Sample records for ontogenesis

  1. [Trait variability in ontogenesis of epiphytic lichen Hypogymnia physodes (L.) Nyl].

    PubMed

    Suetina, Iu G; Glotov, N V

    2014-01-01

    Ontogenesis of the foliose lichen Hypogymniaphysodes has been described on the basis of the material obtained from natural populations. Ontogenetic dynamics (diameter of thallus and the number of lobes) and the features of reproductive structures (the number and diameter of labelloid and galeated sorales) were studied in ecologically different pine forests. We reasonably rejected the use of the variance analysis and nonparametric criteria for the result processing. It was shown that the median dynamics and trait variance may be either similar or different throughout the ontogenesis. The trait variances in ecologically different ecotopes were shown to be different.

  2. The ontogenesis of the forebrain commissures and the determination of brain asymmetries.

    PubMed

    Lent, R; Schmidt, S L

    1993-02-01

    We have reviewed the organization and development of the interhemispheric projections through the forebrain commissures, especially those of the CC, in connection with the development of brain asymmetries. Analyzing the available data, we conclude that the developing CC plays an important role in the ontogenesis of brain asymmetries. We have extended a previous hypothesis that the rodent CC may exert a stabilizing effect over the unstable populational asymmetries of cortical size and shape, and that it participates in the developmental stabilization of lateralized motor behaviors.

  3. Developmental changes of nasal and oral calls in the goitred gazelle Gazella subgutturosa, a nonhuman mammal with a sexually dimorphic and descended larynx

    NASA Astrophysics Data System (ADS)

    Efremova, Kseniya O.; Volodin, Ilya A.; Volodina, Elena V.; Frey, Roland; Lapshina, Ekaterina N.; Soldatova, Natalia V.

    2011-11-01

    In goitred gazelles ( Gazella subgutturosa), sexual dimorphism of larynx size and position is reminiscent of the case in humans, suggesting shared features of vocal ontogenesis in both species. This study investigates the ontogeny of nasal and oral calls in 23 (10 male and 13 female) individually identified goitred gazelles from shortly after birth up to adolescence. The fundamental frequency (f0) and formants were measured as the acoustic correlates of the developing sexual dimorphism. Settings for LPC analysis of formants were based on anatomical dissections of 5 specimens. Along ontogenesis, compared to females, male f0 was consistently lower both in oral and nasal calls and male formants were lower in oral calls, whereas the first two formants of nasal calls did not differ between sexes. In goitred gazelles, significant sex differences in f0 and formants appeared as early as the second week of life, while in humans they emerge only before puberty. This result suggests different pathways of vocal ontogenesis in the goitred gazelles and in humans.

  4. [Geomagnetic field variation in early ontogenesis as a risk factor for oncopathology].

    PubMed

    Iamshanov, V A

    2003-01-01

    The data on 534 cancer patients with tumors of 15 different sites were evaluated to elucidate the influence of geomagnetic field (GMF) in certain months of the pre- and early postnatal periods on future incidence of cancer. We identified neoplasms of the breast, lung, urinary bladder, hypophysis, ovary, prostate, liver, Hodgkin's disease, lymphoma and, possibly, gastric cancer as GMF-dependent. This relationship appeared to be idiosyncratic with every cancer variety. It was negligible in cases of esophagus, thyroid, uterine cervix and colorectal cancer. GMF variations as a carcinogenic factor in early ontogenesis can be assessed quantitatively.

  5. [Formation of antioxidant defence system of geese in embryogenesis and early postnatal ontogenesis].

    PubMed

    Danchenko, O O; Kalytka, V V

    2002-01-01

    The features of antioxidant protection of tissues of a liver and blood of the gooses in embriogenesis and early postnatal ontogenesis are found out. Maximal contents TBA active products both in a liver, and in a blood are observed in 28 diurnal embriones. Is shown, that in a liver the activity of basic antioxidant enzymes (superoxide dismutases, catalase and glutathione peroxidase) in a liver is developed already at early stages embriogenesis and is considerably enlarged in the end embriogenesis. The becoming of enzymatic system of a blood descends much more slower.

  6. [The principle of the energy minimum in ontogeny and the channeling of developmental processes].

    PubMed

    Ozerniuk, N D

    1989-01-01

    The principle of minimum of energy in ontogenesis has been formulated on the basis of data concerning age changes in energetic metabolism, as well as the influence of ecological factors on this process. According to this principle the smallest expenditures of energy are observed in the zone of the most favorable developmental conditions. The minimal level of energetic metabolism at every developmental stage that corresponds to the most stable state of organism is treated as homeostasis and the developmental stability is treated as homeorrhesis. Regulation mechanisms of energetic metabolism during ontogenesis and under the influence of environmental factors are analyzed.

  7. A new theory of development: the generation of complexity in ontogenesis.

    PubMed

    Barbieri, Marcello

    2016-03-13

    Today there is a very wide consensus on the idea that embryonic development is the result of a genetic programme and of epigenetic processes. Many models have been proposed in this theoretical framework to account for the various aspects of development, and virtually all of them have one thing in common: they do not acknowledge the presence of organic codes (codes between organic molecules) in ontogenesis. Here it is argued instead that embryonic development is a convergent increase in complexity that necessarily requires organic codes and organic memories, and a few examples of such codes are described. This is the code theory of development, a theory that was originally inspired by an algorithm that is capable of reconstructing structures from incomplete information, an algorithm that here is briefly summarized because it makes it intuitively appealing how a convergent increase in complexity can be achieved. The main thesis of the new theory is that the presence of organic codes in ontogenesis is not only a theoretical necessity but, first and foremost, an idea that can be tested and that has already been found to be in agreement with the evidence. © 2016 The Author(s).

  8. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis.

    PubMed

    Quispe, Ruth L; Justino, Emily B; Vieira, Felipe N; Jaramillo, Michael L; Rosa, Rafael D; Perazzolo, Luciane M

    2016-11-01

    We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. [Adaptive specific features of energy metabolism in fish ontogenesis].

    PubMed

    Ozerniuk, N D

    2011-01-01

    A review of data on the pattern of change of the intensity of oxygen consumption during early ontogenesis of different fish species (rainbow trout, loach, zebrafish, carp, and grass carp) is provided. It has a similar pattern: this index increases in the period of embryonic and larval development and, after passing of larvae to an active feeding, it begins to gradually decline. This dynamics is determined by specific features of an increase in the rate of oxygen uptake and body weight in the course of early stages of fish ontogenesis. For determining optimal temperature conditions of development, a method of total (for a definite stage of development) oxygen uptake was suggested, which makes it possible to determine minimal energy expenditures necessary for the process of a particular stage of embryogenesis to take place. Analysis of temperature dependence of kinetic properties of enzymes with reference to the Michaelis constant (Km) for lactate dehydrogenase demonstrated that minimal Km, corresponding to maximal enzyme-substrate affinity, for embryos of different fish species differs in correspondence with differences in temperature conditions of development of these species in nature. For embryos of one species developing at changing temperature conditions (salmonids), this index changes in accordance with a temperature drift in nature.

  10. [Effect of food availability in early ontogenesis on the rate of growth and numbers of bream Abramis brama L. (Cypriniformes, Cyprinidae) in Kursh Bay of the Baltic Sea].

    PubMed

    Naumenko, E N

    2011-01-01

    On the basis of studies of zooplankton and ichthyoplankton in the coastal zone of Kursh Bay of the Baltic Sea, zooplankton production accessible for juveniles of bream Abramis brama L. at early stages of ontogenesis, degree of removal of food resources, and food availability of juveniles of the bream that was reflected in the rate of growth were calculated. It is concluded that the removal of more than 60% of production of food zooplankton by bream juveniles leads to an increase of their mortality at early stages and a decrease in the rate of increase in the body weight.

  11. A neo-Meadian approach to human agency: relating the social and the psychological in the ontogenesis of perspective-coordinating persons.

    PubMed

    Martin, Jack; Gillespie, Alex

    2010-09-01

    How can human agency be reconciled with bio-physical determinism? Starting with a discussion of the long standing debate between determinism and agency, we argue that the seeds of a reconciliation can be found in George Herbert Mead's ideas concerning social acts, perspectives, differentiation, self-other interactivity, and conscious understanding. Drawing on more recent reformulations of Mead's ideas, we present an integrated account of the ontogenesis of human agency. Human agency, we argue, should be conceptualized in terms of distanciation from immediate experience, and we show how social interactions, institutions and symbolic resources foster the development of agency in increasingly complex ways. We conclude by situating our work in relation to other developmental accounts and the larger project of theorizing and empirically supporting a compatibilist rendering of human agency as the "determined" self-determination of persons.

  12. A Method For The Longitudinal Study Of Behavioral Development In Infants And Children: The Early Development Of XXY Children

    ERIC Educational Resources Information Center

    Walzer, Stanley; And Others

    1978-01-01

    This report summarizes preliminary results from a behavioral study of 13 male infants who were ascertained to have an XX Y sex chromosome complement at birth and who are being followed longitudinally through early ontogenesis. (CM)

  13. Progenesis in the evolution of the nudibranch mollusks genus Dendronotus (Gastropoda: Nudibranchia).

    PubMed

    Ekimova, I A; Malakhov, V V

    2016-03-01

    The morphology and postlarval ontogenesis of the radula in 11 species of the genus Dendronotus Alder et Hancock, 1845, has been studied. Four types of radula are recognized in adult mollusks. Proposed evidence suggests that small species of Dendronotus have evolved by progenesis.

  14. The Kosmos-1129 biosatellite. [experiments in biological effects of space flight

    NASA Technical Reports Server (NTRS)

    Nikitin, S. A.

    1980-01-01

    A number of experiments, designed by participating specialists from several countries, are described. The experiments included studies in biorhythm, stress, body parts, behavior, ontogenesis, and gravitational preference. The biological subjects of the experiments were retrieved immediately after the landing of the satellite and examined in a field laboratory.

  15. Nonlinear Epigenetic Variance: Review and Simulations

    ERIC Educational Resources Information Center

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  16. Hypnosis and Human Development: Interpersonal Influence of Intrapersonal Processes.

    ERIC Educational Resources Information Center

    Vandenberg, Brian

    1998-01-01

    Examines the relationship between hypnosis and human development. Defines hypnosis within a communications framework, and identifies essential features of hypnosis in the communicative exchanges of the first months of life; this forces a reconsideration of the understanding of the ontogenesis of hypnosis. Identifies four key features of hypnosis,…

  17. Anticipatory Competence and Ability to Probabilistic Forecasting in Adolescents: Research Results

    ERIC Educational Resources Information Center

    Akhmetzyanova, Anna I.

    2016-01-01

    The relevance of this problem is related to the urgent need to explain peculiarities of anticipation and probabilistic forecasting in adolescence. It has revealed a contradiction: on the one hand, the problem of anticipation in ontogenesis is well developed, and, on the other hand, there remain understudied mechanisms of anticipation in…

  18. Season progression, ontogenesis and environment affect Lespedeza cuneata herbage condensed tannin, fiber and crude protein content

    USDA-ARS?s Scientific Manuscript database

    Sericea lespedeza [Lespedeza cuneata (Dumont de Courset) G. Don.; SL] is a perennial, warm-season forage legumes with wide adaptation, freeze tolerance, establishment ease and persistence under grazing. Its condensed tannins (CT) could be useful in ruminant systems, not simply as a protein source, b...

  19. Direct effect of acaricides on pathogen loads and gene expression levels of honey bee Apis mellifera

    USDA-ARS?s Scientific Manuscript database

    The effect of using miticides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, immune defense suppression, impairment of normal behavior are some of the described symptoms for the use of pestici...

  20. On the Status of Logic in Piaget

    ERIC Educational Resources Information Center

    Reginensi, Luc

    2004-01-01

    This article analyses the way in which Piaget links the analogy between the child and the primitive with a theory of the history of the sciences, that is, it analyses Piaget's version of Haeckel's principle in which ontogenesis recapitulates phylogenesis. From this analysis, we reconstitute the operations through which Piaget forms and expresses…

  1. Body Structure and Physical Self-Concept in Early Adolescence

    ERIC Educational Resources Information Center

    Zsakai, Annamaria; Karkus, Zsolt; Utczas, Katinka; Bodzsar, Eva B.

    2017-01-01

    In adolescence, the complexity of human ontogenesis embraces biological growth and maturation as well as mental, affective, and cognitive progress, and adaptation to the requirements of society. To accept our morphological constellation as part of our gender may prove a problem even to a child of average rate of maturation. The main purposes of…

  2. A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo).

    PubMed

    Thurber, Allison; Jha, Sushil K; Coleman, Tammi; Frank, Marcos G

    2008-05-16

    We investigated sleep ontogenesis in the ferret-a placental mammal that is highly altricial compared to other mammalian species. Because altriciality is linked with elevated rapid-eye-movement (REM) sleep amounts during infancy, it was expected that ferret kits would display very high levels of this state. Longitudinal polysomnographic measurements were made from 8 ferret kits from approximately eye-opening (postnatal day [P]30)-P50 using an experimental routine that minimized the effects of maternal separation. These data were compared to values from 8 adult ferrets (>3 months of age) and 6 neonatal cats (mean age: P31.7). We find that the polygraphic features of REM and non-REM (NREM) sleep are present by at least P30. Over the next 2 weeks, REM sleep amounts slightly declined while wakefulness and NREM sleep amounts increased. However, a comparison to published values from developing cats and rats showed that the ferret did not exhibit a disproportionate amount of REM sleep at similar postnatal ages or relative to a common developmental milestone (eye-opening).

  3. Motor Cognition and Its Role in the Phylogeny and Ontogeny of Action Understanding

    ERIC Educational Resources Information Center

    Gallese, Vittorio; Rochat, Magali; Cossu, Giuseppe; Sinigaglia, Corrado

    2009-01-01

    Social life rests in large part on the capacity to understand the intentions behind the behavior of others. What are the origins of this capacity? How is one to construe its development in ontogenesis? By assuming that action understanding can be explained only in terms of the ability to read the minds of others--that is, to represent mental…

  4. [Rat tissues antioxidant status correction by peptide delta sleep during physiological aging of the organism].

    PubMed

    Bondarenko, T I; Kutilin, D S; Mikhaleva, I I

    2014-01-01

    It is shown that exogenous delta-sleep inducing peptide increases glutathione antioxidant system level in rat tissues at different stages of ontogenesis, by subcutaneous injection to rats 2-24 months postnatal development in a dose of 100 mg/kg animal body weight by courses of 5 consecutive days per month, and this effect is especially marked in non-renewable postmitotic tissues.

  5. The Role of the Pituitary-Adrenocortical Axis System in the Regulation of Secretion of Digestive Glands of Wrestlers during Sports and Postsports Ontogenesis

    ERIC Educational Resources Information Center

    Panov, Sergei F.; Panova, Irina P.; Volunskaya, Elena V.; Chebotarev, Andrei V.

    2016-01-01

    According to many researchers its necessary to research a hormonal profile in order to determine mechanisms of regulation of functions of the digestive conveyor during sports activities. In the paper the results of the carried out research on studying of a role of pituitary-adrenocortical axis system of adaptive reactions in activities of the…

  6. Sound Explorations from the Ages of 10 to 37 Months: The Ontogenesis of Musical Conducts

    ERIC Educational Resources Information Center

    Delalande, Francois; Cornara, Silvia

    2010-01-01

    One of the forms of first musical conduct is the exploration of sound sources. When young children produce sounds with any object, these sounds may surprise them and so they make the sounds again--not exactly the same, but introducing some variation. A process of repetition with slight changes is set in motion which can be analysed, as did Piaget,…

  7. Schmidingerothrix extraordinaria nov. gen., nov. spec., a secondarily oligomerized hypotrich (Ciliophora, Hypotricha, Schmidingerotrichidae nov. fam.) from hypersaline soils of Africa.

    PubMed

    Foissner, Wilhelm

    2012-08-01

    Schmidingerothrix extraordinaria nov. gen., nov. spec. was discovered in hypersaline soils from Namibia and Egypt. Its morphology and ontogenesis were studied with standard methods. Schmidingerothrix extraordinaria is a highly flexible, slender hypotrich with an average size of 90 × 15 μm. Likely, it prefers a salinity around 100‰ and feeds mainly on bacteria. Schmidingerothrix is extraordinary in having a frayed buccal lip, three-rowed adoral membranelles, only one frontal cirrus, a distinct gap between frontal and ventral adoral membranelles, and a miniaturized first frontal membranelle, while a paroral membrane, dorsal bristle rows, and buccal, transverse, and caudal cirri are absent. The ontogenesis is simple: the opisthe oral apparatus and frontoventral ciliature originate de novo, while parental structures are involved in the development of the ciliature of the proter. This special organization is used to define a new family, the Schmidingerotrichidae, which is likely related to the Cladotrichidae. Schmidingerothrix extraordinaria is very likely a secondarily oligomerized hypotrich, and the reduction occurred possibly very long ago because no traces of the ancestral ciliature remained in the ontogenetic processes. Possibly, the simple ciliature is an adaptation to highly saline habitats, where competition is low and bacterial food abundant. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. [Dynamics of numbers of commercial fish in early ontogenesis in different areas of the Central-Eastern Atlantic].

    PubMed

    Arkhipov, A G; Mamedov, A A; Simonova, T A; Tenitskaia, I A

    2011-01-01

    Changes in the quantitative composition of mass fish species at early stages of ontogenesis in different areas of the Central-Eastern Atlantic (CEA) in warm and cold seasons in 1994-2008 were analyzed in the paper. The most widespread representatives of ichthyocenosis of CEA were: European pilchard (Sardina pilchardus), common scad (Trachurus trachurus), round sardinella (Sardinella aurita), and West-African scad (Trachrus trecae). The data obtained indicate that, within the economic zone of Morocco, fluctuations of numbers at early stages of development in European pilchard and common scad are close over the entire water area under consideration (36 degrees-21 degrees N). The regularities of fluctuations of the numbers of ichthyoplankton are similar to the interannual changes in the biomass of fish in the area of Morocco. In the area of Mauritania (21 degrees-16 degrees N), fluctuations of numbers of the early stages of development of commercial fish cannot be unambiguously correlated with changes in the biomass of adult fish. It is known that, in the economic zone of Mauritania, there are Senegal-Mauritanian populations of round sardinella and West-African scad that inhabit waters of different states and are not completely assessed by our surveys. Therefore, no obvious relation was observed between the considered data.

  9. Ontogenetic trends in gnostic hand function in 3- to 12-yr-old children.

    PubMed

    van Grunsven, W; Njiokiktjien, C; Vranken, M; Vuylsteke-Wauters, M

    2003-06-01

    The intimate relation between the sensory and motor functions of the hands during object manipulation and exploratory touch, the well-known improvement in object handling and constructive performance in ontogenesis and the emergent laterality thereof, assume changes in morphognostic capabilities in children. In this study we tried to corroborate the hypothesis of Mesker that mature and lateralized finger-thumb opposition is preceded by a stage of two-sided manual form agnosia in preschool children, followed by acquisition of morphognosis of the fingers and, finally, the thumbs. This study examined the development of gnostic hand function in 290 children from 3 to 11 years of age who drew the outlines of a meaningless wooden object passively felt with each hand without visual control. Analysis showed a clear ontogenetic change across the two age groups of increasing morphognostic function: 48% of the 6-yr.-olds drew correctly what the fingers of both left and right hands had perceived (thumbs, 14%). Of the 11-yr.-olds 91% and 61% performed perfectly with the right and left hands, respectively. The fingers preceded the thumbs in reproduction by most children, and the correct reproduction by the left thumb precedes that of the right thumb. The ontogenesis of bimanual sensorimotor functioning is discussed in the light of cortical and callosal development.

  10. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    PubMed

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  11. Morphology and ontogenesis of Psilotrichides hawaiiensis nov. gen., nov. spec. and molecular phylogeny of the Psilotrichidae (Ciliophora, Hypotrichia).

    PubMed

    Heber, Domingo; Stoeck, Thorsten; Foissner, Wilhelm

    2014-01-01

    The Psilotrichidae are a family of middle-sized hypotrichs with unique morphological and ontogenetic features (e.g. the oral primordium develops in a deep pouch) that, however, did not provide a definite phylogenetic signal. Thus, we studied the 18S rRNA gene of Urospinula succisa (Müller 1786) Esteban et al., 2001 as well as the morphology and ontogenesis of Psilotrichides hawaiiensis, a new genus and species from an ephemeral swamp on Oahu Island, Hawaii. The molecular data classify the psilotrichids into the oxytrichids but without clear branching position. A brief revision, using the structure of the oral apparatus, the location of the contractile vacuole, and three ontogenetic features, showed four distinct genera: Psilotricha Stein, 1859; Urospinula Corliss, 1960; Hemiholosticha Gelei, 1954; and Psilotrichides nov. gen., which differs from the confamilials mainly by the obliquely oriented buccal cavity and the shape of the undulating membranes as well as by a distinct ridge along the right buccal margin. The pyriform species, P. hawaiiensis, is about 65 × 45 μm in size and is easily recognized by the table tennis racket-shaped appearance due to the elongated last cirrus of the left marginal row. Refined diagnoses are provided for the family Psilotrichidae Bütschli, 1889 and the genera contained. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  12. Ontogenesis of endangered humpback chub (Gila cypha) in the Little Colorado River, Arizona

    USGS Publications Warehouse

    Stone, Dennis M.; Gorman, Owen T.

    2006-01-01

    The largest population of endangered humpback chub Gila cypha inhabits the Colorado River below Glen Canyon Dam and the lower 14 km of the Little Colorado River (LCR), Arizona. Currently, adults from both rivers spawn and their progenies grow and recruit to adulthood primarily within the LCR, where we studied G. cypha's life history using hoop net capture data. Humpback chub undergo an ontogenesis from diurnally active, vulnerable, nearshore-reliant young-of-the-year (YOY; 30-90 mm total length) into nocturnally active, large-bodied adults (a?Y180 mm TL). During the day, adults primarily resided in deep midchannel pools; however, at night they dispersed inshore amongst the higher densities of YOY conspecifics. Many YOY G. cypha shifted to nocturnal habitats that provided greater cover, possibly, to avoid inshore invading adults. These findings mirror predator-prey scenarios described in other freshwater assemblages, but do not refute other plausible hypotheses. Gila cypha piscivorous activity may escalate in hoop nets, which can confine fish of disparate sizes together; adults were significantly associated with YOY conspecifics and small dead fish in hoop nets at night and eight G. cypha (156-372 mm TL) regurgitated and/or defecated other fish body parts during handling following capture. Gila cypha can definitely be piscivorous given the opportunity, but the magnitude of their piscivorous activity in the wild is debatable.

  13. Novel Insights into the Bovine Polled Phenotype and Horn Ontogenesis in Bovidae

    PubMed Central

    Allais-Bonnet, Aurélie; Grohs, Cécile; Medugorac, Ivica; Krebs, Stefan; Djari, Anis; Graf, Alexander; Fritz, Sébastien; Seichter, Doris; Baur, Aurélia; Russ, Ingolf; Bouet, Stéphan; Rothammer, Sophie; Wahlberg, Per; Esquerré, Diane; Hoze, Chris; Boussaha, Mekki; Weiss, Bernard; Thépot, Dominique; Fouilloux, Marie-Noëlle; Rossignol, Marie-Noëlle; van Marle-Köster, Este; Hreiðarsdóttir, Gunnfríður Elín; Barbey, Sarah; Dozias, Dominique; Cobo, Emilie; Reversé, Patrick; Catros, Olivier; Marchand, Jean-Luc; Soulas, Pascal; Roy, Pierre; Marquant-Leguienne, Brigitte; Le Bourhis, Daniel; Clément, Laetitia; Salas-Cortes, Laura; Venot, Eric; Pannetier, Maëlle; Phocas, Florence; Klopp, Christophe; Rocha, Dominique; Fouchet, Michel; Journaux, Laurent; Bernard-Capel, Carine; Ponsart, Claire; Eggen, André; Blum, Helmut; Gallard, Yves; Boichard, Didier; Pailhoux, Eric; Capitan, Aurélien

    2013-01-01

    Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae. PMID:23717440

  14. Dry matter and energy partitioning in plants under climatic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any casemore » stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.« less

  15. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses.

    PubMed

    Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian

    2017-01-01

    Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes.

  16. Defective prolactin signaling impairs pancreatic β-cell development during the perinatal period

    PubMed Central

    Auffret, Julien; Freemark, Michael; Carré, Nadège; Mathieu, Yves; Tourrel-Cuzin, Cécile; Lombès, Marc; Movassat, Jamileh

    2013-01-01

    Prolactin (PRL) and placental lactogens stimulate β-cell replication and insulin production in pancreatic islets and insulinoma cells through binding to the PRL receptor (PRLR). However, the contribution of PRLR signaling to β-cell ontogeny and function in perinatal life and the effects of the lactogens on adaptive islet growth are poorly understood. We provide evidence that expansion of β-cell mass during both embryogenesis and the postnatal period is impaired in the PRLR−/− mouse model. PRLR−/− newborns display a 30% reduction of β-cell mass, consistent with reduced proliferation index at E18.5. PRL stimulates leucine incorporation and S6 kinase phosphorylation in INS-1 cells, supporting a role for β-cell mTOR signaling in PRL action. Interestingly, a defect in the development of acini is also observed in absence of PRLR signaling, with a sharp decline in cellular size in both endocrine and exocrine compartments. Of note, a decrease in levels of IGF-II, a PRL target, in the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes, is associated with a lack of PRL-mediated β-cell proliferation in embryonic pancreatic buds. Reduced pancreatic IGF-II expression in both rat and mouse models suggests that this factor may constitute a molecular link between PRL signaling and cell ontogenesis. Together, these results provide evidence that PRL signaling is essential for pancreas ontogenesis during the critical perinatal window responsible for establishing functional β-cell reserve. PMID:24064341

  17. Maternal care affects EEG properties of spike-wave seizures (including pre- and post ictal periods) in adult WAG/Rij rats with genetic predisposition to absence epilepsy.

    PubMed

    Sitnikova, Evgenia; Rutskova, Elizaveta M; Raevsky, Vladimir V

    2016-10-01

    WAG/Rij rats have a genetic predisposition to absence epilepsy and develop spontaneous spike-wave discharges in EEG during late ontogenesis (SWD, EEG manifestation of absence epilepsy). Changes in an environment during early postnatal ontogenesis can influence the genetically predetermined absence epilepsy. Here we examined the effect of maternal environment during weaning period on the EEG manifestation of absence epilepsy in adulthood. Experiments were performed in the offspring of WAG/Rij and Wistar rats. The newborn pups were fostered to dams of the same (in-fostering) or another strain (cross-fostering). Age-matched control WAG/Rij and Wistar rats were reared by their biological mothers. Absence seizures were uncommon in Wistar and were not aggravated in both in- and cross-fostered groups. In WAG/Rij rats, fewer SWD were found in the cross-fostered as compared to the in-fostered group. The cross-fostered WAG/Rij rats showed higher percentage of short-lasting SWD with duration <2s. The mean frequency of EEG at the beginning of SWD in the cross-fostered WAG/Rij rats was lower than in control (8.82 vs 9.25Hz), but it was higher in a period of 1.5s before and after SWD. It was concluded that a healthier maternal environment is able to alleviate genetically predetermined absence seizures in adulthood through changes in EEG rhythmic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. The Functional Genetics of Handedness and Language Lateralization: Insights from Gene Ontology, Pathway and Disease Association Analyses

    PubMed Central

    Schmitz, Judith; Lor, Stephanie; Klose, Rena; Güntürkün, Onur; Ocklenburg, Sebastian

    2017-01-01

    Handedness and language lateralization are partially determined by genetic influences. It has been estimated that at least 40 (and potentially more) possibly interacting genes may influence the ontogenesis of hemispheric asymmetries. Recently, it has been suggested that analyzing the genetics of hemispheric asymmetries on the level of gene ontology sets, rather than at the level of individual genes, might be more informative for understanding the underlying functional cascades. Here, we performed gene ontology, pathway and disease association analyses on genes that have previously been associated with handedness and language lateralization. Significant gene ontology sets for handedness were anatomical structure development, pattern specification (especially asymmetry formation) and biological regulation. Pathway analysis highlighted the importance of the TGF-beta signaling pathway for handedness ontogenesis. Significant gene ontology sets for language lateralization were responses to different stimuli, nervous system development, transport, signaling, and biological regulation. Despite the fact that some authors assume that handedness and language lateralization share a common ontogenetic basis, gene ontology sets barely overlap between phenotypes. Compared to genes involved in handedness, which mostly contribute to structural development, genes involved in language lateralization rather contribute to activity-dependent cognitive processes. Disease association analysis revealed associations of genes involved in handedness with diseases affecting the whole body, while genes involved in language lateralization were specifically engaged in mental and neurological diseases. These findings further support the idea that handedness and language lateralization are ontogenetically independent, complex phenotypes. PMID:28729848

  19. The Development of the Vestibular Apparatus Under Conditions of Weightlessness

    NASA Technical Reports Server (NTRS)

    Vinnikov, Y. A.; Gazenko, O. G.; Lychakov, D. V.; Palmbakh, L. R.

    1984-01-01

    A series of experiments has been carried out on the effect of space flight conditions on morphogenesis and the structure of the vestibular apparatus in amphibian and fish larvae. Larval development proceeded in weightlessness without serious morphological defects. The vestibular apparatus developed; its organization in the experimental animals did not differ qualitatively from that in the controls. The specific external stimulus (gravitation) appears not to be a necessary condition for the development of a gravitation receptor in ontogenesis although the appearance of the vestibular apparatus in phylogenesis was apparently related to this stimulus.

  20. [Gonadal ontogenesis and sex differentiation in the sea bass, Dicentrarchus labrax, under fish-farming conditions].

    PubMed

    Roblin, C; Bruslé, J

    1983-01-01

    The histology of the different stages of gonadal development (appearance of PGC, edification of gonad primordium, organization of an undifferentiated gonad, testicular or ovarian development) has been studied in fingerlings and juveniles of sea-bass in fish-culture conditions. Sex differentiation with a caudo-cranial gradient was direct and more in accordance with length than with age. Ovarian and testicular differentiation occurred in fish 11 to 23 months old and from 90 to 187 mm SL. Testis ova were frequently observed.

  1. Ontogenesis of mammals in microgravity

    NASA Technical Reports Server (NTRS)

    Gazenko, O. G. (Editor)

    1993-01-01

    This report is an English translation of a Russian report prepared by a group of authors from the USSR, Bulgaria, Hungary, the GDR, Poland, Czechoslovakia, France, and the USA. It presents results of the first microgravity experiment on mammalian embryology performed during the flight of the biosatellite Cosmos-1514 and in ground-based simulation studies. An overview is provided of the data available about the role of gravity in animal growth and development, and future studies into this problem are discussed. A new introduction has been provided for the English version.

  2. [Light modes and ovulation function in rats in ontogenesis].

    PubMed

    Vinogradova, I A; Chernova, I V

    2007-01-01

    Enhancement of illumination was shown to lead to occurrence of early and more obvious age-dependent changes of ovulation cycle in rats as compared with the same changes in animals staying in conditions of light deprivation or standard illumination. The effect of 24-hour illumination during a year induced more obvious and still earlier changes of the estrus cycle that the effect of natural illumination in the North-West of Russia with its peculiar yearly photo-periodicity (short light day in the autumn-winter period and "white nights" in the spring-summer period).

  3. Tool Using.

    PubMed

    Kahrs, Björn A; Lockman, Jeffrey J

    2014-12-01

    Research on the development of tool use in children has often emphasized the cognitive bases of this achievement, focusing on the choice of an artifact, but has largely neglected its motor foundations. However, research across diverse fields, from evolutionary anthropology to cognitive neuroscience, converges on the idea that the actions that embody tool use are also critical for understanding its ontogenesis and phylogenesis. In this article, we highlight findings across these fields to show how a deeper examination of the act of tool using can inform developmental accounts and illuminate what makes human tool use unique.

  4. Ernst Haeckel's ontogenetic recapitulation: irritation and incentive from 1866 to our time.

    PubMed

    Sander, Klaus

    2002-11-01

    Ernst Haeckel (1834-1919) must count among the most widely known biologists of his time. His monographs on radiolarian skeletons, sponges and medusae immediately became standard works, owing partly to lavish illustrations that later on culminated in his "Art Forms in Nature", which markedly influenced the "art nouveau" of the early 20th century. Haeckel's main impact, however, came from his numerous popular books that were crucial in transferring Darwin's ideas to continental Europe. Haeckel's main addition was his claim that ontogeny recapitulates phylogeny. It was partly founded on pre-Darwinian observations by J.F. Meckel and K.E. v. Baer who noticed that vertebrate embryos of different species resemble each other more strongly during early ontogenesis than later on. Wishing to illustrate this clearly, Haeckel clandestinely generalized some figures showing early embryos of animals and Man. This "fraud" provided ammunition for his many adversaries, most of whom felt provoked by his antireligious campaigns. The resulting controversies continued well into the 20th century but then subsided. Quite recently, however, they have flared up again, perhaps in connection with progress in molecular embryology that revealed an amazing evolutionary conservation of genes and their cooperation in signal transduction chains. The scientific publications that triggered this flare, and a selection of "Letters to the Editor" in both international science magazines and the German popular press, serve here to show that Haeckel's idea of recapitulation, while having proven its heuristic value, is still causing considerable irritation. This results from the widespread intuition that the marvels of ontogenesis and other biological phenomena must reflect some "intelligent design" rather than Darwinian evolution.

  5. Ontogenesis and functions of saxophone stem in Acrocomia aculeata (Arecaceae)

    PubMed Central

    e Souza, Joyce Nascimento; Ribeiro, Leonardo Monteiro; Mercadante-Simões, Maria Olívia

    2017-01-01

    Background and Aims The underground saxophone stem systems produced by seedlings of certain palm species show peculiar growth patterns and distinctive morphologies, although little information is available concerning their development and function. We studied the ontogenesis of the saxophone stem in Acrocomia aculeata, an important neotropical oleaginous palm, and sought to experimentally define its function. Methods Morpho-anatomical evaluations were performed during 240 d on seedlings using traditional methodologies. The tuberous region of the structure was submitted to histochemical tests and evaluated by transmission electron microscopy. The aerial portions of 130 1- to 3-year-old greenhouse plants were removed and their continuous growth capacity was evaluated after 30 d. Severed saxophone stems were also stored at room temperature (average 25 °C) for up to 90 d and then cultured for 60 d to evaluate root and shoot emission. Key Results The development of the saxophone stem is distinct from other underground systems previously described, and involves three processes: growth and curvature of the cotyledonary petiole, expansion and curvature of the hypocotyl, and expansion of the plumule internodes. The tuberous region stores water and starch, as well as lesser amounts of mucilage and oil. Growth of the aerial portion occurred in 84 % of the separated saxophone stems and in 53 % of the stems held in storage. Conclusions The saxophone stem represents an important adaptation of A. aculeata to anthropogenically impacted and/or dry environments by promoting the burial of both the shoot meristem and storage reserves, which allows the continuous growth of aerial organs. PMID:28028018

  6. Human Development VI: Supracellular Morphogenesis. The Origin of Biological and Cellular Order

    PubMed Central

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Nielsen, Maj Lyck; Merrick, Joav

    2006-01-01

    Uninterrupted morphogenesis shows the informational potentials of biological organisms. Experimentally disturbed morphogenesis shows the compensational dynamics of the biological informational system, which is the rich informational redundancy. In this paper, we use these data to describe morphogenesis in terms of the development of supracellular levels of the organism, and we define complex epigenesis and supracellular differentiation. We review the phenomena of regeneration and induction of Hydra and amphibians, and the higher animals informational needs for developing their complex nervous systems. We argue, also building on the NO-GO theorem for ontogenesis as chemistry, that the traditional chemical explanations of high-level informational events in ontogenesis, such as transmutation, regeneration, and induction, are insufficient. We analyze the informational dynamics of three embryonic compensatory reactions to different types of disturbances: (1) transmutations of the imaginal discs of insects, (2) regeneration after removal of embryonic tissue, and (3) embryonic induction, where two tissues that normally are separated experimentally are made to influence each other. We describe morphogenesis as a complex bifurcation, and the resulting morphological levels of the organism as organized in a fractal manner and supported by positional information. We suggest that some kind of real nonchemical phenomenon must be taking form in living organisms as an information-carrying dynamic fractal field, causing morhogenesis and supporting the organisms morphology through time. We argue that only such a phenomenon that provides information-directed self-organization to the organism is able to explain the observed dynamic distribution of biological information through morphogenesis and the organism's ability to rejuvenate and heal. PMID:17115082

  7. Increased salt intake during early ontogenesis lead to development of arterial hypertension in salt-resistant Wistar rats.

    PubMed

    Svitok, Pavel; Molcan, Lubos; Vesela, Anna; Kruzliak, Peter; Moravcik, Roman; Zeman, Michal

    2015-01-01

    A direct relationship exists between salt consumption and hypertension. Increased sodium intake does not automatically lead to a rise in blood pressure (BP) because of marked intra-individual variability in salt sensitivity. Wistar rats are a salt-resistant strain and increased salt intake in adults does not induce hypertension. Mechanisms regulating BP develop during early ontogenesis and increased sodium consumption by pregnant females leads to an increase in BP of their offspring, but early postnatal stages have not been sufficiently analyzed in salt-resistant strains of rats. The aim of this work was to study the effects of increased salt during early ontogeny on cardiovascular characteristics of Wistar rats. We used 16 control (C; 8 males + 8 females) rats fed with a standard diet (0.2% sodium) and 16 experimental (S; 8 males + 8 females) rats fed with a diet containing 0.8% sodium. BP was measured weekly and plasma renin activity, aldosterone and testosterone concentrations were assayed by radioimmunoassay after the experiment in 16-week-old animals. In the kidney, AT1 receptors were determined by the western blot. BP was higher in the S as compared with the C rats and did not differ between males and females. The relative left ventricle mass was increased in S as compared with C males and no differences were recorded in females. No significant differences between groups were found in hormonal parameters and AT1 receptors. Results indicate that moderately increased salt intake during postnatal ontogeny results in a BP rise even in salt-resistant rats.

  8. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.

    PubMed

    Srivastava, Shivani; Conlan, Xavier A; Cahill, David M; Adholeya, Alok

    2016-11-01

    Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

  9. Hip ontogenesis: how evolution, genes, and load history shape hip morphotype and cartilotype.

    PubMed

    Hogervorst, Tom; Eilander, Wouter; Fikkers, Joost T; Meulenbelt, Ingrid

    2012-12-01

    Developmental hip disorders (DHDs), eg, developmental dysplasia of the hip, slipped capitis femoris epiphysis, and femoroacetabular impingement, can be considered morphology variants of the normal hip. The femoroacetabular morphology of DHD is believed to induce osteoarthritis (OA) through local cumulative mechanical overload acting on genetically controlled patterning systems and subsequent damage of joint structures. However, it is unclear why hip morphology differs between individuals with seemingly comparable load histories and why certain hips with DHD progress to symptomatic OA whereas others do not. We asked (1) which mechanical factors influence growth and development of the proximal femur; and (2) which genes or genetic mechanisms are associated with hip ontogenesis. We performed a systematic literature review of mechanical and genetic factors of hip ontogeny. We focused on three fields that in recent years have advanced our knowledge of adult hip morphology: imaging, evolution, and genetics. WHERE ARE WE NOW?: Mechanical factors can be understood in view of human evolutionary peculiarities and may summate to load histories conducive to DHD. Genetic factors most likely act through multiple genes, each with modest effect sizes. Single genes that explain a DHD are therefore unlikely to be found. Apparently, the interplay between genes and load history not only determines hip morphotype, but also joint cartilage robustness ("cartilotype") and resistance to symptomatic OA. WHERE DO WE NEED TO GO?: We need therapies that can improve both morphotype and cartilotype. HOW DO WE GET THERE?: Better phenotyping, improving classification systems of hip morphology, and comparative population studies can be done with existing methods. Quantifying load histories likely requires new tools, but proof of principle of modifying morphotype in treatment of DDH and of cartilotype with exercise is available.

  10. Invited review: gravitational biology of the neuromotor systems: a perspective to the next era

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Roy, R. R.

    2000-01-01

    Earth's gravity has had a significant impact on the designs of the neuromotor systems that have evolved. Early indications are that gravity also plays a key role in the ontogenesis of some of these design features. The purpose of the present review is not to assess and interpret a body of knowledge in the usual sense of a review but to look ahead, given some of the general concepts that have evolved and observations made to date, which can guide our future approach to gravitational biology. We are now approaching an era in gravitational biology during which well-controlled experiments can be conducted for sustained periods in a microgravity environment. Thus it is now possible to study in greater detail the role of gravity in phylogenesis and ontogenesis. Experiments can range from those conducted on the simplest levels of organization of the components that comprise the neuromotor system to those conducted on the whole organism. Generally, the impact of Earth's gravitational environment on living systems becomes more complex as the level of integration of the biological phenomenon of interest increases. Studies of the effects of gravitational vectors on neuromotor systems have and should continue to provide unique insight into these mechanisms that control and maintain neural control systems designed to function in Earth's gravitational environment. A number of examples are given of how a gravitational biology perspective can lead to a clearer understanding of neuromotor disorders. Furthermore, the technologies developed for spaceflight studies have contributed and should continue to contribute to studies of motor dysfunctions, such as spinal cord injury and stroke. Disorders associated with energy support and delivery systems and how these functions are altered by sedentary life styles at 1 G and by space travel in a microgravity environment are also discussed.

  11. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae).

    PubMed

    Carneiro, Renê G S; Oliveira, Denis C; Isaias, Rosy M S

    2014-12-01

    The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape. Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.

  12. [Life cycle of Maupasina weissi Seurat, 1913, Subuluroidea Nematode, parasite of the elephant shrew (author's transl)].

    PubMed

    Quentin, J C; Verdier, J M

    1979-01-01

    The life cycle of Maupasina weissi Seurat, 1913, the parasite of the elephant shrew, has been experimentally obtained from the intermediate host Locusta migratoria. The biology of this Nematoda is considered as being more primitive than the Subuluridae: -- egg maturation in external environment is in fact necessary to the Maupasina larvae to penetrate into the insect, -- The different localizations of the infective larvae, such as mesenteron regeneration crypta, fat body, demonstrate that the parasite is not completely adaptated to its intermediate host, -- the ontogenesis of cephalic structures is characterized by an hypertrophy of the archaic structures mainly from cuticular origin.

  13. Right Müllerian duct in the domestic fowl during postnatal ontogenesis.

    PubMed

    Hlozánková, E; Zelenka, J

    1978-01-01

    In this study the postembryonal changes of the right Müllerian duct are investigated. This structure was found in all female broilers of the hybrid combination Ross 1 as well as in hens of the female line of parent stock for the production of this hybrid. A thready structure of the length of several millimeters observed in one-day-old females develops in chicks into a long, thin-walled ampula filled up with clear liquid. In mature hens this rudiment is markedly long and its shape is rather different. In some cases the Müllerian duct was divided into several parts which might be compared with individual parts of the left oviduct.

  14. Comparative morphological studies on four populations of the shrimp Rimicaris exoculata from the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Vereshchaka, A. L.

    1997-11-01

    Four populations (a total of 677 specimens) of the hydrothermal shrimp species Rimicaris exoculata from three Mid-Atlantic Ridge vent fields were studied: Broken Spur (29°N), TAG (26°N), and "14-45" (14°N). Five morphological characters were analysed: number of dorsolateral spines on telson, telative carapace width, relative abdominal length, presence of "abnormal telson", and fat content. Dependences of each character upon shrimp size were analysed. Division of the shrimp ontogenesis on the basis of general morphology is proposed. Phenotypic analysis based upon five selected characters revealed statistically significant divergence between two populations within the same vent field TAG. Probable causes of observed divergence are discussed.

  15. Tissue-specific regulation of malic enzyme by thyroid hormone in the neonatal rat.

    PubMed

    Sood, A; Schwartz, H L; Oppenheimer, J H

    1996-05-15

    Two recent studies have claimed that thyroid hormone administration accelerates malic enzyme gene expression in the neonatal brain in contrast to the well-documented lack of effect of triiodothyronine on malic enzyme gene expression in the adult brain. Since these observations conflict with earlier observations in our laboratory, we reinvestigated the effect of thyroid hormone status on the ontogeny of malic enzyme gene expression in the neonatal rat. Neither hypothyroidism nor hyperthyroidism influenced the ontogenesis of malic enzyme activity in neonatal brain whereas the patterns of gene expression and enzyme activity in liver were markedly affected. Our results suggest that tissue-specific factors in brain block thyroid hormone-induced gene expression by thyroid hormone.

  16. [Double fertilization in flowering plants: 1898-2008].

    PubMed

    Kordium, E L

    2008-01-01

    A short review of the results of investigations in the field of plant embryology in vivo and in vitro which are directly connected with the discovery of double fertilization in flowering plants by S.G. Navashin is presented. These results have been obtained by using the methods of electron and fluorescence microscopy, cytophotometry, cultures of isolated ovules, sperms, eggs, and embryo sac central cells. The question on an origin of the female gametophyte of flowering plants, double fertilization, and endosperm are discussed. It is emphasized that the progress in this field is connected mostly with the study of molecular processes which control the development and functioning of a female gametophyte and sporophyte at the early stages of ontogenesis.

  17. Stability and Variability in Aesthetic Experience: A Review

    PubMed Central

    Jacobsen, Thomas; Beudt, Susan

    2017-01-01

    Based on psychophysics’ pragmatic dualism, we trace the cognitive neuroscience of stability and variability in aesthetic experience. With regard to different domains of aesthetic processing, we touch upon the relevance of cognitive schemata for aesthetic preference. Attitudes and preferences are explored in detail. Evolutionary constraints on attitude formation or schema generation are elucidated, just as the often seemingly arbitrary influences of social, societal, and cultural nature are. A particular focus is put on the concept of critical periods during an individual’s ontogenesis. The latter contrasting with changes of high frequency, such as fashion influences. Taken together, these analyses document the state of the art in the field and, potentially, highlight avenues for future research. PMID:28223955

  18. Stability and Variability in Aesthetic Experience: A Review.

    PubMed

    Jacobsen, Thomas; Beudt, Susan

    2017-01-01

    Based on psychophysics' pragmatic dualism, we trace the cognitive neuroscience of stability and variability in aesthetic experience. With regard to different domains of aesthetic processing, we touch upon the relevance of cognitive schemata for aesthetic preference. Attitudes and preferences are explored in detail. Evolutionary constraints on attitude formation or schema generation are elucidated, just as the often seemingly arbitrary influences of social, societal, and cultural nature are. A particular focus is put on the concept of critical periods during an individual's ontogenesis. The latter contrasting with changes of high frequency, such as fashion influences. Taken together, these analyses document the state of the art in the field and, potentially, highlight avenues for future research.

  19. [The nonlinear parameters of interference EMG of two day old human newborns].

    PubMed

    Voroshilov, A S; Meĭgal, A Iu

    2011-01-01

    Temporal structure of interference electromyogram (iEMG) was studied in healthy two days old human newborns (n = 76) using the non-linear parameters (correlation dimension, fractal dimension, correlation entropy). It has been found that the non-linear parameters of iEMG were time-dependent because they were decreasing within the first two days of life. Also, these parameters were sensitive to muscle function, because correlation dimension, fractal dimension, and correlation entropy of iEMG in gastrocnemius muscle differed from the other muscles. The non-linear parameters were proven to be independent of the iEMG amplitude. That model of early ontogenesis may be of potential use for investigation of anti-gravitation activity.

  20. [Evolution of the pelvis and hip throughout history: from primates to modern man].

