Scaffolding Online Argumentation during Problem Solving
ERIC Educational Resources Information Center
Oh, S.; Jonassen, D. H.
2007-01-01
In this study, constraint-based argumentation scaffolding was proposed to facilitate online argumentation performance and ill-structured problem solving during online discussions. In addition, epistemological beliefs were presumed to play a role in solving ill-structured diagnosis-solution problems. Constraint-based discussion boards were…
Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen
2012-11-01
To examine the results of a randomized clinical trial (RCT) of Teen Online Problem Solving (TOPS), an online problem solving therapy model, in increasing problem-solving skills and decreasing depressive symptoms and global distress for caregivers of adolescents with traumatic brain injury (TBI). Families of adolescents aged 11-18 who sustained a moderate to severe TBI between 3 and 19 months earlier were recruited from hospital trauma registries. Participants were assigned to receive a web-based, problem-solving intervention (TOPS, n = 20), or access to online resources pertaining to TBI (Internet Resource Comparison; IRC; n = 21). Parent report of problem solving skills, depressive symptoms, global distress, utilization, and satisfaction were assessed pre- and posttreatment. Groups were compared on follow-up scores after controlling for pretreatment levels. Family income was examined as a potential moderator of treatment efficacy. Improvement in problem solving was examined as a mediator of reductions in depression and distress. Forty-one participants provided consent and completed baseline assessments, with follow-up assessments completed on 35 participants (16 TOPS and 19 IRC). Parents in both groups reported a high level of satisfaction with both interventions. Improvements in problem solving skills and depression were moderated by family income, with caregivers of lower income in TOPS reporting greater improvements. Increases in problem solving partially mediated reductions in global distress. Findings suggest that TOPS may be effective in improving problem solving skills and reducing depressive symptoms for certain subsets of caregivers in families of adolescents with TBI.
Primal-dual techniques for online algorithms and mechanisms
NASA Astrophysics Data System (ADS)
Liaghat, Vahid
An offline algorithm is one that knows the entire input in advance. An online algorithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an online algorithm works in a local fashion and has to make irrevocable decisions without having the entire input. Online algorithms are often not optimal since their irrevocable decisions may turn out to be inefficient after receiving the rest of the input. For a given online problem, the goal is to design algorithms which are competitive against the offline optimal solutions. In a classical offline scenario, it is often common to see a dual analysis of problems that can be formulated as a linear or convex program. Primal-dual and dual-fitting techniques have been successfully applied to many such problems. Unfortunately, the usual tricks come short in an online setting since an online algorithm should make decisions without knowing even the whole program. In this thesis, we study the competitive analysis of fundamental problems in the literature such as different variants of online matching and online Steiner connectivity, via online dual techniques. Although there are many generic tools for solving an optimization problem in the offline paradigm, in comparison, much less is known for tackling online problems. The main focus of this work is to design generic techniques for solving integral linear optimization problems where the solution space is restricted via a set of linear constraints. A general family of these problems are online packing/covering problems. Our work shows that for several seemingly unrelated problems, primal-dual techniques can be successfully applied as a unifying approach for analyzing these problems. We believe this leads to generic algorithmic frameworks for solving online problems. In the first part of the thesis, we show the effectiveness of our techniques in the stochastic settings and their applications in Bayesian mechanism design. In particular, we introduce new techniques for solving a fundamental linear optimization problem, namely, the stochastic generalized assignment problem (GAP). This packing problem generalizes various problems such as online matching, ad allocation, bin packing, etc. We furthermore show applications of such results in the mechanism design by introducing Prophet Secretary, a novel Bayesian model for online auctions. In the second part of the thesis, we focus on the covering problems. We develop the framework of "Disk Painting" for a general class of network design problems that can be characterized by proper functions. This class generalizes the node-weighted and edge-weighted variants of several well-known Steiner connectivity problems. We furthermore design a generic technique for solving the prize-collecting variants of these problems when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we solve the online prize-collecting variants of several network design problems for the first time. Finally we focus on designing techniques for online problems with mixed packing/covering constraints. We initiate the study of degree-bounded graph optimization problems in the online setting by designing an online algorithm with a tight competitive ratio for the degree-bounded Steiner forest problem. We hope these techniques establishes a starting point for the analysis of the important class of online degree-bounded optimization on graphs.
Flippin' Fluid Mechanics - Using Online Technology to Enhance the In-Class Learning Experience
NASA Astrophysics Data System (ADS)
Webster, D. R.; Majerich, D. M.
2013-11-01
This study provides an empirical analysis of using online technologies and team problem solving sessions to shift an undergraduate fluid mechanics course from a traditional lecture format to a collaborative learning environment. Students were from two consecutive semesters of the same course taught by the same professor. One group used online technologies and solved problems in class and the other did not. Out of class, the treatment group watched 72 short (11 minutes, average) video lectures covering course topics and example problems being solved. Three times a week students worked in teams of two to solve problems on desktop whiteboard tablets while the instructor and graduate assistants provided ``just-in-time'' tutoring. The number of team problems assigned during the semester exceeded 100. Weekly online homework was assigned to reinforce topics. The WileyPlus online system generated unique problem parameters for each student. The control group received three-50 minute weekly lectures. Data include three midterms and a final exam. Regression results indicate that controlling for all of the entered variables, for every one more problem solving session the student attended, the final grade was raised by 0.327 points. Thus, if a student participated in all 25 of the team problem solving sessions, the final grade would have been 8.2 points higher, a difference of nearly a grade. Using online technologies and teamwork appeared to result in improved achievement, but more research is needed to support these findings.
ERIC Educational Resources Information Center
Anderson, William L.; Mitchell, Steven M.; Osgood, Marcy P.
2008-01-01
For the past 3 yr, faculty at the University of New Mexico, Department of Biochemistry and Molecular Biology have been using interactive online Problem-Based Learning (PBL) case discussions in our large-enrollment classes. We have developed an illustrative tracking method to monitor student use of problem-solving strategies to provide targeted…
Primary School Students' Strategies in Early Algebra Problem Solving Supported by an Online Game
ERIC Educational Resources Information Center
van den Heuvel-Panhuizen, Marja; Kolovou, Angeliki; Robitzsch, Alexander
2013-01-01
In this study we investigated the role of a dynamic online game on students' early algebra problem solving. In total 253 students from grades 4, 5, and 6 (10-12 years old) used the game at home to solve a sequence of early algebra problems consisting of contextual problems addressing covarying quantities. Special software monitored the…
ERIC Educational Resources Information Center
Winschel, Grace A.; Everett, Renata K.; Coppola, Brian P.; Shultz, Ginger V.
2015-01-01
Cooperative learning was employed as an instructional approach to facilitate student development of spectroscopy problem solving skills. An interactive online environment was used as a framework to structure weekly discussions around spectroscopy problems outside of class. Weekly discussions consisted of modified jigsaw-style problem solving…
ERIC Educational Resources Information Center
Peterson, Sharon L.; Palmer, Louann Bierlein
2011-01-01
This study identified the problem solving strategies used by students within a university course designed to teach pre-service teachers educational technology, and whether those strategies were influenced by the format of the course (i.e., face-to-face computer lab vs. online). It also examined to what extent the type of problem solving strategies…
How Does Early Feedback in an Online Programming Course Change Problem Solving?
ERIC Educational Resources Information Center
Ebrahimi, Alireza
2012-01-01
How does early feedback change the programming problem solving in an online environment and help students choose correct approaches? This study was conducted in a sample of students learning programming in an online course entitled Introduction to C++ and OOP (Object Oriented Programming) using the ANGEL learning management system platform. My…
Student Technological Creativity Using Online Problem-Solving Activities
ERIC Educational Resources Information Center
Chang, Yu-Shan
2013-01-01
The purpose of this study was to investigate the effects of online (web-based) creative problem-solving (CPS) activities on student technological creativity and to examine the characteristics of student creativity in the context of online CPS. A pretest-posttest quasi-experiment was conducted with 107 fourth-grade students in Taiwan. The…
ERIC Educational Resources Information Center
Yeh, Yi-Fen; Hsu, Ying-Shao; Chuang, Fu-Tai; Hwang, Fu-Kwun
2014-01-01
With the near-overload of online information, it is necessary to equip our students with the skills necessary to deal with Information Problem Solving (IPS). This study also intended to help students develop major IPS strategies with the assistance of an instructor's scaffolding in a designed IPS course as well as on an Online Information…
Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement
ERIC Educational Resources Information Center
Zheng, Robert; Cook, Anne
2012-01-01
The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…
Problem Solving Variations in an Online Programming Course
ERIC Educational Resources Information Center
Ebrahimi, Alireza
2007-01-01
An observation on teaching introductory programming courses on SLN for a period of two terms led me to believe that online students try various ways to solve a problem. In the beginning, I got the impression that some of their approaches for a solution were wrong; but after a little investigation, I found that some of the problem-solving…
Flippin' Fluid Mechanics--Comparison Using Two Groups
ERIC Educational Resources Information Center
Webster, Donald R.; Majerich, David M.; Madden, Amanda G.
2016-01-01
A flipped classroom approach was implemented in an undergraduate fluid mechanics course. Students watched short, online video lectures before class, participated in active in-class problem solving sessions (in pairs), and completed individualized online quizzes weekly. In-class activities were designed to develop problem-solving skills and teach…
Zhu, Yuanheng; Zhao, Dongbin; Li, Xiangjun
2017-03-01
H ∞ control is a powerful method to solve the disturbance attenuation problems that occur in some control systems. The design of such controllers relies on solving the zero-sum game (ZSG). But in practical applications, the exact dynamics is mostly unknown. Identification of dynamics also produces errors that are detrimental to the control performance. To overcome this problem, an iterative adaptive dynamic programming algorithm is proposed in this paper to solve the continuous-time, unknown nonlinear ZSG with only online data. A model-free approach to the Hamilton-Jacobi-Isaacs equation is developed based on the policy iteration method. Control and disturbance policies and value are approximated by neural networks (NNs) under the critic-actor-disturber structure. The NN weights are solved by the least-squares method. According to the theoretical analysis, our algorithm is equivalent to a Gauss-Newton method solving an optimization problem, and it converges uniformly to the optimal solution. The online data can also be used repeatedly, which is highly efficient. Simulation results demonstrate its feasibility to solve the unknown nonlinear ZSG. When compared with other algorithms, it saves a significant amount of online measurement time.
ERIC Educational Resources Information Center
Peddibhotla, Naren
2016-01-01
The case study is a classic tool used in several educational programs that emphasizes solving of illdefined problems. Though it has been used in classroom-based teaching and educators have developed a rich repertoire of methods, its use in online courses presents different challenges. To explore factors that develop skills in solving ill-defined…
ERIC Educational Resources Information Center
Schwartz, Catherine Stein
2012-01-01
This study describes implementation of the same problem-solving activity in both online and face-to-face environments. The activity, done in the first class period or first module of a K-2 mathematics methods course, was initially used in a face-to-face class and then adapted later for use in an online class. While the task was originally designed…
Chen, Yen-Yuan; Li, Chia-Ming; Liang, Jyh-Chong; Tsai, Chin-Chung
2018-02-12
The increasing utilization of the internet has provided a better opportunity for people to search online for health information, which was not easily available to them in the past. Studies reported that searching on the internet for health information may potentially influence an individual's decision making to change her health-seeking behaviors. The objectives of this study were to (1) develop and validate 2 questionnaires to estimate the strategies of problem-solving in medicine and utilization of online health information, (2) determine the association between searching online for health information and utilization of online health information, and (3) determine the association between online medical help-seeking and utilization of online health information. The Problem Solving in Medicine and Online Health Information Utilization questionnaires were developed and implemented in this study. We conducted confirmatory factor analysis to examine the structure of the factor loadings and intercorrelations for all the items and dimensions. We employed Pearson correlation coefficients for examining the correlations between each dimension of the Problem Solving in Medicine questionnaire and each dimension of the Online Health Information Utilization questionnaire. Furthermore, we conducted structure equation modeling for examining the possible linkage between each of the 6 dimensions of the Problem Solving in Medicine questionnaire and each of the 3 dimensions of the Online Health Information Utilization questionnaire. A total of 457 patients participated in this study. Pearson correlation coefficients ranged from .12 to .41, all with statistical significance, implying that each dimension of the Problem Solving in Medicine questionnaire was significantly associated with each dimension of the Online Health Information Utilization questionnaire. Patients with the strategy of online health information search for solving medical problems positively predicted changes in medical decision making (P=.01), consulting with others (P<.001), and promoting self-efficacy on deliberating the online health information (P<.001) based on the online health information they obtained. Present health care professionals have a responsibility to acknowledge that patients' medical decision making may be changed based on additional online health information. Health care professionals should assist patients' medical decision making by initiating as much dialogue with patients as possible, providing credible and convincing health information to patients, and guiding patients where to look for accurate, comprehensive, and understandable online health information. By doing so, patients will avoid becoming overwhelmed with extraneous and often conflicting health information. Educational interventions to promote health information seekers' ability to identify, locate, obtain, read, understand, evaluate, and effectively use online health information are highly encouraged. ©Yen-Yuan Chen, Chia-Ming Li, Jyh-Chong Liang, Chin-Chung Tsai. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 12.02.2018.
ERIC Educational Resources Information Center
Bekki, Jennifer M.; Bernstein, Bianca; Fabert, Natalie; Gildar, Natalie; Way, Amy
2014-01-01
Interpersonal problem solving skills allow engineers to prevent interpersonal difficulties more effectively and to manage conflict, both of which are critical to successful participation on teams. This research provides evidence that the "Career"WISE online learning environment can improve those skills among women in engineering graduate…
Wikis for a Collaborative Problem-Solving (CPS) Module for Secondary School Science
ERIC Educational Resources Information Center
DeWitt, Dorothy; Alias, Norlidah; Siraj, Saedah; Spector, Jonathan Michael
2017-01-01
Collaborative problem solving (CPS) can support online learning by enabling interactions for social and cognitive processes. Teachers may not have sufficient knowledge to support such interactions, so support needs to be designed into learning modules for this purpose. This study investigates to what extent an online module for teaching nutrition…
Prospective Teachers' Problem Solving in Online Peer-Led Dialogues
ERIC Educational Resources Information Center
Wade, Suzanne E.; Fauske, Janice R.; Thompson, Audrey
2008-01-01
In this self-study of a secondary teacher education course, the authors investigated whether there was evidence of critically reflective problem solving on the part of prospective teachers who participated in a peer-led online discussion of a teaching case about English-language learners. They also examined what approaches to multicultural…
Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.
Oldenburg, Nancy L; Hung, Wei-Chen
2010-04-01
It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.
ERIC Educational Resources Information Center
Balta, Nuri; Awedh, Mohammad Hamza
2017-01-01
Advanced technology helps educational institutes to improve student learning performance and outcomes. In this study, our aim is to measure and assess student engagement and collaborative learning in engineering classes when using online technology in solving physics problems. The interactive response system used in this study is a collaborative…
Instructional Strategies for Online Introductory College Physics Based on Learning Styles
ERIC Educational Resources Information Center
Ekwue, Eleazer U.
2013-01-01
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…
NASA Astrophysics Data System (ADS)
Alamsyah, Andry; Rachmadiansyah, Imam
2018-03-01
Online transportation service is known for its accessibility, transparency, and tariff affordability. These points make online transportation have advantages over the existing conventional transportation service. Online transportation service is an example of disruptive technology that change the relationship between customers and companies. In Indonesia, there are high competition among online transportation provider, hence the companies must maintain and monitor their service level. To understand their position, we apply both sentiment analysis and multiclass classification to understand customer opinions. From negative sentiments, we can identify problems and establish problem-solving priorities. As a case study, we use the most popular online transportation provider in Indonesia: Gojek and Grab. Since many customers are actively give compliment and complain about company’s service level on Twitter, therefore we collect 61,721 tweets in Bahasa during one month observations. We apply Naive Bayes and Support Vector Machine methods to see which model perform best for our data. The result reveal Gojek has better service quality with 19.76% positive and 80.23% negative sentiments than Grab with 9.2% positive and 90.8% negative. The Gojek highest problem-solving priority is regarding application problems, while Grab is about unusable promos. The overall result shows general problems of both case study are related to accessibility dimension which indicate lack of capability to provide good digital access to the end users.
On the Benefits of Seeking (and Avoiding) Help in Online Problem-Solving Environments
ERIC Educational Resources Information Center
Roll, Ido; Baker, Ryan S. J. d.; Aleven, Vincent; Koedinger, Kenneth R.
2014-01-01
Seeking the right level of help at the right time can support learning. However, in the context of online problem-solving environments, it is still not entirely clear which help-seeking strategies are desired. We use fine-grained data from 38 high school students who worked with the Geometry Cognitive Tutor for 2 months to better understand the…
An Examination of High School Students' Online Engagement in Mathematics Problems
ERIC Educational Resources Information Center
Lim, Woong; Son, Ji-Won; Gregson, Susan; Kim, Jihye
2018-01-01
This article examines high school students' engagement in a set of trigonometry problems. Students completed this task independently in an online environment with access to Internet search engines, online textbooks, and YouTube videos. The findings imply that students have the resourcefulness to solve procedure-based mathematics problems in an…
ERIC Educational Resources Information Center
Hwang, Gwo-Jen; Wu, Po-Han; Chen, Chi-Chang
2012-01-01
In this paper, an online game was developed in the form of a competitive board game for conducting web-based problem-solving activities. The participants of the game determined their move by throwing a dice. Each location of the game board corresponds to a gaming task, which could be a web-based information-searching question or a mini-game; the…
Anderson, William L; Mitchell, Steven M; Osgood, Marcy P
2008-01-01
For the past 3 yr, faculty at the University of New Mexico, Department of Biochemistry and Molecular Biology have been using interactive online Problem-Based Learning (PBL) case discussions in our large-enrollment classes. We have developed an illustrative tracking method to monitor student use of problem-solving strategies to provide targeted help to groups and to individual students. This method of assessing performance has a high interrater reliability, and senior students, with training, can serve as reliable graders. We have been able to measure improvements in many students' problem-solving strategies, but, not unexpectedly, there is a population of students who consistently apply the same failing strategy when there is no faculty intervention. This new methodology provides an effective tool to direct faculty to constructively intercede in this area of student development.
An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities
ERIC Educational Resources Information Center
Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen
2012-01-01
This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…
Learning Analysis of K-12 Students' Online Problem Solving: A Three-Stage Assessment Approach
ERIC Educational Resources Information Center
Hu, Yiling; Wu, Bian; Gu, Xiaoqing
2017-01-01
Problem solving is considered a fundamental human skill. However, large-scale assessment of problem solving in K-12 education remains a challenging task. Researchers have argued for the development of an enhanced assessment approach through joint effort from multiple disciplines. In this study, a three-stage approach based on an evidence-centered…
NASA Astrophysics Data System (ADS)
Chen, Zhongzhou; Demirci, Neset; Choi, Youn-Jeng; Pritchard, David E.
2017-06-01
Previous research on problem diagrams suggested that including a supportive diagram, one that does not provide necessary problem solving information, may bring little, or even negative, benefit to students' problem solving success. We tested the usefulness of problem diagrams on 12 different physics problems (6A/B experiments) in our massive open online course. By analyzing over 8000 student responses in total, we found that including a problem diagram that contains no significant additional information only slightly improves the first attempt correct rate for the few most spatially complex problems, and has little impact on either the final correct percentage or the time spent on solving the problem. On the other hand, in half of the cases, removing the diagram significantly increased the fraction of students' drawing their own diagrams during problem solving. The increase in drawing behavior is largely independent of students' physics abilities. In summary, our results suggest that for many physics problems, the benefit of a diagram is exceedingly small and may not justify the effort of creating one.
ERIC Educational Resources Information Center
Akyuz, Halil Ibrahim; Keser, Hafize
2015-01-01
The aim of this study is to investigate the effect of an educational agent, used in online task based learning media, and its form characteristics on problem solving ability perceptions of students. 2x2 factorial design is used in this study. The first study factor is the role of the educational agent and the second factor is form characteristics…
ERIC Educational Resources Information Center
Lin, John J. H.; Lin, Sunny S. J.
2018-01-01
To deepen our understanding of those aspects of problems that cause the most difficulty for solvers, this study integrated eye-tracking with handwriting devices to investigate problem solvers' online processes while solving geometry problems. We are interested in whether the difference between successful and unsuccessful solvers can be identified…
Eye-Tracking Study of Complexity in Gas Law Problems
ERIC Educational Resources Information Center
Tang, Hui; Pienta, Norbert
2012-01-01
This study, part of a series investigating students' use of online tools to assess problem solving, uses eye-tracking hardware and software to explore the effect of problem difficulty and cognitive processes when students solve gas law word problems. Eye movements are indices of cognition; eye-tracking data typically include the location,…
ERIC Educational Resources Information Center
Chen, Zhongzhou; Demirci, Neset; Choi, Youn-Jeng; Pritchard, David E.
2017-01-01
Previous research on problem diagrams suggested that including a supportive diagram, one that does not provide necessary problem solving information, may bring little, or even negative, benefit to students' problem solving success. We tested the usefulness of problem diagrams on 12 different physics problems (6A/B experiments) in our massive open…
Predicting protein structures with a multiplayer online game.
Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran; Players, Foldit
2010-08-05
People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.
ERIC Educational Resources Information Center
Schoenfeld-Tacher, Regina; McConnell, Sherry; Kogan, Lori R.
2004-01-01
This study compares the effects of delivery medium (online vs. face-to-face) and facilitator content expertise on academic outcomes in a problem-based learning (PBL) course in anatomy for pre-health/medical majors. The content of online PBL sessions was examined to gain insight into the problem-solving process taking place in these situations.…
Modelling human problem solving with data from an online game.
Rach, Tim; Kirsch, Alexandra
2016-11-01
Since the beginning of cognitive science, researchers have tried to understand human strategies in order to develop efficient and adequate computational methods. In the domain of problem solving, the travelling salesperson problem has been used for the investigation and modelling of human solutions. We propose to extend this effort with an online game, in which instances of the travelling salesperson problem have to be solved in the context of a game experience. We report on our effort to design and run such a game, present the data contained in the resulting openly available data set and provide an outlook on the use of games in general for cognitive science research. In addition, we present three geometrical models mapping the starting point preferences in the problems presented in the game as the result of an evaluation of the data set.
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems.
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way.
Online Self-Organizing Social Systems: The Decentralized Future of Online Learning.
ERIC Educational Resources Information Center
Wiley, David A.; Edwards, Erin K.
2002-01-01
Describes an online self-organizing social system (OSOSS) which allows large numbers of individuals to self-organize in a highly decentralized manner to solve problems and accomplish other goals. Topics include scalability and bandwidth in online learning; self-organization; learning objects; instructional design underlying OSOSS, including…
Use of Computer-Based Case Studies in a Problem-Solving Curriculum.
ERIC Educational Resources Information Center
Haworth, Ian S.; And Others
1997-01-01
Describes the use of three case studies, on computer, to enhance problem solving and critical thinking among doctoral pharmacy students in a physical chemistry course. Students are expected to use specific computer programs, spreadsheets, electronic mail, molecular graphics, word processing, online literature searching, and other computer-based…
ERIC Educational Resources Information Center
Wall, Jennifer; Selmer, Sarah; Bingham Brown, Amy
2016-01-01
Prospective elementary teachers at three universities engaged in online modules called the Virtual Field Experience, created by the Math Forum. The prospective teachers learned about problem solving and mentoring elementary students in composing solutions and explanations to nonroutine challenge problems. Finally, through an asynchronous online…
A MOOC Based on Blended Pedagogy
ERIC Educational Resources Information Center
Rayyan, S.; Fredericks, C.; Colvin, K. F.; Liu, A.; Teodorescu, R.; Barrantes, A.; Pawl, A.; Seaton, D. T.; Pritchard, D. E.
2016-01-01
We describe three iterations of a Massive Open Online Course (MOOC) developed from online preparation materials for a reformed introductory physics classroom at the Massachusetts Institute of Technology, in which the teaching staff interact with small groups of students doing problems using an expert problem-solving pedagogy. The MOOC contains an…
Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving
Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni
2015-01-01
It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load. PMID:25652466
ERIC Educational Resources Information Center
Eseryel, Deniz; Ge, Xun; Ifenthaler, Dirk; Law, Victor
2011-01-01
Following a design-based research framework, this article reports two empirical studies with an educational MMOG, called "McLarin's Adventures," on facilitating 9th-grade students' complex problem-solving skill acquisition in interdisciplinary STEM education. The article discusses the nature of complex and ill-structured problem solving…
Teaching Problem-Solving and Critical-Thinking Skills Online Using Problem-Based Learning
ERIC Educational Resources Information Center
Romero, Liz; Orzechowski, Agnes; Rahatka, Ola
2014-01-01
The availability of technological tools is promoting a shift toward more student-centered online instruction. This article describes the implementation of a Problem-Based Learning (PBL) model and the technological tools used to meet the expectations of the model as well as the needs of the students. The end product is a hybrid course with eight…
Structuring Video Cases to Support Future Teachers' Problem Solving
ERIC Educational Resources Information Center
Kale, Ugur; Whitehouse, Pamela
2012-01-01
This study examined preservice teachers' problem-solving skills through the use of an online video case study. Eighty preservice teachers participated in the study with a three-level video presentation by a two-grade-level between-subjects factorial design. The study incorporates a content analysis framework to examine both the components and the…
Grading Homework to Emphasize Problem-Solving Process Skills
ERIC Educational Resources Information Center
Harper, Kathleen A.
2012-01-01
This article describes a grading approach that encourages students to employ particular problem-solving skills. Some strengths of this method, called "process-based grading," are that it is easy to implement, requires minimal time to grade, and can be used in conjunction with either an online homework delivery system or paper-based homework.
Unifying Computer-Based Assessment across Conceptual Instruction, Problem-Solving, and Digital Games
ERIC Educational Resources Information Center
Miller, William L.; Baker, Ryan S.; Rossi, Lisa M.
2014-01-01
As students work through online learning systems such as the Reasoning Mind blended learning system, they often are not confined to working within a single educational activity; instead, they work through various different activities such as conceptual instruction, problem-solving items, and fluency-building games. However, most work on assessing…
The Association between Motivation, Affect, and Self-regulated Learning When Solving Problems
Baars, Martine; Wijnia, Lisette; Paas, Fred
2017-01-01
Self-regulated learning (SRL) skills are essential for learning during school years, particularly in complex problem-solving domains, such as biology and math. Although a lot of studies have focused on the cognitive resources that are needed for learning to solve problems in a self-regulated way, affective and motivational resources have received much less research attention. The current study investigated the relation between affect (i.e., Positive Affect and Negative Affect Scale), motivation (i.e., autonomous and controlled motivation), mental effort, SRL skills, and problem-solving performance when learning to solve biology problems in a self-regulated online learning environment. In the learning phase, secondary education students studied video-modeling examples of how to solve hereditary problems, solved hereditary problems which they chose themselves from a set of problems with different complexity levels (i.e., five levels). In the posttest, students solved hereditary problems, self-assessed their performance, and chose a next problem from the set of problems but did not solve these problems. The results from this study showed that negative affect, inaccurate self-assessments during the posttest, and higher perceptions of mental effort during the posttest were negatively associated with problem-solving performance after learning in a self-regulated way. PMID:28848467
The impact of problem solving strategy with online feedback on students’ conceptual understanding
NASA Astrophysics Data System (ADS)
Pratiwi, H. Y.; Winarko, W.; Ayu, H. D.
2018-04-01
The study aimed to determine the impact of the implementation of problem solving strategy with online feedback towards the students’ concept understanding. This study used quasi experimental design with post-test only control design. The participants were all Physics Education students of Kanjuruhan University year 2015. Then, they were divided into two different groups; 30 students belong to experiment class and the remaining 30 students belong to class of control. The students’ concept understanding was measured by the concept understanding test on multiple integral lesson. The result of the concept understanding test was analyzed by prerequisite test and stated to be normal and homogenic distributed, then the hypothesis was examined by T-test. The result of the study shows that there is difference in the concept understanding between experiment class and control class. Next, the result also shows that the students’ concept understanding which was taught using problem solving strategy with online feedback was higher than those using conventional learning; with average score of 72,10 for experiment class and 52,27 for control class.
Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving.
Maisto, Domenico; Donnarumma, Francesco; Pezzulo, Giovanni
2015-03-06
It has long been recognized that humans (and possibly other animals) usually break problems down into smaller and more manageable problems using subgoals. Despite a general consensus that subgoaling helps problem solving, it is still unclear what the mechanisms guiding online subgoal selection are during the solution of novel problems for which predefined solutions are not available. Under which conditions does subgoaling lead to optimal behaviour? When is subgoaling better than solving a problem from start to finish? Which is the best number and sequence of subgoals to solve a given problem? How are these subgoals selected during online inference? Here, we present a computational account of subgoaling in problem solving. Following Occam's razor, we propose that good subgoals are those that permit planning solutions and controlling behaviour using less information resources, thus yielding parsimony in inference and control. We implement this principle using approximate probabilistic inference: subgoals are selected using a sampling method that considers the descriptive complexity of the resulting sub-problems. We validate the proposed method using a standard reinforcement learning benchmark (four-rooms scenario) and show that the proposed method requires less inferential steps and permits selecting more compact control programs compared to an equivalent procedure without subgoaling. Furthermore, we show that the proposed method offers a mechanistic explanation of the neuronal dynamics found in the prefrontal cortex of monkeys that solve planning problems. Our computational framework provides a novel integrative perspective on subgoaling and its adaptive advantages for planning, control and learning, such as for example lowering cognitive effort and working memory load. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Project-Based Learning and Student Knowledge Construction during Asynchronous Online Discussion
ERIC Educational Resources Information Center
Koh, Joyce Hwee Ling; Herring, Susan C.; Hew, Khe Foon
2010-01-01
Project-based learning engages students in problem solving through artefact design. However, previous studies of online project-based learning have focused primarily on the dynamics of online collaboration; students' knowledge construction throughout this process has not been examined thoroughly. This case study analyzed the relationship between…
ERIC Educational Resources Information Center
Kaplan, Danielle E.; Wu, Erin Chia-ling
2006-01-01
Our research suggests static and animated graphics can lead to more animated thinking and more correct problem solving in computer-based probability learning. Pilot software modules were developed for graduate online statistics courses and representation research. A study with novice graduate student statisticians compared problem solving in five…
Minich, Nori; Taylor, H. Gerry; Kirkwood, Michael; Brown, Tanya Maines; Stancin, Terry; Wade, Shari L
2015-01-01
Objective Investigate effectiveness of an online Counselor-Assisted Problem-Solving (CAPS) intervention on family functioning after traumatic brain injury (TBI). Methods Participants were randomized to CAPS (n = 65) or internet resource comparison (IRC; n = 67). CAPS is a counselor-assisted web-based program. IRC was given access to online resources. Outcomes were examined 6 months, 12 months, and 18 months after baseline. Injury severity, age, and SES were examined as moderators. Results A main effect of time was noted for teen-reported conflict and parent-reported problem solving. CAPS had decreased parent-reported conflict and a reduction in parental effective communication. Effects were specific to subsets of the sample. Conclusions CAPS, a family-based problem-solving intervention designed to address problem behaviors, had modest effects on some aspects of family functioning, when compared to IRC. Effects were generally limited to subsets of the families and were not evident across all follow-up assessments. PMID:26461100
An Economical Analysis on the Lack of Credit Standing in On-line Transactions of Sports Goods
NASA Astrophysics Data System (ADS)
Ma, Hong-xia
With the development of Internet and sports industries, on-line transactions of sports goods will become an important way to sell the sports goods. However, credit standing is a problem that can not be ignored. Beginning from the analysis of the types andfeatures of sports goods, this paper categorizes the online transactions of sports goods, talks about various problems existing in each category, and explains the reasons with economical theories. On the above basis, the paper puts forward the countermeasures and suggestions to solve these problems.
Wade, Shari L.; Stancin, Terry; Kirkwood, Michael; Brown, Tanya Maines; Rochester, Mayo Clinic; McMullen, Kendra M.; Taylor, H. Gerry
2013-01-01
Objective To test the efficacy of Counselor-Assisted Problem Solving (CAPS) versus an internet resources comparison (IRC) condition in reducing behavior problems in adolescents following traumatic brain injury (TBI). Design Randomized clinical trial with interviewers naïve to treatment condition. Setting Three large tertiary children's hospitals and two general hospitals with pediatric commitment. Participants 132 children ages 12-17 years hospitalized during the previous 6 months for moderate to severe TBI. Interventions Participants in CAPS (n = 65) completed 8-12 online modules providing training in problem solving, communication skills, and self-regulation and subsequent synchronous videoconferences with a therapist. Participants in the IRC group (n = 67) received links to internet resources about pediatric TBI. Main Outcome Measures Child Behavior Checklist (CBCL) administered before and after completion of treatment (i.e., approximately six months after treatment initiation). Results Post hoc analysis of covariance (ANCOVA), controlling for pre-treatment scores, was used to examine group differences in behavior problems in the entire sample and among older (n=59) and younger adolescents (n=53). Among older but not younger adolescents, CAPS resulted in greater improvements on multiple dimensions of externalizing behavior problems than did IRC. Conclusion Online problem-solving therapy may be effective in reducing behavior problems in older adolescent survivors of moderate-severe TBI. PMID:23640543
Online Problem Solving for Adolescent Brain Injury: A Randomized Trial of 2 Approaches.
Wade, Shari L; Taylor, Hudson Gerry; Yeates, Keith Owen; Kirkwood, Michael; Zang, Huaiyu; McNally, Kelly; Stacin, Terry; Zhang, Nanhua
Adolescent traumatic brain injury (TBI) contributes to deficits in executive functioning and behavior, but few evidence-based treatments exist. We conducted a randomized clinical trial comparing Teen Online Problem Solving with Family (TOPS-Family) with Teen Online Problem Solving with Teen Only (TOPS-TO) or the access to Internet Resources Comparison (IRC) group. Children, aged 11 to 18 years, who sustained a complicated mild-to-severe TBI in the previous 18 months were randomly assigned to the TOPS-Family (49), TOPS-TO (51), or IRC group (52). Parent and self-report measures of externalizing behaviors and executive functioning were completed before treatment and 6 months later. Treatment effects were examined using linear regression models, adjusting for baseline symptom levels. Age, maternal education, and family stresses were examined as moderators. The TOPS-Family group had lower levels of parent-reported executive dysfunction at follow-up than the TOPS-TO group, and differences between the TOPS-Family and IRC groups approached significance. Maternal education moderated improvements in parent-reported externalizing behaviors, with less educated parents in the TOPS-Family group reporting fewer symptoms. On the self-report Behavior Rating Inventory of Executive Functions, treatment efficacy varied with the level of parental stresses. The TOPS-Family group reported greater improvements at low stress levels, whereas the TOPS-TO group reported greater improvement at high-stress levels. The TOPS-TO group did not have significantly lower symptoms than the IRC group on any comparison. Findings support the efficacy of online family problem solving to address executive dysfunction and improve externalizing behaviors among youth with TBI from less advantaged households. Treatment with the teen alone may be indicated in high-stress families.
Geospatial Service Platform for Education and Research
NASA Astrophysics Data System (ADS)
Gong, J.; Wu, H.; Jiang, W.; Guo, W.; Zhai, X.; Yue, P.
2014-04-01
We propose to advance the scientific understanding through applications of geospatial service platforms, which can help students and researchers investigate various scientific problems in a Web-based environment with online tools and services. The platform also offers capabilities for sharing data, algorithm, and problem-solving knowledge. To fulfil this goal, the paper introduces a new course, named "Geospatial Service Platform for Education and Research", to be held in the ISPRS summer school in May 2014 at Wuhan University, China. The course will share cutting-edge achievements of a geospatial service platform with students from different countries, and train them with online tools from the platform for geospatial data processing and scientific research. The content of the course includes the basic concepts of geospatial Web services, service-oriented architecture, geoprocessing modelling and chaining, and problem-solving using geospatial services. In particular, the course will offer a geospatial service platform for handson practice. There will be three kinds of exercises in the course: geoprocessing algorithm sharing through service development, geoprocessing modelling through service chaining, and online geospatial analysis using geospatial services. Students can choose one of them, depending on their interests and background. Existing geoprocessing services from OpenRS and GeoPW will be introduced. The summer course offers two service chaining tools, GeoChaining and GeoJModelBuilder, as instances to explain specifically the method for building service chains in view of different demands. After this course, students can learn how to use online service platforms for geospatial resource sharing and problem-solving.
Leadership Styles in Synchronous and Asynchronous Virtual Learning Environments
ERIC Educational Resources Information Center
Ruggieri, Stefano; Boca, Stefano; Garro, Maria
2013-01-01
A comparison of the effects of transactional and transformational leadership in synchronous and a synchronous online teamwork was conducted. In the study, groups of four participants interacted in online text chat and online text forum in problem solving tasks. The groups were lead by a confederate who acted as a transactional or a…
ERIC Educational Resources Information Center
Ovington, Linda A.; Saliba, Anthony J.; Goldring, Jeremy
2016-01-01
This article reports the development of a brief self-report measure of dispositional insight problem solving, the Dispositional Insight Scale (DIS). From a representative Australian database, 1,069 adults (536 women and 533 men) completed an online questionnaire. An exploratory and confirmatory factor analysis revealed a 5-item scale, with all…
Information Problem-Solving Skills in Small Virtual Groups and Learning Outcomes
ERIC Educational Resources Information Center
Garcia, Consuelo; Badia, Antoni
2017-01-01
This study investigated the frequency of use of information problem-solving (IPS) skills and its relationship with learning outcomes. During the course of the study, 40 teachers carried out a collaborative IPS task in small virtual groups in a 4-week online training course. The status of IPS skills was collected through self-reports handed in over…
ERIC Educational Resources Information Center
Rosen, Yigal
2014-01-01
Students' performance in human-to-human and human-to-agent collaborative problem solving assessment task is investigated in this paper. A secondary data analysis of the research reported by Rosen and Tager (2013) was conducted in order to investigate the comparability of the opportunities for conflict situations in human-to-human and…
NASA Astrophysics Data System (ADS)
Thurmond, Brandi
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.
The Study on Network Examinational Database based on ASP Technology
NASA Astrophysics Data System (ADS)
Zhang, Yanfu; Han, Yuexiao; Zhou, Yanshuang
This article introduces the structure of the general test base system based on .NET technology, discussing the design of the function modules and its implementation methods. It focuses on key technology of the system, proposing utilizing the WEB online editor control to solve the input problem and regular expression to solve the problem HTML code, making use of genetic algorithm to optimize test paper and the automated tools of WORD to solve the problem of exporting papers and others. Practical effective design and implementation technology can be used as reference for the development of similar systems.
Online gaming for learning optimal team strategies in real time
NASA Astrophysics Data System (ADS)
Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.
2010-04-01
This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.
