing process of ferrite phase shifters has the defect that cementing strength is insufficient and fractures always appear. A detection method of these defects was studied utilizing the multi-sensors Prognostic and Health Management (PHM) theory. Aiming at these process defects, the reasons that lead to defects are analyzed in this paper. In the meanwhile, the key process parameters were determined and Differential Scanning Calorimetry (DSC) tests during the cure process of resin cementing were carried out. At the same time, in order to get data on changing cementing strength, multiple-group cementing process tests of different key process parameters were designed and conducted. A relational model of cementing strength and cure temperature, time and pressure was established, by combining data of DSC and process tests as well as based on the Avrami formula. Through sensitivity analysis for three process parameters, the on-line detection decision criterion and the process parameters which have obvious impact on cementing strength were determined. A PHM system with multiple temperature and pressure sensors was established on this basis, and then, on-line detection, diagnosis and control for ferrite phase shifter cementing process defects were realized. It was verified by subsequent process that the on-line detection system improved the reliability of the ferrite phase shifter cementing process and reduced the incidence of insufficient cementing strength defects.
Parameter Identification of Static Friction Based on An Optimal Exciting Trajectory
NASA Astrophysics Data System (ADS)
Tu, X.; Zhao, P.; Zhou, Y. F.
2017-12-01
In this paper, we focus on how to improve the identification efficiency of friction parameters in a robot joint. First, the static friction model that has only linear dependencies with respect to their parameters is adopted so that the servomotor dynamics can be linearized. In this case, the traditional exciting trajectory based on Fourier series is modified by replacing the constant term with quintic polynomial to ensure the boundary continuity of speed and acceleration. Then, the Fourier-related parameters are optimized by genetic algorithm(GA) in which the condition number of regression matrix is set as the fitness function. At last, compared with the constant-velocity tracking experiment, the friction parameters from the exciting trajectory experiment has the similar result with the advantage of time reduction.
NASA Astrophysics Data System (ADS)
Al-garadi, Mohammed Ali; Varathan, Kasturi Dewi; Ravana, Sri Devi
2017-02-01
Online social networks (OSNs) have become a vital part of everyday living. OSNs provide researchers and scientists with unique prospects to comprehend individuals on a scale and to analyze human behavioral patterns. Influential spreaders identification is an important subject in understanding the dynamics of information diffusion in OSNs. Targeting these influential spreaders is significant in planning the techniques for accelerating the propagation of information that is useful for various applications, such as viral marketing applications or blocking the diffusion of annoying information (spreading of viruses, rumors, online negative behaviors, and cyberbullying). Existing K-core decomposition methods consider links equally when calculating the influential spreaders for unweighted networks. Alternatively, the proposed link weights are based only on the degree of nodes. Thus, if a node is linked to high-degree nodes, then this node will receive high weight and is treated as an important node. Conversely, the degree of nodes in OSN context does not always provide accurate influence of users. In the present study, we improve the K-core method for OSNs by proposing a novel link-weighting method based on the interaction among users. The proposed method is based on the observation that the interaction of users is a significant factor in quantifying the spreading capability of user in OSNs. The tracking of diffusion links in the real spreading dynamics of information verifies the effectiveness of our proposed method for identifying influential spreaders in OSNs as compared with degree centrality, PageRank, and original K-core.
Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat
2010-07-26
A novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) method was developed for the selective determination of polyphenols (flavonoids, simple phenolic and hydroxycinnamic acids) in complex plant matrices. The method combines chromatographic separation, constituent analysis, and post-column identification of antioxidants in plant extracts. The separation of polyphenols was performed on a C18 column using gradient elution with two different mobile phase solutions, i.e., MeOH and 0.2% o-phosphoric acid. The HPLC-separated antioxidant polyphenols in the extracts react with copper(II)-neocuproine (Cu(II)-Nc) reagent in a post-column reaction coil to form a derivative. The reagent is reduced by antioxidants to the copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The negative peaks of antioxidant constituents were monitored by measuring the increase in absorbance due to Cu(I)-Nc. The detection limits of polyphenols at 450 nm (in the range of 0.17-3.46 microM) after post-column derivatization were comparable to those at 280 nm UV detection without derivatization. The developed method was successfully applied to the identification of antioxidant compounds in crude extracts of Camellia sinensis, Origanum marjorana and Mentha. The method is rapid, inexpensive, versatile, non-laborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of antioxidant constituents of complex plant samples. Copyright 2010 Elsevier B.V. All rights reserved.