    PubMed

    Lapègue, F; Jirari, M; Sethoum, S; Faruch, M; Barcelo, C; Moskovitch, G; Ponsot, A; Rabat, M-C; Labarre, D; Vial, J; Chiavassa, H; Baunin, C; Railhac, J-J; Sans, N

    2011-06-01

    The evolution to a bipedal mode of locomotion was accompanied by a verticalization of the spine and a modification in the shape of the pelvis: horizontal curvature and sagittal rotation. Phylogenesis meets ontogenesis: flat bones in fetuses similar to the monkey, australopithecus features at birth and "human-like" features by 7 or 8years of age. These anatomical modifications explain the characteristics of human bipedalism: stable, economical, with hip and knee extension in the standing position with little lateral motion. Some pathologies induce a regression to a more archaic mode of bipedal locomotion. Copyright © 2011 Elsevier Masson SAS and Éditions françaises de radiologie. All rights reserved.

  1. [Biological experiments on "Kosmos-1887"].

    PubMed

    Alpatov, A M; I'lin, E A; Antipov, V V; Tairbekov, M G

    1989-01-01

    In the 13-ray space flight on Kosmos-1887 various experiments in the field of cell biology, genetics, biorhythm, developmental biology and regeneration were performed using bacteria, protozoa, plants, worms, insects, fish and amphibia. Paramecia showed enhanced cell proliferation, spheroidization and diminished protein content. Experiments on fruit-flies, newt oocytes and primate lymphocytes confirmed involvement of the cell genetic apparatus in responses to microgravity. Beetles exhibited a reduction of the length of the spontaneous period of freely running circadian rhythms. Carausius morosus developed latent changes in early embryogenesis which manifested at later stages of ontogenesis. Exposure to microgravity did not prevent recovery of injured tissues; moreover their regeneration may be accelerated after recovery. Biology research programs in future biosatellite flights are discussed.

  2. Food bodies in Cissus verticillata (Vitaceae): ontogenesis, structure and functional aspects

    PubMed Central

    Paiva, Elder Antônio Sousa; Buono, Rafael Andrade; Lombardi, Julio Antonio

    2009-01-01

    Background and Aims The distinction between pearl bodies (or pearl glands) and food bodies (FBs) is not clear; neither is our understanding of what these structures really represent. The present work examined the ontogenesis, structure, ultrastructure and histochemical aspects of the protuberances in Cissus verticillata, which have been described since the beginning of the 19th century as pearl glands or pearl bodies, in order to establish a relationship between their structure and function. Methods Segments of stems and leaves in different stages of development were collected and fixed for study under light microscopy as well as electron transmission and scanning microscopy. Samples of FBs were subjected to chemical analysis using thin-layer chromatography. Key Results The FBs in C. verticillata are globose and attached to the plant by a short peduncle. These structures are present along the entire stem during primary growth, and on the inflorescence axis and the abaxial face of the leaves. The FBs were observed to be of mixed origin, with the participation of both the epidermis and the underlying parenchymatic cells. The epidermis is uniseriate with a thin cuticle, and the cells have dense cytoplasm and a large nucleus. The internal parenchymatic cells have thin walls; in the young structures these cells have dense cytoplasm with a predominance of mitochondria and plastids. In the mature FBs, the parenchymatic cells accumulate oils and soluble sugars; dictyosomes and rough endoplasmic reticulum predominate in the cytoplasm; the vacuoles are ample. Removal of the FBs appears to stimulate the formation of new ones, at the same place. Conclusions The vegetative vigour of the plant seems to influence the number of FBs produced, with more vigorous branches having greater densities of FBs. The results allow the conclusion that the structures traditionally designated pearl glands or pearl bodies in C. verticillata constitute FBs that can recruit large numbers of ants. PMID:19049986

  3. RIP2 Is a Critical Regulator for NLRs Signaling and MHC Antigen Presentation but Not for MAPK and PI3K/Akt Pathways.

    PubMed

    Wu, Xiao Man; Chen, Wen Qin; Hu, Yi Wei; Cao, Lu; Nie, Pin; Chang, Ming Xian

    2018-01-01

    RIP2 is an adaptor protein which is essential for the activation of NF-κB and NOD1- and NOD2-dependent signaling. Although NOD-RIP2 axis conservatively existed in the teleost, the function of RIP2 was only reported in zebrafish, goldfish, and rainbow trout in vitro . Very little is known about the role and mechanisms of piscine NOD-RIP2 axis in vivo . Our previous study showed the protective role of zebrafish NOD1 in larval survival through CD44a-mediated activation of PI3K-Akt signaling. In this study, we examined whether RIP2 was required for larval survival with or without pathogen infection, and determined the signaling pathways modulated by RIP2. Based on our previous report and the present study, our data demonstrated that NOD1-RIP2 axis was important for larval survival in the early ontogenesis. Similar to NOD1, RIP2 deficiency significantly affected immune system processes. The significantly enriched pathways were mainly involved in immune system, such as "Antigen processing and presentation" and "NOD-like receptor signaling pathway" and so on. Furthermore, both transcriptome analysis and qRT-PCR revealed that RIP2 was a critical regulator for expression of NLRs (NOD-like receptors) and those genes involved in MHC antigen presentation. Different from NOD1, the present study showed that NOD1, but not RIP2 deficiency significantly impaired protein levels of MAPK pathways. Although RIP2 deficiency also significantly impaired the expression of CD44a, the downstream signaling of CD44a-Lck-PI3K-Akt pathway remained unchanged. Collectively, our works highlight the similarity and discrepancy of NOD1 and RIP2 in the regulation of immune signaling pathways in the zebrafish early ontogenesis, and confirm the crucial role of RIP2 in NLRs signaling and MHC antigen presentation, but not for MAPK and PI3K/Akt pathways.

  4. The ontogenesis of narrative: from moving to meaning

    PubMed Central

    Delafield-Butt, Jonathan T.; Trevarthen, Colwyn

    2015-01-01

    Narrative, the creation of imaginative projects and experiences displayed in expressions of movement and voice, is how human cooperative understanding grows. Human understanding places the character and qualities of objects and events of interest within stories that portray intentions, feelings, and ambitions, and how one cares about them. Understanding the development of narrative is therefore essential for understanding the development of human intelligence, but its early origins are obscure. We identify the origins of narrative in the innate sensorimotor intelligence of a hypermobile human body and trace the ontogenesis of narrative form from its earliest expression in movement. Intelligent planning, with self-awareness, is evident in the gestures and motor expressions of the mid-gestation fetus. After birth, single intentions become serially organized into projects with increasingly ambitious distal goals and social meaning. The infant imitates others’ actions in shared tasks, learns conventional cultural practices, and adapts his own inventions, then names topics of interest. Through every stage, in simple intentions of fetal movement, in social imitations of the neonate, in early proto-conversations and collaborative play of infants and talk of children and adults, the narrative form of creative agency with it four-part structure of ‘introduction,’ ‘development,’ ‘climax,’ and ‘resolution’ is present. We conclude that shared rituals of culture and practical techniques develop from a fundamental psycho-motor structure with its basic, vital impulses for action and generative process of thought-in-action that express an integrated, imaginative, and sociable Self. This basic structure is evident before birth and invariant in form throughout life. Serial organization of single, non-verbal actions into complex projects of expressive and explorative sense-making become conventional meanings and explanations with propositional narrative power. Understanding the root of narrative in embodied meaning-making in this way is important for practical work in therapy and education, and for advancing philosophy and neuroscience. PMID:26388789

  5. Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases

    NASA Astrophysics Data System (ADS)

    Badino, Massimiliano; Friedrich, Bretislav

    2013-09-01

    The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.

  6. Geological criteria and geophysical methods of natural bitumen deposits preparation to the development

    NASA Astrophysics Data System (ADS)

    Uspensky, B. V.; Borovsky, M. Ya; Vafin, R. F.; Valeeva, S. E.; Mudarisova, R. A.

    2018-05-01

    The article considers the provisions of the ontogenesis of the following factors in the formation of natural bitumen clusters in the Permian deposits of the Melekesskiy region: genetic, geodynamic, structural and hydrogeological. It is shown that tectonically weakened zones and zones of Neogene incisions development are fixed by high-precision gravimetry in the form of intense local minima of gravity. A favorable factor contributing to the "strengthening" of anomalous geophysical effects is the coincidence of the locations of these geological section heterogeneities in the plan. It is recommended at the stage of experimental-industrial operation a complex of geophysical methods for monitoring the processes of natural bitumen deposits development by means of secondary impact on the formation. High-precision magnetic, thermal and electrical prospecting in various modifications are used.

  7. The discrimination of fish egg quality and viability by using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishigaki, Mika; Sato, Hidetoshi

    2014-03-01

    Sexual reproductive body can be produced from a fertilized ovum. Once the ovum is fertilized with sperm, it runs through the cell division, differentiates to all kinds of cells, and goes to make a complete body. However, not all of them are viable and some of them stop to ontogenesis showing the developmental abnormality. In order to discriminate the egg quality, we apply Raman spectroscopy for fish egg. After the measurement, these Raman data are checked up with the information about the eggs can survive or not, and we examine what factors are important in egg components to distinguish between "good quality" and "not good quality". We present the results of assessment of egg quality, and investigate whether Raman spectroscopy can be used to a discriminate of egg quality.

  8. Persistence of the nervus terminalis in adult bats: a morphological and phylogenetical approach.

    PubMed

    Oelschläger, H A

    1988-01-01

    The presence of the terminalis system in adult bats is demonstrated by light microscopical investigation of several species of Microchiroptera. In late embryonic and fetal stages of the mouse-eared bat (Myotis myotis) the compact central terminalis ganglion gradually differentiates into a three-dimensional network of cord-like ganglia and fiber bundles. Rostrally the terminalis system is in immediate contact with the medial-most fila olfactoria; caudally terminalis rootlets attach near the border between the olfactory bulb and the septum of the brain. With respect to the findings presented here it seems likely that all mammals develop a terminalis system in early ontogenesis and retain it until the adult stage. However, considerable differences concerning the number of persisting neurons may be found among some mammalian orders.

  9. Identification of differentially expressed genes in the zebrafish hypothalamus - pituitary axis

    PubMed Central

    Toro, Sabrina; Wegner, Jeremy; Muller, Marc; Westerfield, Monte; Varga, Zoltan M.

    2009-01-01

    The vertebrate hypothalamic-pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic and neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes and ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function. PMID:19166982

  10. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease

    PubMed Central

    Gourdie, Robert G.; Dimmeler, Stefanie; Kohl, Peter

    2016-01-01

    Our understanding of cardiac fibroblast functions has moved beyond their roles in heart structure and extracellular matrix generation, and now includes contributions to paracrine, mechanical and electrical signalling during ontogenesis and normal cardiac activity. Fibroblasts have central roles in pathogenic remodelling during myocardial ischaemia, hypertension and heart failure. As key contributors to scar formation, they are crucial for tissue repair after interventions including surgery and ablation. Novel experimental approaches targeting cardiac fibroblasts are promising potential therapies for heart disease. Indeed, several existing drugs act, at least partially, through effects on cardiac connective tissue. This Review outlines the origins and roles of fibroblasts in cardiac development, homeostasis and disease; illustrates the involvement of fibroblasts in current and emerging clinical interventions; and identifies future targets for research and development. PMID:27339799

  11. The pillars of land plants: new insights into stem development.

    PubMed

    Serrano-Mislata, Antonio; Sablowski, Robert

    2018-05-12

    In spite of its central importance in evolution, plant architecture and crop improvement, stem development remains poorly understood relative to other plant organs. Here, we summarise current knowledge of stem ontogenesis and its regulation, including insights from new image analysis and biophysical approaches. The stem initiates in the rib zone (RZ) of the shoot apical meristem, under transcriptional control by DELLA and BLH proteins. Links have emerged between these regulators and cell proliferation, patterning and oriented growth in the RZ. During subsequent internode elongation, cell wall properties and mechanics have been analysed in detail, revealing pectin modification as a prominent control point. Recent work has also highlighted signalling to coordinate growth of stem tissues with different mechanical properties. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. The dual biological identity of human beings and the naturalization of morality.

    PubMed

    Azzone, Giovanni Felice

    2003-01-01

    The last two centuries have been the centuries of the discovery of the cell evolution: in the XIX century of the germinal cells and in the XX century of two groups of somatic cells, namely those of the brain-mind and of the immune systems. Since most cells do not behave in this way, the evolutionary character of the brain-mind and of the immune systems renders human beings formed by t wo different groups of somatic cells, one with a deterministic and another with an indeterministic (say Darwinian) behavior. An inherent consequence is that of the generation, during ontogenesis, of a dual biological identity. The concept of the dual biological identity may be used to explain the Kantian concept of the two metaphysical worlds, namely of the causal necessity and of the free will (Azzone, 2001). Two concepts, namely those of complex adaptive systems (CAS) and of emergence (Holland, 2002), are useful tools for understanding the mechanisms of adaptation and of evolution. The concept of complex adaptive systems indicates that living organisms contain series of stratified components, denoted as building blocks, forming stratified layers of increasing complexity. The concept of emergence implies the use of repeating patterns and of building blocks for the generation of structures of increasing levels of complexity, structures capable of exchanging communications both in the top-down and in the bottom-up direction. Against the concept of emergence it has been argued that nothing can produce something which is really new and endowed of causal efficacy. The defence of the concept of emergence is based on two arguments. The first is the interpretation of the variation-selection mechanism as a process of generation of information and of optimization of free energy dissipation in accord with the second principle of thermodynamics. The second is the objective evidence of the cosmological evolution from the Big Bang to the human mind and its products. Darwin has defended the concept of the continuity of evolution. However evolution should be considered as continuous when there is no increase of information and as discontinuous when there is generation of new information. Examples of such generation of information are the acquisition of the innate structures for language and the transition from absence to presence of morality. There are several discontinuity thresholds during both phylogenesis and ontogenesis. Morality is a relational property dependent on the interactions of human beings with the environment. Piaget and Kohlberg have shown that the generation of morality during childhood occurs through several stages and is accompanied by reorganization of the child mental organization. The children respect the conventions in the first stage and gradually generate their autonomous morality. The transition from absence to presence of morality, a major adaptive process, then, not only has occurred during phylogenesis but it occurs again in every human being during ontogenesis. The religious faith does not provide a logical justification of the moral rules (Ayala, 1987) but rather a psychological and anthropological justification of two fundamental needs of human beings: that of rendering Nature an understandable entity, and that of increasing the cooperation among members of the human societies. The positive effects of the altruistic genes in the animal societies are in accord with the positive effects of morality for the survival and development of the human societies.

  13. Emergence, development, and maturity of the gonad of two species of chitons "sea cockroach" (Mollusca: Polyplacophora) through the early life stages.

    PubMed

    Avila-Poveda, Omar Hernando; Abadia-Chanona, Quetzalli Yasú

    2013-01-01

    This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or "early life stages" were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aX(b) . A total of 125 chitons (4≤TL≤40 mm, in total length "TL") were used. All allometric relations showed a strong positive correlation (r), close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods ("Pw" without gonad, "Pe" gonad emergence, and "Pf" gonadal sac formed) and four stages ("S0" gametocytogenesis, "S1" gametogenesis, "S2" mature, and "S3" spawning), respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13-14.32 mm, Pe 10.32-16.93 mm, Pf 12.99-25.01 mm, S0 16.08-24.34 mm (females) and 19.51-26.60 mm (males), S1 27.15-35.63 mm (females) and 23.45-32.27 mm (males), S2 24.48-40.24 mm (females) and 25.45-32.87 mm (males). Sexual differentiation (in S0) of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult) are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management.

  14. Intent, Future, Anticipation: A Semiotic, Transdisciplinary Approach

    NASA Astrophysics Data System (ADS)

    Loeckenhoff, Hellmut

    2008-10-01

    Encouraged e.g. by chaos theory and (bio-)semiotics science is trying to attempt a deeper understanding of life. The paradigms of physics alone prove not sufficient to explain f. ex. evolution or phylogenesis and ontogenesis. In complement, research on life systems reassesses paradigmatic models not only for living systems and not only on the strict biological level. The ontological as well as the epistemological base of science in toto is to be reconsidered. Science itself proves a historical and cultural phenomenon and can be seen as shaped by evolution and semiosis. -Living systems are signified by purpose, intent and, necessarily, by the faculty to anticipate e.g. the cyclic changes of their environment. To understand the concepts behind a proposal is developed towards a model set constituting a transdisciplinary approach. It rests e.g. on concepts of systems, evolution, complexity and semiodynamics.

  15. [Effect of Triton X-100 on genetic segregation and associated monocotyledonous and dicotyledonous traits in sugarbeet (Beta vulgaris L.)].

    PubMed

    Kirikovich, S S; Levites, E V

    2013-05-01

    The effect of Triton X-100 (TX-100) on the ratio of phenotypic classes and the expression of morphological traits in the progeny of sugar beet hybrids (N12 and N2) was investigated. It was shown that the TX-100 exposition on the unopened flower buds of sugar beets has different effects on hybrid progenies. In agamospermic progeny of hybrid plant No 12km-4, a significant decrease in the heteroallelic (heterozygous) phenotypic classes of alcohol dehydrogenase (ADH1) fraction was determined in the nonagamospermic progeny of hybrid plant No 2km-2 appearance of sugar beet seedlings with one cotyledon leaf was detected. The obtained results indicate the high efficiency of the epimutagenic effect of TX-100 on the early stages of plant ontogenesis.

  16. [Impact of hypoxia in different periods of prenatal ontogenesis on ECoG of rabbit fetus].

    PubMed

    Guseĭnov, A G; Mamedov, Kh B

    2012-10-01

    Sensitivity of ECoG of sensorimotor cortex of 28-day rabbit foetus in different periods (prefetal and fetal) of embryogenesis to hypoxia impact was studied. In the foetus subjected to hypoxia during prefetal period (8-18th days) in the spectrum of the general activity the increase of slow waves, occupying little portion of the spectrum, is noticed, while the main delta-rhythm has more clear pattern. At the same time, hypoxia, undertaken in the fetal period (18-28th days) does not have significant effect on ECoG indexes. On the basis of our own and literature data one can propose tha high sensitivity of ECoG to oxygen deficiency is due to low stability of the brain cortex itself and subcortical white matter to hypoxic inpairement in early embriogenesis.

  17. [Perinatal model of human transition from hypogravity to the earth's gravity based on the electromyogram nonlinear characteristics].

    PubMed

    Meĭgal, A Iu; Voroshilov, A S

    2009-01-01

    Interferential electromyogram (iEMG) was analyzed in healthy newborn infants (n=29) during the first 24 hours of life as a model of transition from hypogravity (intrauterine immersion) to the Earth's gravity (postnatal period). Nonlinear instruments of iEMG analysis (correlation dimension, entropy and fractal dimension) reflected the complexity, chaotic character and predictability of signals from the leg and arm antagonistic muscles. Except for m. gastrocnemius, in all other musles iEMG fractal dimension was shown to grow as the postnatal period extended. Low fractal and correlation dimensions and entropy marked flexor muscles, particularly against low iEMG amplitude suggesting a better congenital programming for the flexors as compared to the extensors. It is concluded that the early ontogenesis model can be practicable in studying the evolution and states of antigravity functions.

  18. The current state of knowledge on the neuroactive compounds that affect the development, mating and reproduction of spiders (Araneae) compared to insects.

    PubMed

    Sawadro, Marta; Bednarek, Agata; Babczyńska, Agnieszka

    2017-06-01

    The neuroendocrine system of insects, including the presence of the main neuroactive compounds, and their role in ontogenesis are probably best understood of all the arthropods. Development, metamorphosis, the maturation of the gonads, vitellogenesis and egg production are regulated by hormones (juvenile hormones, ecdysteroids) and neuropeptides. However, knowledge about their presence and functions in spiders is fragmentary. In this paper, we present a summary of the current data about the juvenile hormones, ecdysteroids and neuropeptides in selected groups of arthropods, with particular emphasis on spiders. This is the first article that takes into account the occurrence, action and role of hormones and neuropeptides in spiders. In addition, the suggestions for possible ways to study these compounds in Araneomorphae spiders are unique and cannot be found in the arachnological literature.

  19. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs--including remarks on ontogenesis and evolution.

    PubMed

    Büsse, Sebastian; Helmker, Benjamin; Hörnschemeyer, Thomas

    2015-08-06

    The species of Epiophlebia are unique among the recent Odonata in showing a mixture of morphological characters of dragonflies (Anisoptera) and damselflies (Zygoptera). The status of the four described extant species of Epiophlebia is disputable from a genetic as well as from a morphological point of view. Here we present an analysis of the thoracic musculature of different nymphal instars of Epiophlebia laidlawi and Epiophlebia superstes to elucidate their morphology and ontogenetic development. In total, 75 muscles have been identified in the thorax of Epiophlebia. This represents the highest number of thoracic muscles ever found in any odonate. It includes six muscles that are reported for the first time for Odonata, and three of these are even new for Pterygota. In total, our results indicate that Epiophlebia has the most ancestral thoracic morphology among Odonata.

  20. The Transition from Animal to Linguistic Communication.

    PubMed

    Smit, Harry

    Darwin's theory predicts that linguistic behavior gradually evolved out of animal forms of communication (signaling). However, this prediction is confronted by the conceptual problem that there is an essential difference between signaling and linguistic behavior: using words is a normative practice. It is argued that we can resolve this problem if we (1) note that language evolution is the outcome of an evolutionary transition, and (2) observe that the use of words evolves during ontogenesis out of babbling. It is discussed that language evolved as the result of an expansion of the vocalizing powers of our ancestors. This involved an increase in the volitional control of our speech apparatus (leading to the ability to produce new combinations of vowels and consonants), but also the evolution of socially guided learning. It resulted in unique human abilities, namely doing things with words and later reasoning and giving reasons.

  1. [Acute hybrid leukemia. Review of the literature and presentation of a case].

    PubMed

    Guzzini, F; Angelopoulos, N; Banfi, L; Coppetti, D; Ceppi, M; Camerone, G

    1990-03-01

    In the last years, the development of immunophenotypic and molecular analyses allowed to recognize several cases of hybrid acute leukemia (AL), whose blast cell display both lymphoid and myeloid features. Hybrid, or mixed-lineage, AL seems to have distinct clinical manifestations and hematological findings, and is mainly characterized by resistance to chemotherapy and poor prognosis. We report on a patient with AL, which showed a very rapid switch from the lymphoblastic phenotype exhibited at presentation to a myelomonoblastic one, appeared at first relapse, and lastly progressed to an undifferentiated leukemia in the terminal phase. Together with this morphologic and cytochemical evolution, leukemic cells expressed, besides the primary early-B antigens, new immunological markers related to T-lymphocytic and myeloid lineages. Based on this observation and current understanding of the ontogenesis of hematologic malignancies, we discuss biological mechanisms which are likely to underlie hybrid leukemia.

  2. THE EFFECT OF IONIZING RADIATIONS ON ONTOGENESIS IN BIRDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinu, M.

    1963-01-01

    The effect of strong doses of ionizing radiations on the ontogenetic development of birds and formation of mutations was studied. The data obtained show that ionizing radiations have a different effect on the biological substratum, depending on their nature and relationship to physiological limits. Gamma radiations have a negative action on the biochemical process altering ths substratum and upsetting the entity of heredity. It was found that x rays produce a temporary stimulating effect on metabolic processes influencing the vitality, ontogenetic development, resistance, the appearance of sexual instinct, and the fertility. Ionizing radiations affect functioning of endocrinic glands and consequentlymore » the ratio of sexes in the offspring. From the results obtained it cand be stated that strong doses of ionizing radiations may be used to obtain variation of mutations, and that in general they are a factor in the evolution of the living organism. (OTS)« less

  3. Phylogeny of the order Choreotrichida (Ciliophora, Spirotricha, Oligotrichea) as inferred from morphology, ultrastructure, ontogenesis, and SSrRNA gene sequences

    PubMed Central

    Agatha, Sabine; Strüder-Kypke, Michaela C.

    2010-01-01

    The phylogeny within the order Choreotrichida is reconstructed using (i) morphologic, ontogenetic, and ultrastructural evidence for the cladistic approach and (ii) the small subunit ribosomal RNA (SSrRNA) gene sequences, including the new sequence of Rimostrombidium lacustris. The morphologic cladograms and the gene trees converge rather well for the Choreotrichida, demonstrating that hyaline and agglutinated loricae do not characterize distinct lineages, i.e., both lorica types can be associated with the most highly developed ciliary pattern. The position of Rimostrombidium lacustris within the family Strobilidiidae is corroborated by the genealogical analyses. The diagnosis of the genus Tintinnidium is improved, adding cytological features, and the genus is divided into two subgenera based on the structure of the somatic kineties. The diagnosis of the family Lohmanniellidae and the genus Lohmanniella are improved, and Rimostrombidium glacicolum​ Petz, Song and Wilbert, 1995 is affiliated. PMID:17166704

  4. Socioemotional, Personality, and Biological Development: Illustrations from a Multilevel Developmental Psychopathology Perspective on Child Maltreatment.

    PubMed

    Cicchetti, Dante

    2016-01-01

    Developmental theories can be affirmed, challenged, and augmented by incorporating knowledge about atypical ontogenesis. Investigations of the biological, socioemotional, and personality development in individuals with high-risk conditions and psychopathological disorders can provide an entrée into the study of system organization, disorganization, and reorganization. This article examines child maltreatment to illustrate the benefit that can be derived from the study of individuals subjected to nonnormative caregiving experiences. Relative to an average expectable environment, which consists of a species-specific range of environmental conditions that support adaptive development among genetically normal individuals, maltreating families fail to provide many of the experiences that are required for normal development. Principles gleaned from the field of developmental psychopathology provide a framework for understanding multilevel functioning in normality and pathology. Knowledge of normative developmental processes provides the impetus to design and implement randomized control trial (RCT) interventions that can promote resilient functioning in maltreated children.

  5. [Autism, neurodevelopment and early detection].

    PubMed

    Martos-Pérez, J

    2006-02-13

    Autistic disorder is briefly explained and defined in the light of recent research. From the perspective offered by ontogenesis and the acquisitions that take place during normal development, we present an updated vision of the genesis of autistic disorder and also review the most significant data provided by the different studies that have been conducted on the subject. Detection of the disorder is clearly a difficult task before the age of one year and, in any case, the earliest symptoms are clearly linked to the social and communicative interaction that characteristically takes place at the end of the infant's first year of life. Early detection of the disorder is made possible precisely because of alterations in social and communicative development and, in general, the appearance of psychological functions that play a significant role in the process of humanisation. The article concludes by pointing out the need for further studies that focus on the possible alteration of earlier socio-emotional and affective manifestations.

  6. Experiment K-313: Rat and quail ontogenesis

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.

    1981-01-01

    The potential effects of spaceflight on the processes of mammalian fertilizaton, implantation and embryonic development are investigated. Five female and two male rats were placed together on Day 2 of the flight. By R+17, it was determined that both flight and synchronous females were not carrying normal pregnancies and three of the flight animals were laparotomized. The uterus and ovaries were processed for microscopic analyses. The two remaining flight females were allowed to recover from the exploratory operation, rebred with flight males and delivered normal litters. As a control for potential transplacental effects that might be interpreted as direct spaceflight effects, a series of fertilized Japanese quail (Coturnix japonica) eggs was flown on Cosmos 1129. Although all of the eggs were adversely impacted by an inflight failure of the incubator humidifier on flight Day 13, several embryos were able to progress to a developmental stage equivalent to that of a control 10-12 Day embryo.

  7. In search of principles for a Theory of Organisms

    PubMed Central

    Longo, Giuseppe; Montévil, Maël; Sonnenschein, Carlos; Soto, Ana M

    2017-01-01

    Lacking an operational theory to explain the organization and behaviour of matter in unicellular and multicellular organisms hinders progress in biology. Such a theory should address life cycles from ontogenesis to death. This theory would complement the theory of evolution that addresses phylogenesis, and would posit theoretical extensions to accepted physical principles and default states in order to grasp the living state of matter and define proper biological observables. Thus, we favour adopting the default state implicit in Darwin’s theory, namely, cell proliferation with variation plus motility, and a framing principle, namely, life phenomena manifest themselves as non-identical iterations of morphogenetic processes. From this perspective, organisms become a consequence of the inherent variability generated by proliferation, motility and self-organization. Morphogenesis would then be the result of the default state plus physical constraints, like gravity, and those present in living organisms, like muscular tension. PMID:26648040

  8. Changes in the structure of bacterial complexes of vegetable crops in the course of their growth on a cultivated soddy-podzolic soil

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.

    2017-11-01

    The dynamics of population density and taxonomic structure of epiphytic bacterial communities on the leaves and roots of potatoes, carrots, and beets have been studied. Significant changes take place in the ontogenesis of these vegetables with substitution of hydrolytic bacteria for eccrisotrophic bacteria feeding on products of plant exosmosis. The frequency of domination of representatives of different taxa of epiphytic bacteria on the studied plants has been determined for the entire period of their growth. Bacteria of different genera have been isolated from the aboveground and underground organs of vegetables; their functions are discussed. It is shown that the taxonomic structure of bacterial communities in the soil under studied plants is not subjected to considerable changes and is characterized by the domination of typical soil bacteria— Arthrobacter and bacilli—with the appearance of Rhodococcus as a codominant at the end of the season (before harvesting).

  9. An overview of a multifactor-system theory of personality and individual differences: III. Life span development and the heredity-environment issue.

    PubMed

    Powell, A; Royce, J R

    1981-12-01

    In Part III of this three-part series on multifactor-system theory, multivariate, life-span development is approached from the standpoint of a quantitative and qualitative analysis of the ontogenesis of factors in each of the six systems. The pattern of quantitative development (described via the Gompertz equation and three developmental parameters) involves growth, stability, and decline, and qualitative development involves changes in the organization of factors (e.g., factor differentiation and convergence). Hereditary and environmental sources of variation are analyzed via the factor gene model and the concept of heredity-dominant factors, and the factor-learning model and environment-dominant factors. It is hypothesized that the sensory and motor systems are heredity dominant, that the style and value systems are environment dominant, and that the cognitive and affective systems are partially heredity dominant.

  10. The Interactive Origin and the Aesthetic Modelling of Image-Schemas and Primary Metaphors.

    PubMed

    Martínez, Isabel C; Español, Silvia A; Pérez, Diana I

    2018-06-02

    According to the theory of conceptual metaphor, image-schemas and primary metaphors are preconceptual structures configured in human cognition, based on sensory-motor environmental activity. Focusing on the way both non-conceptual structures are embedded in early social interaction, we provide empirical evidence for the interactive and intersubjective ontogenesis of image-schemas and primary metaphors. We present the results of a multimodal image-schematic microanalysis of three interactive infant-directed performances (the composition of movement, touch, speech, and vocalization that adults produce for-and-with the infants). The microanalyses show that adults aesthetically highlight the image-schematic structures embedded in the multimodal composition of the performance, and that primary metaphors are also lived as embedded in these inter-enactive experiences. The findings allow corroborating that the psychological domains of cognition and affection are not in rivalry or conflict but rather intertwined in meaningful experiences.

  11. Are blood group isoantigens lost from malignant prostatic epithelium? Immunohistochemical support for the preservation of the H isoantigen.

    PubMed Central

    Vowden, P.; Lowe, A. D.; Lennox, E. S.; Bleehen, N. M.

    1986-01-01

    Previous studies while demonstrating the presence of blood group isoantigens on normal prostatic epithelium have failed to identify such antigens on malignant prostatic tissue. Using a series of blood group specific monoclonal antibodies directed towards the A, B, H and Y antigens we have reinvestigated blood group isoantigen expression in both benign prostatic hypertrophy and prostatic adenocarcinoma. Results obtained from areas of benign prostatic hypertrophy are in broad agreement with those published however though we were unable to detect either A or B blood group isoantigens Type 2H and Y isoantigens were identified in 10 of the 12 tumours. These findings, while differing from previously reported results, lend support to the suggested connection between ontogenesis, oncogenesis and blood group isoantigen expression and also support the proposed link between Type 2 structures and malignant transformation. Images Figure 1 Figure 2 PMID:2421753

  12. Development of the nervus terminalis in mammals including toothed whales and humans.

    PubMed

    Oelschläger, H A; Buhl, E H; Dann, J F

    1987-01-01

    The early ontogenesis and topography of the mammalian terminalis system was investigated in 43 microslide series of toothed whale and human embryos and fetuses. In early embryonal stages the development of the nasal pit, the olfacto-terminalis placode, and the olfactory bulb anlage is rather similar in toothed whales and humans. However, toothed whales do not show any trace of the vomeronasalis complex. In early fetal stages the olfactory bulb anlage in toothed whales is reduced and leaves the isolated future terminalis ganglion (ganglia) which contains the greatest number of cells within Mammalia. The ganglion is connected with the nasal mucosa via peripheral fiber bundles and with the telencephalon via central terminalis rootlets. The functional implications of the terminalis system in mammals and its evolution in toothed whales are discussed. Obviously, the autonomic component has been enlarged in the course of perfect adaptation to an aquatic environment.

  13. Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis.

    PubMed

    Panteris, Emmanuel; Achlati, Theonymphi; Daras, Gerasimos; Rigas, Stamatis

    2018-06-06

    Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.

  14. Conceptual Challenges of the Systemic Approach in Understanding Cell Differentiation.

    PubMed

    Paldi, Andras

    2018-01-01

    The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.

  15. Preliminary results of scientific research on biosatellite Kosmos-1129

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The first physiological study aimed at deeper examination mechanisms of weightlessness and adaptation/readaptation is described. It dealt with metabolism, support motor changes and nonspecific changes connected with stress reaction. Wistar rats were used in a triple setup: flight/vivarium/biosatellite mockup. Animal condition was assessed on motor activity and body temperature. Extensive tables show weight, blood and enzyme analysis, etc. Animals groups were labeled: stress, behavior, body composition, biorhythm, ontogenesis. The second or biological study dealt with tumorous carrot tissues but humidity control was defective: some indices are reported such as cell membrane permeability, tissue respiration, etc. It also was concerned with a fowl embryogenetic experiment (Japanese quail) but mechanical effects on landing reduced its success. The third study, on radiation dosimetry, presents a little tabulated data but chiefly gives lists of satellite detector units of different kinds and from different countries.

  16. In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language

    NASA Astrophysics Data System (ADS)

    Szathmáry, Eörs; Szathmáry, Zoltán; Ittzés, Péter; Orbaán, Geroő; Zachár, István; Huszár, Ferenc; Fedor, Anna; Varga, Máté; Számadó, Szabolcs

    It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding--just as brains do.

  17. Lipidomics of glycosphingolipids.

    PubMed

    Farwanah, Hany; Kolter, Thomas

    2012-02-02

    Glycosphingolipids (GSLs) contain one or more sugars that are attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also to a sphingoid base. A large structural heterogeneity results from differences in number, identity, linkage, and anomeric configuration of the carbohydrate residues, and also from structural differences within the hydrophobic part. GSLs form complex cell-type specific patterns, which change with the species, the cellular differentiation state, viral transformation, ontogenesis, and oncogenesis. Although GSL structures can be assigned to only a few series with a common carbohydrate core, their structural variety and the complex pattern are challenges for their elucidation and quantification by mass spectrometric techniques. We present a general overview of the application of lipidomics for GSL determination. This includes analytical procedures and instrumentation together with recent correlations of GSL molecular species with human diseases. Difficulties such as the structural complexity and the lack of standard substances for complex GSLs are discussed.

  18. Lipidomics of Glycosphingolipids

    PubMed Central

    Farwanah, Hany; Kolter, Thomas

    2012-01-01

    Glycosphingolipids (GSLs) contain one or more sugars that are attached to a sphingolipid moiety, usually to a ceramide, but in rare cases also to a sphingoid base. A large structural heterogeneity results from differences in number, identity, linkage, and anomeric configuration of the carbohydrate residues, and also from structural differences within the hydrophobic part. GSLs form complex cell-type specific patterns, which change with the species, the cellular differentiation state, viral transformation, ontogenesis, and oncogenesis. Although GSL structures can be assigned to only a few series with a common carbohydrate core, their structural variety and the complex pattern are challenges for their elucidation and quantification by mass spectrometric techniques. We present a general overview of the application of lipidomics for GSL determination. This includes analytical procedures and instrumentation together with recent correlations of GSL molecular species with human diseases. Difficulties such as the structural complexity and the lack of standard substances for complex GSLs are discussed. PMID:24957371

  19. The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs – including remarks on ontogenesis and evolution

    PubMed Central

    Büsse, Sebastian; Helmker, Benjamin; Hörnschemeyer, Thomas

    2015-01-01

    The species of Epiophlebia are unique among the recent Odonata in showing a mixture of morphological characters of dragonflies (Anisoptera) and damselflies (Zygoptera). The status of the four described extant species of Epiophlebia is disputable from a genetic as well as from a morphological point of view. Here we present an analysis of the thoracic musculature of different nymphal instars of Epiophlebia laidlawi and Epiophlebia superstes to elucidate their morphology and ontogenetic development. In total, 75 muscles have been identified in the thorax of Epiophlebia. This represents the highest number of thoracic muscles ever found in any odonate. It includes six muscles that are reported for the first time for Odonata, and three of these are even new for Pterygota. In total, our results indicate that Epiophlebia has the most ancestral thoracic morphology among Odonata. PMID:26246088

  20. Preliminary results of scientific research on biosatellite KOSMOS-1129

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-01

    The first physiological study aimed at deeper examination mechanisms of weightlessness and adaptation/readaptation is described. It dealt with metabolism, support motor changes and nonspecific changes connected with stress reaction. Wistar rats were used in a triple setup: flight/vivarium/biosatellite mockup. Animal condition was assessed on motor activity and body temperature. Extensive tables show weight, blood and enzyme analysis, etc. Animals groups were labeled: stress, behavior, body composition, biorhythm, ontogenesis. The second or biological study dealt with tumorous carrot tissues but humidity control was defective: some indices are reported such as cell membrane permeability, tissue respiration, etc. It also was concerned withmore » a fowl embryogenetic experiment (Japanese quail) but mechanical effects on landing reduced its success. The third study, on radiation dosimetry, presents a little tabulated data but chiefly gives lists of satellite detector units of different kinds and from different countries.« less

  1. An alternative pluripotent state confers interspecies chimaeric competency

    PubMed Central

    Wu, Jun; Okamura, Daiji; Li, Mo; Suzuki, Keiichiro; Luo, Chongyuan; Ma, Li; He, Yupeng; Li, Zhongwei; Benner, Chris; Tamura, Isao; Krause, Marie N.; Nery, Joseph R.; Du, Tingting; Zhang, Zhuzhu; Hishida, Tomoaki; Takahashi, Yuta; Aizawa, Emi; Kim, Na Young; Lajara, Jeronimo; Guillen, Pedro; Campistol, Josep M.; Esteban, Concepcion Rodriguez; Ross, Pablo J.; Saghatelian, Alan; Ren, Bing; Ecker, Joseph R.; Belmonte, Juan Carlos Izpisua

    2017-01-01

    Pluripotency, the ability to generate any cell type of the body, is an evanescent attribute of embryonic cells. Transitory pluripotent cells can be captured at different time points during embryogenesis and maintained as embryonic stem cells or epiblast stem cells in culture. Since ontogenesis is a dynamic process in both space and time, it seems counterintuitive that these two temporal states represent the full spectrum of organismal pluripotency. Here we show that by modulating culture parameters, a stem-cell type with unique spatial characteristics and distinct molecular and functional features, designated as region-selective pluripotent stem cells (rsPSCs), can be efficiently obtained from mouse embryos and primate pluripotent stem cells, including humans. The ease of culturing and editing the genome of human rsPSCs offers advantages for regenerative medicine applications. The unique ability of human rsPSCs to generate post-implantation interspecies chimaeric embryos may facilitate our understanding of early human development and evolution. PMID:25945737

  2. Regulatory Peptides in Plants.

    PubMed

    Vanyushin, B F; Ashapkin, V V; Aleksandrushkina, N I

    2017-02-01

    Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.

  3. Cellular Mechanisms of Gravitropic Response in Higher Plants

    NASA Astrophysics Data System (ADS)

    Medvedev, Sergei; Smolikova, Galina; Pozhvanov, Gregory; Suslov, Dmitry

    The evolutionary success of land plants in adaptation to the vectorial environmental factors was based mainly on the development of polarity systems. In result, normal plant ontogenesis is based on the positional information. Polarity is a tool by which the developing plant organs and tissues are mapped and the specific three-dimensional structure of the organism is created. It is due to their polar organization plants are able to orient themselves relative to the gravity vector and different vectorial cues, and to respond adequately to various stimuli. Gravitation is one of the most important polarized environmental factor that guides the development of plant organisms in space. Every plant can "estimate" its position relative to the gravity vector and correct it, if necessary, by means of polarized growth. The direction and the magnitude of gravitational stimulus are constant during the whole plant ontogenesis. The key plant response to the action of gravity is gravitropism, i.e. the directed growth of organs with respect to the gravity vector. This response is a very convenient model to study the mechanisms of plant orientation in space. The present report is focused on the main cellular mechanisms responsible for graviropic bending in higher plants. These mechanisms and structures include electric polarization of plant cells, Ca ({2+) }gradients, cytoskeleton, G-proteins, phosphoinositides and the machinery responsible for asymmetric auxin distribution. Those mechanisms tightly interact demonstrating some hierarchy and multiple feedbacks. The Ca (2+) gradients provide the primary physiological basis of polarity in plant cells. Calcium ions influence on the bioelectric potentials, the organization of actin cytoskeleton, the activity of Ca (2+) -binding proteins and Ca (2+) -dependent protein kinases. Protein kinases modulate transcription factors activity thereby regulating the gene expression and switching the developmental programs. Actin cytoskeleton affects the molecular machinery of polar auxin transport. It results in the changes of auxin gradients in plant organs and tissues, which modulate all cellular mechanisms of polarity via multiple feedback loops. The understanding of the mechanisms of plant organism orientation relative to the gravity vector will allow us to develop efficient technologies for plant growing in microgravity conditions at orbital space stations and during long piloted space flights. This work was supported by the grant of Russian Foundation for Basic Research (N 14-04-01-624) and by the grant of St.-Petersburg State University (N 1.38.233.2014).

  4. Morphology, Ontogenesis and Molecular Phylogeny of Neokeronopsis (Afrokeronopsis) aurea nov. subgen., nov. spec. (Ciliophora: Hypotricha), a New African Flagship Ciliate Confirms the CEUU Hypothesis

    PubMed Central

    FOISSNER, Wilhelm; STOECK, Thorsten

    2010-01-01

    Summary Neokeronopsis (Afrokeronopsis) aurea nov. subgen., nov. spec. was discovered in soil from the floodplain of a small river in the Krueger National Park, Republic of South Africa. Its morphology, ontogenesis, and 18S rDNA were studied with standard methods. Furthermore, we supplemented the data on N. (N.) spectabilis by reinvestigating the preparations deposited in the British Museum of Natural History. Neokeronopsis (Afrokeronopsis) aurea is a very conspicuous ciliate because it has an average size of 330 × 120 μm and is golden yellow due to the orange-coloured cytoplasm and citrine cortical granules. Further main characteristics include the semirigid body; the urostylid cirral pattern with a distinct corona of frontal and pseudobuccal cirri both originating from the midventral rows; multiple anterior fragmentation of dorsal kineties 1–3; multiple posterior fragmentation of kinety 3, commencing with an unique whirl of kinetofragments; three caudal cirri; an oxytrichid/cyrtohymenid oral apparatus with polystichad paroral membrane and buccal depression; a single oral primordium developing along the transverse cirral row; and an oxytrichid 18S rDNA. These peculiarities are used to establish the new oxytrichid family Neokeronopsidae, the new subgenus Afrokeronopsis, and the new species N. (A.) aurea. Further, these features confirm the CEUU hypothesis, i.e., convergent evolution of a midventral cirral pattern in urostylid and oxytrichid hypotrichs; additionally, N. (A.) aurea is the first (semi)rigid hypotrich with cortical granules and the second one with midventral rows, breaking the granule and flexibility dogmas. These and other observations show that the phylogeny of the hypotrichs is full of convergences. Thus, only a combined effort of classical and molecular phylogeneticists will provide the data needed for a natural classification. Based on the CEUU hypothesis, the molecular data, and literature evidence, we suggest that midventral oxytrichids should be ranked as distinct families; accordingly, we establish a further new family, the Uroleptidae, which forms a distinct clade within the oxytrichid molecular trees. Neokeronopsis is possibly related to Pattersoniella because it has the same special mode of forming the buccal cirri and possesses a buccal depression found also in Steinia, a close relative of Pattersoniella. The large size and conspicuous colour make N. (A.) aurea a biogeographic flagship possibly confined to Africa or Gondwana, while Neokeronopsis (N.) spectabilis (Kahl, 1932) is an Eurasian flagship. PMID:20700468

  5. Emergence, Development, and Maturity of the Gonad of Two Species of Chitons “Sea Cockroach” (Mollusca: Polyplacophora) through the Early Life Stages

    PubMed Central

    Avila-Poveda, Omar Hernando; Abadia-Chanona, Quetzalli Yasú

    2013-01-01

    This study describes and recognises, using histological and microscopical examinations on a morphometrical basis, several gonad traits through the early life stages of Chiton articulatus and C. albolineatus. Gonadal ontogenesis, gonad development stages, sexual differentiation, onset of the first sexual maturity, and growth sequences or “early life stages” were determined. In addition, allometry between lengths and body weight pooled for both sexes per each chiton were calculated using equation Y = aXb. A total of 125 chitons (4≤TL≤40 mm, in total length “TL”) were used. All allometric relations showed a strong positive correlation (r), close to 1, with b-values above three, indicating an isometric growth. Gonadal ontogenesis and gonad development stages were categorised into three periods (“Pw” without gonad, “Pe” gonad emergence, and “Pf” gonadal sac formed) and four stages (“S0” gametocytogenesis, “S1” gametogenesis, “S2” mature, and “S3” spawning), respectively. Compound digital images were attained for each process. Periods and stages are overlapped among them and between species, with the following overall confidence intervals in TL: Pw 6.13–14.32 mm, Pe 10.32–16.93 mm, Pf 12.99–25.01 mm, S0 16.08–24.34 mm (females) and 19.51–26.60 mm (males), S1 27.15–35.63 mm (females) and 23.45–32.27 mm (males), S2 24.48–40.24 mm (females) and 25.45–32.87 mm (males). Sexual differentiation (in S0) of both chitons occurs first as a female then as a male; although, males reach the onset of the first sexual maturity earlier than females, thus for C. articulatus males at 17 mm and females at 32 mm, and for C. albolineatus males at 23.5 mm and females at 28 mm, all in TL. Four early life stages (i.e., subjuvenile, juvenile, subadult, and adult) are described and proposed to distinguish growth sequences. Our results may be useful to diverse disciplines, from developmental biology to fisheries management. PMID:23936353

  6. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    PubMed

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican, IMPG1 & IMPG2 in the developing interphotoreceptor matrix (IPM). Retinal organoids were successfully generated from pluripotent stem cells. The expression of ECM components was examined in the retinal organoids and found to recapitulate human retinal development in vivo. Using functional blocking experiments, we were able to highlight an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation. Copyright © 2018 Acta Materialia Inc. All rights reserved.

  7. [Phylo- and ontogenetic aspects of erect posture and walking in developmental neurology].