The Role of Online Homework in Low-Enrollment College Introductory Physics Courses
ERIC Educational Resources Information Center
Lazarova, Krassi
2015-01-01
Studying physics for nonphysics majors at college level is usually a process of learning new problem-solving skills and sometimes seems a frustrating experience. In an attempt to provide students with more learning resources, online homework was required to supplement the instruction. This study reveals the role of the online homework assignments…
ERIC Educational Resources Information Center
Collins, Linda J.; Liang, Xin
2014-01-01
Online professional development (oPD) for teachers should focus on designing web-based learning opportunities that help practicing educators solve the tough problems of practice when working in their schools. Technology, pedagogy, and content knowledge can be integrated in the design of online professional development modules to enhance task…
ERIC Educational Resources Information Center
Toledo, Raciel Yera; Mota, Yailé Caballero
2014-01-01
The paper proposes a recommender system approach to cover online judge's domains. Online judges are e-learning tools that support the automatic evaluation of programming tasks done by individual users, and for this reason they are usually used for training students in programming contest and for supporting basic programming teachings. The…
ERIC Educational Resources Information Center
van Oostveen, Roland; Desjardins, François
2013-01-01
The political will to move educational opportunities online is growing for numerous reasons and new mobile technologies are being adopted at unprecedented rates. Such a context presents opportunities to develop online programs and experiments in universities, with new affordances to solve old problems such as access and isolation. This paper…
Real-time trajectory optimization on parallel processors
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
1993-01-01
A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.
Teaching problem solving: Don't forget the problem solver(s)
NASA Astrophysics Data System (ADS)
Ranade, Saidas M.; Corrales, Angela
2013-05-01
The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.
The profile of problem-solving ability of students of distance education in science learning
NASA Astrophysics Data System (ADS)
Widiasih; Permanasari, A.; Riandi; Damayanti, T.
2018-05-01
This study aims to analyze the students' problem-solving ability in science learning and lesson-planning ability. The method used is descriptive-quantitative. The subjects of the study were undergraduate students of Distance Higher Education located in Serang, majoring in Primary Teacher Education in-service training. Samples were taken thoroughly from 2 groups taking the course of Science Learning in Primary School in the first term of 2017, amounted to 39 students. The technique of data collection used is essay test of problem solving from case study done at the beginning of lecture in February 2017. The results of this research can be concluded that In-service Training of Primary School Teacher Education Program are categorized as quite capable (score 66) in solving science learning problem and planning science lesson. Therefore, efforts need to be done to improve the ability of students in problem solving, for instance through online tutorials with the basis of interactive discussions.
Impact of Online Flexible Games on Students' Attitude towards Mathematics
ERIC Educational Resources Information Center
Mavridis, Apostolos; Katmada, Aikaterini; Tsiatsos, Thrasyvoulos
2017-01-01
This study examined the effects of using an online flexible educational game on students' attitude towards mathematics as compared to the traditional method of solving mathematical problems. Moreover, the study assessed the learning effectiveness of the game and investigated potential gender differences in the game's effectiveness on changing…
ERIC Educational Resources Information Center
Shaw, Robert E.; And Others
1997-01-01
Proposes a theoretical framework for designing online-situated assessment tools for multimedia instructional systems. Uses a graphic method based on ecological psychology to monitor student performance through a learning activity. Explores the method's feasibility in case studies describing instructional systems teaching critical-thinking and…
An Efficient Augmented Lagrangian Method with Applications to Total Variation Minimization
2012-08-17
the classic augmented Lagrangian multiplier method, we propose, analyze and test an algorithm for solving a class of equality-constrained non-smooth...method, we propose, analyze and test an algorithm for solving a class of equality-constrained non-smooth optimization problems (chie y but not...significantly outperforming several state-of-the-art solvers on most tested problems. The resulting MATLAB solver, called TVAL3, has been posted online [23]. 2
Effect on Behavior Problems of Teen Online Problem-Solving for Adolescent Traumatic Brain Injury
Walz, Nicolay C.; Carey, JoAnne; McMullen, Kendra M.; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen
2011-01-01
PURPOSE: To report the results of a randomized clinical trial of teen online problem-solving (TOPS) meant to improve behavioral outcomes of adolescents with traumatic brain injury (TBI). METHODS: A randomized clinical trial was conducted to compare the efficacy of TOPS with access to Internet resources in teenagers with TBI in improving parent and self-reported behavior problems and parent-teen conflicts. Participants included 41 adolescents aged 11 to 18 years (range: 11.47–17.90 years) who had sustained a moderate-to-severe TBI between 3 and 19 months earlier. Teens in the TOPS group received 10 to 14 online sessions that provided training in problem-solving, communication skills, and self-regulation. Outcomes were assessed before treatment and at a follow-up assessment an average of 8 months later. Groups were compared on follow-up scores after we controlled for pretreatment levels. Injury severity and socioeconomic status were examined as potential moderators of treatment efficacy. RESULTS: Forty-one participants provided consent and completed baseline assessments, and follow-up assessments were completed for 35 participants (16 TOPS, 19 Internet resource comparison). The TOPS group reported significantly less parent-teen conflict at follow-up than did the Internet-resource-comparison group. Improvements in teen behavior after TOPS were moderated by injury severity; there were greater improvements in the teens' internalizing symptoms after TOPS among adolescents with severe TBI. Family socioeconomic status also moderated the efficacy of TOPS in improving behavior problems reported by both parents and teens, although the nature of the moderation effects varied. CONCLUSION: Our findings suggest that TOPS contributes to improvements in parent-teen conflict generally and parent and self-reported teen behavior problems for certain subsets of participants. PMID:21890828
Effect on behavior problems of teen online problem-solving for adolescent traumatic brain injury.
Wade, Shari L; Walz, Nicolay C; Carey, Joanne; McMullen, Kendra M; Cass, Jennifer; Mark, Erin; Yeates, Keith Owen
2011-10-01
To report the results of a randomized clinical trial of teen online problem-solving (TOPS) meant to improve behavioral outcomes of adolescents with traumatic brain injury (TBI). A randomized clinical trial was conducted to compare the efficacy of TOPS with access to Internet resources in teenagers with TBI in improving parent and self-reported behavior problems and parent-teen conflicts. Participants included 41 adolescents aged 11 to 18 years (range: 11.47-17.90 years) who had sustained a moderate-to-severe TBI between 3 and 19 months earlier. Teens in the TOPS group received 10 to 14 online sessions that provided training in problem-solving, communication skills, and self-regulation. Outcomes were assessed before treatment and at a follow-up assessment an average of 8 months later. Groups were compared on follow-up scores after we controlled for pretreatment levels. Injury severity and socioeconomic status were examined as potential moderators of treatment efficacy. Forty-one participants provided consent and completed baseline assessments, and follow-up assessments were completed for 35 participants (16 TOPS, 19 Internet resource comparison). The TOPS group reported significantly less parent-teen conflict at follow-up than did the Internet-resource-comparison group. Improvements in teen behavior after TOPS were moderated by injury severity; there were greater improvements in the teens' internalizing symptoms after TOPS among adolescents with severe TBI. Family socioeconomic status also moderated the efficacy of TOPS in improving behavior problems reported by both parents and teens, although the nature of the moderation effects varied. Our findings suggest that TOPS contributes to improvements in parent-teen conflict generally and parent and self-reported teen behavior problems for certain subsets of participants.
"Cyber" Reading in L2: Online Reading Strategies of Students in a Philippine Public High School
ERIC Educational Resources Information Center
De Leon, John Angelo Vinuya; Tarrayo, Veronico Nogales
2014-01-01
This paper seeks to identify the online reading strategies employed by students in a Philippine Public High School. In particular, the study attempts to answer the following questions: (1) What are the online reading strategies used by the respondents (i.e., global, problem-solving, and support)?; (2) What is the frequency of use of the online…
NASA Astrophysics Data System (ADS)
Gulland, E.-K.; Veenendaal, B.; Schut, A. G. T.
2012-07-01
Problem-solving knowledge and skills are an important attribute of spatial sciences graduates. The challenge of higher education is to build a teaching and learning environment that enables students to acquire these skills in relevant and authentic applications. This study investigates the effectiveness of traditional face-to-face teaching and online learning technologies in supporting the student learning of problem-solving and computer programming skills, techniques and solutions. The student cohort considered for this study involves students in the surveying as well as geographic information science (GISc) disciplines. Also, students studying across a range of learning modes including on-campus, distance and blended, are considered in this study. Student feedback and past studies reveal a lack of student interest and engagement in problem solving and computer programming. Many students do not see such skills as directly relevant and applicable to their perceptions of what future spatial careers hold. A range of teaching and learning methods for both face-to-face teaching and distance learning were introduced to address some of the perceived weaknesses of the learning environment. These included initiating greater student interaction in lectures, modifying assessments to provide greater feedback and student accountability, and the provision of more interactive and engaging online learning resources. The paper presents and evaluates the teaching methods used to support the student learning environment. Responses of students in relation to their learning experiences were collected via two anonymous, online surveys and these results were analysed with respect to student pass and retention rates. The study found a clear distinction between expectations and engagement of surveying students in comparison to GISc students. A further outcome revealed that students who were already engaged in their learning benefited the most from the interactive learning resources and opportunities provided.
Wu, Huai-Ning; Luo, Biao
2012-12-01
It is well known that the nonlinear H∞ state feedback control problem relies on the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that has proven to be impossible to solve analytically. In this paper, a neural network (NN)-based online simultaneous policy update algorithm (SPUA) is developed to solve the HJI equation, in which knowledge of internal system dynamics is not required. First, we propose an online SPUA which can be viewed as a reinforcement learning technique for two players to learn their optimal actions in an unknown environment. The proposed online SPUA updates control and disturbance policies simultaneously; thus, only one iterative loop is needed. Second, the convergence of the online SPUA is established by proving that it is mathematically equivalent to Newton's method for finding a fixed point in a Banach space. Third, we develop an actor-critic structure for the implementation of the online SPUA, in which only one critic NN is needed for approximating the cost function, and a least-square method is given for estimating the NN weight parameters. Finally, simulation studies are provided to demonstrate the effectiveness of the proposed algorithm.
Wondering + Online Inquiry = Learning
ERIC Educational Resources Information Center
Sekeres, Diane Carver; Coiro, Julie; Castek, Jill; Guzniczak, Lizabeth A.
2014-01-01
Digital information sources can form the basis of effective inquiry-based learning if teachers construct the information and exercises in ways that will promote collaboration, communication, and problem solving.
Getting Started with The Math Forum Problems of the Week Library. Teacher's Guide
ERIC Educational Resources Information Center
Math Forum @ Drexel, 2009
2009-01-01
The Math Forum Problems of the Week Library is designed to leverage the power of interactive technology to hold student interest while increasing their success as strategic thinkers. The Math Forum Library is an online source of non-routine challenges in which problem solving and mathematical communication are key elements of every problem. This…
ERIC Educational Resources Information Center
Zacharis, Nick Z.
2009-01-01
Rapid technological advances in the areas of telecommunications, computer technology and the Internet have made available to tutors and learners in the domain of online learning, a broad array of tools that provide the possibility to facilitate and enhance learning to higher levels of critical reflective thinking. Computer mediated communication…
ERIC Educational Resources Information Center
Schmerbeck, Nicola; Lucht, Felecia
2017-01-01
Actively engaged in online media, learners today are surrounded by texts overtly and covertly transmitted by visual images, sound effects, and voices as well as the written word. Language learning portfolios can engage students in the literacy-oriented learning processes of interpretation, collaboration, and problem solving as outlined by Kern…
Patterns of Generative Discourse in Online Discussions during the Field Experience
ERIC Educational Resources Information Center
Lafferty, Karen Elizabeth; Kopcha, Theodore J.
2016-01-01
This study examined how online discussion of the classroom challenges that preservice teachers face during the field experience can lead to problem solving and knowledge generation. Drawing upon Horn and Little's (2010) descriptions of generative discourse, the study examined how a community of preservice teachers, their university supervisors,…
Collaborative Learning in Online Study Groups: An Evolutionary Game Theory Perspective
ERIC Educational Resources Information Center
Chiong, Raymond; Jovanovic, Jelena
2012-01-01
Educational benefits of online collaborative group work have been confirmed in numerous research studies. Most frequently cited advantages include the development of skills of critical thinking and problem solving as well as skills of self-reflection and co-construction of knowledge and meaning. However, the establishment and maintenance of active…
An Online Course of Business Statistics: The Proportion of Successful Students
ERIC Educational Resources Information Center
Pena-Sanchez, Rolando
2009-01-01
This article describes the students' academic progress in an online course of business statistics through interactive software assignments and diverse educational homework, which helps these students to build their own e-learning through basic competences; i.e. interpreting results and solving problems. Cross-tables were built for the categorical…
Problem solving stages in the five square problem
Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael
2015-01-01
According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory. PMID:26300794
Problem solving stages in the five square problem.
Fedor, Anna; Szathmáry, Eörs; Öllinger, Michael
2015-01-01
According to the restructuring hypothesis, insight problem solving typically progresses through consecutive stages of search, impasse, insight, and search again for someone, who solves the task. The order of these stages was determined through self-reports of problem solvers and has never been verified behaviorally. We asked whether individual analysis of problem solving attempts of participants revealed the same order of problem solving stages as defined by the theory and whether their subjective feelings corresponded to the problem solving stages they were in. Our participants tried to solve the Five-Square problem in an online task, while we recorded the time and trajectory of their stick movements. After the task they were asked about their feelings related to insight and some of them also had the possibility of reporting impasse while working on the task. We found that the majority of participants did not follow the classic four-stage model of insight, but had more complex sequences of problem solving stages, with search and impasse recurring several times. This means that the classic four-stage model is not sufficient to describe variability on the individual level. We revised the classic model and we provide a new model that can generate all sequences found. Solvers reported insight more often than non-solvers and non-solvers reported impasse more often than solvers, as expected; but participants did not report impasse more often during behaviorally defined impasse stages than during other stages. This shows that impasse reports might be unreliable indicators of impasse. Our study highlights the importance of individual analysis of problem solving behavior to verify insight theory.
An Approach to Scoring Collaboration in Online Game Environments
ERIC Educational Resources Information Center
Scoular, Claire; Care, Esther; Awwal, Nafisa
2017-01-01
With technological advances, it is now possible to use games to capture information-rich behaviours that reveal processes by which players interact and solve problems. Recent problem-based games have been designed to assess and record detailed interactions between the problem solver and the game environment, and thereby capture salient solution…
NASA Astrophysics Data System (ADS)
Valentine, Andrew; Belski, Iouri; Hamilton, Margaret
2017-11-01
Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed about their study habits and reported they use electronic-based materials more than paper-based materials while studying, suggesting students may engage with web-based tools. Students then generated solutions to a problem task using either a paper-based template or an equivalent web interface. Students who used the web-based approach performed as well as students who used the paper-based approach, suggesting the technique can be successfully adopted and taught online. Web-based tools may therefore be adopted as supplementary material in a range of engineering courses as a way to increase students' options for enhancing problem-solving skills.
Wade, Shari L; Walz, Nicolay C; Carey, JoAnne; Williams, Kendra M; Cass, Jennifer; Herren, Luke; Mark, Erin; Yeates, Keith Owen
2010-01-01
To examine the efficacy of teen online problem solving (TOPS) in improving executive function (EF) deficits following traumatic brain injury (TBI) in adolescence. Families of adolescents (aged 11-18 years) with moderate to severe TBI were recruited from the trauma registry of 2 tertiary-care children's hospitals and then randomly assigned to receive TOPS (n = 20), a cognitive-behavioral, skill-building intervention, or access to online resources regarding TBI (Internet resource comparison; n = 21). Parent and teen reports of EF were assessed at baseline and a posttreatment follow-up (mean = 7.88 months later). Improvements in self-reported EF skills were moderated by TBI severity, with teens with severe TBI in the TOPS treatment reporting significantly greater improvements than did those with severe TBI in the Internet resource comparison. The treatment groups did not differ on parent ratings of EF at the follow up. Findings suggest that TOPS may be effective in improving EF skills among teens with severe TBI.
2015-03-18
Problem (TSP) to solve, a canonical computer science problem that involves identifying the shortest itinerary for a hypothetical salesman traveling among a...also created working versions of the travelling salesperson problem , prisoners’ dilemma, public goods game, ultimatum game, word ladders, and...the task within networks of others performing the task. Thus, we built five problems which could be embedded in networks: the traveling salesperson
ENGAGE: A Game Based Learning and Problem Solving Framework
2012-08-15
multiplayer card game Creature Capture now supports an offline multiplayer mode (sharing a single computer), in response to feedback from teachers that a...Planetopia overworld will be ready for use by a number of physical schools as well as integrated into multiple online teaching resources. The games will be...From - To) 7/1/2012 – 7/31/2012 4. TITLE AND SUBTITLE ENGAGE: A Game Based Learning and Problem Solving Framework 5a. CONTRACT NUMBER N/A 5b
Teaching NMR spectra analysis with nmr.cheminfo.org.
Patiny, Luc; Bolaños, Alejandro; Castillo, Andrés M; Bernal, Andrés; Wist, Julien
2018-06-01
Teaching spectra analysis and structure elucidation requires students to get trained on real problems. This involves solving exercises of increasing complexity and when necessary using computational tools. Although desktop software packages exist for this purpose, nmr.cheminfo.org platform offers students an online alternative. It provides a set of exercises and tools to help solving them. Only a small number of exercises are currently available, but contributors are invited to submit new ones and suggest new types of problems. Copyright © 2018 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Berardi, Victor L.
2012-01-01
Using information systems to solve business problems is increasingly required of everyone in an organization, not just technical specialists. In the operations management class, spreadsheet usage has intensified with the focus on building decision models to solve operations management concerns such as forecasting, process capability, and inventory…
ERIC Educational Resources Information Center
Thomas, W. Randall; Macgregor, S. Kim
2005-01-01
The goal of this study was to gain insights into the interactions that occur in online communications in a project-based learning activity implemented in an undergraduate course. A multi-case study was conducted of six collaborative groups, focusing on the types and frequencies of interactions that occurred within each group and the perceptions…
An Intervention Including an Online Game to Improve Grade 6 Students' Performance in Early Algebra
ERIC Educational Resources Information Center
Kolovou, Angeliki; van den Heuvel-Panhuizen, Marja; Koller, Olaf
2013-01-01
This study investigated whether an intervention including an online game contributed to 236 Grade 6 students' performance in early algebra, that is, solving problems with covarying quantities. An exploratory quasi-experimental study was conducted with a pretest-posttest-control-group design. Students in the experimental group were asked to solve…
ERIC Educational Resources Information Center
Voulgari, Iro; Komis, Vassilis
2010-01-01
Although there is strong evidence that massively multiplayer online games (MMOGs) constitute environments of social interactions and effective learning, we currently lack the tools for investigating the effectiveness of the social networks emerging as well as the cognitive aspects and knowledge acquisition such environments involve. Within this…
ERIC Educational Resources Information Center
Wu, Sheng-Yi; Hou, Huei-Tse
2015-01-01
Cognitive styles play an important role in influencing the learning process, but to date no relevant study has been conducted using lag sequential analysis to assess knowledge construction learning patterns based on different cognitive styles in computer-supported collaborative learning activities in online collaborative discussions. This study…
Development and Validation of the Diabetes Adolescent Problem Solving Questionnaire
Mulvaney, Shelagh A.; Jaser, Sarah S.; Rothman, Russell L.; Russell, William; Pittel, Eric J.; Lybarger, Cindy; Wallston, Kenneth A.
2014-01-01
Objective Problem solving is a critical diabetes self-management skill. Because of a lack of clinically feasible measures, our aim was to develop and validate a self-report self-management problem solving questionnaire for adolescents with type 1 diabetes (T1D). Methods A multidisciplinary team of diabetes experts generated questionnaire items that addressed diabetes self-management problem solving. Iterative feedback from parents and adolescents resulted in 27 items. Adolescents from two studies (N=156) aged 13–17 were recruited through a pediatric diabetes clinic and completed measures through an online survey. Glycemic control was measured by HbA1c recorded in the medical record. Results Empirical elimination of items using Principal Components Analyses resulted in a 13-item unidimensional measure, the Diabetes Adolescent Problem Solving Questionnaire (DAPSQ) that explained 57% of the variance. The DAPSQ demonstrated internal consistency (Cronbach’s alpha = 0.92) and was correlated with diabetes self-management (r=0.53, p<.001), self-efficacy (r=0.54, p<.001), and glycemic control (r= −0.24, p<.01). Conclusion The DAPSQ is a brief instrument for assessment of diabetes self-management problem solving in youth with T1D associated with better self-management behaviors and glycemic control. Practice Implications The DAPSQ is a clinically feasible self-report measure that can provide valuable information regarding level of self-management problem solving and guide patient education. PMID:25063715
Development and validation of the diabetes adolescent problem solving questionnaire.
Mulvaney, Shelagh A; Jaser, Sarah S; Rothman, Russell L; Russell, William E; Pittel, Eric J; Lybarger, Cindy; Wallston, Kenneth A
2014-10-01
Problem solving is a critical diabetes self-management skill. Because of a lack of clinically feasible measures, our aim was to develop and validate a self-report self-management problem solving questionnaire for adolescents with type 1 diabetes (T1D). A multidisciplinary team of diabetes experts generated questionnaire items that addressed diabetes self-management problem solving. Iterative feedback from parents and adolescents resulted in 27 items. Adolescents from two studies (N=156) aged 13-17 were recruited through a pediatric diabetes clinic and completed measures through an online survey. Glycemic control was measured by HbA1c recorded in the medical record. Empirical elimination of items using principal components analyses resulted in a 13-item unidimensional measure, the diabetes adolescent problem solving questionnaire (DAPSQ) that explained 56% of the variance. The DAPSQ demonstrated internal consistency (Cronbach's alpha=0.92) and was correlated with diabetes self-management (r=0.53, p<.001), self-efficacy (r=0.54, p<.001), and glycemic control (r=-0.24, p<.01). The DAPSQ is a brief instrument for assessment of diabetes self-management problem solving in youth with T1D and is associated with better self-management behaviors and glycemic control. The DAPSQ is a clinically feasible self-report measure that can provide valuable information regarding level of self-management problem solving and guide patient education. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Technologies as Rural Special Education Problem Solvers--A Status Report and Successful Strategies.
ERIC Educational Resources Information Center
Helge, Doris
Rural schools can help solve their special education problems by using advanced technology to provide instructional support (computer managed instruction, satellite television, library searches, resource networks, on-line testing), instructional applications (computer assisted instruction, reading machines, mobile vans, instructional television),…
Molnár, Gyöngyvér; Csapó, Benő
2018-01-01
The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3rd- to 12th-grade students (aged 9–18) in Hungarian schools (n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons. PMID:29593606
Molnár, Gyöngyvér; Csapó, Benő
2018-01-01
The purpose of this study was to examine the role of exploration strategies students used in the first phase of problem solving. The sample for the study was drawn from 3 rd - to 12 th -grade students (aged 9-18) in Hungarian schools ( n = 4,371). Problems designed in the MicroDYN approach with different levels of complexity were administered to the students via the eDia online platform. Logfile analyses were performed to ascertain the impact of strategy use on the efficacy of problem solving. Students' exploration behavior was coded and clustered through Latent Class Analyses. Several theoretically effective strategies were identified, including the vary-one-thing-at-a-time (VOTAT) strategy and its sub-strategies. The results of the analyses indicate that the use of a theoretically effective strategy, which extract all information required to solve the problem, did not always lead to high performance. Conscious VOTAT strategy users proved to be the best problem solvers followed by non-conscious VOTAT strategy users and non-VOTAT strategy users. In the primary school sub-sample, six qualitatively different strategy class profiles were distinguished. The results shed new light on and provide a new interpretation of previous analyses of the processes involved in complex problem solving. They also highlight the importance of explicit enhancement of problem-solving skills and problem-solving strategies as a tool for knowledge acquisition in new contexts during and beyond school lessons.
A Flipped Pedagogy for Expert Problem Solving
NASA Astrophysics Data System (ADS)
Pritchard, David
The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).
Personalized Education; Solving a Group Formation and Scheduling Problem for Educational Content
ERIC Educational Resources Information Center
Bahargam, Sanaz; Erdos, Dóra; Bestavros, Azer; Terzi, Evimaria
2015-01-01
Whether teaching in a classroom or a Massive Online Open Course it is crucial to present the material in a way that benefits the audience as a whole. We identify two important tasks to solve towards this objective; (1) group students so that they can maximally benefit from peer interaction and (2) find an optimal schedule of the educational…
ERIC Educational Resources Information Center
Johnson, Katryna
2013-01-01
Employers today expect that students will be able to work in teams. Cooperative learning theory addresses how skills such as decision making, problem solving and communication can be learned by individuals in group settings. This paper discusses how cooperative learning can be used in an online and blended environment to increase active learning…
ERIC Educational Resources Information Center
Maloy, Robert W.; Razzaq, Leena; Edwards, Sharon A.
2014-01-01
This study explored the use of an online mathematics tutoring system in eight fourth grade classrooms in two Massachusetts communities--a small rural city with a low 2010 Adequate Yearly Progress (AYP) math performance rating and a small suburban district with a high 2010 AYP math performance rating. 165 fourth graders completed 11 modules…
ERIC Educational Resources Information Center
Wolusky, G. Anthony
2016-01-01
This quantitative study used a web-based questionnaire to assess the attitudes and perceptions of online and hybrid faculty towards student-centered asynchronous virtual teamwork (AVT) using the technology acceptance model (TAM) of Davis (1989). AVT is online student participation in a team approach to problem-solving culminating in a written…
Development of a Math-Learning App for Students with Visual Impairments
ERIC Educational Resources Information Center
Beal, Carole R.; Rosenblum, L. Penny
2015-01-01
The project was conducted to make an online tutoring program for math word problem solving accessible to students with visual impairments (VI). An online survey of teachers of students with VI (TVIs) guided the decision to provide the math content in the form of an iPad app, accompanied by print and braille materials. The app includes audio…
ERIC Educational Resources Information Center
De Smet, Marijke; Van Keer, Hilde; Valcke, Martin
2008-01-01
In the present study cross-age peer tutoring was implemented in a higher education context. Fourth-year students (N=39) operated as online tutors to support freshmen in discussing cases and solving authentic problems. This study contributes to a better understanding of the supportive interventions of tutors in asynchronous discussion groups. Peer…
Herkert, Joseph R
2005-07-01
Engineering ethics entails three frames of reference: individual, professional, and social. "Microethics" considers individuals and internal relations of the engineering profession; "macroethics" applies to the collective social responsibility of the profession and to societal decisions about technology. Most research and teaching in engineering ethics, including online resources, has had a "micro" focus. Mechanisms for incorporating macroethical perspectives include: integrating engineering ethics and science, technology and society (STS); closer integration of engineering ethics and computer ethics; and consideration of the influence of professional engineering societies and corporate social responsibility programs on ethical engineering practice. Integrating macroethical issues and concerns in engineering ethics involves broadening the context of ethical problem solving. This in turn implies: developing courses emphasizing both micro and macro perspectives, providing faculty development that includes training in both STS and practical ethics; and revision of curriculum materials, including online resources. Multidisciplinary collaboration is recommended 1) to create online case studies emphasizing ethical decision making in individual, professional, and societal contexts; 2) to leverage existing online computer ethics resources with relevance to engineering education and practice; and 3) to create transparent linkages between public policy positions advocated by professional societies and codes of ethics.
Distributed On-line Monitoring System Based on Modem and Public Phone Net
NASA Astrophysics Data System (ADS)
Chen, Dandan; Zhang, Qiushi; Li, Guiru
In order to solve the monitoring problem of urban sewage disposal, a distributed on-line monitoring system is proposed. By introducing dial-up communication technology based on Modem, the serial communication program can rationally solve the information transmission problem between master station and slave station. The realization of serial communication program is based on the MSComm control of C++ Builder 6.0.The software includes real-time data operation part and history data handling part, which using Microsoft SQL Server 2000 for database, and C++ Builder6.0 for user interface. The monitoring center displays a user interface with alarm information of over-standard data and real-time curve. Practical application shows that the system has successfully accomplished the real-time data acquisition from data gather station, and stored them in the terminal database.
ERIC Educational Resources Information Center
Williams van Rooij, Shahron
2007-01-01
This study examined the impact of two Problem-Based Learning (PBL) approaches on knowledge transfer, problem-solving self-efficacy, and perceived learning gains among four intact classes of adult learners engaged in a group project in an online undergraduate business research methods course. With two of the classes using a text-only PBL workbook…
ERIC Educational Resources Information Center
Hooshyar, Danial; Ahmad, Rodina Binti; Yousefi, Moslem; Fathi, Moein; Abdollahi, Abbas; Horng, Shi-Jinn; Lim, Heuiseok
2016-01-01
Nowadays, intelligent tutoring systems are considered an effective research tool for learning systems and problem-solving skill improvement. Nonetheless, such individualized systems may cause students to lose learning motivation when interaction and timely guidance are lacking. In order to address this problem, a solution-based intelligent…
Open-Phylo: a customizable crowd-computing platform for multiple sequence alignment
2013-01-01
Citizen science games such as Galaxy Zoo, Foldit, and Phylo aim to harness the intelligence and processing power generated by crowds of online gamers to solve scientific problems. However, the selection of the data to be analyzed through these games is under the exclusive control of the game designers, and so are the results produced by gamers. Here, we introduce Open-Phylo, a freely accessible crowd-computing platform that enables any scientist to enter our system and use crowds of gamers to assist computer programs in solving one of the most fundamental problems in genomics: the multiple sequence alignment problem. PMID:24148814
Web-Based Problem-Solving Assignment and Grading System
NASA Astrophysics Data System (ADS)
Brereton, Giles; Rosenberg, Ronald
2014-11-01
In engineering courses with very specific learning objectives, such as fluid mechanics and thermodynamics, it is conventional to reinforce concepts and principles with problem-solving assignments and to measure success in problem solving as an indicator of student achievement. While the modern-day ease of copying and searching for online solutions can undermine the value of traditional assignments, web-based technologies also provide opportunities to generate individualized well-posed problems with an infinite number of different combinations of initial/final/boundary conditions, so that the probability of any two students being assigned identical problems in a course is vanishingly small. Such problems can be designed and programmed to be: single or multiple-step, self-grading, allow students single or multiple attempts; provide feedback when incorrect; selectable according to difficulty; incorporated within gaming packages; etc. In this talk, we discuss the use of a homework/exam generating program of this kind in a single-semester course, within a web-based client-server system that ensures secure operation.
Education problems and Web-based teaching: how it impacts dental educators?
Clark, G T
2001-01-01
This article looks at six problems that vex educators and how web-based teaching might help solve them. These problems include: (1) limited access to educational content, (2) need for asynchronous access to educational content, (3) depth and diversity of educational content, (4) training in complex problem solving, (5) promotion of lifelong learning behaviors and (6) achieving excellence in education. The advantages and disadvantage of web-based educational content for each problem are discussed. The article suggests that when a poorly organized course with inaccurate and irrelevant content is placed online, it solves no problems. However some of the above issues can be partially or fully solved by hosting well-constructed teaching modules on the web. This article also reviews the literature investigating the efficacy of off-site education as compared to that provided on-site. The conclusion of this review is that teleconference-based and web-based delivery of educational content can be as effective as traditional classroom-based teaching assuming the technologic problems sometimes associated with delivering teaching content to off-site locations do not interfere in the learning process. A suggested hierarchy for rating and comparing e-learning concepts and methods is presented for consideration.
ERIC Educational Resources Information Center
Spitzberg, Brian H.
2011-01-01
IMPACCT is an online survey covering over 40 self-report types of student communication competency, as well as a test of critical thinking based on cognitive problem-solving. The student nominates two peers who rate the student's interpersonal, computer-mediated, group and leadership, and public speaking communication competence. The student takes…
ERIC Educational Resources Information Center
Coltrain, Mark
2014-01-01
In an era of exploding online enrollment and tight budgets, Central Piedmont Community College (CPCC) struggles to meet the needs of online students. CPCC librarians went one step towards solving that problem in 2009-2010 by launching an embedded librarian program. CPCC's program became so successful that it struggled to meet demand. In 2013, CPCC…
ERIC Educational Resources Information Center
Coyle, Shawn; Jones, Thea; Pickle, Shirley Kirk
2009-01-01
This article presents a sample of online learning programs serving very different populations: a small district spread over a vast area, a large inner school district, and a statewide program serving numerous districts. It describes how these districts successfully implemented e-learning programs in their schools and discusses the positive impact…
Rasch Measurement of Collaborative Problem Solving in an Online Environment.
Harding, Susan-Marie E; Griffin, Patrick E
2016-01-01
This paper describes an approach to the assessment of human to human collaborative problem solving using a set of online interactive tasks completed by student dyads. Within the dyad, roles were nominated as either A or B and students selected their own roles. The question as to whether role selection affected individual student performance measures is addressed. Process stream data was captured from 3402 students in six countries who explored the problem space by clicking, dragging the mouse, moving the cursor and collaborating with their partner through a chat box window. Process stream data were explored to identify behavioural indicators that represented elements of a conceptual framework. These indicative behaviours were coded into a series of dichotomous items. These items represented actions and chats performed by students. The frequency of occurrence was used as a proxy measure of item difficulty. Then given a measure of item difficulty, student ability could be estimated using the difficulty estimates of the range of items demonstrated by the student. The Rasch simple logistic model was used to review the indicators to identify those that were consistent with the assumptions of the model and were invariant across national samples, language, curriculum and age of the student. The data were analysed using a one and two dimension, one parameter model. Rasch separation reliability, fit to the model, distribution of students and items on the underpinning construct, estimates for each country and the effect of role differences are reported. This study provides evidence that collaborative problem solving can be assessed in an online environment involving human to human interaction using behavioural indicators shown to have a consistent relationship between the estimate of student ability, and the probability of demonstrating the behaviour.
Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu
2015-12-09
Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications.
Li, Fengmei; Wei, Yaoguang; Chen, Yingyi; Li, Daoliang; Zhang, Xu
2015-01-01
Dissolved oxygen (DO) is a key factor that influences the healthy growth of fishes in aquaculture. The DO content changes with the aquatic environment and should therefore be monitored online. However, traditional measurement methods, such as iodometry and other chemical analysis methods, are not suitable for online monitoring. The Clark method is not stable enough for extended periods of monitoring. To solve these problems, this paper proposes an intelligent DO measurement method based on the fluorescence quenching mechanism. The measurement system is composed of fluorescent quenching detection, signal conditioning, intelligent processing, and power supply modules. The optical probe adopts the fluorescent quenching mechanism to detect the DO content and solves the problem, whereas traditional chemical methods are easily influenced by the environment. The optical probe contains a thermistor and dual excitation sources to isolate visible parasitic light and execute a compensation strategy. The intelligent processing module adopts the IEEE 1451.2 standard and realizes intelligent compensation. Experimental results show that the optical measurement method is stable, accurate, and suitable for online DO monitoring in aquaculture applications. PMID:26690176
Probabilities and predictions: modeling the development of scientific problem-solving skills.
Stevens, Ron; Johnson, David F; Soller, Amy
2005-01-01
The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative manner. This article describes the development of probabilistic models of undergraduate student problem solving in molecular genetics that detailed the spectrum of strategies students used when problem solving, and how the strategic approaches evolved with experience. The actions of 776 university sophomore biology majors from three molecular biology lecture courses were recorded and analyzed. Each of six simulations were first grouped by artificial neural network clustering to provide individual performance measures, and then sequences of these performances were probabilistically modeled by hidden Markov modeling to provide measures of progress. The models showed that students with different initial problem-solving abilities choose different strategies. Initial and final strategies varied across different sections of the same course and were not strongly correlated with other achievement measures. In contrast to previous studies, we observed no significant gender differences. We suggest that instructor interventions based on early student performances with these simulations may assist students to recognize effective and efficient problem-solving strategies and enhance learning.
A Large-scale Distributed Indexed Learning Framework for Data that Cannot Fit into Memory
2015-03-27
learn a classifier. Integrating three learning techniques (online, semi-supervised and active learning ) together with a selective sampling with minimum communication between the server and the clients solved this problem.
Comprehensive Evaluation and Analysis of China's Mainstream Online Map Service Websites
NASA Astrophysics Data System (ADS)
Zhang, H.; Jiang, J.; Huang, W.; Wang, Q.; Gu, X.
2012-08-01
With the flourish development of China's Internet market, all kinds of users for map service demand is rising continually, within it contains tremendous commercial interests. Many internet giants have got involved in the field of online map service, and defined it as an important strategic product of the company. The main purpose of this research is to evaluate these online map service websites comprehensively with a model, and analyse the problems according to the evaluation results. Then some corresponding solving measures are proposed, which provides a theoretical and application guidance for the future development of fiercely competitive online map websites. The research consists of three stages: (a) the mainstream online map service websites in China are introduced and the present situation of them is analysed through visit, investigation, consultant, analysis and research. (b) a whole comprehensive evaluation quota system of online map service websites from the view of functions, layout, interaction design color position and so on, combining with the data indexes such as time efficiency, accuracy, objectivity and authority. (c) a comprehensive evaluation to these online map service websites is proceeded based on the fuzzy evaluation mathematical model, and the difficulty that measure the map websites quantitatively is solved.
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Caylor, Justine; Hoye, Jeff
2017-05-01
The Human-Assisted Machine Information Exploitation (HAMIE) investigation utilizes large-scale online data collection for developing models of information-based problem solving (IBPS) behavior in a simulated time-critical operational environment. These types of environments are characteristic of intelligence workflow processes conducted during human-geo-political unrest situations when the ability to make the best decision at the right time ensures strategic overmatch. The project takes a systems approach to Human Information Interaction (HII) by harnessing the expertise of crowds to model the interaction of the information consumer and the information required to solve a problem at different levels of system restrictiveness and decisional guidance. The design variables derived from Decision Support Systems (DSS) research represent the experimental conditions in this online single-player against-the-clock game where the player, acting in the role of an intelligence analyst, is tasked with a Commander's Critical Information Requirement (CCIR) in an information overload scenario. The player performs a sequence of three information processing tasks (annotation, relation identification, and link diagram formation) with the assistance of `HAMIE the robot' who offers varying levels of information understanding dependent on question complexity. We provide preliminary results from a pilot study conducted with Amazon Mechanical Turk (AMT) participants on the Volunteer Science scientific research platform.
Flippin' Fluid Mechanics - Quasi-experimental Pre-test and Post-test Comparison Using Two Groups
NASA Astrophysics Data System (ADS)
Webster, D. R.; Majerich, D. M.; Luo, J.
2014-11-01
A flipped classroom approach has been implemented in an undergraduate fluid mechanics course. Students watch short on-line videos before class, participate in active in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. In-class activities are designed to achieve a trifecta of: 1. developing problem solving skills, 2. learning subject content, and 3. developing inquiry skills. The instructor and assistants provide critical ``just-in-time tutoring'' during the in-class problem solving sessions. Comparisons are made with a simultaneous section offered in a traditional mode by a different instructor. Regression analysis was used to control for differences among students and to quantify the effect of the flipped fluid mechanics course. The dependent variable was the students' combined final examination and post-concept inventory scores and the independent variables were pre-concept inventory score, gender, major, course section, and (incoming) GPA. The R-square equaled 0.45 indicating that the included variables explain 45% of the variation in the dependent variable. The regression results indicated that if the student took the flipped fluid mechanics course, the dependent variable (i.e., combined final exam and post-concept inventory scores) was raised by 7.25 points. Interestingly, the comparison group reported significantly more often that their course emphasized memorization than did the flipped classroom group.
ERIC Educational Resources Information Center
Afacan Adanir, Gulgun
2017-01-01
The case study focuses on the interactional mechanisms through which online collaborative teams co-construct a shared understanding of an analytical geometry problem by using dynamic geometry representations. The collaborative study consisted of an assignment on which the learners worked together in groups to solve a ship navigation problem as…
Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills
ERIC Educational Resources Information Center
Stevens, Ron; Johnson, David F.; Soller, Amy
2005-01-01
The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative…
ERIC Educational Resources Information Center
Hough, David L.