Diviani, Nicola; van den Putte, Bas; Giani, Stefano; van Weert, Julia Cm
2015-05-07
Recent years have witnessed a dramatic increase in consumer online health information seeking. The quality of online health information, however, remains questionable. The issue of information evaluation has become a hot topic, leading to the development of guidelines and checklists to design high-quality online health information. However, little attention has been devoted to how consumers, in particular people with low health literacy, evaluate online health information. The main aim of this study was to review existing evidence on the association between low health literacy and (1) people's ability to evaluate online health information, (2) perceived quality of online health information, (3) trust in online health information, and (4) use of evaluation criteria for online health information. Five academic databases (MEDLINE, PsycINFO, Web of Science, CINAHL, and Communication and Mass-media Complete) were systematically searched. We included peer-reviewed publications investigating differences in the evaluation of online information between people with different health literacy levels. After abstract and full-text screening, 38 articles were included in the review. Only four studies investigated the specific role of low health literacy in the evaluation of online health information. The other studies examined the association between educational level or other skills-based proxies for health literacy, such as general literacy, and outcomes. Results indicate that low health literacy (and related skills) are negatively related to the ability to evaluate online health information and trust in online health information. Evidence on the association with perceived quality of online health information and use of evaluation criteria is inconclusive. The findings indicate that low health literacy (and related skills) play a role in the evaluation of online health information. This topic is therefore worth more scholarly attention. Based on the results of this review, future research in this field should (1) specifically focus on health literacy, (2) devote more attention to the identification of the different criteria people use to evaluate online health information, (3) develop shared definitions and measures for the most commonly used outcomes in the field of evaluation of online health information, and (4) assess the relationship between the different evaluative dimensions and the role played by health literacy in shaping their interplay.
van den Putte, Bas; Giani, Stefano; van Weert, Julia CM
2015-01-01
Background Recent years have witnessed a dramatic increase in consumer online health information seeking. The quality of online health information, however, remains questionable. The issue of information evaluation has become a hot topic, leading to the development of guidelines and checklists to design high-quality online health information. However, little attention has been devoted to how consumers, in particular people with low health literacy, evaluate online health information. Objective The main aim of this study was to review existing evidence on the association between low health literacy and (1) people’s ability to evaluate online health information, (2) perceived quality of online health information, (3) trust in online health information, and (4) use of evaluation criteria for online health information. Methods Five academic databases (MEDLINE, PsycINFO, Web of Science, CINAHL, and Communication and Mass-media Complete) were systematically searched. We included peer-reviewed publications investigating differences in the evaluation of online information between people with different health literacy levels. Results After abstract and full-text screening, 38 articles were included in the review. Only four studies investigated the specific role of low health literacy in the evaluation of online health information. The other studies examined the association between educational level or other skills-based proxies for health literacy, such as general literacy, and outcomes. Results indicate that low health literacy (and related skills) are negatively related to the ability to evaluate online health information and trust in online health information. Evidence on the association with perceived quality of online health information and use of evaluation criteria is inconclusive. Conclusions The findings indicate that low health literacy (and related skills) play a role in the evaluation of online health information. This topic is therefore worth more scholarly attention. Based on the results of this review, future research in this field should (1) specifically focus on health literacy, (2) devote more attention to the identification of the different criteria people use to evaluate online health information, (3) develop shared definitions and measures for the most commonly used outcomes in the field of evaluation of online health information, and (4) assess the relationship between the different evaluative dimensions and the role played by health literacy in shaping their interplay. PMID:25953147
Deep-Sea Coral Image Catalog: Northeast Pacific
NASA Astrophysics Data System (ADS)
Freed, J. C.
2016-02-01
In recent years, deep-sea exploration in the Northeast Pacific ocean has been on the rise using submersibles and remotely operated vehicles (ROVs), acquiring a plethora of underwater videos and photographs. Analysis of deep-sea fauna revealed by this research has been hampered by the lack of catalogs or guides that allow identification of species in the field. Deep-sea corals are of particular conservation concern, but currently, there are few catalogs which describe and provide detailed information on deep-sea corals from the Northeast Pacific and those that exist are focused on small, specific areas. This project, in collaboration with NOAA's Deep-Sea Coral Ecology Laboratory at the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) and the Southwest Fisheries Science Center (SWFSC), developed pages for a deep-sea coral identification guide that provides photos and information on the visual identification, distributions, and habitats of species found in the Northeast Pacific. Using online databases, photo galleries, and literature, this catalog has been developed to be a living document open to future additions. This project produced 12 entries for the catalog on a variety of different deep-sea corals. The catalog is intended to be used during underwater surveys in the Northeast Pacific, but will also assist in identification of deep-sea coral by-catch by fishing vessels, and for general educational use. These uses will advance NOAA's ability to identify and protect sensitive deep-sea habitats that act as biological hotspots. The catalog is intended to be further developed into an online resource with greater interactive features with links to other resources and featured on NOAA's Deep-Sea Coral Data Portal.