    PubMed

    Berényi, Marianne; Katona, Ferenc; Sanchez, Carmen; Mandujano, Mario

    2011-07-30

    The group or profile of elementary neuromotor patterns is different from the primitive reflex group which is now called the "primitive reflex profile." All these elementary neuromotor patterns are characterized by a high degree of organization, persistence, and stereotypy. In many regards, these patterns are predecessors or precursors of from them the specific human motor patterns which appear spontaneously later as crawling, creeping, sitting, and walking with erect posture. On the basis of our experiences it can be stated that the elementary neuromotor patterns can be activated in all neonates and young infants as congenital motor functions. With regards to their main properties and functional forms, the normal patterns can be divided into two main groups: (1) One group is characterized by lifting of the head and complex chains of movements which are directed to the verticalization of the body; (2) The other group is characterized by complex movements directed to locomotion and change of body position. The neuromotor patterns can be activated by placing the human infant in specific body positions that trigger the vestibulospinal and the reticulospinal systems, the archicerebellum and the basal gangliae. Most of these systems display early myelinisation and are functioning very soon. Many of the elementary neuromotor patterns reflect the most important - spontaneously developing forms of human movements such as sitting upright in space and head elevation crawling and walking. The majority of the human neuromotor patterns are human specific. When the infant is put in an activating position, crawling, sitting up, and walking begin and last as long as the activating position is maintained. Each elementary neuromotor pattern is a repeated, continuous train of complex movements in response to a special activating position. The brainstem is not sufficient to organize these complex movements, the integrity of the basal ganglia is also necessary. Elementary sensorimotor patterns during human ontogenesis reflect phylogenetic develpoment of species specific human functions. During ontogenesis spontaneous motor development gradually arises from these early specific sensorimotor predecessors.. The regular use of the elementary neuromotor patterns for diagnostic puposes has several distinct advantages. The neuromotor patterns have a natural stereotypy in normal infants and, therefore, deflections from this regular pattern may be detected easily, thus, the activation of the elementary neuromotor pattern is a more suitable method for identifying defects in the motor activity of the neonate or young infant than the assessment of the primitive reflexes. The "stiumulus positions," which activate specific movements according to how the human neonate or young infant is positioned, do not activate such motor patterns in neonate or young primates including apes. The characteristic locomotor pattern in these adult primates, including the apes, is swinging and involves brachiation with an extreme prehensility. This species specific motor activity is reflected in the orangutan and gibbon neonates by an early extensive grasp. However, according to our investigations, no crawling, creeping, elementary walk, or sitting up can be activated in them. Neonates grasp the hair of the mother, a vital function for the survival of the young. In contemporary nonhuman primates including apes, the neonate brain is more mature. Thus, pronounced differences can be observed between early motor ontogenesis in the human and all other primates. The earliest human movements are complex performances rather than simple reflexes. The distinction between primitive reflexes and elementary neuromotor patterns is essential. Primitive reflexes are controlled by the brainstem. All can be activated in primates. These reflexes have short durations and contrary to elementary sensorimotor patterns occur only once in response to one stimulus, e.g., one head drop elicits one abduction-adduction of the upper extremities correlated to adduction and flexion of the lower extremities to a lesser degree with the Moro reflex. Elementary neuromotor patterns are much more complex and most of them including elementary walk may be elicited as early as the 19th-20th gestational week, though less perfectly than later.

  8. Association of posterior EEG alpha with prioritization of religion or spirituality: a replication and extension at 20-year follow-up

    PubMed Central

    Tenke, Craig E.; Kayser, Jürgen; Svob, Connie; Miller, Lisa; Alvarenga, Jorge E.; Abraham, Karen; Warner, Virginia; Wickramaratne, Priya; Weissman, Myrna M.; Bruder, Gerard E.

    2017-01-01

    A prior report (Tenke et al. 2013 Biol. Psychol. 94:426–432) found that participants who rated religion or spirituality (R/S) highly important had greater posterior alpha after 10 years compared to those who did not. Participants who subsequently lowered their rating also had prominent alpha, while those who increased their rating did not. Here we report EEG findings 20 years after initial assessment. Clinical evaluations and R/S ratings were obtained from 73 (52 new) participants in a longitudinal study of family risk for depression. Frequency PCA of current source density transformed EEG concisely quantified posterior alpha. Those who initially rated R/S as highly important had greater alpha compared to those who did not, even if their R/S rating later increased. Furthermore, changes in religious denomination were associated with decreased alpha. Results suggest the possibility of a critical stage in the ontogenesis of R/S that is linked to posterior resting alpha. PMID:28119066

  9. Some aspects of the modular organization of the primary visual cortex of the cat: patterns of cytochrome oxidase activity.

    PubMed

    Merkul'eva, N S; Makarov, F N

    2008-10-01

    The distribution of the enzyme cytochrome oxidase (CO) in continuous series of parasagittal sections from field 17 and frontal sections of the dorsal nucleus of the lateral geniculate body (LGB) from normal kittens and adult cats was studied. In all cats apart from neonates, layer IV showed regularly alternating areas with above-background levels of CO activity ("spots"). There was a significant increase in the contrast of the "spots" from days 13 to 21, which was followed by a significant decrease from days 48 to 93. These changes coincided with ontogenetic changes in the level of visual system plasticity. There were no differences in CO activity between layers A and A1 of the dorsal nucleus of the LGB. It is suggested that the non-uniform distribution of the level of functional activity of neurons in field 17 reflects the formation of columnar cortical structures during the critical period of postnatal ontogenesis.

  10. Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.

    PubMed

    Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey

    2007-12-01

    In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).

  11. Early manifestation of arm-leg coordination during stepping on a surface in human neonates.

    PubMed

    La Scaleia, Valentina; Ivanenko, Y; Fabiano, A; Sylos-Labini, F; Cappellini, G; Picone, S; Paolillo, P; Di Paolo, A; Lacquaniti, F

    2018-04-01

    The accomplishment of mature locomotor movements relies upon the integrated coordination of the lower and upper limbs and the trunk. Human adults normally swing their arms and a quadrupedal limb coordination persists during bipedal walking despite a strong corticospinal control of the upper extremities that allows to uncouple this connection during voluntary activities. Here we investigated arm-leg coordination during stepping responses on a surface in human neonates. In eight neonates, we found the overt presence of alternating arm-leg oscillations, the arms moving up and down in alternation with ipsilateral lower limb movements. These neonates moved the diagonal limbs together, and the peak of the arm-to-trunk angle (i.e., maximum vertical excursion of the arm) occurred around the end of the ipsilateral stance phase, as it occurs during typical adult walking. Although episodes of arm-leg coordination were sporadic in our sample of neonates, their presence provides significant evidence for a neural coupling between the upper and lower limbs during early ontogenesis of locomotion in humans.

  12. Dopamine drives Drosophila sechellia adaptation to its toxic host

    PubMed Central

    Lavista-Llanos, Sofía; Svatoš, Aleš; Kai, Marco; Riemensperger, Thomas; Birman, Serge; Stensmyr, Marcus C; Hansson, Bill S

    2014-01-01

    Many insect species are host-obligate specialists. The evolutionary mechanism driving the adaptation of a species to a toxic host is, however, intriguing. We analyzed the tight association of Drosophila sechellia to its sole host, the fruit of Morinda citrifolia, which is toxic to other members of the melanogaster species group. Molecular polymorphisms in the dopamine regulatory protein Catsup cause infertility in D. sechellia due to maternal arrest of oogenesis. In its natural host, the fruit compensates for the impaired maternal dopamine metabolism with the precursor l-DOPA, resuming oogenesis and stimulating egg production. l-DOPA present in morinda additionally increases the size of D. sechellia eggs, what in turn enhances early fitness. We argue that the need of l-DOPA for successful reproduction has driven D. sechellia to become an M. citrifolia obligate specialist. This study illustrates how an insect's dopaminergic system can sustain ecological adaptations by modulating ontogenesis and development. DOI: http://dx.doi.org/10.7554/eLife.03785.001 PMID:25487989

  13. Peptide secretion in the cutaneous glands of South American tree frog Phyllomedusa bicolor: an ultrastructural study.

    PubMed

    Lacombe, C; Cifuentes-Diaz, C; Dunia, I; Auber-Thomay, M; Nicolas, P; Amiche, M

    2000-09-01

    The development of the dermal glands of the arboreal frog Phyllomedusa bicolor was investigated by immunocytochemistry and electron microscopy. The 3 types of glands (mucous, lipid and serous) differed in size and secretory activity. The mucous and serous glands were apparent in the tadpole skin, whereas the lipid glands developed later in ontogenesis. The peptide antibiotics dermaseptins and the D-amino acid-containing peptide opioids dermorphins and deltorphins are abundant in the skin secretions of P. bicolor. Although these peptides differ in their structure and activity they are derived from precursors that have very similar preproregions. We used an antibody to the common preproregion of preprodermaseptins and preprodeltorphins and immunofluorescence analysis to show that only the serous glands are specifically involved in the biosynthesis and secretion of dermaseptins and deltorphins. Scanning and transmission electron microscopy revealed that the serous glands of P bicolor have morphological features, especially the secretory granules, which differ from those of the glands in Xenopus laevis skin.

  14. Combined pituitary hormone deficiency: current and future status.

    PubMed

    Castinetti, F; Reynaud, R; Quentien, M-H; Jullien, N; Marquant, E; Rochette, C; Herman, J-P; Saveanu, A; Barlier, A; Enjalbert, A; Brue, T

    2015-01-01

    Over the last two decades, the understanding of the mechanisms involved in pituitary ontogenesis has largely increased. Since the first description of POU1F1 human mutations responsible for a well-defined phenotype without extra-pituitary malformation, several other genetic defects of transcription factors have been reported with variable degrees of phenotype-genotype correlations. However, to date, despite the identification of an increased number of genetic causes of isolated or multiple pituitary deficiencies, the etiology of most (80-90 %) congenital cases of hypopituitarism remains unsolved. Identifying new etiologies is of importance as a post-natal diagnosis to better diagnose and treat the patients (delayed pituitary deficiencies, differential diagnosis of a pituitary mass on MRI, etc.), and as a prenatal diagnosis to decrease the risk of early death (undiagnosed corticotroph deficiency for instance). The aim of this review is to summarize the main etiologies and phenotypes of combined pituitary hormone deficiencies, associated or not with extra-pituitary anomalies, and to suggest how the identification of such etiologies could be improved in the near future.

  15. Plant reproduction systems in microgravity: experimental data and hypotheses

    NASA Astrophysics Data System (ADS)

    Kordyum, E. L.

    Elucidation of the possibilities for higher plants to realize complete ontogenesis, from seed to seed, and to propagate by seeds in microgravity, is a fundamental task of space biology connected with the working of the CELSS program. At present, there are results of only 6 spaceflight experiments with Arabidopsis thaliana, an ephemeral plant which will flower and fruit in orbit. Morphogenesis of generative organs occurs normally in microgravity, but unlike the ground control, buds and flowers mainly contain sterile elements of the androecium and gynoecium which degenerate at different stages of development in microgravity. Cytological peculiarities of male and female sterility in microgravity are similar to those occurring naturally during sexual differentiation. Many of the seed formed in microgravity are: 1) nutritional deficiency, 2) insufficient light, 3) intensification of the influence of the above-mentioned factors by microgravity, 4) disturbances of a hormonal nature, and 5) the absence of pollination and fertilization. Possible ways for testing these hypotheses and obtaining viable seeds in microgravity are discussed.

  16. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Veselova, T. D.; Il'ina, G. M.; Dzhalilova, Kh Kh; Sychev, V. N.; Derendiaeva, T. A.; Salisbury, F.; Cambell, W.; Bubenheim, D.; Campbell, W. (Principal Investigator)

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  17. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring.

    PubMed

    Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effect of thyroid status on the development of the different molecular forms of Na+,K+-ATPase in rat brain.

    PubMed

    Atterwill, C K; Reid, J; Athayde, C M

    1985-05-01

    The effect of thyroid status on the postnatal development of the two molecular forms of Na+,K+-ATPase, distinguished kinetically on the basis of their ouabain sensitivity, was examined in rat brain. Hypothyroidism induced by PTU from day 1 postnatally significantly reduced the Na+,K+-ATPase activity in cerebellum (22-30 days) but not forebrain, whereas hyperthyroidism (T4 treatment from day 1) had no effect. The hypothyroidism-induced reduction in cerebellum was reflected by a 20-45% reduction in the activity of the alpha(+) form of Na+,K+-ATPase (high ouabain affinity) against control brains compared to a 60-70% reduction in the activity of the alpha form (low ouabain affinity). These results show that neonatally induced hypothyroidism leads to a selectively greater impairment of the ontogenesis of the activity of cerebellar alpha form of Na+,K+-ATPase. This may possibly reflect a retarded development of a selective cerebellar cell population containing predominantly the alpha form of the enzyme.

  19. The growth of language: Universal Grammar, experience, and principles of computation.

    PubMed

    Yang, Charles; Crain, Stephen; Berwick, Robert C; Chomsky, Noam; Bolhuis, Johan J

    2017-10-01

    Human infants develop language remarkably rapidly and without overt instruction. We argue that the distinctive ontogenesis of child language arises from the interplay of three factors: domain-specific principles of language (Universal Grammar), external experience, and properties of non-linguistic domains of cognition including general learning mechanisms and principles of efficient computation. We review developmental evidence that children make use of hierarchically composed structures ('Merge') from the earliest stages and at all levels of linguistic organization. At the same time, longitudinal trajectories of development show sensitivity to the quantity of specific patterns in the input, which suggests the use of probabilistic processes as well as inductive learning mechanisms that are suitable for the psychological constraints on language acquisition. By considering the place of language in human biology and evolution, we propose an approach that integrates principles from Universal Grammar and constraints from other domains of cognition. We outline some initial results of this approach as well as challenges for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Lower- and higher-level models of right hemisphere language. A selective survey.

    PubMed

    Gainotti, Guido

    2016-01-01

    The models advanced to explain right hemisphere (RH) language function can be divided into two main types. According to the older (lower-level) models, RH language reflects the ontogenesis of conceptual and semantic-lexical development; the more recent models, on the other hand, suggest that the RH plays an important role in the use of higher-level language functions, such as metaphors, to convey complex, abstract concepts. The hypothesis that the RH may be preferentially involved in processing the semantic-lexical components of language was advanced by Zaidel in splitbrain patients and his model was confirmed by neuropsychological investigations, proving that right brain-damaged patients show selective semanticlexical disorders. The possible links between lower and higher levels of RH language are discussed, as is the hypothesis that the RH may have privileged access to the figurative aspects of novel metaphorical expressions, whereas conventionalization of metaphorical meaning could be a bilaterally-mediated process involving abstract semantic-lexical codes.

  1. [Cytoembryologic studies of super dwarf wheat grown in "Svet" greenhouse in the ground-based experiments].

    PubMed

    Levinskikh, M A; Veselova, T D; Il'ina, G M; Dzhalilova, Kh Kh; Sychev, V N; Derendiaeva, T A; Salisbury, F; Cambell, W; Bubenheim, D

    1998-01-01

    The Project of scientific programs MIR/SHUTTLE and MIR/NASA was allowed for studying the productional, cytoembryological, morphological, biomechanical and other characteristics of superclub wheat on cultivation in the Svet greenhouse on-board orbital complex. This work was aimed at studying the duration of the complete cycle of ontogenesis of wheat and its individual stages, the peculiarities of forming the reproductive organs, processes, fertilization and formation of the seed production while cultivating in the Svet greenhouse under terrestrial conditions. Superclub wheat has been the object of experimentation. On cultivation of superclub wheat in the Svet greenhouse at designated conditions it was found that the cycle duration "from seed to seed" was 90-97 days. The number of granules in the wheat-ears studied was quite low and ranged from 15 to 30%. Performed studies with applying the light microscopy have indicated that in superclub wheat the embryological processes occur in compliance with those regularities which are described for the other forms of soft wheat.

  2. The mouse F3/contactin glycoprotein

    PubMed Central

    Bizzoca, Antonella; Corsi, Patrizia

    2009-01-01

    F3/Contactin is an immunoglobulin superfamily component expressed in the nervous tissue of several species. Here we focus on the structural and functional properties of its mouse relative, on the mechanisms driving its regulated expression and on its developmental role. F3/Contactin is differentially expressed in distinct populations of central and peripheral neurons and in some non-neuronal cells. Accordingly, the regulatory region of the underlying gene includes promoter elements undergoing differential activation, associated with an intricate splicing profile, indicating that transcriptional and posttranscriptional mechanisms contribute to its expression. Transgenic models allowed to follow F3/Contactin promoter activation in vivo and to modify F3/Contactin gene expression under a heterologous promoter, which resulted in morphological and functional phenotypes. Besides axonal growth and pathfinding, these concerned earlier events, including precursor proliferation and commitment. This wide role in neural ontogenesis is consistent with the recognized interaction of F3/Contactin with developmental control genes belonging to the Notch pathway. PMID:19372728

  3. [The composition of lipids and lipid peroxidation in the pancreas of quails exposed to nitrates and correction by the amaranth's seeds].

    PubMed

    Tsekhmistrenko, S I; Ponomarenko, N V

    2013-01-01

    Researches of features of lipid composition, functioning of the system of antioxidant defense, maintenance of lipid peroxidation products in the quail's pancreas on the early postnatal ontogenesis stages are conducted for actions of nitrates and feeding with amaranth's seeds in mixed fodder. The arrival of nitrates in the organism of quails results in the decline of general lipids maintenance and nonetherified fat acids in the pancreas. Using of amaranth's seeds in mixed fodder on the background of the nitrate loading results in the increase of activity of the enzimes system of antioxidant defence, the growth of general lipid level in the quail's pancreas. Thus in correlation with separate classes of lipid maintenance of cholesterol goes down for certain, whereas the maintenance of triacylglycerols and ethers of cholesterol rises. The results obtained in the researches show the ability of amaranth's seeds to avert oxidative stress in quail's pancreas under nitrates influence.

  4. [Abortion].

    PubMed

    Nunes, J P

    1998-01-01

    Abortion is the interruption of a dynamic process in a final and irreversible form. The legalization of abortion is applied to human ontogenesis, that is, the development of the human being. However, the embryo that is growing in the uterus is not a human being because a human being is a complex organism with differentiated systems, its own identity and intrinsic autonomy in its process of development. There are basically four levels of the analysis of the problem of abortion: 1) fundamental emotional arguments; 2) profound ignorance of technical and scientific facts; 3) rational positions obfuscated by the dramatic intensity of everyday situations; and 4) the conjunction of deliberated position where culpability is avoided with solidarity for all subjects of the process with a socially oriented view. The phenomenon of abortion from an epidemiological point of view summons the facts with which it is associated: poverty, illiteracy, shortage or lack of community health resources, absence of centers for adolescents, degradation of the environment, and precariousness of employment.

  5. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish.

    PubMed

    Shams, Soaleha; Amlani, Shahid; Buske, Christine; Chatterjee, Diptendu; Gerlai, Robert

    2018-01-01

    The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions. © 2017 Wiley Periodicals, Inc.

  6. A Biosocial Developmental Model of Borderline Personality: Elaborating and Extending Linehan’s Theory

    PubMed Central

    Crowell, Sheila E.; Beauchaine, Theodore P.; Linehan, Marsha M.

    2009-01-01

    Over the past several decades, research has focused increasingly on developmental precursors to psychological disorders that were previously assumed to emerge only in adulthood. This change in focus follows from the recognition that complex transactions between biological vulnerabilities and psychosocial risk factors shape emotional and behavioral development beginning at conception. To date, however, empirical research on the development of borderline personality is extremely limited. Indeed, in the decade since M. M. Linehan initially proposed a biosocial model of the development of borderline personality disorder, there have been few attempts to test the model among at-risk youth. In this review, diverse literatures are reviewed that can inform understanding of the ontogenesis of borderline pathology, and testable hypotheses are proposed to guide future research with at-risk children and adolescents. One probable pathway is identified that leads to borderline personality disorder; it begins with early vulnerability, expressed initially as impulsivity and followed by heightened emotional sensitivity. These vulnerabilities are potentiated across development by environmental risk factors that give rise to more extreme emotional, behavioral, and cognitive dysregulation. PMID:19379027

  7. Advances in understanding hypopituitarism

    PubMed Central

    Stieg, Mareike R.; Renner, Ulrich; Stalla, Günter K.; Kopczak, Anna

    2017-01-01

    The understanding of hypopituitarism has increased over the last three years. This review provides an overview of the most important recent findings. Most of the recent research in hypopituitarism has focused on genetics. New diagnostic techniques like next-generation sequencing have led to the description of different genetic mutations causative for congenital dysfunction of the pituitary gland while new molecular mechanisms underlying pituitary ontogenesis have also been described. Furthermore, hypopituitarism may occur because of an impairment of the distinctive vascularization of the pituitary gland, especially by disruption of the long vessel connection between the hypothalamus and the pituitary. Controversial findings have been published on post-traumatic hypopituitarism. Moreover, autoimmunity has been discussed in recent years as a possible reason for hypopituitarism. With the use of new drugs such as ipilimumab, hypopituitarism as a side effect of pharmaceuticals has come into focus. Besides new findings on the pathomechanism of hypopituitarism, there are new diagnostic tools in development, such as new growth hormone stimulants that are currently being tested in clinical trials. Moreover, cortisol measurement in scalp hair is a promising tool for monitoring cortisol levels over time. PMID:28299199

  8. [Polymorphic biochemical systems in the population of immigrant inhabitants of the northeastern USSR. II. Genotypic distances between groups of persons with a varying duration of living under extreme environmental conditions].

    PubMed

    Solovenchuk, L L

    1983-08-01

    Analysis of the differences in the groups examined for phenotypes and genes has shown that the longer dwelling in the regions of the extreme conditions, the greater changes are in the genetic structure of separate selections with "retreating" from middle latitudes'population and "approaching" the aboriginal one of the North-East. This "dynamics" is mostly pronounced in men and groups characterized by very long dwelling in the region; the differences between representatives of both sexes are maximal. A slightly more isolated position is occupied by the genetic structure of individuals living in the North from the birth. The data obtained allow to assume that the genetic structure of the man's population being formed in the extreme conditions, tends to the ecological fit on account of the selectivity of migratory behaviour. The ecological fit of separate genotypes may well be assumed to be different for representatives of both sexes and on different stages of ontogenesis.

  9. [The influence of melatonin and epithalon on blood leukocyte count and leukocyte alkaline phosphatase in rats under different lighting conditions during ontogenesis].

    PubMed

    Uzenbaeva, L B; Vinogradova, I A; Golubeva, A G; Niuppieva, M G; Iliukha, V A

    2008-01-01

    The effect of pineal body hormone melatonin and synthetic tetrapeptide epithalon (Ala-Glu-Asp-Gly) under different light conditions on leucocytes differential count in rats were investigated. It has been established that melatonin and epithalon decrease the level of blood leucocytes and relative content of band neutrophils in 12 months rats which was higher in the constant light more than in other photoperiod. The melatonin prevents age-specific decreasing blood lymphocytes level in standard photoperiod (12 h light/12 h darkness). Contrary to melatonin, epithalon significantly reduces the number of lymphocytes and increases the number of neutrophils in some age period. The leucocytes alkaline phosphatase activity was increased during aging. Constant light in compare with other light conditions promotes early increasing of alkaline phosphatase activity (at 12 months), associated with accelerated development of pathological process in organism. The melatonin and epithalon adjacency effect on increasing of alkaline phosphatase activity under the standard as well as natural light condition demonstrate homeostatic character of geroprotectors action furthermore depend on leucocytes functional status.

  10. Association of posterior EEG alpha with prioritization of religion or spirituality: A replication and extension at 20-year follow-up.

    PubMed

    Tenke, Craig E; Kayser, Jürgen; Svob, Connie; Miller, Lisa; Alvarenga, Jorge E; Abraham, Karen; Warner, Virginia; Wickramaratne, Priya; Weissman, Myrna M; Bruder, Gerard E

    2017-03-01

    A prior report (Tenke et al., 2013 Biol. Psychol. 94:426-432) found that participants who rated religion or spirituality (R/S) highly important had greater posterior alpha after 10 years compared to those who did not. Participants who subsequently lowered their rating also had prominent alpha, while those who increased their rating did not. Here we report EEG findings 20 years after initial assessment. Clinical evaluations and R/S ratings were obtained from 73 (52 new) participants in a longitudinal study of family risk for depression. Frequency PCA of current source density transformed EEG concisely quantified posterior alpha. Those who initially rated R/S as highly important had greater alpha compared to those who did not, even if their R/S rating later increased. Furthermore, changes in religious denomination were associated with decreased alpha. Results suggest the possibility of a critical stage in the ontogenesis of R/S that is linked to posterior resting alpha. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Folding into being: early embryology and the epistemology of rhythm.

    PubMed

    Wellmann, Janina

    2015-03-01

    Historians have often described embryology and concepts of development in the period around 1800 in terms of "temporalization" or "dynamization". This paper, in contrast, argues that a central epistemological category in the period was "rhythm", which played a major role in the establishment of the emerging discipline of biology. I show that Caspar Friedrich Wolff's epigenetic theory of development was based on a rhythmical notion, namely the hypothesis that organic development occurs as a series of ordered rhythmical repetitions and variations. Presenting Christian Heinrich Pander's and Karl Ernst von Baer's theory of germ layers, I argue that Pander and Baer regarded folding as an organizing principle of ontogenesis, and that the principle's explanatory power stems from their understanding of folding as a rhythmical figuration. In a brief discussion of the notion of rhythm in contemporary music theory, I identify an underlying physiological epistemology in the new musical concept of rhythm around 1800. The paper closes with a more general discussion of the relationship between the rhythmic episteme, conceptions of life, and aesthetic theory at the end of the eighteenth century.

  12. A biosocial developmental model of borderline personality: Elaborating and extending Linehan's theory.

    PubMed

    Crowell, Sheila E; Beauchaine, Theodore P; Linehan, Marsha M

    2009-05-01

    Over the past several decades, research has focused increasingly on developmental precursors to psychological disorders that were previously assumed to emerge only in adulthood. This change in focus follows from the recognition that complex transactions between biological vulnerabilities and psychosocial risk factors shape emotional and behavioral development beginning at conception. To date, however, empirical research on the development of borderline personality is extremely limited. Indeed, in the decade since M. M. Linehan initially proposed a biosocial model of the development of borderline personality disorder, there have been few attempts to test the model among at-risk youth. In this review, diverse literatures are reviewed that can inform understanding of the ontogenesis of borderline pathology, and testable hypotheses are proposed to guide future research with at-risk children and adolescents. One probable pathway is identified that leads to borderline personality disorder; it begins with early vulnerability, expressed initially as impulsivity and followed by heightened emotional sensitivity. These vulnerabilities are potentiated across development by environmental risk factors that give rise to more extreme emotional, behavioral, and cognitive dysregulation. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  13. Anticipatory dynamics of biological systems: from molecular quantum states to evolution

    NASA Astrophysics Data System (ADS)

    Igamberdiev, Abir U.

    2015-08-01

    Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.

  14. Taste-dependent sociophobia: when food and company do not mix.

    PubMed

    Guitton, Matthieu J; Klin, Yael; Dudai, Yadin

    2008-08-22

    Using a combination of the paradigm of conditioned taste aversion (CTA) and of the paradigm of social interactions, we report here that in the rat, eating while anxious may result in long-term alterations in social behavior. In the conventional CTA, the subject learns to associate a tastant (the conditioned stimulus, CS) with delayed toxicosis (an unconditioned stimulus, UCS) to yield taste aversion (the conditioned response, CR). However, the association of taste with delayed negative internal states that could generate CRs that are different from taste aversion should not be neglected. Such associations may contribute to the ontogenesis, reinforcement and symptoms of some types of taste- and food-related disorders. We have recently reported that a delayed anxiety-like state, induced by the anxiogenic drug meta-chlorophenylpiperazine (mCPP), can specifically associate with taste to produce CTA. We now show that a similar protocol results in a marked lingering impairment in social interactions in response to the conditioned taste. This is hence a learned situation in which food and company do not mix well.

  15. Formation of vacuolar tannin deposits in the chlorophyllous organs of Tracheophyta: from shuttles to accretions.

    PubMed

    Brillouet, Jean-Marc; Romieu, Charles; Lartaud, Marc; Jublanc, Elodie; Torregrosa, Laurent; Cazevieille, Chantal

    2014-11-01

    Most Tracheophyta synthesize-condensed tannins (also called proanthocyanidins), polymers of catechins, which appear in the vacuole as uniformly stained deposits-termed tannin accretions-lining the inner face of the tonoplast. A large body of evidence argues that tannins are formed in recently described thylakoid-derived organelles, the tannosomes, which are packed in membrane-bound shuttles (Brillouet et al. 2013); it has been suggested that shuttles agglomerate into tannin accretions. The aim of the study was to describe the ontogenesis of tannin accretions in members of the Tracheophyta. For this purpose, fresh specimens of young tissues from diverse Tracheophyta were cut, gently lacerated in paraformaldehyde, and examined using light, epifluorescence, confocal, and transmission electron microscopy. Fresh samples were also incubated with gelatin-Oregon Green, a fluorescent marker of condensed tannins. Our observations showed that vacuolar accretions (1 → 40 μm), that constitute the typical form of tannin storage in tannin-producing Tracheophyta, are formed by agglomeration (not fusion) of shuttles containing various proportions of chlorophylls and tannins.

  16. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Motor cognition and its role in the phylogeny and ontogeny of action understanding.

    PubMed

    Gallese, Vittorio; Rochat, Magali; Cossu, Giuseppe; Sinigaglia, Corrado

    2009-01-01

    Social life rests in large part on the capacity to understand the intentions behind the behavior of others. What are the origins of this capacity? How is one to construe its development in ontogenesis? By assuming that action understanding can be explained only in terms of the ability to read the minds of others--that is, to represent mental states--the traditional view claims that a sharp discontinuity occurs in both phylogeny and ontogeny. Over the last few years this view has been challenged by a number of ethological and psychological studies, as well as by several neurophysiological findings. In particular, the functional properties of the mirror neuron system and its direct matching mechanism indicate that action understanding may be primarily based on the motor cognition that underpins one's own capacity to act. This article aims to elaborate and motivate the pivotal role of such motor cognition, providing a biologically plausible and theoretically unitary account for the phylogeny and ontogeny of action understanding and also its impairment, as in the case of autistic spectrum disorder.

  18. [Generation continuity and integration].

    PubMed

    Zakhvatkin, Iu A

    2008-01-01

    Transformation of the cyclic morphoprocesses in Protista toward the terminal-cyclic morphoprocesses in Metazoa had lead to integration of the fomer's life circles into the latter's ontogenesis and began to supply the newly emerging ecosystems with the regular income of mortomasses. According to the palintomic hypothesis of A.A. Zakhvatkin, it was the egg that became a means of the metazoan generation continuity, and not the half set of organells acquired by descendants of a divided maternal cell in Protozoa. Origin of Metazoa and of their ontogenesis was accomplished by hypetrophic distomy and subsequent palintomic division of the protist parental cell, these processes being comparable to the ovogenesis and ovocyte division in the Metazoa. Division process in the most primitive metazoans, Leptolida and Calcarea, retained certains features of its palintomic nature that are clear in the Ctenophora, the latter though specific being most similar in this respect to the spongs and not to the Coelenterata whith whom they were united in the same phylum formerly. The ovogenesis perfection controlled by the maternal organism and leading to an increment of the nuclear-plasmic tension due to enrichment of egg with the yolk, promoted the embrionization of development and formation of the egg morphogenetic environment providing for the earlier formation processes without participation of the parental recombined genotypes. With all this, far earlier appearence of symmetry elements of definitive forms is embriogenesis along the ascending trend from the lower Metazoa to the most advanced insects. The unordered correspondence of the polarity axis of egg and the oral-aboral axis of blastula-like larva (1) is replaced by protaxony (2) in which these axes coincide, all formation processes reaching their perfection in the homoquadrant spiral division of annelids, which became a means of ovoplasma segregation. Afterward, a herequadrant division and plagioxony are developed in the course of emergence of bilateral symmetry and embrionization in Clitellata (3), in which principal morphological axes become intersected. With the transition to arthropodes, the spiral division degenerates in a variaty of forms (desintegrative variaiton) and losts its connection with the ovoplasma segregation, which occurs beforehand in the ovogenesis. Connection between parental organism and its progeny becomes more close. Transformation of the ovary into ovariol and villogenesis intensification appeared to be of prime importance in the evoluiton of insects. Their eggs elongated and more or less bilateral symmetrical. The nuclear-plasmic interrelation becomes even more tense, and the enormous yolk store makes the developing embryo to the orientational blasokyneses. An orthoplagioaxony (4) and lastly orhoaxony (5) emerge in the higher Diptera and Hymenoptera, in which morphological axes of the egg, the embryo, and the larva coincide. This is accomplished by the maximal integration of generations, as far as all germs of the organs of larvae and even emagoes appeared to be preformed in the ovogenesis.

  19. [Oxygen-dependent energy deficit as related to the problems of ontogenetic development disorders and human sociobiological adaptation (theoretical and applied aspects)].

    PubMed

    Ilyukhina, V A; Kataeva, G V; Korotkov, A D; Chernysheva, E M

    2015-01-01

    The review states and argues theoretical propositions on the pathogenetic role of pre- and perinatal hypoxic-ischemic brain damage in the formation of sustained oxygen-dependent energy deficit underlying in further ontogenesis the following neurobiological abnormalities: a) a decline in the level of health and compensatory-adaptive capacities of the organism, b) disorders of the psycho-speech development and adaptive behavior in children, c) early development of neuropsychic diseases, g) addition of other types of brain energy metabolism (including glucose metabolism) disorders in chronic polyetiologic diseases young and middle-aged individuals. We highlight and theoretically substantiate the integrated physiological parameters of the oxygen-dependent energy deficit types. We address the features of abnormalities in neuroreflectory and neurohumora regulatory mechanisms of the wakefulness level and its vegetative and hemodynamic provision in different types of energy deficit in children with DSMD, ADHD and school maladjustment. The use of the state-of-the-art neuroimaging techniques significantly increased the possibility of the disintegration of regulatory processes and cognitive functions in children with psycho-speech delays and in a wide range of chronic polyetiologic diseases.

  20. Ontogenesis of uptake and deamination of 5-hydroxytryptamine, dopamine and beta-phenylethylamine in isolated perfused lung and lung homogenates from rats.

    PubMed Central

    Ben-Harari, R. R.; Youdim, M. B.

    1981-01-01

    1. Uptake of 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) was studied in perfused lung from male rats between 10 and 70 days old. 2. Monoamine oxidase (MAO) activity towards 5-HT, PEA and dopamine was studied in homogenate preparations of lung from rats aged between 5 and 80 days. 3. Uptake of 5-HT (10 microM) decreased throughout the age range studied but uptake of PEA (50 microM) increased for the first 30 days and beyond this age it decreased. Metabolites formed for both amines reflected the changes in uptake. 4. MAO activity deaminating 5-HT is well developed by day 10 and reaches its maximum by day 40. For dopamine and PEA, MAO activity remained low until day 20, and the developed rapidly, reaching a maximum by day 40 for dopamine; activity towards PEA did not reach a maximum by day 80. 5. These results show that uptake and MAO activity changes with age and thus the lung responds like other tissues. 6. These results also demonstrate the independent development of uptake and MAO activity towards 5-HT, PEA and dopamine. PMID:7284689

  1. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  2. [Infant moods and the chronicity of depressive symptoms: the co-creation of unique ways of being together for good or ill. Paper 1: The normal process of development and the formation of moods].

    PubMed

    Tronick, Edward Z

    2003-01-01

    The ontogenesis of moods and the process that establishes them is addressed. Moods arise out of normal developmental processes at both a macro- and micro-developmental level. Moods are part of normal development as well as a component of pathological processes and they are a ubiquitous presence that gives meaning to experience in infant and adult during daily life and therapy. In this first part of a two-part paper I will address the normal development of moods; in the second part I will to address issues related to psychopathology and therapy, especially depression and the intergenerational transfer of mood. I argue that moods are dyadic phenomena--something that develops out of the chronic co-creative interactions of two individuals--rather than solely being an intrapsychic process. I will also argue, especially when one considers the development of moods in infants, that moods make sense of the world as components of states of consciousness that give unique meaning to the individual's engagement with the world and further that moods function to bring the past into the present.

  3. The bridge of iconicity: from a world of experience to the experience of language.

    PubMed

    Perniss, Pamela; Vigliocco, Gabriella

    2014-09-19

    Iconicity, a resemblance between properties of linguistic form (both in spoken and signed languages) and meaning, has traditionally been considered to be a marginal, irrelevant phenomenon for our understanding of language processing, development and evolution. Rather, the arbitrary and symbolic nature of language has long been taken as a design feature of the human linguistic system. In this paper, we propose an alternative framework in which iconicity in face-to-face communication (spoken and signed) is a powerful vehicle for bridging between language and human sensori-motor experience, and, as such, iconicity provides a key to understanding language evolution, development and processing. In language evolution, iconicity might have played a key role in establishing displacement (the ability of language to refer beyond what is immediately present), which is core to what language does; in ontogenesis, iconicity might play a critical role in supporting referentiality (learning to map linguistic labels to objects, events, etc., in the world), which is core to vocabulary development. Finally, in language processing, iconicity could provide a mechanism to account for how language comes to be embodied (grounded in our sensory and motor systems), which is core to meaningful communication.

  4. [Effect of heat shock on courtship behavior, sound production, and learning in comparison with the brain content of LIMK1 in Drosophila melanogaster males with altered structure of the LIMK1 gene].

    PubMed

    Nikitina, E A; Kaminskaya, A N; Molotkov, D A; Popov, A V; Savvateeva-Popova, E V

    2014-01-01

    In this paper we present results of a comprehensive analysis of the effect of heat shock at different stages of ontogenesis (adult stage, development of the mushroom bodies and the central complex) on courtship behavior (latency, duration and efficacy of courtship), sound production (pulse interval, dispersion of interpulse interval, the percentage of distorted pulses, the mean duration of the pulse parcels), learning and memory formation compared with the content of isoforms LIMK1 in Drosophila melanogaster male with altered structure of the limk1 gene. The heat shock is shown to affect the behavior parameters and LIMK1 content in analyzed strains of Drosophila. The most pronounced effect of the heat shock was observed at the stage of development of the central complex (CC). Heat shock at CC and adult restores the ability of learning and memory formation in the mutant strain agn(ts3), which normally is not able to learn and form memory. Correlations between changes of content of isoforms LIMK1 and behavioral parameters due to heat shock have not been established.

  5. A review of the evidence linking adult attachment theory and chronic pain: presenting a conceptual model.

    PubMed

    Meredith, Pamela; Ownsworth, Tamara; Strong, Jenny

    2008-03-01

    It is now well established that pain is a multidimensional phenomenon, affected by a gamut of psychosocial and biological variables. According to diathesis-stress models of chronic pain, some individuals are more vulnerable to developing disability following acute pain because they possess particular psychosocial vulnerabilities which interact with physical pathology to impact negatively upon outcome. Attachment theory, a theory of social and personality development, has been proposed as a comprehensive developmental model of pain, implicating individual adult attachment pattern in the ontogenesis and maintenance of chronic pain. The present paper reviews and critically appraises studies which link adult attachment theory with chronic pain. Together, these papers offer support for the role of insecure attachment as a diathesis (or vulnerability) for problematic adjustment to pain. The Attachment-Diathesis Model of Chronic Pain developed from this body of literature, combines adult attachment theory with the diathesis-stress approach to chronic pain. The evidence presented in this review, and the associated model, advances our understanding of the developmental origins of chronic pain conditions, with potential application in guiding early pain intervention and prevention efforts, as well as tailoring interventions to suit specific patient needs.

  6. Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings

    PubMed Central

    2014-01-01

    Background Although protein phosphorylation is an important post-translational modification affecting protein function and metabolism, dynamic changes in this process during ontogenesis remain unexplored in woody angiosperms. Methods Phosphorylated proteins from leaves of three apple seedlings at juvenile, adult vegetative and reproductive stages were extracted and subjected to alkaline phosphatase pre-treatment. After separating the proteins by two-dimensional gel electrophoresis and phosphoprotein-specific Pro-Q Diamond staining, differentially expressed phosphoproteins were identified by MALDI-TOF-TOF mass spectrometry. Results A total of 107 phosphorylated protein spots on nine gels (three ontogenetic phases × three seedlings) were identified by MALDI-TOF-TOF mass spectrometry. The 55 spots of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) large-chain fragments varied significantly in protein abundance and degree of phosphorylation among ontogenetic phases. Abundances of the 27 spots corresponding to Rubisco activase declined between juvenile and reproductive phases. More extensively, phosphorylated β-tubulin chain spots with lower isoelectric points were most abundant during juvenile and adult vegetative phases. Conclusions Protein phosphorylation varied significantly during vegetative phase change and floral transition in apple seedlings. Most of the observed changes were consistent among seedlings and between hybrid populations. PMID:24904238

  7. Morphostructure of Immune System Organs in Cattle of Different Age.

    PubMed

    Gasisova, A I; Atkenova, A B; Ahmetzhanova, N B; Murzabekova, L M; Bekenova, A C

    2017-04-01

    This article provides comprehensive consideration of the age-dependent morphofunctional state of organs and tissues of the immune system (thymus, spleen, superficial and deep lymph nodes) in cattle. The morphofunctional maturity of organs and tissues of the immune system in cattle will be taken into account in various experimental studies, preventive and therapeutic measures. Performed analysis provides description of the spleen formation as well as the thymus and lymph nodes in post-natal ontogenesis and the macro- and microscopic structure of lymphoid cells and macrophages. The obtained results can be used to study immune responses of the thymus, spleen, lymph nodes in the pathological immunogenesis and may serve as a basis for development of recommendations related to diagnosis and treatment of diseases of the cattle immune system. The morphofunctional state of organs and tissues of the immune system in cattle was first studied with regard to the age dynamics. Based on the immunohistological studies, this article described the distribution and topography of immunocompetent cells (T lymphocytes, B lymphocytes and macrophages) and proliferative activity of lymphoid cells in the lymphoid organs and tissues in cattle. © 2016 Blackwell Verlag GmbH.

  8. Multi-level and hybrid modelling approaches for systems biology.

    PubMed

    Bardini, R; Politano, G; Benso, A; Di Carlo, S

    2017-01-01

    During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.

  9. The bridge of iconicity: from a world of experience to the experience of language

    PubMed Central

    Perniss, Pamela; Vigliocco, Gabriella

    2014-01-01

    Iconicity, a resemblance between properties of linguistic form (both in spoken and signed languages) and meaning, has traditionally been considered to be a marginal, irrelevant phenomenon for our understanding of language processing, development and evolution. Rather, the arbitrary and symbolic nature of language has long been taken as a design feature of the human linguistic system. In this paper, we propose an alternative framework in which iconicity in face-to-face communication (spoken and signed) is a powerful vehicle for bridging between language and human sensori-motor experience, and, as such, iconicity provides a key to understanding language evolution, development and processing. In language evolution, iconicity might have played a key role in establishing displacement (the ability of language to refer beyond what is immediately present), which is core to what language does; in ontogenesis, iconicity might play a critical role in supporting referentiality (learning to map linguistic labels to objects, events, etc., in the world), which is core to vocabulary development. Finally, in language processing, iconicity could provide a mechanism to account for how language comes to be embodied (grounded in our sensory and motor systems), which is core to meaningful communication. PMID:25092668

  10. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    PubMed

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.

  11. Cytosolic androgen receptor in regenerating rat levator ani muscle.

    PubMed Central

    Max, S R; Mufti, S; Carlson, B M

    1981-01-01

    The development of the cytosolic androgen receptor was studied after degeneration and regeneration of the rat levator ani muscle after a crush lesion. Muscle regeneration appears to recapitulate myogenesis in many respects. It therefore provides a model tissue in sufficiently in large quantity for investigating the ontogenesis of the androgen receptor. The receptor in the cytosol of the normal levator ani muscle has binding characteristics similar to those of the cytosolic receptor in other androgen-sensitive tissues. By day 3 after a crush lesion of the levator ani muscle, androgen binding decreased to 25% of control values. This decrease was followed by a 4-5 fold increase in hormone binding, which attained control values by day 7 after crush. Androgen binding remained stable at the control value up to day 60 after crushing. These results were correlated with the morphological development of the regenerating muscle after crushing. It is concluded that there is little, if any, androgen receptor present in the early myoblastic stages of regeneration; rather, synthesis of the receptor may occur after the fusion of myoblasts and during the differentiation of myotubes into cross-striated muscle fibres. Images PLATE 1 PLATE 2 PMID:6977357

  12. Morphometric and immunohistochemical study of the rumen of red deer during prenatal development.

    PubMed

    Franco, A J; Masot, A J; Aguado, Ma C; Gómez, L; Redondo, E

    2004-06-01

    Abstract A detailed study of the ontogenesis of deer stomach has not been undertaken to date, and our aim was to sequence several histological phenomena that occur during the ontogenesis of one of the gastric compartments, the rumen. Histomorphometric and immunohistochemical analyses were carried out on 50 embryos and fetuses of deer from the initial stages of prenatal life until birth. For the purposes of testing, the animals were divided into five experimental groups: group I, 1.4-3.6 cm crown-rump length, 30-60 days, 1-25% of gestation; group II, 4.5-7.2 cm crown-rump length, 67-90 days, 25-35% of gestation; group III, 8-19 cm crown-rump length, 97-135 days, 35-50% of gestation; group IV, 21-33 cm crown-rump length, 142-191 days, 45-70% of gestation; and group V, 36-40 cm crown-rump length, 205-235 days, 75-100% of gestation. The rumen of the primitive gastric tube was observed at approximately 60 days. At 67 days the rumen consisted of three layers: internal or mucosal, middle or muscular, and external or serosal layer. The stratification of the epithelial layer was accompanied by changes in its structure with the appearance of ruminal pillars and papillae. The outline of the ruminal papillae began to appear at 142 days of prenatal development as evaginations of the basal zone toward the ruminal lumen, pulling with it in its configuration the stratum basale, the lamina propria and the submucosa. From the pluripotential blastemic tissue at 60 days we witnessed the histodifferentiation of the primitive tunica muscularis, composed of two layers of myoblasts with a defined arrangement. It was also from the pluripotential blastemic tissue, at 97 days, that the lamina propria and the submucosa were differentiated. The serosa showed continuity in growth as well as differentiation, already detected in the undifferentiated outline phase. The tegumentary mucosa of deer rumen was shown without secretory capacity in the initial embryonic phases; neutral mucopolysaccharides appeared from 67 days. The presence of neuroendocrine cells (non-neuronal enolase) in the ruminal wall of deer during development was not detected until 97 days. The glial cells were detected at 142 days for glial fibrillary acidic protein and at 67 days for vimentin. The immunodetection of neuropeptides vasointestinal peptide and neuropeptide Y progressively increased with gestation period, starting from 97 days. In terms of the structure of the rumen of the primitive gastric tube, our observations revealed that the deer is less precocious than small and large domestic ruminants. Thus its secretory capacity, detected by the presence of neutral mucopolysaccharides, and its neuroendocrine nature, determined by the presence of positive non-neuronal enolase cells, were evident in more advanced stages of prenatal development than those detected in the sheep, goat and cow.