2003-01-01
Critiques five articles from an online research journal in middle-level education on mathematical problem solving, social inclusion of students with disabilities in physical education, school and dispositional aggression among middle school boys, problem-based learning, and students' views of futuristics. Asserts that embracing the view that all…
NASA Astrophysics Data System (ADS)
Çiğdem Özcan, Zeynep
2016-04-01
Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students' self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving skills. The aim of this study is to investigate the relationship between mathematical problem-solving skills and the three dimensions of self-regulated learning (motivation, metacognition, and behaviour), and whether this relationship is of a predictive nature. The sample of this study consists of 323 students from two public secondary schools in Istanbul. In this study, the mathematics homework behaviour scale was administered to measure students' homework behaviours. For metacognition measurements, the mathematics metacognition skills test for students was administered to measure offline mathematical metacognitive skills, and the metacognitive experience scale was used to measure the online mathematical metacognitive experience. The internal and external motivational scales used in the Programme for International Student Assessment (PISA) test were administered to measure motivation. A hierarchic regression analysis was conducted to determine the relationship between the dependent and independent variables in the study. Based on the findings, a model was formed in which 24% of the total variance in students' mathematical problem-solving skills is explained by the three sub-dimensions of the self-regulated learning model: internal motivation (13%), willingness to do homework (7%), and post-problem retrospective metacognitive experience (4%).
Instructional strategies for online introductory college physics based on learning styles
NASA Astrophysics Data System (ADS)
Ekwue, Eleazer U.
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.
Dunn, Tamara L; Casey, Leanne M; Sheffield, Jeanie K; Petsky, Helen; Anderson-James, Sophie; Chang, Anne B
2012-01-01
Background Chronic respiratory illnesses are the most common group of childhood chronic health conditions and are overrepresented in socially isolated groups. Objective To conduct a randomized controlled pilot trial to evaluate the efficacy of Breathe Easier Online (BEO), an Internet-based problem-solving program with minimal facilitator involvement to improve psychosocial well-being in children and adolescents with a chronic respiratory condition. Methods We randomly assigned 42 socially isolated children and adolescents (18 males), aged between 10 and 17 years to either a BEO (final n = 19) or a wait-list control (final n = 20) condition. In total, 3 participants (2 from BEO and 1 from control) did not complete the intervention. Psychosocial well-being was operationalized through self-reported scores on depression symptoms and social problem solving. Secondary outcome measures included self-reported attitudes toward their illness and spirometry results. Paper-and-pencil questionnaires were completed at the hospital when participants attended a briefing session at baseline (time 1) and in their homes after the intervention for the BEO group or a matched 9-week time period for the wait-list group (time 2). Results The two groups were comparable at baseline across all demographic measures (all F < 1). For the primary outcome measures, there were no significant group differences on depression (P = .17) or social problem solving (P = .61). However, following the online intervention, those in the BEO group reported significantly lower depression (P = .04), less impulsive/careless problem solving (P = .01), and an improvement in positive attitude toward their illness (P = .04) compared with baseline. The wait-list group did not show these differences. Children in the BEO group and their parents rated the online modules very favorably. Conclusions Although there were no significant group differences on primary outcome measures, our pilot data provide tentative support for the feasibility (acceptability and user satisfaction) and initial efficacy of an Internet-based intervention for improving well-being in children and adolescents with a chronic respiratory condition. Trial registration Australian New Zealand Clinical Trials Registry number: ACTRN12610000214033; http://www.anzctr.org.au/trial_view.aspx?ID=308074 (Archived by WebCite at http://www.webcitation.org/63BL55mXH) PMID:22356732
MATLAB Simulation of Gradient-Based Neural Network for Online Matrix Inversion
NASA Astrophysics Data System (ADS)
Zhang, Yunong; Chen, Ke; Ma, Weimu; Li, Xiao-Dong
This paper investigates the simulation of a gradient-based recurrent neural network for online solution of the matrix-inverse problem. Several important techniques are employed as follows to simulate such a neural system. 1) Kronecker product of matrices is introduced to transform a matrix-differential-equation (MDE) to a vector-differential-equation (VDE); i.e., finally, a standard ordinary-differential-equation (ODE) is obtained. 2) MATLAB routine "ode45" is introduced to solve the transformed initial-value ODE problem. 3) In addition to various implementation errors, different kinds of activation functions are simulated to show the characteristics of such a neural network. Simulation results substantiate the theoretical analysis and efficacy of the gradient-based neural network for online constant matrix inversion.
ERIC Educational Resources Information Center
Ellis, Robert A.; Goodyear, Peter; Brillant, Martha; Prosser, Michael
2008-01-01
This study investigates fourth-year pharmacy students' experiences of problem-based learning (PBL). It adopts a phenomenographic approach to the evaluation of problem-based learning, to shed light on the ways in which different groups of students conceive of, and approach, PBL. The study focuses on the way students approach solving problem…
Cosgrave, Jan; Haines, Ross; Golodetz, Stuart; Claridge, Gordon; Wulff, Katharina; van Heugten-van der Kloet, Dalena
2018-01-01
Insight problem solving is thought to underpin creative thought as it incorporates both divergent (generating multiple ideas and solutions) and convergent (arriving at the optimal solution) thinking approaches. The current literature on schizotypy and creativity is mixed and requires clarification. An alternate approach was employed by designing an exploratory web-based study using only correlates of schizotypal traits (paranoia, dissociation, cognitive failures, fantasy proneness, and unusual sleep experiences) and examining which (if any) predicted optimal performance on an insight problem-solving task. One hundred and twenty-one participants were recruited online from the general population and completed the number reduction task. The discovery of the hidden rule (HR) was used as a measure of insight. Multivariate logistic regression analyses highlighted persecutory ideation to best predict the discovery of the HR (OR = 1.05; 95% CI 1.01-1.10, p = 0.017), with a one-point increase in persecutory ideas corresponding to the participant being 5% more likely to discover the HR. This result suggests that persecutory ideation, above other schizotypy correlates, may be involved in insight problem solving.
Cost effective campaigning in social networks
NASA Astrophysics Data System (ADS)
Kotnis, Bhushan; Kuri, Joy
2016-05-01
Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind.
ERIC Educational Resources Information Center
Paul, Karin; Kuhlthau, Carol C.; Branch, Jennifer L.; Solowan, Diane Galloway; Case, Roland; Abilock, Debbie; Eisenberg, Michael B.; Koechlin, Carol; Zwaan, Sandi; Hughes, Sandra; Low, Ann; Litch, Margaret; Lowry, Cindy; Irvine, Linda; Stimson, Margaret; Schlarb, Irene; Wilson, Janet; Warriner, Emily; Parsons, Les; Luongo-Orlando, Katherine; Hamilton, Donald
2003-01-01
Includes 19 articles that address issues related to library skills and Canadian school libraries. Topics include information literacy; inquiry learning; critical thinking and electronic research; collaborative inquiry; information skills and the Big 6 approach to problem solving; student use of online databases; library skills; Internet accuracy;…
How online counselling can support partners of individuals with problem alcohol or other drug use.
Wilson, Samara R; Rodda, Simone; Lubman, Dan I; Manning, Victoria; Yap, Marie B H
2017-07-01
Problematic alcohol and other drug (AOD) use impacts partners heavily, with an increased risk of experiencing domestic violence, financial stressors, health problems and relationship challenges. However, partners often do not seek help or support due to a range of barriers (e.g., shame, stigma, practical constraints). Online counselling may facilitate help-seeking by overcoming many of these barriers, however research is needed to explore what motivates partners to contact online counselling services, their experiences and needs, and how partners can be best supported online. One hundred transcripts of partners of individuals with problem AOD use were sampled from a 24-hour national AOD synchronous online chat counselling service. Descriptive content analysis was used to investigate themes related to help-seeking. Three broad themes, with seven sub-themes, were identified: (i) the reason for accessing online counselling (seeking advice, wanting to talk), (ii) discussing help-seeking and coping processes (past/present help-seeking or coping strategies, barriers and facilitators to seeking help and change), and (iii) planning for future assistance (future planning, treatment preferences). Partners wanted to talk about their concerns with a non-judgemental professional. However, the majority of help-seekers wanted advice and assistance in problem-solving, coping and the process of seeking further help. Future studies need to examine the impact of online help-seeking by partners. Copyright © 2017 Elsevier Inc. All rights reserved.
Exploring the relationship between work-related rumination, sleep quality, and work-related fatigue.
Querstret, Dawn; Cropley, Mark
2012-07-01
This study examined the association among three conceptualizations of work-related rumination (affective rumination, problem-solving pondering, and detachment) with sleep quality and work-related fatigue. It was hypothesized that affective rumination and poor sleep quality would be associated with increased fatigue and that problem-solving pondering and detachment would be associated with decreased fatigue. The mediating effect of sleep quality on the relationship between work-related rumination and fatigue was also tested. An online questionnaire was completed by a heterogeneous sample of 719 adult workers in diverse occupations. The following variables were entered as predictors in a regression model: affective rumination, problem-solving pondering, detachment, and sleep quality. The dependent variables were chronic work-related fatigue (CF) and acute work-related fatigue (AF). Affective rumination was the strongest predictor of increased CF and AF. Problem-solving pondering was a significant predictor of decreased CF and AF. Poor sleep quality was predictive of increased CF and AF. Detachment was significantly negatively predictive for AF. Sleep quality partially mediated the relationship between affective rumination and fatigue and between problem-solving pondering and fatigue. Work-related affective rumination appears more detrimental to an individual's ability to recover from work than problem-solving pondering. In the context of identifying mechanisms by which demands at work are translated into ill-health, this appears to be a key finding and suggests that it is the type of work-related rumination, not rumination per se, that is important.
NASA Astrophysics Data System (ADS)
Moraes Rêgo, Patrícia Helena; Viana da Fonseca Neto, João; Ferreira, Ernesto M.
2015-08-01
The main focus of this article is to present a proposal to solve, via UDUT factorisation, the convergence and numerical stability problems that are related to the covariance matrix ill-conditioning of the recursive least squares (RLS) approach for online approximations of the algebraic Riccati equation (ARE) solution associated with the discrete linear quadratic regulator (DLQR) problem formulated in the actor-critic reinforcement learning and approximate dynamic programming context. The parameterisations of the Bellman equation, utility function and dynamic system as well as the algebra of Kronecker product assemble a framework for the solution of the DLQR problem. The condition number and the positivity parameter of the covariance matrix are associated with statistical metrics for evaluating the approximation performance of the ARE solution via RLS-based estimators. The performance of RLS approximators is also evaluated in terms of consistence and polarisation when associated with reinforcement learning methods. The used methodology contemplates realisations of online designs for DLQR controllers that is evaluated in a multivariable dynamic system model.
ERIC Educational Resources Information Center
Hogendoorn, Adrian
2017-01-01
A course wiki is an active environment in which students not only solve problems, but also find their own problems (Bransford, Brown, & Cocking, 1999). Wikis are novel, immersive environments requiring active participation, which enable students to build knowledge within a secure online setting (Hadjerrouit, 2011). This contribution traces a…
Onboard shuttle on-line software requirements system: Prototype
NASA Technical Reports Server (NTRS)
Kolkhorst, Barbara; Ogletree, Barry
1989-01-01
The prototype discussed here was developed as proof of a concept for a system which could support high volumes of requirements documents with integrated text and graphics; the solution proposed here could be extended to other projects whose goal is to place paper documents in an electronic system for viewing and printing purposes. The technical problems (such as conversion of documentation between word processors, management of a variety of graphics file formats, and difficulties involved in scanning integrated text and graphics) would be very similar for other systems of this type. Indeed, technological advances in areas such as scanning hardware and software and display terminals insure that some of the problems encountered here will be solved in the near-term (less than five years). Examples of these solvable problems include automated input of integrated text and graphics, errors in the recognition process, and the loss of image information which results from the digitization process. The solution developed for the Online Software Requirements System is modular and allows hardware and software components to be upgraded or replaced as industry solutions mature. The extensive commercial software content allows the NASA customer to apply resources to solving the problem and maintaining documents.
ERIC Educational Resources Information Center
Thurmond, Brandi
2011-01-01
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…
Neural networks for continuous online learning and control.
Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long
2006-11-01
This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.
New computer system simplifies programming of mathematical equations
NASA Technical Reports Server (NTRS)
Reinfelds, J.; Seitz, R. N.; Wood, L. H.
1966-01-01
Automatic Mathematical Translator /AMSTRAN/ permits scientists or engineers to enter mathematical equations in their natural mathematical format and to obtain an immediate graphical display of the solution. This automatic-programming, on-line, multiterminal computer system allows experienced programmers to solve nonroutine problems.
Wade, Shari L; Narad, Megan E; Kingery, Kathleen M; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O
2017-08-01
To describe the Teen Online Problem Solving-Teen Only (TOPS-TO) intervention relative to the original Teen Online Problem Solving-Family (TOPS-F) intervention, to describe a randomized controlled trial to assess intervention efficacy, and to report feasibility and acceptability of the TOPS-TO intervention. Research method and design: This is a multisite randomized controlled trial, including 152 teens (49 TOPS-F, 51 TOPS-TO, 52 IRC) between the ages of 11-18 who were hospitalized for a moderate to severe traumatic brain injury in the previous 18 months. Assessments were completed at baseline, 6-months post baseline, and 12-months post baseline. Data discussed include adherence and satisfaction data collected at the 6-month assessment (treatment completion) for TOPS-F and TOPS-TO. Adherence measures (sessions completed, dropout rates, duration of treatment engagement, and rates of program completion) were similar across treatment groups. Overall, teen and parent reported satisfaction was high and similar across groups. Teens spent a similar amount of time on the TOPS website across groups, and parents in the TOPS-F spent more time on the TOPS website than those in the TOPS-TO group (p = .002). Parents in the TOPS-F group rated the TOPS website as more helpful than those in the TOPS-TO group (p = .05). TOPS-TO intervention is a feasible and acceptable intervention approach. Parents may perceive greater benefit from the family based intervention. Further examination is required to understand the comparative efficacy in improving child and family outcomes, and who is likely to benefit from each approach. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Solving a discrete model of the lac operon using Z3
NASA Astrophysics Data System (ADS)
Gutierrez, Natalia A.
2014-05-01
A discrete model for the Lcac Operon is solved using the SMT-solver Z3. Traditionally the Lac Operon is formulated in a continuous math model. This model is a system of ordinary differential equations. Here, it was considerated as a discrete model, based on a Boolean red. The biological problem of Lac Operon is enunciated as a problem of Boolean satisfiability, and it is solved using an STM-solver named Z3. Z3 is a powerful solver that allows understanding the basic dynamic of the Lac Operon in an easier and more efficient way. The multi-stability of the Lac Operon can be easily computed with Z3. The code that solves the Boolean red can be written in Python language or SMT-Lib language. Both languages were used in local version of the program as online version of Z3. For future investigations it is proposed to solve the Boolean red of Lac Operon using others SMT-solvers as cvc4, alt-ergo, mathsat and yices.
Online two-stage association method for robust multiple people tracking
NASA Astrophysics Data System (ADS)
Lv, Jingqin; Fang, Jiangxiong; Yang, Jie
2011-07-01
Robust multiple people tracking is very important for many applications. It is a challenging problem due to occlusion and interaction in crowded scenarios. This paper proposes an online two-stage association method for robust multiple people tracking. In the first stage, short tracklets generated by linking people detection responses grow longer by particle filter based tracking, with detection confidence embedded into the observation model. And, an examining scheme runs at each frame for the reliability of tracking. In the second stage, multiple people tracking is achieved by linking tracklets to generate trajectories. An online tracklet association method is proposed to solve the linking problem, which allows applications in time-critical scenarios. This method is evaluated on the popular CAVIAR dataset. The experimental results show that our two-stage method is robust.
Design of on line detection system for static evaporation rate of LNG vehicle cylinders
NASA Astrophysics Data System (ADS)
Tang, P.; Wang, M.; Tan, W. H.; Ling, Z. W.; Li, F.
2017-06-01
In order to solve the problems existing in the regular inspection of LNG vehicle cylinders, the static evaporation rate on line detection system of LNG cylinders is discussed in this paper. A non-disassembling, short-term and high-efficiency on line detection system for LNG vehicle cylinders is proposed, which can meet the requirement of evaporation rate test under different media and different test pressures. And then test methods under the experimental conditions, atmospheric pressure and pressure are given respectively. This online detection system designed in this paper can effectively solve the technical problems during the inspection of the cylinder.
Interfaces for End-User Information Seeking.
ERIC Educational Resources Information Center
Marchionini, Gary
1992-01-01
Discusses essential features of interfaces to support end-user information seeking. Highlights include cognitive engineering; task models and task analysis; the problem-solving nature of information seeking; examples of systems for end-users, including online public access catalogs (OPACs), hypertext, and help systems; and suggested research…
Facilitating Learning in Multidisciplinary Groups with Transactive CSCL Scripts
ERIC Educational Resources Information Center
Noroozi, Omid; Teasley, Stephanie D.; Biemans, Harm J. A.; Weinberger, Armin; Mulder, Martin
2013-01-01
Knowledge sharing and transfer are essential for learning in groups, especially when group members have different disciplinary expertise and collaborate online. Computer-Supported Collaborative Learning (CSCL) environments have been designed to facilitate transactive knowledge sharing and transfer in collaborative problem-solving settings. This…
Facilitating Argumentative Knowledge Construction through a Transactive Discussion Script in CSCL
ERIC Educational Resources Information Center
Noroozi, Omid; Weinberger, Armin; Biemans, Harm J. A.; Mulder, Martin; Chizari, Mohammad
2013-01-01
Learning to argue is prerequisite to solving complex problems in groups, especially when they are multidisciplinary and collaborate online. Environments for Computer-Supported Collaborative Learning (CSCL) can be designed to facilitate argumentative knowledge construction. This study investigates how argumentative knowledge construction in…
Chronically ill rural women: self-identified management problems and solutions.
Cudney, Shirley; Sullivan, Therese; Winters, Charlene A; Paul, Lynn; Oriet, Pat
2005-03-01
To add to the knowledge base of illness management of chronically ill, rural women by describing the self-identified problems and solutions reported by women participants in the online health-education segment of the Women to Women (WTW) computer outreach project. WTW is a research-based computer intervention providing health education and online peer support for rural women with chronic diseases. Messages posted to the online chat room were examined to determine the women's self-management problems and solutions. The self-identified problems were: (1) difficulties in carrying through on self-management programmes; (2) negative fears and feelings; (3) poor communication with care providers; and (4) disturbed relationships with family and friends. The self-identified solutions to these problems included problem-solving techniques that were tailored to the rural lifestyle. Although not all problems were 'solvable', they could be 'lived with' if the women's prescriptions for self-management were used. Glimpses into the women's day-to-day experiences of living with chronic illness gleaned from the interactive health-education discussions will give health professionals insights into the women's efforts to manage their illnesses. The data provide health professionals with information to heighten their sensitivity to their clients' day-to-day care and educational needs.
NASA Astrophysics Data System (ADS)
Ariffin, A.; Samsudin, M. A.; Zain, A. N. Md.; Hamzah, N.; Ismail, M. E.
2017-05-01
The Engineering Drawing subject develops skills in geometry drawing becoming more professional. For the concept in Engineering Drawing, students need to have good visualization skills. Visualization is needed to help students get a start before translating into a drawing. So that, Problem Based Learning (PBL) using animation mode (PBL-A) and graphics mode (PBL-G) will be implemented in class. Problem-solving process is repeatedly able to help students interpret engineering drawings step work correctly and accurately. This study examined the effects of PBL-A online and PBL-G online on visualization skills of students in polytechnics. Sixty eight mechanical engineering students have been involved in this study. The visualization test adapted from Bennett, Seashore and Wesman was used in this study. Results showed significant differences in mean scores post-test of visualization skills among the students enrolled in PBL-G with the group of students who attended PBL-A online after effects of pre-test mean score is controlled. Therefore, the effects of animation modes have a positive impact on increasing students’ visualization skills.
Integrated dynamic modeling of rail vehicles and infrastructure : modeling switch geometry.
DOT National Transportation Integrated Search
2015-08-27
Many procedures have been proposed to solve the wheel/rail contact problem, most of which belong to one of two categories: off-line and on-line contact search methods. This investigation is focused on the development of a contact surface model for th...
Synchronous Online Collaborative Professional Development for Elementary Mathematics Teachers
ERIC Educational Resources Information Center
Francis, Krista; Jacobsen, Michele
2013-01-01
Math is often taught poorly emphasizing rote, procedural methods rather than creativity and problem solving. Alberta Education developed a new mathematics curriculum to transform mathematics teaching to inquiry driven methods. This revised curriculum provides a new vision for mathematics and creates opportunities and requirements for professional…
Taiwanese EFL Learners' Perceived Use of Online Reading Strategies
ERIC Educational Resources Information Center
Chen, Lisa Wen Chun
2015-01-01
Reading strategies are beneficial to learners' reading comprehension. The strategies can be divided into different categories, such as global reading strategies, problem solving strategies and support strategies. Most previous studies investigated the importance of reading strategies in the paper-based reading. However, relatively few studies…
ERIC Educational Resources Information Center
Ramaswami, Rama
2008-01-01
The Storage Networking Industry Association (SNIA) does not mince words when describing the looming data storage problem. In its 2007 report, "Solving the Coming Archive Crisis--the 100-Year Dilemma," the trade group asserts that the volume of disparate digital information sources being kept online for long-term preservation is overwhelming and…
Analyzing Team Based Engineering Design Process in Computer Supported Collaborative Learning
ERIC Educational Resources Information Center
Lee, Dong-Kuk; Lee, Eun-Sang
2016-01-01
The engineering design process has been largely implemented in a collaborative project format. Recently, technological advancement has helped collaborative problem solving processes such as engineering design to have efficient implementation using computers or online technology. In this study, we investigated college students' interaction and…
NASA Astrophysics Data System (ADS)
Revilla Muñoz, Olga; Alpiste Penalba, Francisco; Fernández Sánchez, Joaquín
2016-01-01
Teachers deal with Information and Communications Technology (ICT) every day and they often have to solve problems by themselves. To help them in coping with this issue, an online support program has been created, where teachers can pose their problems on ICT and they can receive solutions from other teachers. A Recommender System has been defined and implemented into the support program to suggest to each teacher the most suitable solution based on her Skills, Competences, and Attitude toward ICT (SCAT-ICT). The support program has initially been populated with 70 problems from 86 teachers. 30 teachers grouped these problems into six categories with the card-sorting technique. Real solutions to these problems have been proposed by 25 trained teachers. Finally, 17 teachers evaluated the usability of the support program and the Recommender System, where results showed a high score on the standardized System Usability Scale.
Tailoring Configuration to User’s Tasks under Uncertainty
2008-04-28
CARISMA is the problem being solved. CARISMA applies microeconom- ics and game theory to make runtime decisions about allocating scarce resources among...scarce resources, these applications are running on be- half of one user. Thus, our problem has no game theoretic aspects. 2.2 Task Oriented...prediction tool [15] is based on the RPS tool and allows prediction of bandwidth online . There is additional evidence (see, for example [49
ERIC Educational Resources Information Center
Arce Espinoza, Lourdes; Monge Nájera, Julián
2015-01-01
The presentation of the intellectual work of others as their own by students is believed to be common worldwide. Punishments and detection software have failed to solve the problem and have important limitations themselves. To go to the root of the problem, we applied an online questionnaire to 344 university students and their 13 teachers. Our…
Enhancing Online Collaborative Argumentation through Question Elaboration and Goal Instructions
ERIC Educational Resources Information Center
Golanics, J. D.; Nussbaum, E. M.
2008-01-01
Computer-supported collaborative argumentation can improve understanding and problem-solving skills. This study uses WebCT to explore the improvement of argumentation in asynchronous, web-based discussions through goal instructions, which are statements at the end of a discussion prompt indicating what students should achieve. In a previous study…
Strategic Planning and Online Learning
ERIC Educational Resources Information Center
McLaughlin-Graham, Karen; Berge, Zane L.
2005-01-01
Strategic planning is a critical part of sustaining distance education. Through such planning, the organization can solve business problems that involve training and education in an effective and often cost savings manner compared to in-person training efforts. This paper examines the strategic planning process as it relates to sustaining distance…
Online Scientific and Technological Information in Nigeria: Prospects and Possibilities.
ERIC Educational Resources Information Center
Sodipe, R. O.
Nigeria is faced with developmental problems, most of which can be solved with the aid of scientific and technological information contained in books, journals and patents, largely obtainable from the advanced countries. There are academic and research institutions generating information that could enhance the economic development of the country…
ERIC Educational Resources Information Center
Guerrero, Shannon; Baumgartel, Drew; Zobott, Maren
2013-01-01
Screencasting, or digital recordings of computer screen outputs, can be used to promote pedagogical transformation in the mathematics classroom by moving explicit, procedural-based instruction to the online environment, thus freeing classroom time for more student-centered investigations, problem solving, communication, and collaboration. This…
Method and Effectiveness of an Individualized Exercise of Fundamental Mathematics.
ERIC Educational Resources Information Center
Yoshioka, Takayoshi; Nishizawa, Hitoshi; Tsukamoto Takehiko
2001-01-01
Describes a method used to provide mathematics students in Japanese colleges of engineering with supplementary exercises to aid their learning. Outlines the online operation of individualized exercises that help the students to understand mathematical methods used to solve problems and also mathematical ideas or concepts upon which methods are…
Understanding Atmospheric Carbon Budgets: Teaching Students Conservation of Mass
ERIC Educational Resources Information Center
Reichert, Collin; Cervato, Cinzia; Niederhauser, Dale; Larsen, Michael D.
2015-01-01
In this paper we describe student use of a series of connected online problem-solving activities to remediate atmospheric carbon budget misconceptions held by undergraduate university students. In particular, activities were designed to address a common misconception about conservation of mass when students assume a simplistic, direct relationship…
Best Practices for Launching a Flipped Classroom
ERIC Educational Resources Information Center
Hall, Ashley A.; DuFrene, Debbie D.
2016-01-01
Popularity is growing for flipped classroom instruction, which replaces lectures with out-of-class delivery of streaming video, reading materials, online chats, and other modalities. Face-to-face class time is spent on instructor-student and student-student interaction, including small group problem solving and discussion. Classroom flipping has…
On-line and Mobil Learning Activities
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Whittaker, T. M.; Jasmin, T.; Mooney, M. E.
2012-12-01
Introductory college-level science courses for non-majors are critical gateways to imparting not only discipline-specific information, but also the basics of the scientific method and how science influences society. They are also indispensable for student success to degree. On-line, web-based homework (whether on computers or mobile devices) is a rapidly growing use of the Internet and is becoming a major component of instruction in science, replacing delayed feedback from a few major exams. Web delivery and grading of traditional textbook-type questions is equally effective as having students write them out for hand grading, as measured by student performance on conceptual and problem solving exams. During this presentation we will demonstrate some of the interactive on-line activities used to teach concepts and how scientists approach problem solving, and how these activities have impacted student learning. Evaluation of the activities, including formative and summative, will be discussed and provide evidence that these interactive activities significantly enhance understanding of introductory meteorological concepts in a college-level science course. More advanced interactive activities are also used in our courses for department majors, some of these will be discussed and demonstrated. Bring your mobile devices to play along! Here is an example on teaching contouring: http://profhorn.aos.wisc.edu/wxwise/contour/index.html
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems.
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-12-20
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm.
Optimal Rate Schedules with Data Sharing in Energy Harvesting Communication Systems
Wu, Weiwei; Li, Huafan; Shan, Feng; Zhao, Yingchao
2017-01-01
Despite the abundant research on energy-efficient rate scheduling polices in energy harvesting communication systems, few works have exploited data sharing among multiple applications to further enhance the energy utilization efficiency, considering that the harvested energy from environments is limited and unstable. In this paper, to overcome the energy shortage of wireless devices at transmitting data to a platform running multiple applications/requesters, we design rate scheduling policies to respond to data requests as soon as possible by encouraging data sharing among data requests and reducing the redundancy. We formulate the problem as a transmission completion time minimization problem under constraints of dynamical data requests and energy arrivals. We develop offline and online algorithms to solve this problem. For the offline setting, we discover the relationship between two problems: the completion time minimization problem and the energy consumption minimization problem with a given completion time. We first derive the optimal algorithm for the min-energy problem and then adopt it as a building block to compute the optimal solution for the min-completion-time problem. For the online setting without future information, we develop an event-driven online algorithm to complete the transmission as soon as possible. Simulation results validate the efficiency of the proposed algorithm. PMID:29261135
Learning stoichiometry: A comparison of text and multimedia instructional formats
NASA Astrophysics Data System (ADS)
Evans, Karen L.
Even after multiple instructional opportunities, first year college chemistry students are often unable to apply stoichiometry knowledge in equilibrium and acid-base chemistry problem solving. Cognitive research findings suggest that for learning to be meaningful, learners need to actively construct their own knowledge by integrating new information into, and reorganizing, their prior understandings. Scaffolded inquiry in which facts, procedures, and principles are introduced as needed within the context of authentic problem solving may provide the practice and encoding opportunities necessary for construction of a memorable and usable knowledge base. The dynamic and interactive capabilities of online technology may facilitate stoichiometry instruction that promotes this meaningful learning. Entering college freshmen were randomly assigned to either a technology-rich or text-only set of cognitively informed stoichiometry review materials. Analysis of posttest scores revealed a significant but small difference in the performance of the two treatment groups, with the technology-rich group having the advantage. Both SAT and gender, however, explained more of the variability in the scores. Analysis of the posttest scores from the technology-rich treatment group revealed that the degree of interaction with the Virtual Lab simulation was significantly related to posttest performance and subsumed any effect of prior knowledge as measured by SAT scores. Future users of the online course should be encouraged to engage with the problem-solving opportunities provided by the Virtual Lab simulation through either explicit instruction and/or implementation of some level of program control within the course's navigational features.
Bae, Seung-Hwan; Yoon, Kuk-Jin
2018-03-01
Online multi-object tracking aims at estimating the tracks of multiple objects instantly with each incoming frame and the information provided up to the moment. It still remains a difficult problem in complex scenes, because of the large ambiguity in associating multiple objects in consecutive frames and the low discriminability between objects appearances. In this paper, we propose a robust online multi-object tracking method that can handle these difficulties effectively. We first define the tracklet confidence using the detectability and continuity of a tracklet, and decompose a multi-object tracking problem into small subproblems based on the tracklet confidence. We then solve the online multi-object tracking problem by associating tracklets and detections in different ways according to their confidence values. Based on this strategy, tracklets sequentially grow with online-provided detections, and fragmented tracklets are linked up with others without any iterative and expensive association steps. For more reliable association between tracklets and detections, we also propose a deep appearance learning method to learn a discriminative appearance model from large training datasets, since the conventional appearance learning methods do not provide rich representation that can distinguish multiple objects with large appearance variations. In addition, we combine online transfer learning for improving appearance discriminability by adapting the pre-trained deep model during online tracking. Experiments with challenging public datasets show distinct performance improvement over other state-of-the-arts batch and online tracking methods, and prove the effect and usefulness of the proposed methods for online multi-object tracking.
Hallford, David John; Mellor, David
2016-11-01
Reminiscence-based psychotherapies have been demonstrated to have robust effects on a range of therapeutic outcomes. However, little research has been conducted on the immediate effects of guided activities they are composed of, or how these might differ dependent on the type of reminiscence. The current study utilised a controlled experimental design, whereby 321 young adults (mean age = 25.5 years, SD = 3.0) were randomised to one of four conditions of online reminiscence activity: problem-solving (successful coping experiences), identity (self-defining events contributing to a meaningful and continuous personal identity), bitterness revival (negative or adverse events), or a control condition (any memory from their past). Participants recalled autobiographical memories congruent with the condition, and answered questions to facilitate reflection on the memories. The results indicated that problem-solving and identity reminiscence activities caused significant improvements in self-esteem, meaning in life, self-efficacy and affect, whereas no effects were found in the bitterness revival and control conditions. Problem-solving reminiscence also caused a small effect in increasing perceptions of a life narrative/s. Differences between the conditions did not appear to be explained by the positive-valence of memories. These results provide evidence for the specific effects of adaptive types of problem-solving and identity reminiscence in young adults.
Developing Graduate Attributes in an Open Online Course
ERIC Educational Resources Information Center
Rowe, Michael
2016-01-01
In an increasingly connected world where solving complex problems is not possible by solitary experts, educators and learners need opportunities to develop ways of thinking that allow them to engage with the dynamic and complex situations that arise in the world. The development of graduate attributes has been suggested as one way in which…
Aggregate-Then-Curate: How Digital Learning Champions Help Communities Nurture Online Content
ERIC Educational Resources Information Center
Whitworth, Andrew; Garnett, Fred; Pearson, Diana
2012-01-01
Informational resources are essential for communities, rooting them in their own history, helping them learn and solve problems, giving them a voice in decisionmaking and so on. For digital inclusion and inclusion in the informational and democratic processes of society more generally it is essential that communities retain the skills, awareness…
Engaging Students in the Classroom with "WeBWorK" CLASS
ERIC Educational Resources Information Center
Engelke, Nicole; Karakok, Gulden; Wangberg, Aaron
2016-01-01
"WeBWorK" CLASS combines the best features of online homework and digital whiteboards to create a system that provides instructors with information on students' problem-solving processes, as well as their final answer. The system's utilization of tools that can sort students based on correct and incorrect homework and quiz answers and…
Measurement of Chlorine Dioxide in Water by DPD Colorimetric Method
NASA Astrophysics Data System (ADS)
Song, Min; Yan, Panping; Yao, Jun
2018-01-01
In order to solve the problems of chlorine dioxide in water by DPD colorimetric method, this paper discusses the effects of the formulation, temperature, color development time and amount of color reagent on the measurement process, improving the on-line instrument for domestic and drinking water in chlorine dioxide measurement precision and accuracy.
A HO-IRT Based Diagnostic Assessment System with Constructed Response Items
ERIC Educational Resources Information Center
Yang, Chih-Wei; Kuo, Bor-Chen; Liao, Chen-Huei
2011-01-01
The aim of the present study was to develop an on-line assessment system with constructed response items in the context of elementary mathematics curriculum. The system recorded the problem solving process of constructed response items and transfered the process to response codes for further analyses. An inference mechanism based on artificial…
Using Online Algorithms to Solve NP-Hard Problems More Efficiently in Practice
2007-12-01
bounds. For the openstacks , TPP, and pipesworld domains, our results were qualitatively different: most instances in these domains were either easy...between our results in these two sets of domains. For most in- stances in the openstacks domain we found no k values that elicited a “yes” answer in
Gaming Personality and Game Dynamics in Online Discussion Instructions
ERIC Educational Resources Information Center
Tu, Chih-Hsiung; Yen, Cherng-Jyh; Sujo-Montes, Laura; Roberts, Gayle A.
2015-01-01
Gamification is the use of game mechanics to drive game-like engagements and actions. It applies game mechanics, dynamics and frameworks to promote desired learning behaviours. Positive and effective gamification could enhance learning and engage learners in more social and context-rich decision-making for problem-solving in learning tasks.…
ERIC Educational Resources Information Center
Willems, Patricia P.; Gonzalez-DeHass, Alyssa
2015-01-01
Case study instruction is characterized by centering instruction around the use of hypothetical classroom dilemmas. It uses descriptive stories and invites students to discuss application of course material as they engage in hypothetical classroom problem-solving and teacher decision-making. Teaching is a complex profession that requires high…
Middle School Students' Mathematics Knowledge Retention: Online or Face-To-Face Environments
ERIC Educational Resources Information Center
Edwards, Clayton M.; Rule, Audrey C.; Boody, Robert M.
2017-01-01
Educators seek to develop students' mathematical knowledge retention to increase student efficacy in follow-on classwork, improvement of test scores, attainment of standards, and preparation for careers. Interactive visuals, feedback during problem solving, and incorporation of higher-order thinking skills are known to increase retention, but a…
Fostering Creativity through Inquiry and Adventure in Informal Learning Environment Design
ERIC Educational Resources Information Center
Doering, Aaron; Henrickson, Jeni
2015-01-01
Self-directed, inquiry-based learning opportunities focused on transdisciplinary real-world problem solving have been shown to foster creativity in learners. What tools might we provide classroom teachers to scaffold them and their students through this creative process? This study examines an online informal learning environment and the role the…
Usability Issues in the User Interfaces of Privacy-Enhancing Technologies
ERIC Educational Resources Information Center
LaTouche, Lerone W.
2013-01-01
Privacy on the Internet has become one of the leading concerns for Internet users. These users are not wrong in their concerns if personally identifiable information is not protected and under their control. To minimize the collection of Internet users' personal information and help solve the problem of online privacy, a number of…
ERIC Educational Resources Information Center
O'Hanlon, Charlene
2011-01-01
Using games as a learning tool is not new--research abounds to demonstrate the use of video games enhancing problem-solving skills and creativity. Pioneer educational games, like Carmen Sandiego and Oregon Trail, have given birth to online, multiuser, digital simulations that would make their forebears blush. Now, in what seems to be a natural…
Future Foreign Language Teachers' Social and Cognitive Collaboration in an Online Environment
ERIC Educational Resources Information Center
Arnold, Nike; Ducate, Lara
2006-01-01
Discussion boards provide an interactive venue where new and future language teachers can reflect, evaluate, solve problems or simply exchange ideas (e.g., Bonk, Hansen, Grabner-Hagen, Lazar, & Mirabelli, 1996; DeWert, Babinski, & Jones, 2003; Kumari, 2001; Pawan, Paulus, Yalcin, & Chang, 2003). In addition, encouraging future teachers to learn…
GeoThentic: Designing and Assessing with Technology, Pedagogy, and Content Knowledge
ERIC Educational Resources Information Center
Doering, Aaron; Scharber, Cassandra; Miller, Charles; Veletsianos, George
2009-01-01
GeoThentic, an online teaching and learning environment, focuses on engaging teachers and learners in solving real-world geography problems through use of geospatial technologies. The design of GeoThentic is grounded on the technology, pedagogy, and content knowledge (TPACK) framework as a metacognitive tool. This paper describes how the TPACK…
Teaching Teamwork: Electronics Instruction in a Collaborative Environment
ERIC Educational Resources Information Center
Horwitz, Paul; von Davier, Alina; Chamberlain, John; Koon, Al; Andrews, Jessica; McIntyre, Cynthia
2017-01-01
The Teaching Teamwork Project is using an online simulated electronic circuit, running on multiple computers, to assess students' abilities to work together as a team. We pose problems that must be tackled collaboratively, and log students' actions as they attempt to solve them. Team members are isolated from one another and can communicate only…
Galla, Brian M.; Plummer, Benjamin D.; White, Rachel E.; Meketon, David; D’Mello, Sidney K.; Duckworth, Angela L.