NASA Astrophysics Data System (ADS)
Anitha Devi, M. D.; ShivaKumar, K. B.
2017-08-01
Online payment eco system is the main target especially for cyber frauds. Therefore end to end encryption is very much needed in order to maintain the integrity of secret information related to transactions carried online. With access to payment related sensitive information, which enables lot of money transactions every day, the payment infrastructure is a major target for hackers. The proposed system highlights, an ideal approach for secure online transaction for fund transfer with a unique combination of visual cryptography and Haar based discrete wavelet transform steganography technique. This combination of data hiding technique reduces the amount of information shared between consumer and online merchant needed for successful online transaction along with providing enhanced security to customer’s account details and thereby increasing customer’s confidence preventing “Identity theft” and “Phishing”. To evaluate the effectiveness of proposed algorithm Root mean square error, Peak signal to noise ratio have been used as evaluation parameters
Online Cross-Validation-Based Ensemble Learning
Benkeser, David; Ju, Cheng; Lendle, Sam; van der Laan, Mark
2017-01-01
Online estimators update a current estimate with a new incoming batch of data without having to revisit past data thereby providing streaming estimates that are scalable to big data. We develop flexible, ensemble-based online estimators of an infinite-dimensional target parameter, such as a regression function, in the setting where data are generated sequentially by a common conditional data distribution given summary measures of the past. This setting encompasses a wide range of time-series models and as special case, models for independent and identically distributed data. Our estimator considers a large library of candidate online estimators and uses online cross-validation to identify the algorithm with the best performance. We show that by basing estimates on the cross-validation-selected algorithm, we are asymptotically guaranteed to perform as well as the true, unknown best-performing algorithm. We provide extensions of this approach including online estimation of the optimal ensemble of candidate online estimators. We illustrate excellent performance of our methods using simulations and a real data example where we make streaming predictions of infectious disease incidence using data from a large database. PMID:28474419
NASA Technical Reports Server (NTRS)
Molusis, J. A.
1982-01-01
An on line technique is presented for the identification of rotor blade modal damping and frequency from rotorcraft random response test data. The identification technique is based upon a recursive maximum likelihood (RML) algorithm, which is demonstrated to have excellent convergence characteristics in the presence of random measurement noise and random excitation. The RML technique requires virtually no user interaction, provides accurate confidence bands on the parameter estimates, and can be used for continuous monitoring of modal damping during wind tunnel or flight testing. Results are presented from simulation random response data which quantify the identified parameter convergence behavior for various levels of random excitation. The data length required for acceptable parameter accuracy is shown to depend upon the amplitude of random response and the modal damping level. Random response amplitudes of 1.25 degrees to .05 degrees are investigated. The RML technique is applied to hingeless rotor test data. The inplane lag regressing mode is identified at different rotor speeds. The identification from the test data is compared with the simulation results and with other available estimates of frequency and damping.
NASA Astrophysics Data System (ADS)
Dupret, M.-A.; De Ridder, J.; De Cat, P.; Aerts, C.; Scuflaire, R.; Noels, A.; Thoul, A.
2003-02-01
We present an improved version of the method of photometric mode identification of Heynderickx et al. (\\cite{hey}). Our new version is based on the inclusion of precise non-adiabatic eigenfunctions determined in the outer stellar atmosphere according to the formalism recently proposed by Dupret et al. (\\cite{dup}). Our improved photometric mode identification technique is therefore no longer dependent on ad hoc parameters for the non-adiabatic effects. It contains the complete physical conditions of the outer atmosphere of the star, provided that rotation does not play a key role. We apply our method to the two slowly pulsating B stars HD 74560 and HD 138764 and to the beta Cephei star EN (16) Lac. Besides identifying the degree l of the pulsating stars, our method is also a tool for improving the knowledge of stellar interiors and atmospheres, by imposing constraints on parameters such as the metallicity and the mixing-length parameter alpha (a procedure we label non-adiabatic asteroseismology). The non-adiabatic eigenfunctions needed for the mode identification are available upon request from the authors.