  13. Morphometric and immunohistochemical study of the rumen of red deer during prenatal development

    PubMed Central

    Franco, A J; Masot, A J; Aguado, MaC; Gómez, L; Redondo, E

    2004-01-01

    A detailed study of the ontogenesis of deer stomach has not been undertaken to date, and our aim was to sequence several histological phenomena that occur during the ontogenesis of one of the gastric compartments, the rumen. Histomorphometric and immunohistochemical analyses were carried out on 50 embryos and fetuses of deer from the initial stages of prenatal life until birth. For the purposes of testing, the animals were divided into five experimental groups: group I, 1.4–3.6 cm crown–rump length, 30–60 days, 1–25% of gestation; group II, 4.5–7.2 cm crown–rump length, 67–90 days, 25–35% of gestation; group III, 8–19 cm crown–rump length, 97–135 days, 35–50% of gestation; group IV, 21–33 cm crown–rump length, 142–191 days, 45–70% of gestation; and group V, 36–40 cm crown–rump length, 205–235 days, 75–100% of gestation. The rumen of the primitive gastric tube was observed at approximately 60 days. At 67 days the rumen consisted of three layers: internal or mucosal, middle or muscular, and external or serosal layer. The stratification of the epithelial layer was accompanied by changes in its structure with the appearance of ruminal pillars and papillae. The outline of the ruminal papillae began to appear at 142 days of prenatal development as evaginations of the basal zone toward the ruminal lumen, pulling with it in its configuration the stratum basale, the lamina propria and the submucosa. From the pluripotential blastemic tissue at 60 days we witnessed the histodifferentiation of the primitive tunica muscularis, composed of two layers of myoblasts with a defined arrangement. It was also from the pluripotential blastemic tissue, at 97 days, that the lamina propria and the submucosa were differentiated. The serosa showed continuity in growth as well as differentiation, already detected in the undifferentiated outline phase. The tegumentary mucosa of deer rumen was shown without secretory capacity in the initial embryonic phases; neutral mucopolysaccharides appeared from 67 days. The presence of neuroendocrine cells (non-neuronal enolase) in the ruminal wall of deer during development was not detected until 97 days. The glial cells were detected at 142 days for glial fibrillary acidic protein and at 67 days for vimentin. The immunodetection of neuropeptides vasointestinal peptide and neuropeptide Y progressively increased with gestation period, starting from 97 days. In terms of the structure of the rumen of the primitive gastric tube, our observations revealed that the deer is less precocious than small and large domestic ruminants. Thus its secretory capacity, detected by the presence of neutral mucopolysaccharides, and its neuroendocrine nature, determined by the presence of positive non-neuronal enolase cells, were evident in more advanced stages of prenatal development than those detected in the sheep, goat and cow. PMID:15198691

  14. Shoaling develops with age in Zebrafish (Danio rerio)

    PubMed Central

    Buske, Christine; Gerlai, Robert

    2010-01-01

    The biological mechanisms of human social behavior are complex. Animal models may facilitate the understanding of these mechanisms and may help one to develop treatment strategies for abnormal human social behavior, a core symptom in numerous clinical conditions. The zebrafish is perhaps the most social vertebrate among commonly used laboratory species. Given its practical features and the numerous genetic tools developed for it, it should be a promising tool. Zebrafish shoal, i.e. form tight multimember groups, but the ontogenesis of this behavior has not been described. Analyzing the development of shoaling is a step towards discovering the mechanisms of this behavior. Here we study age-dependent changes of shoaling in zebrafish from day 7 post fertilization to over 5 months of age by measuring the distance between all pairs of fish in freely swimming groups of ten subjects. Our longitudinal (repeated measure within subject) and cross sectional (non-repeated measure between subject) analyses both demonstrated a significant increase of shoaling with age (decreased distance between shoal members). Given the sophisticated genetic and developmental biology methods already available for zebrafish, we argue that our behavioral results open a new avenue towards the understanding of the development of vertebrate social behavior and of its mechanisms and abnormalities. PMID:20837077

  15. The contribution of emotion and cognition to moral sensitivity: a neurodevelopmental study.

    PubMed

    Decety, Jean; Michalska, Kalina J; Kinzler, Katherine D

    2012-01-01

    Whether emotion is a source of moral judgments remains controversial. This study combined neurophysiological measures, including functional magnetic resonance imaging, eye-tracking, and pupillary response with behavioral measures assessing affective and moral judgments across age. One hundred and twenty-six participants aged between 4 and 37 years viewed scenarios depicting intentional versus accidental actions that caused harm/damage to people and objects. Morally, salient scenarios evoked stronger empathic sadness in young participants and were associated with enhanced activity in the amygdala, insula, and temporal poles. While intentional harm was evaluated as equally wrong across all participants, ratings of deserved punishments and malevolent intent gradually became more differentiated with age. Furthermore, age-related increase in activity was detected in the ventromedial prefrontal cortex in response to intentional harm to people, as well as increased functional connectivity between this region and the amygdala. Our study provides evidence that moral reasoning involves a complex integration between affective and cognitive processes that gradually changes with age and can be viewed in dynamic transaction across the course of ontogenesis. The findings support the view that negative emotion alerts the individual to the moral salience of a situation by bringing discomfort and thus can serve as an antecedent to moral judgment.

  16. Hypoxia tolerance of common sole juveniles depends on dietary regime and temperature at the larval stage: evidence for environmental conditioning.

    PubMed

    Zambonino-Infante, José L; Claireaux, Guy; Ernande, Bruno; Jolivet, Aurélie; Quazuguel, Patrick; Sévère, Armelle; Huelvan, Christine; Mazurais, David

    2013-05-07

    An individual's environmental history may have delayed effects on its physiology and life history at later stages in life because of irreversible plastic responses of early ontogenesis to environmental conditions. We chose a marine fish, the common sole, as a model species to study these effects, because it inhabits shallow marine areas highly exposed to environmental changes. We tested whether temperature and trophic conditions experienced during the larval stage had delayed effects on life-history traits and resistance to hypoxia at the juvenile stage. We thus examined the combined effect of global warming and hypoxia in coastal waters, which are potential stressors to many estuarine and coastal marine fishes. Elevated temperature and better trophic conditions had a positive effect on larval growth and developmental rates; warmer larval temperature had a delayed positive effect on body mass and resistance to hypoxia at the juvenile stage. The latter suggests a lower oxygen demand of individuals that had experienced elevated temperatures during larval stages. We hypothesize that an irreversible plastic response to temperature occurred during early ontogeny that allowed adaptive regulation of metabolic rates and/or oxygen demand with long-lasting effects. These results could deeply affect predictions about impacts of global warming and eutrophication on marine organisms.

  17. Cotterillia bromelicola nov. gen., nov. spec., a gonostomatid ciliate (Ciliophora, Hypotricha) from tank bromeliads (Bromeliaceae) with de novo originating dorsal kineties.

    PubMed

    Foissner, Wilhelm; Stoeck, Thorsten

    2011-01-01

    Cotterillia bromelicola nov. gen., nov. spec. was discovered in the tanks of the Mexican bromeliad Tillandsia heterophylla. Its morphology, ontogenesis, and 18S rDNA were studied with standard methods. Cotterillia has many cirral rows on both sides of the body. Uniquely, and thus used to diagnose the new genus Cotterillia, it has dorsal kineties originating de novo, producing neokinetal waves where the parental dorsal kineties reorganize to "combined rows", consisting of dorsal bristles anteriorly and of cirri posteriorly. Thus, up to four generations of bristles and cirri occur on the dorsal body surface. Cotterillia bromelicola has a gonostomatid body and adoral zone of membranelles, while the dense ciliature and the neokinetal waves resemble kahliellid hypotrichs. However, the de novo origin of anlage 1 and the molecular analyses show convincingly that Cotterillia belongs to the GonostomatidaeSmall and Lynn, 1985, for which an improved diagnosis is provided. Thus, neokinetal waves originated several times independently. The molecular differences between Trachelostyla, Gonostomum, and Cotterillia are small (≤ 5%) compared to their distinct morphologies and ontogeneses, suggesting that the 18S rDNA underestimates generic diversity. Our study emphasizes the need of combined morphological, ontogenetic, and molecular investigations to unravel the complex phylogeny and evolution of hypotrich ciliates. Published by Elsevier GmbH.

  18. Cotterillia bromelicola nov. gen., nov. spec., a gonostomatid ciliate (Ciliophora, Hypotricha) from tank bromeliads (Bromeliaceae) with de novo originating dorsal kineties

    PubMed Central

    Foissner, Wilhelm; Stoeck, Thorsten

    2012-01-01

    Cotterillia bromelicola nov. gen., nov. spec. was discovered in the tanks of the Mexican bromeliad Tillandsia heterophylla. Its morphology, ontogenesis, and 18S rDNA were studied with standard methods. Cotterillia has many cirral rows on both sides of the body. Uniquely, and thus used to diagnose the new genus Cotterillia, it has dorsal kineties originating de novo, producing neokinetal waves where the parental dorsal kineties reorganize to “combined rows”, consisting of dorsal bristles anteriorly and of cirri posteriorly. Thus, up to four generations of bristles and cirri occur on the dorsal body surface. Cotterillia bromelicola has a gonostomatid body and adoral zone of membranelles, while the dense ciliature and the neokinetal waves resemble kahliellid hypotrichs. However, the de novo origin of anlage 1 and the molecular analyses show convincingly that Cotterillia belongs to the Gonostomatidae Small and Lynn, 1985, for which an improved diagnosis is provided. Thus, neokinetal waves originated several times independently. The molecular differences between Trachelostyla, Gonostomum, and Cotterillia are small (≤5%) compared to their distinct morphologies and ontogeneses, suggesting that the 18S rDNA underestimates generic diversity. Our study emphasizes the need of combined morphological, ontogenetic, and molecular investigations to unravel the complex phylogeny and evolution of hypotrich ciliates. PMID:20971620

  19. Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants

    PubMed Central

    Gáliková, Martina; Diesner, Max; Klepsatel, Peter; Hehlert, Philip; Xu, Yanjun; Bickmeyer, Iris; Predel, Reinhard; Kühnlein, Ronald P.

    2015-01-01

    Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation. PMID:26275422

  20. Ontogenesis of neurons producing luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis of the rat.

    PubMed

    Schwanzel-Fukuda, M; Morrell, J I; Pfaff, D W

    1985-08-15

    Immunoreactive luteinizing hormone-releasing hormone (LHRH) was first detected at 15 days of gestation in ganglion cells associated with the peripheral, intracranial, and central parts of the nervus terminalis of the rat. LHRH was not detected in any other structure of the central nervous system at this age. In the 17-day-old fetal rat, 62% of the total LHRH-reactive neuronal population was found in ganglion cells of the nervus terminalis. At this same age, immunoreactive beta-luteinizing hormone (beta-LH) was first seen in gonadotropes of the anterior pituitary gland. At 19 days of gestation, 31% of the total number of LHRH-reactive neurons observed in the rat brain was found in the nervus terminalis, and immunoreactive processes were first seen in the organum vasculosum of the lamina terminalis and in the median eminence. Our data indicate that from 15 to 19 days of gestation the nervus terminalis is a principal source of LHRH in the fetal rat. Presence of the decapeptide in the nervus terminalis prior to appearance of beta-LH in the anterior pituitary suggests a possible role for LHRH in this system on maturation of the gonadotropes and differentiation of the brain-pituitary-gonadal axis.

  1. Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis.

    PubMed

    Pinelli, Claudia; D'Aniello, Biagio; Polese, Gianluca; Rastogi, Rakesh K

    2004-09-01

    The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.

  2. Dermatoglyphic anomalies and neurocognitive deficits in sibling pairs discordant for schizophrenia spectrum disorders.

    PubMed

    Rosa, Araceli; Cuesta, Manuel J; Peralta, Víctor; Zarzuela, Amalia; Serrano, Fermín; Martínez-Larrea, Alfredo; Fañanás, Lourdes

    2005-12-15

    The neurodevelopmental hypothesis of schizophrenia suggests that adverse genetic loading in conjunction with environmental factors early in fetal life causes a disruption of neural development, decades before the symptomatic manifestation of the disease. Neurocognitive deficits have been observed early on the course of schizophrenia, and their association with an early developmental brain lesion has been postulated. Dermatoglyphics have been analyzed in schizophrenia as markers of prenatal brain injury because of their early fetal ontogenesis and susceptibility to the same environmental factors that can also affect cerebral development. The aim of our study was to conduct a comparative examination of neurocognitive functions and dermatoglyphic variables in 89 sibling pairs discordant for schizophrenia spectrum disorders. Therefore, we investigated the association between these two markers to explore the prenatal origin of cognitive deficits in schizophrenia. The affected siblings were significantly impaired on all the cognitive variables assessed (Wisconsin Card Sorting Test, Trail Making Test and Continuous Performance Test) and had a greater number of dermatoglyphic anomalies. These results suggest the influence of intrauterine environmental factors in the siblings affected with schizophrenia. However, we did not detect a significant association between these two vulnerability markers in the schizophrenic patients, suggesting the role of genetic or late environmental factors in the origin of the neurocognitive deficits found in these patients.

  3. Where does the stone go when we drop it? Development of French schoolchildren’s knowledge of gravity

    NASA Astrophysics Data System (ADS)

    Frappart, Sören; Frède, Valérie

    2010-04-01

    In this study, we explored children’s knowledge of gravity at different ages (5-6, 7-8, and 9-10 years), by asking the same question (“Where does a stone go when we drop it?”) in three different contexts (on Earth, in a spaceship orbiting the Earth, and on the Moon). We tested the influence of context and children’s age on both the answers and the justifications they provided. We expected that children of all ages would find it easier to make correct predictions in the Earth context than in the other two contexts. We were also interested in the kinds of justification children construct and how these justifications change during ontogenesis. Seventy-two French children were individually interviewed at their school. None of them had received any direct teaching about gravity. Results showed that children found it easier to predict the fall of the stone on Earth than its behaviour in the other two contexts, but that the younger children predicted the fall of the stone on the Moon more accurately than the older children. This unusual developmental effect only occurred for the Moon context. We also found that the categories of justifications changed with age, with a move away from intuitive considerations towards mechanistic ones.

  4. [Supposed role of "metabolic memory" in formation of response reaction to stress-factors in young and adult organisms].

    PubMed

    Bozhkov, A I; Dlubovskaia, V L; Dmitriev, Iu V; Meshaĭkina, N I; Maleev, V A; Klimova, E M

    2009-01-01

    The influence of the combined long-lasted influences of sulfur sulfate and diet restriction in young (3 month age) and adult (21 month age) Vistar rats on activity of glucose-6-phospatase, alaninaminotranspherase (ALT), aspartataminotranspherase (AST), and on phosphorilating activity of liver mitochondria was studied to investigate the role of metabolic memory on the peculiarities of response reaction. The young animals not differed from adult ones in the possibility of inducing activity of glucose-6-phospatase, ALT, and on phosphorilating activity after the influence of sulfur sulfate and diet restriction. The age-related differences in glucose-6-phospatase and transpherases and phosphorilating activity existing in control disappeared after the long-lasted action of sulfur sulfate and diet restriction. The answer reaction in enzyme activity to stress factors applied many times depends upon the metabolic memory formed in the process of adaptation, and the age of animals have no influence on it. In some relation the ontogenesis may be considered as a result of adaptation genesis. The metabolic memory can change the answer of the system to the stress influence. There are three types of modification of the answer to stress factors: the answer remains unchanged (metabolic memory), "paradox answer" formation, and super activation of the metabolic system.

  5. Comparing methods for measuring peak look duration: are individual differences observed on screen-based tasks also found in more ecologically valid contexts?

    PubMed

    Wass, Sam V

    2014-08-01

    Convergent research points to the importance of studying the ontogenesis of sustained attention during the early years of life, but little research hitherto has compared and contrasted different techniques available for measuring sustained attention. Here, we compare methods that have been used to assess one parameter of sustained attention, namely infants' peak look duration to novel stimuli. Our focus was to assess whether individual differences in peak look duration are stable across different measurement techniques. In a single cohort of 42 typically developing 11-month-old infants we assessed peak look duration using six different measurement paradigms (four screen-based, two naturalistic). Zero-order correlations suggested that individual differences in peak look duration were stable across all four screen-based paradigms, but no correlations were found between peak look durations observed on the screen-based and the naturalistic paradigms. A factor analysis conducted on the dependent variable of peak look duration identified two factors. All four screen-based tasks loaded onto the first factor, but the two naturalistic tasks did not relate, and mapped onto a different factor. Our results question how individual differences observed on screen-based tasks manifest in more ecologically valid contexts. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Comparing methods for measuring peak look duration: Are individual differences observed on screen-based tasks also found in more ecologically valid contexts?

    PubMed Central

    Wass, Sam V.

    2014-01-01

    Convergent research points to the importance of studying the ontogenesis of sustained attention during the early years of life, but little research hitherto has compared and contrasted different techniques available for measuring sustained attention. Here, we compare methods that have been used to assess one parameter of sustained attention, namely infants’ peak look duration to novel stimuli. Our focus was to assess whether individual differences in peak look duration are stable across different measurement techniques. In a single cohort of 42 typically developing 11-month-old infants we assessed peak look duration using six different measurement paradigms (four screen-based, two naturalistic). Zero-order correlations suggested that individual differences in peak look duration were stable across all four screen-based paradigms, but no correlations were found between peak look durations observed on the screen-based and the naturalistic paradigms. A factor analysis conducted on the dependent variable of peak look duration identified two factors. All four screen-based tasks loaded onto the first factor, but the two naturalistic tasks did not relate, and mapped onto a different factor. Our results question how individual differences observed on screen-based tasks manifest in more ecologically valid contexts. PMID:24905901

  7. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    USGS Publications Warehouse

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  8. The elucidation of stress memory inheritance in Brassica rapa plants.

    PubMed

    Bilichak, Andriy; Ilnytskyy, Yaroslav; Wóycicki, Rafal; Kepeshchuk, Nina; Fogen, Dawson; Kovalchuk, Igor

    2015-01-01

    Plants are able to maintain the memory of stress exposure throughout their ontogenesis and faithfully propagate it into the next generation. Recent evidence argues for the epigenetic nature of this phenomenon. Small RNAs (smRNAs) are one of the vital epigenetic factors because they can both affect gene expression at the place of their generation and maintain non-cell-autonomous gene regulation. Here, we have made an attempt to decipher the contribution of smRNAs to the heat-shock-induced transgenerational inheritance in Brassica rapa plants using sequencing technology. To do this, we have generated comprehensive profiles of a transcriptome and a small RNAome (smRNAome) from somatic and reproductive tissues of stressed plants and their untreated progeny. We have demonstrated that the highest tissue-specific alterations in the transcriptome and smRNAome profile are detected in tissues that were not directly exposed to stress, namely, in the endosperm and pollen. Importantly, we have revealed that the progeny of stressed plants exhibit the highest fluctuations at the smRNAome level but not at the transcriptome level. Additionally, we have uncovered the existence of heat-inducible and transgenerationally transmitted tRNA-derived small RNA fragments in plants. Finally, we suggest that miR168 and braAGO1 are involved in the stress-induced transgenerational inheritance in plants.

  9. Splenium of Corpus Callosum: Patterns of Interhemispheric Interaction in Children and Adults

    PubMed Central

    Knyazeva, Maria G.

    2013-01-01

    The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain. PMID:23577273

  10. Global Transcriptome Sequencing Reveals Molecular Profiles of Summer Diapause Induction Stage of Onion Maggot, Delia antiqua (Diptera: Anthomyiidae)

    PubMed Central

    Ren, Shuang; Hao, You-Jin; Chen, Bin; Yin, You-Ping

    2017-01-01

    The onion maggot, Delia antiqua, is a worldwide subterranean pest and can enter diapause during the summer and winter seasons. The molecular regulation of the ontogenesis transition remains largely unknown. Here we used high-throughput RNA sequencing to identify candidate genes and processes linked to summer diapause (SD) induction by comparing the transcriptome differences between the most sensitive larval developmental stage of SD and nondiapause (ND). Nine pairwise comparisons were performed, and significantly differentially regulated transcripts were identified. Several functional terms related to lipid, carbohydrate, and energy metabolism, environmental adaption, immune response, and aging were enriched during the most sensitive SD induction period. A subset of genes, including circadian clock genes, were expressed differentially under diapause induction conditions, and there was much more variation in the most sensitive period of ND- than SD-destined larvae. These expression variations probably resulted in a deep restructuring of metabolic pathways. Potential regulatory elements of SD induction including genes related to lipid, carbohydrate, energy metabolism, and environmental adaption. Collectively, our results suggest the circadian clock is one of the key drivers for integrating environmental signals into the SD induction. Our transcriptome analysis provides insight into the fundamental role of the circadian clock in SD induction in this important model insect species, and contributes to the in-depth elucidation of the molecular regulation mechanism of insect diapause induction. PMID:29158334

  11. Morpho-histological and ultra architectural changes during early development of endangered golden mahseer Tor putitora.

    PubMed

    Sarma, D; Das, R; Akhtar, M S; Ciji, A; Sharma, N K; Singh, A K

    2016-10-01

    Ultrastructural and histological changes in the embryonic and larval surface during ontogenesis of the endangered golden mahseer Tor putitora is studied here for the first time. Embryonic development was completed 91-92 h after fertilization at an ambient temperature of 23° ± 1° C (mean ± s.d.). The gastrula stage was characterized by presence of the Kupffer's vesicle, notochord, ectoderm and endoderm cells. Primordial germ cells were clearly identifiable from c. 55 h post-fertilization at the organogenesis stage. Mean total length of newly hatched larvae was 7·0 ± 0·5 mm. Scanning electron microscopy of newly hatched larvae demonstrated vitelline arteries, microridged epithelial cells and mucous gland openings over much of the body surface. Eye, oral cavity, pharyngeal arches, heart, intestinal loop, prosencephalon, cephalic vesicle and nasal epithelium were clearly distinguished in 3 day old hatched individuals. In 6 day old individuals, caudal-fin rays and internal organs were evident. The dorsal fin became prominent at this stage and larvae began swimming at the surface. The reserved yolk material was totally absorbed 8-11 days after hatching and larvae began feeding exogenously. Tor putitora exhibited a longer early developmental period than other cyprinids reared at similar temperatures. © 2016 The Fisheries Society of the British Isles.

  12. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    PubMed

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building. Georg Thieme Verlag KG Stuttgart · New York.

  13. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana.

    PubMed

    Guitton, Anne-Elisabeth; Page, Damian R; Chambrier, Pierre; Lionnet, Claire; Faure, Jean-Emmanuel; Grossniklaus, Ueli; Berger, Frédéric

    2004-06-01

    In higher plants, double fertilisation initiates seed development. One sperm cell fuses with the egg cell and gives rise to the embryo, the second sperm cell fuses with the central cell and gives rise to the endosperm. The endosperm develops as a syncytium with the gradual organisation of domains along an anteroposterior axis defined by the position of the embryo at the anterior pole and by the attachment to the placenta at the posterior pole. We report that ontogenesis of the posterior pole in Arabidopsis thaliana involves oriented migration of nuclei in the syncytium. We show that this migration is impaired in mutants of the three founding members of the FERTILIZATION INDEPENDENT SEED (FIS) class, MEDEA (MEA), FIS2 and FERTILIZATION INDEPENDENT ENDOSPERM (FIE). A screen based on a green fluorescent protein (GFP) reporter line allowed us to identify two new loci in the FIS pathway, medicis and borgia. We have cloned the MEDICIS gene and show that it encodes the Arabidopsis homologue of the yeast WD40 domain protein MULTICOPY SUPRESSOR OF IRA (MSI1). The mutations at the new fis loci cause the same cellular defects in endosperm development as other fis mutations, including parthenogenetic development, absence of cellularisation, ectopic development of posterior structures and overexpression of the GFP marker.

  14. Scientific background of contemporary approach in the priority areas of medical science in the field of radiation medicine and radiobiology.

    PubMed

    Chumak, A A; Medvedovska, N V; Ovsannikova, L M

    2013-01-01

    OBJECTIVE. To analyze the results of scientific research on the problems of radiation medicine and radiobiology for the further outlining of the priority fields of research in this area. MATERIALS. Perspective plans and annual summary of research (R & D) NAMS of Ukraine, interim and final reports on implementation of research, reports on the activities of institutions, thematic scientific publications. METHODS. Semantic and content analysis, bibliometry, historical and logical analysis. RESULTS. The definition of major oncological risks of radiation effects, study of radiation risks of morbidity and mortality from cardiovascular and cerebrovascular diseases, cognitive effects and cataract in liquidators of the Chornobyl nuclear power plant accident, study of transgenic effects of the brain irradiation, other organs and systems in various stages of ontogenesis in exposed in utero, in offspring of exposed parents; study of the effects of occupational exposure were recognized as perspective and requiring further research in radiation medicine. CONCLUSION. Issues of NNCRM scientific activity are consistent with priority areas of research in Ukraine defined by the Law "On priority directions of science and technology", namely, aimed at substantiating of the development and preservation of human potential, aimed at the creation of modern technologies on prevention and treatment of most common diseases. Chumak A. A., Medvedovska N. V., Ovsjannikova L. M. 2013.

  15. Ontogenesis of the collapsed layer during haustorium development in the root hemi-parasite Santalum album Linn.

    PubMed

    Yang, X; Zhang, X; Teixeira da Silva, J A; Liang, K; Deng, R; Ma, G

    2014-01-01

    The structure and development of collapsed layers of the haustorium were studied in Santalum album Linn. Through light and transmission electron microscopy, it was shown that the collapsed layers originated from starch-containing cells when the haustorium developed an internal gland, thickened gradually and ultimately developed into the mantle, which, combined with the sucker, buckled the host root. We report on the presence of inter-collapsed layers for the first time. These layers develop after penetration into the host and are located between the intrusive tissues and the vascular meristematic region, gradually linking the collapsed layers and remains around the sucker. The proliferation of cells in the meristematic region and the 'host tropism' of cortical layers contribute to pressure within the haustorium and result in development of the collapsed layers. Besides, starch-containing cells that turn into collapsed layers are vulnerable to pressure as they lack a large vacuole, have uneven cell wall thickness and a loose cell arrangement. We proposed that the functions of collapsed layers are to efficiently assure that cell inclusion and energy concentrate at the inner meristematic region and are recycled to affect penetration, reinforce the physical connection between the sandalwood haustorium and host root, and supply space for haustorial development. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Enquiry into the Topology of Plasma Membrane-Localized PIN Auxin Transport Components.

    PubMed

    Nodzyński, Tomasz; Vanneste, Steffen; Zwiewka, Marta; Pernisová, Markéta; Hejátko, Jan; Friml, Jiří

    2016-11-07

    Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.

    PubMed

    Fontaine, Romain; Affaticati, Pierre; Bureau, Charlotte; Colin, Ingrid; Demarque, Michaël; Dufour, Sylvie; Vernier, Philippe; Yamamoto, Kei; Pasqualini, Catherine

    2015-08-01

    Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.

  18. Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells.

    PubMed

    Zhang, Lian-Jun; Chen, Bo; Feng, Xin-Lei; Ma, Hua-Gang; Sun, Li-Lan; Feng, Yan-Min; Liang, Gui-Jin; Cheng, Shun-Feng; Li, Lan; Shen, Wei

    2015-01-01

    In mammals, ontogenesis starts from a fusion of spermatozoon and oocyte, which are produced by reductive nuclear division of a diploid germ cell in a specialised but complex biological process known as meiosis. However, little is known about the mechanism of meiotic initiation in germ cells, although many factors may be responsible for meiosis both in male and female gonads. In this study, 11.5 days post coitum (dpc) female fetal mouse genital ridges were cultured in vitro with exposure to Brefeldin A (BFA) for 6h, and the changes in meiosis were detected. Synaptonemal-complex analysis implied that BFA played a positive role in meiosis initiation and this hypothesis was confirmed by quantitative PCR of meiosis-specific genes: stimulated by retinoic acid gene 8 (Stra8) and deleted in a zoospermia-like (DAZL). At the same time, mRNA expression of retinoic acid synthetase (Raldh2) and retinoic acid (RA) receptors increased in female gonads with in vitro exposure to BFA. Transplanting genital ridges treated with BFA into the kidney capsule of immunodeficient mice demonstrated that the development capacity of female germ cells was normal, while formation of primordial follicles was seen to be a result of accelerated meiosis after exposure to BFA. In conclusion, the study indicated that BFA stimulated meiosis initiation partly by RA signalling and then promoted the development of follicles.

  19. Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny.

    PubMed

    Gao, Xiao-Qiang; Liu, Zhi-Feng; Guan, Chang-Tao; Huang, Bin; Lei, Ji-Lin; Li, Juan; Guo, Zheng-Long; Wang, Yao-Hui; Hong, Lei

    2017-04-01

    In order to assess the digestive physiological capacity of the American shad Alosa sapidissima and to establish feeding protocols that match larval nutritional requirements, we investigated the ontogenesis of digestive enzymes (trypsin, amylase, lipase, pepsin, alkaline phosphatase, and leucine aminopeptidase) in larvae, from hatching to 45 days after hatching (DAH). We found that all of the target enzymes were present at hatching, except pepsin, which indicated an initial ability to digest nutrients and precocious digestive system development. Trypsin rapidly increased to a maximum at 14 DAH. Amylase sharply increased until 10 DAH and exhibited a second increase at 33 DAH, which coincided with the introduction of microdiet at 30 DAH, thereby suggesting that the increase was associated with the microdiet carbohydrate content. Lipase increased until 14 DAH, decreased until 27 DAH, and then increased until 45 DAH. Pepsin was first detected at 27 DAH and then sharply increased until 45 DAH, which suggested the formation of a functional stomach. Both alkaline phosphatase and leucine aminopeptidase markedly increased until 18 DAH, which indicated intestinal maturation. According to our results, we conclude that American shad larvae possess the functional digestive system before mouth opening, and the significant increases in lipase, amylase, pepsin, and intestinal enzyme activities between 27 and 33 DAH suggest that larvae can be successfully weaned onto microdiets around this age.

  20. [Development of the Human Olfactory Bulbs in the Prenatal Ontogenesis: an Immunochistochemical Study with Markers of Presynaptic Terminals (anti-SNAP-25, -Synapsin-I, -Synaptophysin)].

    PubMed

    Kharlamova, A S; Barabanov, V M; Saveliev, S V

    2015-01-01

    We provide the data of the olfactory bulbs (OB) development in the human fetuses on the stages from 8 week to birth. Immunochistochemical markers of presynaptic terminals (anti-SNAP-25, -synapsin-I, -synaptophysin) were used to evaluate the maturation of the OB. Differentiation of the OB layers begins from periphery, which implicitly evidences that growth of the olfactory nerves fibers induses not only anatomical differentiation of the OB, but also differentiation of its functional layers. The sites of the developing glomerulus are revealed using the immunochistochemical prosedure on the stage before distinct glomerulus can be identified with common histological procedure. OB conductive system demonstrates immunoreactivity with the antibodies to the presynaptic proteins on the all stages from 10-11 weeks of fetus development. Four stages of the OB development are described. All functional layers of the OB are mature at the 22-weeks stage. Further differentiation of the OB neuroblasts, including lamina formation of the internal granular leyer, glomerular layer development, OB growth continue after 20-22 weeks stage until 38-40 weeks of the fetus develoment. Patterns of the immunoreactivity with antibodies to SNAP-25, synapsin-I and synaptophysin are completely appropriate to those of adult's OB on the 38-40 weeks of the prenatal development. Complete maturity of the human OB is achived at 38-40 weeks of the prenatal development.

  1. Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders

    PubMed Central

    Grinevich, Valery; Desarménien, Michel G.; Chini, Bice; Tauber, Maithé; Muscatelli, Françoise

    2014-01-01

    Oxytocin (OT), the main neuropeptide of sociality, is expressed in neurons exclusively localized in the hypothalamus. During the last decade, a plethora of neuroendocrine, metabolic, autonomic and behavioral effects of OT has been reported. In the urgency to find treatments to syndromes as invalidating as autism, many clinical trials have been launched in which OT is administered to patients, including adolescents and children. However, the impact of OT on the developing brain and in particular on the embryonic and early postnatal maturation of OT neurons, has been only poorly investigated. In the present review we summarize available (although limited) literature on general features of ontogenetic transformation of the OT system, including determination, migration and differentiation of OT neurons. Next, we discuss trajectories of OT receptors (OTR) in the perinatal period. Furthermore, we provide evidence that early alterations, from birth, in the central OT system lead to severe neurodevelopmental diseases such as feeding deficit in infancy and severe defects in social behavior in adulthood, as described in Prader-Willi syndrome (PWS). Our review intends to propose a hypothesis about developmental dynamics of central OT pathways, which are essential for survival right after birth and for the acquisition of social skills later on. A better understanding of the embryonic and early postnatal maturation of the OT system may lead to better OT-based treatments in PWS or autism. PMID:25767437

  2. Ultrastructural study and ontogenesis of the appendages and related musculature of Paraspadella (Chaetognatha).

    PubMed

    Casanova, J-P; Duvert, M; Goto, T

    2003-10-01

    A lineage of benthic chaetognaths has developed limb-like appendages on the caudal part of the body, resulting from a local modification of the lateral fins, which are folds of the epidermis and have a role in balance when swimming. The most complex are those of Paraspadella gotoi which are used as props with the tip of the tail, allowing an elaborated mating behaviour comprising different movements: complete erection of the body, swings and jumps, astonishing for so simple-bodied animals. In the tail, the epidermis and the connective tissue, together with the longitudinal musculature, are involved in this innovation. All the components of the fins, i.e. connective tissue, fin rays and multilayered epidermic cells are conserved, but their function has changed. The movements of appendages are adjusted by one pair of small appendicular muscles localised in the body wall, while posture movements of the body are allowed by four longitudinal bundles of raising muscle. These two new muscles have successively appeared in the evolutive series previously described in Paraspadella. They have definitely arisen from the secondary muscle: the two lateral bundles for the former, and the two dorsal and two ventral ones for the latter. All are supercontracting muscles, a muscle kind also observed in the other benthic genus Spadella, but unknown in planktonic and benthoplanktonic chaetognaths.

  3. Knock-Down of Cathepsin D Affects the Retinal Pigment Epithelium, Impairs Swim-Bladder Ontogenesis and Causes Premature Death in Zebrafish

    PubMed Central

    Follo, Carlo; Ozzano, Matteo; Mugoni, Vera; Castino, Roberta; Santoro, Massimo; Isidoro, Ciro

    2011-01-01

    The lysosomal aspartic protease Cathepsin D (CD) is ubiquitously expressed in eukaryotic organisms. CD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CD knock-out models have highlighted the multi-pathophysiological roles of CD in tissue homeostasis and organ development. Here we report the first phenotypic description of the lack of CD expression during zebrafish (Danio rerio) development obtained by morpholino-mediated knock-down of CD mRNA. Since the un-fertilized eggs were shown to be supplied with maternal CD mRNA, only a morpholino targeting a sequence containing the starting ATG codon was effective. The main phenotypic alterations produced by CD knock-down in zebrafish were: 1. abnormal development of the eye and of retinal pigment epithelium; 2. absence of the swim-bladder; 3. skin hyper-pigmentation; 4. reduced growth and premature death. Rescue experiments confirmed the involvement of CD in the developmental processes leading to these phenotypic alterations. Our findings add to the list of CD functions in organ development and patho-physiology in vertebrates. PMID:21747967

  4. Applications of Self-Organizing Maps for Ecomorphological Investigations through Early Ontogeny of Fish

    PubMed Central

    Russo, Tommaso; Scardi, Michele; Cataudella, Stefano

    2014-01-01

    We propose a new graphical approach to the analysis of multi-temporal morphological and ecological data concerning the life history of fish, which can typically serves models in ecomorphological investigations because they often undergo significant ontogenetic changes. These changes can be very complex and difficult to describe, so that visualization, abstraction and interpretation of the underlying relationships are often impeded. Therefore, classic ecomorphological analyses of covariation between morphology and ecology, performed by means of multivariate techniques, may result in non-exhaustive models. The Self Organizing map (SOM) is a new, effective approach for pursuing this aim. In this paper, lateral outlines of larval stages of gilthead sea bream (Sparus aurata) and dusky grouper (Epinephelus marginatus) were recorded and broken down using by means of Elliptic Fourier Analysis (EFA). Gut contents of the same specimens were also collected and analyzed. Then, shape and trophic habits data were examined by SOM, which allows both a powerful visualization of shape changes and an easy comparison with trophic habit data, via their superimposition onto the trained SOM. Thus, the SOM provides a direct visual approach for matching morphological and ecological changes during fish ontogenesis. This method could be used as a tool to extract and investigate relationships between shape and other sinecological or environmental variables, which cannot be taken into account simultaneously using conventional statistical methods. PMID:24466185

  5. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    PubMed

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  6. Ontogenetic characterization of sporangium and spore of Huperzia serrata: an anti-aging disease fern.

    PubMed

    Long, Hua; Li, Jing; Li, You-You; Xie, De-Yu; Peng, Qing-Zhong; Li, Li

    2016-12-01

    Huperzia serrata is a medicinal plant used in Traditional Chinese Medicine, which has been used to prevent against aging diseases. It is mainly propagated by spores and grows extremely slowly. Due to severe harvest, it is a highly endangered species. In this report, we characterize ontogenesis of sporangia and spores that are associated with propagation. A wild population of H. serrata plants is localized in western Hunan province, China and protected by Chinese Government to study its development (e.g. sporangia and spores) and ecology. Both field and microscopic observations were conducted for a few of years. The development of sporangia from their initiation to maturation took nearly 1 year. Microscopic observations showed that the sporangial walls were developed from epidermal cells via initiation, cell division, and maturation. The structure of the mature sporangial wall is composed of one layer of epidermis, two middle layers of cells, and one layer of tapetum. Therefore, the sporangium is the eusporangium type. Spore development is characterized into six stages, initiation from epidermal cell and formation of sporogenous cells, primary sporogenous cell, secondary sporogenous cell, spore mother cell, tetrad, and maturation. The sporangial development of H. serrata belongs to the eusporangium type. The development takes approximately 1 year period from the initiation to the maturation. These data are useful for improving propagation of this medicinal plant in the future.

  7. The role of brain peptides in the reproduction of blue gourami males (Trichogaster trichopterus).

    PubMed

    Levy, Gal; Degani, Gad

    2013-10-01

    In all vertebrates, reproduction and growth are closely linked and both are controlled by complex hormonal interactions at the brain-pituitary level. In this study, we focused on the reciprocal interactions between brain peptides that regulate growth and reproductive functions in a teleostei fish (blue gourami Trichogaster trichopterus). An increase in gonadotropin-releasing hormone 1 (GnRH1) gene expression was detected during ontogeny, and this peptide increased growth hormone (GH) and β follicle-stimulating hormone (βFSH) gene expression in pituitary cell culture. However, although no change in gonadotropin-releasing hormone 2 (GnRH2) gene expression during the reproductive cycle or sexual behavior was detected, a stimulatory effect of this peptide on β gonadotropins (βGtH) gene expression was observed. In addition, pituitary adenylate cyclase-activating polypeptide 38 (PACAP-38) inhibited GnRH-analog-induced βFSH gene expression, and co-treatment of cells with GnRH-analog and PACAP-38 inhibited GnRH-analog-stimulatory and PACAP-38-inhibitory effects on GH gene expression. These findings together with previous studies were used to create a model summarizing the mechanism of brain peptides (GnRH, PACAP and its related peptide) and the relationship to reproduction and growth through pituitary hormone gene expression during ontogenesis and reproductive stages in blue gourami. © 2013 Wiley Periodicals, Inc.

  8. The enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas.

    PubMed

    Liu, Zhaoqun; Zhou, Zhi; Wang, Lingling; Song, Xiaorui; Chen, Hao; Wang, Weilin; Liu, Rui; Wang, Mengqiang; Wang, Hao; Song, Linsheng

    2015-08-01

    Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met(5)]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met(5)]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met(5)]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met(5)]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met(5)]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met(5)]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met(5)]-enkephalin released by the neuroendocrine system in oyster C. gigas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Selected gene polymorphisms effect on skin and hair pigmentation in Polish children at the prepubertal age.

    PubMed

    Sitek, Aneta; Rosset, Iwona; Żądzińska, Elżbieta; Siewierska-Górska, Anna; Pietrowska, Edyta; Strapagiel, Dominik

    2016-11-01

    Background : Human pigmentation, similarly as many other biological features, changes in the course of post-natal ontogenesis, while in case of hair, pigmentation changes are more distinctive than in the skin or the iris. It is therefore extremely important to identify the genes, involved in the constitution of human pigmentation features at various stages of ontogenesis. Results of this type of analyses are of high practical significance in forensic study because they enable to create mathematical tools, allowing for prediction of the pigmentation phenotype, based on DNA studies. Aim : The objective of the investigation was finding out whether the genes, associated with pigmentation of adult subjects, differentiated in any way the newly forming pigmentation phenotype in Polish prepubertal children. Material and methods : The study encompassed Polish children, aged 7 to 10 years, without any abnormalities in skin or hair pigmentation. A total of 245 children were examined. Constitutive skin pigmentation according to skin melanin index (SMI) was evaluated, using a dermaspectrometer, and classified into three groups based on the reference values of 25 and 75 percentile for Polish children. Hair colors were evaluated by means of the descriptive Fischer-Saller scale and classified by a division of color variants (as accepted in that scale) (light blonde, blonde, dark blonde, brown and dark brown). In saliva samples, collected from the children, five (5) single nucleotide polymorphisms were identified: SNPs : rs1800401 ( OCA2 -15q11.2-q12), rs35264875 ( TPCN2 -11q13.3), rs16891982 ( SLC45A2 -5p13.2), rs12913832 ( HERC2 -15q13) and rs1805007 ( MC1R -16q24.3). An association between each allele of verified genotype and skin and hair color phenotypes was assessed, using the z-statistic and associated p -value. The quality of classifiers was evaluated by 10-fold stratified cross-validation and was characterized by the area under the receiver operating characteristic curve (AUC). Results : Light skin pigmentation phenotype (SMI<25 percentile) was associated with rs1805007 ( MC1R ) (allelic OR=3.95; 95% Cl:1.20-12.99; p =0.0235), while the dark shade of the skin (SMI>75 percentile) with rs16891982 ( SLC45A2 ) (allelic OR =14.37; 95% Cl: 1.78-115.88; p =0.0123). The probability of dark hair (brown and dark brown) in childhood was increased by T rs12913832 allele ( HERC2 ) (OR=3.63); 95% Cl: 2.25-5.85; p < 0.0001) and dependent on it - rs1800401 ( OCA2 ) (OR=6.31; 95% Cl: 1.74-22.91; p =0.0051). Other SNPs were not significantly associated with skin and hair color but improved prediction of these features. Conclusions : From the five gene polymorphisms analysed in Polish children the strongest correlation with hair color has the rs12913832 ( HERC2 ) and with skin color - rs16891982 ( SLC45A2 ). Therefore, the above-mentioned polymorphisms may be used as components of potential models, used to predict pigmentation features in European origin children in prepubertal age. To improve predictive value of the potential scoring model for hair color, the following should be additionally included: rs1800401 ( OCA2 ), rs35264875 ( TPCN2 ) and rs1805007 ( MC1R ), while for skin color: rs12913832 ( HERC2 ) and rs1805007 ( MC1R ).

  10. The new generation of beta-cells: replication, stem cell differentiation, and the role of small molecules.

    PubMed

    Borowiak, Malgorzata

    2010-01-01

    Diabetic patients suffer from the loss of insulin-secreting β-cells, or from an improper working β-cell mass. Due to the increasing prevalence of diabetes across the world, there is a compelling need for a renewable source of cells that could replace pancreatic β-cells. In recent years, several promising approaches to the generation of new β-cells have been developed. These include directed differentiation of pluripotent cells such as embryonic stem (ES) cells or induced pluripotent stem (iPS) cells, or reprogramming of mature tissue cells. High yield methods to differentiate cell populations into β-cells, definitive endoderm, and pancreatic progenitors, have been established using growth factors and small molecules. However, the final step of directed differentiation to generate functional, mature β-cells in sufficient quantities has yet to be achieved in vitro. Beside the needs of transplantation medicine, a renewable source of β-cells would also be important in terms of a platform to study the pathogenesis of diabetes, and to seek alternative treatments. Finally, by generating new β-cells, we could learn more details about pancreatic development and β-cell specification. This review gives an overview of pancreas ontogenesis in the perspective of stem cell differentiation, and highlights the critical aspects of small molecules in the generation of a renewable β-cell source. Also, it discusses longer term challenges and opportunities in moving towards a therapeutic goal for diabetes.

  11. Maternal reproductive experience enhances early postnatal outcome following gestation and birth of rats in hypergravity

    NASA Technical Reports Server (NTRS)

    Ronca, A. E.; Baer, L. A.; Daunton, N. G.; Wade, C. E.

    2001-01-01

    A major goal of space life sciences research is to broaden scientific knowledge of the influence of gravity on living systems. Recent spaceflight and centrifugation studies demonstrate that reproduction and ontogenesis in mammals are amenable to study under gravitational conditions that deviate considerably from those typically experienced on Earth (1 x g). In the present study, we tested the hypothesis that maternal reproductive experience determines neonatal outcome following gestation and birth under increased (hyper) gravity. Primigravid and bigravid female rats and their offspring were exposed to 1.5 x g centrifugation from Gestational Day 11 either through birth or through the first postnatal week. On the day of birth, litter sizes were identical across gravity and parity conditions, although significantly fewer live neonates were observed among hypergravity-reared litters born to primigravid dams than among those born to bigravid dams (82% and 94%, respectively; 1.0 x g controls, 99%). Within the hypergravity groups, neonatal mortality was comparable across parity conditions from Postnatal Day 1 through Day 7, at which time litter sizes stabilized. Maternal reproductive experience ameliorated neonatal losses during the first 24 h after birth but not on subsequent days, and neonatal mortality was associated with changes in maternal care patterns. These results indicate that repeated maternal reproductive experience affords protection against neonatal losses during exposure to increased gravity. Differential mortality of neonates born to primigravid versus bigravid dams denotes gravitational load as one environmental mechanism enabling the expression of parity-related variations in birth outcome.

  12. [Environmental and genetic variables related with alterations in language acquisition in early childhood].

    PubMed

    Moriano-Gutierrez, A; Colomer-Revuelta, J; Sanjuan, J; Carot-Sierra, J M

    2017-01-01

    A great deal of research has addressed problems in the correct acquisition of language, but with few overall conclusions. The reasons for this lie in the individual variability, the existence of different measures for assessing language and the fact that a complex network of genetic and environmental factors are involved in its development. To review the environmental and genetic variables that have been studied to date, in order to gain a better under-standing of the causes of specific language impairment and create new evidence that can help in the development of screening systems for the early detection of these disorders. The environmental variables related with poorer early child language development include male gender, low level of education of the mother, familial history of problems with language or psychiatric problems, perinatal problems and health problems in early childhood. Bilingualism seems to be a protective factor. Temperament and language are related. Within the genetic factors there are several specific genes associated with language, two of which have a greater influence on its physiological acquisition: FOXP2 and CNTNAP2. The other genes that are most related with specific language disorders are ATP2C2, CMIP, ROBO2, ZNF277 and NOP9. The key to comprehending the development of specific language disorders lies in reaching an understanding of the true role played by genes in the ontogenesis, in the regulation of the different developmental processes, and how this role is modulated by the environment.

  13. Production, characterization and application of monoclonal antibodies to the coelomocytes of sea urchin Strongylocentrotus intermedius.

    PubMed

    Wang, Yinan; Meng, Shaodong; Zhang, Jialin; Ding, Jun; Li, Qiang

    2018-04-01

    Sea urchin is one of marine animals with high economic and great scientific research values. Axial organ is a glandular organ that has been presumed as coelomocytes origin site. In this paper, two monoclonal antibodies (3G10 and 6B3) against coelomocytes of sea urchin Strongylocentrotus intermedius were developed by hybridoma technique. The mAbs were characterized by indirect immunofluorescence assay test (IIFAT), flow cytometry (FCM) and western blot assay. Results showed that mAb 3G10 recognized a protein of a molecular weight of 17 kDa in the spherule cells, while mAb 6B3 reacted with a protein of a molecular weight of 35 kDa in the phagocytes. Furthermore, specificity analysis revealed that the two mAbs could react with the coelomocytes of sea urchin S. nudus and Hemicentrotus pulcherrimus, but not with those of other common echinoderms including sea cucumber Apostichopus japonicus and starfish Asterias rollestoni. To determine whether the coelomocytes exist in the axial organ of sea urchin, the IIFAT assays were carried out based on the two mAbs. Result showed that positive fluorescence signals were distributed in the organ. It was revealed that the axial organ was rich in coelomocytes, which suggests that the organ may play as a producing source or reservoir in the ontogenesis of coelomocytes of sea urchin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Fragility of haptic memory in human full-term newborns.