2014-01-01
The current study reports on the development and validation of the Academic Diligence Task (ADT), designed to assess the tendency to expend effort on academic tasks which are tedious in the moment but valued in the long-term. In this novel online task, students allocate their time between solving simple math problems (framed as beneficial for problem solving skills) and, alternatively, playing Tetris or watching entertaining videos. Using a large sample of high school seniors (N = 921), the ADT demonstrated convergent validity with self-report ratings of Big Five conscientiousness and its facets, self-control and grit, as well as discriminant validity from theoretically unrelated constructs, such as Big Five extraversion, openness, and emotional stability, test anxiety, life satisfaction, and positive and negative affect. The ADT also demonstrated incremental predictive validity for objectively measured GPA, standardized math and reading achievement test scores, high school graduation, and college enrollment, over and beyond demographics and intelligence. Collectively, findings suggest the feasibility of online behavioral measures to assess noncognitive individual differences that predict academic outcomes. PMID:25258470
Galla, Brian M; Plummer, Benjamin D; White, Rachel E; Meketon, David; D'Mello, Sidney K; Duckworth, Angela L
2014-10-01
The current study reports on the development and validation of the Academic Diligence Task (ADT), designed to assess the tendency to expend effort on academic tasks which are tedious in the moment but valued in the long-term. In this novel online task, students allocate their time between solving simple math problems (framed as beneficial for problem solving skills) and, alternatively, playing Tetris or watching entertaining videos. Using a large sample of high school seniors ( N = 921), the ADT demonstrated convergent validity with self-report ratings of Big Five conscientiousness and its facets, self-control and grit, as well as discriminant validity from theoretically unrelated constructs, such as Big Five extraversion, openness, and emotional stability, test anxiety, life satisfaction, and positive and negative affect. The ADT also demonstrated incremental predictive validity for objectively measured GPA, standardized math and reading achievement test scores, high school graduation, and college enrollment, over and beyond demographics and intelligence. Collectively, findings suggest the feasibility of online behavioral measures to assess noncognitive individual differences that predict academic outcomes.
Online thesis guidance management information system
NASA Astrophysics Data System (ADS)
Nasution, T. H.; Pratama, F.; Tanjung, K.; Siregar, I.; Amalia, A.
2018-03-01
The development of internet technology in education is still not maximized, especially in the process of thesis guidance between students and lecturers. Difficulties met the lecturers to help students during thesis guidance is the limited communication time and the compatibility of schedule between students and lecturer. To solve this problem, we designed an online thesis guidance management information system that helps students and lecturers to do thesis tutoring process anytime, anywhere. The system consists of a web-based admin app for usage management and an android-based app for students and lecturers.
On-line measurement of diameter of hot-rolled steel tube
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Zhao, Huiying; Tian, Ailing; Li, Bin
2015-02-01
In order to design a online diameter measurement system for Hot-rolled seamless steel tube production line. On one hand, it can play a stimulate part in the domestic pipe measuring technique. On the other hand, it can also make our domestic hot rolled seamless steel tube enterprises gain a strong product competitiveness with low input. Through the analysis of various detection methods and techniques contrast, this paper choose a CCD camera-based online caliper system design. The system mainly includes the hardware measurement portion and the image processing section, combining with software control technology and image processing technology, which can complete online measurement of heat tube diameter. Taking into account the complexity of the actual job site situation, it can choose a relatively simple and reasonable layout. The image processing section mainly to solve the camera calibration and the application of a function in Matlab, to achieve the diameter size display directly through the algorithm to calculate the image. I build a simulation platform in the design last phase, successfully, collect images for processing, to prove the feasibility and rationality of the design and make error in less than 2%. The design successfully using photoelectric detection technology to solve real work problems
Comprehension and computation in Bayesian problem solving
Johnson, Eric D.; Tubau, Elisabet
2015-01-01
Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian inferences relative to normalized formats (e.g., probabilities, percentages), both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on “transparent” Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e., transparent problem structures) at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct vs. incorrect reasoners depart, and how individual differences might influence this time point. PMID:26283976
Online Information Search Performance and Search Strategies in a Health Problem-Solving Scenario.
Sharit, Joseph; Taha, Jessica; Berkowsky, Ronald W; Profita, Halley; Czaja, Sara J
2015-01-01
Although access to Internet health information can be beneficial, solving complex health-related problems online is challenging for many individuals. In this study, we investigated the performance of a sample of 60 adults ages 18 to 85 years in using the Internet to resolve a relatively complex health information problem. The impact of age, Internet experience, and cognitive abilities on measures of search time, amount of search, and search accuracy was examined, and a model of Internet information seeking was developed to guide the characterization of participants' search strategies. Internet experience was found to have no impact on performance measures. Older participants exhibited longer search times and lower amounts of search but similar search accuracy performance as their younger counterparts. Overall, greater search accuracy was related to an increased amount of search but not to increased search duration and was primarily attributable to higher cognitive abilities, such as processing speed, reasoning ability, and executive function. There was a tendency for those who were younger, had greater Internet experience, and had higher cognitive abilities to use a bottom-up (i.e., analytic) search strategy, although use of a top-down (i.e., browsing) strategy was not necessarily unsuccessful. Implications of the findings for future studies and design interventions are discussed.
Online Information Search Performance and Search Strategies in a Health Problem-Solving Scenario
Sharit, Joseph; Taha, Jessica; Berkowsky, Ronald W.; Profita, Halley; Czaja, Sara J.
2017-01-01
Although access to Internet health information can be beneficial, solving complex health-related problems online is challenging for many individuals. In this study, we investigated the performance of a sample of 60 adults ages 18 to 85 years in using the Internet to resolve a relatively complex health information problem. The impact of age, Internet experience, and cognitive abilities on measures of search time, amount of search, and search accuracy was examined, and a model of Internet information seeking was developed to guide the characterization of participants’ search strategies. Internet experience was found to have no impact on performance measures. Older participants exhibited longer search times and lower amounts of search but similar search accuracy performance as their younger counterparts. Overall, greater search accuracy was related to an increased amount of search but not to increased search duration and was primarily attributable to higher cognitive abilities, such as processing speed, reasoning ability, and executive function. There was a tendency for those who were younger, had greater Internet experience, and had higher cognitive abilities to use a bottom-up (i.e., analytic) search strategy, although use of a top-down (i.e., browsing) strategy was not necessarily unsuccessful. Implications of the findings for future studies and design interventions are discussed. PMID:29056885
Online signature recognition using principal component analysis and artificial neural network
NASA Astrophysics Data System (ADS)
Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan
2016-12-01
In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.
NASA Astrophysics Data System (ADS)
Manurung, Sondang; Demonta Pangabean, Deo
2017-05-01
The main purpose of this study is to produce needs analysis, literature review, and learning tools in the study of developmental of interactive multimedia based physic learning charged in problem solving to improve thinking ability of physic prospective student. The first-year result of the study is: result of the draft based on a needs analysis of the facts on the ground, the conditions of existing learning and literature studies. Following the design of devices and instruments performed as well the development of media. Result of the second study is physics learning device -based interactive multimedia charged problem solving in the form of textbooks and scientific publications. Previous learning models tested in a limited sample, then in the evaluation and repair. Besides, the product of research has an economic value on the grounds: (1) a virtual laboratory to offer this research provides a solution purchases physics laboratory equipment is expensive; (2) address the shortage of teachers of physics in remote areas as a learning tool can be accessed offline and online; (3). reducing material or consumables as tutorials can be done online; Targeted research is the first year: i.e story board learning physics that have been scanned in a web form CD (compact disk) and the interactive multimedia of gas Kinetic Theory concept. This draft is based on a needs analysis of the facts on the ground, the existing learning conditions, and literature studies. Previous learning models tested in a limited sample, then in the evaluation and repair.
Students Inspiring Students: An Online Tool for Science Fair Participants
ERIC Educational Resources Information Center
Seeman, Jeffrey I.; Lawrence, Tom
2011-01-01
One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…
ERIC Educational Resources Information Center
Abdul Razzak, Nina
2016-01-01
Highly-traditional education systems that mainly offer what is known as "direct instruction" usually result in graduates with a surface approach to learning rather than a deep one. What is meant by deep-learning is learning that involves critical analysis, the linking of ideas and concepts, creative problem solving, and application…
ERIC Educational Resources Information Center
O'Neill, Eunhee Jung
2007-01-01
In today's global society, individuals with an understanding of different cultures that have the ability to apply this understanding to real world problem solving are more likely to become leaders. Preparing students for a global society is becoming a significant part of education. While many international online exchange projects have been…
Guided Online Group Discussion Enhances Student Critical Thinking Skills
ERIC Educational Resources Information Center
Gokhale, Anu; Machina, Kenton
2018-01-01
A teacher's objective is to provide students the cognitive strategies that enable them to think critically, make decisions, and solve problems. In order to guide student learning, teachers should be aware of the concepts that are prerequisite to the understanding of others and also of typical student misconceptions. The goal of this study was to…
2015-04-13
cope with dynamic, online optimisation problems with uncertainty, we developed some powerful and sophisticated techniques for learning heuristics...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) National ICT Australia United NICTA, Locked Bag 6016 Kensington...ABSTRACT Optimization solvers should learn to improve their performance over time. By learning both during the course of solving an optimization
Not Just Fun, But Serious Strategies: Using Meta-Cognitive Strategies in Game-Based Learning
ERIC Educational Resources Information Center
Kim, Bokyeong; Park, Hyungsung; Baek, Youngkyun
2009-01-01
The purpose of this study is to explore the effects of the meta-cognitive strategies on the academic and gaming achievements. Exploring the effects of those achievements on the social problem solving of students is also of interest. For this purpose, the MMORPG [Massively Multiple Online Role Playing Game] "Gersang" was used. The…
An Online Peer Assisted Learning Community Model and its Application in ZJNU
ERIC Educational Resources Information Center
Gaofeng, Ruan; Yeyu, Lin
2007-01-01
Peer coaching, or peer assisting, was established in 1970s by Joyce and Showers. Initially used in teachers' professional development, it refers to a process that two or more teacher peers evaluate current practice mutually; expand skills, extract and build new skills; share ideas, and review & solve problems of classroom teaching in a way of…
Cogito.org: A Website and Online Community for the World's Most Talented Youth
ERIC Educational Resources Information Center
Brody, Linda E.
2008-01-01
Students have used Cogito.org to pose and/or solve math problems and brain teasers, share their experiences in academic competitions, debate the pros and cons of using biofuels for energy, design an alien world based on sound scientific principles, and expand their cultural understanding by connecting with students from around the world.…
ERIC Educational Resources Information Center
Laurillard, Diana
2016-01-01
The demographics of massive open online course (MOOC) analytics show that the great majority of learners are highly qualified professionals, and not, as originally envisaged, the global community of disadvantaged learners who have no access to good higher education. MOOC pedagogy fits well with the combination of instruction and peer community…
ERIC Educational Resources Information Center
Moreillon, Judi
2016-01-01
For school librarians, being part of a "connected" community provides support for getting specific needs met, solving personally relevant and meaningful problems, and developing professional expertise. AASL provides many avenues for members of the profession to learn with and from one another. These include AASL and subgroup electronic…
Facilitating Students' Learning with Hybrid Instruction: A Comparison among Four Learning Styles
ERIC Educational Resources Information Center
Wichadee, Saovapa
2013-01-01
Introduction: Since a part of the instruction happens online, a hybrid course has usually been used to solve the problems of space and time. This article explores how students' learning styles influence their learning and satisfaction when certain format of a hybrid course is implemented. Methods: Participants were 122 first-year students at a…
ERIC Educational Resources Information Center
Whalen, D. Joel, Ed.
2017-01-01
This article, the second of a two-part series, presents 12 assignments designed to help students increase their online communication skills, conduct professional conferences, use advanced presentation software, develop problem-solving and critical thinking, gain greater awareness of gender effects in communication, and perform community service.…
ERIC Educational Resources Information Center
Jung-Ivannikova, Liubov
2016-01-01
Computer-mediated communication (CMC) has been argued to cause (mis)communication issues. Research and practice suggest a range of tactics and strategies for educators focused on how to encourage and foster communication in a virtual learning environment (VLE) (eg, Salmon). However, while frameworks such as Salmon's support the effective…
NASA Astrophysics Data System (ADS)
Yuan, Shenfang; Chen, Jian; Yang, Weibo; Qiu, Lei
2017-08-01
Fatigue crack growth prognosis is important for prolonging service time, improving safety, and reducing maintenance cost in many safety-critical systems, such as in aircraft, wind turbines, bridges, and nuclear plants. Combining fatigue crack growth models with the particle filter (PF) method has proved promising to deal with the uncertainties during fatigue crack growth and reach a more accurate prognosis. However, research on prognosis methods integrating on-line crack monitoring with the PF method is still lacking, as well as experimental verifications. Besides, the PF methods adopted so far are almost all sequential importance resampling-based PFs, which usually encounter sample impoverishment problems, and hence performs poorly. To solve these problems, in this paper, the piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The deterministic resampling PF (DRPF) is proposed to be used in fatigue crack growth prognosis, which can overcome the sample impoverishment problem. The proposed method is verified through fatigue tests of attachment lugs, which are a kind of important joint component in aerospace systems.
Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation
NASA Technical Reports Server (NTRS)
Clifton, C.; Homaifax, A.; Bikdash, M.
1997-01-01
This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.
Analysis of genome rearrangement by block-interchanges.
Lu, Chin Lung; Lin, Ying Chih; Huang, Yen Lin; Tang, Chuan Yi
2007-01-01
Block-interchanges are a new kind of genome rearrangements that affect the gene order in a chromosome by swapping two nonintersecting blocks of genes of any length. More recently, the study of such rearrangements is becoming increasingly important because of its applications in molecular evolution. Usually, this kind of study requires to solve a combinatorial problem, called the block-interchange distance problem, which is to find a minimum number of block-interchanges between two given gene orders of linear/circular chromosomes to transform one gene order into another. In this chapter, we shall introduce the basics of block-interchange rearrangements and permutation groups in algebra that are useful in analyses of genome rearrangements. In addition, we shall present a simple algorithm on the basis of permutation groups to efficiently solve the block-interchange distance problem, as well as ROBIN, a web server for the online analyses of block-interchange rearrangements.
Zhou, Guoxu; Yang, Zuyuan; Xie, Shengli; Yang, Jun-Mei
2011-04-01
Online blind source separation (BSS) is proposed to overcome the high computational cost problem, which limits the practical applications of traditional batch BSS algorithms. However, the existing online BSS methods are mainly used to separate independent or uncorrelated sources. Recently, nonnegative matrix factorization (NMF) shows great potential to separate the correlative sources, where some constraints are often imposed to overcome the non-uniqueness of the factorization. In this paper, an incremental NMF with volume constraint is derived and utilized for solving online BSS. The volume constraint to the mixing matrix enhances the identifiability of the sources, while the incremental learning mode reduces the computational cost. The proposed method takes advantage of the natural gradient based multiplication updating rule, and it performs especially well in the recovery of dependent sources. Simulations in BSS for dual-energy X-ray images, online encrypted speech signals, and high correlative face images show the validity of the proposed method.
Yang, Yiyi; Parrott, Scott
2018-05-01
Drawing on the constructionist framing approach, this quantitative content analysis compares online news coverage of schizophrenia in China and the United States in 2015. Incorporating the concept of individualism-collectivism, this study seeks to unveil the effects of culture on the framing of causes, solutions, responsibility attribution, and discourse types. The findings reveal that the link between cultural orientation and the media's framing of schizophrenia is not simple, as both cross-cultural consistency and differences were observed. In addition, compared to U.S. online media, Chinese online news outlets were more likely to cover schizophrenia episodically, while placing more problem-solving responsibility on society. Moreover, examining stigma and challenge cues, this study also found that schizophrenia was more severely stigmatized in Chinese than in U.S. online news platforms. Theoretical and practical implications are discussed.
One Method for Inhibiting the Copying of Online Homework
NASA Astrophysics Data System (ADS)
Busch, Hauke
2017-10-01
Over the last several years online homework solutions have become ever more accessible to students. This is due in part to programs like Yahoo Answers, Chegg, publisher solution manuals, and other web resources that are readily available online. The student can easily search any physics homework problem posted on the web in a matter of seconds and have the solution. The results of this are an apparent increase in students copying the answers without solving the problem, which may lead to an increase in homework scores but a reduction in exam scores and an overall lower grade in the class. A secondary effect that may be observed is that tutoring centers, recitations, and supplemental instructor sessions have reduced student attendance. Some might say that the readily available solutions for homework systems such as MasteringPhysics (MP), WebAssign, etc. have greatly diminished them as a teaching tool, and for grading and assessing students' performance in a course. It is the purpose of this paper to offer a possible solution for preventing students from potentially copying online homework solutions.
NASA Astrophysics Data System (ADS)
Li, Guoliang; Xing, Lining; Chen, Yingwu
2017-11-01
The autonomicity of self-scheduling on Earth observation satellite and the increasing scale of satellite network attract much attention from researchers in the last decades. In reality, the limited onboard computational resource presents challenge for the online scheduling algorithm. This study considered online scheduling problem for a single autonomous Earth observation satellite within satellite network environment. It especially addressed that the urgent tasks arrive stochastically during the scheduling horizon. We described the problem and proposed a hybrid online scheduling mechanism with revision and progressive techniques to solve this problem. The mechanism includes two decision policies, a when-to-schedule policy combining periodic scheduling and critical cumulative number-based event-driven rescheduling, and a how-to-schedule policy combining progressive and revision approaches to accommodate two categories of task: normal tasks and urgent tasks. Thus, we developed two heuristic (re)scheduling algorithms and compared them with other generally used techniques. Computational experiments indicated that the into-scheduling percentage of urgent tasks in the proposed mechanism is much higher than that in periodic scheduling mechanism, and the specific performance is highly dependent on some mechanism-relevant and task-relevant factors. For the online scheduling, the modified weighted shortest imaging time first and dynamic profit system benefit heuristics outperformed the others on total profit and the percentage of successfully scheduled urgent tasks.
NASA Astrophysics Data System (ADS)
Hagevik, Rita Anne
This study investigated the effects of using Geographic Information Systems (GIS) to improve middle school students' and their teachers' understanding of environmental content and GIS. Constructivism provided the theoretical framework with Bonnstetter's inquiry evolution and Swartz's problem solving as the conceptual framework for designing these GIS units and interpreting the results. Teachers from nine schools in five counties attended a one-week workshop and follow-up session, where they learned how to teach the online Mapping Our School Site (www.ncsu.edu/scilink/studysite) and CITYgreen GIS inquiry-based problem-solving units. Two years after the workshop, two teachers from the workshop taught the six week Mapping Our School Site (MOSS) unit in the fall and one teacher from a different school taught the MOSS unit in the fall and the CITYgreen GIS unit in the spring. The students in the MOSS experimental group (n = 131) and the CITYgreen GIS comparison group (n = 33) were compared for differences in understanding of environmental content. Other factors were investigated such as students' spatial abilities, experiences, and learning preferences. Teachers and students completed the online Learning Styles Inventory (LSI), Spatial Experience Survey (SES), and the Purdue Spatial Visualization Test: Rotations (PSVT:R). Using qualitative and quantitative analyses, results indicated that the CITYgreen GIS group learned the environmental content better than the MOSS group. The MOSS group better understood how to design experiments and to use GIS to analyze problem questions. Both groups improved in problem identification and problem solving, data accuracy, and hypothesis testing. The spatial reasoning score was compared to learning style as reported on the LSI, and other spatial experiences as reported on the SES. Males scored higher than females on the spatial reasoning test, the more computer games played the higher the score, and the fewer shop classes taken the higher the score. Results indicated that 75% of the teachers' integrated GIS into classroom instruction two years after the GIS workshop. Even though teaching experience was negatively related to spatial reasoning test scores, implementation of GIS by teachers in the workshop was not influenced by years of teaching experience. The results indicate that GIS can be universally used for classroom instruction.
Karver, Christine L.; Wade, Shari L.; Cassedy, Amy; Taylor, H. Gerry; Brown, Tanya M.; Kirkwood, Michael W.; Stancin, Terry
2013-01-01
Children and adolescents with traumatic brain injury (TBI) often experience behavior difficulties that may arise from problem-solving deficits and impaired self-regulation. However, little is known about the relationship of neurocognitive ability to post-TBI behavioral recovery. To address this question, we examined whether verbal intelligence, as estimated by Vocabulary scores from the Wechsler Abbreviated Scale of Intelligence, predicted improvements in behavior and executive functioning following a problem-solving intervention for adolescents with TBI. 132 adolescents with complicated mild to serve TBI were randomly assigned to a 6 month web-based problem-solving intervention (CAPS; n = 65) or to an internet resource comparison (IRC; n = 67) group. Vocabulary moderated the association between treatment group and improvements in meta-cognitive abilities. Examination of the mean estimates indicated that for those with lower Vocabulary scores, pre-intervention Metacognition Index scores from the Behavior Rating Inventory of Executive Function (BRIEF) did not differ between the groups, but post-intervention scores were significantly lower (more improved) for those in the CAPS group. These findings suggest that low verbal intelligence was associated with greater improvements in executive functioning following the CAPS intervention and that verbal intelligence may have an important role in response to intervention for TBI. Understanding predictors of responsiveness to interventions allows clinicians to tailor treatments to individuals, thus improving efficacy. PMID:23710617
NASA Astrophysics Data System (ADS)
Zhang, Langwen; Xie, Wei; Wang, Jingcheng
2017-11-01
In this work, synthesis of robust distributed model predictive control (MPC) is presented for a class of linear systems subject to structured time-varying uncertainties. By decomposing a global system into smaller dimensional subsystems, a set of distributed MPC controllers, instead of a centralised controller, are designed. To ensure the robust stability of the closed-loop system with respect to model uncertainties, distributed state feedback laws are obtained by solving a min-max optimisation problem. The design of robust distributed MPC is then transformed into solving a minimisation optimisation problem with linear matrix inequality constraints. An iterative online algorithm with adjustable maximum iteration is proposed to coordinate the distributed controllers to achieve a global performance. The simulation results show the effectiveness of the proposed robust distributed MPC algorithm.
On the decentralized control of large-scale systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chong, C.
1973-01-01
The decentralized control of stochastic large scale systems was considered. Particular emphasis was given to control strategies which utilize decentralized information and can be computed in a decentralized manner. The deterministic constrained optimization problem is generalized to the stochastic case when each decision variable depends on different information and the constraint is only required to be satisfied on the average. For problems with a particular structure, a hierarchical decomposition is obtained. For the stochastic control of dynamic systems with different information sets, a new kind of optimality is proposed which exploits the coupled nature of the dynamic system. The subsystems are assumed to be uncoupled and then certain constraints are required to be satisfied, either in a off-line or on-line fashion. For off-line coordination, a hierarchical approach of solving the problem is obtained. The lower level problems are all uncoupled. For on-line coordination, distinction is made between open loop feedback optimal coordination and closed loop optimal coordination.
On-line welding quality inspection system for steel pipe based on machine vision
NASA Astrophysics Data System (ADS)
Yang, Yang
2017-05-01
In recent years, high frequency welding has been widely used in production because of its advantages of simplicity, reliability and high quality. In the production process, how to effectively control the weld penetration welding, ensure full penetration, weld uniform, so as to ensure the welding quality is to solve the problem of the present stage, it is an important research field in the field of welding technology. In this paper, based on the study of some methods of welding inspection, a set of on-line welding quality inspection system based on machine vision is designed.
An intermediary's perspective of online databases for local governments
NASA Technical Reports Server (NTRS)
Jack, R. F.
1984-01-01
Numerous public administration studies have indicated that local government agencies for a variety of reasons lack access to comprehensive information resources; furthermore, such entities are often unwilling or unable to share information regarding their own problem-solving innovations. The NASA/University of Kentucky Technology Applications Program devotes a considerable effort to providing scientific and technical information and assistance to local agencies, relying on its access to over 500 distinct online databases offered by 20 hosts. The author presents a subjective assessment, based on his own experiences, of several databases which may prove useful in obtaining information for this particular end-user community.
ERIC Educational Resources Information Center
Liaw, En-Chong
2009-01-01
This study integrates the purposes of communication, i.e. in-class and on-line discussions, with problem solving skills in the process of learning professional knowledge of pre-service teachers. It attempts to foster both comprehension of professional knowledge and the attitude of contextualizing knowledge with situational factors. More…
A Web Environment to Encourage Students to Do Exercises outside the Classroom: A Case Study
ERIC Educational Resources Information Center
Capus, Laurence; Curvat, Frederic; Leclair, Olivier; Tourigny, Nicole
2006-01-01
For the past five years, our students have been passing less and less time preparing for lectures and exams. To encourage them to do more exercises, a pedagogical activity was offered outside the classroom. With the goal of making students more active during the problem-solving process, an innovative online environment, Sphinx, was developed.…
ERIC Educational Resources Information Center
Huang, Chun-Chieh; Yeh, Ting-Kuang; Li, Tsai-Yen; Chang, Chun-Yen
2010-01-01
The objective of this article is to evaluate the effectiveness of a collaborative and online brainstorming game, Idea Storming Cube (ISC), which provides users with a competitive game-based environment and a peer-like intelligent agent. The program seeks to promote students' divergent thinking to aid in the process of problem solving. The…
The Flipped Classroom of Operations Management: A Not-for-Cost-Reduction Platform
ERIC Educational Resources Information Center
Asef-Vaziri, A.
2015-01-01
By delivering lectures online using screen capture technology, students can learn course material at the time and location of their choice, when they are in control to pause, rewind, and fast forward the professor. Class time is no longer spent teaching basic concepts, but rather focused on more value-added activities such as problem solving,…
The Flipped Classroom for Teaching Organic Chemistry in Small Classes: Is It Effective?
ERIC Educational Resources Information Center
Fautch, Jessica M.
2015-01-01
The flipped classroom is a pedagogical approach that moves course content from the classroom to homework, and uses class time for engaging activities and instructor-guided problem solving. The course content in a sophomore level Organic Chemistry I course was assigned as homework using video lectures, followed by a short online quiz. In class,…
ERIC Educational Resources Information Center
McCreery, Michael P.; Schrader, P. G.; Krach, S. Kathleen
2011-01-01
There is a substantial and growing interest in immersive virtual spaces as contexts for 21st century skills like problem solving, communication, and collaboration. However, little consideration has been given to the ways in which users become proficient in these environments or what types of target behaviors are associated with 21st century…
ERIC Educational Resources Information Center
Downs, Nathan; Parisi, Alfio V.; Galligan, Linda; Turner, Joanna; Amar, Abdurazaq; King, Rachel; Ultra, Filipina; Butler, Harry
2016-01-01
A short series of practical classroom mathematics activities employing the use of a large and publicly accessible scientific data set are presented for use by students in years 9 and 10. The activities introduce and build understanding of integral calculus and trigonometric functions through the presentation of practical problem solving that…
Indonesian Perspective on Massive Open Online Courses: Opportunities and Challenges
ERIC Educational Resources Information Center
Berliyanto; Santoso, Harry B.
2018-01-01
There are two indications that Indonesia needs to improve its education quality. The first is the Human Development Index (HDI), which is still at the medium level, and the second is the enrollment rate in higher education, which is also at the low level. MOOCs have the potential to solve both problems. However, implementing MOOCs in a developing…
Petranovich, Christine L; Wade, Shari L; Taylor, H Gerry; Cassedy, Amy; Stancin, Terry; Kirkwood, Michael W; Maines Brown, Tanya
2015-08-01
To examine the efficacy of counselor-assisted problem solving (CAPS) in improving long-term caregiver psychological functioning following traumatic brain injury (TBI) in adolescents. This randomized clinical trial compared CAPS (n = 65), a predominantly online problem-solving intervention, with an Internet resource comparison (n = 67) program. Families of adolescents with TBI completed a baseline assessment and follow-up assessments 6, 12, and 18 months later. General linear mixed models were used to examine longitudinal changes in caregiver global psychological distress, depressive symptoms, and caregiving self-efficacy. Family income and injury severity were examined as moderators of treatment efficacy. Family income moderated long-term changes in caregiver psychological distress. For lower-income caregivers, the CAPS intervention was associated with lower levels of psychological distress at 6, 12, and 18 months post baseline. These findings support the utility of Web-based interventions in improving long-term caregiver psychological distress, particularly for lower-income families. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Intelligent on-line fault tolerant control for unanticipated catastrophic failures.
Yen, Gary G; Ho, Liang-Wei
2004-10-01
As dynamic systems become increasingly complex, experience rapidly changing environments, and encounter a greater variety of unexpected component failures, solving the control problems of such systems is a grand challenge for control engineers. Traditional control design techniques are not adequate to cope with these systems, which may suffer from unanticipated dynamic failures. In this research work, we investigate the on-line fault tolerant control problem and propose an intelligent on-line control strategy to handle the desired trajectories tracking problem for systems suffering from various unanticipated catastrophic faults. Through theoretical analysis, the sufficient condition of system stability has been derived and two different on-line control laws have been developed. The approach of the proposed intelligent control strategy is to continuously monitor the system performance and identify what the system's current state is by using a fault detection method based upon our best knowledge of the nominal system and nominal controller. Once a fault is detected, the proposed intelligent controller will adjust its control signal to compensate for the unknown system failure dynamics by using an artificial neural network as an on-line estimator to approximate the unexpected and unknown failure dynamics. The first control law is derived directly from the Lyapunov stability theory, while the second control law is derived based upon the discrete-time sliding mode control technique. Both control laws have been implemented in a variety of failure scenarios to validate the proposed intelligent control scheme. The simulation results, including a three-tank benchmark problem, comply with theoretical analysis and demonstrate a significant improvement in trajectory following performance based upon the proposed intelligent control strategy.
Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science
NASA Astrophysics Data System (ADS)
Bohr, Teresa M.
This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.
Design and performance frameworks for constructing problem-solving simulations.
Stevens, Ron; Palacio-Cayetano, Joycelin
2003-01-01
Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement.
Design and Performance Frameworks for Constructing Problem-Solving Simulations
Stevens, Ron; Palacio-Cayetano, Joycelin
2003-01-01
Rapid advancements in hardware, software, and connectivity are helping to shorten the times needed to develop computer simulations for science education. These advancements, however, have not been accompanied by corresponding theories of how best to design and use these technologies for teaching, learning, and testing. Such design frameworks ideally would be guided less by the strengths/limitations of the presentation media and more by cognitive analyses detailing the goals of the tasks, the needs and abilities of students, and the resulting decision outcomes needed by different audiences. This article describes a problem-solving environment and associated theoretical framework for investigating how students select and use strategies as they solve complex science problems. A framework is first described for designing on-line problem spaces that highlights issues of content, scale, cognitive complexity, and constraints. While this framework was originally designed for medical education, it has proven robust and has been successfully applied to learning environments from elementary school through medical school. Next, a similar framework is detailed for collecting student performance and progress data that can provide evidence of students' strategic thinking and that could potentially be used to accelerate student progress. Finally, experimental validation data are presented that link strategy selection and use with other metrics of scientific reasoning and student achievement. PMID:14506505
BiCluE - Exact and heuristic algorithms for weighted bi-cluster editing of biomedical data
2013-01-01
Background The explosion of biological data has dramatically reformed today's biology research. The biggest challenge to biologists and bioinformaticians is the integration and analysis of large quantity of data to provide meaningful insights. One major problem is the combined analysis of data from different types. Bi-cluster editing, as a special case of clustering, which partitions two different types of data simultaneously, might be used for several biomedical scenarios. However, the underlying algorithmic problem is NP-hard. Results Here we contribute with BiCluE, a software package designed to solve the weighted bi-cluster editing problem. It implements (1) an exact algorithm based on fixed-parameter tractability and (2) a polynomial-time greedy heuristics based on solving the hardest part, edge deletions, first. We evaluated its performance on artificial graphs. Afterwards we exemplarily applied our implementation on real world biomedical data, GWAS data in this case. BiCluE generally works on any kind of data types that can be modeled as (weighted or unweighted) bipartite graphs. Conclusions To our knowledge, this is the first software package solving the weighted bi-cluster editing problem. BiCluE as well as the supplementary results are available online at http://biclue.mpi-inf.mpg.de. PMID:24565035
Gleeson, John; Lederman, Reeva; Koval, Peter; Wadley, Greg; Bendall, Sarah; Cotton, Sue; Herrman, Helen; Crisp, Kingsley; Alvarez-Jimenez, Mario
2017-01-01
Family members caring for a young person diagnosed with the onset of mental health problems face heightened stress, depression, and social isolation. Despite evidence for the effectiveness of family based interventions, sustaining access to specialist family interventions is a major challenge. The availability of the Internet provides possibilities to expand and sustain access to evidence-based psychoeducation and personal support for family members. In this paper we describe the therapeutic model and the components of our purpose-built moderated online social therapy (MOST) program for families. We outline the background to its development, beginning with our face-to-face EPISODE II family intervention, which informed our selection of therapeutic content, and the integration of recent developments in positive psychology. Our online interventions for carers integrate online therapy, online social networking, peer and expert support, and online social problem solving which has been designed to reduce stress in carers. The initial version of our application entitled Meridian was shown to be safe, acceptable, and feasible in a feasibility study of carers of youth diagnosed with depression and anxiety. There was a significant reduction in self-reported levels of stress in caregivers and change in stress was significantly correlated with use of the system. We have subsequently launched a cluster RCT for caregivers with a relative diagnosed with first-episode psychosis. Our intervention has the potential to improve access to effective specialist support for families facing the onset of serious mental health problems in their young relative.
Gaffney, Hannah; Mansell, Warren; Edwards, Rachel; Wright, Jason
2014-11-01
Computerized self-help that has an interactive, conversational format holds several advantages, such as flexibility across presenting problems and ease of use. We designed a new program called MYLO that utilizes the principles of METHOD of Levels (MOL) therapy--based upon Perceptual Control Theory (PCT). We tested the efficacy of MYLO, tested whether the psychological change mechanisms described by PCT mediated its efficacy, and evaluated effects of client expectancy. Forty-eight student participants were randomly assigned to MYLO or a comparison program ELIZA. Participants discussed a problem they were currently experiencing with their assigned program and completed measures of distress, resolution and expectancy preintervention, postintervention and at 2-week follow-up. MYLO and ELIZA were associated with reductions in distress, depression, anxiety and stress. MYLO was considered more helpful and led to greater problem resolution. The psychological change processes predicted higher ratings of MYLO's helpfulness and reductions in distress. Positive expectancies towards computer-based problem solving correlated with MYLO's perceived helpfulness and greater problem resolution, and this was partly mediated by the psychological change processes identified. The findings provide provisional support for the acceptability of the MYLO program in a non-clinical sample although its efficacy as an innovative computer-based aid to problem solving remains unclear. Nevertheless, the findings provide tentative early support for the mechanisms of psychological change identified within PCT and highlight the importance of client expectations on predicting engagement in computer-based self-help.
OCT-based angiography in real time with hand-held probe
NASA Astrophysics Data System (ADS)
Gelikonov, Grigory V.; Moiseev, Alexander A.; Ksenofontov, Sergey Y.; Terpelov, Dmitry A.; Gelikonov, Valentine M.
2018-03-01
This work is dedicated to development of the OCT system capable to visualize blood vessel network for everyday clinical use. Following problems were solved during the development: compensation of specific natural tissue displacements, induced by contact scanning mode and physiological motion of patients (e.g. respiratory and cardiac motions) and on-line visualization of vessel net to provide the feedback for system operator.
Waller, Niels
2018-01-01
Kristof's Theorem (Kristof, 1970 ) describes a matrix trace inequality that can be used to solve a wide-class of least-square optimization problems without calculus. Considering its generality, it is surprising that Kristof's Theorem is rarely used in statistics and psychometric applications. The underutilization of this method likely stems, in part, from the mathematical complexity of Kristof's ( 1964 , 1970 ) writings. In this article, I describe the underlying logic of Kristof's Theorem in simple terms by reviewing four key mathematical ideas that are used in the theorem's proof. I then show how Kristof's Theorem can be used to provide novel derivations to two cognate models from statistics and psychometrics. This tutorial includes a glossary of technical terms and an online supplement with R (R Core Team, 2017 ) code to perform the calculations described in the text.
Online performance evaluation of RAID 5 using CPU utilization
NASA Astrophysics Data System (ADS)
Jin, Hai; Yang, Hua; Zhang, Jiangling
1998-09-01
Redundant arrays of independent disks (RAID) technology is the efficient way to solve the bottleneck problem between CPU processing ability and I/O subsystem. For the system point of view, the most important metric of on line performance is the utilization of CPU. This paper first employs the way to calculate the CPU utilization of system connected with RAID level 5 using statistic average method. From the simulation results of CPU utilization of system connected with RAID level 5 subsystem can we see that using multiple disks as an array to access data in parallel is the efficient way to enhance the on-line performance of disk storage system. USing high-end disk drivers to compose the disk array is the key to enhance the on-line performance of system.
Development of Watch Schedule Using Rules Approach
NASA Astrophysics Data System (ADS)
Jurkevicius, Darius; Vasilecas, Olegas
The software for schedule creation and optimization solves a difficult, important and practical problem. The proposed solution is an online employee portal where administrator users can create and manage watch schedules and employee requests. Each employee can login with his/her own account and see his/her assignments, manage requests, etc. Employees set as administrators can perform the employee scheduling online, manage requests, etc. This scheduling software allows users not only to see the initial and optimized watch schedule in a simple and understandable form, but also to create special rules and criteria and input their business. The system using rules automatically will generate watch schedule.
Collaborative distance learning: Developing an online learning community
NASA Astrophysics Data System (ADS)
Stoytcheva, Maria
2017-12-01
The method of collaborative distance learning has been applied for years in a number of distance learning courses, but they are relatively few in foreign language learning. The context of this research is a hybrid distance learning of French for specific purposes, delivered through the platform UNIV-RcT (Strasbourg University), which combines collaborative activities for the realization of a common problem-solving task online. The study focuses on a couple of aspects: on-line interactions carried out in small, tutored groups and the process of community building online. By analyzing the learner's perceptions of community and collaborative learning, we have tried to understand the process of building and maintenance of online learning community and to see to what extent the collaborative distance learning contribute to the development of the competence expectations at the end of the course. The analysis of the results allows us to distinguish the advantages and limitations of this type of e-learning and thus evaluate their pertinence.
A Model-Free Scheme for Meme Ranking in Social Media.
He, Saike; Zheng, Xiaolong; Zeng, Daniel
2016-01-01
The prevalence of social media has greatly catalyzed the dissemination and proliferation of online memes (e.g., ideas, topics, melodies, tags, etc.). However, this information abundance is exceeding the capability of online users to consume it. Ranking memes based on their popularities could promote online advertisement and content distribution. Despite such importance, few existing work can solve this problem well. They are either daunted by unpractical assumptions or incapability of characterizing dynamic information. As such, in this paper, we elaborate a model-free scheme to rank online memes in the context of social media. This scheme is capable to characterize the nonlinear interactions of online users, which mark the process of meme diffusion. Empirical studies on two large-scale, real-world datasets (one in English and one in Chinese) demonstrate the effectiveness and robustness of the proposed scheme. In addition, due to its fine-grained modeling of user dynamics, this ranking scheme can also be utilized to explain meme popularity through the lens of social influence.
A Model-Free Scheme for Meme Ranking in Social Media
He, Saike; Zheng, Xiaolong; Zeng, Daniel
2015-01-01
The prevalence of social media has greatly catalyzed the dissemination and proliferation of online memes (e.g., ideas, topics, melodies, tags, etc.). However, this information abundance is exceeding the capability of online users to consume it. Ranking memes based on their popularities could promote online advertisement and content distribution. Despite such importance, few existing work can solve this problem well. They are either daunted by unpractical assumptions or incapability of characterizing dynamic information. As such, in this paper, we elaborate a model-free scheme to rank online memes in the context of social media. This scheme is capable to characterize the nonlinear interactions of online users, which mark the process of meme diffusion. Empirical studies on two large-scale, real-world datasets (one in English and one in Chinese) demonstrate the effectiveness and robustness of the proposed scheme. In addition, due to its fine-grained modeling of user dynamics, this ranking scheme can also be utilized to explain meme popularity through the lens of social influence. PMID:26823638
The Task and Relational Dimensions of Online Social Support.
Beck, Stephenson J; Paskewitz, Emily A; Anderson, Whitney A; Bourdeaux, Renee; Currie-Mueller, Jenna
2017-03-01
Online support groups are attractive to individuals suffering from various types of mental and physical illness due to their accessibility, convenience, and comfort level. Individuals coping with depression, in particular, may seek social support online to avoid the stigma that accompanies face-to-face support groups. We explored how task and relational messages created social support in online depression support groups using Cutrona and Suhr's social support coding scheme and Bales's Interaction Process Analysis coding scheme. A content analysis revealed emotional support as the most common type of social support within the group, although the majority of messages were task rather than relational. Informational support consisted primarily of task messages, whereas network and esteem support were primarily relational messages. Specific types of task and relational messages were associated with different support types. Results indicate task messages dominated online depression support groups, suggesting the individuals who participate in these groups are interested in solving problems but may also experience emotional support when their uncertainty is reduced via task messages.
NASA Astrophysics Data System (ADS)
Tan, Kian Lam; Lim, Chen Kim
2017-10-01
With the explosive growth of online information such as email messages, news articles, and scientific literature, many institutions and museums are converting their cultural collections from physical data to digital format. However, this conversion resulted in the issues of inconsistency and incompleteness. Besides, the usage of inaccurate keywords also resulted in short query problem. Most of the time, the inconsistency and incompleteness are caused by the aggregation fault in annotating a document itself while the short query problem is caused by naive user who has prior knowledge and experience in cultural heritage domain. In this paper, we presented an approach to solve the problem of inconsistency, incompleteness and short query by incorporating the Term Similarity Matrix into the Language Model. Our approach is tested on the Cultural Heritage in CLEF (CHiC) collection which consists of short queries and documents. The results show that the proposed approach is effective and has improved the accuracy in retrieval time.
Continuous welding of unidirectional fiber reinforced thermoplastic tape material
NASA Astrophysics Data System (ADS)
Schledjewski, Ralf
2017-10-01
Continuous welding techniques like thermoplastic tape placement with in situ consolidation offer several advantages over traditional manufacturing processes like autoclave consolidation, thermoforming, etc. However, still there is a need to solve several important processing issues before it becomes a viable economic process. Intensive process analysis and optimization has been carried out in the past through experimental investigation, model definition and simulation development. Today process simulation is capable to predict resulting consolidation quality. Effects of material imperfections or process parameter variations are well known. But using this knowledge to control the process based on online process monitoring and according adaption of the process parameters is still challenging. Solving inverse problems and using methods for automated code generation allowing fast implementation of algorithms on targets are required. The paper explains the placement technique in general. Process-material-property-relationships and typical material imperfections are described. Furthermore, online monitoring techniques and how to use them for a model based process control system are presented.
Sequential Test Strategies for Multiple Fault Isolation
NASA Technical Reports Server (NTRS)
Shakeri, M.; Pattipati, Krishna R.; Raghavan, V.; Patterson-Hine, Ann; Kell, T.
1997-01-01
In this paper, we consider the problem of constructing near optimal test sequencing algorithms for diagnosing multiple faults in redundant (fault-tolerant) systems. The computational complexity of solving the optimal multiple-fault isolation problem is super-exponential, that is, it is much more difficult than the single-fault isolation problem, which, by itself, is NP-hard. By employing concepts from information theory and Lagrangian relaxation, we present several static and dynamic (on-line or interactive) test sequencing algorithms for the multiple fault isolation problem that provide a trade-off between the degree of suboptimality and computational complexity. Furthermore, we present novel diagnostic strategies that generate a static diagnostic directed graph (digraph), instead of a static diagnostic tree, for multiple fault diagnosis. Using this approach, the storage complexity of the overall diagnostic strategy reduces substantially. Computational results based on real-world systems indicate that the size of a static multiple fault strategy is strictly related to the structure of the system, and that the use of an on-line multiple fault strategy can diagnose faults in systems with as many as 10,000 failure sources.
An empirical study of the effect of granting multiple tries for online homework
NASA Astrophysics Data System (ADS)
Kortemeyer, Gerd
2015-07-01
When deploying online homework in physics courses, an important consideration is how many tries learners should be allowed to solve numerical free-response problems. While on the one hand, this number should be large enough to allow learners mastery of concepts and avoid copying, on the other hand, granting too many allowed tries encourages counter-productive behavior. We investigate data from an introductory calculus-based physics course that allowed different numbers of tries in different semesters. It turns out that the probabilities for successfully completing or abandoning problems during a particular try are independent of the number of tries already made, which indicates that students do not learn from their earlier tries. We also find that the probability for successfully completing a problem during a particular try decreases with the number of allowed tries, likely due to increased carelessness or guessing, while the probability to give up on a problem after a particular try is largely independent of the number of allowed tries. These findings lead to a mathematical model for learner usage of multiple tries, which predicts an optimum number of five allowed tries.
ERIC Educational Resources Information Center
Mutta, Maarit; Johansson, Marjut
2018-01-01
Verbal protocols are usually used to study cognitive processes involved in various activities, as it is argued that they could make implicit processes of thinking visible and thus reportable. Here, it is proposed that verbalisations can also be approached from another angle, namely as a discourse that contains linguistic markers of writers'…
Transient heat conduction in a heat fin
NASA Astrophysics Data System (ADS)
Brody, Jed; Brown, Max
2017-08-01
We immerse the bottom of a rod in ice water and record the time-dependent temperatures at positions along the length of the rod. Though the experiment is simple, a surprisingly difficult problem in heat conduction must be solved to obtain a theoretical fit to the measured data. The required equipment is very inexpensive and could be assigned as a homework exercise or a hands-on component of an online course.
Neural Networks for Flight Control
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1996-01-01
Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.
Fast online deconvolution of calcium imaging data
Zhou, Pengcheng; Paninski, Liam
2017-01-01
Fluorescent calcium indicators are a popular means for observing the spiking activity of large neuronal populations, but extracting the activity of each neuron from raw fluorescence calcium imaging data is a nontrivial problem. We present a fast online active set method to solve this sparse non-negative deconvolution problem. Importantly, the algorithm 3progresses through each time series sequentially from beginning to end, thus enabling real-time online estimation of neural activity during the imaging session. Our algorithm is a generalization of the pool adjacent violators algorithm (PAVA) for isotonic regression and inherits its linear-time computational complexity. We gain remarkable increases in processing speed: more than one order of magnitude compared to currently employed state of the art convex solvers relying on interior point methods. Unlike these approaches, our method can exploit warm starts; therefore optimizing model hyperparameters only requires a handful of passes through the data. A minor modification can further improve the quality of activity inference by imposing a constraint on the minimum spike size. The algorithm enables real-time simultaneous deconvolution of O(105) traces of whole-brain larval zebrafish imaging data on a laptop. PMID:28291787
NASA Astrophysics Data System (ADS)
Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.
2012-04-01
We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to create technology «no frost», realizing a steady stream of direct and inverse problems: solving the direct problem, the visualization and comparison with observed data, to solve the inverse problem (correction of the model parameters). The main objective of further work is the creation of a workstation operating emergency tool that could be used by an emergency duty person in real time.
A reward optimization method based on action subrewards in hierarchical reinforcement learning.
Fu, Yuchen; Liu, Quan; Ling, Xionghong; Cui, Zhiming
2014-01-01
Reinforcement learning (RL) is one kind of interactive learning methods. Its main characteristics are "trial and error" and "related reward." A hierarchical reinforcement learning method based on action subrewards is proposed to solve the problem of "curse of dimensionality," which means that the states space will grow exponentially in the number of features and low convergence speed. The method can reduce state spaces greatly and choose actions with favorable purpose and efficiency so as to optimize reward function and enhance convergence speed. Apply it to the online learning in Tetris game, and the experiment result shows that the convergence speed of this algorithm can be enhanced evidently based on the new method which combines hierarchical reinforcement learning algorithm and action subrewards. The "curse of dimensionality" problem is also solved to a certain extent with hierarchical method. All the performance with different parameters is compared and analyzed as well.
Boreland, B; Clement, G; Kunze, H
2015-08-01
After reviewing set selection and memory model dynamical system neural networks, we introduce a neural network model that combines set selection with partial memories (stored memories on subsets of states in the network). We establish that feasible equilibria with all states equal to ± 1 correspond to answers to a particular set theoretic problem. We show that KenKen puzzles can be formulated as a particular case of this set theoretic problem and use the neural network model to solve them; in addition, we use a similar approach to solve Sudoku. We illustrate the approach in examples. As a heuristic experiment, we use online or print resources to identify the difficulty of the puzzles and compare these difficulties to the number of iterations used by the appropriate neural network solver, finding a strong relationship. Copyright © 2015 Elsevier Ltd. All rights reserved.
Employing subgoals in computer programming education
NASA Astrophysics Data System (ADS)
Margulieux, Lauren E.; Catrambone, Richard; Guzdial, Mark
2016-01-01
The rapid integration of technology into our professional and personal lives has left many education systems ill-equipped to deal with the influx of people seeking computing education. To improve computing education, we are applying techniques that have been developed for other procedural fields. The present study applied such a technique, subgoal labeled worked examples, to explore whether it would improve programming instruction. The first two experiments, conducted in a laboratory, suggest that the intervention improves undergraduate learners' problem-solving performance and affects how learners approach problem-solving. The third experiment demonstrates that the intervention has similar, and perhaps stronger, effects in an online learning environment with in-service K-12 teachers who want to become qualified to teach computing courses. By implementing this subgoal intervention as a tool for educators to teach themselves and their students, education systems could improve computing education and better prepare learners for an increasingly technical world.
Deal or No Deal: using games to improve student learning, retention and decision-making
NASA Astrophysics Data System (ADS)
Chow, Alan F.; Woodford, Kelly C.; Maes, Jeanne
2011-03-01
Student understanding and retention can be enhanced and improved by providing alternative learning activities and environments. Education theory recognizes the value of incorporating alternative activities (games, exercises and simulations) to stimulate student interest in the educational environment, enhance transfer of knowledge and improve learned retention with meaningful repetition. In this case study, we investigate using an online version of the television game show, 'Deal or No Deal', to enhance student understanding and retention by playing the game to learn expected value in an introductory statistics course, and to foster development of critical thinking skills necessary to succeed in the modern business environment. Enhancing the thinking process of problem solving using repetitive games should also improve a student's ability to follow non-mathematical problem-solving processes, which should improve the overall ability to process information and make logical decisions. Learning and retention are measured to evaluate the success of the students' performance.
The deliberation-without-attention effect: evidence for an artifactual interpretation.
Lassiter, G Daniel; Lindberg, Matthew J; González-Vallejo, Claudia; Bellezza, Francis S; Phillips, Nathaniel D
2009-06-01
Proponents of unconscious-thought theory assert that letting the unconscious "mull it over" can enhance decisions. In a series of recent studies, researchers demonstrated that participants whose attention was focused on solving a complex problem (i.e., those using conscious thought) made poorer choices, decisions, and judgments than participants whose attention was distracted from the problem (i.e., those purportedly using unconscious thought). We argue that this finding, rather than establishing the existence of a deliberation-without-attention effect, is explained more compellingly in terms of the well-established distinction between on-line and memory-based judgments. In Experiment 1, we reversed the recent finding by simply changing participants' on-line processing goal from impression formation to memorization. Experiment 2 provided a replication and further established that some cognitive effort appears necessary to produce both the original pattern of results and its reversal, suggesting that such judgments are ultimately a product of conscious, rather than unconscious, thinking.
Model-Free Adaptive Control for Unknown Nonlinear Zero-Sum Differential Game.
Zhong, Xiangnan; He, Haibo; Wang, Ding; Ni, Zhen
2018-05-01
In this paper, we present a new model-free globalized dual heuristic dynamic programming (GDHP) approach for the discrete-time nonlinear zero-sum game problems. First, the online learning algorithm is proposed based on the GDHP method to solve the Hamilton-Jacobi-Isaacs equation associated with optimal regulation control problem. By setting backward one step of the definition of performance index, the requirement of system dynamics, or an identifier is relaxed in the proposed method. Then, three neural networks are established to approximate the optimal saddle point feedback control law, the disturbance law, and the performance index, respectively. The explicit updating rules for these three neural networks are provided based on the data generated during the online learning along the system trajectories. The stability analysis in terms of the neural network approximation errors is discussed based on the Lyapunov approach. Finally, two simulation examples are provided to show the effectiveness of the proposed method.
Syrjala, Karen L; Yi, Jean C; Artherholt, Samantha B; Romano, Joan M; Crouch, Marie-Laure; Fiscalini, Allison S; Hegel, Mark T; Flowers, Mary E D; Martin, Paul J; Leisenring, Wendy M
2018-05-05
This randomized controlled trial examines the efficacy of INSPIRE, an INternet-based Survivorship Program with Information and REsources, with or without problem-solving treatment (PST) telehealth calls, for survivors after hematopoietic cell transplantation (HCT). All adult survivors who met eligibility criteria were approached for consent. Participants completed patient-reported outcomes at baseline and 6 months. Those with baseline impaired scores on one or more of the outcomes were randomized to INSPIRE, INSPIRE + PST, or control with delayed INSPIRE access. Outcomes included Cancer and Treatment Distress, Symptom Checklist-90-R Depression, and Fatigue Symptom Inventory. Planned analyses compared arms for mean change in aggregated impaired outcomes and for proportion of participants improved on each outcome. Of 1306 eligible HCT recipients, 755 (58%) participated, and 344 (45%) had one or more impaired scores at baseline. We found no reduction in aggregated outcomes for either intervention (P > 0.3). In analyses of individual outcomes, participants randomized to INSPIRE + PST were more likely to improve in distress than controls (45 vs. 20%, RR 2.3, CI 1.0, 5.1); those randomized to INSPIRE alone were marginally more likely to improve in distress (40 vs. 20%, RR 2.0, CI 0.9, 4.5). The INSPIRE online intervention demonstrated a marginal benefit for distress that improved with the addition of telehealth PST, particularly for those who viewed the website or were age 40 or older. Online and telehealth programs such as INSPIRE offer opportunities to enhance HCT survivorship outcomes, particularly for mood, though methods would benefit from strategies to improve efficacy.
NASA Astrophysics Data System (ADS)
Quinn, Reginald
2013-01-01
The purpose of this study was to examine the confidence levels that community college students have in transferring basic math skills to science classes, as well as any factors that influence their confidence levels. This study was conducted with 196 students at a community college in central Mississippi. The study was conducted during the month of November after all of the students had taken their midterm exams and received midterm grades. The instrument used in this survey was developed and validated by the researcher. The instrument asks the students to rate how confident they were in working out specific math problems and how confident they were in working problems using those specific math skills in physics and chemistry. The instrument also provided an example problem for every confidence item. Results revealed that students' demographics were significant predictors in confidence scores. Students in the 18-22 year old range were less confident in solving math problems than others. Students who had retaken a math course were less confident than those who had not. Chemistry students were less confident in solving math problems than those in physics courses. Chemistry II students were less confident than those in Chemistry I and Principals of Chemistry. Students were least confident in solving problems involving logarithms and the most confident in solving algebra problems. In general, students felt that their math courses did not prepare them for the math problems encountered in science courses. There was no significant difference in confidence between students who had completed their math homework online and those who had completed their homework on paper. The researcher recommends that chemistry educators find ways of incorporating more mathematics in their courses especially logarithms and slope. Furthermore, math educators should incorporate more chemistry related applications to math class. Results of hypotheses testing, conclusions, discussions, and recommendations for future research are included.
Problem-based learning in an on-line biotechnology course
NASA Astrophysics Data System (ADS)
Cheaney, James Daniel
Problem-based learning (PBL) is a pedagogical tool that uses a "real world" problem or situation as a context for learning. PBL encourages student development of critical thinking skills, a high professional competency, problem-solving ability, knowledge acquisition, the ability to work productively as a team member and make decisions in unfamiliar situations, and the acquisition of skills that support self-directed life-long learning, metacognition, and adaptation to change. However, little research has focused on the use of PBL in on-line "virtual" classes. We conducted two studies exploring the use of PBL in an on-line biotechnology course. In the first study, ethical, legal, social, and human issues were used as a motivation for learning about DNA testing technologies, applications, and bioethical issues. In the second study, we combined PBL pedagogy with a rich multimedia environment of streaming video interviews, physical artifacts, and extensive links to articles and databases to create a multidimensional immersive PBL environment called "Robert's World". In "Robert's World", a man is determining whether to undergo a pre-symptomatic DNA test for an untreatable, incurable, fatal genetic disease for which he has a family history. In both studies, design and implementation issues of the on-line PBL environment are discussed, as are differences between on-line PBL and face-to-face PBL. Both studies provide evidence to suggest that PBL stimulates higher-order learning in students. However, in both studies, student performance on an exam testing acquisition of lower-order factual learning was lower for PBL students than for students who learned the same material through a traditional lecture-based approach. Possible reasons for this lower level of performance are explored. Student feedback expressed engagement with the issues and material covered, with reservations about some aspects of the PBL format, such as the lack of flexibility provided in cooperative learning. We conclude that on-line PBL is a powerful tool in helping to develop higher-order learning in students. The reasons for the decrease in student understanding of factual information are unclear. However, there are certain circumstances unique to on-line classes to keep in mind when implementing on-line PBL. These are summarized in concluding recommendations.
Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne
2014-07-11
In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector.
Di Lello, Enrico; Trincavelli, Marco; Bruyninckx, Herman; De Laet, Tinne
2014-01-01
In this paper, we introduce a Bayesian time series model approach for gas concentration estimation using Metal Oxide (MOX) sensors in Open Sampling System (OSS). Our approach focuses on the compensation of the slow response of MOX sensors, while concurrently solving the problem of estimating the gas concentration in OSS. The proposed Augmented Switching Linear System model allows to include all the sources of uncertainty arising at each step of the problem in a single coherent probabilistic formulation. In particular, the problem of detecting on-line the current sensor dynamical regime and estimating the underlying gas concentration under environmental disturbances and noisy measurements is formulated and solved as a statistical inference problem. Our model improves, with respect to the state of the art, where system modeling approaches have been already introduced, but only provided an indirect relative measures proportional to the gas concentration and the problem of modeling uncertainty was ignored. Our approach is validated experimentally and the performances in terms of speed of and quality of the gas concentration estimation are compared with the ones obtained using a photo-ionization detector. PMID:25019637
Online support for children with asthma and allergies.
Stewart, Miriam; Letourneau, Nicole; Masuda, Jeffrey R; Anderson, Sharon; McGhan, Shawna
2013-05-01
Children with asthma and allergies experience social isolation and gaps in social support particularly from peers. The objective of this pilot study was to design and test an accessible online support intervention for these children. Children (n = 27) aged 7 to 11 from across Canada participated. GoToMeeting was employed for the support group sessions and Club Penguin for social connections during and between support group meetings. Content included: strategies for coping with asthma and allergies, role playing and games to help children deal with difficult situations, fun and enjoyment, and presentations by positive role models. Participation in the online peer support intervention was high, 86.3% on average over the 8-week intervention. By sharing their experiences, listening to peers' experiences, and role playing, children were introduced to practical skills: problem solving, communicating, seeking support, and self-advocacy.
McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris
2017-01-01
In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1 d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.
Observational Mishaps - a Database
NASA Astrophysics Data System (ADS)
von Braun, K.; Chiboucas, K.; Hurley-Keller, D.
1999-05-01
We present a World-Wide-Web-accessible database of astronomical images which suffer from a variety of observational problems. These problems range from common phenomena, such as dust grains on filters and/or dewar window, to more exotic cases like, for instance, deflated support airbags underneath the primary mirror. The purpose of this database is to enable astronomers at telescopes to save telescope time by discovering the nature of the trouble they might be experiencing with the help of this online catalog. Every observational mishap contained in this collection is presented in the form of a GIF image, a brief explanation of the problem, and, to the extent possible, a suggestion of what might be done to solve the problem and improve the image quality.
Weiss, Nicole H; Bold, Krysten W; Sullivan, Tami P; Armeli, Stephen; Tennen, Howard
2017-04-01
Alcohol and marijuana are widely used among college students. Emotion regulation strategies have been linked to alcohol and marijuana use, but little attention has been devoted to modeling the directionality of these associations. The aims of the current study were to test whether (a) daytime use of emotion regulation strategies influences the likelihood of evening substance use and (b) evening substance use influences the likelihood of next-day use of emotion regulation strategies. Longitudinal daily diary data were collected for 30 days via on-line surveys. Northeastern United States. A total of 1640 college students (mean age = 19.2 years, 54% female, 80% European American) were recruited each semester between Spring 2008 and Spring 2012. Daily diaries assessed emotion regulation strategies (distraction, reappraisal, problem-solving, avoidance) and substance use (any drinking, heavy drinking, marijuana use, co-use of any drinking/heavy drinking and marijuana). Covariates included gender, age, race/ethnicity, fraternity/sorority involvement and baseline depression. Daytime distraction [odds ratio (OR) = 0.95], reappraisal (OR = 0.95) and problem-solving (OR = 0.94) predicted lower odds of evening marijuana use (P-values < 0.02). Evening heavy drinking (OR = 0.90) and marijuana use (OR = 0.89) predicted lower odds of next-day problem-solving, with heavy drinking also predicting higher odds (OR = 1.08) of next-day avoidance and marijuana use also predicting higher odds (OR = 1.08) of next-day reappraisal (P-values < 0.03). There appear to be reciprocal relations among emotion regulation strategies and substance use: greater daytime use of distraction, reappraisal, and problem solving predicts lower evening substance use, while higher evening substance use predicts higher next-day avoidance and reappraisal but lower next-day problem-solving. © 2016 Society for the Study of Addiction.
New York City Police Department Automated Fuel Monitoring System. Volume II. Documentation Report.
1981-11-16
toward solving troublesome problems. In addition, the private sector market has been stimulated to respond to system needs identified during the course of...8 -3Q .ifL I.N’ p uii3NLIE- __-U3 7/11 Ud-.i T01 LNI TERM ON-LN 151 071 328- ______ 33N.________ -~R~ NLINE 2141 53 07/11 16-ttl 145 INS TERM ON-LINE...4Z-46 131 LN4 TERM NLINE --3o56a 55 O7ALL-ZU _1 L. N ~Ii8ILON-~ik 1559 53 01/17 eZ-4.8 137 INN TERM4 ON-LINE " . " - 7 - M -1 ------------- - . 7 .Dm
A policy iteration approach to online optimal control of continuous-time constrained-input systems.
Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L
2013-09-01
This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.
Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills
Polyak, Stephen T.; von Davier, Alina A.; Peterschmidt, Kurt
2017-01-01
This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses. PMID:29238314
Computational Psychometrics for the Measurement of Collaborative Problem Solving Skills.
Polyak, Stephen T; von Davier, Alina A; Peterschmidt, Kurt
2017-01-01
This paper describes a psychometrically-based approach to the measurement of collaborative problem solving skills, by mining and classifying behavioral data both in real-time and in post-game analyses. The data were collected from a sample of middle school children who interacted with a game-like, online simulation of collaborative problem solving tasks. In this simulation, a user is required to collaborate with a virtual agent to solve a series of tasks within a first-person maze environment. The tasks were developed following the psychometric principles of Evidence Centered Design (ECD) and are aligned with the Holistic Framework developed by ACT. The analyses presented in this paper are an application of an emerging discipline called computational psychometrics which is growing out of traditional psychometrics and incorporates techniques from educational data mining, machine learning and other computer/cognitive science fields. In the real-time analysis, our aim was to start with limited knowledge of skill mastery, and then demonstrate a form of continuous Bayesian evidence tracing that updates sub-skill level probabilities as new conversation flow event evidence is presented. This is performed using Bayes' rule and conversation item conditional probability tables. The items are polytomous and each response option has been tagged with a skill at a performance level. In our post-game analysis, our goal was to discover unique gameplay profiles by performing a cluster analysis of user's sub-skill performance scores based on their patterns of selected dialog responses.
NASA Astrophysics Data System (ADS)
Abayan, Kenneth Munoz
Stoichiometry is a fundamental topic in chemistry that measures a quantifiable relationship between atoms, molecules, etc. Stoichiometry is usually taught using expository teaching methods. Students are passively given information, in the hopes they will retain the transmission of information to be able to solve stoichiometry problems masterfully. Cognitive science research has shown that this kind of instructional teaching method is not very effecting in meaningful learning practice. Instead, students must take ownership of their learning. The students need to actively construct their own knowledge by receiving, interpreting, integrating and reorganizing that information into their own mental schemas. In the absence of active learning practices, tools must be created in such a way to be able to scaffold difficult problems by encoding opportunities necessary to make the construction of knowledge memorable, thereby creating a usable knowledge base. Using an online e-learning tool and its potential to create a dynamic and interactive learning environment may facilitate the learning of stoichiometry. The study entailed requests from volunteer students, IRB consent form, a baseline questionnaire, random assignment of treatment, pre- and post-test assessment, and post assessment survey. These activities were given online. A stoichiometry-based assessment was given in a proctored examination at the University of Texas at Arlington (UTA) campus. The volunteer students who took part in these studies were at least 18 of age and were enrolled in General Chemistry 1441, at the University of Texas at Arlington. Each participant gave their informed consent to use their data in the following study. Students were randomly assigned to one of 4 treatments groups based on teaching methodology, (Dimensional Analysis, Operational Method, Ratios and Proportions) and a control group who just received instruction through lecture only. In this study, an e-learning tool was created to demonstrate several methodologies, on how to solve stoichiometry, which are all supported by chemical education research. Comparisons of student performance based on pre- and post-test assessment, and a stoichiometry-based examination was done to determine if the information provided within the e-learning tool yielded greater learning outcomes compared to the students in the absence of scaffold learning material. The e-learning tool was created to help scaffold the problem solving process necessary to help students (N=394) solve stoichiometry problems. Therein the study investigated possible predictors for success on a stoichiometry based examination, students' conceptual understanding of solving stoichiometry problems, and their explanation of reasoning. It was found that the way the student answered a given stoichiometry question (i.e. whether the student used dimensional analysis, operational method or any other process) was not statistically relevant (p=0.05). More importantly, if the students were able to describe their thought process clearly, these students scored significantly higher on stoichiometry test (mean 84, p<0.05). This finding has major implications in teaching the topic, as lecturers tend to stress and focus on the method rather than the process on how to solve stoichiometry problems.
NASA Astrophysics Data System (ADS)
Harmer, Andrea J.
Engaging middle-school students in scientific inquiry is typically recognized as important, but difficult. Designed to foster learner engagement, this method used an online, problem-based, science inquiry that investigated the Lehigh Gap, Palmerton Superfund Site during five weeks of collaborative classroom sessions. The inquiry prototype was authored in WISE, the Web-Based Science Inquiry Environment headquartered at UC, Berkeley. Online materials, readings, and class sessions were augmented with remote access to an electron microscope to analyze Lehigh Gap samples and an introduction to nanoscale science and nanotechnology through the ImagiNations Web site at Lehigh University. Students contributed the artifacts they generated during their research to a university database and presented them to researchers at the university working on the same problem. This approach proved highly engaging and generated design and development guidelines useful to others interested in designing for student engagement and introducing nanoscale science and electron microscopy in middle school science. This study further found that students' engaged in science inquiry both behaviorally and emotionally and on several different levels. The various levels appeared to create two hierarchies of engagement, one based on behavioral criteria and the other based on emotional criteria. For students involved in the collaborative, problem-solving science, which included experts and access to their microscopes, the highest levels of engagement seemed to empower students and create in them a passion towards science. These hierarchies are illustrated with students' direct quotes, which prove that students engaged in this particular design of science inquiry. Students' engagement in the inquiry led to their achievements in understanding nanoscale science, nanotechnology, and electron microscopy and initiated positive attitude changes towards learning science.
Learning styles of registered nurses enrolled in an online nursing program.
Smith, Anita
2010-01-01
Technological advances assist in the proliferation of online nursing programs which meet the needs of the working nurse. Understanding online learning styles permits universities to adequately address the educational needs of the professional nurse returning for an advanced degree. The purpose of this study was to describe the learning styles of registered nurses (RNs) enrolled in an online master's nursing program or RN-bachelor of science in nursing (BSN) program. A descriptive, cross-sectional design was used. Kolb's learning style inventory (Version 3.1) was completed by 217 RNs enrolled in online courses at a Southeastern university. Descriptive statistical procedures were used for analysis. Thirty-one percent of the nurses were accommodators, 20% were assimilators, 19% were convergers, and 20% were divergers. Accommodators desire hand-on experiences, carrying out plans and tasks and using an intuitive trial-and-error approach to problem solving. The learning styles of the RNs were similar to the BSN students in traditional classroom settings. Despite their learning style, nurses felt that the online program met their needs. Implementing the technological innovations in nursing education requires the understanding of the hands-on learning of the RN so that the development of the online courses will satisfactorily meet the needs of the nurses who have chosen an online program. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kermish-Allen, Ruth
Traditional citizen science projects have been based on the scientific communities need to gather vast quantities of high quality data, neglecting to ask what the project participants get in return. How can participants be seen more as collaborative partners in citizen science projects? Online communities for citizen science are expanding rapidly, giving participants the opportunity to take part in a wide range of activities, from monitoring invasive species to identifying far-off galaxies. These communities can bring together the virtual and physical worlds in new ways that are egalitarian, collaborative, applied, localized and globalized to solve real environmental problems. There are a small number of citizen science projects that leverage the affordances of an online community to connect, engage, and empower participants to make local change happen. This multiple case study applies a conceptual framework rooted in sociocultural learning theory, Non-Hierarchical Online Learning Communities (NHOLCs), to three online citizen communities that have successfully fostered online collaboration and on-the-ground environmental actions. The purpose of the study is to identify the range and variation of the online and programmatic functions available in each project. The findings lead to recommendations for designing these innovative communities, specifically the technological and programmatic components of online citizen science communities that support environmental actions in our backyards.
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Tianyu; Staskevich, Gennady; Abbe, Brian
2017-04-01
This paper studies the cooperative control problem for a class of multiagent dynamical systems with partially unknown nonlinear system dynamics. In particular, the control objective is to solve the state consensus problem for multiagent systems based on the minimisation of certain cost functions for individual agents. Under the assumption that there exist admissible cooperative controls for such class of multiagent systems, the formulated problem is solved through finding the optimal cooperative control using the approximate dynamic programming and reinforcement learning approach. With the aid of neural network parameterisation and online adaptive learning, our method renders a practically implementable approximately adaptive neural cooperative control for multiagent systems. Specifically, based on the Bellman's principle of optimality, the Hamilton-Jacobi-Bellman (HJB) equation for multiagent systems is first derived. We then propose an approximately adaptive policy iteration algorithm for multiagent cooperative control based on neural network approximation of the value functions. The convergence of the proposed algorithm is rigorously proved using the contraction mapping method. The simulation results are included to validate the effectiveness of the proposed algorithm.
Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun
2016-07-22
An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.
Cascaded VLSI neural network architecture for on-line learning
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P. (Inventor); Duong, Tuan A. (Inventor); Daud, Taher (Inventor)
1992-01-01
High-speed, analog, fully-parallel, and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A computation intensive feature classification application was demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as an application specific coprocessor for solving real world problems at extremely high data rates.
Cascaded VLSI neural network architecture for on-line learning
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Daud, Taher (Inventor); Thakoor, Anilkumar P. (Inventor)
1995-01-01
High-speed, analog, fully-parallel and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware-compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A comparison-intensive feature classification application has been demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as application-specific-coprocessors for solving real-world problems at extremely high data rates.
A modified priority list-based MILP method for solving large-scale unit commitment problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Xinda; Lu, Ning; Wu, Di
This paper studies the typical pattern of unit commitment (UC) results in terms of generator’s cost and capacity. A method is then proposed to combine a modified priority list technique with mixed integer linear programming (MILP) for UC problem. The proposed method consists of two steps. At the first step, a portion of generators are predetermined to be online or offline within a look-ahead period (e.g., a week), based on the demand curve and generator priority order. For the generators whose on/off status is predetermined, at the second step, the corresponding binary variables are removed from the UC MILP problemmore » over the operational planning horizon (e.g., 24 hours). With a number of binary variables removed, the resulted problem can be solved much faster using the off-the-shelf MILP solvers, based on the branch-and-bound algorithm. In the modified priority list method, scale factors are designed to adjust the tradeoff between solution speed and level of optimality. It is found that the proposed method can significantly speed up the UC problem with minor compromise in optimality by selecting appropriate scale factors.« less
Effectiveness of objectivist online instruction on graduate learners' knowledge and competence
NASA Astrophysics Data System (ADS)
Maryannakis, Artemios
Online courses currently offered by aeronautical institutions are unstructured conversions of traditional courses into Web-based courses that lack the learning theory and instructional design principles framework, thus lacking the efficiency and effectiveness in dealing with the academic demands required to prepare aviation/aerospace professionals for the challenges of the technologically driven twenty-first century. The purpose of this study was to compare the effectiveness of two versions of an aeronautical online graduate course on research methods knowledge and competence: a comprehensive objectivist design and an unstructured design. Quantitative, causal comparative, quasi-experimental methodology was utilized. Using criteria derived from literature, criteria were established for the development and eventual online delivery of a comprehensive objectivist instructional design on graduate research methods learning. Results revealed that the comprehensive objectivist design was significantly more effective than its unstructured counterpart on graduate learners' competence in research methods, but found no significant difference in knowledge. It was recommended that aeronautical institutions (a) create programs with critical thinking and problem solving embedded in their curriculum for enhancing learner competence, and (b) thoroughly train every online instructor in the development and use of comprehensive online instruction.
Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.
Li, Shuai; Li, Yangming
2013-10-28
The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.
Brandl, Katharina; Mandel, Jess; Winegarden, Babbi
2017-02-01
Most medical schools use online systems to gather student feedback on the quality of their educational programmes and services. Online data may be limiting, however, as the course directors cannot question the students about written comments, nor can students engage in mutual problem-solving dialogue with course directors. We describe the implementation of a student evaluation team (SET) process to permit course directors and students to gather shortly after courses end to engage in feedback and problem solving regarding the course and course elements. Approximately 16 students were randomly selected to participate in each SET meeting, along with the course director, academic deans and other faculty members involved in the design and delivery of the course. An objective expert facilitates the SET meetings. SETs are scheduled for each of the core courses and threads that occur within the first 2 years of medical school, resulting in approximately 29 SETs annually. SET-specific satisfaction surveys submitted by students (n = 76) and course directors (n = 16) in 2015 were used to evaluate the SET process itself. Survey data were collected from 885 students (2010-2015), which measured student satisfaction with the overall evaluation process before and after the implementation of SETs. Students and course directors valued the SET process itself as a positive experience. Students felt that SETs allowed their voices to be heard, and that the SET increased the probability of suggested changes being implemented. Students' satisfaction with the overall evaluation process significantly improved after implementation of the SET process. Our data suggest that the SET process is a valuable way to supplement online evaluation systems and to increase students' and faculty members' satisfaction with the evaluation process. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Online identification of wind model for improving quadcopter trajectory monitoring
NASA Astrophysics Data System (ADS)
Beniak, Ryszard; Gudzenko, Oleksandr
2017-10-01
In this paper, we consider a problem of quadcopter control in severe weather conditions. One type of such weather conditions is a strong variable wind. In this paper, we ponder deterministic and stochastic models of winds at low altitudes with the quadcopter performing aggressive maneuvers. We choose an adaptive algorithm as our control algorithm. This algorithm might seem suitable one to solve the given problem, as it is able to adjust quickly to changing conditions. However, as shown in the paper, this algorithm is not applicable to rapidly changing winds and requires additional filters to smooth the impulse streams, so as not to lose the stability of the object.
Navigating the changing learning landscape: perspective from bioinformatics.ca
Ouellette, B. F. Francis
2013-01-01
With the advent of YouTube channels in bioinformatics, open platforms for problem solving in bioinformatics, active web forums in computing analyses and online resources for learning to code or use a bioinformatics tool, the more traditional continuing education bioinformatics training programs have had to adapt. Bioinformatics training programs that solely rely on traditional didactic methods are being superseded by these newer resources. Yet such face-to-face instruction is still invaluable in the learning continuum. Bioinformatics.ca, which hosts the Canadian Bioinformatics Workshops, has blended more traditional learning styles with current online and social learning styles. Here we share our growing experiences over the past 12 years and look toward what the future holds for bioinformatics training programs. PMID:23515468
Autonomous reinforcement learning with experience replay.
Wawrzyński, Paweł; Tanwani, Ajay Kumar
2013-05-01
This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Decision-Theoretic Control of Planetary Rovers
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo; Washington, Richard; Bernstein, Daniel S.; Mouaddib, Abdel-Illah; Morris, Robert (Technical Monitor)
2003-01-01
Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We describe two decision-theoretic approaches to maximize the productivity of planetary rovers: one based on adaptive planning and the other on hierarchical reinforcement learning. Both approaches map the problem into a Markov decision problem and attempt to solve a large part of the problem off-line, exploiting the structure of the plan and independence between plan components. We examine the advantages and limitations of these techniques and their scalability.
Missile Guidance Law Based on Robust Model Predictive Control Using Neural-Network Optimization.
Li, Zhijun; Xia, Yuanqing; Su, Chun-Yi; Deng, Jun; Fu, Jun; He, Wei
2015-08-01
In this brief, the utilization of robust model-based predictive control is investigated for the problem of missile interception. Treating the target acceleration as a bounded disturbance, novel guidance law using model predictive control is developed by incorporating missile inside constraints. The combined model predictive approach could be transformed as a constrained quadratic programming (QP) problem, which may be solved using a linear variational inequality-based primal-dual neural network over a finite receding horizon. Online solutions to multiple parametric QP problems are used so that constrained optimal control decisions can be made in real time. Simulation studies are conducted to illustrate the effectiveness and performance of the proposed guidance control law for missile interception.
Experience of e-learning implementation through massive open online courses
NASA Astrophysics Data System (ADS)
Ivleva, N. V.; Fibikh, E. V.
2016-04-01
E-learning is considered to be one of the most prospective directions in education development worldwide. To have a competitive advantage over other institutions offering a wide variety of educational services it is important to introduce information and communication technologies into the educational process to develop e-learning on the whole. The aim of the research is to reveal problems which prevent from full implementation of e-learning at the Reshetnev Siberian State Aerospace University (SibSAU) and to suggest ways on solving those problems through optimization of e-learning introduction process at the university by motivating students and teaching staff to participate in massive open online courses and formation of tailored platforms with the view to arrange similar courses at the premises of the university. The paper considers the introduction and development level of e-learning in Russia and at SibSAU particularly. It substantiates necessity to accelerate e-learning introduction process at an aerospace university as a base for training of highly-qualified specialists in the area of aviation, machine building, physics, info-communication technologies and also in other scientific areas within which university training is carried out. The paper covers SibSAU’s experience in e-learning implementation in the educational process through students and teaching staff participation in massive open online courses and mastering other up-to-date and trendy educational platforms and their usage in the educational process. Key words. E-learning, distance learning, online learning, massive open online course.