    PubMed

    Lejeune, Fleur; Borradori Tolsa, Cristina; Gentaz, Edouard; Barisnikov, Koviljka

    2018-05-31

    Numerous studies have established that newborns can memorize tactile information about the specific features of an object with their hands and detect differences with another object. However, the robustness of haptic memory abilities has already been examined in preterm newborns and in full-term infants, but not yet in full-term newborns. This research is aimed to better understand the robustness of haptic memory abilities at birth by examining the effects of a change in the objects' temperature and haptic interference. Sixty-eight full-term newborns (mean postnatal age: 2.5 days) were included. The two experiments were conducted in three phases: habituation (repeated presentation of the same object, a prism or cylinder in the newborn's hand), discrimination (presentation of a novel object), and recognition (presentation of the familiar object). In Experiment 1, the change in the objects' temperature was controlled during the three phases. Results reveal that newborns can memorize specific features that differentiate prism and cylinder shapes by touch, and discriminate between them, but surprisingly they did not show evidence of recognizing them after interference. As no significant effect of the temperature condition was observed in habituation, discrimination and recognition abilities, these findings suggest that discrimination abilities in newborns may be determined by the detection of shape differences. Overall, it seems that the ontogenesis of haptic recognition memory is not linear. The developmental schedule is likely crucial for haptic development between 34 and 40 GW. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. [Donor age affects on the «behavior» and the sensibility bone marrow cells in on copper ion of the primary culture].

    PubMed

    Bozhkov, A I; Ohiienko, S L; Kuznetsova, Yu A; Bondar', A Yu; Marchenko, V P; Gumennaya, M S

    2017-01-01

    The changes of bone marrow cells (BMC) number in the primary culture from 0 to 96 hours, the pattern (the distribution of cells) of cells morphotypes and «lifespan» (the time of cell life after isolation) of myelocytes, metamyelocytes, band and segmented neutrophils, isolated of the young (3 months) and old (20months) animals, were investigated. The number of the BMC obtained from intact old animals increased faster in primary culture, than from young animals. The Cu induced fibrosis had different influence on the rate of BMC culture growth of old and young animals. The adding of 4 mM and 8 mM CuSO4x5H2O in the BMC culture of young and old animals resulted in a dose-dependent inhibition of growth rate of young animal cells. If copper ions were added into the culture of BMC of old animals, the decreased of the BMC number was described less than for cells of young animals. The adding of 8 mM CuSO4x5H2O inhibited proliferation less, than the adding of 4 mM CuSO4x5H2O. The Cu-induced liver fibrosis had accelerated the BMC rate death of both old and young animals. However, this effect was more pronounced in young animals. It is suggested, that during the ontogenesis the BMC undergo such epigenetic changes, which change functional properties.

  16. The expression of Per1 and Aa-nat genes in the pineal gland of postnatal rats.

    PubMed

    Wongchitrat, Prapimpun; Govitrapong, Piyarat; Phansuwan-Pujito, Pansiri

    2012-12-01

    The circadian rhythm of melatonin synthesis is controlled by the master clock, suprachiasmatic nucleus (SCN). The level of melatonin changes throughout the aging process. The SCN's rhythm is driven by autoregulatory feedback loop composed of a set of clock genes families and their corresponding proteins. The Period (Per1), one of clock gene develops gradually during postnatal ontogenesis in the rat SCN and is also expressed in the pineal gland. It is of interest to study the relationship between the postnatal development of Per1 and Aa-nat, genes that produce the rate-limiting enzyme in melatonin synthesis, in the pineal. Daily profiles of mRNA expression of Per1 and Aa-nat were analyzed in the pineal gland of pups at postnatal ages 4 (P4), P8, P16 and P32, at puberty age of 6 weeks; and in 8 week-old adult rats by real-time PCR. As early as P4, Per1 and Aa-nat mRNAs were expressed and existed at relatively high levels during the nighttime. They gradually increased until puberty and decreased at 8 weeks of age. Additionally, the nocturnal changes of Per1 and Aa-nat mRNA levels in the rat pineal gland from P4 to adults were strongly correlated at r = 0.97 (p < 0.01). The present data indicate that there is a close relationship between the expression pattern of Per1 and that of melatonin synthesis during the development of postnatal rats.

  17. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development.

    PubMed

    Chung, Wilson C J; Linscott, Megan L; Rodriguez, Karla M; Stewart, Courtney E

    2016-01-01

    Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.

  18. On old and new comparative neurological sinners: the evolutionary importance of the membranous parts of the actinopterygian forebrain and their sites of attachment.

    PubMed

    Nieuwenhuys, Rudolf

    2009-09-10

    The forebrain of actinopterygian fishes differs from that of other vertebrates in that it consists of a pair of solid lobes. Lateral ventricles surrounded by nervous tissue are entirely lacking. This peculiar configuration of the actinopterygian forebrain results from an outward bending or eversion of its lateral walls during ontogenesis. Due to this eversion, the telencephalic roof plate is transformed into a wide, membranous structure that surrounds the dorsal and lateral parts of the solid lobes and is attached to their lateral or ventrolateral aspects. Another effect of the eversion is that the ventricular surface of the telencephalic lobes is very extensive, whereas their meningeal surface is small. In many recent publications on the forebrain of actinopterygian fishes, these structures are presented as solid lobes, without any reference to the fact that they are the product of an eversion process, and without any indication concerning the location and extent of their ventricular and meningeal surfaces. It is explained here that, in light of current concepts concerning the histogenesis of the brain, these omissions are intolerable. It is also strongly recommended that the location and extent of these surfaces should always be clearly indicated in brain sections in general, because the simple notion that in the brain of vertebrates the ventricular surface is on the inside and the meningeal surface on the outside has numerous and notable exceptions. Copyright 2009 Wiley-Liss, Inc.

  19. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  20. Neocortical arealization: evolution, mechanisms, and open questions.

    PubMed

    Alfano, Christian; Studer, Michèle

    2013-06-01

    The mammalian neocortex is a structure with no equals in the vertebrates and is the seat of the highest cerebral functions, such as thoughts and consciousness. It is radially organized into six layers and tangentially subdivided into functional areas deputed to the elaboration of sensory information, association between different stimuli, and selection and triggering of voluntary movements. The process subdividing the neocortical field into several functional areas is called "arealization". Each area has its own cytoarchitecture, connectivity, and peculiar functions. In the last century, several neuroscientists have investigated areal structure and the mechanisms that have led during evolution to the rising of the neocortex and its organization. The extreme conservation in the positioning and wiring of neocortical areas among different mammalian families suggests a conserved genetic program orchestrating neocortical patterning. However, the impressive plasticity of the neocortex, which is able to rewire and reorganize areal structures and connectivity after impairments of sensory pathways, argues for a more complex scenario. Indeed, even if genetics and molecular biology helped in identifying several genes involved in the arealization process, the logic underlying the neocortical bauplan is still beyond our comprehension. In this review, we will introduce the present knowledge and hypotheses on the ontogenesis and evolution of neocortical areas. Then, we will focus our attention on some open issues, which are still unresolved, and discuss some recent studies that might open new directions to be explored in the next few years. Copyright © 2012 Wiley Periodicals, Inc.

  1. Molecular characterization and functional analysis of a salmon louse (Lepeophtheirus salmonis, Krøyer 1838) heme peroxidase with a potential role in extracellular matrixes.

    PubMed

    Øvergård, Aina-Cathrine; Eichner, Christiane; Nilsen, Frank; Dalvin, Sussie

    2017-04-01

    Heme peroxidases are the most abundant type of peroxidase catalyzing a H 2 O 2 -dependent oxidation of a wide variety of substrates. They are involved in numerous processes like the innate immune response, hormone and prostaglandin synthesis and crosslinking of proteins within extracellular matrixes (ECM) as well as molecules within the cuticle and chorion of arthropods and nematodes. In the present study, a Lepeophtheirus salmonis heme peroxidase (LsHPX) 1 was characterized. Amino acids in the active site of heme peroxidases were conserved, and the predicted protein sequence showed the highest similarity to genes annotated as chorion peroxidases and genes suggested to be involved in cuticle hardening or adhesion. LsHPX1 exhibited a dynamic expression during ontogenesis and during the nauplius molting cycle. Transcripts were localized to muscle cells near the muscle-tendon junction, in nerve tissue especially at neuromuscular junctions, subcuticular epithelium, subepithelial cells facing the hemolymph, exocrine glands within the subepithelial tissue and in isolated cells within the testis. Knock-down of LsHPX1 in nauplius larvae decreased the swimming activity of emerging copepodids. Histological analysis of knock-down animals revealed increased spacing between myofibers and changes in subepithelial and exocrine gland tissue. Considering these results, the potential role of LsHPX1 in crosslinking molecules of salmon louse ECMs is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Targeted release of transcription factors for cell reprogramming by a natural micro-syringe.

    PubMed

    Berthoin, Lionel; Toussaint, Bertrand; Garban, Frédéric; Le Gouellec, Audrey; Caulier, Benjamin; Polack, Benoît; Laurin, David

    2016-11-20

    Ectopic expression of defined transcription factors (TFs) for cell fate handling has proven high potential interest in reprogramming differentiated cells, in particular for regenerative medicine, ontogenesis study and cell based modelling. Pluripotency or transdifferentiation induction as TF mediated differentiation is commonly produced by transfer of genetic information with safety concerns. The direct delivery of proteins could represent a safer alternative but still needs significant advances to be efficient. We have successfully developed the direct delivery of proteins by an attenuated bacterium with a type 3 secretion system that does not require challenging and laborious steps for production and purification of recombinant molecules. Here we show that this natural micro-syringe is able to inject TFs to primary human fibroblasts and cord blood CD34 + hematopoietic stem cells. The signal sequence for vectorization of the TF Oct4 has no effect on DNA binding to its nucleic target. As soon as one hour after injection, vectorized TFs are detectable in the nucleus. The injection process is not associated with toxicity and the bacteria can be completely removed from cell cultures. A three days targeted release of Oct4 or Sox2 embryonic TFs results in the induction of the core pluripotency genes expression in fibroblasts and CD34 + hematopoietic stem cells. This micro-syringe vectorization represents a new strategy for TF delivery and has potential applications for cell fate reprogramming. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The ontogenesis of lateralized behavior in the domestic cat, Felis silvestris catus.

    PubMed

    Wells, Deborah L; Millsopp, Sarah

    2012-02-01

    For the first time, the development of paw preferences in the domestic cat, Felis silvestris catus, is explored. Twelve cats were tested at ages 12 weeks, 6 months, and 1 year on a challenge requiring them to use one of their paws to retrieve food. To control for repeated testing of the same cats at different ages, the subjects' paw preferences were compared with those of cats tested just once, at 6 months (n = 11) or 1 year (n = 14) of age. Analysis revealed a significant effect of age on the distribution of cats' paw preferences. Cats were significantly more likely to be ambilateral than paw preferent at 12 weeks and at 6 months but more likely to display a lateral bias in paw use at 1 year. There was a significant positive correlation between cats' paw preferences at 6 months and at 1 year. Lateralized behavior was strongly sex related. Females had a greater preference for using their right paw; males were significantly more inclined to adopt their left. Analysis revealed no significant difference in the direction or strength of paw preferences of cats tested longitudinally or cross-sectionally at 6 months or 1 year of age. Findings indicate that cats develop paw preferences by 1 year and hint at a relative stability in preferred paw use over time. The strong sex effect observed strengthens the case for the influence of a biological mechanism in the emergence of motor asymmetry in cats.

  4. Ontogenesis of the angiotensin II (ANGII) receptor system in the duck brain.

    PubMed

    Müller, A R; Gerstberger, R

    1994-03-18

    The ontogenetic development of the central nervous angiotensin II (ANGII) receptor system in the duck was studied at embryonic days E20 and E27 and at postnatal days P3 and P14 by computerized semiquantitative autoradiography employing the receptor antagonist 125I[1Sar,8Ile]ANGII as radioligand. For circumventricular structures involved in the sensing of brain-intrinsic (AV3V region) or blood-borne (subfornical organ, SFO) ANGII, binding sites for 125I[1Sar,8Ile]ANGII were first detectable at E27, with a steady rise in binding density up to P14. The choroid plexus of the lateral (PCVL) and third (PCVIII) cerebral ventricles responsible for cerebrospinal fluid (CSF) production were endowed with maximal ANGII receptor densities at E20 with subsequent reduction to constant medium (PCVIII) or low (PCVL) values. Besides the choroid plexus, the magnocellular paraventricular nucleus (PVN) was the only structure presenting ANGII specific binding sites at E20, although at low density. As for the SFO and AV3V region, labelling of ANGII binding sites in the PVN increased continuously during development to high values at P14. Nuclear components of the limbic system (archistriatum, amygdala and habenular complex) did not reveal specific labelling by the radioligand at E20 with constant, moderate binding densities evaluated for E27, P3 and P14. In the duck brain, functionally related structures exhibited a homogeneous ontogenetic development of their ANGII receptor system.

  5. Boundaries of intergrowths between mineral individuals: A zone of secondary mineral formation in aggregates

    NASA Astrophysics Data System (ADS)

    Brodskaya, R. L.; Bil'Skaya, I. V.; Lyakhnitskaya, V. D.; Markovsky, B. A.; Sidorov, E. G.

    2007-12-01

    Intergrowth boundaries between mineral individuals in dunite of the Gal’moenan massif in Koryakia was studied in terms of crystal morphology, crystal optics, and ontogenesis. The results obtained allowed us to trace the staged formation of olivine and chromite and four generations of these minerals. Micro-and nanotopography of boundary surfaces between intergrown mineral individuals of different generations was examined with optic, electron, and atomic force microscopes. The boundaries between mineral individuals of different generations are distinguished by their microsculpture for both olivine and chromite grains. Both minerals demonstrate a compositional trend toward refinement from older to younger generations. The decrease in the iron mole fraction in olivine and chromite is accompanied by the crystallization of magnetite along weakened zones in olivine of the first generation and as outer rims around the chromite grains of the second generation observable under optic and electronic microscopes. The subsequent refinement of chromite results in the release of PGE from its lattice, as established by atomic power microscopy. The newly formed PGM are localized at the boundaries between mineral individuals and, thus, mark a special stage in the ontogenetic evolution of mineral aggregates. Further recrystallization is expressed in the spatial redistribution of grain boundaries and the formation of monomineralic intergrowth boundaries, i.e., the glomerogranular structure of rock and substructures of PGM, chromite, and olivine grains as intermediate types of organization of the granular assemblies in the form of reticulate, chain, and cellular structures and substructures of aggregates.

  6. The fractal geometry of life.

    PubMed

    Losa, Gabriele A

    2009-01-01

    The extension of the concepts of Fractal Geometry (Mandelbrot [1983]) toward the life sciences has led to significant progress in understanding complex functional properties and architectural / morphological / structural features characterising cells and tissues during ontogenesis and both normal and pathological development processes. It has even been argued that fractal geometry could provide a coherent description of the design principles underlying living organisms (Weibel [1991]). Fractals fulfil a certain number of theoretical and methodological criteria including a high level of organization, shape irregularity, functional and morphological self-similarity, scale invariance, iterative pathways and a peculiar non-integer fractal dimension [FD]. Whereas mathematical objects are deterministic invariant or self-similar over an unlimited range of scales, biological components are statistically self-similar only within a fractal domain defined by upper and lower limits, called scaling window, in which the relationship between the scale of observation and the measured size or length of the object can be established (Losa and Nonnenmacher [1996]). Selected examples will contribute to depict complex biological shapes and structures as fractal entities, and also to show why the application of the fractal principle is valuable for measuring dimensional, geometrical and functional parameters of cells, tissues and organs occurring within the vegetal and animal realms. If the criteria for a strict description of natural fractals are met, then it follows that a Fractal Geometry of Life may be envisaged and all natural objects and biological systems exhibiting self-similar patterns and scaling properties may be considered as belonging to the new subdiscipline of "fractalomics".

  7. H-FABP and LEPR gene expression profile in skeletal muscles and liver during ontogenesis in various breeds of pigs.

    PubMed

    Tyra, M; Ropka-Molik, K; Eckert, R; Piórkowska, K; Oczkowicz, M

    2011-04-01

    The genes coding for H-FABP (heart acid-binding protein) and LEPR (leptin receptor) are considered to be candidates for lipid metabolism and thus affect fat deposition in pigs. The aim of our study was to assess the amount of H-FABP and LEPR transcript in the skeletal muscles (m. longissimus dorsi, m. semimembranosus) and liver of pigs of various ages. The experiments were carried out on 5 popular breeds of swine raised in Poland which exhibit different levels of fat tissue. Furthermore, we examined the effect of H-FABP and LEPR genotypes (HinfI, HpaII, and HaeIII for H-FABP and HpaII for LEPR) on the expression abundance of these genes. We confirmed a statistically significant relationship between the breed (P<.001), type of tissue (LEPR P<.001; H-FABP P<.01), and age of the animal (P<.05) on the abundance of mRNA transcript of both genes. In all breeds, the expression of the leptin receptor gene increased significantly (P<.01) with age in muscle tissue, whereas this relationship was not observed in liver tissue. However, the expression of the H-FABP gene in muscles did not change with age or breed, although in the liver expression levels were high in young (60 and 90 d) pigs. In conclusion, H-FABP and LEPR genes are strongly related to the development and function of fat tissue in pigs. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. [CHANGE OF CHARACTER OF INTERSYSTEMIC INTERACTIONS IN NEWBORN RAT PUPS UNDER CONDITIONS OF A DECREASE OF MOTOR ACTIVITY].

    PubMed

    Sizonov, V A; Dmitrieva, L E; Kuznetsov, S V

    2015-01-01

    Interaction of slow-wave.rhythmic components of cardiac, respiratory.and motor activity was investigated in newborn rat pups on the first day after birth under normal conditions and after pharmacological depression of spontaneous periodic motor activity (SPMA) produced by injecting myocuran (myanesin) at low (100 mg/pg, i/p) and maximal (235 mg/pg, i/p) dosages. The data obtained allow to infer that in rat pups after birth the intersystemic interactions are realized mainly via slow-wave oscillations of about-one- and many-minute ranges whereas the rhythms of decasecond range do not play a significant role in integrative processes. Injection of miocuran at a dose causing no muscle relaxation and no inhibition of motor activity produces changes of the cardiac and respiratory rhythms as well as a transitory decrease of the magnitude of coordinate relations mediated by the rhythms of about-one- and many-minute ranges. The consequences of muscle relaxant injection were found to be more significant for intersystemic interactions with participation of the respiratory system. An increase of the dosage and, correspondingly, the total inhibition of SPMA is accompanied by reduction of the slow-wave components from the pattern of cardiac and respiratory rhythms. The cardiorespiratory interactions, more expressed in intact rat pups, are reduced in the about-one- and many-minute ranges of modulation whereas in the decasecond range of modulation they are slightly increased. Key words: early ontogenesis, intersystemic interactions, cardiac rhythm, respiration, motor activity, myocuran (myanesin).

  9. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light.

    PubMed

    Tian, Yonglan; Sacharz, Joanna; Ware, Maxwell A; Zhang, Huayong; Ruban, Alexander V

    2017-07-10

    This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m-2 s-1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m-2 s-1). However, after 2 weeks of treatment, similar photosynthesis yields (Fv/Fm) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark (qPd) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Mutations in PROP1 cause familial combined pituitary hormone deficiency.

    PubMed

    Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G

    1998-02-01

    Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.

  11. Could the Extended Phenotype Extend to the Cellular and Subcellular Levels in Insect-Induced Galls?

    PubMed Central

    Carneiro, Renê Gonçalves da Silva; Pacheco, Priscilla; Isaias, Rosy Mary dos Santos

    2015-01-01

    Neo-ontogenesis of plant galls involves redifferentiation of host plant tissues to express new phenotypes, when new cell properties are established via structural-functional remodeling. Herein, Psidium cattleianum leaves and Nothotrioza cattleiani galls are analyzed by developmental anatomy, cytometry and immunocytochemistry of cell walls. We address hypothesis-driven questions concerning the organogenesis of globoid galls in the association of P. cattleianum - N. cattleianum, and P. myrtoides - N. myrtoidis. These double co-generic systems represent good models for comparing final gall shapes and cell lineages functionalities under the perspective of convergent plant-dependent or divergent insect-induced characteristics. Gall induction, and growth and development are similar in both galls, but homologous cell lineages exhibit divergent degrees of cell hypertrophy and directions of elongation. Median cortical cells in P. cattleianum galls hypertrophy the most, while in P. myrtoides galls there is a centrifugal gradient of cell hypertrophy. Cortical cells in P. cattleianum galls tend to anisotropy, while P. myrtoidis galls have isotropically hypertrophied cells. Immunocytochemistry evidences the chemical identity and functional traits of cell lineages: epidermal cells walls have homogalacturonans (HGAs) and galactans, which confer rigidity to sites of enhanced cell division; oil gland cell walls have arabinogalactan proteins (AGPs) that help avoiding cell death; and parenchyma cell walls have HGAs, galactans and arabinans, which confer porosity. Variations in such chemical identities are related to specific sites of hypertrophy. Even though the double co-generic models have the same macroscopic phenotype, the globoid morphotype, current analyses indicate that the extended phenotype of N. cattleiani is substantiated by cellular and subcellular specificities. PMID:26053863

  12. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae).

    PubMed

    Zittra, Carina; Vitecek, Simon; Obwaller, Adelheid G; Rossiter, Heidemarie; Eigner, Barbara; Zechmeister, Thomas; Waringer, Johann; Fuehrer, Hans-Peter

    2017-04-26

    Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water-level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes.

  13. A critical functional missense mutation (H173R) in the bovine PROP1 gene significantly affects growth traits in cattle.

    PubMed

    Pan, Chuanying; Wu, Chongyang; Jia, Wenchao; Xu, Yao; Lei, Chuzhao; Hu, Shenrong; Lan, Xianyong; Chen, Hong

    2013-12-01

    The PROP1 protein, encoded by the prophet of Pit-1 (PROP1) gene, exhibits both DNA-binding and transcriptional activation abilities. Its expression leads to the ontogenesis of growth hormone (GH), prolactin (PRL), thyroid-stimulating hormone (TSH), and pituitary hormone. The missense mutation H173R in PROP1 may result in deficiencies of GH, PRL, TSH, and Pit-1, thereby affecting growth traits. The objective of this study was to characterize the H173R mutation within the PROP1 gene and examine its associations with growth traits in cattle. Accordingly, the H173R mutation was genotyped in 1207 cows belonging to five Chinese native breeds. Three genotypes were identified among the specimens, with genotype AA being the major one. Consequently, the "G" allele was the minor allele. Association testing revealed that the H173R mutation was significantly associated with body weight, average daily weight gain and physical parameters in the analyzed breeds. Interestingly, the cows with genotype AG and/or AA had superior growth traits compared with those expressing the GG genotype, in all tested breeds. These findings revealed that the "A" allele had positive effects on growth traits, which was consistent with the increasing binding ability and enhanced activation capacity associated with the bovine isoform PROP1-173H, representing the "A" allele. Therefore, the H173R mutation can be considered as a DNA marker for selecting individuals with superior growth traits, thereby contributing to research on breeding and genetics in the beef industry. © 2013.

  14. Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration.

    PubMed

    Pang, Cindy Chi-Ching; Kiecker, Clemens; O'Brien, John T; Noble, Wendy; Chang, Raymond Chuen-Chung

    2018-06-01

    The hippocampus has a critical role in cognition and human memory and is one of the most studied structures in the brain. Despite more than 400 years of research, little is known about the Ammon's horn region cornu ammonis 2 (CA2) subfield in comparison to other subfield regions (CA1, CA3, and CA4). Recent findings have shown that CA2 plays a bigger role than previously thought. Here, we review understanding of hippocampus and CA2 ontogenesis, together with basic and clinical findings about the potential role of this region in neurodegenerative disease. The CA2 has widespread anatomical connectivity, unique signaling molecules, and intrinsic electrophysiological properties. Experimental studies using in vivo models found that the CA2 region has a role in cognition, especially in social memory and object recognition. In models of epilepsy and hypoxia, the CA2 exhibits higher resilience to cell death and hypoxia in comparison with neighboring regions, and while hippocampal atrophy remains poorly understood in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), findings from postmortem PD brain demonstrates clear accumulation of α-synuclein pathology in CA2, and the CA2-CA3 region shows relatively more atrophy compared with other hippocampal subfields. Taken together, there is a growing body of evidence suggesting that the CA2 can be an ideal hallmark with which to differentiate different neurodegenerative stages of PD. Here, we summarize these recent data and provide new perspectives/ideas for future investigations to unravel the contribution of the CA2 to neurodegenerative diseases.

  15. Morphopathological features in tissues of alpha-mannosidosis guinea pigs at different gestational ages.

    PubMed

    Auclair, D; Hopwood, J J

    2007-10-01

    Alpha-mannosidosis is an inherited metabolic disorder characterized by a reduction in alpha-D-mannosidase and intralysosomal accumulation of undegraded mannose-containing oligosaccharides. The alpha-mannosidosis guinea pig exhibits pathological similarities to its human counterpart, which make it a valuable animal model. To trace the progression of alpha-mannosidosis during foetal development, brain and visceral organs from affected and unaffected guinea pigs at 30, 36, 38, 51 and 65 days of gestation (dg) were examined by light and electron microscopy (term: approximately 68 dg). In the affected brain, distended lysosomes (vacuoles) were scarce up to 38 dg and were seen in few differentiating neuronal cells but mostly in macrophages, pericytes and endothelial cells. At 51 and 65 dg, several vacuoles were observed in some neurones, in many Purkinje cells, pericytes, endothelial and microglial cells, and in few cerebellar internal granule cells. Myelination had started by 51 dg. Non-myelinated axonal spheroids were detected in the brainstem at 65 dg. In the kidney cortex and liver, an increase in vacuolation was noticed between 36 and 65 dg. Some vacuolated cells were also noticed in the lungs and spleen at 51 and 65 dg. Altogether, these histological observations suggest that alpha-mannosidosis is unlikely to affect ontogenesis before the second half of gestation in guinea pigs; however, the morphopathological features recorded during the last quarter of gestation (which may roughly correspond to the period covering near term to 1-2 years of age in human) were clearly noticeable and may have had some impact.

  16. T-Box Genes in Drosophila Limb Development.

    PubMed

    Pflugfelder, G O; Eichinger, F; Shen, J

    2017-01-01

    T-box genes are essential for limb development in vertebrates and arthropods. The Drosophila genome encodes eight T-box genes, six of which are expressed in limb ontogenesis. The Tbx20-related gene pair midline and H15 is essential for dorso-ventral patterning of the Drosophila legs. The three Tbx6-related Dorsocross genes are required for epithelial remodeling during wing development. The Drosophila gene optomotor-blind (omb) is the only member of the Tbx2 subfamily in the fly and is predominantly involved in wing development. Omb is essential for wing development and is sufficient to promote the development of a second wing pair. Targeted manipulations of omb expression have shown that the bulk omb requirement for wing development can be deconstructed into a number of individual functions. Even though omb expression in the wing disc is symmetrical with regard to the anterior/posterior (A/P) compartment boundary, anterior and posterior knockdowns have distinct consequences: Anterior Omb is required for the maintenance of a straight A/P lineage restriction boundary. Posterior Omb suppresses formation of an apical epithelial fold along the A/P boundary. Drosophila T-box gene expression is not confined to the ectoderm-derived epithelia of the imaginal discs. Both Doc and Omb are prominently expressed in leg disc muscle precursor cells. Omb is also strongly expressed in a tracheal branch that invades the extracellular matrix of the wing disc. The function of Doc and Omb in the latter tissues is not known, indicative of the many questions still open in the field. © 2017 Elsevier Inc. All rights reserved.

  17. Cytokinins: Their Impact on Molecular and Growth Responses to Drought Stress and Recovery in Arabidopsis

    PubMed Central

    Prerostova, Sylva; Dobrev, Petre I.; Gaudinova, Alena; Knirsch, Vojtech; Körber, Niklas; Pieruschka, Roland; Fiorani, Fabio; Brzobohatý, Břetislav; černý, Martin; Spichal, Lukas; Humplik, Jan; Vanek, Tomas; Schurr, Ulrich; Vankova, Radomira

    2018-01-01

    Our phenotyping and hormonal study has characterized the role of cytokinins (CK) in the drought and recovery responses of Arabidopsis thaliana. CK down-regulation was achieved by overexpression of the gene for CK deactivating enzyme cytokinin oxidase/dehydrogenase (CKX): constitutive (35S:CKX) or at the stress onset using a dexamethasone-inducible pOp/LhGR promoter (DEX:CKX). The 35S:CKX plants exhibited slow ontogenesis and higher expression levels of stress-associated genes, e.g., AtP5CS1, already at well-watered conditions. CK down-regulation resulted during drought in higher stress tolerance (indicated by relatively low up-regulation of the expression of drought stress marker gene AtRD29B) accompanied with lower leaf water loss. Nevertheless, these plants exhibited slow and delayed recovery after re-watering. CK levels were increased at the stress onset by stimulation of the expression of CK biosynthetic gene isopentenyl transferase (ipt) (DEX:IPT) or by application of exogenous CK meta-topolin. After water withdrawal, long-term CK elevation resulted in higher water loss in comparison with CKX transformants as well as with plants overexpressing ipt driven by senescence-inducible SAG12 promoter (SAG:IPT), which gradually enhanced CKs during the stress progression. In all cases, CK up-regulation resulted in fast and more vigorous recovery. All drought-stressed plants exhibited growth suppression associated with elevation of abscisic acid and decrease of auxins and active CKs (with the exception of SAG:IPT plants). Apart from the ipt overexpressers, also increase of jasmonic and salicylic acid was found. PMID:29872444

  18. Growth and development of children with a special focus on sleep.

    PubMed

    Danker-Hopfe, Heidi

    2011-12-01

    The first two decades of life are characterised complex biological processes involving growth and maturation as well as differentiation. The Central Nervous System (CNS) where among others internal and external stimuli are integrated and responses of the body are prepared starts to evolve quite early during ontogenesis. One of the complex behaviours, which are regulated by the brain, is the sleep-wake cycle. The discussion of age-related changes in sleep comprises changes at the physiological level (e.g. changes in the frequency and amplitude of EEG signal, as well as development and distribution of sleep stages), changes in the corresponding behaviour (e.g. changes in the absolute amount of sleep and its distribution in 24h perspective), and finally the subjective perception of sleep and sleep as a measure of well-being. Studies on the impact of a specific factor on sleep during childhood and adolescence have to consider chronological and biological age as well as sex as relevant biological parameters. Even when these factors are controlled for large interindividual differences persist, that is why prospective instead of cross-sectional approaches should be used whenever possible. Furthermore, it has to be distinguished between sleep assessed at the level of brain functioning (i.e. by polysomnography), which gives information on effects at the physiological level and at the level of self-assessment, which focuses on behaviour. Both, sleep at the subjective as well as at the objective level, can to a considerable degree be affected by life style factors, which hence have to be considered as potential confounders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. [Breeding biology of the whiskered auklet (Aethia pygmaea): incubation, chick growth, and feather ontogenesis].

    PubMed

    Koniukhov, N B; Zubakin, V A; Williams, J; Fischer, J

    2000-01-01

    This is the second publication on the results of studies of the whiskered auklet breeding biology on Buldir Island. In 1993, according to the time of chick hatching the egg-laying period began in late April-early May. The single egg was incubated by both parents, which relieved each other once a day, usually at early night. Among the chicks under observation, the first hatched on June 11; the median of hatching was on June 17. After hatching, the egg shell usually remained in the nest. The chick was continuously brooded by one of parents for the first several days but since the age of 7-9 days, it stayed in the nest by itself during the daytime. Each parent fed the chick once a day, at early night, although occasional feedings were recorded also during daytime and at dawn. A newly hatched chick was covered by typical embryonal (natal) down. The remiges, rectrices, their coverts, and large feathers on pteryla humeralis had a mesoptile stage during their growth (the second down generation). The juvenile plumage consisted of semiplumes of types I and II and contour feathers of type I and, possibly, type II. In fledglings, the ornamental feathers were underdeveloped: the crest was absent and facial plumes only began growing. By reaching 100 g, the chicks left their nests at the age of about 37 days. A longer nesting period than in other Aethia auklets appears to be related to a low feeding rate due to the nocturnal activity in the colony.

  20. Identification and expression analysis of a novel stylicin antimicrobial peptide from Kuruma shrimp (Marsupenaeus japonicus).

    PubMed

    Liu, Hong-tao; Wang, Jun; Mao, Yong; Liu, Min; Niu, Su-fang; Qiao, Ying; Su, Yong-quan; Wang, Chun-zhong; Zheng, Zhi-peng

    2015-12-01

    Antimicrobial peptides (AMPs) are important components of the innate immune system and function as the first line of defense against invading pathogens. In current study we identified, cloned and characterized a novel stylicin AMP from Kuruma shrimp Marsupenaeus japonicus (Mj-sty). The full-length cDNA of Mj-sty was 428 bp with an open reading frame of 315 bp that encoded 104 amino acids. The theoretical molecular mass of mature Mj-sty was 8.693 kDa with an isoelectric point (pI) of 4.79. A proline-rich N-terminal region and a C-terminal region contained 13 cysteine residues were identified. Genomic sequence analysis with respect to its cDNA showed that Mj-sty was organized into two exons interrupted by one intron. Tissue-specific expression revealed that Mj-sty was mainly transcribed in gills and hemocytes. Expression of Mj-sty in early developmental stages demonstrated that Mj-sty mRNA were present from fertilized eggs to post-larvae of 17 days (PL17), and the expression levels showed a significant variation in different developmental stages. After challenge of white spot syndrome virus (WSSV), the time-dependent expression pattern of Mj-sty in both gills and hepatopancrease showed down-regulation at the early hours of infection, subsequently up-regulation and down-regulation, and then up-regulation at the end hours to almost the half of the controls. The results indicate that Mj-sty is potentially involved in the ontogenesis and immune responses against WSSV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Agolohymena aspidocauda nov. gen., nov. spec., a histophagous freshwater tetrahymenid ciliate in the family Deltopylidae (Ciliophora, Hymenostomatia), from Idaho (northwest USA): morphology, ontogenesis and molecular phylogeny.

    PubMed

    Bourland, William A; Strüder-Kypke, Michaela C

    2010-08-01

    Morphology, ontogeny and the molecular phylogeny of Agolohymena aspidocauda nov. gen., nov. spec., a new freshwater tetrahymenid ciliate from Idaho, U.S.A, are described. The ontogeny and histophagous mode of nutrition are similar to those of Deltopylum rhabdoidesFauré-Fremiet and Mugard, 1946. The new genus is placed with Deltopylum in the resurrected family Deltopylidae Song and Wilbert, 1989. We emend the diagnostic features of the family to include division by polytomy, right and left somatic kineties extending into the preoral suture, crook-shaped or sigmoid adoral membranelles 1 and 2, markedly reduced adoral membranelle 3 and a tetrahymenid silverline pattern. The main diagnostic features of the new genus are a disc-shaped caudal ciliary array and formation of two types of resting cysts, one smooth and the other bearing tangled tubular or cylindrical lepidosomes. Nuclear small subunit ribosomal RNA gene and mitochondrial cytochrome oxidase subunit 1 gene sequences place the new genus basal within the order Tetrahymenida, well separated from members of the family Tetrahymenidae (Lambornella and Tetrahymena) and also from other tetrahymenids (Colpidium, Dexiostoma, Glaucoma). The genetic divergences between this species and other genera in Tetrahymenida are large enough to suggest placement of the new genus in a separate family. This corroborates the morphological data, since the elaborate caudal ciliary array and the lepidosome-covered resting cyst of this species are not found in other Tetrahymenidae. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  2. [Vojta's method as the early neurodevelopmental diagnosis and therapy concept].

    PubMed

    Banaszek, Grazyna

    2010-01-01

    Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.

  3. Human development VII: a spiral fractal model of fine structure of physical energy could explain central aspects of biological information, biological organization and biological creativity.

    PubMed

    Ventegodt, Søren; Hermansen, Tyge Dahl; Flensborg-Madsen, Trine; Rald, Erik; Nielsen, Maj Lyck; Merrick, Joav

    2006-11-14

    In this paper we have made a draft of a physical fractal essence of the universe, a sketch of a new cosmology, which we believe to lay at the root of our new holistic biological paradigm. We present the fractal roomy spiraled structures and the energy-rich dancing "infinite strings" or lines of the universe that our hypothesis is based upon. The geometric language of this cosmology is symbolic and both pre-mathematical and pre-philosophical. The symbols are both text and figures, and using these we step by step explain the new model that at least to some extent is able to explain the complex informational system behind morphogenesis, ontogenesis, regeneration and healing. We suggest that it is from this highly dynamic spiraled structure that organization of cells, organs, and the wholeness of the human being including consciousness emerge. The model of "dancing fractal spirals" carries many similarities to premodern cultures descriptions of the energy of the life and universe. Examples are the Native American shamanistic descriptions of their perception of energy and the old Indian Yogis descriptions of the life-energy within the body and outside. Similar ideas of energy and matter are found in the modern superstring theories. The model of the informational system of the organism gives new meaning to Bateson's definition of information: "A difference that makes a difference", and indicates how information-directed self-organization can exist on high structural levels in living organisms, giving birth to their subjectivity and consciousness.

  4. [A complex study of the movement biomechanics in patients with post-stroke hemiparesis].

    PubMed

    Skvortsov, D V; Bulatova, M A; Kovrazhkina, E A; Suvorov, A Iu; Ivanova, G E; Skvortsova, V I

    2012-01-01

    The authors present results of a pilot study on biomechanics of non-cyclic movements of the human consequent verticalization in the ontogenesis of patients with post-stroke hemiparesis (10 patients in the acute stage of cerebral stroke) and 10 healthy volunteers without neurologic and orthopedic pathology. Some movements of therapeutic exercises Balance (a model of ontogenetic kinesitherapy) have been selected for the study. Cinematic parameters have been recorded using a system of motion 3D video analysis, a kinematic model was build in accordance to standard protocols. The skin (native and straightened) electromyogram (EMG) was recorded synchronously with kinematic data using 16-channel electromyography from the following pairs of muscles: mm. sternocleido-mastoideus, trapezius (горизонтальная порция), biceps brachii, triceps brachii, rectus femoris, adductor magnus. Major differences in the EMG picture between patients and controls were: 1) the EMG "monotony" with the involvement of multiple additional muscles in locomotions with the prevalence of the peculiar "tonic" muscle activity (low amplitudes without distinct peaks), stretching along the whole cycle of movement. In controls, EMG demonstrated variability and had mostly "phasic" character with distinct 1 or 2 peaks; 2) the asymmetry of EMG profile in symmetric movements. i.e. when performed simultaneously from the right and from the left sides. The latter feature may be considered as predictive because it was never found in healthy people. It allows to identify objectively weak muscles even in the absence of visible parethis during the routine neurological examination.

  5. The Role of Id2 Protein in Neuroblatoma in Children.

    PubMed

    Wieczorek, Aleksandra; Balwierz, Walentyna

    2015-09-01

    Id (DNA binding and/or differentiation) proteins occur physiologically during ontogenesis and negatively regulate the activity of other helix-loop-helix (HLH) proteins. Id2 protein causes block of cells differentiation in the S phase of the cell cycle and regulates the activity of Rb protein. The role of Id2 protein in physiological cell cycle progression and in neuroblastoma (NBL) pathogenesis was proposed by Lasorella. The aim of the study was evaluation of Id2 expression and its prognostic significance in NBL cells coming from primary tumors and evaluation of its prognostic significance, and correlation of Id2 expression with known prognostic factors. Sixty patients with primary NBL treated from 1991 to 2005 were included in the analysis. We found 50 patients with high and 10 patients with low intensity of Id2 expression. The median percentage of NBL cells with Id2 expression was 88 %. We found no correlation between the number of NBL cells or the intensity of Id2 expression and OS and DFS. In patients with stage 4 NBL, almost all patients had high expression of Id2 and it was significantly more common than in other disease stages (p = 0,03). We found no correlation between Id2 expression and other known prognostic factor in NBL patients. We assume that Id2 is not prognostic factor. However, due to its abundant expression in most of NBL cells and its role in cell cycle, it may be potential therapeutic target. Exact knowledge of expression time may be helpful in explaining mechanisms of oncogenesis.

  6. Transcriptional variants of Dmrt1 and expression of four Dmrt genes in the blunt snout bream, Megalobrama amblycephala.

    PubMed

    Su, Lina; Zhou, Fengjuan; Ding, Zhujin; Gao, Zexia; Wen, Jiufu; Wei, Wei; Wang, Qijun; Wang, Weimin; Liu, Hong

    2015-12-01

    Doublesex and Mab3 related transcription factor (DMRT), characterized by a conserved DM domain, function as sex-related transcription factors and also play critical roles in ontogenesis. In this study, 4 Dmrt genes in the blunt snout bream, Megalobrama amblycephala, were identified, characterized and their mRNA expression in different adult organs, during embryogenesis and gonadal development in larvae were determined by quantitative real time PCR. There are 4 Dmrt1 isoforms in the M. amblycephala genome, which were expressed highly in the testis and weakly in the ovary. The complete cDNAs of the M. amblycephala Dmrt2a, Dmrt2b and Dmrt3 were predicted to encode 510, 328 and 449 amino acids, respectively. The M. amblycephala Dmrt2a mRNA peaked at 11hpf (hour post fertilizing) during early embryonic stages, while Dmrt2b was highly expressed during late embryonic stages. Both the M. amblycephala Dmrt2a and Dmrt2b were expressed highly in the gill and exhibited a sexually dimorphic expression pattern. The M. amblycephala Dmrt3 was expressed highly in the gill, muscle and brain, at 40dph (day post hatching) during early development and at stage V in the testis during gonadal development. All fish Dmrts except Dmrt5 were found in the M. amblycephala genome. The observed expression patterns of these Dmrts in developing embryos and larvae, as well as different adult organs indicate conserved sexual or extragonadal functions of the Dmrts through evolution. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Abnormal development of floral meristem triggers defective morphogenesis of generative system in transgenic tomatoes.

    PubMed

    Chaban, Inna; Khaliluev, Marat; Baranova, Ekaterina; Kononenko, Neonila; Dolgov, Sergey; Smirnova, Elena

    2018-04-21

    Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.

  8. Disruption of actin filaments in Zea mays by bisphenol A depends on their crosstalk with microtubules.

    PubMed

    Stavropoulou, Konstantina; Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Arseni, Ermioni-Makedonia; Eleftheriou, Eleftherios P

    2018-03-01

    Bisphenol A (BPA) is a widespread environmental pollutant, reportedly harmful to living organisms. In plant cells, BPA was shown to disrupt microtubule (MT) arrays and perturb mitosis, but its effects on filamentous actin (F-actin) have not been explored. Here we studied the effects of BPA on actin filaments (AFs) in meristematic root tip and leaf cells of Zea mays, by fluorescent labeling and confocal microscopy. Considering the typical dynamic interaction between MTs and AFs, the effects on these two essential components of the plant cytoskeleton were correlated. It was found that BPA disorganized rapidly AFs in a concentration- and time-dependent manner. The fine filaments were first to be affected, followed by the subcortical bundles, resulting in rod- and ring-like conformations. The observed differences in sensitivity between protodermal and cortex cells were attributed to the deeper location of the latter. Depolymerization or stabilization of MTs by relevant drugs (oryzalin, taxol) revealed that AF susceptibility to BPA depends on MT integrity. Developing leaves required harder and longer treatment to be affected by BPA. Ontogenesis of stomatal complexes was highly disturbed, arrangement of AFs and MT arrays was disordered and accuracy of cell division sequence was deranged or completely arrested. The effect of BPA confirmed that subsidiary cell mother cell polarization is not mediated by F-actin patch neither of preprophase band organization. On the overall, it is concluded that AFs in plant cells constitute a subcellular target of BPA and their disruption depends on their crosstalk with MTs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation

    PubMed Central

    2007-01-01

    Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis. PMID:17349061

  10. Metformin: Multi-faceted protection against cancer

    PubMed Central

    Cufí, Sílvia; Oliveras-Ferraros, Cristina; Bosch-Barrera, Joaquim; Joven, Jorge; Martin-Castillo, Begoña; Menendez, Javier A.

    2011-01-01

    The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics. PMID:22203527

  11. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility.

    PubMed

    Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G

    2012-01-01

    Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  12. Cellular and molecular aspects of plant adaptation to microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla

    2016-07-01

    Elucidation of the range and mechanisms of the biological effects of microgravity is one of the urgent fundamental tasks of space and gravitational biology. The absence of forbidding on plant growth and development in orbital flight allows studying different aspects of plant adaptation to this factor that is directly connected with development of the technologies of bioregenerative life-support systems. Microgravity belongs to the environmental factors which cause adaptive reactions at the cellular and molecular levels in the range of physiological responses in the framework of genetically determined program of ontogenesis. It is known that cells of a multicellular organism not only take part in reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and molecular levels in real and simulated microgravity is considered. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in the cell organelle functional load. The maintenance of the plasmalemma fluidity at the certain level, an activation of both the antioxidant system and expression of HSP genes, especially HSP70, under increasing reactive oxygen species, lipid peroxidation intensity and alteration in protein homeostasis, are a strategic paradigm of rapid (primary) cell adaptation to microgravity. In this sense, biological membranes, especially plasmalemma, and their properties and functions may be considered as the most sensitive indicators of the influence of gravity or altered gravity on a cell. The plasmalemma lipid bilayer is a border between the cell internal content and environment, so it is a mediator between them. Diversity and modification of the membrane lipid content stipulate its participation in the regulation of many important cell processes. Metabolism intensification, including energetic, lipid and carbohydrate metabolism, an increase in the organelle functional load, and changes in enzyme activity promote the long-term (secondary) adaptation. The dynamics of these processes demonstrated that the adaptation occurs on the principle of self-regulating systems. We consider these available data as manifestations of phenotypic plasticity that provides plant adaptation to the unfavorable influence of microgravity. The concept that system's stability is provided by the ability of its components to lability in certain limits is a paradigm of modern science. In biology, it is phenotypic plasticity, i.e. a genome competence to change its expression and form different phenotypes in response to environmental fluctuations. Phenotypic plasticity is supposed to be performed within the limits of physiological reaction norm on the basis of metabolic and hormonal regulation of gene expression. We also discuss a possible role of epigenetic heredity, different forms of which are widely spread among plants due to their ability to vegetative propagation and peculiarities of developmental biology, in phenotypic plasticity, as its manifestations begin to reveal at the transcription level. Attraction of the ideas about the epigenetic control of gene expression will open the new level in understanding of plant adaptation to microgravity. In consideration of the adaptive responses to microgravity, plants reach the generative phase of ontogenesis in space flight, i.e. they are flowering and fruiting. However, a delay in synthesis of storage nutrients and the lower level of its accumulation in seeds in microgravity, as well as the formation of seeds with anomalous embryos in some cases have been described. These data made it impossible to say about full adaptation of plants to microgravity, because normal seed production is the major goal of their adaptation to the new conditions. Therefore, future research at the basis of modern methodology of space and gravitational biology are required to evaluate reasonably the adaptive potential of plants for long-term space flight.

  13. The histochemical profile of the rat extensor digitorum longus muscle differentiates after birth and dedifferentiates in senescence.

    PubMed

    Lehnert, M; Laurer, H; Maier, B; Frank, J; Marzi, I; Steudel, W-I; Mautes, A

    2007-01-01

    Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL) is comprised only of two fiber types after birth, type slow-oxidative (SO) and type SDH-intermediate (SDH-INT), the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing cross-sectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05). At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05). These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.