Model reduction method using variable-separation for stochastic saddle point problems
NASA Astrophysics Data System (ADS)
Jiang, Lijian; Li, Qiuqi
2018-02-01
In this paper, we consider a variable-separation (VS) method to solve the stochastic saddle point (SSP) problems. The VS method is applied to obtain the solution in tensor product structure for stochastic partial differential equations (SPDEs) in a mixed formulation. The aim of such a technique is to construct a reduced basis approximation of the solution of the SSP problems. The VS method attempts to get a low rank separated representation of the solution for SSP in a systematic enrichment manner. No iteration is performed at each enrichment step. In order to satisfy the inf-sup condition in the mixed formulation, we enrich the separated terms for the primal system variable at each enrichment step. For the SSP problems by regularization or penalty, we propose a more efficient variable-separation (VS) method, i.e., the variable-separation by penalty method. This can avoid further enrichment of the separated terms in the original mixed formulation. The computation of the variable-separation method decomposes into offline phase and online phase. Sparse low rank tensor approximation method is used to significantly improve the online computation efficiency when the number of separated terms is large. For the applications of SSP problems, we present three numerical examples to illustrate the performance of the proposed methods.
Clinical extracts of biomedical literature for patient-centered problem solving.
Florance, V
1996-01-01
This paper reports on a four-part qualitative research project aimed at designing an online document surrogate tailored to the needs of physicians seeking biomedical literature for use in clinical problem solving. The clinical extract, designed in collaboration with three practicing physicians, combines traditional elements of the MEDLINE record (e.g., title, author, source, abstract) with new elements (e.g., table captions, text headings, case profiles) suggested by the physicians. Specifications for the prototype clinical extract were developed through a series of relevance-scoring exercises and semi-structured interviews. For six clinical questions, three physicians assessed the applicability of selected articles and their document surrogates, articulating relevance criteria and reasons for their judgments. A prototype clinical extract based on their suggestions was developed, tested, evaluated, and revised. The final version includes content and format aids to make the extract easy to use. The goals, methods, and outcomes of the research study are summarized, and a template of the final design is provided. PMID:8883986
Key technology research of HILS based on real-time operating system
NASA Astrophysics Data System (ADS)
Wang, Fankai; Lu, Huiming; Liu, Che
2018-03-01
In order to solve the problems that the long development cycle of traditional simulation and digital simulation doesn't have the characteristics of real time, this paper designed a HILS(Hardware In the Loop Simulation) system based on the real-time operating platform xPC. This system solved the communication problems between HMI and Simulink models through the MATLAB engine interface, and realized the functions of system setting, offline simulation, model compiling and downloading, etc. Using xPC application interface and integrating the TeeChart ActiveX chart component to realize the monitoring function of real-time target application; Each functional block in the system is encapsulated in the form of DLL, and the data interaction between modules was realized by MySQL database technology. When the HILS system runs, search the address of the online xPC target by means of the Ping command, to establish the Tcp/IP communication between the two machines. The technical effectiveness of the developed system is verified through the typical power station control system.
Sanders, Chad; Low, Christina; Schmitter-Edgecombe, Maureen
2014-01-01
There is currently limited research evaluating planning abilities, a core subcomponent of executive functioning, in individuals with mild cognitive impairment (MCI). In the present study, we utilized the "Amap Task," an open-ended problem-solving task, to separately evaluate the formulation and execution components of planning ability in individuals with MCI. Thirty-seven cognitively healthy older adults and 37 individuals with MCI used a map layout of a university apartment to develop and write out a strategy (formulation stage) to successfully complete a list of tasks (e.g., retrieve and fill a water pitcher before placing it in the refrigerator). Subsequently, participants carried out the tasks in the apartment with the aid of their formulated plan (execution stage). MCI participants performed more poorly than older adult (OA) controls during both the formulation and execution stages on measures of task accuracy and task efficiency. However, both groups were able to adjust and improve task accuracy and efficiency from formulation to task execution. Finally, MCI participants took significantly longer to complete the task and adhered less to their formulated plans during task completion. Using an open-ended problem-solving task, the findings revealed that individuals with MCI experienced difficulties with both the formulation and execution components of planning. Like controls, participants with MCI were able to successfully modify their plan online, improving their performance from task formulation to task execution.
Threading Together Patient Expertise
Civan, Andrea; Pratt, Wanda
2007-01-01
Patients are valuable sources of expertise for other patients in similar situations, but little is understood about the nature of this expertise. To address this knowledge gap, we investigated informational support as a mechanism for peers to help one another learn to cope with the breast cancer experience. We analyzed the types of problems discussed and recommendations offered by correspondents in three online breast cancer communities. Informational support was prevalent and directed towards problems in which correspondents were planning for future events or coping with emergent situations. Peers shared a wealth of patient expertise, including action strategies, recommended knowledge, suggested approaches, and information resources for dealing with problems. Our results highlight how peers are helping one another to learn. These findings bring insight to new support we could provide to patients for developing and sharing patient expertise, such as problem-based information organization and functionality for collaborative problem solving. PMID:18693814
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
Clinical study of student learning using mastery style versus immediate feedback online activities
NASA Astrophysics Data System (ADS)
Gladding, Gary; Gutmann, Brianne; Schroeder, Noah; Stelzer, Timothy
2015-06-01
This paper is part of a series of studies to improve the efficacy of online physics homework activities by integrating narrated animated solutions with mastery inspired exercises. In a clinical study using first- and second-year university students, the mastery group attempted question sets in four levels, with animated solutions between each attempt, until mastery was achieved on each level. This combined elements of formative assessment, the worked example effect, and mastery learning. The homework group attempted questions with immediate feedback and unlimited tries. The two groups took a similar amount of time to complete the activity. The mastery group significantly outperformed the homework group on a free response post-test that required students to show their work in solving near and far transfer problems.
Minuti, Aurelia; Sorensen, Karen; Schwartz, Rachel; King, Winifred S; Glassman, Nancy R; Habousha, Racheline G
2018-01-01
This article describes the development of a flipped classroom instructional module designed by librarians to teach first- and second-year medical students how to search the literature and find evidence-based articles. The pre-class module consists of an online component that includes reading, videos, and exercises relating to a clinical case. The in-class sessions, designed to reinforce important concepts, include various interactive activities. The specifics of designing both components are included for other health sciences librarians interested in presenting similar instruction. Challenges encountered, particularly in the live sessions, are detailed, as are the results of evaluations submitted by the students, who largely enjoyed the online component. Future plans are contingent on solving technical problems encountered during the in-class sessions.
A Design of Product Collaborative Online Configuration Model
NASA Astrophysics Data System (ADS)
Wang, Xiaoguo; Zheng, Jin; Zeng, Qian
According to the actual needs of mass customization, the personalization of product and its collaborative design, the paper analyzes and studies the working mechanism of modular-based product configuration technology and puts forward an information model of modular product family. Combined with case-based reasoning techniques (CBR) and the constraint satisfaction problem solving techniques (CSP), we design and study the algorithm for product configuration, and analyze its time complexity. A car chassis is made as the application object, we provide a prototype system of online configuration. Taking advantage of this system, designers can make appropriate changes on the existing programs in accordance with the demand. This will accelerate all aspects of product development and shorten the product cycle. Also the system will provide a strong technical support for enterprises to improve their market competitiveness.
Self-Directed Cooperative Planetary Rovers
NASA Technical Reports Server (NTRS)
Zilberstein, Shlomo; Morris, Robert (Technical Monitor)
2003-01-01
The project is concerned with the development of decision-theoretic techniques to optimize the scientific return of planetary rovers. Planetary rovers are small unmanned vehicles equipped with cameras and a variety of sensors used for scientific experiments. They must operate under tight constraints over such resources as operation time, power, storage capacity, and communication bandwidth. Moreover, the limited computational resources of the rover limit the complexity of on-line planning and scheduling. We have developed a comprehensive solution to this problem that involves high-level tools to describe a mission; a compiler that maps a mission description and additional probabilistic models of the components of the rover into a Markov decision problem; and algorithms for solving the rover control problem that are sensitive to the limited computational resources and high-level of uncertainty in this domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-05-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-01-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
Fan, Quan-Yong; Yang, Guang-Hong
2017-01-01
The state inequality constraints have been hardly considered in the literature on solving the nonlinear optimal control problem based the adaptive dynamic programming (ADP) method. In this paper, an actor-critic (AC) algorithm is developed to solve the optimal control problem with a discounted cost function for a class of state-constrained nonaffine nonlinear systems. To overcome the difficulties resulting from the inequality constraints and the nonaffine nonlinearities of the controlled systems, a novel transformation technique with redesigned slack functions and a pre-compensator method are introduced to convert the constrained optimal control problem into an unconstrained one for affine nonlinear systems. Then, based on the policy iteration (PI) algorithm, an online AC scheme is proposed to learn the nearly optimal control policy for the obtained affine nonlinear dynamics. Using the information of the nonlinear model, novel adaptive update laws are designed to guarantee the convergence of the neural network (NN) weights and the stability of the affine nonlinear dynamics without the requirement for the probing signal. Finally, the effectiveness of the proposed method is validated by simulation studies. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Toward Solving the Problem of Problem Solving: An Analysis Framework
ERIC Educational Resources Information Center
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
Aircraft engine sensor fault diagnostics using an on-line OBEM update method.
Liu, Xiaofeng; Xue, Naiyu; Yuan, Ye
2017-01-01
This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM) to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI) system, in which a Hybrid Kalman Filter (HKF) was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV) model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault.
Aircraft engine sensor fault diagnostics using an on-line OBEM update method
Liu, Xiaofeng; Xue, Naiyu; Yuan, Ye
2017-01-01
This paper proposed a method to update the on-line health reference baseline of the On-Board Engine Model (OBEM) to maintain the effectiveness of an in-flight aircraft sensor Fault Detection and Isolation (FDI) system, in which a Hybrid Kalman Filter (HKF) was incorporated. Generated from a rapid in-flight engine degradation, a large health condition mismatch between the engine and the OBEM can corrupt the performance of the FDI. Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but the FDI system will lose estimation accuracy if the estimation and update are running simultaneously. To solve this problem, the health reference baseline for a nonlinear OBEM was updated using the proposed channel controller method. Simulations based on the turbojet engine Linear-Parameter Varying (LPV) model demonstrated the effectiveness of the proposed FDI system in the presence of substantial degradation, and the channel controller can ensure that the update process finishes without interference from a single sensor fault. PMID:28182692
Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes
NASA Astrophysics Data System (ADS)
Ramos, Roberto
We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.
Liu, Derong; Wang, Ding; Li, Hongliang
2014-02-01
In this paper, using a neural-network-based online learning optimal control approach, a novel decentralized control strategy is developed to stabilize a class of continuous-time nonlinear interconnected large-scale systems. First, optimal controllers of the isolated subsystems are designed with cost functions reflecting the bounds of interconnections. Then, it is proven that the decentralized control strategy of the overall system can be established by adding appropriate feedback gains to the optimal control policies of the isolated subsystems. Next, an online policy iteration algorithm is presented to solve the Hamilton-Jacobi-Bellman equations related to the optimal control problem. Through constructing a set of critic neural networks, the cost functions can be obtained approximately, followed by the control policies. Furthermore, the dynamics of the estimation errors of the critic networks are verified to be uniformly and ultimately bounded. Finally, a simulation example is provided to illustrate the effectiveness of the present decentralized control scheme.
NASA Astrophysics Data System (ADS)
Shi, Xiaoyu; Shang, Ming-Sheng; Luo, Xin; Khushnood, Abbas; Li, Jian
2017-02-01
As the explosion growth of Internet economy, recommender system has become an important technology to solve the problem of information overload. However, recommenders are not one-size-fits-all, different recommenders have different virtues, making them be suitable for different users. In this paper, we propose a novel personalized recommender based on user preferences, which allows multiple recommenders to exist in E-commerce system simultaneously. We find that output of a recommender to each user is quite different when using different recommenders, the recommendation accuracy can be significantly improved if each user is assigned with his/her optimal personalized recommender. Furthermore, different from previous works focusing on short-term effects on recommender, we also evaluate the long-term effect of the proposed method by modeling the evolution of mutual feedback between user and online system. Finally, compared with single recommender running on the online system, the proposed method can improve the accuracy of recommendation significantly and get better trade-offs between short- and long-term performances of recommendation.
Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda
2008-07-01
Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.
Holbrook, Jane
2010-01-01
Objective To assess pharmacy students' attitudes towards a blended-learning pharmacokinetics course. Design Narrated visual presentations and animations that illustrated kinetic processes and guided students through the use of software programs used for calculations were created. Other learning techniques used included online self-assessment quizzes, practice problem sets, and weekly face-to-face problem-solving tutorials. Assessment A precourse questionnaire to assess students' level of enthusiasm towards the blended-learning course and to solicit any concerns they had was administered at the beginning of the course. A postcourse questionnaire that included the same 4 Likert-scale items from the precourse questionnaire and follow-up open-ended questions was administered. Individual changes in level of enthusiasm were compared for individuals who completed both the precourse and postcourse questionnaire. Students' concerns about the blended method of learning had decreased postcourse while their enthusiasm for the benefits of blended learning had increased. Conclusion Students' initial concerns about the blended learning experience were focused on their ability to communicate with the instructor about the online components, but shifted to their own time management skills at the end of the course. Face-to-face interactions with each other and with the instructor were more highly rated than online interactions in this course. PMID:20798797
Edginton, Andrea; Holbrook, Jane
2010-06-15
To assess pharmacy students' attitudes towards a blended-learning pharmacokinetics course. Narrated visual presentations and animations that illustrated kinetic processes and guided students through the use of software programs used for calculations were created. Other learning techniques used included online self-assessment quizzes, practice problem sets, and weekly face-to-face problem-solving tutorials. A precourse questionnaire to assess students' level of enthusiasm towards the blended-learning course and to solicit any concerns they had was administered at the beginning of the course. A postcourse questionnaire that included the same 4 Likert-scale items from the precourse questionnaire and follow-up open-ended questions was administered. Individual changes in level of enthusiasm were compared for individuals who completed both the precourse and postcourse questionnaire. Students' concerns about the blended method of learning had decreased postcourse while their enthusiasm for the benefits of blended learning had increased. Students' initial concerns about the blended learning experience were focused on their ability to communicate with the instructor about the online components, but shifted to their own time management skills at the end of the course. Face-to-face interactions with each other and with the instructor were more highly rated than online interactions in this course.
Resources in Technology: Problem-Solving.
ERIC Educational Resources Information Center
Technology Teacher, 1986
1986-01-01
This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)
Lee, Myung Kyung
2018-01-01
Objectives This study examined the effect of flipped learning in comparison to traditional learning in a surgical nursing practicum. Methods The subjects of this study were 102 nursing students in their third year of university who were scheduled to complete a clinical nursing practicum in an operating room or surgical unit. Participants were randomly assigned to either a flipped learning group (n = 51) or a traditional learning group (n = 51) for the 1-week, 45-hour clinical nursing practicum. The flipped-learning group completed independent e-learning lessons on surgical nursing and received a brief orientation prior to the commencement of the practicum, while the traditional-learning group received a face-to-face orientation and on-site instruction. After the completion of the practicum, both groups completed a case study and a conference. The student's self-efficacy, self-leadership, and problem-solving skills in clinical practice were measured both before and after the one-week surgical nursing practicum. Results Participants' independent goal setting and evaluation of beliefs and assumptions for the subscales of self-leadership and problem-solving skills were compared for the flipped learning group and the traditional learning group. The results showed greater improvement on these indicators for the flipped learning group in comparison to the traditional learning group. Conclusions The flipped learning method might offer more effective e-learning opportunities in terms of self-leadership and problem-solving than the traditional learning method in surgical nursing practicums. PMID:29503755
Lee, Myung Kyung; Park, Bu Kyung
2018-01-01
This study examined the effect of flipped learning in comparison to traditional learning in a surgical nursing practicum. The subjects of this study were 102 nursing students in their third year of university who were scheduled to complete a clinical nursing practicum in an operating room or surgical unit. Participants were randomly assigned to either a flipped learning group (n = 51) or a traditional learning group (n = 51) for the 1-week, 45-hour clinical nursing practicum. The flipped-learning group completed independent e-learning lessons on surgical nursing and received a brief orientation prior to the commencement of the practicum, while the traditional-learning group received a face-to-face orientation and on-site instruction. After the completion of the practicum, both groups completed a case study and a conference. The student's self-efficacy, self-leadership, and problem-solving skills in clinical practice were measured both before and after the one-week surgical nursing practicum. Participants' independent goal setting and evaluation of beliefs and assumptions for the subscales of self-leadership and problem-solving skills were compared for the flipped learning group and the traditional learning group. The results showed greater improvement on these indicators for the flipped learning group in comparison to the traditional learning group. The flipped learning method might offer more effective e-learning opportunities in terms of self-leadership and problem-solving than the traditional learning method in surgical nursing practicums.
Development of a change management system
NASA Technical Reports Server (NTRS)
Parks, Cathy Bonifas
1993-01-01
The complexity and interdependence of software on a computer system can create a situation where a solution to one problem causes failures in dependent software. In the computer industry, software problems arise and are often solved with 'quick and dirty' solutions. But in implementing these solutions, documentation about the solution or user notification of changes is often overlooked, and new problems are frequently introduced because of insufficient review or testing. These problems increase when numerous heterogeneous systems are involved. Because of this situation, a change management system plays an integral part in the maintenance of any multisystem computing environment. At the NASA Ames Advanced Computational Facility (ACF), the Online Change Management System (OCMS) was designed and developed to manage the changes being applied to its multivendor computing environment. This paper documents the research, design, and modifications that went into the development of this change management system (CMS).
The detection error of thermal test low-frequency cable based on M sequence correlation algorithm
NASA Astrophysics Data System (ADS)
Wu, Dongliang; Ge, Zheyang; Tong, Xin; Du, Chunlin
2018-04-01
The problem of low accuracy and low efficiency of off-line detecting on thermal test low-frequency cable faults could be solved by designing a cable fault detection system, based on FPGA export M sequence code(Linear feedback shift register sequence) as pulse signal source. The design principle of SSTDR (Spread spectrum time-domain reflectometry) reflection method and hardware on-line monitoring setup figure is discussed in this paper. Testing data show that, this detection error increases with fault location of thermal test low-frequency cable.
NASA Technical Reports Server (NTRS)
1987-01-01
The purpose of the Technology Applications Program (TAP) is to provide problem solving information and assistance to both the public and private sectors in the Commonwealth of Kentucky, with emphasis primarily in the public sector. The TAP accesses over 1200 online computer databases, including files from the U.S., Canada, Europe, and Australia. During the 1985 to 1986 contract period, TAP responded to 645 inquiries which resulted in an increase of 16 percent over the 1984 to 1985 contract period. The activities of TAP for the 1985 to 1986 contract period are summarized.
Study of Threat Scenario Reconstruction based on Multiple Correlation
NASA Astrophysics Data System (ADS)
Yuan, Xuejun; Du, Jing; Qin, Futong; Zhou, Yunyan
2017-10-01
The emergence of intrusion detection technology has solved many network attack problems, ensuring the safety of computer systems. However, because of the isolated output alarm information, large amount of data, and mixed events, it is difficult for the managers to understand the deep logic relationship between the alarm information, thus they cannot deduce the attacker’s true intentions. This paper presents a method of online threat scene reconstruction to handle the alarm information, which reconstructs of the threat scene. For testing, the standard data set is used.
A Cognitive Analysis of Students’ Mathematical Problem Solving Ability on Geometry
NASA Astrophysics Data System (ADS)
Rusyda, N. A.; Kusnandi, K.; Suhendra, S.
2017-09-01
The purpose of this research is to analyze of mathematical problem solving ability of students in one of secondary school on geometry. This research was conducted by using quantitative approach with descriptive method. Population in this research was all students of that school and the sample was twenty five students that was chosen by purposive sampling technique. Data of mathematical problem solving were collected through essay test. The results showed the percentage of achievement of mathematical problem solving indicators of students were: 1) solve closed mathematical problems with context in math was 50%; 2) solve the closed mathematical problems with the context beyond mathematics was 24%; 3) solving open mathematical problems with contexts in mathematics was 35%; And 4) solving open mathematical problems with contexts outside mathematics was 44%. Based on the percentage, it can be concluded that the level of achievement of mathematical problem solving ability in geometry still low. This is because students are not used to solving problems that measure mathematical problem solving ability, weaknesses remember previous knowledge, and lack of problem solving framework. So the students’ ability of mathematical problems solving need to be improved with implement appropriate learning strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Ranjan; Chelmis, Charalampos; Aman, Saima
The advent of smart meters and advanced communication infrastructures catalyzes numerous smart grid applications such as dynamic demand response, and paves the way to solve challenging research problems in sustainable energy consumption. The space of solution possibilities are restricted primarily by the huge amount of generated data requiring considerable computational resources and efficient algorithms. To overcome this Big Data challenge, data clustering techniques have been proposed. Current approaches however do not scale in the face of the “increasing dimensionality” problem where a cluster point is represented by the entire customer consumption time series. To overcome this aspect we first rethinkmore » the way cluster points are created and designed, and then design an efficient online clustering technique for demand response (DR) in order to analyze high volume, high dimensional energy consumption time series data at scale, and on the fly. Our online algorithm is randomized in nature, and provides optimal performance guarantees in a computationally efficient manner. Unlike prior work we (i) study the consumption properties of the whole population simultaneously rather than developing individual models for each customer separately, claiming it to be a ‘killer’ approach that breaks the “curse of dimensionality” in online time series clustering, and (ii) provide tight performance guarantees in theory to validate our approach. Our insights are driven by the field of sociology, where collective behavior often emerges as the result of individual patterns and lifestyles.« less
Stochastic subset selection for learning with kernel machines.
Rhinelander, Jason; Liu, Xiaoping P
2012-06-01
Kernel machines have gained much popularity in applications of machine learning. Support vector machines (SVMs) are a subset of kernel machines and generalize well for classification, regression, and anomaly detection tasks. The training procedure for traditional SVMs involves solving a quadratic programming (QP) problem. The QP problem scales super linearly in computational effort with the number of training samples and is often used for the offline batch processing of data. Kernel machines operate by retaining a subset of observed data during training. The data vectors contained within this subset are referred to as support vectors (SVs). The work presented in this paper introduces a subset selection method for the use of kernel machines in online, changing environments. Our algorithm works by using a stochastic indexing technique when selecting a subset of SVs when computing the kernel expansion. The work described here is novel because it separates the selection of kernel basis functions from the training algorithm used. The subset selection algorithm presented here can be used in conjunction with any online training technique. It is important for online kernel machines to be computationally efficient due to the real-time requirements of online environments. Our algorithm is an important contribution because it scales linearly with the number of training samples and is compatible with current training techniques. Our algorithm outperforms standard techniques in terms of computational efficiency and provides increased recognition accuracy in our experiments. We provide results from experiments using both simulated and real-world data sets to verify our algorithm.
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies.
Csapó, Benő; Molnár, Gyöngyvér
2017-01-01
There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS) is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university ( n = 1468). They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL). A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics ( r = 0.492) and science ( r = 0.401), and moderate correlations with EFL ( r = 0.227), history ( r = 0.192), and Hungarian ( r = 0.125). Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge acquisition correlated more strongly with any other variable than knowledge utilization.
An Autonomous Sensor Tasking Approach for Large Scale Space Object Cataloging
NASA Astrophysics Data System (ADS)
Linares, R.; Furfaro, R.
The field of Space Situational Awareness (SSA) has progressed over the last few decades with new sensors coming online, the development of new approaches for making observations, and new algorithms for processing them. Although there has been success in the development of new approaches, a missing piece is the translation of SSA goals to sensors and resource allocation; otherwise known as the Sensor Management Problem (SMP). This work solves the SMP using an artificial intelligence approach called Deep Reinforcement Learning (DRL). Stable methods for training DRL approaches based on neural networks exist, but most of these approaches are not suitable for high dimensional systems. The Asynchronous Advantage Actor-Critic (A3C) method is a recently developed and effective approach for high dimensional systems, and this work leverages these results and applies this approach to decision making in SSA. The decision space for the SSA problems can be high dimensional, even for tasking of a single telescope. Since the number of SOs in space is relatively high, each sensor will have a large number of possible actions at a given time. Therefore, efficient DRL approaches are required when solving the SMP for SSA. This work develops a A3C based method for DRL applied to SSA sensor tasking. One of the key benefits of DRL approaches is the ability to handle high dimensional data. For example DRL methods have been applied to image processing for the autonomous car application. For example, a 256x256 RGB image has 196608 parameters (256*256*3=196608) which is very high dimensional, and deep learning approaches routinely take images like this as inputs. Therefore, when applied to the whole catalog the DRL approach offers the ability to solve this high dimensional problem. This work has the potential to, for the first time, solve the non-myopic sensor tasking problem for the whole SO catalog (over 22,000 objects) providing a truly revolutionary result.
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies
Csapó, Benő; Molnár, Gyöngyvér
2017-01-01
There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS) is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university (n = 1468). They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL). A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics (r = 0.492) and science (r = 0.401), and moderate correlations with EFL (r = 0.227), history (r = 0.192), and Hungarian (r = 0.125). Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge acquisition correlated more strongly with any other variable than knowledge utilization. PMID:29209255
A structural model decomposition framework for systems health management
NASA Astrophysics Data System (ADS)
Roychoudhury, I.; Daigle, M.; Bregon, A.; Pulido, B.
Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.
A Structural Model Decomposition Framework for Systems Health Management
NASA Technical Reports Server (NTRS)
Roychoudhury, Indranil; Daigle, Matthew J.; Bregon, Anibal; Pulido, Belamino
2013-01-01
Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.
A direct reflection OLVF debris detector based on dark-field imaging
NASA Astrophysics Data System (ADS)
Li, Bo; Xi, Yinhu; Feng, Song; Mao, Junhong; Xie, You-Bai
2018-06-01
To solve the problems of monitoring wear debris in black oil, a direct reflection online visual ferrograph (OLVF) debris detector is presented. In current OLVF detectors, a reflected light source is used. The emitted light is reflected by wear debris directly instead of passing through the lube oil. Therefore, the transparency of the lube oil ceases to matter. Two experiments were conducted to validate the wear debris imaging feasibility and effectiveness of the newly developed detector. The results show that the visual feature information of the wear debris can be reliably obtained from black oil by this detector, and it can also be used to track the fast-changing wear of tribopairs at different wear stages. To the best of our knowledge, to date there is no other report for solving this issue.
An entropic barriers diffusion theory of decision-making in multiple alternative tasks
Sigman, Mariano; Cecchi, Guillermo A.
2018-01-01
We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude) at every stage of the game. We apply the model to show that (a) higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b) reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving. PMID:29499036
On-Line Algorithms and Reverse Mathematics
NASA Astrophysics Data System (ADS)
Harris, Seth
In this thesis, we classify the reverse-mathematical strength of sequential problems. If we are given a problem P of the form ∀X(alpha(X) → ∃Zbeta(X,Z)) then the corresponding sequential problem, SeqP, asserts the existence of infinitely many solutions to P: ∀X(∀nalpha(Xn) → ∃Z∀nbeta(X n,Zn)). P is typically provable in RCA0 if all objects involved are finite. SeqP, however, is only guaranteed to be provable in ACA0. In this thesis we exactly characterize which sequential problems are equivalent to RCA0, WKL0, or ACA0.. We say that a problem P is solvable by an on-line algorithm if P can be solved according to a two-player game, played by Alice and Bob, in which Bob has a winning strategy. Bob wins the game if Alice's sequence of plays 〈a0, ..., ak〉 and Bob's sequence of responses 〈 b0, ..., bk〉 constitute a solution to P. Formally, an on-line algorithm A is a function that inputs an admissible sequence of plays 〈a 0, b0, ..., aj〉 and outputs a new play bj for Bob. (This differs from the typical definition of "algorithm", though quite often a concrete set of instructions can be easily deduced from A.). We show that SeqP is provable in RCA0 precisely when P is solvable by an on-line algorithm. Schmerl proved this result specifically for the graph coloring problem; we generalize Schmerl's result to any problem that is on-line solvable. To prove our separation, we introduce a principle called Predictk(r) that is equivalent to -WKL0 for standard k, r.. We show that WKL0 is sufficient to prove SeqP precisely when P has a solvable closed kernel. This means that a solution exists, and each initial segment of this solution is a solution to the corresponding initial segment of the problem. (Certain bounding conditions are necessary as well.) If no such solution exists, then SeqP is equivalent to ACA0 over RCA 0 + ISigma02; RCA0 alone suffices if only sequences of standard length are considered. We use different techniques from Schmerl to prove this separation, and in the process we improve some of Schmerl's results on Grundy colorings. In Chapter 4 we analyze a variety of applications, classifying their sequential forms by reverse-mathematical strength. This builds upon similar work by Dorais and Hirst and Mummert. We consider combinatorial applications such as matching problems and Dilworth's theorems, and we also consider classic algorithms such as the task scheduling and paging problems. Tables summarizing our findings can be found at the end of Chapter 4.
Hoppmann, Christiane A; Blanchard-Fields, Fredda
2011-09-01
Problem-solving does not take place in isolation and often involves social others such as spouses. Using repeated daily life assessments from 98 older spouses (M age = 72 years; M marriage length = 42 years), the present study examined theoretical notions from social-contextual models of coping regarding (a) the origins of problem-solving variability and (b) associations between problem-solving and specific problem-, person-, and couple- characteristics. Multilevel models indicate that the lion's share of variability in everyday problem-solving is located at the level of the problem situation. Importantly, participants reported more proactive emotion regulation and collaborative problem-solving for social than nonsocial problems. We also found person-specific consistencies in problem-solving. That is, older spouses high in Neuroticism reported more problems across the study period as well as less instrumental problem-solving and more passive emotion regulation than older spouses low in Neuroticism. Contrary to expectations, relationship satisfaction was unrelated to problem-solving in the present sample. Results are in line with the stress and coping literature in demonstrating that everyday problem-solving is a dynamic process that has to be viewed in the broader context in which it occurs. Our findings also complement previous laboratory-based work on everyday problem-solving by underscoring the benefits of examining everyday problem-solving as it unfolds in spouses' own environment.
Online Low-Rank Representation Learning for Joint Multi-subspace Recovery and Clustering.
Li, Bo; Liu, Risheng; Cao, Junjie; Zhang, Jie; Lai, Yu-Kun; Liua, Xiuping
2017-10-06
Benefiting from global rank constraints, the lowrank representation (LRR) method has been shown to be an effective solution to subspace learning. However, the global mechanism also means that the LRR model is not suitable for handling large-scale data or dynamic data. For large-scale data, the LRR method suffers from high time complexity, and for dynamic data, it has to recompute a complex rank minimization for the entire data set whenever new samples are dynamically added, making it prohibitively expensive. Existing attempts to online LRR either take a stochastic approach or build the representation purely based on a small sample set and treat new input as out-of-sample data. The former often requires multiple runs for good performance and thus takes longer time to run, and the latter formulates online LRR as an out-ofsample classification problem and is less robust to noise. In this paper, a novel online low-rank representation subspace learning method is proposed for both large-scale and dynamic data. The proposed algorithm is composed of two stages: static learning and dynamic updating. In the first stage, the subspace structure is learned from a small number of data samples. In the second stage, the intrinsic principal components of the entire data set are computed incrementally by utilizing the learned subspace structure, and the low-rank representation matrix can also be incrementally solved by an efficient online singular value decomposition (SVD) algorithm. The time complexity is reduced dramatically for large-scale data, and repeated computation is avoided for dynamic problems. We further perform theoretical analysis comparing the proposed online algorithm with the batch LRR method. Finally, experimental results on typical tasks of subspace recovery and subspace clustering show that the proposed algorithm performs comparably or better than batch methods including the batch LRR, and significantly outperforms state-of-the-art online methods.
Cloud-based large-scale air traffic flow optimization
NASA Astrophysics Data System (ADS)
Cao, Yi
The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model that can be used for both offline historical traffic data analysis and online traffic flow optimization. It provides an efficient and robust platform for easy deployment and implementation. A small cloud consisting of five workstations was configured and used to demonstrate the advantages of cloud computing in dealing with large-scale parallelizable traffic problems.
Resource Letter RPS-1: Research in problem solving
NASA Astrophysics Data System (ADS)
Hsu, Leonardo; Brewe, Eric; Foster, Thomas M.; Harper, Kathleen A.
2004-09-01
This Resource Letter provides a guide to the literature on research in problem solving, especially in physics. The references were compiled with two audiences in mind: physicists who are (or might become) engaged in research on problem solving, and physics instructors who are interested in using research results to improve their students' learning of problem solving. In addition to general references, journal articles and books are cited for the following topics: cognitive aspects of problem solving, expert-novice problem-solver characteristics, problem solving in mathematics, alternative problem types, curricular interventions, and the use of computers in problem solving.
Progress in high-temperature oven development for 28 GHz electron cyclotron resonance ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnishi, J., E-mail: ohnishi@riken.jp; Higurashi, Y.; Nakagawa, T.
2016-02-15
We have been developing a high-temperature oven using UO{sub 2} in the 28 GHz superconducting electron cyclotron resonance ion source at RIKEN since 2013. A total of eleven on-line tests were performed. The longest operation time in a single test was 411 h, and the consumption rate of UO{sub 2} was approximately 2.4 mg/h. In these tests, we experienced several problems: the ejection hole of a crucible was blocked with UO{sub 2} and a crucible was damaged because of the reduction of tungsten strength at high temperature. In order to solve these problems, improvements to the crucible shape were mademore » by simulations using ANSYS.« less
Students’ difficulties in probabilistic problem-solving
NASA Astrophysics Data System (ADS)
Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.
2018-03-01
There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.
Using VoiceThread to Promote Collaborative Learning in On-Line Clinical Nurse Leader Courses.
Fox, Ola H
The movement to advance the clinical nurse leader (CNL) as an innovative new role for meeting higher health care quality standards continues with CNL programs offered on-line at colleges and universities nationwide. Collaborative learning activities offer the opportunity for CNL students to gain experience in working together in small groups to negotiate and solve care process problems. The challenge for nurse educators is to provide collaborative learning activities in an asynchronous learning environment that can be considered isolating by default. This article reports on the experiences of 17 CNL students who used VoiceThread, a cloud-based tool that allowed them to communicate asynchronously with one another through voice comments for collaboration and sharing knowledge. Participants identified benefits and drawbacks to using VoiceThread for collaboration as compared to text-based discussion boards. Students reported that the ability to hear the voice of their peers and the instructor helped them feel like they were in a classroom communicating with "real" instructor and peers. Students indicated a preference for on-line classes that used VoiceThread discussions to on-line classes that used only text-based discussion boards. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
Data-Driven Online and Real-Time Combinatorial Optimization
2013-10-30
Problem , the online Traveling Salesman Problem , and variations of the online Quota Hamil- tonian Path Problem and the online Traveling ...has the lowest competitive ratio among all algorithms of this kind. Second, we consider the Online Traveling Salesman Problem , and consider randomized...matroid secretary problem on a partition matroid. 6. Jaillet, P. and X. Lu. “Online Traveling Salesman Problems with Rejection Options”, submitted
Blanchard-Fields, Fredda; Mienaltowski, Andrew; Seay, Renee Baldi
2007-01-01
Using the Everyday Problem Solving Inventory of Cornelius and Caspi, we examined differences in problem-solving strategy endorsement and effectiveness in two domains of everyday functioning (instrumental or interpersonal, and a mixture of the two domains) and for four strategies (avoidance-denial, passive dependence, planful problem solving, and cognitive analysis). Consistent with past research, our research showed that older adults were more problem focused than young adults in their approach to solving instrumental problems, whereas older adults selected more avoidant-denial strategies than young adults when solving interpersonal problems. Overall, older adults were also more effective than young adults when solving everyday problems, in particular for interpersonal problems.
Spontaneous gestures influence strategy choices in problem solving.
Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro
2011-09-01
Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.
Dixon-Gordon, Katherine L; Chapman, Alexander L; Lovasz, Nathalie; Walters, Kris
2011-10-01
Borderline personality disorder (BPD) is associated with poor social problem solving and problems with emotion regulation. In this study, the social problem-solving performance of undergraduates with high (n = 26), mid (n = 32), or low (n = 29) levels of BPD features was assessed with the Social Problem-Solving Inventory-Revised and using the means-ends problem-solving procedure before and after a social rejection stressor. The high-BP group, but not the low-BP group, showed a significant reduction in relevant solutions to social problems and more inappropriate solutions following the negative emotion induction. Increases in self-reported negative emotions during the emotion induction mediated the relationship between BP features and reductions in social problem-solving performance. In addition, the high-BP group demonstrated trait deficits in social problem solving on the Social Problem-Solving Inventory-Revised. These findings suggest that future research must examine social problem solving under differing emotional conditions, and that clinical interventions to improve social problem solving among persons with BP features should focus on responses to emotional contexts.
An Investigation of Secondary Teachers’ Understanding and Belief on Mathematical Problem Solving
NASA Astrophysics Data System (ADS)
Yuli Eko Siswono, Tatag; Wachidul Kohar, Ahmad; Kurniasari, Ika; Puji Astuti, Yuliani
2016-02-01
Weaknesses on problem solving of Indonesian students as reported by recent international surveys give rise to questions on how Indonesian teachers bring out idea of problem solving in mathematics lesson. An explorative study was undertaken to investigate how secondary teachers who teach mathematics at junior high school level understand and show belief toward mathematical problem solving. Participants were teachers from four cities in East Java province comprising 45 state teachers and 25 private teachers. Data was obtained through questionnaires and written test. The results of this study point out that the teachers understand pedagogical problem solving knowledge well as indicated by high score of observed teachers‘ responses showing understanding on problem solving as instruction as well as implementation of problem solving in teaching practice. However, they less understand on problem solving content knowledge such as problem solving strategies and meaning of problem itself. Regarding teacher's difficulties, teachers admitted to most frequently fail in (1) determining a precise mathematical model or strategies when carrying out problem solving steps which is supported by data of test result that revealed transformation error as the most frequently observed errors in teachers’ work and (2) choosing suitable real situation when designing context-based problem solving task. Meanwhile, analysis of teacher's beliefs on problem solving shows that teachers tend to view both mathematics and how students should learn mathematics as body static perspective, while they tend to believe to apply idea of problem solving as dynamic approach when teaching mathematics.
ERIC Educational Resources Information Center
Hayel Al-Srour, Nadia; Al-Ali, Safa M.; Al-Oweidi, Alia
2016-01-01
The present study aims to detect the impact of teacher training on creative writing and problem-solving using both Futuristic scenarios program to solve problems creatively, and creative problem solving. To achieve the objectives of the study, the sample was divided into two groups, the first consist of 20 teachers, and 23 teachers to second…
NASA Astrophysics Data System (ADS)
Palacio-Cayetano, Joycelin
"Problem-solving through reflective thinking should be both the method and valuable outcome of science instruction in America's schools" proclaimed John Dewey (Gabel, 1995). If the development of problem-solving is a primary goal of science education, more problem-solving opportunities must be an integral part of K-16 education. To examine the effective use of technology in developing and assessing problem-solving skills, a problem-solving authoring, learning, and assessment software, the UCLA IMMEX Program-Interactive Multimedia Exercises-was investigated. This study was a twenty-week quasi-experimental study that was implemented as a control-group time series design among 120 tenth grade students. Both the experimental group (n = 60) and the control group (n = 60) participated in a problem-based learning curriculum; however, the experimental group received regular intensive experiences with IMMEX problem-solving and the control group did not. Problem-solving pretest and posttest were administered to all students. The instruments used were a 35-item Processes of Biological Inquiry Test and an IMMEX problem-solving assessment test, True Roots. Students who participated in the IMMEX Program achieved significant (p <.05) gains in problem-solving skills on both problem-solving assessment instruments. This study provided evidence that IMMEX software is highly efficient in evaluating salient elements of problem-solving. Outputs of students' problem-solving strategies revealed that unsuccessful problem solvers primarily used the following four strategies: (1) no data search strategy, students simply guessed; (2) limited data search strategy leading to insufficient data and premature closing; (3) irrelevant data search strategy, students focus in areas bearing no substantive data; and (4) extensive data search strategy with inadequate integration and analysis. On the contrary, successful problem solvers used the following strategies; (1) focused search strategy coupled with the ability to fill in knowledge gaps by accessing the appropriate resources; (2) targeted search strategy coupled with high level of analytical and integration skills; and (3) focused search strategy coupled with superior discrimination, analytical, and integration skills. The strategies of students who were successful and unsuccessful solving IMMEX problems were consistent with those of expert and novice problem solvers identified in the literature on problem-solving.
Kim, Sun Mi; Han, Doug Hyun; Lee, Young Sik; Kim, Jieun E; Renshaw, Perry F
2012-06-01
Several studies have suggested that addictive disorders including substance abuse and pathologic gambling might be associated with dysfunction on working memory and prefrontal activity. We hypothesized that excessive online game playing is associated with deficits in prefrontal cortex function and that recovery from excessive online game playing might improve prefrontal cortical activation in response to working memory stimulation. Thirteen adolescents with excessive online game playing (AEOP) and ten healthy adolescents (HC) agreed to participate in this study. The severity of online game play and playing time were evaluated for a baseline measurement and again following four weeks of treatment. Brain activation in response to working memory tasks (simple and complex calculations) at baseline and subsequent measurements was assessed using BOLD functional magnetic resonance imaging (fMRI). Compared to the HC subjects, the AEOP participants exhibited significantly greater activity in the right middle occipital gyrus, left cerebellum posterior lobe, left premotor cortex and left middle temporal gyrus in response to working memory tasks during baseline measurements. After four weeks of treatment, the AEOP subjects showed increased activity within the right dorsolateral prefrontal cortex and left occipital fusiform gyrus. After four weeks of treatment, changes in the severity of online game playing were negatively correlated with changes in the mean β value of the right dorsolateral prefrontal cortex in response to complex stimulation. We suggest that the effects of online game addiction on working memory may be similar to those observed in patients with substance dependence.
The Music of Mathematics: Toward a New Problem Typology
NASA Astrophysics Data System (ADS)
Quarfoot, David
Halmos (1980) once described problems and their solutions as "the heart of mathematics". Following this line of thinking, one might naturally ask: "What, then, is the heart of problems?". In this work, I attempt to answer this question using techniques from statistics, information visualization, and machine learning. I begin the journey by cataloging the features of problems delineated by the mathematics and mathematics education communities. These dimensions are explored in a large data set of students working thousands of problems at the Art of Problem Solving, an online company that provides adaptive mathematical training for students around the world. This analysis is able to concretely show how the fabric of mathematical problems changes across different subjects, difficulty levels, and students. Furthermore, it locates problems that stand out in the crowd -- those that synergize cognitive engagement, learning, and difficulty. This quantitatively-heavy side of the dissertation is partnered with a qualitatively-inspired portion that involves human scoring of 105 problems and their solutions. In this setting, I am able to capture elusive features of mathematical problems and derive a fuller picture of the space of mathematical problems. Using correlation matrices, principal components analysis, and clustering techniques, I explore the relationships among those features frequently discussed in mathematics problems (e.g., difficulty, creativity, novelty, affective engagement, authenticity). Along the way, I define a new set of uncorrelated features in problems and use these as the basis for a New Mathematical Problem Typology (NMPT). Grounded in the terminology of classical music, the NMPT works to quickly convey the essence and value of a problem, just as terms like "etude" and "mazurka" do for musicians. Taken together, these quantitative and qualitative analyses seek to terraform the landscape of mathematical problems and, concomitantly, the current thinking about that world. Most importantly, this work highlights and names the panoply of problems that exist, expanding the myopic vision of contemporary mathematical problem solving.
ERIC Educational Resources Information Center
Aljaberi, Nahil M.; Gheith, Eman
2016-01-01
This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…
Ma, Lin; Xu, Yubin
2015-01-01
Green WLAN is a promising technique for accessing future indoor Internet services. It is designed not only for high-speed data communication purposes but also for energy efficiency. The basic strategy of green WLAN is that all the access points are not always powered on, but rather work on-demand. Though powering off idle access points does not affect data communication, a serious asymmetric matching problem will arise in a WLAN indoor positioning system due to the fact the received signal strength (RSS) readings from the available access points are different in their offline and online phases. This asymmetry problem will no doubt invalidate the fingerprint algorithm used to estimate the mobile device location. Therefore, in this paper we propose a green WLAN indoor positioning system, which can recover RSS readings and achieve good localization performance based on singular value thresholding (SVT) theory. By solving the nuclear norm minimization problem, SVT recovers not only the radio map, but also online RSS readings from a sparse matrix by sensing only a fraction of the RSS readings. We have implemented the method in our lab and evaluated its performances. The experimental results indicate the proposed system could recover the RSS readings and achieve good localization performance. PMID:25587977
Graph Design via Convex Optimization: Online and Distributed Perspectives
NASA Astrophysics Data System (ADS)
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.
Extraction of a group-pair relation: problem-solving relation from web-board documents.
Pechsiri, Chaveevan; Piriyakul, Rapepun
2016-01-01
This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.
NASA Astrophysics Data System (ADS)
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
Using a general problem-solving strategy to promote transfer.
Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John
2014-09-01
Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Hafner, Robert; Stewart, Jim
Past problem-solving research has provided a basis for helping students structure their knowledge and apply appropriate problem-solving strategies to solve problems for which their knowledge (or mental models) of scientific phenomena is adequate (model-using problem solving). This research examines how problem solving in the domain of Mendelian genetics proceeds in situations where solvers' mental models are insufficient to solve problems at hand (model-revising problem solving). Such situations require solvers to use existing models to recognize anomalous data and to revise those models to accommodate the data. The study was conducted in the context of 9-week high school genetics course and addressed: the heuristics charactenstic of successful model-revising problem solving: the nature of the model revisions, made by students as well as the nature of model development across problem types; and the basis upon which solvers decide that a revised model is sufficient (that t has both predictive and explanatory power).
Azad, Gazi F.; Kim, Mina; Marcus, Steven C.; Mandell, David S.; Sheridan, Susan M.
2016-01-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving. PMID:28392604
Azad, Gazi F; Kim, Mina; Marcus, Steven C; Mandell, David S; Sheridan, Susan M
2016-12-01
Effective parent-teacher communication involves problem-solving concerns about students. Few studies have examined problem solving interactions between parents and teachers of children with autism spectrum disorder (ASD), with a particular focus on identifying communication barriers and strategies for improving them. This study examined the problem-solving behaviors of parents and teachers of children with ASD. Participants included 18 teachers and 39 parents of children with ASD. Parent-teacher dyads were prompted to discuss and provide a solution for a problem that a student experienced at home and at school. Parents and teachers also reported on their problem-solving behaviors. Results showed that parents and teachers displayed limited use of the core elements of problem-solving. Teachers displayed more problem-solving behaviors than parents. Both groups reported engaging in more problem-solving behaviors than they were observed to display during their discussions. Our findings suggest that teacher and parent training programs should include collaborative approaches to problem-solving.
NASA Astrophysics Data System (ADS)
Rr Chusnul, C.; Mardiyana, S., Dewi Retno
2017-12-01
Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.
Rejection Sensitivity and Depression: Indirect Effects Through Problem Solving.
Kraines, Morganne A; Wells, Tony T
2017-01-01
Rejection sensitivity (RS) and deficits in social problem solving are risk factors for depression. Despite their relationship to depression and the potential connection between them, no studies have examined RS and social problem solving together in the context of depression. As such, we examined RS, five facets of social problem solving, and symptoms of depression in a young adult sample. A total of 180 participants completed measures of RS, social problem solving, and depressive symptoms. We used bootstrapping to examine the indirect effect of RS on depressive symptoms through problem solving. RS was positively associated with depressive symptoms. A negative problem orientation, impulsive/careless style, and avoidance style of social problem solving were positively associated with depressive symptoms, and a positive problem orientation was negatively associated with depressive symptoms. RS demonstrated an indirect effect on depressive symptoms through two social problem-solving facets: the tendency to view problems as threats to one's well-being and an avoidance problem-solving style characterized by procrastination, passivity, or overdependence on others. These results are consistent with prior research that found a positive association between RS and depression symptoms, but this is the first study to implicate specific problem-solving deficits in the relationship between RS and depression. Our results suggest that depressive symptoms in high RS individuals may result from viewing problems as threats and taking an avoidant, rather than proactive, approach to dealing with problems. These findings may have implications for problem-solving interventions for rejection sensitive individuals.
The Cyclic Nature of Problem Solving: An Emergent Multidimensional Problem-Solving Framework
ERIC Educational Resources Information Center
Carlson, Marilyn P.; Bloom, Irene
2005-01-01
This paper describes the problem-solving behaviors of 12 mathematicians as they completed four mathematical tasks. The emergent problem-solving framework draws on the large body of research, as grounded by and modified in response to our close observations of these mathematicians. The resulting "Multidimensional Problem-Solving Framework" has four…
Mathematical Problem Solving: A Review of the Literature.
ERIC Educational Resources Information Center
Funkhouser, Charles
The major perspectives on problem solving of the twentieth century are reviewed--associationism, Gestalt psychology, and cognitive science. The results of the review on teaching problem solving and the uses of computers to teach problem solving are included. Four major issues related to the teaching of problem solving are discussed: (1)…
Teaching Problem Solving Skills to Elementary Age Students with Autism
ERIC Educational Resources Information Center
Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.
2014-01-01
Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…
Learning problem-solving skills in a distance education physics course
NASA Astrophysics Data System (ADS)
Rampho, G. J.; Ramorola, M. Z.
2017-10-01
In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.
Encouraging Students to Think Strategically when Learning to Solve Linear Equations
ERIC Educational Resources Information Center
Robson, Daphne; Abell, Walt; Boustead, Therese
2012-01-01
Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…
The Researches on Food Traceability System of University takeout
NASA Astrophysics Data System (ADS)
lu, Jia xin; zhao, Ce; li, Zhuang zhuang; shao, Zi rong; pi, Kun yi
2018-06-01
In recent years, campus takeaway has developed rapidly, and all kinds of online ordering platforms are running. The problem of distribution in the campus can not only save the time cost of the businessmen, but also guarantee the effective management of the school, which is beneficial to the construction of the standard health system for the takeout. But distribution according to the existing mode will cause certain safety and health risks. The establishment of the University takeaway food traceability system can solve this problem. This paper first analyzes the sharing mode and distribution process of campus takeaway, and then designs the intelligent tracing system for the campus takeaway; the construction of the food distribution information platform and the problem of the recycling of the green environment of the dining box. Finally, the intelligent tracing system of the school takeout is analyzed with the braised chicken as an example.
NASA Technical Reports Server (NTRS)
Wong, P. K.
1975-01-01
The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.
Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.
Sridhar, A; Kouznetsova, V G; Geers, M G D
This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.
An adaptive inverse kinematics algorithm for robot manipulators
NASA Technical Reports Server (NTRS)
Colbaugh, R.; Glass, K.; Seraji, H.
1990-01-01
An adaptive algorithm for solving the inverse kinematics problem for robot manipulators is presented. The algorithm is derived using model reference adaptive control (MRAC) theory and is computationally efficient for online applications. The scheme requires no a priori knowledge of the kinematics of the robot if Cartesian end-effector sensing is available, and it requires knowledge of only the forward kinematics if joint position sensing is used. Computer simulation results are given for the redundant seven-DOF robotics research arm, demonstrating that the proposed algorithm yields accurate joint angle trajectories for a given end-effector position/orientation trajectory.
Operator function modeling: An approach to cognitive task analysis in supervisory control systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1987-01-01
In a study of models of operators in complex, automated space systems, an operator function model (OFM) methodology was extended to represent cognitive as well as manual operator activities. Development continued on a software tool called OFMdraw, which facilitates construction of an OFM by permitting construction of a heterarchic network of nodes and arcs. Emphasis was placed on development of OFMspert, an expert system designed both to model human operation and to assist real human operators. The system uses a blackboard method of problem solving to make an on-line representation of operator intentions, called ACTIN (actions interpreter).
Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng
2014-04-10
Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.
Data-based fault-tolerant control for affine nonlinear systems with actuator faults.
Xie, Chun-Hua; Yang, Guang-Hong
2016-09-01
This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Online communities of practice and their role in educational development: a systematic appraisal.
Swift, Lynn
2014-04-01
Practice teachers and academics have a role in developing knowledge and promoting evidence-based practice with their students in a supportive and creative learning environment. Recent advances in technology are enabling communities of practice' (CoPs) to be developed online and may present a valuable opportunity to form greater connections between educators. To explore this idea, the author conducted a systematic appraisal of published evidence relating to the impact of using an online CoP (OCoP) to develop knowledge among healthcare educators. Three academic databases were targeted for articles and the search retrieved nine articles that were analysed for quality. The findings identified that an OCoP offers a 'polycontextual' environment that can enhance knowledge development, strengthen social ties and build social capital. Communities that support tacit knowledge development, information sharing and problem solving are most valued and existing information and communication technology (ICT) tools can be used to promote usability and accessibility. Recognising the value of tacit knowledge and using ICT for educational development within workload hours will require a shift in cultural thinking at both an individual and organisational level.
Online Estimation of Allan Variance Coefficients Based on a Neural-Extended Kalman Filter
Miao, Zhiyong; Shen, Feng; Xu, Dingjie; He, Kunpeng; Tian, Chunmiao
2015-01-01
As a noise analysis method for inertial sensors, the traditional Allan variance method requires the storage of a large amount of data and manual analysis for an Allan variance graph. Although the existing online estimation methods avoid the storage of data and the painful procedure of drawing slope lines for estimation, they require complex transformations and even cause errors during the modeling of dynamic Allan variance. To solve these problems, first, a new state-space model that directly models the stochastic errors to obtain a nonlinear state-space model was established for inertial sensors. Then, a neural-extended Kalman filter algorithm was used to estimate the Allan variance coefficients. The real noises of an ADIS16405 IMU and fiber optic gyro-sensors were analyzed by the proposed method and traditional methods. The experimental results show that the proposed method is more suitable to estimate the Allan variance coefficients than the traditional methods. Moreover, the proposed method effectively avoids the storage of data and can be easily implemented using an online processor. PMID:25625903
An experience sampling study of learning, affect, and the demands control support model.
Daniels, Kevin; Boocock, Grahame; Glover, Jane; Holland, Julie; Hartley, Ruth
2009-07-01
The demands control support model (R. A. Karasek & T. Theorell, 1990) indicates that job control and social support enable workers to engage in problem solving. In turn, problem solving is thought to influence learning and well-being (e.g., anxious affect, activated pleasant affect). Two samples (N = 78, N = 106) provided data up to 4 times per day for up to 5 working days. The extent to which job control was used for problem solving was assessed by measuring the extent to which participants changed aspects of their work activities to solve problems. The extent to which social support was used to solve problems was assessed by measuring the extent to which participants discussed problems to solve problems. Learning mediated the relationship between changing aspects of work activities to solve problems and activated pleasant affect. Learning also mediated the relationship between discussing problems to solve problems and activated pleasant affect. The findings indicated that how individuals use control and support to respond to problem-solving demands is associated with organizational and individual phenomena, such as learning and affective well-being.
Learning overcomplete representations from distributed data: a brief review
NASA Astrophysics Data System (ADS)
Raja, Haroon; Bajwa, Waheed U.
2016-05-01
Most of the research on dictionary learning has focused on developing algorithms under the assumption that data is available at a centralized location. But often the data is not available at a centralized location due to practical constraints like data aggregation costs, privacy concerns, etc. Using centralized dictionary learning algorithms may not be the optimal choice in such settings. This motivates the design of dictionary learning algorithms that consider distributed nature of data as one of the problem variables. Just like centralized settings, distributed dictionary learning problem can be posed in more than one way depending on the problem setup. Most notable distinguishing features are the online versus batch nature of data and the representative versus discriminative nature of the dictionaries. In this paper, several distributed dictionary learning algorithms that are designed to tackle different problem setups are reviewed. One of these algorithms is cloud K-SVD, which solves the dictionary learning problem for batch data in distributed settings. One distinguishing feature of cloud K-SVD is that it has been shown to converge to its centralized counterpart, namely, the K-SVD solution. On the other hand, no such guarantees are provided for other distributed dictionary learning algorithms. Convergence of cloud K-SVD to the centralized K-SVD solution means problems that are solvable by K-SVD in centralized settings can now be solved in distributed settings with similar performance. Finally, cloud K-SVD is used as an example to show the advantages that are attainable by deploying distributed dictionary algorithms for real world distributed datasets.
What Does (and Doesn't) Make Analogical Problem Solving Easy? A Complexity-Theoretic Perspective
ERIC Educational Resources Information Center
Wareham, Todd; Evans, Patricia; van Rooij, Iris
2011-01-01
Solving new problems can be made easier if one can build on experiences with other problems one has already successfully solved. The ability to exploit earlier problem-solving experiences in solving new problems seems to require several cognitive sub-abilities. Minimally, one needs to be able to retrieve relevant knowledge of earlier solved…
ERIC Educational Resources Information Center
Kamis, Arnold; Khan, Beverly K.
2009-01-01
How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…
ERIC Educational Resources Information Center
Paraschiv, Irina; Olley, J. Gregory
This paper describes the "Problem Solving for Life" training program which trains adolescents and adults with mental retardation in skills for solving social problems. The program requires group participants to solve social problems by practicing two prerequisite skills (relaxation and positive self-statements) and four problem solving steps: (1)…
Young Children's Analogical Problem Solving: Gaining Insights from Video Displays
ERIC Educational Resources Information Center
Chen, Zhe; Siegler, Robert S.
2013-01-01
This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…
Investigating Problem-Solving Perseverance Using Lesson Study
ERIC Educational Resources Information Center
Bieda, Kristen N.; Huhn, Craig
2017-01-01
Problem solving has long been a focus of research and curriculum reform (Kilpatrick 1985; Lester 1994; NCTM 1989, 2000; CCSSI 2010). The importance of problem solving is not new, but the Common Core introduced the idea of making sense of problems and persevering in solving them (CCSSI 2010, p. 6) as an aspect of problem solving. Perseverance is…
Problem-solving deficits in Iranian people with borderline personality disorder.
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD.
Impulsivity as a mediator in the relationship between problem solving and suicidal ideation.
Gonzalez, Vivian M; Neander, Lucía L
2018-03-15
This study examined whether three facets of impulsivity previously shown to be associated with suicidal ideation and attempts (negative urgency, lack of premeditation, and lack of perseverance) help to account for the established association between problem solving deficits and suicidal ideation. Emerging adult college student drinkers with a history of at least passive suicidal ideation (N = 387) completed measures of problem solving, impulsivity, and suicidal ideation. A path analysis was conducted to examine the mediating role of impulsivity variables in the association between problem solving (rational problem solving, positive and negative problem orientation, and avoidance style) and suicidal ideation. Direct and indirect associations through impulsivity, particularly negative urgency, were found between problem solving and severity of suicidal ideation. Interventions aimed at teaching problem solving skills, as well as self-efficacy and optimism for solving life problems, may help to reduce impulsivity and suicidal ideation. © 2018 Wiley Periodicals, Inc.
College Online Peer Tutor Training.
ERIC Educational Resources Information Center
Blankenburg, Juele; Kariotis, Georgia
This paper describes the development of a college online tutor training course at Oakton Community College (Illinois) that attempted to solve the difficulties of training without a loss of effective practice. The online designers had two special considerations in course construction: maintaining the pedagogical soundness of the course modules and…
Improving mathematical problem solving skills through visual media
NASA Astrophysics Data System (ADS)
Widodo, S. A.; Darhim; Ikhwanudin, T.
2018-01-01
The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.
ERIC Educational Resources Information Center
Limin, Chen; Van Dooren, Wim; Verschaffel, Lieven
2013-01-01
The goal of the present study is to investigate the relationship between pupils' problem posing and problem solving abilities, their beliefs about problem posing and problem solving, and their general mathematics abilities, in a Chinese context. Five instruments, i.e., a problem posing test, a problem solving test, a problem posing questionnaire,…
ERIC Educational Resources Information Center
Higgins, Karen M.
This study investigated the effects of Oregon's Lane County "Problem Solving in Mathematics" (PSM) materials on middle-school students' attitudes, beliefs, and abilities in problem solving and mathematics. The instructional approach advocated in PSM includes: the direct teaching of five problem-solving skills, weekly challenge problems,…
Distribution-Agnostic Stochastic Optimal Power Flow for Distribution Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kyri; Dall'Anese, Emiliano; Summers, Tyler
2016-09-01
This paper outlines a data-driven, distributionally robust approach to solve chance-constrained AC optimal power flow problems in distribution networks. Uncertain forecasts for loads and power generated by photovoltaic (PV) systems are considered, with the goal of minimizing PV curtailment while meeting power flow and voltage regulation constraints. A data- driven approach is utilized to develop a distributionally robust conservative convex approximation of the chance-constraints; particularly, the mean and covariance matrix of the forecast errors are updated online, and leveraged to enforce voltage regulation with predetermined probability via Chebyshev-based bounds. By combining an accurate linear approximation of the AC power flowmore » equations with the distributionally robust chance constraint reformulation, the resulting optimization problem becomes convex and computationally tractable.« less
Student’s scheme in solving mathematics problems
NASA Astrophysics Data System (ADS)
Setyaningsih, Nining; Juniati, Dwi; Suwarsono
2018-03-01
The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.
ERIC Educational Resources Information Center
Scherer, Ronny; Tiemann, Rudiger
2012-01-01
The ability to solve complex scientific problems is regarded as one of the key competencies in science education. Until now, research on problem solving focused on the relationship between analytical and complex problem solving, but rarely took into account the structure of problem-solving processes and metacognitive aspects. This paper,…
Same Old Problem, New Name? Alerting Students to the Nature of the Problem-Solving Process
ERIC Educational Resources Information Center
Yerushalmi, Edit; Magen, Esther
2006-01-01
Students frequently misconceive the process of problem-solving, expecting the linear process required for solving an exercise, rather than the convoluted search process required to solve a genuine problem. In this paper we present an activity designed to foster in students realization and appreciation of the nature of the problem-solving process,…
ERIC Educational Resources Information Center
Gustafsson, Peter; Jonsson, Gunnar; Enghag, Margareta
2015-01-01
The problem-solving process is investigated for five groups of students when solving context-rich problems in an introductory physics course included in an engineering programme. Through transcripts of their conversation, the paths in the problem-solving process have been traced and related to a general problem-solving model. All groups exhibit…
Klein, Daniel N.; Leon, Andrew C.; Li, Chunshan; D’Zurilla, Thomas J.; Black, Sarah R.; Vivian, Dina; Dowling, Frank; Arnow, Bruce A.; Manber, Rachel; Markowitz, John C.; Kocsis, James H.
2011-01-01
Objective Depression is associated with poor social problem-solving, and psychotherapies that focus on problem-solving skills are efficacious in treating depression. We examined the associations between treatment, social problem solving, and depression in a randomized clinical trial testing the efficacy of psychotherapy augmentation for chronically depressed patients who failed to fully respond to an initial trial of pharmacotherapy (Kocsis et al., 2009). Method Participants with chronic depression (n = 491) received Cognitive Behavioral Analysis System of Psychotherapy (CBASP), which emphasizes interpersonal problem-solving, plus medication; Brief Supportive Psychotherapy (BSP) plus medication; or medication alone for 12 weeks. Results CBASP plus pharmacotherapy was associated with significantly greater improvement in social problem solving than BSP plus pharmacotherapy, and a trend for greater improvement in problem solving than pharmacotherapy alone. In addition, change in social problem solving predicted subsequent change in depressive symptoms over time. However, the magnitude of the associations between changes in social problem solving and subsequent depressive symptoms did not differ across treatment conditions. Conclusions It does not appear that improved social problem solving is a mechanism that uniquely distinguishes CBASP from other treatment approaches. PMID:21500885
Implementing thinking aloud pair and Pólya problem solving strategies in fractions
NASA Astrophysics Data System (ADS)
Simpol, N. S. H.; Shahrill, M.; Li, H.-C.; Prahmana, R. C. I.
2017-12-01
This study implemented two pedagogical strategies, the Thinking Aloud Pair Problem Solving and Pólya’s Problem Solving, to support students’ learning of fractions. The participants were 51 students (ages 11-13) from two Year 7 classes in a government secondary school in Brunei Darussalam. A mixed method design was employed in the present study, with data collected from the pre- and post-tests, problem solving behaviour questionnaire and interviews. The study aimed to explore if there were differences in the students’ problem solving behaviour before and after the implementation of the problem solving strategies. Results from the Wilcoxon Signed Rank Test revealed a significant difference in the test results regarding student problem solving behaviour, z = -3.68, p = .000, with a higher mean score for the post-test (M = 95.5, SD = 13.8) than for the pre-test (M = 88.9, SD = 15.2). This implied that there was improvement in the students’ problem solving performance from the pre-test to the post-test. Results from the questionnaire showed that more than half of the students increased scores in all four stages of the Pólya’s problem solving strategy, which provided further evidence of the students’ improvement in problem solving.
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an “aha” moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving. PMID:26528222
Jiang, Weili; Shang, Siyuan; Su, Yanjie
2015-01-01
People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.
Understanding Undergraduates’ Problem-Solving Processes †
Nehm, Ross H.
2010-01-01
Fostering effective problem-solving skills is one of the most longstanding and widely agreed upon goals of biology education. Nevertheless, undergraduate biology educators have yet to leverage many major findings about problem-solving processes from the educational and cognitive science research literatures. This article highlights key facets of problem-solving processes and introduces methodologies that may be used to reveal how undergraduate students perceive and represent biological problems. Overall, successful problem-solving entails a keen sensitivity to problem contexts, disciplined internal representation or modeling of the problem, and the principled management and deployment of cognitive resources. Context recognition tasks, problem representation practice, and cognitive resource management receive remarkably little emphasis in the biology curriculum, despite their central roles in problem-solving success. PMID:23653710
Thinking Process of Naive Problem Solvers to Solve Mathematical Problems
ERIC Educational Resources Information Center
Mairing, Jackson Pasini
2017-01-01
Solving problems is not only a goal of mathematical learning. Students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations by learning to solve problems. In fact, there were students who had difficulty in solving problems. The students were naive problem solvers. This research aimed to describe…
Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving."
ERIC Educational Resources Information Center
Pestel, Beverly C.
1993-01-01
Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…
Social Problem Solving, Conduct Problems, and Callous-Unemotional Traits in Children
ERIC Educational Resources Information Center
Waschbusch, Daniel A.; Walsh, Trudi M.; Andrade, Brendan F.; King, Sara; Carrey, Normand J.
2007-01-01
This study examined the association between social problem solving, conduct problems (CP), and callous-unemotional (CU) traits in elementary age children. Participants were 53 children (40 boys and 13 girls) aged 7-12 years. Social problem solving was evaluated using the Social Problem Solving Test-Revised, which requires children to produce…
ScaffoldScaffolder: solving contig orientation via bidirected to directed graph reduction.
Bodily, Paul M; Fujimoto, M Stanley; Snell, Quinn; Ventura, Dan; Clement, Mark J
2016-01-01
The contig orientation problem, which we formally define as the MAX-DIR problem, has at times been addressed cursorily and at times using various heuristics. In setting forth a linear-time reduction from the MAX-CUT problem to the MAX-DIR problem, we prove the latter is NP-complete. We compare the relative performance of a novel greedy approach with several other heuristic solutions. Our results suggest that our greedy heuristic algorithm not only works well but also outperforms the other algorithms due to the nature of scaffold graphs. Our results also demonstrate a novel method for identifying inverted repeats and inversion variants, both of which contradict the basic single-orientation assumption. Such inversions have previously been noted as being difficult to detect and are directly involved in the genetic mechanisms of several diseases. http://bioresearch.byu.edu/scaffoldscaffolder. paulmbodily@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Recommendation based on trust diffusion model.
Yuan, Jinfeng; Li, Li
2014-01-01
Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure.
Recommendation Based on Trust Diffusion Model
Li, Li
2014-01-01
Recommender system is emerging as a powerful and popular tool for online information relevant to a given user. The traditional recommendation system suffers from the cold start problem and the data sparsity problem. Many methods have been proposed to solve these problems, but few can achieve satisfactory efficiency. In this paper, we present a method which combines the trust diffusion (DiffTrust) algorithm and the probabilistic matrix factorization (PMF). DiffTrust is first used to study the possible diffusions of trust between various users. It is able to make use of the implicit relationship of the trust network, thus alleviating the data sparsity problem. The probabilistic matrix factorization (PMF) is then employed to combine the users' tastes with their trusted friends' interests. We evaluate the algorithm on Flixster, Moviedata, and Epinions datasets, respectively. The experimental results show that the recommendation based on our proposed DiffTrust + PMF model achieves high performance in terms of the root mean square error (RMSE), Recall, and F Measure. PMID:25009827
Student Motivations for Choosing Online Classes
ERIC Educational Resources Information Center
Harris, Heidi S.; Martin, Elwyn W.
2012-01-01
Increasing budget pressures on universities are causing many to turn to online education to solve their budget woes. However, as the marketplace for online learning expands, so does the opportunity for students to become ever more selective of the programs and universities they choose. The researchers sought to identify those factors that motivate…
Personality, problem solving, and adolescent substance use.
Jaffee, William B; D'Zurilla, Thomas J
2009-03-01
The major aim of this study was to examine the role of social problem solving in the relationship between personality and substance use in adolescents. Although a number of studies have identified a relationship between personality and substance use, the precise mechanism by which this occurs is not clear. We hypothesized that problem-solving skills could be one such mechanism. More specifically, we sought to determine whether problem solving mediates, moderates, or both mediates and moderates the relationship between different personality traits and substance use. Three hundred and seven adolescents were administered the Substance Use Profile Scale, the Social Problem-Solving Inventory-Revised, and the Personality Experiences Inventory to assess personality, social problem-solving ability, and substance use, respectively. Results showed that the dimension of rational problem solving (i.e., effective problem-solving skills) significantly mediated the relationship between hopelessness and lifetime alcohol and marijuana use. The theoretical and clinical implications of these results were discussed.
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.
Decision-Making and Problem-Solving Approaches in Pharmacy Education
Martin, Lindsay C.; Holdford, David A.
2016-01-01
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care. PMID:27170823
Decision-Making and Problem-Solving Approaches in Pharmacy Education.
Martin, Lindsay C; Donohoe, Krista L; Holdford, David A
2016-04-25
Domain 3 of the Center for the Advancement of Pharmacy Education (CAPE) 2013 Educational Outcomes recommends that pharmacy school curricula prepare students to be better problem solvers, but are silent on the type of problems they should be prepared to solve. We identified five basic approaches to problem solving in the curriculum at a pharmacy school: clinical, ethical, managerial, economic, and legal. These approaches were compared to determine a generic process that could be applied to all pharmacy decisions. Although there were similarities in the approaches, generic problem solving processes may not work for all problems. Successful problem solving requires identification of the problems faced and application of the right approach to the situation. We also advocate that the CAPE Outcomes make explicit the importance of different approaches to problem solving. Future pharmacists will need multiple approaches to problem solving to adapt to the complexity of health care.
Social problem-solving in Chinese baccalaureate nursing students.
Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia
2016-11-01
To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Problem Solving and Chemical Equilibrium: Successful versus Unsuccessful Performance.
ERIC Educational Resources Information Center
Camacho, Moises; Good, Ron
1989-01-01
Describes the problem-solving behaviors of experts and novices engaged in solving seven chemical equilibrium problems. Lists 27 behavioral tendencies of successful and unsuccessful problem solvers. Discusses several implications for a problem solving theory, think-aloud techniques, adequacy of the chemistry domain, and chemistry instruction.…
Worry and problem-solving skills and beliefs in primary school children.
Parkinson, Monika; Creswell, Cathy
2011-03-01
To examine the association between worry and problem-solving skills and beliefs (confidence and perceived control) in primary school children. Children (8-11 years) were screened using the Penn State Worry Questionnaire for Children. High (N= 27) and low (N= 30) scorers completed measures of anxiety, problem-solving skills (generating alternative solutions to problems, planfulness, and effectiveness of solutions) and problem-solving beliefs (confidence and perceived control). High and low worry groups differed significantly on measures of anxiety and problem-solving beliefs (confidence and control) but not on problem-solving skills. Consistent with findings with adults, worry in children was associated with cognitive distortions, not skills deficits. Interventions for worried children may benefit from a focus on increasing positive problem-solving beliefs. ©2010 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Mushlihuddin, R.; Nurafifah; Irvan
2018-01-01
The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.
ERIC Educational Resources Information Center
Dufner, Hillrey A.; Alexander, Patricia A.
The differential effects of two different types of problem-solving training on the problem-solving abilities of gifted fourth graders were studied. Two successive classes of gifted fourth graders from Weslaco Independent School District (Texas) were pretested with the Coloured Progressive Matrices (CPM) and Thinking Creatively With Pictures…
NASA Astrophysics Data System (ADS)
Tsai, Meng-Jung; Hsu, Chung-Yuan; Tsai, Chin-Chung
2012-04-01
Due to a growing trend of exploring scientific knowledge on the Web, a number of studies have been conducted to highlight examination of students' online searching strategies. The investigation of online searching generally employs methods including a survey, interview, screen-capturing, or transactional logs. The present study firstly intended to utilize a survey, the Online Information Searching Strategies Inventory (OISSI), to examine users' searching strategies in terms of control, orientation, trial and error, problem solving, purposeful thinking, selecting main ideas, and evaluation, which is defined as implicit strategies. Second, this study conducted screen-capturing to investigate the students' searching behaviors regarding the number of keywords, the quantity and depth of Web page exploration, and time attributes, which is defined as explicit strategies. Ultimately, this study explored the role that these two types of strategies played in predicting the students' online science information searching outcomes. A total of 103 Grade 10 students were recruited from a high school in northern Taiwan. Through Pearson correlation and multiple regression analyses, the results showed that the students' explicit strategies, particularly the time attributes proposed in the present study, were more successful than their implicit strategies in predicting their outcomes of searching science information. The participants who spent more time on detailed reading (explicit strategies) and had better skills of evaluating Web information (implicit strategies) tended to have superior searching performance.
Social problem-solving among adolescents treated for depression.
Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S
2010-01-01
Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.
Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021
NASA Astrophysics Data System (ADS)
Lee, Kun Chang; Park, Bong-Won
Many online game users purchase game items with which to play free-to-play games. Because of a lack of research into which there is no specified framework for categorizing the values of game items, this study proposes four types of online game item values based on an analysis of literature regarding online game characteristics. It then proposes to investigate how online game users perceive satisfaction and purchase intention from the proposed four types of online game item values. Though regression analysis has been used frequently to answer this kind of research question, we propose a new approach, a General Bayesian Network (GBN), which can be performed in an understandable way without sacrificing predictive accuracy. Conventional techniques, such as regression analysis, do not provide significant explanation for this kind of problem because they are fixed to a linear structure and are limited in explaining why customers are likely to purchase game items and if they are satisfied with their purchases. In contrast, the proposed GBN provides a flexible underlying structure based on questionnaire survey data and offers robust decision support on this kind of research question by identifying its causal relationships. To illustrate the validity of GBN in solving the research question in this study, 327 valid questionnaires were analyzed using GBN with what-if and goal-seeking approaches. The experimental results were promising and meaningful in comparison with regression analysis results.
A systematic review of online learning programs for nurse preceptors.
Wu, Xi Vivien; Chan, Yah Shih; Tan, Kimberlyn Hui Shing; Wang, Wenru
2018-01-01
Nurse preceptors guide students to integrate theory into practice, teach clinical skills, assess clinical competency, and enhance problem solving skills. Managing the dual roles of a registered nurse and preceptor poses tremendous challenges to many preceptors. Online learning is recognized as an effective learning approach for enhancing nursing knowledge and skills. The systematic review aims to review and synthesise the online learning programs for preceptors. A systematic review was designed based on the Cochrane Handbook for Systematic Reviews of Programs. Articles published between January 2000 and June 2016 were sought from six electronic databases: CINAHL, Medline OVID, PubMed, Science Direct, Scopus, and Web of Science. All papers were reviewed and quality assessment was performed. Nine studies were finally selected. Data were extracted, organized and analysed using a narrative synthesis. The review identified five overarching themes: development of the online learning programs for nurse preceptors, major contents of the programs, uniqueness of each program, modes of delivery, and outcomes of the programs. The systematic review provides insightful information on educational programs for preceptors. At this information age, online learning offers accessibility, convenience, flexibility, which could of great advantage for the working adults. In addition, the online platform provides an alternative for preceptors who face challenges of workload, time, and support system. Therefore, it is paramount that continuing education courses need to be integrated with technology, increase the flexibility and responsiveness of the nursing workforce, and offer alternative means to take up courses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teaching Physics to Environmental Science Majors Using a Flipped Course Approach
NASA Astrophysics Data System (ADS)
Hill, N. B.; Riha, S. J.; Wysocki, M. W.
2014-12-01
Coursework in physics provides a framework for quantitative reasoning and problem solving skill development in budding geoscientists. To make physical concepts more accessible and relevant to students majoring in environmental science, an environmental physics course was developed at Cornell University and offered for the first time during spring 2014. Principles of radiation, thermodynamics, and mechanics were introduced and applied to the atmosphere, hydrosphere, and lithosphere to describe energy and mass transfers in natural and built environments. Environmental physics was designed as a flipped course where students viewed online material outside of class and worked in groups in class to solve sustainability problems. Experiential learning, just-in-time teaching, and peer collaboration strategies were also utilized. In-class problems were drawn from both local and global environmental sustainability concerns. Problems included an investigation of Cornell's lake source cooling system, calculations on the energy consumed in irrigation with groundwater in the southwestern United States, and power generated by wind turbines at various locations around the world. Class attendance was high, with at least 84% of students present at each meeting. Survey results suggest that students enjoyed working in groups and found the in-class problems helpful for assimilating the assigned material. However, some students reported that the workload was too heavy and they preferred traditional lectures to the flipped classroom. The instructors were able to actively engage with students and quickly identify knowledge and skill gaps that needed to be addressed. Overall, the integration of current environmental problems and group work into an introductory physics course could help to inspire and motivate students as they advance their ability to analyze problems quantitatively.
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
Engineering students' experiences and perceptions of workplace problem solving
NASA Astrophysics Data System (ADS)
Pan, Rui
In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.