  14. Transgenerational response to stress in plants and its application for breeding.

    PubMed

    Bilichak, Andriy; Kovalchuk, Igor

    2016-03-01

    A growing number of reports indicate that plants possess the ability to maintain a memory of stress exposure throughout their ontogenesis and even transmit it faithfully to the following generation. Some of the features of transgenerational memory include elevated genome instability, a higher tolerance to stress experienced by parents, and a cross-tolerance. Although the underlying molecular mechanisms of this phenomenon are not clear, a likely contributing factor is the absence of full-scale reprogramming of the epigenetic landscape during gametogenesis; therefore, epigenetic marks can occasionally escape the reprogramming process and can be passed on to the progeny. To date, it is not entirely clear which part of the epigenetic landscape is more likely to escape the reprogramming events, and whether such a process is random or directed and sequence specific. The identification of specific epigenetic marks associated with specific stressors would allow generation of stress-tolerant plants through the recently discovered techniques for precision epigenome engineering. The engineered DNA-binding domains (e.g. ZF, TALE, and dCas9) fused to particular chromatin modifiers would make it possible to target epigenetic modifications to the selected loci, probably allowing stress tolerance to be achieved in the progeny. This approach, termed epigenetic breeding, along with other methods has great potential to be used for both the assessment of the propagation of epigenetic marks across generations and trait improvement in plants. In this communication, we provide a short overview of recent reports demonstrating a transgenerational response to stress in plants, and discuss the underlying potential molecular mechanisms of this phenomenon and its use for plant biotechnology applications. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Evolution of a Novel Muscle Design in Sea Urchins (Echinodermata: Echinoidea)

    PubMed Central

    Ziegler, Alexander; Schröder, Leif; Ogurreck, Malte; Faber, Cornelius; Stach, Thomas

    2012-01-01

    The sea urchin (Echinodermata: Echinoidea) masticatory apparatus, or Aristotle's lantern, is a complex structure composed of numerous hard and soft components. The lantern is powered by various paired and unpaired muscle groups. We describe how one set of these muscles, the lantern protractor muscles, has evolved a specialized morphology. This morphology is characterized by the formation of adaxially-facing lobes perpendicular to the main orientation of the muscle, giving the protractor a frilled aspect in horizontal section. Histological and ultrastructural analyses show that the microstructure of frilled muscles is largely identical to that of conventional, flat muscles. Measurements of muscle dimensions in equally-sized specimens demonstrate that the frilled muscle design, in comparison to that of the flat muscle type, considerably increases muscle volume as well as the muscle's surface directed towards the interradial cavity, a compartment of the peripharyngeal coelom. Scanning electron microscopical observations reveal that the insertions of frilled and flat protractor muscles result in characteristic muscle scars on the stereom, reflecting the shapes of individual muscles. Our comparative study of 49 derived “regular” echinoid species using magnetic resonance imaging (MRI) shows that frilled protractor muscles are found only in taxa belonging to the families Toxopneustidae, Echinometridae, and Strongylocentrotidae. The onset of lobe formation during ontogenesis varies between species of these three families. Because frilled protractor muscles are best observed in situ, the application of a non-invasive imaging technique was crucial for the unequivocal identification of this morphological character on a large scale. Although it is currently possible only to speculate on the functional advantages which the frilled muscle morphology might confer, our study forms the anatomical and evolutionary framework for future analyses of this unusual muscle design among sea urchins. PMID:22624043

  16. Why do we need theories?

    PubMed Central

    Longo, Giuseppe; Soto, Ana M.

    2017-01-01

    Theories organize knowledge and construct objectivity by framing observations and experiments. The elaboration of theoretical principles is examined in the light of the rich interactions between physics and mathematics. These two disciplines share common principles of construction of concepts and of the proper objects of inquiry. Theory construction in physics relies on mathematical symmetries that preserve the key invariants observed and proposed by such theory; these invariants buttress the idea that the objects of physics are generic and thus interchangeable and they move along specific trajectories which are uniquely determined, in classical and relativistic physics. In contrast to physics, biology is a historical science that centers on the changes that organisms experience while undergoing ontogenesis and phylogenesis. Biological objects, namely organisms, are not generic but specific; they are individuals. The incessant changes they undergo represent the breaking of symmetries, and thus the opposite of symmetry conservation, a central component of physical theories. This instability corresponds to the changes of the environment and the phenotypes. Inspired by Galileo’s principle of inertia, the “default state” of inert matter, we propose a “default state” for biological dynamics following Darwin’s first principle, “descent with modification” that we transform into “proliferation with variation and motility” as a property that spans life, including cells in an organism. These dissimilarities between theories of the inert and of biology also apply to causality: biological causality is to be understood in relation to the distinctive role that constraints assume in this discipline. Consequently, the notion of cause will be reframed in a context where constraints to activity are seen as the core component of biological analyses. Finally, we assert that the radical materiality of life rules out distinctions such as “software vs. hardware.” PMID:27390105

  17. Erwinia amylovora affects the phenylpropanoid-flavonoid pathway in mature leaves of Pyrus communis cv. Conférence.

    PubMed

    Vrancken, K; Holtappels, M; Schoofs, H; Deckers, T; Treutter, D; Valcke, R

    2013-11-01

    Flavonoids, which are synthesized by the phenylpropanoid-flavonoid pathway, not only contribute to fruit colour and photoprotection, they also may provide antimicrobial and structural components during interaction with micro-organisms. A possible response of this pathway was assessed in both mature and immature leaves of shoots of 2-year-old pear trees cv. Conférence, which were inoculated with the gram-negative bacterium Erwinia amylovora strain SGB 225/12, were mock-inoculated or were left untreated. The phenylpropanoid-flavonoid pathway was analysed by histological studies, by gene expression using RT-qPCR and by HPLC analyses of the metabolites at different time intervals after infection. Transcription patterns of two key genes anthocyanidin reductase (ANR) and chalcone synthase (CHS) related to the phenylpropanoid-flavonoid pathway showed differences between control, mock-inoculated and E. amylovora-inoculated mature leaves, with the strongest reaction 48 h after inoculation. The impact of E. amylovora was also visualised in histological sections, and confirmed by HPLC, as epicatechin -which is produced via ANR- augmented 72 h after inoculation in infected leaf tissue. Besides the effect of treatments, ontogenesis-related differences were found as well. The increase of certain key genes, the rise in epicatechin and the visualisation in several histological sections in this study suggest a non-negligible impact on the phenylpropanoid-flavonoid pathway in Pyrus communis due to inoculation with E. amylovora. In this study, we propose a potential role of this pathway in defence mechanisms, providing a detailed analysis of the response of this system attributable to inoculation with E. amylovora. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing.

    PubMed

    Babić, Sanja; Barišić, Josip; Višić, Hrvoje; Sauerborn Klobučar, Roberta; Topić Popović, Natalija; Strunjak-Perović, Ivančica; Čož-Rakovac, Rozelindra; Klobučar, Göran

    2017-05-15

    Wastewater treatment plant (WWTP) effluents are often complex mixtures of various organic and inorganic substances. Quality control of wastewaters and sludges has been regulated with measuring several physico-chemical parameters and sometimes using biological methods with non-specific responses, while synergistic action mechanisms of contaminants in such complex mixtures is still unknown. Toxic effects of wastewaters within and downstream of the WWTP in City of Virovitica, Croatia, were tested on zebrafish Danio rerio using a set of biomarkers that enabled an insight in wastewaters toxic potential on embryos at the cellular, tissue and the whole organism level during an early ontogenesis (24 and 48 hpf). Exposure of embryos to the wastewater samples from WWTP Virovitica increased mortality and abnormality rate. Heart rate, spontaneous movements and pigmentation formation were also markedly affected. Biochemical markers confirmed the presence of MXR inhibitors in all tested wastewater samples, indicating the increase of pollutant accumulation in the cell/organism. Also, a tendency of DNA damage decrease measured with Comet assay was evident in wastewater samples downstream from WWTP although control levels were not reached in any environmental sample. Histopathological analysis showed that exposure to tested samples resulted in impaired muscle organization, notochord malformation and retardation in eye and brain development at embryos 48 hpf. Furthermore, semi-quantitative histopathology assessment indicated increased percentage of embryo defects in river water sampled several kilometers downstream from the WWTP, confirming toxic potential of WWTP effluents. Extension of the zebrafish embryotoxicity test (ZET) with biochemical and histopathological biomarkers could serve as a guiding principle in biomonitoring of wastewater contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue

    PubMed Central

    Rochette, Claire; Jullien, Nicolas; Saveanu, Alexandru; Caldagues, Emmanuelle; Bergada, Ignacio; Braslavsky, Debora; Pfeifer, Marija; Reynaud, Rachel; Herman, Jean-Paul; Barlier, Anne; Brue, Thierry; Enjalbert, Alain; Castinetti, Frederic

    2015-01-01

    LHX4 is a LIM homeodomain transcription factor involved in the early steps of pituitary ontogenesis. To date, 8 heterozygous LHX4 mutations have been reported as responsible of combined pituitary hormone deficiency (CPHD) in Humans. We identified 4 new LHX4 heterozygous allelic variants in patients with congenital hypopituitarism: W204X, delK242, N271S and Q346R. Our objective was to determine the role of LHX4 variants in patients’ phenotypes. Heterologous HEK293T cells were transfected with plasmids encoding for wild-type or mutant LHX4. Protein expression was analysed by Western Blot, and DNA binding by electro-mobility shift assay experiments. Target promoters of LHX4 were cotransfected with wild type or mutant LHX4 to test the transactivating abilities of each variant. Our results show that the W204X mutation was associated with early GH and TSH deficiencies and later onset ACTH deficiency. It led to a truncated protein unable to bind to alpha-Gsu promoter binding consensus sequence. W204X was not able to activate target promoters in vitro. Cotransfection experiments did not favour a dominant negative effect. In contrast, all other mutants were able to bind the promoters and led to an activation similar as that observed with wild type LHX4, suggesting that they were likely polymorphisms. To conclude, our study underlines the need for functional in vitro studies to ascertain the role of rare allelic variants of LHX4 in disease phenotypes. It supports the causative role of the W204X mutation in CPHD and adds up childhood onset ACTH deficiency to the clinical spectrum of the various phenotypes related to LHX4 mutations. PMID:25955177

  20. Two-plane symmetry in the structural organization of man.

    PubMed

    Ermolenko, A E

    2005-01-01

    Manifestations of symmetry in the human structural organization in ontogenesis and phylogenetic development are analysed. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant: (a) the location of the organs is governed by two principles: in compliance with the symmetry planes and in compliance with the radial symmetry around cavities; (b) the location of the radial symmetry organs is also governed by the principle of two-plane symmetry; (c) out of the four antimeres of two-plane symmetry, two are paired while the other two have merged into one organ; (d) some organs which are antimeres relative to the horizontal plane are located at the cranial end of the organism (sensory organs, cerebrum-cerebellum, heart-spleen and others). The two-plane symmetry is formed by two mechanisms--(a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and (b) genetic mechanisms of the development of chromosomes having two-plane symmetry. When comparing mineral and biological entities we should consider not the whole immobile crystal but only the active superficial part of a growing or dissolving crystal, the interface between the crystal surface and the crystal-forming environment which directly controls crystal growth and adapts itself to it, as well as crystal feed stock expressed in the structure of concentration flows. The symmetry of the chromosome, of the embrion at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described.

  1. [Andrological status of adolescents and its connection to anthropometric and hormonal descriptions in the students of technical college group].

    PubMed

    Lutov, Iu V; Seliatitskaia, V G; Epanchintseva, E A; Riabichenko, T I

    2014-01-01

    The purpose of this investigation was to study the interrelation of andrological status with anthropometric and hormonal descriptions for age-specific features discovery of male sexual system pathological states at technical college students. 147 adolescents aged 15-17 years old were examined. Only 41 of them were found to have no abnormalities in their genital system development; in 35 adolescents sexual development was delayed; and 97 adolescents were found to have various andrological diseases (varicocele, phimosis, gynecomastia, testicular asymmetry, etc.) or clinical signs for development of these diseases. In 26 adolescences delayed sexual development was combined with the andrological pathology. The normal andrological status was usually accompanied with the highest frequency of low values of anthropometric indicators and indices that reflect the influence of various hormonal systems on the bodily constitution, as well as expressed anthropometricheterogeneity. In adolescents with andrological pathology or clinical signs for its development, in all anthropometric parameters the higher values were seen more frequently than low values against the background of highest group anthropometric homogeneity. Summative anthropometric characteristics of the adolescents group with delayed sexual development were between those of the adolescents groups with normal andrological status and andrological pathology The number of correlational relationships of anthropometric and hormonal indicators with the levels of cortisol and dehydroepiandrosteronesulphate was the lowest in the group of adolescents with normal andrological status as compared to their peers with delayed sexual development and andrological pathology. Only in the group of adolescents with normal andrological status the correlation analysis of data showed physiological influence of sexual hormones on anthropometric indicators. Thus, lower influence of sexual system hormones during this ontogenesis stage contributes to slowing down the process of sexual maturation both with the development of andrological pathology in adolescents.

  2. The decreasing of corn root biomembrane penetration for acetochlor with vermicompost amendment

    NASA Astrophysics Data System (ADS)

    Sytnyk, Svitlana; Wiche, Oliver

    2016-04-01

    One of the topical environmental security issues is management and control of anthropogenic (artificially synthesized) chemical agents usage and utilization. Protection systems development against toxic effects of herbicides should be based on studies of biological indication mechanisms for identification of stressors effect in organisms. Lipid degradation is non-specific reaction to exogenous chemical agents effects. Therefore it is important to study responses of lipid components depending on the stressor type. We studied physiological and biochemical characteristics of lipid metabolism under action of herbicides of chloracetamide group. Corn at different stages of ontogenesis was used as testing object during model laboratory and microfield experiments. Cattle manure treated with earth worms Essenia Foetida was used as compost fertilizer to add to chain: chernozem (black soil) -corn system. It was found several acetochlor actions as following: -decreasing of sterols, phospholipids, phosphatidylcholines and phosphatidylethanolamines content; -increasing pool of available fatty acids and phosphatidic acids associated with intensification of hydrolysis processes; -lypase activity stimulation under effect of stressor in low concentrations; -lypase activity inhibition under effect of high stressor level; -decreasing of polyenoic free fatty acids indicating biomembrane degradation; -accumulation of phospholipids degradation products (phosphatidic acids); -decreasing of high-molecular compounds (phosphatidylcholin and phosphatidylinositol) concentrations; -change in the index of unsaturated and saturated free fatty acids ratio in biomembranes structure; It was established that incorporation of vermicompost in dose 0.4 kg/m2 in black soil lead to corn roots biomembrane restoration. It was fixed the decreasing roots biomembrane penetration for acetochlor in trial with vermicompost. Second compost substances antidote effect is the soil microorganism's activation (ammonification and associative nitrogen fixation improvement).

  3. Antioxidant responses to azinphos methyl and carbaryl during the embryonic development of the toad Rhinella (Bufo) arenarum Hensel.

    PubMed

    Ferrari, Ana; Lascano, Cecilia I; Anguiano, Olga L; D'Angelo, Ana M Pechen de; Venturino, Andrés

    2009-06-04

    Amphibian embryos are naturally exposed to prooxidant conditions throughout their development. Environmental exposure to contaminants may affect their capacity to respond to challenging conditions, to progress in a normal ontogenesis, and finally to survive and succeed in completing metamorphosis. We studied the effects of the exposure to two anticholinesterase agents, the carbamate carbaryl and the organophosphate azinphos methyl, on the antioxidant defenses of developing embryos of the toad Rhinella (Bufo) arenarum. Reduced glutathione (GSH) levels were increased early by carbaryl, but were decreased by both pesticides at the end of embryonic development. The GSH-dependent enzymes glutathione reductase and glutathione peroxidases showed oscillating activity patterns that could be attributed to an induction of activity in response to oxidative stress and inactivation by excess of reactive oxygen species. Glutathione-S-transferases, which may participate in the conjugation of lipid peroxide products in addition to pesticide detoxification, showed an increase of activity at the beginning and at the end of development. Catalase also showed variations in the activity suggesting, successively, induction and inactivation in response to pesticide exposure-induced oxidative stress. Superoxide dismutase activity was increased by carbaryl and transiently decreased by azinphos methyl exposure. Judging from the depletion in GSH levels and glutathione reductase inhibition at the end of embryonic development, the oxidative stress caused by azinphos methyl seemed to be greater than that caused by carbaryl, which might be in turn related with a higher number of developmental alterations caused by the organophosphate. GSH content is a good biomarker of oxidative stress in the developing embryos exposed to pesticides. The antioxidant enzymes are in turn revealing the balance between their protective capacity and the oxidative damage to the enzyme molecules, decreasing their activity.

  4. Wnt4 coordinates directional cell migration and extension of the Müllerian duct essential for ontogenesis of the female reproductive tract

    PubMed Central

    Prunskaite-Hyyryläinen, Renata; Skovorodkin, Ilya; Xu, Qi; Miinalainen, Ilkka; Shan, Jingdong; Vainio, Seppo J.

    2016-01-01

    The Müllerian duct (MD) is the anlage of the oviduct, uterus and upper part of the vagina, the main parts of the female reproductive tract. Several wingless-type mouse mammary tumor virus (MMTV) integration site family member (Wnt) genes, including Wnt4, Wnt5a and Wnt7a, are involved in the development of MD and its derivatives, with Wnt4 particularly critical, since the MD fails to develop in its absence. We use, here, Wnt4EGFPCre-based fate mapping to demonstrate that the MD tip cells and the subsequent MD cells are derived from Wnt4+ lineage cells. Moreover, Wnt4 is required for the initiation of MD-forming cell migration. Application of anti-Wnt4 function-blocking antibodies after the initiation of MD elongation indicated that Wnt4 is necessary for the elongation as well, and consistent with this, cell culture wound-healing assays with NIH3T3 cells overexpressing Wnt4 promoted cell migration by comparison with controls. In contrast to the Wnt4 null embryos, some Wnt4monomeric cherry/monomeric cherry (Wnt4mCh/mCh) hypomorphic mice survived to adulthood and formed MD in ∼45% of cases. Nevertheless, the MD of the Wnt4mCh/mCh females had altered cell polarization and basement membrane deposition relative to the controls. Examination of the reproductive tract of the Wnt4mCh/mCh females indicated a poorly coiled oviduct, absence of the endometrial glands and an undifferentiated myometrium, and these mice were prone to develop a hydro-uterus. In conclusion, the results suggest that the Wnt4 gene encodes signals that are important for various aspects of female reproductive tract development. PMID:26721931

  5. Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Fu, Yuming; Liu, Guanghui; Liu, Hong

    2014-06-01

    Minimizing energy consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. As a primary source of energy, light is one of the most important environmental factors for plant growth. The purpose of this study is to investigate the effects of low light intensity at different stages on growth, pigment composition, photosynthetic efficiency, biological production and antioxidant defence systems of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 3 intensity-controlled stages according to growth period (a total of 65 days): seedling stage (first 20 days), heading and flowering stage (middle 30 days) and grain filling stage (last 15 days). Initial light condition of the control was 420 μmol m-2 s-1 and the light intensity increased with the growth of wheat plants. The light intensities of group I and II at the first stage and the last stage were adjusted to the half level of the control respectively. For group III, the first and the last stage were both adjusted to half level of the control. During the middle 30 days, all treatments were kept the same intensity. The results indicated that low-light treatment at seedling stage, biomass, nutritional contents, components of inedible biomass and healthy index (including peroxidase (POD) activity, malondialdehyde (MDA) and proline content) of wheat plants have no significant difference to the control. Furthermore, unit kilojoule yield of group I reached 0.591 × 10-3 g/kJ and induced the highest energy efficiency. However, low-light treatment at grain filling stage affected the final production significantly.

  6. Expression and localization of aromatase P450AROM, estrogen receptor-α, and estrogen receptor-β in the developing fetal bovine frontal cortex.

    PubMed

    Peruffo, A; Giacomello, M; Montelli, S; Corain, L; Cozzi, B

    2011-06-01

    The enzyme aromatase (P450(AROM)) converts testosterone (T) into 17-β estradiol (E(2)) and is crucial for the control of development of the central nervous system during ontogenesis. The effects of E(2) in various brain areas are mediated by the estrogen receptor alpha (ER-α) and the estrogen receptor beta (ER-β). During fetal development, steroids are responsible for the sexual differentiation of the hypothalamus. Estrogens are also able to exert effects in other brain areas of the fetus including the frontal cortex, where they act through estrogen receptors (ERs) modulating cognitive function and affective behaviors. In this study we have determined the expression profiles of P450(AROM) and ERs in the fetal bovine frontal cortex by quantitative Real-Time PCR (qRT-PCR) throughout the prenatal development. The data show that the patterns of expression of both ERs are strongly correlated during pregnancy and increase in the last stage of gestation. On the contrary, the expression of P450(AROM) has no correlation with ERs expression and is not developmentally regulated. Moreover, we performed immunochemical studies showing that fetal neurons express P450(AROM) and the ERs. P450(AROM) is localized in the cytoplasm and only seldom present in the fine extensions of the cells; ER-α is detected predominantly in the soma whereas ER-β is only present in the nucleus of a few cells. This study provides new data on the development of the frontal cortex in a long gestation mammal with a large convoluted brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effect of Bovine Viral Diarrhea Virus on the ovarian functionality and in vitro reproductive performance of persistently infected heifers.

    PubMed

    González Altamiranda, E A; Kaiser, G G; Mucci, N C; Verna, A E; Campero, C M; Odeón, A C

    2013-08-30

    The aim of this study was to study the effect of Bovine Viral Diarrhea Virus on the reproductive female tract by means of analyzing the ovarian follicular population of persistently infected (PI) heifers, and evaluating the performance of oocytes procured form those heifers in in vitro fertilization procedures. Seven BVDV PI Aberdeen Angus and British crossbred heifers ranging from 18 to 36 months of age were spayed and their ovaries used for viral isolation, microscopic examination, and in vitro fertilization procedures. Bovine Viral Diarrhea Virus was detected from the follicular fluid and sera of all PI heifers. Microscopic examination of the ovaries from PI heifers showed a significant drop in the number of follicles cortical regions, compared with controls. A comparative analysis of the stages of follicular development showed a significant decrease in the number of primordial and tertiary follicles in the cortical regions of ovaries from PI heifers. Viral antigen was detected by immunohistochemistry, and was widely distributed throughout the ovarian tissues. There were differences in the rate of cleavage and embryo development between oocytes obtained from the ovaries of control animals and PI heifers. Furthermore, two developed embryos obtained from oocytes from one of the PI heifers were positive to BVDV, as well as two media from in vitro fertilization (IVF) procedures. The results of this study demonstrate that BVDV PI heifers exhibit alterations in follicular population through of the early interaction between the virus and germ cell line affecting directly the mechanisms involved in the ontogenesis of the ovary. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. A High Protein Diet during Pregnancy Affects Hepatic Gene Expression of Energy Sensing Pathways along Ontogenesis in a Porcine Model

    PubMed Central

    Oster, Michael; Murani, Eduard; Metges, Cornelia C.; Ponsuksili, Siriluck; Wimmers, Klaus

    2011-01-01

    In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. The underlying programming of fetal development was shown to be associated with an increased risk of degenerative diseases in adulthood, including the metabolic syndrome. There are clues that diet-dependent modifications of the metabolism during fetal life can persist until adulthood. This leads to the hypothesis that the offspring's transcriptomes show short-term and long-term changes depending on the maternal diet. To this end pregnant German landrace gilts were fed either a high protein diet (HP, 30% CP) or an adequate protein diet (AP, 12% CP) throughout pregnancy. Hepatic transcriptome profiles of the offspring were analyzed at prenatal (94 dpc) and postnatal stages (1, 28, 188 dpn). Depending on the gestational dietary exposure, mRNA expression levels of genes related to energy metabolism, N-metabolism, growth factor signaling pathways, lipid metabolism, nucleic acid metabolism and stress/immune response were affected either in a short-term or in a long-term manner. Gene expression profiles at fetal stage 94 dpc were almost unchanged between the diets. The gestational HP diet affected the hepatic expression profiles at prenatal and postnatal stages. The effects encompassed a modulation of the genome in terms of an altered responsiveness of energy and nutrient sensing pathways. Differential expression of genes related to energy production and nutrient utilization contribute to the maintenance of development and growth performance within physiological norms, however the modulation of these pathways may be accompanied by a predisposition for metabolic disturbances up to adult stages. PMID:21789176

  9. Human development I: twenty fundamental problems of biology, medicine, and neuro-psychology related to biological information.

    PubMed

    Hermansen, Tyge Dahl; Ventegodt, Søren; Rald, Erik; Clausen, Birgitte; Nielsen, Maj Lyck; Merrick, Joav

    2006-07-06

    In a new series of papers, we address a number of unsolved problems in biology today. First of all, the unsolved enigma concerning how the differentiation from a single zygote to an adult individual happens has been object for severe research for decades. By uncovering a new holistic biological paradigm that introduces an energetic-informational interpretation of reality as a new way to experience biology, these papers will try to solve the problems connected with the events of biological ontogenesis involving a fractal hierarchy, from a single cell to the function of the human brain. The problems discussed are interpreted within the frames of a universe of roomy fractal structures containing energetic patterns that are able to deliver biological information. We think biological organization is guided by energetic changes on the level of quantum mechanics, interacting with the intention that again guides the energetic conformation of the fractal structures to gain disorders or healthiness. Furthermore, we introduce two new concepts: "metamorphous top down" evolution and "adult human metamorphosis". The first is a new evolutionary theory involving metamorphosis as a main concept of evolution. The last is tightly linked to the evolutionary principle and explains how human self-recovery is governed. Other subjects of special interest that we shall look deeper into are the immunological self-nonself discrimination, the structure and function of the human brain, the etiology and salutogenesis of mental and somatic diseases, and the structure of the consciousness of a human being. We shall criticize Szentagothai's model for the modulated structure of the human cerebral cortex and Jerne's theory of the immunological regulatory anti-idiotypic network.

  10. Molecular ontogenesis of digestive capability and associated endocrine control in Atlantic cod (Gadus morhua) larvae.

    PubMed

    Kortner, Trond M; Overrein, Ingrid; Oie, Gunvor; Kjørsvik, Elin; Bardal, Tora; Wold, Per-Arvid; Arukwe, Augustine

    2011-10-01

    We have profiled the expression of twelve genes, in order to provide an overview on the molecular ontogeny of digestive capability with the associated endocrine control during Atlantic cod (Gadus morhua) larval development. Enzyme activity levels for the key digestive enzyme, trypsin, was also measured. Specifically, transcripts for trypsin, amylase, lipolytic enzymes: bile salt activated lipase (BAL), phospholipase A2 (PLA2) and Acyl CoA dehydrogenase (ACADM), regulatory peptides: neuropeptide Y (NPY), orexin (OX) cholecystokinin (CCK) and cocaine and amphetamine-related transcript (CART), the somatotropic factors: growth hormone (GH), preprosomatostatin 1 (PPSS1) and thyroid hormone receptors (TRα and TRβ) were analyzed using quatitative (real-time) polymerase chain reaction (qPCR). Trypsin and BAL mRNA levels peaked at approximately day 17 and 25 post-hatch, respectively, and thereafter displayed a decreasing pattern until metamorphosis. GH mRNA levels decreased moderately from 3 to 33dph, and thereafter, an increase was observed until 46dph. TRα mRNA levels showed a fluctuating pattern peaking at day 39 post-hatch. TRβ mRNA levels were too low to obtain quantitative measurements. Amylase mRNA slightly increased from day 3 to 17 post-hatch, and thereafter showed a steady decrease until day 60. Interestingly, PLA2 mRNA expression showed a consistent increase throughout the study period, indicating an increasingly important role during larval development. Overall, data from this study indicate that cod larvae show differential developmental mode of expression patterns for key genes and endocrine factors that regulate digestive capability, growth and development. These data are discussed in relation to larval trypsin enzyme activity and previous reports for other teleost species. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Timing and Duration of Drug Exposure Affects Outcomes of a Drug-Nutrient Interaction During Ontogeny.

    PubMed

    Ling, Binbing; Aziz, Caroline; Wojnarowicz, Chris; Olkowski, Andrew; Alcorn, Jane

    2010-10-14

    Significant drug-nutrient interactions are possible when drugs and nutrients share the same absorption and disposition mechanisms. During postnatal development, the outcomes of drug-nutrient interactions may change with postnatal age since these processes undergo ontogenesis through the postnatal period. Our study investigated the dependence of a significant drug-nutrient interaction (cefepime-carnitine) on the timing and duration of drug exposure relative to postnatal age. Rat pups were administered cefepime (5 mg/kg) twice daily subcutaneously according to different dosing schedules (postnatal day 1-4, 1-8, 8-11, 8-20, or 1-20). Cefepime significantly reduced serum and heart L-carnitine levels in postnatal day 1-4, 1-8 and 8-11 groups and caused severe degenerative changes in ventricular myocardium in these groups. Cefepime also altered the ontogeny of several key L-carnitine homeostasis pathways. The qualitative and quantitative changes in levels of hepatic γ-butyrobetaine hydroxylase mRNA and activity, hepatic trimethyllysine hydroxlase mRNA, intestinal organic cation/carnitine transporter (Octn) mRNA, and renal Octn2 mRNA depended on when during postnatal development the cefepime exposure occurred and duration of exposure. Despite lower levels of heart L-carnitine in earlier postnatal groups, levels of carnitine palmitoyltransferase mRNA and activity, heart Octn2 mRNA and ATP levels in all treatment groups remained unchanged with cefepime exposure. However, changes in other high energy phosphate substrates were noted and reductions in the phosphocreatine/ATP ratio were found in rat pups with normal serum L-carnitine levels. In summary, our data suggest a significant drug-nutrient transport interaction in developing neonates, the nature of which depends on the timing and duration of exposure relative to postnatal age.

  12. Timing and Duration of Drug Exposure Affects Outcomes of a Drug-Nutrient Interaction During Ontogeny

    PubMed Central

    Ling, Binbing; Aziz, Caroline; Wojnarowicz, Chris; Olkowski, Andrew; Alcorn, Jane

    2010-01-01

    Significant drug-nutrient interactions are possible when drugs and nutrients share the same absorption and disposition mechanisms. During postnatal development, the outcomes of drug-nutrient interactions may change with postnatal age since these processes undergo ontogenesis through the postnatal period. Our study investigated the dependence of a significant drug-nutrient interaction (cefepime-carnitine) on the timing and duration of drug exposure relative to postnatal age. Rat pups were administered cefepime (5 mg/kg) twice daily subcutaneously according to different dosing schedules (postnatal day 1-4, 1-8, 8-11, 8-20, or 1-20). Cefepime significantly reduced serum and heart L-carnitine levels in postnatal day 1-4, 1-8 and 8-11 groups and caused severe degenerative changes in ventricular myocardium in these groups. Cefepime also altered the ontogeny of several key L-carnitine homeostasis pathways. The qualitative and quantitative changes in levels of hepatic γ-butyrobetaine hydroxylase mRNA and activity, hepatic trimethyllysine hydroxlase mRNA, intestinal organic cation/carnitine transporter (Octn) mRNA, and renal Octn2 mRNA depended on when during postnatal development the cefepime exposure occurred and duration of exposure. Despite lower levels of heart L-carnitine in earlier postnatal groups, levels of carnitine palmitoyltransferase mRNA and activity, heart Octn2 mRNA and ATP levels in all treatment groups remained unchanged with cefepime exposure. However, changes in other high energy phosphate substrates were noted and reductions in the phosphocreatine/ATP ratio were found in rat pups with normal serum L-carnitine levels. In summary, our data suggest a significant drug-nutrient transport interaction in developing neonates, the nature of which depends on the timing and duration of exposure relative to postnatal age. PMID:27721360

  13. Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Chen, Hao; Sun, Mingzhe; Liang, Zhongxiu; Wang, Lingling; Song, Linsheng

    2016-04-01

    Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Consequences of excessive plasticity in the hippocampus induced by perinatal asphyxia.

    PubMed

    Saraceno, G E; Caceres, L G; Guelman, L R; Castilla, R; Udovin, L D; Ellisman, M H; Brocco, M A; Capani, F

    2016-12-01

    Perinatal asphyxia (PA) is one of the most frequent risk factors for several neurodevelopmental disorders (NDDs) of presumed multifactorial etiology. Dysfunction of neuronal connectivity is thought to play a central role in the pathophysiology of NDDs. Because underlying causes of some NDDs begin before/during birth, we asked whether this clinical condition might affect accurate establishment of neural circuits in the hippocampus as a consequence of disturbed brain plasticity. We used a murine model that mimics the pathophysiological processes of perinatal asphyxia. Histological analyses of neurons (NeuN), dendrites (MAP-2), neurofilaments (NF-M/Hp) and correlative electron microscopy studies of dendritic spines were performed in Stratum radiatum of the hippocampal CA1 area after postnatal ontogenesis. Protein and mRNA analyses were achieved by Western blot and RT-qPCR. Behavioral tests were also carried out. NeuN abnormal staining and spine density were increased. RT-qPCR assays revealed a β-actin mRNA over-expression, while Western blot analysis showed higher β-actin protein levels in synaptosomal fractions in experimental group. M6a expression, protein involved in filopodium formation and synaptogenesis, was also increased. Furthermore, we found that PI3K/Akt/GSK3 pathway signaling, which is involved in synaptogenesis, was activated. Moreover, asphyctic animals showed habituation memory changes in the open field test. Our results suggest that abnormal synaptogenesis induced by PA as a consequence of excessive brain plasticity during brain development may contribute to the etiology of the NDDs. Consequences of this altered synaptic maturation can underlie some of the later behavioral deficits observed in NDDs. Copyright © 2016. Published by Elsevier Inc.

  15. Carcinogenesis: alterations in reciprocal interactions of normal functional structure of biologic systems.

    PubMed

    Davydyan, Garri

    2015-12-01

    The evolution of biologic systems (BS) includes functional mechanisms that in some conditions may lead to the development of cancer. Using mathematical group theory and matrix analysis, previously, it was shown that normally functioning BS are steady functional structures regulated by three basis regulatory components: reciprocal links (RL), negative feedback (NFB) and positive feedback (PFB). Together, they form an integrative unit maintaining system's autonomy and functional stability. It is proposed that phylogenetic development of different species is implemented by the splitting of "rudimentary" characters into two relatively independent functional parts that become encoded in chromosomes. The functional correlate of splitting mechanisms is RL. Inversion of phylogenetic mechanisms during ontogenetic development leads cell differentiation until cells reach mature states. Deterioration of reciprocal structure in the genome during ontogenesis gives rise of pathological conditions characterized by unsteadiness of the system. Uncontrollable cell proliferation and invasive cell growth are the leading features of the functional outcomes of malfunctioning systems. The regulatory element responsible for these changes is RL. In matrix language, pathological regulation is represented by matrices having positive values of diagonal elements ( TrA  > 0) and also positive values of matrix determinant ( detA  > 0). Regulatory structures of that kind can be obtained if the negative entry of the matrix corresponding to RL is replaced with the positive one. To describe not only normal but also pathological states of BS, a unit matrix should be added to the basis matrices representing RL, NFB and PFB. A mathematical structure corresponding to the set of these four basis functional patterns (matrices) is a split quaternion (coquaternion). The structure and specific role of basis elements comprising four-dimensional linear space of split quaternions help to understand what changes in mechanism of cell differentiation may lead to cancer development.

  16. Why do we need theories?

    PubMed

    Longo, Giuseppe; Soto, Ana M

    2016-10-01

    Theories organize knowledge and construct objectivity by framing observations and experiments. The elaboration of theoretical principles is examined in the light of the rich interactions between physics and mathematics. These two disciplines share common principles of construction of concepts and of the proper objects of inquiry. Theory construction in physics relies on mathematical symmetries that preserve the key invariants observed and proposed by such theory; these invariants buttress the idea that the objects of physics are generic and thus interchangeable and they move along specific trajectories which are uniquely determined, in classical and relativistic physics. In contrast to physics, biology is a historical science that centers on the changes that organisms experience while undergoing ontogenesis and phylogenesis. Biological objects, namely organisms, are not generic but specific; they are individuals. The incessant changes they undergo represent the breaking of symmetries, and thus the opposite of symmetry conservation, a central component of physical theories. This instability corresponds to the changes of the environment and the phenotypes. Inspired by Galileo's principle of inertia, the "default state" of inert matter, we propose a "default state" for biological dynamics following Darwin's first principle, "descent with modification" that we transform into "proliferation with variation and motility" as a property that spans life, including cells in an organism. These dissimilarities between theories of the inert and of biology also apply to causality: biological causality is to be understood in relation to the distinctive role that constraints assume in this discipline. Consequently, the notion of cause will be reframed in a context where constraints to activity are seen as the core component of biological analyses. Finally, we assert that the radical materiality of life rules out distinctions such as "software vs. hardware." Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Influence of nitrogen source and concentrations on wheat growth and production inside "Lunar Palace-1"

    NASA Astrophysics Data System (ADS)

    Dong, Chen; Chu, Zhengpei; Wang, Minjuan; Qin, Youcai; Yi, Zhihao; Liu, Hong; Fu, Yuming

    2018-03-01

    Minimizing nitrogen (N) consumption and maximizing crop productivity are major challenges to growing plants in Bioregenerative Life Support System (BLSS) for future long-term space mission. Plants cultivated in the controlled environments are sensitive to the low recyclable N (such as from the urine). The purpose of this study is to investigate the effects of nitrogen fertilizer (NH4+-N and NO3--N) disturbance on growth, photosynthetic efficiency, antioxidant defence systems and biomass yield and quality of wheat (Triticum aestivum L.) cultivars during ontogenesis. Experiments were divided into 4 controlled groups,Ⅰ: NO3--N: NH4+-N = 7:1 mmol L-1; Ⅱ: NO3--N: NH4+-N = 14:0.5 mmol L-1; Ⅲ: NO3--N: NH4+-N = 7:0.5 mmol L-1 and CK: NO3--N: NH4+-N = 14:1 mmol L-1, and other salt concentrations were the same. The results showed that heading and flowering stages in spring wheat are sensitive to low N concentration, especially NO3--N in group Ⅰ and Ⅲ. NO3- is better to root growth than to shoot growth. The plants were spindling and the output was lower 21.3% when spring wheat was in low N concentration solution. Meanwhile, photosynthetic rate of low N concentrations is worse than that of CK. The soluble sugar content of the edible part of wheat plants is influenced with NO3-: NH4+ ratio. In addition, when N concentration was lowest in group Ⅲ, the lignin content decreased to 2.58%, which was more beneficial to recycle substances in the processes of the environment regeneration.

  18. Naegeli-Franceschetti-Jadassohn Syndrome and Dermatopathia Pigmentosa Reticularis: Two Allelic Ectodermal Dysplasias Caused by Dominant Mutations in KRT14

    PubMed Central

    Lugassy, Jennie; Itin, Peter; Ishida-Yamamoto, Akemi; Holland, Kristen; Huson, Susan; Geiger, Dan; Hennies, Hans Christian; Indelman, Margarita; Bercovich, Dani; Uitto, Jouni; Bergman, Reuven; McGrath, John A.; Richard, Gabriele; Sprecher, Eli

    2006-01-01

    Naegeli-Franceschetti-Jadassohn syndrome (NFJS) and dermatopathia pigmentosa reticularis (DPR) are two closely related autosomal dominant ectodermal dysplasia syndromes that clinically share complete absence of dermatoglyphics (fingerprint lines), a reticulate pattern of skin hyperpigmentation, thickening of the palms and soles (palmoplantar keratoderma), abnormal sweating, and other subtle developmental anomalies of the teeth, hair, and skin. To decipher the molecular basis of these disorders, we studied one family with DPR and four families with NFJS. We initially reassessed linkage of NFJS/DPR to a previously established locus on 17q11.2-q21. Combined multipoint analysis generated a maximal LOD score of 8.3 at marker D17S800 at a recombination fraction of 0. The disease interval was found to harbor 230 genes, including a large cluster of keratin genes. Heterozygous nonsense or frameshift mutations in KRT14 were found to segregate with the disease trait in all five families. In contrast with KRT14 mutations affecting the central α-helical rod domain of keratin 14, which are known to cause epidermolysis bullosa simplex, NFJS/DPR-associated mutations were found in a region of the gene encoding the nonhelical head (E1/V1) domain and are predicted to result in very early termination of translation. These data suggest that KRT14 plays an important role during ontogenesis of dermatoglyphics and sweat glands. Among other functions, the N-terminal part of keratin molecules has been shown to confer protection against proapoptotic signals. Ultrastructural examination of patient skin biopsy specimens provided evidence for increased apoptotic activity in the basal cell layer where KRT14 is expressed, suggesting that apoptosis is an important mechanism in the pathogenesis of NFJS/DPR. PMID:16960809

  19. The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity.

    PubMed Central

    Qiao, Dan; Nikitina, Lyudmila A; Buznikov, Gennady A; Lauder, Jean M; Seidler, Frederic J; Slotkin, Theodore A

    2003-01-01

    Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants. PMID:14594623

  20. The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity.

    PubMed

    Qiao, Dan; Nikitina, Lyudmila A; Buznikov, Gennady A; Lauder, Jean M; Seidler, Frederic J; Slotkin, Theodore A

    2003-11-01

    Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants.

  1. [FOXP2 and the molecular biology of language: new evidence. II. Molecular aspects and implications for the ontogenesis and phylogeny of language].

    PubMed

    Benítez-Burraco, A

    FOXP2 is the first gene linked to a hereditary variant of specific language impairment and seems to code for a transcriptional repressor that intervenes in the regulation of the development and the functioning of certain thalamic-cortical-striatal circuits. In the last three years, significant progress has been made in the determination of the structural and functional properties of the gene. These advances essentially have to do with the precise analysis of the most important structural motifs of the protein that it codes for and the main parameters that determine its interaction with DNA. They also concern the determination of the functional and behavioural properties in vivo of the main isoforms of the FOXP2 protein, the exact determination of the pattern of expression of new orthologues of the gene, and the identification of the different target genes for factor FOXP2. This new evidence suggests that protein FOXP2 protein has a high degree of versatility in vivo when it comes to binding to DNA; that its different isoforms are biologically functional; and that the FOXP2 gene is functional during embryonic development and during the adult phase. It also suggests that it is involved in the development and/or functioning of the thalamic-cortical-striatal circuits associated to motor planning, sequential behaviour and procedural learning (a significant saving in developmental terms of the regulatory mechanism in which the gene is involved), as well as the accuracy of the models of linguistic processing that consider language to be, to a large extent, the result of an interaction between certain cortical and subcortical structures.

  2. Antibiotics impact plant traits, even at small concentrations

    PubMed Central

    Deloy, Andrea; Volkert, Anna Martina; Leonhardt, Sara Diana; Pufal, Gesine

    2017-01-01

    Abstract Antibiotics of veterinary origin are released to agricultural fields via grazing animals or manure. Possible effects on human health through the consumption of antibiotic exposed crop plants have been intensively investigated. However, information is still lacking on the effects of antibiotics on plants themselves, particularly on non-crop species, although evidence suggests adverse effects of antibiotics on growth and performance of plants. This study evaluated the effects of three major antibiotics, penicillin, sulfadiazine and tetracycline, on the germination rates and post-germinative traits of four plant species during ontogenesis and at the time of full development. Antibiotic concentrations were chosen as to reflect in vivo situations, i.e. concentrations similar to those detected in soils. Plant species included two herb species and two grass species, and represent two crop-species and two non-crop species commonly found in field margins, respectively. Germination tests were performed in climate chambers and effects on the remaining plant traits were determined in greenhouse experiments. Results show that antibiotics, even in small concentrations, significantly affect plant traits. These effects include delayed germination and post-germinative development. Effects were species and functional group dependent, with herbs being more sensitive to antibiotics then grasses. Responses were either negative or positive, depending on plant species and antibiotic. Effects were generally stronger for penicillin and sulfadiazine than for tetracycline. Our study shows that cropland species respond to the use of different antibiotics in livestock industry, for example, with delayed germination and lower biomass allocation, indicating possible effects on yield in farmland fertilized with manure containing antibiotics. Also, antibiotics can alter the composition of plant species in natural field margins, due to different species-specific responses, with unknown consequences for higher trophic levels. PMID:28439396

  3. A 3.7 Mb Deletion Encompassing ZEB2 Causes a Novel Polled and Multisystemic Syndrome in the Progeny of a Somatic Mosaic Bull

    PubMed Central

    Capitan, Aurélien; Allais-Bonnet, Aurélie; Pinton, Alain; Marquant-Le Guienne, Brigitte; Le Bourhis, Daniel; Grohs, Cécile; Bouet, Stéphan; Clément, Laëtitia; Salas-Cortes, Laura; Venot, Eric; Chaffaux, Stéphane; Weiss, Bernard; Delpeuch, Arnaud; Noé, Guy; Rossignol, Marie-Noëlle; Barbey, Sarah; Dozias, Dominique; Cobo, Emilie; Barasc, Harmonie; Auguste, Aurélie; Pannetier, Maëlle; Deloche, Marie-Christine; Lhuilier, Emeline; Bouchez, Olivier; Esquerré, Diane; Salin, Gérald; Klopp, Christophe; Donnadieu, Cécile; Chantry-Darmon, Céline; Hayes, Hélène; Gallard, Yves; Ponsart, Claire; Boichard, Didier; Pailhoux, Eric

    2012-01-01

    Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation. PMID:23152852

  4. A Newly Described Bovine Type 2 Scurs Syndrome Segregates with a Frame-Shift Mutation in TWIST1

    PubMed Central

    Capitan, Aurélien; Grohs, Cécile; Weiss, Bernard; Rossignol, Marie-Noëlle; Reversé, Patrick; Eggen, André

    2011-01-01

    The developmental pathways involved in horn development are complex and still poorly understood. Here we report the description of a new dominant inherited syndrome in the bovine Charolais breed that we have named type 2 scurs. Clinical examination revealed that, despite a strong phenotypic variability, all affected individuals show both horn abnormalities similar to classical scurs phenotype and skull interfrontal suture synostosis. Based on a genome-wide linkage analysis using Illumina BovineSNP50 BeadChip genotyping data from 57 half-sib and full-sib progeny, this locus was mapped to a 1.7 Mb interval on bovine chromosome 4. Within this region, the TWIST1 gene encoding a transcription factor was considered as a strong candidate gene since its haploinsufficiency is responsible for the human Saethre-Chotzen syndrome, characterized by skull coronal suture synostosis. Sequencing of the TWIST1 gene identified a c.148_157dup (p.A56RfsX87) frame-shift mutation predicted to completely inactivate this gene. Genotyping 17 scurred and 20 horned founders of our pedigree as well as 48 unrelated horned controls revealed a perfect association between this mutation and the type 2 scurs phenotype. Subsequent genotyping of 32 individuals born from heterozygous parents showed that homozygous mutated progeny are completely absent, which is consistent with the embryonic lethality reported in Drosophila and mouse suffering from TWIST1 complete insufficiency. Finally, data from previous studies on model species and a fine description of type 2 scurs symptoms allowed us to propose different mechanisms to explain the features of this syndrome. In conclusion, this first report on the identification of a potential causal mutation affecting horn development in cattle offers a unique opportunity to better understand horn ontogenesis. PMID:21814570

  5. Pleurodeles waltl, amphibian, Urodele, is a suitable biological model for embryological and physiological space experiments on a vertebrate

    NASA Astrophysics Data System (ADS)

    Gualandris-Parisot, L.; Husson, D.; Foulquier, F.; Kan, P.; Davet, J.; Aimar, C.; Dournon, C.; Duprat, A. M.

    2001-01-01

    Pleurodeles waltl (amphibian, Urodele) is an appropriate biological model for space experiments on a vertebrate. One reason for interest in this animal concerns the study of the effects of absence of gravity on embryonic development. First, after mating (on Earth) the females retain live, functional sperm in their cloacum for up to 5 months, allowing normal in vivo fertilisation after hormonal stimulation. Second, their development is slow, which allows analyses of all the key stages of ontogenesis from the oocyte to swimming tailbud embryos or larvae. We have performed detailed studies and analyses of the effects of weightlessness on amphibian Pleurodeles embryos, fertilised and allowed to develop until the swimming larvae stage. These experiments were performed in space during three missions on the MIR-station: FERTILE I, FERTILE II and NEUROGENESIS respectively in 1996, 1998 and 1999. We show that in microgravity abnormalities appeared at specific stages of development compared to 1g-centrifuge control embryos and 1g-ground control embryos. In this report we describe abnormalities occurring in the central nervous system. These modifications occur during the neurulation process (delay in the closure of the neural tube and failure of closure of this tube in the cephalic area) and at the early tailbud stage (microcephaly observed in 40% of the microgravity-embryos). However, if acephalic and microcephalic embryos are not taken into account, these abnormalities did not disturb further morphological, biochemical and functional development and the embryos were able to regulate and a majority of normal hatching and swimming larvae were obtained in weightlessness with a developmental time-course equivalent to that of 1g-centrifuge control embryos (on the MIR station) and 1g-ground control embryos.