Problem-Solving Deficits in Iranian People with Borderline Personality Disorder
Akbari Dehaghi, Ashraf; Kaviani, Hossein; Tamanaeefar, Shima
2014-01-01
Objective: Interventions for people suffering from borderline personality disorder (BPD), such as dialectical behavior therapy, often include a problem-solving component. However, there is an absence of published studies examining the problem-solving abilities of this client group in Iran. The study compared inpatients and outpatients with BPD and a control group on problem-solving capabilities in an Iranian sample. It was hypothesized that patients with BPD would have more deficiencies in this area. Methods: Fifteen patients with BPD were compared to 15 healthy participants. Means-ends problem-solving task (MEPS) was used to measure problem-solving skills in both groups. Results: BPD group reported less effective strategies in solving problems as opposed to the healthy group. Compared to the control group, participants with BPD provided empirical support for the use of problem-solving interventions with people suffering from BPD. Conclusions: The findings supported the idea that a problem-solving intervention can be efficiently applied either as a stand-alone therapy or in conjunction with other available psychotherapies to treat people with BPD. PMID:25798169
Enhancing memory and imagination improves problem solving among individuals with depression.
McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T
2017-08-01
Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.
Measuring Family Problem Solving: The Family Problem Solving Diary.
ERIC Educational Resources Information Center
Kieren, Dianne K.
The development and use of the family problem-solving diary are described. The diary is one of several indicators and measures of family problem-solving behavior. It provides a record of each person's perception of day-to-day family problems (what the problem concerns, what happened, who got involved, what those involved did, how the problem…
Trumpower, David L; Goldsmith, Timothy E; Guynn, Melissa J
2004-12-01
Solving training problems with nonspecific goals (NG; i.e., solving for all possible unknown values) often results in better transfer than solving training problems with standard goals (SG; i.e., solving for one particular unknown value). In this study, we evaluated an attentional focus explanation of the goal specificity effect. According to the attentional focus view, solving NG problems causes attention to be directed to local relations among successive problem states, whereas solving SG problems causes attention to be directed to relations between the various problem states and the goal state. Attention to the former is thought to enhance structural knowledge about the problem domain and thus promote transfer. Results supported this view because structurally different transfer problems were solved faster following NG training than following SG training. Moreover, structural knowledge representations revealed more links depicting local relations following NG training and more links to the training goal following SG training. As predicted, these effects were obtained only by domain novices.
Nelson, Kären C.; Marbach-Ad, Gili; Keller, Michael; Fagan, William F.
2010-01-01
There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses. PMID:20810959
Online and offline peer led models against bullying and cyberbullying.
Palladino, Benedetta Emanuela; Nocentini, Annalaura; Menesini, Ersilia
2012-11-01
The aim of the present study is to describe and evaluate an ongoing peer-led model against bullying and cyberbullying carried out with Italian adolescents. The evaluation of the project was made through an experimental design consisting of a pre-test and a post-test. Participants in the study were 375 adolescents (20.3% males), enrolled in 9th to 13th grades. The experimental group involved 231 students with 42 peer educators, and the control group involved 144 students. Results showed a significant decrease in the experimental group as compared to the control group for all the variables except for cyberbullying. Besides, in the experimental group we found a significant increase in adaptive coping strategies like problem solving and a significant decrease in maladaptive coping strategies like avoidance: these changes mediate the changes in the behavioural variables. In particular, the decrease in avoidance predicts the decrease in victimization and cybervictimization for peer educators and for the other students in the experimental classes whereas the increase in problem solving predicts the decrease in cyberbullying only in the peer educators group. Results are discussed following recent reviews on evidence based efficacy of peer led models.
Xiao, Hu; Cui, Rongxin; Xu, Demin
2018-06-01
This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.
Thompson, Katerina V; Nelson, Kären C; Marbach-Ad, Gili; Keller, Michael; Fagan, William F
2010-01-01
There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses.
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes
Wade, Shari L.; Cassedy, Amy E.; Fulks, Lauren E.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.; Kurowski, Brad G.
2017-01-01
Objective To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Design Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Setting Four children’s hospitals and 1 general hospital, with level 1 trauma units. Participants Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Main Outcome Measures Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. Results The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23–.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Conclusions Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. PMID:28389109
Problem-Solving After Traumatic Brain Injury in Adolescence: Associations With Functional Outcomes.
Wade, Shari L; Cassedy, Amy E; Fulks, Lauren E; Taylor, H Gerry; Stancin, Terry; Kirkwood, Michael W; Yeates, Keith O; Kurowski, Brad G
2017-08-01
To examine the association of problem-solving with functioning in youth with traumatic brain injury (TBI). Cross-sectional evaluation of pretreatment data from a randomized controlled trial. Four children's hospitals and 1 general hospital, with level 1 trauma units. Youth, ages 11 to 18 years, who sustained moderate or severe TBI in the last 18 months (N=153). Problem-solving skills were assessed using the Social Problem-Solving Inventory (SPSI) and the Dodge Social Information Processing Short Stories. Everyday functioning was assessed based on a structured clinical interview using the Child and Adolescent Functional Assessment Scale (CAFAS) and via adolescent ratings on the Youth Self Report (YSR). Correlations and multiple regression analyses were used to examine associations among measures. The TBI group endorsed lower levels of maladaptive problem-solving (negative problem orientation, careless/impulsive responding, and avoidant style) and lower levels of rational problem-solving, resulting in higher total problem-solving scores for the TBI group compared with a normative sample (P<.001). Dodge Social Information Processing Short Stories dimensions were correlated (r=.23-.37) with SPSI subscales in the anticipated direction. Although both maladaptive (P<.001) and adaptive (P=.006) problem-solving composites were associated with overall functioning on the CAFAS, only maladaptive problem-solving (P<.001) was related to the YSR total when outcomes were continuous. For the both CAFAS and YSR logistic models, maladaptive style was significantly associated with greater risk of impairment (P=.001). Problem-solving after TBI differs from normative samples and is associated with functional impairments. The relation of problem-solving deficits after TBI with global functioning merits further investigation, with consideration of the potential effects of problem-solving interventions on functional outcomes. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
On the use of PGD for optimal control applied to automated fibre placement
NASA Astrophysics Data System (ADS)
Bur, N.; Joyot, P.
2017-10-01
Automated Fibre Placement (AFP) is an incipient manufacturing process for composite structures. Despite its concep-tual simplicity it involves many complexities related to the necessity of melting the thermoplastic at the interface tape-substrate, ensuring the consolidation that needs the diffusion of molecules and control the residual stresses installation responsible of the residual deformations of the formed parts. The optimisation of the process and the determination of the process window cannot be achieved in a traditional way since it requires a plethora of trials/errors or numerical simulations, because there are many parameters involved in the characterisation of the material and the process. Using reduced order modelling such as the so called Proper Generalised Decomposition method, allows the construction of multi-parametric solution taking into account many parameters. This leads to virtual charts that can be explored on-line in real time in order to perform process optimisation or on-line simulation-based control. Thus, for a given set of parameters, determining the power leading to an optimal temperature becomes easy. However, instead of controlling the power knowing the temperature field by particularizing an abacus, we propose here an approach based on optimal control: we solve by PGD a dual problem from heat equation and optimality criteria. To circumvent numerical issue due to ill-conditioned system, we propose an algorithm based on Uzawa's method. That way, we are able to solve the dual problem, setting the desired state as an extra-coordinate in the PGD framework. In a single computation, we get both the temperature field and the required heat flux to reach a parametric optimal temperature on a given zone.
Cognitive Training for Improving Executive Function in Chemotherapy-Treated Breast Cancer Survivors
Kesler, Shelli; Hosseini, S. M. Hadi; Heckler, Charles; Janelsins, Michelle; Palesh, Oxana; Mustian, Karen; Morrow, Gary
2013-01-01
Difficulties with thinking and problem solving are very common among breast cancer survivors. We tested a computerized cognitive training program for 41 breast cancer survivors. The training program was associated with significant improvements in thinking and problem-solving skills. Our findings demonstrate potential for our online, home-based cognitive training program to improve cognitive difficulties among breast cancer survivors. Background A majority of breast cancer (BC) survivors, particularly those treated with chemotherapy, experience long-term cognitive deficits that significantly reduce quality of life. Among the cognitive domains most commonly affected include executive functions (EF), such as working memory, cognitive flexibility, multitasking, planning, and attention. Previous studies in other populations have shown that cognitive training, a behavioral method for treating cognitive deficits, can result in significant improvements in a number of cognitive skills, including EF. Materials and Methods In this study, we conducted a randomized controlled trial to investigate the feasibility and preliminary effectiveness of a novel, online EF training program in long-term BC survivors. A total of 41 BC survivors (21 active, 20 wait list) completed the 48 session training program over 12 weeks. The participants were, on average, 6 years after therapy. Results Cognitive training led to significant improvements in cognitive flexibility, verbal fluency and processing speed, with marginally significant downstream improvements in verbal memory as assessed via standardized measures. Self-ratings of EF skills, including planning, organizing, and task monitoring, also were improved in the active group compared with the wait list group. Conclusions Our findings suggest that EF skills may be improved even in long-term survivors by using a computerized, home-based intervention program. These improvements may potentially include subjective EF skills, which suggest a transfer of the training program to real-world behaviors. PMID:23647804
NASA Astrophysics Data System (ADS)
Mead, C.; Horodyskyj, L.; Buxner, S.; Semken, S. C.; Anbar, A. D.
2016-12-01
Developing scientific reasoning skills is a common learning objective for general-education science courses. However, effective assessments for such skills typically involve open-ended questions or tasks, which must be hand-scored and may not be usable online. Using computer-based learning environments, reasoning can be assessed automatically by analyzing student actions within the learning environment. We describe such an assessment under development and present pilot results. In our content-neutral instrument, students solve a problem by collecting and interpreting data in a logical, systematic manner. We then infer reasoning skill automatically based on student actions. Specifically, students investigate why Earth has seasons, a scientifically simple but commonly misunderstood topic. Students are given three possible explanations and asked to select a set of locations on a world map from which to collect temperature data. They then explain how the data support or refute each explanation. The best approaches will use locations in both the Northern and Southern hemispheres to argue that the contrasting seasonality of the hemispheres supports only the correct explanation. We administered a pilot version to students at the beginning of an online, introductory science course (n = 223) as an optional extra credit exercise. We were able to categorize students' data collection decisions as more and less logically sound. Students who choose the most logical measurement locations earned higher course grades, but not significantly higher. This result is encouraging, but not definitive. In the future, we will clarify our results in two ways. First, we plan to incorporate more open-ended interactions into the assessment to improve the resolving power of this tool. Second, to avoid relying on course grades, we will independently measure reasoning skill with one of the existing hand-scored assessments (e.g., Critical Thinking Assessment Test) to cross-validate our new assessment.
ERIC Educational Resources Information Center
Zhang, Yin; Chu, Samuel K. W.
2016-01-01
In recent years, a number of models concerning problem solving systems have been put forward. However, many of them stress on technology and neglect the research of problem solving itself, especially the learning mechanism related to problem solving. In this paper, we analyze the learning mechanism of problem solving, and propose that when…
Perceived problem solving, stress, and health among college students.
Largo-Wight, Erin; Peterson, P Michael; Chen, W William
2005-01-01
To study the relationships among perceived problem solving, stress, and physical health. The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college students (N = 232). Perceived problem-solving ability predicted self-reported physical health symptoms (R2 = .12; P < .001) and perceived stress (R2 = .19; P < .001). Perceived problem solving was a stronger predictor of physical health and perceived stress than were physical activity, alcohol consumption, or social support. Implications for college health promotion are discussed.
NASA Astrophysics Data System (ADS)
Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew
2013-06-01
Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.
Examining Tasks that Facilitate the Experience of Incubation While Problem-Solving
ERIC Educational Resources Information Center
Both, Lilly; Needham, Douglas; Wood, Eileen
2004-01-01
The three studies presented here contrasted the problem-solving outcomes of university students when a break was provided or not provided during a problem-solving session. In addition, two studies explored the effect of providing hints (priming) and the placement of hints during the problem-solving session. First, the ability to solve a previously…
NASA Astrophysics Data System (ADS)
Jua, S. K.; Sarwanto; Sukarmin
2018-05-01
Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.
ERIC Educational Resources Information Center
Kiliç, Çigdem
2017-01-01
This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…
ERIC Educational Resources Information Center
Maries, Alexandru; Singh, Chandralekha
2018-01-01
Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…
ERIC Educational Resources Information Center
Sleegers, Peter; Wassink, Hartger; van Veen, Klaas; Imants, Jeroen
2009-01-01
In addition to cognitive research on school leaders' problem solving, this study focuses on the situated and personal nature of problem framing by combining insights from cognitive research on problem solving and sense-making theory. The study reports the results of a case study of two school leaders solving problems in their daily context by…
The Place of Problem Solving in Contemporary Mathematics Curriculum Documents
ERIC Educational Resources Information Center
Stacey, Kaye
2005-01-01
This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…
Translation among Symbolic Representations in Problem-Solving. Revised.
ERIC Educational Resources Information Center
Shavelson, Richard J.; And Others
This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…
Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding
ERIC Educational Resources Information Center
Domin, Daniel; Bodner, George
2012-01-01
The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…
Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving
ERIC Educational Resources Information Center
Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.
2012-01-01
People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…
Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving
ERIC Educational Resources Information Center
Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim
2016-01-01
This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…
King Oedipus and the Problem Solving Process.
ERIC Educational Resources Information Center
Borchardt, Donald A.
An analysis of the problem solving process reveals at least three options: (1) finding the cause, (2) solving the problem, and (3) anticipating potential problems. These methods may be illustrated by examining "Oedipus Tyrannus," a play in which a king attempts to deal with a problem that appears to be beyond his ability to solve, and…
Problem Solving with the Elementary Youngster.
ERIC Educational Resources Information Center
Swartz, Vicki
This paper explores research on problem solving and suggests a problem-solving approach to elementary school social studies, using a culture study of the ancient Egyptians and King Tut as a sample unit. The premise is that problem solving is particularly effective in dealing with problems which do not have one simple and correct answer but rather…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
The needs analysis of learning Inventive Problem Solving for technical and vocational students
NASA Astrophysics Data System (ADS)
Sai'en, Shanty; Tze Kiong, Tee; Yunos, Jailani Md; Foong, Lee Ming; Heong, Yee Mei; Mohaffyza Mohamad, Mimi
2017-08-01
Malaysian Ministry of Education highlighted in their National Higher Education Strategic plan that higher education’s need to focus adopting 21st century skills in order to increase a graduate’s employability. Current research indicates that most graduate lack of problem solving skills to help them securing the job. Realising the important of this skill hence an alternative way suggested as an option for high institution’s student to solve their problem. This study was undertaken to measure the level of problem solving skills, identify the needs of learning inventive problem solving skills and the needs of developing an Inventive problem solving module. Using a questionnaire, the study sampled 132 students from Faculty of Technical and Vocational Education. Findings indicated that majority of the students fail to define what is an inventive problem and the root cause of a problem. They also unable to state the objectives and goal thus fail to solve the problem. As a result, the students agreed on the developing Inventive Problem Solving Module to assist them.
Holden, Richard J; Rivera-Rodriguez, A Joy; Faye, Héléne; Scanlon, Matthew C; Karsh, Ben-Tzion
2013-08-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses' operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA's impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians' work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign.
Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion
2012-01-01
The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642
Hing, Nerilee; Russell, Alex M.; Browne, Matthew
2017-01-01
Growth of Internet gambling has fuelled concerns about its contribution to gambling problems. However, most online gamblers also gamble on land-based forms, which may be the source of problems for some. Studies therefore need to identify the problematic mode of gambling (online or offline) to identify those with an online gambling problem. Identifying most problematic form of online gambling (e.g., EGMs, race betting, sports betting) would also enable a more accurate examination of gambling problems attributable to a specific online gambling form. This study pursued this approach, aiming to: (1) determine demographic, behavioral and psychological risk factors for gambling problems on online EGMs, online sports betting and online race betting; (2) compare the characteristics of problematic online gamblers on each of these online forms. An online survey of 4,594 Australian gamblers measured gambling behavior, most problematic mode and form of gambling, gambling attitudes, psychological distress, substance use, help-seeking, demographics and problem gambling status. Problem/moderate risk gamblers nominating an online mode of gambling as their most problematic, and identifying EGMs (n = 98), race betting (n = 291) or sports betting (n = 181) as their most problematic gambling form, were compared to non-problem/low risk gamblers who had gambled online on these forms in the previous 12 months (n = 64, 1145 and 1213 respectively), using bivariate analyses and then logistic regressions. Problem/moderate risk gamblers on each of these online forms were then compared. Risk factors for online EGM gambling were: more frequent play on online EGMs, substance use when gambling, and higher psychological distress. Risk factors for online sports betting were being male, younger, lower income, born outside of Australia, speaking a language other than English, more frequent sports betting, higher psychological distress, and more negative attitudes toward gambling. Risk factors for online race betting comprised being male, younger, speaking a language other than English, more frequent race betting, engaging in more gambling forms, self-reporting as semi-professional/professional gambler, illicit drug use whilst gambling, and more negative attitude toward gambling. These findings can inform improved interventions tailored to the specific characteristics of high risk gamblers on each of these online activities. PMID:28555121
Hing, Nerilee; Russell, Alex M; Browne, Matthew
2017-01-01
Growth of Internet gambling has fuelled concerns about its contribution to gambling problems. However, most online gamblers also gamble on land-based forms, which may be the source of problems for some. Studies therefore need to identify the problematic mode of gambling (online or offline) to identify those with an online gambling problem. Identifying most problematic form of online gambling (e.g., EGMs, race betting, sports betting) would also enable a more accurate examination of gambling problems attributable to a specific online gambling form. This study pursued this approach, aiming to: (1) determine demographic, behavioral and psychological risk factors for gambling problems on online EGMs, online sports betting and online race betting; (2) compare the characteristics of problematic online gamblers on each of these online forms. An online survey of 4,594 Australian gamblers measured gambling behavior, most problematic mode and form of gambling, gambling attitudes, psychological distress, substance use, help-seeking, demographics and problem gambling status. Problem/moderate risk gamblers nominating an online mode of gambling as their most problematic, and identifying EGMs ( n = 98), race betting ( n = 291) or sports betting ( n = 181) as their most problematic gambling form, were compared to non-problem/low risk gamblers who had gambled online on these forms in the previous 12 months ( n = 64, 1145 and 1213 respectively), using bivariate analyses and then logistic regressions. Problem/moderate risk gamblers on each of these online forms were then compared. Risk factors for online EGM gambling were: more frequent play on online EGMs, substance use when gambling, and higher psychological distress. Risk factors for online sports betting were being male, younger, lower income, born outside of Australia, speaking a language other than English, more frequent sports betting, higher psychological distress, and more negative attitudes toward gambling. Risk factors for online race betting comprised being male, younger, speaking a language other than English, more frequent race betting, engaging in more gambling forms, self-reporting as semi-professional/professional gambler, illicit drug use whilst gambling, and more negative attitude toward gambling. These findings can inform improved interventions tailored to the specific characteristics of high risk gamblers on each of these online activities.
Bayindir Çevik, Ayfer; Olgun, Nermin
2015-04-01
This study aimed to determine the relationship between problem-solving and nursing process application skills of nursing. This is a longitudinal and correlational study. The sample included 71 students. An information form, Problem-Solving Inventory, and nursing processes the students presented at the end of clinical courses were used for data collection. Although there was no significant relationship between problem-solving skills and nursing process grades, improving problem-solving skills increased successful grades. Problem-solving skills and nursing process skills can be concomitantly increased. Students were suggested to use critical thinking, practical approaches, and care plans, as well as revising nursing processes in order to improve their problem-solving skills and nursing process application skills. © 2014 NANDA International, Inc.
Bird, Timothy; Mansell, Warren; Wright, Jason; Gaffney, Hannah; Tai, Sara
2018-01-25
Evidence for the efficacy of computer-based psychological interventions is growing. A number of such interventions have been found to be effective, especially for mild to moderate cases. They largely rely on psychoeducation and 'homework tasks', and are specific to certain diagnoses (e.g. depression). This paper presents the results of a web-based randomized controlled trial of Manage Your Life Online (MYLO), a program that uses artificial intelligence to engage the participant in a conversation across any problem topic. Healthy volunteers (n = 213) completed a baseline questionnaire and were randomized to the MYLO program or to an active control condition where they used the program ELIZA, which emulates a Rogerian psychotherapist. Participants completed a single session before completing post-study and 2-week follow-up measures. Analyses were per protocol with intent to follow-up. Both programs were associated with improvements in problem distress, anxiety and depression post-intervention, and again 2 weeks later, but MYLO was not found to be more effective than ELIZA. MYLO was rated as significantly more helpful than ELIZA, but there was no main effect of intervention on problem resolution. Findings are consistent with those of a previous smaller, laboratory-based trial and provide support for the acceptability and effectiveness of MYLO delivered over the internet for a non-clinical sample. The lack of a no-treatment control condition means that the effect of spontaneous recovery cannot be ruled out.
Optimal control design of turbo spin‐echo sequences with applications to parallel‐transmit systems
Hoogduin, Hans; Hajnal, Joseph V.; van den Berg, Cornelis A. T.; Luijten, Peter R.; Malik, Shaihan J.
2016-01-01
Purpose The design of turbo spin‐echo sequences is modeled as a dynamic optimization problem which includes the case of inhomogeneous transmit radiofrequency fields. This problem is efficiently solved by optimal control techniques making it possible to design patient‐specific sequences online. Theory and Methods The extended phase graph formalism is employed to model the signal evolution. The design problem is cast as an optimal control problem and an efficient numerical procedure for its solution is given. The numerical and experimental tests address standard multiecho sequences and pTx configurations. Results Standard, analytically derived flip angle trains are recovered by the numerical optimal control approach. New sequences are designed where constraints on radiofrequency total and peak power are included. In the case of parallel transmit application, the method is able to calculate the optimal echo train for two‐dimensional and three‐dimensional turbo spin echo sequences in the order of 10 s with a single central processing unit (CPU) implementation. The image contrast is maintained through the whole field of view despite inhomogeneities of the radiofrequency fields. Conclusion The optimal control design sheds new light on the sequence design process and makes it possible to design sequences in an online, patient‐specific fashion. Magn Reson Med 77:361–373, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine PMID:26800383
NASA Astrophysics Data System (ADS)
Jara, Nicolás; Vallejos, Reinaldo; Rubino, Gerardo
2017-11-01
The design of optical networks decomposes into different tasks, where the engineers must basically organize the way the main system's resources are used, minimizing the design and operation costs and respecting critical performance constraints. More specifically, network operators face the challenge of solving routing and wavelength dimensioning problems while aiming to simultaneously minimize the network cost and to ensure that the network performance meets the level established in the Service Level Agreement (SLA). We call this the Routing and Wavelength Dimensioning (R&WD) problem. Another important problem to be solved is how to deal with failures of links when the network is operating. When at least one link fails, a high rate of data loss may occur. To avoid it, the network must be designed in such a manner that upon one or multiple failures, the affected connections can still communicate using alternative routes, a mechanism known as Fault Tolerance (FT). When the mechanism allows to deal with an arbitrary number of faults, we speak about Multiple Fault Tolerance (MFT). The different tasks before mentioned are usually solved separately, or in some cases by pairs, leading to solutions that are not necessarily close to optimal ones. This paper proposes a novel method to simultaneously solve all of them, that is, the Routing, the Wavelength Dimensioning, and the Multiple Fault Tolerance problems. The method allows to obtain: a) all the primary routes by which each connection normally transmits its information, b) the additional routes, called secondary routes, used to keep each user connected in cases where one or more simultaneous failures occur, and c) the number of wavelengths available at each link of the network, calculated such that the blocking probability of each connection is lower than a pre-determined threshold (which is a network design parameter), despite the occurrence of simultaneous link failures. The solution obtained by the new algorithm is significantly more efficient than current methods, its implementation is notably simple and its on-line operation is very fast. In the paper, different examples illustrate the results provided by the proposed technique.
Online system for knowledge assessment enhances students' results on school knowledge test.
Kralj, Benjamin; Glazar, Sasa Aleksej
2013-01-01
Variety of online tools were built to help assessing students' performance in school. Many teachers changed their methods of assessment from paper-and-pencil (P&P) to online systems. In this study we analyse the influence that using an online system for knowledge assessment has on students' knowledge. Based on both a literature study and our own research we designed and built an online system for knowledge assessment. The system is evaluated using two groups of primary school teachers and students (N = 686) in Slovenia: an experimental and a control group. Students solved P&P exams on several occasions. The experimental group was allowed to access the system either at school or at home for a limited period during the presentation of a selected school topic. Students in the experimental group were able to solve tasks and compare their own achievements with those of their coevals. A comparison of the P&P school exams results achieved by both groups revealed a positive effect on subject topic comprehension for those with access to the online self-assessment system.
Collis-Romberg Mathematical Problem Solving Profiles.
ERIC Educational Resources Information Center
Collis, K. F.; Romberg, T. A.
Problem solving has become a focus of mathematics programs in Australia in recent years, necessitating the assessment of students' problem-solving abilities. This manual provides a problem-solving assessment and teaching resource package containing four elements: (1) profiles assessment items; (2) profiles diagnostic forms for recording individual…
NASA Astrophysics Data System (ADS)
Pujiastuti, E.; Waluya, B.; Mulyono
2018-03-01
There were many ways of solving the problem offered by the experts. The author combines various ways of solving the problem as a form of novelty. Among the learning model that was expected to support the growth of problem-solving skills was SAVI. The purpose, to obtain trace results from the analysis of the problem-solving ability of students in the Dual Integral material. The research method was a qualitative approach. Its activities include tests was filled with mathematical connections, observation, interviews, FGD, and triangulation. The results were: (1) some students were still experiencing difficulties in solving the problems. (2) The application of modification of SAVI learning model effective in supporting the growth of problem-solving abilities. (3) The strength of the students related to solving the problem, there were two students in the excellent category, there were three students in right classes and one student in the medium group.
Flexibility in Mathematics Problem Solving Based on Adversity Quotient
NASA Astrophysics Data System (ADS)
Dina, N. A.; Amin, S. M.; Masriyah
2018-01-01
Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.
Analogy as a strategy for supporting complex problem solving under uncertainty.
Chan, Joel; Paletz, Susannah B F; Schunn, Christian D
2012-11-01
Complex problem solving in naturalistic environments is fraught with uncertainty, which has significant impacts on problem-solving behavior. Thus, theories of human problem solving should include accounts of the cognitive strategies people bring to bear to deal with uncertainty during problem solving. In this article, we present evidence that analogy is one such strategy. Using statistical analyses of the temporal dynamics between analogy and expressed uncertainty in the naturalistic problem-solving conversations among scientists on the Mars Rover Mission, we show that spikes in expressed uncertainty reliably predict analogy use (Study 1) and that expressed uncertainty reduces to baseline levels following analogy use (Study 2). In addition, in Study 3, we show with qualitative analyses that this relationship between uncertainty and analogy is not due to miscommunication-related uncertainty but, rather, is primarily concentrated on substantive problem-solving issues. Finally, we discuss a hypothesis about how analogy might serve as an uncertainty reduction strategy in naturalistic complex problem solving.
Interference thinking in constructing students’ knowledge to solve mathematical problems
NASA Astrophysics Data System (ADS)
Jayanti, W. E.; Usodo, B.; Subanti, S.
2018-04-01
This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.
Insightful problem solving and emulation in brown capuchin monkeys.
Renner, Elizabeth; Abramo, Allison M; Karen Hambright, M; Phillips, Kimberley A
2017-05-01
We investigated problem solving abilities of capuchin monkeys via the "floating object problem," a task in which the subject must use creative problem solving to retrieve a favored food item from the bottom of a clear tube. Some great apes have solved this problem by adding water to raise the object to a level at which it can be easily grabbed. We presented seven capuchins with the task over eight trials (four "dry" and four "wet"). None of the subjects solved the task, indicating that no capuchin demonstrated insightful problem solving under these experimental conditions. We then investigated whether capuchins would emulate a solution to the task. Seven subjects observed a human model solve the problem by pouring water from a cup into the tube, which brought the object to the top of the tube, allowing the subject to retrieve it. Subjects were then allowed to interact freely with an unfilled tube containing the object in the presence of water and objects that could be used to solve the task. While most subjects were unable to solve the task after viewing a demonstrator solve it, one subject did so, but in a unique way. Our results are consistent with some previous results in great ape species and indicate that capuchins do not spontaneously solve the floating object problem via insight.
Tenison, Caitlin; Fincham, Jon M; Anderson, John R
2014-02-01
This research explores how to determine when mathematical problems are solved by retrieval versus computation strategies. Past research has indicated that verbal reports, solution latencies, and neural imaging all provide imperfect indicators of this distinction. Participants in the current study solved mathematical problems involving two distinct problem types, called 'Pyramid' and 'Formula' problems. Participants were given extensive training solving 3 select Pyramid and 3 select Formula problems. Trained problems were highly practiced, whereas untrained problems were not. The distinction between untrained and trained problems was observed in the data. Untrained problems took longer to solve, more often used procedural strategies and showed a greater activation in the horizontal intraparietal sulcus (HIPS) when compared to trained problems. A classifier fit to the neural distinction between trained-untrained problems successfully predicted training within and between the two problem types. We employed this classifier to generate a prediction of strategy use. By combining evidence from the classifier, problem solving latencies, and retrospective reports, we predicted the strategy used to solve each problem in the scanner and gained unexpected insight into the distinction between different strategies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Problem solving therapy - use and effectiveness in general practice.
Pierce, David
2012-09-01
Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.
Collection of solved problems in physics
NASA Astrophysics Data System (ADS)
Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie
2017-01-01
To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).
Pre-service mathematics teachers’ ability in solving well-structured problem
NASA Astrophysics Data System (ADS)
Paradesa, R.
2018-01-01
This study aimed to describe the mathematical problem-solving ability of undergraduate students of mathematics education in solving the well-structured problem. The type of this study was qualitative descriptive. The subjects in this study were 100 undergraduate students of Mathematics Education at one of the private universities in Palembang city. The data in this study was collected through two test items with essay form. The results of this study showed that, from the first problem, only 8% students can solve it, but do not check back again to validate the process. Based on a scoring rubric that follows Polya strategy, their answer satisfied 2 4 2 0 patterns. But, from the second problem, 45% students satisfied it. This is because the second problem imitated from the example that was given in learning process. The average score of undergraduate students mathematical problem-solving ability in solving well-structured problems showed 56.00 with standard deviation was 13.22. It means that, from 0 - 100 scale, undergraduate students mathematical problem-solving ability can be categorized low. From this result, the conclusion was undergraduate students of mathematics education in Palembang still have a problem in solving mathematics well-structured problem.
ERIC Educational Resources Information Center
Chen, Limin; Van Dooren, Wim; Chen, Qi; Verschaffel, Lieven
2011-01-01
In the present study, which is a part of a research project about realistic word problem solving and problem posing in Chinese elementary schools, a problem solving and a problem posing test were administered to 128 pre-service and in-service elementary school teachers from Tianjin City in China, wherein the teachers were asked to solve 3…
Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah
2016-06-01
This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.
NASA Astrophysics Data System (ADS)
Jeon, Kyungmoon; Huffman, Douglas; Noh, Taehee
2005-10-01
This study investigated the effects of a thinking aloud pair problem solving (TAPPS) approach on students' chemistry problem-solving performance and verbal interactions. A total of 85 eleventh grade students from three classes in a Korean high school were randomly assigned to one of three groups; either individually using a problem-solving strategy, using a problem-solving strategy with TAPPS, or the control group. After instruction, students' problem-solving performance was examined. The results showed that students in both the individual and TAPPS groups performed better than those in the control group on recalling the related law and mathematical execution, while students in the TAPPS group performed better than those in the other groups on conceptual knowledge. To investigate the verbal behaviors using TAPPS, verbal behaviors of solvers and listeners were classified into 8 categories. Listeners' verbal behavior of "agreeing" and "pointing out", and solvers' verbal behavior of "modifying" were positively related with listeners' problem-solving performance. There was, however, a negative correlation between listeners' use of "point out" and solvers' problem-solving performance. The educational implications of this study are discussed.
Pedagogy and/or technology: Making difference in improving students' problem solving skills
NASA Astrophysics Data System (ADS)
Hrepic, Zdeslav; Lodder, Katherine; Shaw, Kimberly A.
2013-01-01
Pen input computers combined with interactive software may have substantial potential for promoting active instructional methodologies and for facilitating students' problem solving ability. An excellent example is a study in which introductory physics students improved retention, conceptual understanding and problem solving abilities when one of three weekly lectures was replaced with group problem solving sessions facilitated with Tablet PCs and DyKnow software [1,2]. The research goal of the present study was to isolate the effect of the methodology itself (using additional time to teach problem solving) from that of the involved technology. In Fall 2011 we compared the performance of students taking the same introductory physics lecture course while enrolled in two separate problem-solving sections. One section used pen-based computing to facilitate group problem solving while the other section used low-tech methods for one third of the semester (covering Kinematics), and then traded technologies for the middle third of the term (covering Dynamics). Analysis of quiz, exam and standardized pre-post test results indicated no significant difference in scores of the two groups. Combining this result with those of previous studies implies primacy of pedagogy (collaborative problem solving itself) over technology for student learning in problem solving recitations.
Working memory dysfunctions predict social problem solving skills in schizophrenia.
Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K
2014-12-15
The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Grange, Pascal
2015-09-01
The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.
ERIC Educational Resources Information Center
Szetela, W.; Super, D.
A problem-solving program supplemented by calculators in one treatment group was conducted in 63 grade 7 classes with about 1350 students. Teachers were provided with problems correlated with textbooks, and instruction for teaching problem-solving strategies. School districts provided calculators and problem-solving materials. Pretest scores…
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Problem Solving: How Can We Help Students Overcome Cognitive Difficulties
ERIC Educational Resources Information Center
Cardellini, Liberato
2014-01-01
The traditional approach to teach problem solving usually consists in showing students the solutions of some example-problems and then in asking students to practice individually on solving a certain number of related problems. This approach does not ensure that students learn to solve problems and above all to think about the solution process in…
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment
ERIC Educational Resources Information Center
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
Gobée, O Paul; Jansma, Daniël; DeRuiter, Marco C
2011-10-01
The many synonyms for anatomical structures confuse medical students and complicate medical communication. Easily accessible translations would alleviate this problem. None of the presently available resources-Terminologia Anatomica (TA), digital terminologies such as the Foundational Model of Anatomy (FMA), and websites-are fully satisfactory to this aim. Internet technologies offer new possibilities to solve the problem. Several authors have called for an online TA. An online translation resource should be easily accessible, user-friendly, comprehensive, expandable, and its quality determinable. As first step towards this goal, we built a translation website that we named www.AnatomicalTerms.info, based on the database of the FMA. It translates between English, Latin, eponyms, and to a lesser extent other languages, and presently contains over 31,000 terms for 7,250 structures, covering 95% of TA. In addition, it automatically presents searches for images, documents and anatomical variations regarding the sought structure. Several terminological and conceptual issues were encountered in transferring data from TA and FMA into AnatomicalTerms.info, resultant from these resources' different set-ups (paper versus digital) and targets (machine versus human-user). To the best of our knowledge, AnatomicalTerms.info is unique in its combination of user-friendliness and comprehensiveness. As next step, wiki-like expandability will be added to enable open contribution of clinical synonyms and terms in different languages. Specific quality measures will be taken to strike a balance between open contribution and quality assurance. AnatomicalTerms.info's mechanism that "translates" terms to structures furthermore may enhance targeted searching by linking images, descriptions, and other anatomical resources to the structures. Copyright © 2011 Wiley-Liss, Inc.
Wade, Shari L.; Narad, Megan E.; Kingery, Kathleen M.; Taylor, H. Gerry; Stancin, Terry; Kirkwood, Michael W.; Yeates, Keith O.
2017-01-01
Purpose/Objective To describe the Teen Online Problem Solving—Teen Only (TOPS-TO) intervention relative to the original Teen Online Problem Solving—Family (TOPS-F) intervention, to describe a randomized controlled trial to assess intervention efficacy, and to report feasibility and acceptability of the TOPS-TO intervention. Research method and design This is a multisite randomized controlled trial, including 152 teens (49 TOPS-F, 51 TOPS-TO, 52 IRC) between the ages of 11–18 who were hospitalized for a moderate to severe traumatic brain injury in the previous 18 months. Assessments were completed at baseline, 6-months post baseline, and 12-months post baseline. Data discussed include adherence and satisfaction data collected at the 6-month assessment (treatment completion) for TOPS-F and TOPS-TO. Results Adherence measures (sessions completed, dropout rates, duration of treatment engagement, and rates of program completion) were similar across treatment groups. Overall, teen and parent reported satisfaction was high and similar across groups. Teens spent a similar amount of time on the TOPS website across groups, and parents in the TOPS-F spent more time on the TOPS website than those in the TOPS-TO group (p = .002). Parents in the TOPS-F group rated the TOPS website as more helpful than those in the TOPS-TO group (p = .05). Conclusions/Implications TOPS-TO intervention is a feasible and acceptable intervention approach. Parents may perceive greater benefit from the family based intervention. Further examination is required to understand the comparative efficacy in improving child and family outcomes, and who is likely to benefit from each approach. PMID:28836809
Problem Solving Appraisal of Delinquent Adolescents.
ERIC Educational Resources Information Center
Perez, Ruperto M.; And Others
The study investigated the following: (1) the relationship of problem solving appraisal to narcissistic vulnerability, locus of control, and depression; (2) the differences in problem solving appraisal, locus of control, and depression in first-time and repeat offenders; and (3) the prediction of problem solving appraisal by narcissistic…
Computer Programming: A Medium for Teaching Problem Solving.
ERIC Educational Resources Information Center
Casey, Patrick J.
1997-01-01
Argues that including computer programming in the curriculum as a medium for instruction is a feasible alternative for teaching problem solving. Discusses the nature of problem solving; the problem-solving elements of discovery, motivation, practical learning situations and flexibility which are inherent in programming; capabilities of computer…
Perceived Problem Solving, Stress, and Health among College Students
ERIC Educational Resources Information Center
Largo-Wight, Erin; Peterson, P. Michael; Chen, W. William
2005-01-01
Objective: To study the relationships among perceived problem solving, stress, and physical health. Methods: The Perceived Stress Questionnaire (PSQ), Personal Problem solving Inventory (PSI), and a stress-related physical health symptoms checklist were used to measure perceived stress, problem solving, and health among undergraduate college…
THE CURRENT STATUS OF RESEARCH AND THEORY IN HUMAN PROBLEM SOLVING.
ERIC Educational Resources Information Center
DAVIS, GARY A.
PROBLEM-SOLVING THEORIES IN THREE AREAS - TRADITIONAL (STIMULUS-RESPONSE) LEARNING, COGNITIVE-GESTALT APPROACHES, AND COMPUTER AND MATHEMATICAL MODELS - WERE SUMMARIZED. RECENT EMPIRICAL STUDIES (1960-65) ON PROBLEM SOLVING WERE CATEGORIZED ACCORDING TO TYPE OF BEHAVIOR ELICITED BY PARTICULAR PROBLEM-SOLVING TASKS. ANAGRAM,…
Developing Creativity through Collaborative Problem Solving
ERIC Educational Resources Information Center
Albert, Lillie R.; Kim, Rina
2013-01-01
This paper discusses an alternative approach for developing problem solving experiences for students. The major argument is that students can develop their creativity by engaging in collaborative problem solving activities in which they apply a variety of mathematical methods creatively to solve problems. The argument is supported by: considering…
The effects of expected reward on creative problem solving.
Cristofori, Irene; Salvi, Carola; Beeman, Mark; Grafman, Jordan
2018-06-12
Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.
Find the Dimensions: Students Solving a Tiling Problem
ERIC Educational Resources Information Center
Obara, Samuel
2018-01-01
Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.