  6. Influence of different natural physical fields on biological processes

    NASA Astrophysics Data System (ADS)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  7. The early expansion of anergic NKG2Apos/CD56dim/CD16neg natural killer cells represents a therapeutic target in haploidentical haematopoietic stem cell transplantation.

    PubMed

    Roberto, Alessandra; Di Vito, Clara; Zaghi, Elisa; Mazza, Emilia Maria Cristina; Capucetti, Arianna; Calvi, Michela; Tentorio, Paolo; Zanon, Veronica; Sarina, Barbara; Mariotti, Jacopo; Bramanti, Stefania; Tenedini, Elena; Tagliafico, Enrico; Bicciato, Silvio; Santoro, Armando; Roederer, Mario; Marcenaro, Emanuela; Castagna, Luca; Lugli, Enrico; Mavilio, Domenico

    2018-04-26

    Natural Killer cells are the first lymphocyte population to reconstitute early after non myelo-ablative and T cell-replete haploidentical hematopoietic stem cell transplantation with post-transplant infusion of cyclophosphamide. The present study characterizes the transient and predominant expansion starting from the 2nd week after haploidentical hematopoietic stem cell transplantation of a donor-derived unconventional subset of NKp46neg-low/CD56dim/CD16neg natural killer cells expressing remarkable high levels of CD94/NKG2A. Both transcription and phenotypic profiles indicated that unconventional NKp46neg-low/CD56dim/CD16neg natural killer cells are a distinct natural killer cell subpopulation with features of late stage differentiation, yet retaining proliferative capability and functional plasticity to generate conventional NKp46pos/CD56bright/CD16pos natural killer cells in response to interleukin-15 plus interleukin-18. While present at low frequency in healthy donors, unconventional NKp46neg-low/CD56dim/CD16neg natural killer cells are greatly expanded in the following 7 weeks after haploidentical hematopoietic stem cell transplantation and express high levels of the activating receptors NKGD and NKp30 as well as of the lytic granules Granzyme-B and Perforin. Nonetheless, NKp46neg-low/CD56dim/CD16neg natural killer cells displayed a markedly defective cytotoxicity that could be reversed by blocking the inhibitory receptor CD94/NKG2A. These data open new important perspectives to better understand the ontogenesis/homeostasis of human natural killer cells and to develop a novel immune-therapeutic approach that targets the inhibitory NKG2A check point, thus unleashing natural killer cell alloreactivity early after haploidentical hematopoietic stem cell transplantation. Copyright © 2018, Ferrata Storti Foundation.

  8. Harris lines in the non-adult Great Moravian population of Mikulcice (Czech Republic).

    PubMed

    Havelková-Zítková, Petra; Velemínský, Petr; Dobisíková, Miluse; Likovský, Jakub

    2009-01-01

    Harris lines have been recognised as an indicator of the stress since the thirties of the last century, when the work of dr. H. A. Harris was published. Despite seventy years of interest, the aetiology of this marker remains unclear. The lines are generally interpreted as being the consequence of a temporary interruption or arrest of bone growth during ontogenesis. Various factors as a trauma, malnutrition and protein deficiency can be the cause of HL's development [e.g. 1]. Clinical studies, have not confirmed these connections unequivocally [e.g. 2, 3]. The lines form in the region of the metaphyses, where the bones grow. Their position vis-a-vis the bone enables to deduce, more or less, the time of their formation [e.g. 4, 5, 6]. The aim of our research was to study the Harris line's formarion in the non-adult population of the Great-Moravian settlement agglomeration at Mikulcice-Valy. We focused only on the non-adult population because it is impossible to rule out the possibility of re-modelling (obliteration) of these lines in adults [e.g. 7]. We recorded the incidence of these markers using X-rays of the long bones of the upper (Hu) and lower (Fe, Ti) extremities. We evaluated a total of 132 individuals. In the first phase, we calculated the intra-observer and inter-observer errors [e.g. 8]. After determining the incidence of these markers on individual bones, we observed the difference in the incidence of markers among individual bones, as well as differences in the distribution of lines in the proximal and distal parts of the bone under study. We also studied the intensity of line formation, which, together with the density of the lines themselves, could indicate the degree of intensity and duration of the stress [e.g. 9]. Finally, we evaluated, the period in the child's life when bone growth was most frequently disrupted [e.g. 6].

  9. Expression of the IGF and the aromatase/estrogen receptor systems in human adrenal tissues from early infancy to late puberty: implications for the development of adrenarche.

    PubMed

    Belgorosky, Alicia; Baquedano, María Sonia; Guercio, Gabriela; Rivarola, Marco A

    2009-03-01

    Adrenarche is a process of postnatal sexual maturation occurring in higher primates, in which there is an increase in the secretion of adrenal androgens. It is the consequence of a process of postnatal organogenesis characterized by the development of a new zone in the adrenal cortex, the zona reticularis (ZR). The mechanism of this phenomenon remains poorly understood, suggesting that it might be a multifactorial event. A relationship between circulating IGF-I, insulin sensitivity, and adrenal androgens has been postulated. Boys and girls have different patterns of changes in insulin sensitivity at puberty, perhaps secondary to differences in the estrogen milieu. Estrogen effects may also play a role in premature adrenarche. Peripheral or local IGF-1 actions could regulate adrenal progenitor cell proliferation and migration. Since adrenal progenitor cells as well as IGF-I and the IGF-R1 are located in the outer zone of the adrenal cortex during childhood and adolescence, this peripheral cell layer, below the capsule, may contain undifferentiated progenitor cells. Therefore, the IGF-R1 signaling pathway might positively modulate the proliferation and migration of adrenal progenitor cell to stimulate the development of adrenal zones, including ZR. However, no evidence of a direct action of IGF-I on ZR was found. In addition, a role for estrogens in the ontogenesis of ZR is suggested by the presence of aromatase (CYP19) in the subcapsular zona glomerulosa and in the adrenal medulla. Estrogens produced locally could act on ZR by interacting with estrogen receptor beta (ERbeta), but not alpha, and membrane estrogen receptor GPR-30. An estradiol-induced increase in DHEA/cortisol ratio was indeed seen in cultures of adrenocortical cells from post-adrenarche adrenals. In summary, several lines of evidence point to the action of multiple factors, such as local adrenal maturational changes and peripheral metabolic signals, on postnatal human adrenal gland ZR formation.

  10. Therapeutic drug monitoring of quetiapine in adolescents with psychotic disorders.

    PubMed

    Gerlach, M; Hünnerkopf, R; Rothenhöfer, S; Libal, G; Burger, R; Clement, H-W; Fegert, J M; Wewetzer, Ch; Mehler-Wex, C

    2007-03-01

    There are developmental and age-dependent differences in the pharmacokinetics and the pharmacodynamics of drugs in children and adolescents. Therefore, there is a need to carry out standardised studies to find out therapeutic ranges of plasma/serum concentrations in psychopharmacotherapy of children and adolescents. The aim of this prospective study was to examine the relationship between quetiapine serum concentration, treatment response, and side effects in a clinical setting to elucidate the age-specific therapeutic range of quetiapine in adolescents. Over a period of two years, therapeutic drug monitoring (TDM) was routinely performed in 21 adolescents (mean age was 15.9+/-1.5 years, 57% male) with psychotic disorders according to the guidelines of the AGNP TDM expert group. The psychopathology was assessed by using the Clinical Global Impression Scale (CGI) and the Brief Psychiatric Rating Scale (BPRS). Side effects were assessed by using the Dose Record and Treatment Emergent Symptom Scale (DOTES). Trough quetiapine concentrations were determined under steady state conditions after multiple-dose regimes (median 600 mg/day; range 100-800 mg/day). There was a marked variability of the serum concentrations, ranging from 19-877 ng/ml. 40.8% of the determined values were below and 24.5% above the therapeutic range (70-170 ng/ml) recommended for adults. None of the patients had severe side effects. We found a weak correlation between dose and serum concentration of quetiapine and no relationship between serum concentration and treatment response. There are several limitations of this study, and our results should therefore be interpreted with caution. Notwithstanding, differences in the ontogenesis of pharmacokinetics and pharmacodynamics may be the reason for the difference in the relationship between blood concentrations and therapeutic response to psychopharmaca in children, adolescents and adults. Further studies using larger samples, baseline assessment of psychopathology, definition of the treatment interval and investigation of clinically relevant interactions with various co-medications are warranted to improve the limitations of this pilot study.

  11. Oxygen diffusion coefficient in isolated chicken red and white skeletal muscle fibers in ontogenesis.

    PubMed

    Baranov, V I; Belichenko, V M; Shoshenko, C A

    2000-09-01

    Oxygen diffusion from medium to cultured isolated muscle fibers from red gastrocnemius muscle (deep part) (RGM) and white pectoralis muscle (WPM) of embryonic and postnatal chickens (about 6 months) was explored. The intracellular effective O(2) diffusion coefficient (D(i)) in muscle fiber was calculated from a model of a cylindrical fiber with a uniform distribution of an oxygen sink based on these experimentally measured parameters: critical tension of O(2) (PO(2)) on the surface of a fiber, specific rate of O(2) consumption by a weight unit of muscle fibers (;VO(2)), and average diameter of muscle fibers. The results document the rapid hypertrophic growth of RGM fibers when compared to WPM fibers in the second half of the embryonic period and the higher values of;VO(2) and critical PO(2) during the ontogenetic period under study. The oxygen D(i) in RGM fibers of embryos and 1-day chickens was two to three times higher than observed for WPM fibers. For senior chickens, the oxygen D(i) value in RGM and WPM fibers does not differ. The D(i) of O(2) in both RGM and WPM fibers increased from 1.4-2.7 x 10(-8) to 90-95 x 10(-8) cm(2)/s with an ontogenetic increase in fiber diameter from 7. 5 to 67.0 microm. At all stages the oxygen D(i) values in RGM and WPM fibers are significantly lower than the O(2) diffusion coefficient in water: for 11-day embryos they are 889 and 1714 times lower and for adult individuals 25 and 27 times lower, respectively. Why oxygen D(i) values in RGM and WPM fibers are so low and why they are gradually increasing during the course of hypertrophic ontogenetic growth are still unclear. Copyright 2000 Academic Press.

  12. Development of coherent neuronal activity patterns in mammalian cortical networks: common principles and local hetereogeneity.

    PubMed

    Egorov, Alexei V; Draguhn, Andreas

    2013-01-01

    Many mammals are born in a very immature state and develop their rich repertoire of behavioral and cognitive functions postnatally. This development goes in parallel with changes in the anatomical and functional organization of cortical structures which are involved in most complex activities. The emerging spatiotemporal activity patterns in multi-neuronal cortical networks may indeed form a direct neuronal correlate of systemic functions like perception, sensorimotor integration, decision making or memory formation. During recent years, several studies--mostly in rodents--have shed light on the ontogenesis of such highly organized patterns of network activity. While each local network has its own peculiar properties, some general rules can be derived. We therefore review and compare data from the developing hippocampus, neocortex and--as an intermediate region--entorhinal cortex. All cortices seem to follow a characteristic sequence starting with uncorrelated activity in uncoupled single neurons where transient activity seems to have mostly trophic effects. In rodents, before and shortly after birth, cortical networks develop weakly coordinated multineuronal discharges which have been termed synchronous plateau assemblies (SPAs). While these patterns rely mostly on electrical coupling by gap junctions, the subsequent increase in number and maturation of chemical synapses leads to the generation of large-scale coherent discharges. These patterns have been termed giant depolarizing potentials (GDPs) for predominantly GABA-induced events or early network oscillations (ENOs) for mostly glutamatergic bursts, respectively. During the third to fourth postnatal week, cortical areas reach their final activity patterns with distinct network oscillations and highly specific neuronal discharge sequences which support adult behavior. While some of the mechanisms underlying maturation of network activity have been elucidated much work remains to be done in order to fully understand the rules governing transition from immature to mature patterns of network activity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. Ontogenetic Profile of the Expression of Thyroid Hormone Receptors in Rat and Human Corpora Cavernosa of the Penis

    PubMed Central

    Carosa, Eleonora; Di Sante, Stefania; Rossi, Simona; Castri, Alessandra; D'Adamo, Fabio; Gravina, Giovanni Luca; Ronchi, Piero; Kostrouch, Zdenek; Dolci, Susanna; Lenzi, Andrea; Jannini, Emmanuele A

    2010-01-01

    Introduction In the last few years, various studies have underlined a correlation between thyroid function and male sexual function, hypothesizing a direct action of thyroid hormones on the penis. Aim To study the spatiotemporal distribution of mRNA for the thyroid hormone nuclear receptors (TR) α1, α2 and β in the penis and smooth muscle cells (SMCs) of the corpora cavernosa of rats and humans during development. Methods We used several molecular biology techniques to study the TR expression in whole tissues or primary cultures from human and rodent penile tissues of different ages. Main Outcome Measure We measured our data by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) amplification, Northern blot and immunohistochemistry. Results We found that TRα1 and TRα2 are both expressed in the penis and in SMCs during ontogenesis without development-dependent changes. However, in the rodent model, TRβ shows an increase from 3 to 6 days post natum (dpn) to 20 dpn, remaining high in adulthood. The same expression profile was observed in humans. While the expression of TRβ is strictly regulated by development, TRα1 is the principal isoform present in corpora cavernosa, suggesting its importance in SMC function. These results have been confirmed by immunohistochemistry localization in SMCs and endothelial cells of the corpora cavernosa. Conclusions The presence of TRs in the penis provides the biological basis for the direct action of thyroid hormones on this organ. Given this evidence, physicians would be advised to investigate sexual function in men with thyroid disorders. Carosa E, Di Sante S, Rossi S, Castri A, D'Adamo F, Gravina GL, Ronchi P, Kostrouch Z, Dolci S, Lenzi A, and Jannini EA. Ontogenetic profile of the expression of thyroid hormone receptors in rat and human corpora cavernosa of the penis. J Sex Med 2010;7:1381–1390. PMID:20141582

  14. The structural and photosynthetic characteristics of the exposed peduncle of wheat (Triticum aestivum L.): an important photosynthate source for grain-filling.

    PubMed

    Kong, Lingan; Wang, Fahong; Feng, Bo; Li, Shengdong; Si, Jisheng; Zhang, Bin

    2010-07-11

    In wheat (Triticum aestivum L), the flag leaf has been thought of as the main source of assimilates for grain growth, whereas the peduncle has commonly been thought of as a transporting organ. The photosynthetic characteristics of the exposed peduncle have therefore been neglected. In this study, we investigated the anatomical traits of the exposed peduncle during wheat grain ontogenesis, and we compared the exposed peduncle to the flag leaf with respect to chloroplast ultrastructure, photosystem II (PSII) quantum yield, and phosphoenolpyruvate carboxylase (PEPCase; EC 4.1.1.31) activity. Transmission electron microscope observations showed well-developed chloroplasts with numerous granum stacks at grain-filling stages 1, 2 and 3 in both the flag leaf and the exposed peduncle. In the exposed peduncle, the membranes constituting the thylakoids were very distinct and plentiful, but in the flag leaf, there was a sharp breakdown at stage 4 and complete disintegration of the thylakoid membranes at stage 5. PSII quantum yield assays revealed that the photosynthetic efficiency remained constant at stages 1, 2 and 3 and then declined in both organs. However, the decline occurred more dramatically in the flag leaf than in the exposed peduncle. An enzyme assay showed that at stages 1 and 2 the PEPCase activity was lower in the exposed peduncle than in the flag leaf; but at stages 3, 4 and 5 the value was higher in the exposed peduncle, with a particularly significant difference observed at stage 5. Subjecting the exposed part of the peduncle to darkness following anthesis reduced the rate of grain growth. Our results suggest that the exposed peduncle is a photosynthetically active organ that produces photosynthates and thereby makes a crucial contribution to grain growth, particularly during the late stages of grain-filling.

  15. Two novel LRR-only proteins in Chlamys farreri: Similar in structure, yet different in expression profile and pattern recognition.

    PubMed

    Wang, Mengqiang; Wang, Lingling; Xin, Lusheng; Wang, Xiudan; Wang, Lin; Xu, Jianchao; Jia, Zhihao; Yue, Feng; Wang, Hao; Song, Linsheng

    2016-06-01

    Leucine-rich repeat (LRR)-only proteins could mediate protein-ligand and protein-protein interactions and be involved in the immune response. In the present study, two novel LRR-only proteins, CfLRRop-2 and CfLRRop-3, were identified and characterized from scallop Chlamys farreri. They both contained nine LRR motifs with the consensus signature sequence LxxLxLxxNxL and formed typical horseshoe structure. The CfLRRop-2 and CfLRRop-3 mRNA transcripts were constitutively expressed in haemocytes, muscle, mantle, gill, haepatopancreas and gonad, with the highest expression level in haepatopancreas and gill, respectively. During the ontogenesis of scallop, the mRNA transcripts of CfLRRop-2 were kept at a high level in oocytes and embryos, while those of CfLRRop-3 were expressed at a rather low level from oocytes to blastula. Their mRNA transcripts were significantly increased after the stimulation of lipopolysaccharide (LPS), peptidoglycan (PGN), glucan (GLU) and polyinosinic-polycytidylic acid (poly I:C), and the mRNA expression of CfLRRop-2 rose more intensely than that of CfLRRop-3. After the suppression of CfTLR (previously identified Toll-like receptor in C. farreri) via RNA interference (RNAi), CfLRRop-3 mRNA transcripts increased more intensely and lastingly than those of CfLRRop-2. The rCfLRRop-3 protein could bind LPS, PGN, GLU and poly I:C, while rCfLRRop-2 exhibited no significant binding activity to them. Additionally, rCfLRRop-2 could significantly induce the release of TNF-α from the mixed primary cultured scallop haemocytes, but rCfLRRop-3 failed. These results collectively indicated that CfLRRop-2 might act as an immune effector or pro-inflammatory factor, while CfLRRop-3 would function as a pattern recognition receptor (PRR), suggesting the function of LRR-only protein family has differentiated in scallop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/ Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells.

    PubMed

    Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Pasquet, Stéphanie; Rimelen, Valérie; Hénon, Philippe

    2011-04-01

    Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor. Samples of normal hBM and leukapheresis products harvested from cancer patients after granulocyte colony-stimulating factor mobilization were analyzed and sorted by multiparameter flow cytometry strategy. Immunofluorescence and reverse transcription quantitative polymerase chain reaction assays were performed to analyze the expression of typical pluripotent stem cells markers. A population of CD34(+)/CD133(+)/CXCR4(+)/Lin(-) CD45(-) immature cells was first isolated from the hBM or from leukapheresis products. Among this population, very small (2-5 μm) cells expressing Oct-4, Nanog, and stage-specific embryonic antigen-4 at protein and messenger RNA levels were identified. Our study supports the hypothesis that very small embryonic-like stem cells constitute a "mobile" pool of primitive/pluripotent stem cells that could be released from the BM into the peripheral blood under the influence of various physiological or pathological stimuli. In order to fully support that hBM- and leukapheresis product-derived very small embryonic-like stem cells are actually pluripotent, we are currently testing their ability to differentiate in vitro into cells from all three germ layers. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  17. [On factors that effect the variability of central mechanisms of bilingualism].

    PubMed

    Kruchinina, O V; Gal'perina, E I; Kats, E É; Shepoval'nikov, A N

    2012-01-01

    The article discusses the probable role of many factors that determine the individual variety of neurophysiological mechanisms, which provide the opportunity to learn and free use two or more languages. The formation of a speech functions is affected by both the general factors for bilinguals and monolinguals, as well as the specific characteristic of the situation of bilingualism. The general factors include genetic and environmental impact of explaining the diversity of individual options for the development of morphofunctional organization of speech functions. A bilinguals, obviously, have even more wide variance of the central maintenance of speech activity, due to the combination of different conditions that influence the language environment, which include the age of the second language acquisition, the language proficiency, linguistic closeness of the languages, the method of their acquisition, intensity of use and the scope of application of each of the languages. The influence of these factors can mediates in different ways by the individual characteristics of the bilingual's brain. Being exposed to two languages from the first days of life, the child uses for the development of speech skills of the unique features of the brain, which are available only in the initial stages of postnatal ontogenesis. In older age mastering a second language requires much more effort, when, as maturation, the brain acquires new additional possibilities, but permanently lose that special "bonus", which nature gives a small child only in the first months of life. Large individual variability patterns of activation of the cortex when verbal activity in late bilingual" compared with the "early", allows to assume, that the brain of "late bilingual", mastering a new language, forced to operate a large number of backup mechanisms, and this is reflected in the increase of variation in the cerebral processes, responsible for providing of speech functions. In addition, there is serious reason to believe that learning a second language contributes to the expansion of the functional capabilities of the brain and creates the basis for a successful cognitive activity.

  18. Control of the collective migration of enteric neural crest cells by the Complement anaphylatoxin C3a and N-cadherin

    PubMed Central

    Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D.; Dufour, Sylvie

    2016-01-01

    We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders. PMID:27041467

  19. Analysis of the Spaceflight Effects on Growth and Development of Super Dwarf Wheat Grown on the Space Station Mir

    NASA Technical Reports Server (NTRS)

    Levinskikh, M. A.; Sychev, V. N.; Derendyaeva, T. A.; Signalova, O. B.; Salisbury, F. B.; Campbell, W. F.; Bingham, G. E.; Bubenheim, D. L.; Jahns, G.

    2000-01-01

    The hypothesis being tested is that Super Dwarf wheat, Triticum aestivum L., plants in the Svet Greenhouse onboard the Russian Space Station Mir will complete a life cycle in spaceflight, providing that the environmental conditions necessary for adequate growth on Earth are supplied. Twenty six seeds of wheat were planted in each of 2 rows of 2 root compartments for a total of 104 seeds in Svet. Germination rate at 7 d was 56 and 73% on Mir and 75 and 90% in ground-based controls. Plants were grown throughout the whole cycle of ontogenesis (123 d) with samples gathered at different times to validate the morphological and reproductive stages of the plants. Young plants showed vigorous early seedling growth, with large biomass production, including the formation of 280 floral spikes. Upon return to Earth, comparative analyses showed that the number of tillers and flowers per spikelet were 63.2% and 40% greater, respectively, in Mir-grown plants than in the controls. By contrast, the stem length (52.4%), spike mass (49.2%) and length (23.1%), awn length (75.7%), number of spikelets per spike (42.8%) and number of seeds per spike (100% sterile) from Mir-grown plants were substantially less than the controls. Distribution of moisture and roots throughout the substrate was very good. All florets on Mir-grown spikes ceased development at the same stage of ontogeny. Lack of caryopses formation was attributed to male sterility occurring at different stages of staminal development. Anthers failed to dehisce and pollen grains were smaller and shriveled compared to the controls, suggesting a chronic stress had occurred in the Svet growth chamber. Recent ground-based studies indicated that ethylene, which was measured at 0.3 to 1.8 mg per kilogram in the Mir, almost certainly could have induced male sterility in the wheat plants grown on the Mir.

  20. [Ontogenetic conditions of unemployment].

    PubMed

    Buchtová, Božena; Smajs, Josef; Kulhavý, Viktor; Okrajek, Petr; Kukla, Lubomír

    2014-01-01

    Previous unemployment studies mostly dealt with unemployments economic causes and consequences. Hidden causes of male unemployment, independent from socio-economic circumstances of a society, could consist, besides others, in natural biological factors - family experience during childhood. Theoretical background of our study included the concept of psychical deprivation, the concept of human ontogenesis developmental stages of E. Erikson and knowledge of biodromal psychology. Using data from the European Longitudinal Study of Parenthood and Childhood international project we compared groups of employed and unemployed men by means of a retrospective survey and we studied the following: 1. What differences there were in their childhood; 2. To what extent educational approaches transfer from parents to their children; 3. What influence has negative experience from childhood on the future assertion of men in the labour market. The survey set consisted of 3141 (88.7%) employed men and 399 (11.3%) unemployed men in 1991-1992. Basic research data were acquired by means of questionnaires. Relative risk was used to compare the groups of the employed and the unemployed. The employed men are more likely to be from complete families then the unemployed men. The unemployed men, in comparison to the employed men, 2.08 times more frequently spent their childhood in orphanages, children's villages or in foster families, 3.89 times more frequently attended special schools, 2.22 times more frequently lived away from home until the age of 18 and 2.51 times more frequently lived in detention centres or in diagnostic institutes until the age of 18 (p < 0.001). 66.6% of the employed men and 65.1% of the unemployed men were psychically and physically abused in their childhood. Consequences of negative experience from childhood decrease the chances of inclusion of young men into the labour market. Social roles of young men (future fathers) could be also distorted by such experience. Social integration and social success rate of the unemployed men group therefore develops in an unfavourable direction.

  1. Analysis of Degree of Similarity among Crude Oils, the Upper and the Lower Crust, Organic Matter, Clays, and Different Caustobioliths by the Content of Their Main and Trace Elements

    NASA Astrophysics Data System (ADS)

    Rodkin, Mikhail; Punanova, Svetlana

    2016-04-01

    The goal of this research was to estimate, based on the content of Trace Elements, the level of contribution of the lower and the upper crust as well as the organic matter into ontogenesis of hydrocarbons. The analysis of degree of similarity of the main and trace element (TE) content among the upper and lower continental crust, clays, organic matter, and different caustobioliths (oil, coal, oil-and-black shales) is performed by calculating coefficients of correlation of logarithms of concentrations of a large number of different chemical elements. Different oils from a number of oil bearing provinces in Russia and from the volcanic caldera Uzon (Kamchatka, Russia) were examined. It has been shown that the content of main elements and TEs of coals and oil-and-black shales is better correlated with the chemical composition of the upper crust, while the TE content of oils correlates better with the composition of the lower continental crust. The TE content of oils correlates with the chemical content of living organisms but the correlation in the most cases is weaker than the one with the lower crust. The results of the examination of different samples from the same oil-bearing province were found to be similar. The mean results for different oil-bearing provinces can vary considerably. The results of the examination of young oil from the Uzon volcanic caldera were found to be rather specific and different from the other oils. We also suggest a set of a small number of "characteristic" elements (Cs, Rb, K, U, V, Cr and Ni), which allows to compare the degree of similarity between an oil sample and upper or lower continental crust using only a few chemical elements. Some interpretation of the results is presented.

  2. Results of the first stage (2002-2009) of investigation of higher plants onboard RS ISS, as an element of future closed Life Support Systems

    NASA Astrophysics Data System (ADS)

    Sychev, Vladimir; Levinskikh, Margarita; Podolsky, Igor; Bingham, Gail; Novikova, Nataliya; Sugimoto, Manabu

    A key task for biomedical human support in long-term manned space expeditions is the develop-ment of the Life Support System (LSS). It is expected that in the first continuous interplanetary expeditions LSS of only a few biological elements of the LSS, such as higher plants will be in-cluded. Therefore, investigations of growth and development of higher plants for consideration in the LSS are of high importance. In a period from October, 2002 to December 2009, 15 ex-periments on cultivation of different plants, including two genetically marked species of dwarf peas, a leaf vegetable strain of Mizuna, radish, barley and wheat were conducted in space greenhouse "LADA" onboard Russian Segment (RS) of International Space Station (ISS). The experiments resulted in the conclusion that the properties of growth and development of plants grown in space greenhouse "LADA" were unaffected by spaceflight conditions. In experiments conducted in a period from 2003 to 2005, it was shown for the first time that pea plants pre-serve reproductive functions, forming viable seeds during at least four continuous full cycles of ontogenesis ("seed to seed") under spaceflight conditions. No changes were found in the genetic apparatus of the pea plants in the four "space" generations. Since 2005, there have been routine collections of microbiological samples from the surfaces of the plants grown on-board in "LADA" greenhouse. Analysis has shown that the properties of contamination of the plants grown aboard by microorganism contain no abnormal patterns. Since 2008, the plants cultivated in "LADA" greenhouse have been frozen onboard RS ISS in the MELFI refrigerator and transferred to the Earth for further investigations. Investigations of Mizuna plants grown and frozen onboard of ISS, showed no differences between "ground control" and "space" plants in chemical and biochemical properties. There also no stress-response was found in kashinriki strain barley planted and frozen onboard ISS.

  3. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    PubMed

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  4. Transport phenomena of graded sediments in tidal environments

    NASA Astrophysics Data System (ADS)

    Bonaldo, Davide; Dall'Angelo, Chiara; di Silvio, Giampaolo

    2010-05-01

    A long-term morphodynamic model simulating the ontogenesis and evolution of a tidal lagoon has been undergoing a continuous improvement in order to enrich its predictive ability and assess the relative importance of different factors, of both natural and anthropogenic origin, in defining the equilibrium configuration of such systems. A significant step forward in this direction is achieved by introducing the possibility to extend the analysis from uniform to graded sediments. In the latter case the representation of long-term phenomena is conceptually the same as for a sediment characterized by a single granulometric class, as far as it concerns the temporal averaging and the splitting of the transport in a dispersive component (mainly given by tidal action) and an eulerian residual convective component (resulting from rivers, long-shore currents, and asymmetry between flood and ebb flow fields). The horizontal sediment budget, however, is now coupled with a sediment budget among the different granulometric classes in the bottom, and precisely in a "mixing layer" whose thickness has to be properly defined. This new enhancement of the model allows, beside a more precise description of the morphodynamic processes, a certain number of further investigations. As a first point, it makes it possible to study the effect of the initial stratigraphic conditions on the genesis and evolution of the tidal basin, thus obtaining some informations about the persistence of "geological memory" in the system. Another matter, of environmental interest rather than strictly morphodynamic, concerns the possibility of creating "auxiliary classes" among the grainsize classes in order to label and track contaminated sediments, providing a prediction tool and a decisional support in case of environmental accidents. Such a sediment tracking could also be used to distinguish the sediments according to their fluvial or maritime origin, defining in this way a criterion for the classification of the various morphological features which can be found within the system. A sensitivity analysis of the main parameters is under way.

  5. Host Age Affects the Development of Southern Catfish Gut Bacterial Community Divergent From That in the Food and Rearing Water.

    PubMed

    Zhang, Zhimin; Li, Dapeng; Refaey, Mohamed M; Xu, Weitong; Tang, Rong; Li, Li

    2018-01-01

    Host development influences gut microbial assemblies that may be confounded partly by dietary shifts and the changing environmental microbiota during ontogenesis. However, little is known about microbial colonization by excluding dietary effects and compositional differences in microbiota between the gut and environment at different ontogenetic stages. Herein, a developmental gut microbial experiment under controlled laboratory conditions was conducted with carnivorous southern catfish Silurus meridionalis fed on an identical prey with commensal and abundant microbiota. In this study, we provided a long-term analysis of gut microbiota associated with host age at 8, 18, 35, 65, and 125 day post-fertilization (dpf) and explored microbial relationships among host, food and water environment at 8, 35, and 125 dpf. The results showed that gut microbial diversity in southern catfish tended to increase linearly as host aged. Gut microbiota underwent significant temporal shifts despite similar microbial communities in food and rearing water during the host development and dramatically differed from the environmental microbiota. At the compositional abundance, Tenericute s and Fusobacteria were enriched in the gut and markedly varied with host age, whereas Spirochaetes and Bacteroidetes detected were persistently the most abundant phyla in food and water, respectively. In addition to alterations in individual microbial taxa, the individual differences in gut microbiota were at a lower level at the early stages than at the late stages and in which gut microbiota reached a stable status, suggesting the course of microbial successions. These results indicate that host development fundamentally shapes a key transition in microbial community structure, which is independent of dietary effects. In addition, the dominant taxa residing in the gut do not share their niche habitats with the abundant microbiota in the surrounding environment. It's inferred that complex gut microbiota could not be simple reflections of environmental microbiota. The knowledge enhances the understanding of gut microbial establishment in the developing fish and provides a useful resource for such studies of fish- or egg-associated microbiota in aquaculture.

  6. Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response

    NASA Astrophysics Data System (ADS)

    Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim

    Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root growth between wild type and GFP-fABD2 plants are discussed. Project was supported by the OPTEC / Carl Zeiss Personal grant to G.P. (2012), grants of Russian Foundation for Basic Research (11-04-00701a, 14-04-01624a) and by the grant of St.-Petersburg State University (1.38.233.2014).

  7. [Inheritance of reversions to male fertility in male-sterile sorghum hybrids with 9E cytoplasm male sterility induced by environmental conditions].

    PubMed

    Elkonin, L A; Gerashchenkov, G A; Domanina, I V; Rozhnova, N A

    2015-03-01

    Heritable phenotypic alterations occurring during plant ontogenesis under the influence of environmental factors are among the most intriguing genetic phenomena. It was found that male-sterile sorghum hybrids in the 9E cytoplasm from the F1 and F2 generations, which were obtained by crossing CMS lines with different fertile lines grown in field conditions, were transferred to greenhouse produce fertile tillers. Lines created by the self-pollination of revertant tillers exhibit complete male fertility upon cultivation under various environments (in the field, Tdry plot,(y) Tirrigated plot(y)). In a number of test-crosses of revertants to CMS lines in the 9E cytoplasm, restoration of male fertility in F1 hybrids was found, indicating that revertants possess functional fertility-restoring genes. A high positive correlation was found between the fertility level of the test-cross hybrids and the hydrothermal coefficient (the ratio of the sum of precipitation to the sum of temperatures) during the booting stage and pollen maturation (r = 0.75...0.91; P<0.01), suggesting that a high level of plant water availability is needed for the expression of fertility-restoring genes of revertants. These data show that the fertility-restoring genes for the 9E cytoplasm are dominant in conditions of high water availability and recessive in drought conditions; reversions to male fertility are due to up-regulation of fertility-restoring genes by a high level of water availability. Comparative MSAP-analysis of DNA of male-sterile and male-fertile test-cross hybrids using HpaII/MspI restrictases and primers to polygalacturonase gene ADPG2, which is required for cell separation during reproductive development, and gene MYB46, the transcription factor regulating secondary wall biosynthesis, revealed differences in the number and the length of amplified fragments. Changes in the methylation of these genes in conditions of drought stress are apparently the reason for male sterility of sorghum hybrids in the 9E cytoplasm. These data demonstrate that methylation of nuclear genes in sterility-inducing cytoplasm may be one of mechanisms causing the CMS phenomenon.

  8. Ontogeny of adrenal-like glucocorticoid synthesis pathway and of 20α-hydroxysteroid dehydrogenase in the mouse lung.

    PubMed

    Boucher, Eric; Provost, Pierre R; Tremblay, Yves

    2014-03-01

    Glucocorticoids exert recognized positive effects on lung development. The genes involved in the classical pathway of glucocorticoid synthesis normally occurring in adrenals were found to be expressed on gestation day (GD) 15.5 in the developing mouse lung. Recently, expression of two of these genes was also detected on GD 17.5 suggesting a more complex temporal regulation than previously expected. Here, we deepen the knowledge on expression of "adrenal" glucocorticoid synthesis genes in the mouse lung during the perinatal period and we also study expression of the gene encoding for the steroid inactivating enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD). We performed an ontogenic study of P450scc, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase 1 (3β-HSD1), 21-hydroxylase, 11β-hydroxylase, 11β-HSD1, and 11β-HSD2 expression up to post natal day (PN) 15. The substrate (progesterone) and the product (deoxycorticosterone) of 21-hydroxylase are substrates of 20α-HSD, thus 20α-HSD (Akr1c18) gene expression was investigated. In lung samples collected between GD 15.5 and PN 15, 11β-hydroxylase was only detected on GD 15.5. In contrast, all the other tested genes were expressed throughout the analyzed period with different temporal expression patterns. P450scc, 21-hydroxylase, 20α-HSD and 11β-HSD2 mRNA levels increased after birth with different patterns including an increase from PN 3 with a possible sex difference for 21-hydroxylase mRNA. Also, the 21-hydroxylase protein was observed by Western blot in perinatal lungs with higher levels after birth. Progesterone is present at high levels during gestation and the product of 21-hydroxylase, deoxycorticosterone, can bind the glucocorticoid receptor with an affinity close to that of corticosterone. Detection of 21-hydroxylase at the protein level during antenatal lung development is the first evidence that the adrenal-like glucocorticoid synthesis pathway detected during lung development has the machinery to produce glucocorticoids in the fetal lung. Glucocorticoids from lung 21-hydroxylase appear to modulate lung ontogenesis through paracrine/intracrine actions.

  9. [Evolutionary aspects of sleep and stress interaction: phylo-, ontogenetic approach].

    PubMed

    Aristakesian, E A

    2009-01-01

    This work deals the comparative behavioral, somatosensor and neurophysiological characteristics of these forms of passive defensive behavior included in amphibian's sleep-wakefulness cycle and their developmental dynamics in the ascending vertebrates secale. Sleep formation in early postnatal ontogenesis of mature- and immature-born mammals - from undifferent sleep to the mature sleep divided into two phases as well as stress formation are considered in parallel. Comparative phylo-, and ontogenetic analysis of several aspects of stress-reactions, sleep, and immobility phenomenon of cataleptic type allows concluding that amphibians and reptilians catalepsy can be interpreted as preadaptive from of behavior underlying in the stress of homoeothermic animals. Another word, the cataleptic state can be considered as the homologic state of stress-reaction. Catalepsy is the genetically programmed state of poykilothermic animals characterized by comparatively high alertness of animal, its freezing in immobile but active posture with a possibility of fast exit into waking state and alongside with other somatosensor and neurophysiological characteristics determines the entire subsequent complex of evolutionary morphofunctional, neurophysiological and hormonal changes in nomoyptherms. This in many aspects unspecific behavioral adaptive reaction in poykilotherms is realized on the corresponding hormonal and neurophysiological levels of development and promotes to fast mobilization and stabilization their homeostasis. At the higher evolutionary scale after development of most brain neurotransmitter and hypothalamo-pituitary-adrenal systems the leading role in stress regulation begins to be predominent the hormonal reaction. Only in the alertness phase of stress-reaction the elements of activation of extrapyramidal regulatory system of locomotion are observed. This is manifested by the cateleptic immobility. Thus the stress as the general adaptational syndrome reflects the evolutionary regularities of development of specific functions supporting the total homeostasis. The scheme of evolution of sleep-wakefulness cycle in vertebrates is presented; according to it, the immobility state of cataleptic type on one hand may to considered as a part of wakefulness providing mainly specific elements of stress-reaction, while on other hand it is a certain step of inhibitory processes in CNS for subsequent involvement of sleep-regulatory systems for the compensation and maintenance of recovery reactions.

  10. Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum).

    PubMed

    Solymosi, Katalin; Bóka, Károly; Böddi, Béla

    2006-08-01

    An accompanying paper reports the accumulation of photoactive protochlorophyllide (Pchlide) in the innermost leaf primordia of buds of many tree species. In this paper, we describe plastid differentiation, changes in pigment concentrations and spectral properties of bud scales and leaf primordia of horse chestnut (Aesculus hippocastanum L.) from January until the end of bud break in April. The bud scales contained plastids with grana, stroma thylakoids characteristic of chloroplasts and large dense bodies within the stroma. In January, proplastids and young chloroplasts were present in the leaf primordia, and the fluorescence spectra of the primordia were similar to those of green leaves except for a minor band at 630 nm, indicative of a protochlorophyll(ide). During bud break, the pigment concentrations of the green bud scales and the outermost leaf primordia increased, and Pchlide forms with emission maxima at 633, 644 and 655 nm accumulated in the middle and innermost leaf primordia. Depending on the position of the leaf primordia within the bud, their plastids and their pigment concentrations varied. Etio-chloroplasts with prolamellar bodies (PLBs) and prothylakoids with developing grana were observed in the innermost leaves. Besides the above-mentioned Pchlide forms, the middle and innnermost leaf primordia contained only a Chl band with an emission maximum at 686 nm. The outermost leaf primordia contained etio-chloroplasts with well-developed grana and small, narrow-type PLBs. These outermost leaves contained only chlorophyll forms like the mature green leaves. No Pchlide accumulation was observed after bud break, indicating that etiolation of the innermost and middle leaves is transient. The Pchlide forms and the plastid types of the primordia in buds grown in nature were similar to those of leaves of dark-germinated seedlings and to those of the leaf primordia of dark-forced buds. We conclude that transient etiolation occurs under natural conditions. The formation of PLBs and etio-chloroplasts and the accumulation of the light-dependent NADPH:protochlorophyllide oxidoreductase are involved in the natural greening process and ontogenesis of young leaf primordia of horse chestnut buds.

  11. In vitro maturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence.

    PubMed

    Irlé, C; Piguet, P F; Vassalli, P

    1978-07-01

    Peanut lectin (PNL) binds to a majority of mouse thymocytes (Thc) in suspension. By using cell affinity chromatography on a column of anti-PNL antibody, Thc populations at least 96 percent pure in PNL + or - cells, as judged by immunofluorescence, were obtained. PNL(+) cells are rich in Thy 1 and poor in H(2) antigens, cortisone sensitive, unresponsive to phytohemagglutinin (PHA), and immunologically incompetent, as judged by mixed lymphocyte reaction, popliteal lymph node graft-versus-host assay, and by testing helper activity in a primary in vitro antibody response to sheep erythrocytes; the converse is true of PNL(-) cells. Thus, PNL(+) and (-) cells appear to correspond to cortical and medullary Thc, respectively, as previously suggested. In culture, PNL(+) Thc show poor viability and a weak proliferative response to concanavalin A (Con A), except when supernate (SUP) of 24 h Con A stimulated lymph node lymphocyte cultures, or irradiated lymph node cells, are added, in which cases a strong proliferative response to the mitogen is observed. A variety of control experiments showed that the proliferating cells did not result from preferential stimulation of a few contaminating PNL(-) Thc present in the PNL(+) Thc cultures. The blasts resulting from PNL(+) Thc proliferation display mitogen-induced cytotoxicity, and give rise to a population of medium-sized lymphocytes, mostly PNL(-), poor in Thy 1 and rich in H(2) antigens, PHA responsive, and immunologically competent in the above-mentioned assays. Fresh PNL(+) Thc responded in mixed lymphocyte reaction in the presence of SUP (lectin depleted) and since incubation in SUP alone did not confer reactivity on PNL(+) Thc, it appears therefore that (a) immature Thc possess alloantigen and mitogen-specific surface receptors but lack the capacity to respond by proliferation to receptor triggering without the help of extracellular factor(s) released by mature lymphoid cells stimulated by mitogens (b) cell division is associated with the acquisition of immunological responsiveness, characteristic of mature T lymphocytes. The implications of these findings for the ontogenesis of thymus-derived lymphocytes, and for the possible traffic of Thc within and from the thymus, are discussed.

  12. The immunological capacity in the larvae of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Xin, Lusheng; Xu, Jiachao; Jia, Zhihao; Wang, Lingling; Song, Linsheng

    2016-02-01

    As the immune system has not fully developed during early developmental stages, bivalve larvae are more susceptible for pathogens, which frequently leads to the significant mortality in hatcheries. In the present study, the development of immune system and its response against bacteria challenge were investigated in order to characterize the repertoire of immunological capacity of Pacific oyster Crassostrea gigas during the ontogenesis. The phagocytosis was firstly observed in the early D-veliger larvae (17 hpf), especially in their velum site, which indicated the appearance of functional hemocytes during early D-veliger larvae stage. The whole-mount immunofluorescence assay of three pattern recognition receptors (integrin β-1, caspase-3 and C-type lectin 3) and one immune effector gene (IL17-5) was performed in blastula, early D-veliger and umbo larvae, suggested that velum and digestive gland were the potential sites of immune system in the larvae. The lowest activities of antioxidant enzymes (superoxide dismutase and catalase) and hydrolytic enzyme (lysozyme), as well as descended expression levels of 12 immune genes at the transition between embryogenesis and planktonic, indicated that the larvae at hatching (9 hpf) were in hypo-immunity. While the ascending activities of enzymes and expression levels of seven immune genes during the trochophore stage (15 hpf) suggested the initiation of immune system. The steadily increasing trend of all the 12 candidate genes at the early umbo larvae (120 h) hinted that the immune system was well developed at this stage. After bacterial challenge, some immune recognition (TLR4) and immune effector (IL17-5 and defh2) genes were activated in blastula stage (4 hpf), and other immune genes were up regulated in D-veliger larvae, indicating that the zygotic immune system could respond earlier against the bacterial challenge during its development. These results indicated that the cellular and humoral immune components appeared at trochophore stage, and the cellular immune system was activated with its occurrence, while the humoral immune system executed until the early umbo larval stage. The immune system emerged earlier to aid larvae in defending bacterial challenge during the early stages of oyster development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Ontogenesis of morphine-induced behavior in the cat.

    PubMed

    Burgess, J Wesley; Villablanca, Jaime R

    2007-02-23

    We analyzed the behavioral responses to a single dose of morphine in kittens at postnatal (P) ages 7, 15, 30, 60, 90, and 120 days. Each kitten received 0.5 or 3.0 mg/kg i.p. of morphine sulphate or saline vehicle. An average of 6.5 kittens were studied at each dose and age. An ethogram was constructed, based on morphine effects in adult cats, to score appropriate behaviors from direct observation and video sampling. After injection behaviors were sampled for periods of 2 min every 15-30 min for a total of 4 h. The frequency of each selected behavior was scored at 2 s intervals during each of the 2 min periods and it was expressed as a percent of all time samples scored for the 4 h period. Statistical comparisons were made with control (saline) littermates. At P7-15 the drug's main effect was behavioral depression; i.e., kittens, away from the litter, laid sprawled as if with no muscle tonus; Nursing was suppressed and Vocalization was distressed. Mainly with the higher dose, at P30, morphine-specific behaviors appeared for the first time. With the kitten in a Sitting position, these included stereotypical Head and Paw Movements and body Torsion. At P60 other drug-elicited behaviors emerged, including Spinning, Retching, and Vomiting. By P90-120 the frequency of Head (16.0%) and Paw (16.9%) Movements doubled relative to P30-60. Morphine significantly changed frequencies of newly matured behaviors (in control kittens) including Sniffing and Licking (increased), and Grooming (decreased/blocked). Retching and Vomiting increased to adult levels. Morphine-induced hyperthermia was first detected at P60 and peaked by P90-P120. The early behavioral depression shifted to a pattern of increasing activity starting at P30 and peaking at P90-120, at which time Sleep was absent and Laying was reduced, while Walking and Sitting were increased. We concluded that the maturation of the stereotypical behavioral responses to morphine in cats begins at about P30 and is completed between P90 and 120. Results are discussed in terms of developmental parameters and putative brain sites of morphine's actions.

  14. Sensory Motor Coordination in Robonaut

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II

    2003-01-01

    As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now driven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, interact with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to astronauts. Our underlying hypothesis is that a robot can develop intelligence if it learns a set of basic behaviors (i.e., reflexes - actions tightly coupled to sensing) and through experience learns how to sequence these to solve problems or to accomplish higher-level tasks. We describe our approach to the automatic acquisition of basic behaviors as learning sensory-motor coordination (SMC). Although research in the ontogenesis of animals development from the time of conception) supports the approach of learning SMC as the foundation for intelligent, autonomous behavior, we do not know whether it will prove viable for the development of autonomy in robots. The first step in testing the hypothesis is to determine if SMC can be learned by the robot. To do this, we have taken advantage of Robonaut's teleoperated control system. When a person teleoperates Robonaut, the person's own SMC causes the robot to act purposefully. If the sensory signals that the robot detects during teleoperation are recorded over several repetitions of the same task, it should be possible through signal analysis to identify the sensory-motor couplings that accompany purposeful motion. In this report, reasons for suspecting SMC as the basis for intelligent behavior will be reviewed. A robot control system for autonomous behavior that uses learned SMC will be proposed. Techniques for the extraction of salient parameters from sensory and motor data will be discussed. Experiments with Robonaut will be discussed and preliminary data presented.

  15. Calpain 12 Function Revealed through the Study of an Atypical Case of Autosomal Recessive Congenital Ichthyosis.

    PubMed

    Bochner, Ron; Samuelov, Liat; Sarig, Ofer; Li, Qiaoli; Adase, Christopher A; Isakov, Ofer; Malchin, Natalia; Vodo, Dan; Shayevitch, Ronna; Peled, Alon; Yu, Benjamin D; Fainberg, Gilad; Warshauer, Emily; Adir, Noam; Erez, Noam; Gat, Andrea; Gottlieb, Yehonatan; Rogers, Tova; Pavlovsky, Mor; Goldberg, Ilan; Shomron, Noam; Sandilands, Aileen; Campbell, Linda E; MacCallum, Stephanie; McLean, W H Irwin; Ast, Gil; Gallo, Richard L; Uitto, Jouni; Sprecher, Eli

    2017-02-01

    Congenital erythroderma is a rare and often life-threatening condition, which has been shown to result from mutations in several genes encoding important components of the epidermal differentiation program. Using whole exome sequencing, we identified in a child with congenital exfoliative erythroderma, hypotrichosis, severe nail dystrophy and failure to thrive, two heterozygous mutations in ABCA12 (c.2956C>T, p.R986W; c.5778+2T>C, p. G1900Mfs*16), a gene known to be associated with two forms of ichthyosis, autosomal recessive congenital ichthyosis, and harlequin ichthyosis. Because the patient displayed an atypical phenotype, including severe hair and nail manifestations, we scrutinized the exome sequencing data for additional potentially deleterious genetic variations in genes of relevance to the cornification process. Two mutations were identified in CAPN12, encoding a member of the calpain proteases: a paternal missense mutation (c.1511C>A; p.P504Q) and a maternal deletion due to activation of a cryptic splice site in exon 9 of the gene (c.1090_1129del; p.Val364Lysfs*11). The calpain 12 protein was found to be expressed in both the epidermis and hair follicle of normal skin, but its expression was dramatically reduced in the patient's skin. The downregulation of capn12 expression in zebrafish was associated with abnormal epidermal morphogenesis. Small interfering RNA knockdown of CAPN12 in three-dimensional human skin models was associated with acanthosis, disorganized epidermal architecture, and downregulation of several differentiation markers, including filaggrin. Accordingly, filaggrin expression was almost absent in the patient skin. Using ex vivo live imaging, small interfering RNA knockdown of calpain 12 in skin from K14-H2B GFP mice led to significant hair follicle catagen transformation compared with controls. In summary, our results indicate that calpain 12 plays an essential role during epidermal ontogenesis and normal hair follicle cycling and that its absence may aggravate the clinical manifestations of ABCA12 mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Ontogeny of cholecystokinin-like immunoreactivity in the Brazilian opossum brain.

    PubMed

    Fox, C A; Jeyapalan, M; Ross, L R; Jacobson, C D

    1991-12-17

    We have studied the anatomical distribution of cholecystokinin-like immunoreactive (CCK-IR) somata and fibers in the brain of the adult and developing Brazilian short-tailed opossum, Monodelphis domestica. Animals ranged in age from the day of birth (1PN) to young adulthood (180PN). A nickel enhanced, avidin-biotin, indirect immunohistochemical technique was used to identify CCK-IR structures. Somata containing CCK immunoreactivity were observed in the cerebral cortex, hippocampus, hypothalamus, thalamus, midbrain, and brainstem in the adult. Cholecystokinin immunoreactive fibers had a wide distribution in the adult Monodelphis brain. The only major region of the brain that did not contain CCK-IR fibers was the cerebellum. The earliest expression of CCK immunoreactivity was found in fibers in the dorsal brainstem of 5-day-old opossum pups. It is possible that the CCK-IR fibers in the brainstem at 5PN are of vagal origin. Cholecystokinin immunoreactive somata were observed in the brainstem on 10PN. The CCK-IR cell bodies observed in the brainstem at 10PN may mark the first expression of CCK-IR elements intrinsic to the brain. A broad spectrum of patterns of onset of CCK expression was observed in the opossum brain. The early occurrence and varied ontogenesis of CCK-IR structures indicates CCK may be involved in the function of a variety of circuits from the brainstem to the cerebral cortex. The early expression of CCK-IR structures in the dorsal brainstem suggests that CCK may modulate feeding behavior in the Monodelphis neonate. Cholecystokinin immunoreactivity in forebrain structures such as the suprachiasmatic nucleus, medial preoptic area, thalamus and cortical structures indicates that CCK may also be involved in circadian rhythmicity, reproductive functions, as well as the state of arousal of the Brazilian opossum. The ontogenic timing of CCK immunoreactivity in specific circuitry also indicates that CCK expression does not occur simultaneously throughout the brain. This pattern of CCK onset may relate to the temporal need for CCK in specific circuits of the central nervous system (CNS) during development.

  17. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species.

    PubMed

    Bonnet, M; Cassar-Malek, I; Chilliard, Y; Picard, B

    2010-07-01

    The lean-to-fat ratio, that is, the relative masses of muscle and adipose tissue, is a criterion for the yield and quality of bovine carcasses and meat. This review describes the interactions between muscle and adipose tissue (AT) that may regulate the dynamic balance between the number and size of muscle v. adipose cells. Muscle and adipose tissue in cattle grow by an increase in the number of cells (hyperplasia), mainly during foetal life. The total number of muscle fibres is set by the end of the second trimester of gestation. By contrast, the number of adipocytes is never set. Number of adipocytes increases mainly before birth until 1 year of age, depending on the anatomical location of the adipose tissue. Hyperplasia concerns brown pre-adipocytes during foetal life and white pre-adipocytes from a few weeks after birth. A decrease in the number of secondary myofibres and an increase in adiposity in lambs born from mothers severely underfed during early pregnancy suggest a balance in the commitment of a common progenitor into the myogenic or adipogenic lineages, or a reciprocal regulation of the commitment of two distinct progenitors. The developmental origin of white adipocytes is a subject of debate. Molecular and histological data suggested a possible transdifferentiation of brown into white adipocytes, but this hypothesis has now been challenged by the characterization of distinct precursor cells for brown and white adipocytes in mice. Increased nutrient storage in fully differentiated muscle fibres and adipocytes, resulting in cell enlargement (hypertrophy), is thought to be the main mechanism, whereby muscle and fat masses increase in growing cattle. Competition or prioritization between adipose and muscle cells for the uptake and metabolism of nutrients is suggested, besides the successive waves of growth of muscle v. adipose tissue, by the inhibited or delayed adipose tissue growth in bovine genotypes exhibiting strong muscular development. This competition or prioritization occurs through cellular signalling pathways and the secretion of proteins by adipose tissue (adipokines) and muscle (myokines), putatively regulating their hypertrophy in a reciprocal manner. Further work on the mechanisms underlying cross-talk between brown or white adipocytes and muscle fibres will help to achieve better understanding as a prerequisite to improving the control of body growth and composition in cattle.

  18. The Pech-de-l'Azé I Neandertal child: ESR, uranium-series, and AMS 14C dating of its MTA type B context.

    PubMed

    Soressi, M; Jones, H L; Rink, W J; Maureille, B; Tillier, A-M

    2007-04-01

    The Pech-de-l'Azé I skull and mandible are included in the juvenile Neandertal remains from Europe. However, some preserved features in the cranial skeleton seem to distinguish the specimen from other Neandertal children. Unfortunately, the stratigraphic position and dating of this child has never been clear. Our recent work on unpublished archives show that the Pech-de-l'Azé I Neandertal child was discovered at the bottom of layer 6, attributed to the Mousterian of Acheulean tradition type B. These skull and mandible are the first diagnostic human remains (aside from an isolated tooth) attributed to the Mousterian of Acheulian tradition (MTA) type B. Consequently, we confirm that Neandertals were the makers of this Mousterian industry, which is characterized by unusual high frequencies of Upper Paleolithic type tools, elongated blanks and blades. We were able to date the context of the hominid remains by dating layer 6 and the layers above and beneath it using ESR, coupled ESR/(230)Th/(234)U (coupled ESR/U-series), and AMS (14)C. Coupled ESR/U-series results on 16 mammalian teeth constrain the age of the uppermost layer 7 to 41-58ka, and layer 6 to 37-51ka. The wide spread in each age estimate results mainly from uncertainties in the gamma-dose rate. These ages are concordant with AMS (14)C ages of two bones coming from the top of layer 6, which provide dates of about 41.7-43.6ka cal BP. A combination of stratigraphic arguments and dating results for layers 6 and 7 show that the Neandertal child cannot be older than 51ka or younger than 41ka. The lowermost layer 4 is shown to be older than 43ka by the principle of superposition and ESR dating in the immediately overlying layer 5. This study shows that the MTA type B had been manufactured by Neandertals before the arrival of anatomically modern humans in the local region. Additionally, by providing a firm chronological framework for the specific morphometric the features of Pech-de-l'Azé I Neandertal child, this study is a new step toward the understanding of temporal and spatial changes in the ontogenesis of Neandertals in south-western Europe during oxygen isotope stages 5-3.

  19. A key enzyme of animal steroidogenesis can function in plants enhancing their immunity and accelerating the processes of growth and development.

    PubMed

    Shpakovski, George V; Spivak, Svetlana G; Berdichevets, Irina N; Babak, Olga G; Kubrak, Svetlana V; Kilchevsky, Alexander V; Aralov, Andrey V; Slovokhotov, Ivan Yu; Shpakovski, Dmitry G; Baranova, Ekaterina N; Khaliluev, Marat R; Shematorova, Elena K

    2017-11-14

    The initial stage of the biosynthesis of steroid hormones in animals occurs in the mitochondria of steroidogenic tissues, where cytochrome P450 SCC (CYP11A1) encoded by the CYP11A1 gene catalyzes the conversion of cholesterol into pregnenolone - the general precursor of all the steroid hormones, starting with progesterone. This stage is missing in plants where mitochondrial cytochromes P450 (the mito CYP clan) have not been found. Generating transgenic plants with a mitochondrial type P450 from animals would offer an interesting option to verify whether plant mitochondria could serve as another site of P450 monooxygenase reaction for the steroid hormones biosynthesis. For a more detailed comparison of steroidogenic systems of Plantae and Animalia, we have created and studied transgenic tobacco and tomato plants efficiently expressing mammalian CYP11A1 cDNA. The detailed phenotypic characterization of plants obtained has shown that through four generations studied, the transgenic tobacco plants have reduced a period of vegetative development (early flowering and maturation of bolls), enlarged biomass and increased productivity (quantity and quality of seeds) as compared to the only empty-vector containing or wild type plants. Moreover, the CYP11A1 transgenic plants show resistance to such fungal pathogen as Botrytis cinerea. Similar valuable phenotypes (the accelerated course of ontogenesis and/or stress resistance) are also visible in two clearly distinct transgenic tomato lines expressing CYP11A1 cDNA: one line (No. 4) has an accelerated rate of vegetative development, while the other (No. 7) has enhanced immunity to abiotic and biotic stresses. The progesterone level in transgenic tobacco and tomato leaves is 3-5 times higher than in the control plants of the wild type. For the first time, we could show the compatibility in vivo of even the most specific components of the systems of biosynthesis of steroid hormones in Plantae and Animalia. The hypothesis is proposed and substantiated that the formation of the above-noted special phenotypes of transgenic plants expressing mammalian CYP11A1 cDNA is due to the increased biosynthesis of progesterone that can be considered as a very ancient bioregulator of plant cells and the first real hormone common to plants and animals.

  20. A low protein diet during pregnancy provokes a lasting shift of hepatic expression of genes related to cell cycle throughout ontogenesis in a porcine model

    PubMed Central

    2012-01-01

    Background In rodent models and in humans the impact of gestational diets on the offspring's phenotype was shown experimentally and epidemiologically. Adverse environmental conditions during fetal development provoke an intrauterine adaptive response termed 'fetal programming', which may lead to both persistently biased responsiveness to extrinsic factors and permanent consequences for the organismal phenotype. This leads to the hypothesis that the offspring's transcriptome exhibits short-term and long-term changes, depending on the maternal diet. In order to contribute to a comprehensive inventory of genes and functional networks that are targets of nutritional programming initiated during fetal life, we applied whole-genome microarrays for expression profiling in a longitudinal experimental design covering prenatal, perinatal, juvenile, and adult ontogenetic stages in a porcine model. Pregnant sows were fed either a gestational low protein diet (LP, 6% CP) or an adequate protein diet (AP, 12% CP). All offspring was nursed by foster sows receiving standard diets. After weaning, all offspring was fed standard diets ad libitum. Results Analyses of the hepatic gene expression of the offspring at prenatal (94 dies post conceptionem, dpc) and postnatal stages (1, 28, 188 dies post natum, dpn) included comparisons between dietary groups within stages as well as comparisons between ontogenetic stages within diets to separate diet-specific transcriptional changes and maturation processes. We observed differential expression of genes related to lipid metabolism (e.g. Fatty acid metabolism, Biosynthesis of steroids, Synthesis and degradation of ketone bodies, FA elongation in mitochondria, Bile acid synthesis) and cell cycle regulation (e.g. Mitotic roles of PLK, G1/S checkpoint regulation, G2/M DNA damage checkpoint regulation). Notably, at stage 1 dpn no regulation of a distinct pathway was found in LP offspring. Conclusions The transcriptomic modulations point to persistent functional demand on the liver towards cell proliferation in the LP group but not in the AP group at identical nutritional conditions during postnatal life due to divergent 'programming' of the genome. Together with the observation that the offspring of both groups did not differ in body weight but in body composition and fat content, the data indicate that the activity of various genes led to diverse partitioning of nutrients among peripheral and visceral organs and tissues. PMID:22424151

  1. Kainic Acid-Induced Post-Status Epilepticus Models of Temporal Lobe Epilepsy with Diverging Seizure Phenotype and Neuropathology

    PubMed Central

    Bertoglio, Daniele; Amhaoul, Halima; Van Eetveldt, Annemie; Houbrechts, Ruben; Van De Vijver, Sebastiaan; Ali, Idrish; Dedeurwaerdere, Stefanie

    2017-01-01

    The aim of epilepsy models is to investigate disease ontogenesis and therapeutic interventions in a consistent and prospective manner. The kainic acid-induced status epilepticus (KASE) rat model is a widely used, well-validated model for temporal lobe epilepsy (TLE). As we noted significant variability within the model between labs potentially related to the rat strain used, we aimed to describe two variants of this model with diverging seizure phenotype and neuropathology. In addition, we evaluated two different protocols to induce status epilepticus (SE). Wistar Han (Charles River, France) and Sprague-Dawley (Harlan, The Netherlands) rats were subjected to KASE using the Hellier kainic acid (KA) and a modified injection scheme. Duration of SE and latent phase were characterized by video-electroencephalography (vEEG) in a subgroup of animals, while animals were sacrificed 1 week (subacute phase) and 12 weeks (chronic phase) post-SE. In the 12 weeks post-SE groups, seizures were monitored with vEEG. Neuronal loss (neuronal nuclei), microglial activation (OX-42 and translocator protein), and neurodegeneration (Fluorojade C) were assessed. First, the Hellier protocol caused very high mortality in WH/CR rats compared to SD/H animals. The modified protocol resulted in a similar SE severity for WH/CR and SD/H rats, but effectively improved survival rates. The latent phase was significantly shorter (p < 0.0001) in SD/H (median 8.3 days) animals compared to WH/CR (median 15.4 days). During the chronic phase, SD/H rats had more seizures/day compared to WH/CR animals (p < 0.01). However, neuronal degeneration and cell loss were overall more extensive in WH/CR than in SD/H rats; microglia activation was similar between the two strains 1 week post-SE, but higher in WH/CR rats 12 weeks post-SE. These neuropathological differences may be more related to the distinct neurotoxic effects of KA in the two rat strains than being the outcome of seizure burden itself. The divergences in disease progression and seizure outcome, in addition to the histopathological dissimilarities, further substantiate the existence of strain differences for the KASE rat model of TLE. PMID:29163349

  2. Life Cycle, Morphology, Ontogenesis, and Phylogeny of Bromeliothrix metopoides nov. gen., nov. spec., a Peculiar Ciliate (Protista, Colpodea) from Tank Bromeliads (Bromeliaceae).

    PubMed

    Foissner, Wilhelm

    2010-11-15

    Bromeliothrix metopoides was discovered in tank bromeliads from Central and South America. Pure cultures could be established in various media stimulating growth of its food, i.e. bacteria and heterotrophic flagellates of the genus Polytomella. The new ciliate was investigated in the light- and scanning electron microscope, with various silver impregnation techniques, and with molecular methods, using the small-subunit rDNA. The morphology and its changes during the life cycle are documented by 167 figures and a detailed morphometry. Bromeliothrix metopoides is about 27-55 × 22-36 μm in size and has a complex life cycle with Metopus-shaped, bacteriophagous theronts and trophonts (microstomes) and obovate, flagellate-feeding macrostomes having a large, triangular oral apparatus. The thin-walled resting cysts of the theronts and trophonts are uniquely ellipsoidal, while the thick-walled cyst of the macrostome morph is globular. Reproduction occurs in freely motile condition either by binary fission or polytomy, producing a unique, motile "division chain" composed of four globular offspring, of which the central ones are connected by a curious, plug-like holdfast. Division is associated with a complete reorganization of the parental oral and somatic infraciliature. Stomatogenesis is merotelokinetal as in other members of the order Colpodida. The right polykinetid is generated by the rightmost postoral kinety, while the left polykinetid is produced by the two left postoral kineties and five left side kineties. The division in freely motile condition resembles the Exocolpodidae Foissner et al., 2002, to which Bromeliothrix is tentatively assigned, differing from Exocolpoda mainly by the formation of a macrostome morph and a division chain. Bromeliothrix has a ciliary and silverline pattern typical for members of the family Colpodidae. This matches the molecular classification which, however, hardly reflects the outstanding division and life cycle, suggesting some decoupling of morphological and molecular evolution. The specific morphological and ontogenetic traits of Bromeliothrix are interpreted as adaptations to the highly competitive habitat, favouring r-selected life strategies. Bromeliothrix metopoides is widespread in various tank bromeliads and can be easily cultivated in a wide variety of limnetic and terrestrial media. Thus, it remains obscure why this ciliate is restricted to tank bromeliads, i.e. did not occur in about 2,000 soil and freshwater samples investigated globally, including some 100 samples from Central and South America.

  3. DPPH Radical Scavenging and Postprandial Hyperglycemia Inhibition Activities and Flavonoid Composition Analysis of Hawk Tea by UPLC-DAD and UPLC-Q/TOF MSE.

    PubMed

    Xiao, Xuan; Xu, Lijia; Hu, Huagang; Yang, Yinjun; Zhang, Xinyao; Peng, Yong; Xiao, Peigen

    2017-10-13

    Hawk tea ( Litsea coreana Lévl. var. Lanuginosa (Migo) Yen C. Yang & P.H. Huang), a very popular herbal tea material, has attracted more and more attention due to its high antioxidant properties and possible therapeutic effect on type II diabetes mellitus. The raw materials of Hawk tea are usually divided into three kinds: bud tea (BT), primary leaf tea (PLT) and mature leaf tea (MLT). In this study, the DPPH radical scavenging activity and the antimicrobial properties of these three kinds of Hawk tea from different regions were comparatively investigated, and a ultra-high performance liquid chromatographic coupled with a photodiode array detector (UPLC-DAD) method was employed for comparison of the three major flavonoid constituents, including hyperoside, isoquercitrin and astragalin, in different samples of Hawk tea. At the same time, the effect of methanol extract (ME) of PLT on the mouse postprandial blood glucose and the effect of ME and its different fractions (petroleum ether fraction (PE), ethyl acetate fraction (EA), n -butanol fraction ( n -BuOH), and water fraction (WF)) on the activity of α-glucosidase were studied. The results showed that Hawk BT and Hawk PLT possessed the higher radicals scavenging activity than Hawk MLT, while the antibacterial activity against P. vulgaris of PLT and MLT was higher than Hawk BT. The contents of the three major flavonoid constituents in samples of Hawk PLT are higher than Hawk BT and Hawk MLT. The mouse postprandial blood glucose levels of the middle dose (0.5 g/kg) group and the high dose (1 g/kg) group with oral administration of the ME of PLT were significantly lower than the control group. What's more, the inhibitory effect of ME of PLT and its EA and n -BuOH fractions on α-glucosidase was significantly higher than that of acarbose. Rapid ultra-high performance liquid chromatography/quadrupole time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) was used to identify the flavonoids in Hawk PLT, and a total of 20 flavonoids were identified or tentatively identified by comparing their retention times and accurate mass measurements with reference compounds or literature data. The bioactive flavonoid composition and DPPH radical scavenging activities present in different Hawk tea raw materials are quite different due to the different ontogenesis of these raw materials. Further studies on PLT showed that the substances in PLT ME could reduce the level of mouse postprandial blood glucose through inhibiting the activity of α-glucosidase.

  4. Gravity regulation in tuber-bearing moss Leptobryum pyriforme (Hedw.) Wilson

    NASA Astrophysics Data System (ADS)

    Lobachevska, Oksana

    Considerable number of moss species is propagated asexually, and asexual reproduction is the key factor of their life strategy and effective mechanism of rapid population and attaching plants to habitats with great environmental fluctuations (Velde et al., 2001; Frey, Kűrshner, 2010). It has been shown for the first time for gravisensitive species Leptobryum pyriforme (Hedw.) Wilson that the development of propagules as organs of vegetative reproduction and accumulation of nutrient substances is gravidependent phenomenon. L. pyriforme differs from other moss species in higher growth and development rate. In darkness the greatest bundle of gravisensitive negatively gravitropic filaments (above 50 filaments) of both caulonemal and chloronemal type arised from 1 protonemal ball of moss. Perhaps, it is caused by high protonema gravisensitivity and morphogenetic effectiveness of gravitation force. It has been shown that propagules of L. pyriforme are formed much faster in darkness and their number is twice higher than on light. After five-day clinorotation of the L. pyriforme turfs the number of propagules is lower in darkness compared to gravistimulated turfs and higher than on the light. Thus, vegetative reproduction of L. pyriforme is the gravidependent process and gravitation force has stimulating influence on the formation of propagula. In L. pyriforme rhizoid tubers from round to oval (93-116 x ({) } (x) 120-148 muμm) are formed from 5-6 big cells (70 x ({) } (x) 80 muμm). Due to small capsules, L{it pyriforme }does not have a lot of big spores which are spread to insignificant distances, the mass formation of brood organs promotes moss survival and its preservation. The results of investigation prove the participation of rhizoids and rhizoid tubers as imperceptible but important phase of vital cycle of moss species - settlers in realization of vital tolerance strategy to extreme conditions of temporarily available habitats: due to rapid method of spatial distribution, to store considerable genetic variability and long term preservation of viable diasporas bank as a “genetic memory”. It also has been shown that spiral growth, which still had been found only for Ceratodon purpureus (Hedw.) Brid. under the conditions of microgravitation and for Barbula unguiculata Hedw. for 1 g (Kern et al., 2005; Demkiv et al., 2006) is also characteristic of protonemata turf L. pyriforme. Considering the fact that spirality is generally accepted biological phenomenon, it is possible to find the growth spiral movements under certain ecological conditions and various stages of moss development. Thus, the space orientation of moss organs is gravidependent process, and gravimorphogenesis is precondition to change growth model at various ontogenesis stages.

  5. Life Cycle, Morphology, Ontogenesis, and Phylogeny of Bromeliothrix metopoides nov. gen., nov. spec., a Peculiar Ciliate (Protista, Colpodea) from Tank Bromeliads (Bromeliaceae)

    PubMed Central

    FOISSNER, Wilhelm

    2011-01-01

    Summary Bromeliothrix metopoides was discovered in tank bromeliads from Central and South America. Pure cultures could be established in various media stimulating growth of its food, i.e. bacteria and heterotrophic flagellates of the genus Polytomella. The new ciliate was investigated in the light- and scanning electron microscope, with various silver impregnation techniques, and with molecular methods, using the small-subunit rDNA. The morphology and its changes during the life cycle are documented by 167 figures and a detailed morphometry. Bromeliothrix metopoides is about 27–55 × 22–36 μm in size and has a complex life cycle with Metopus-shaped, bacteriophagous theronts and trophonts (microstomes) and obovate, flagellate-feeding macrostomes having a large, triangular oral apparatus. The thin-walled resting cysts of the theronts and trophonts are uniquely ellipsoidal, while the thick-walled cyst of the macrostome morph is globular. Reproduction occurs in freely motile condition either by binary fission or polytomy, producing a unique, motile “division chain” composed of four globular offspring, of which the central ones are connected by a curious, plug-like holdfast. Division is associated with a complete reorganization of the parental oral and somatic infraciliature. Stomatogenesis is merotelokinetal as in other members of the order Colpodida. The right polykinetid is generated by the rightmost postoral kinety, while the left polykinetid is produced by the two left postoral kineties and five left side kineties. The division in freely motile condition resembles the Exocolpodidae Foissner et al., 2002, to which Bromeliothrix is tentatively assigned, differing from Exocolpoda mainly by the formation of a macrostome morph and a division chain. Bromeliothrix has a ciliary and silverline pattern typical for members of the family Colpodidae. This matches the molecular classification which, however, hardly reflects the outstanding division and life cycle, suggesting some decoupling of morphological and molecular evolution. The specific morphological and ontogenetic traits of Bromeliothrix are interpreted as adaptations to the highly competitive habitat, favouring r-selected life strategies. Bromeliothrix metopoides is widespread in various tank bromeliads and can be easily cultivated in a wide variety of limnetic and terrestrial media. Thus, it remains obscure why this ciliate is restricted to tank bromeliads, i.e. did not occur in about 2,000 soil and freshwater samples investigated globally, including some 100 samples from Central and South America. PMID:21326619

  6. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.

    2008-02-15

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinkingmore » water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F{sub 2}-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F{sub 2}-isoprostanes levels at all time points. Significant negative correlations were found between F{sub 2}-isoprostanes and GSH, as well as between F{sub 2}-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure.« less

  7. Specific antibodies against Go isoforms reveal the early expression of the Go2 alpha subunit and appearance of Go1 alpha during neuronal differentiation.

    PubMed

    Rouot, B; Charpentier, N; Chabbert, C; Carrette, J; Zumbihl, R; Bockaert, J; Homburger, V

    1992-02-01

    We have previously identified two isoforms of Go alpha in membranes of N1E-115 neuroblastoma cells, using an antibody raised against the purified Go alpha subunit; one isoform of the Go alpha subunit (pI 5.80) is present in undifferentiated cells, whereas a more acidic isoform (pI 5.55) appears during differentiation [J. Neurochem. 54:1310-1320 (1990)]. Recently, the Go alpha gene has been shown to encode, by alternative splicing, two polypeptides, Go1 alpha and Go2 alpha, which differ only in their carboxyl-terminal part. To determine unambiguously whether the two Go alpha subunits detected in neuroblastoma cells were actually the products of different mRNAs, rabbit polyclonal antibodies were generated against synthetic peptides (amino acids 291-302) of both sequences. Specificity of the two affinity-purified antipeptide antibodies was assessed on Western blots by comparing their immunoreactivities with those of other G alpha antibodies. On a blotted mixture of purified brain guanine nucleotide-binding proteins, the anti-alpha o1 and anti-alpha o2 peptide antibodies only recognized the 39-kDa Go alpha subunit. Furthermore, the immunological recognition of brain membranes from 15-day-old mouse fetuses by antipeptide antibodies could be specifically blocked by addition of the corresponding antigen. When membrane proteins from differentiated neuroblastoma cells and mouse fetus brain were blotted after two-dimensional gel electrophoresis, the anti-alpha o1 and anti-alpha o2 peptide antibodies labeled a 39-kDa subunit focused at a pI value of 5.55 or 5.80, respectively. Study of the ontogenesis of both Go alpha subunits revealed the predominance of Go2 alpha in the frontal cortex at day 15 of gestation. Thereafter, there was a progressive decline of the Go2 alpha polypeptide to a very low level, concomitant with an increase in the Go1 alpha protein, which plateaued about 15 days after birth to a level 8 times higher than at gestational day 15. Similarly, on neuroblastoma cells, the Go2 alpha subunit was almost exclusively present in undifferentiated cells, and differentiation induced the appearance of the Go1 alpha subunit, with a reduction in the amount of Go2 alpha polypeptide. Thus, the evolution of the two Go alpha subunits during cell differentiation, unambiguously identified with specific antibodies, suggests that neuronal differentiation is responsible for the on/off switch of the expression of the Go alpha isoforms and indicates that Go1 alpha, rather than Go2 alpha, is involved in neurotransmission.

  8. Cravity modulation of the moss Tortula modica branching

    NASA Astrophysics Data System (ADS)

    Khorkavtsiv, Yaroslava; Kit, Nadja

    Among various abiotic factors the sensor system of plants constantly perceives light and gravitation impulses and reacts on their action by photo- and gravitropisms. Tropisms play fundamental part in ontogenesis and determination of plant forms. Essentially important question is how light initiating phototropic bending modulates gravitropism. In contrast to flower plants, red light is phototropically active for mosses, and phytochromic system controls initiation of apical growth, branching and photomorphogenesis of mosses. The aim of this investigation was to analyse cell branching of protonemata Tortula modica Zander depending on the direction of light and gravitation vector. The influence of light and gravitation on the form of protonemal turf T. modica, branching and the angle of lateral branches relative to axis of mother cell growth has been investigated. As moss protonemata is not branched in the darkness, light is necessary for branching activation. Minimally low intensity of the red light (0.2 mmol (.) m (-2) ({) .}sec (-1) ) induced branching without visual display of phototropic growth. It has been established that unidirectional action of light and gravitation intensifies branching, and, on the contrary, perpendicularly oriented vectors of factors weaken branches formation. Besides, parallel oriented vectors initiated branching from both cell sides, but oppositely directed vectors initiated branching only from one side. Clinostate rotation the change of the vector gravity and causes uniform cell branching, hence, light and gravitation mutually influence the branching system form of the protonemata cell. It has been shown that the angle of lateral branches in darkness does not depend on the direction of light and gravitation action. After lighting the local growth of the cell wall took place mainly under the angle 90 (o) to the axes of mother cell growth. Then the angle gradually decreased and in 3-4 cell divisions the lateral branch grew under the angle 45-50 (o) to orthotropic stolon axes, and later it decreased negatively gravitropically. The bending of lateral branches of gravitropic protonemata is carried out in two stages: the light induction makes cells metabolically active, but not sensitive to gravitation, while the wall of daughter cell grows perpendicularly to the axes of mother cell and only after that the branches growth direction acquires dependent on gravitation fixed space orientation. Protonemata on light was branched under the angle 45-50 (o) to the axes of the main stolon, that caused similar phenotype of protonemata turf in many moss species. The growth of lateral branches and the set-point angle from the point of view of growth as physical process, is, perhaps, balanced by the action of gravitation and light, and is controlled endogenously by autotropic growth.

  9. [Genome loses all 5-methylcytosine a life span. How is this connected with accumulation of mutations during aging?].

    PubMed

    Mazin, A L

    1993-01-01

    The 5-methylcytosine (5mC) content in liver DNA has been determined for rats of different age. The rate of the 5mC loss from DNA is maximal in pre- and neonatal rats, 1.28% of reduction of the 5mC content per day, then it decreases to 0.33% and becomes minimal and constant in adult rats, 0.028% per day. During pregnancy and the first 15 days of postnatal development rat genome loses 49% of all 5mC. Within the next 45 days 15% of 5mC disappears, and during maximal rat life span, about four years, 39% of the genomic 5mC may be lost. Thus, it has been found for the first time that the animal genome loses practically all 5mC residues during the life span. Analysis of the literature data shows that for embryos the rate of the 5mC loss from DNA proves to be higher than that for adult animals by 96 times for mice, 69-for rats and 28-for cows. The rate of embryonal DNA hypomethylation may be inversely proportional to the pregnancy duration of species. In adult animals the rate inversely correlates with their maximal life span and accounts for the 5mC loss from DNA of a mouse by 0.028%, of a rat by 0.024%, of a hamster by 0.007%, of a cow by 0.004% and of a human being by 0.0005% per day. During the entire ontogenesis, the genome of a mouse loses 93% of all 5mC residues, that of a rat-101% and of a cow-88%. The age-dependent loss of 5mC from DNA is also typical for cell lines aging in vitro. It is constant, as a rule, and correlates with the number of cell population doublings (PD). The removal of all 5mC from DNA corresponds to 70-130 PD for human, 40-60 PD-for hamster and 6 PD- for mouse cells. In immortal lines the level of DNA methylation is stable or grows with age. A possible mechanism of an age-related 5mC loss from DNA is discussed. DNA hypomethylation may result from 5mC deamination directly at the moment of replicative DNA methylation and subsequent reparation of the G.T mispairs which leads to accumulation of the 5mC-->T+C substitutions in the genome with each cell division. So DNA methylation may serve as an ideal mechanism for counting cell divisions in vivo and in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    PubMed Central

    Stringari, James; Nunes, Adriana KC; Franco, Jeferson L; Bohrer, Denise; Garcia, Solange C; Dafre, Alcir L; Milatovic, Dejan; Souza, Diogo O; Rocha, João BT; Aschner, Michael; Farina, Marcelo

    2010-01-01

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/L, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PNDs) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F2-isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F2-isoprostanes levels at all time points. Significant negative correlations were found between F2-isoprostanes and GSH, as well as between F2-isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at birth. Even though the cerebral mercury concentration decreased to nearly basal levels at postnatal day 21, GSH levels, GPx and GR activities remained decreased in MeHg-exposed mice, indicating that prenatal exposure to MeHg affects the cerebral GSH antioxidant systems by inducing biochemical alterations that endure even when mercury tissue levels decrease and become indistinguishable from those noted in pups born to control dams. This study is the first to show that prenatal exposure to MeHg disrupts the postnatal development of the glutathione antioxidant system in the mouse brain, pointing to an additional molecular mechanism by which MeHg induces pro-oxidative damage in the developing CNS. Moreover, our experimental observation corroborates previous reports on the permanent functional deficits observed after prenatal MeHg exposure. PMID:18023834

  11. Clinical and electrophysiological aspects of tics in children.

    PubMed

    Safiullina, G I; Safiullina, A A

    2015-01-01

    Tics are diverse in nature inappropriate movements or vocalizations. They significantly degrade patients' quality of life, lead to social difficulties, and disturbance of learning especially during exacerbations. The prevalence of tics among children ranges from 4% to 24%, thus emphasizing the relevance of the problem. To study clinical and electrophysiological features of tics in children with development of new treatment methods. We conducted a comprehensive clinical and electrophysiological examination of 50 patients with tics, aged 5 to 15 years. The control group consisted of 20 healthy children. The research included a thorough study of the history, neurological examination, manual testing of skeletal muscles, psychological testing. Electrophysiological examination included a review of the functional state of corticospinal tract (CST) by the method of magnetic stimulation (MS), study of polysynaptic reflex excitability (PRE) according to a late component of the blink reflex (BR). Statistical analysis included parametric and nonparametric methods of data processing. All children of the study group showed signs of minimal brain dysfunction (MBD), they had complicated antenatal and postnatal history (trauma, disease, occurring with intoxication). There was a trend towards the increase of MBD signs with worsening of tics. Manual diagnosis in patients identified functional blockade at different levels of the vertebral column, sacroiliac joints, we identified latent myofascial trigger points (MFTP) mainly in the cervical-collar zone, in the area of the paravertebral muscles, periosteal triggers in the area of the sacroiliac joints.The research allowed determining decrease in propagation velocity of excitation (PVE) throughout CST in patients with tics. Correlation analysis revealed a negative correlation between the severity of tics and PVE (r = -0.38; p < 0.001).When studying polysynaptic reflex excitability (PRE) a significant predominance of hyper-excited types of blink reflex (BR) (90% of cases) was revealed. However, in 10% of patients there was a moderate decrease in propagation velocity of excitation (PVE), which allowed us to identify two subgroups of patients with tics: I - low and moderate type of reflex responses; and II - high type of reflex responses. Collation of data of MS and BR revealed a significant decrease of PVE in patients of the subgroup I, which probably reflects a deeper disturbance of the neuro-motor apparatus. The presence of numerous myofascial trigger points (MFTP) in patients of the subgroup I with moderately low polysynaptic reflex excitability (p < 0.05) was characteristic. The data show extraordinary sensitivity of neuromuscular system of children to various physiological and pathological stimuli, occurring in the body in the ontogenesis or diseases, and multifactorial origin of the pain syndrome in tics.The results suggest that one of the main mechanisms of development of pathological process is dysfunction of descending inhibitory control. However, further clarification of the type of polysynaptic reflex excitability in a certain patient is needed, that will allow to develop individualized approach to the choice of therapeutic interventions.

  12. Spectral variations of canopy reflectance in support of precision agriculture

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Georgiev, Georgi; Borisova, Denitsa; Nikolov, Hristo

    2014-05-01

    Agricultural monitoring is an important and continuously spreading activity in remote sensing and applied Earth observations. It supplies precise, reliable and valuable information on current crop condition and growth processes. In agriculture, the timing of seasonal cycles of crop activity is important for species classification and evaluation of crop development, growing conditions and potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data reliability require ground-truth knowledge of the seasonal spectral behavior of different species and their relation to crop vigor. For this reason, we performed ground-based study of the seasonal response of winter wheat reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agro-specific relationships allow assessing crop condition during different portions of the growth cycle and thus effectively tracking plant development, and finally make yield predictions. The applicability of a number of vegetation indices (VIs) for monitoring crop seasonal dynamics, its health condition, and yield potential was examined. Special emphasis we put on narrow-band indices as the availability of data from hyperspectral imagers is unavoidable future. The temporal behavior of vegetation indices revealed increased sensitivity to crop growth. The derived spectral-biophysical relationships allowed extraction of quantitative information about crop variables and yield at different stages of the phenological development. Relating plant spectral and biophysical variables in a phenology-based manner allows crop monitoring, that is crop diagnosis and predictions to be performed multiple times during plant ontogenesis. During active vegetative periods spectral data was highly indicative of plant growth trends and yield potential. The VIs values contributed to reliable yield prediction and showed very good correspondence with the estimates from biophysical models. For dates before full maturity most of the examined VIs proved to be meaningful statistical predictors of crop state-indicative biophysical variables. High correlations were obtained for canopy cover fraction, LAI, and biomass. Sensitivity to red, near-infrared and green reflectance showed both vigorous and stressed plants. As crops attained advanced growth stages, decreased sensitivity of VIs and weaker correlations with bioparameters were observed, yet still significant in a statistical sense. The results highlight the capability of the presented approach to track the dynamics of crop growth from multitemporal spectral data, and illustrate the prediction accuracy of the spectral models. The results are useful in assessing the efficiency of various spectral band ratios and other vegetation indices often used in remote sensing studies of natural and agricultural vegetation. They suggest that the used algorithm for data processing is particularly suitable for airborne cropland monitoring and could be expanded to sites at farm or municipality scale. The results reported are from pilot study carried out on a plot located in one of the established polygons for experimental crop monitoring. In the mentioned research GIS database is established for supporting the experiments and modelling process. Recommendations on good farming practices for medium sized farms for monitoring stress conditions such as drought and overfertilizing are developed.

  13. Noncholesterol sterols.

    PubMed

    Vecka, Marek; Zak, Ales; Tvrzická, Eva

    2008-01-01

    Although most of us are more or less familiar with the term "cholesterol", the world of sterols is far more complicated and interesting. Apart from cholesterol, many non-cholesterol sterols can be found in human plasma and these sterols serve many important functions in human organism. They are either derived from endogenous biosynthesis of cholesterol or they come from dietary sources (phytosterols). The sole cholesterol molecule is used for keeping our cell membranes fit, for signalization purposes as well as a precursor for bile acids and steroid hormones. The compounds prior to cholesterol in its biosynthetic pathway were identified as vitamin D3 precursor, meiosis activating sterols and nowadays it seems that they could play a role in cholesterol homeostasis. The sterols from ingested vegetable sources, the phytosterols, are expelled from enterocytes and thus indirectly help our gut in coping with abundant cholesterol in the lumen. Higher plants synthesize many phytosterols, but in marine organisms, we can find other innumerous sterol molecules. The diversity of sterol molecules produced and resistance of their tetracyclic core to enzymatic activities implies crucial importance of sterols during the ontogenesis of multicellular organisms. First oxygen appeared on the Earth app. 2.7 billion years ago and since that time, every new life form took the advantage of oxygen needed also for build-up of sterol molecules. The last decades changed our view to the sterol molecules on almost at all levels of their appearance in human body. In the gut, the absorption of sterols was proven to be protein dependent and the quest for the transporter was successful. The general concepts of intracellular homeostasis of cholesterol have been described including the covalent interaction unbelievable so far - cholesterol and a protein. The clinical importance of non-cholesterol sterols rises with the effort to discover underlying facts about the causes of atherosclerosis. The compound in question, cholesterol, seems to be involved, but it sounds not to be crucial per se. The fact that the accumulation of phytosterols in sitosterolemia enhances the probability of early atherosclerosis onset further supports the hypothesis about some sterol (or steroid) compound being responsible on the molecular level for triggering the pathobiochemical cascade of events leading to atherosclerosis. Understanding the processes taking place in the enterocyte during the absorption of sterols resulted in synthesis of selective inhibitors at the level of sterol translocation into the enterocyte, sterol esterification and chylomicron packing, which are in different phases of clinical testing. The studies in the last part of the monograph represent the clinical potential of the analyses of non-cholesterol sterols. In well-defined groups, these analytes enables us to assess the changes in the homeostasis of cholesterol, which can be reflected in the concentration of total cholesterol. Furthermore, the high concentrations of some plasma sterols could point to the inborn errors of cholesterol biosynthesis (Smith-Laemli-Opitz syndrome), transport (sitosterolemia) or metabolization (cerebrotendinous xanthomatosis). Some issues concerning the research on the non-cholesterol sterols still remain unanswered - it is not known why some of the enzymes of the cholesterol biosynthesis (seladin-1, sterol D14 reductase) have other functions, qualitative aspects of sterol absorption are not satisfactorily explained and exact reason for expulsion of phytosterols from human body is not clear. Nevertheless, the authors hope that the presented facts can broaden the reader's perspective about the area, which is usually hidden beneath the cholesterol molecule.

  14. Sugar beet growth in a changing climate: past, present and future trends in southwest Germany

    NASA Astrophysics Data System (ADS)

    Kremer, Pascal; Fuchs, Hans-Joachim; Lang, Christian

    2017-04-01

    In the study, single factors and their impact on sugar beet cultivation against the background of past and projected climate change are being analyzed. The database consists of climate data by the German Weather Service and 1x1 km interpolated INTERMET raster data. Impact models were run to assess possible future trends using climate projection data of the REgional MOdel (REMO), emission scenario A1B, Run 1, data stream 2 for Germany, daily resolution, without bias correction, 10x10 km raster (n=150) (MPI on behalf of UBA 2006). Compared periods were: B:1971 2000; K:2021-2050; L:2071-2100. Agronomic data were collected from the field books of regional trials from 1974 2014 (n=448). Moreover, a business survey of regional farmers was carried out and evaluated. Impact models to predict timing for sowing, the date of field emergence and row closure, were derived from these data. The ontogenesis was simulated using a linear, temperature-based leaf-growth model. Sowing shifted forward by 7,3 days in regional field trials from 1974 2014. Progress-oriented, risk-tolerant farmers start sowing 10-14 days earlier compared to 1980. Recently, sowing is being conducted on average on 21 March in southwest Germany. For period K, 17 March, and for period L, 2 March is being projected as the average future sowing date while the same late frost risk applies compared to present climatic conditions. Shifting forward the sowing date with spring warming and, thus, exploiting the associated yield potential is the most promising agronomic adaptation strategy to the projected climate change on the farm level. In connection to earlier sowing, the field emergence tendentially shifted forward by 14 days in the field trials. Assuming sowing on 15 March, projection results show an advance of field emergence form 7 April in period B to 3 April in period L. Row closure in field trials in average shifted forward by 19,6 days. For period L, 29 May and thus, an earlier row closure of 9 days compared to K, is being projected. In period L, 20-leaf-stage is being projected 7,8 days, and 40-leaf-stage 11,2 days earlier compared to period K. All previously mentioned trends positively influence the yield potential of sugar beets due to the increasing use efficiency of photosynthetically active radiation. Running a correlation analysis, the height of the yield variance reconnaissance ratio of the main weather-related growth factors, temperature and precipitation, was determined. During the main growth phase from June-September, the precipitation sum explains 76%, the daily average temperature sum from April-October in the range of 3°C-19°C explains 64% of the yield variance of Mainz from 1991-2012. For both parameters, a decrease is being projected for the second half of the 21st century, which would influence the regional yield potential negatively. Summarizing, climate change had positive as well as negative impacts on regional sugar beet cultivation. Based on the REMO data, past trends continue prospectively. Due to that, it is important to fully use positive effects for yield formation. Furthermore, adaption to negative climatic changes and research are crucial to guarantee a high-yielding, sustainable sugar beet growth in future.

  15. [Regeneration capacity of skeletal muscle].

    PubMed

    Wernig, A

    2003-07-01

    The organotypic stem cell of skeletal muscle has previously been known as satellite cell. They allow muscle fiber growth during ontogenesis, enable fiber hypertrophy and are responsible for the very efficient repair of muscle fibers. This efficient apparatus is to some degree counterbalanced by an enormous use of the satellite cell pool: fiber atrophy probably is accompanied by loss of myonuclei such that every reversal of atrophy is bound to use new myonuclei i.e. satellite cells. How often in life does this occur? Hard to say. Moreover, the potent repair capacity is challenged by an unexpected vulnerability of skeletal muscle fibers: Passive stretching of contracted muscles may cause multiple "microdamage," disruption of contractile elements or tiny areas of true necrosis (focal necrosis). How often does this happen? Well, for many of us at least once per year when we go up and down mountains during vacation time, followed by sour muscles. Others may decide to change his/her (locomotor) behaviour by severe onset of jogging; it may happen that they suffer kidney failure on Monday due to muscle microdamage and the transfer of myoproteins into the serum over weekend. Also 20 minutes of stepping up and down something like a chair will do: There is a remarkable increase in kreatin kinase and other muscle derived proteins which lasts for days and is bound to reflect some muscle damage. How about sportsmen and worker who repeatedly use their muscles in such a way? We don't have answers yet to most of these questions, but considerable amount of information has been collected over the last years both in animal and--less--in human. What is common in all cases of growth and repair is the proliferation of the satellite cells and their consequent incorporation and fusion with the parent fiber. This way focal damage is repaired often without visible reminders. We would run out of satellite cells were they not stem cells: After division one daughter remains a satellite cell while the other is free to divide. Divide how often? Important for the human cells since the cell ages and proliferates slower and slower till it stops to divide at all, at least in culture. The same is true for the new satellite cell. This we know from recent experiments in which human biopsies derived myogenic cells were grown in vitro and in vivo (by implanting them into skeletal muscles of immunoincompetent mice): Growth correlates negatively with age of the donor. Between age 2 and some 70 years, about two divisions are performed by each satellite cell in human vastus lateralis and biceps brachii muscle in 10 years in the average. Most important for the older among us: at age 76 there are still some 13 divisions left before complete exhaustion. However, there are diseases like Duchenne Muscular Dystrophy (DMD) in which muscle fibers lack a structural protein with the effect of enhanced vulnerability to mechanical stress. There the enhanced use of the satellite cell pool makes the remaining growth capacity in an 8-years-old child as low as otherwise found at age 80. Some time ago, implantation of genetically intact myoblasts obtained from healthy relatives has been proposed as a treatment of DMD. Every logic would have predicted that some local implantation of whatever numbers of cells was bound to fail rescue the complete masculature or at least the muscles for breathing. The human as guinea pig? Now, even years later, we still collect the basic information on growth of human myoblasts and start thinking of ways for systemic application and quantitatively relevant incorporation of the myogenic stem cell or other--possibly pluripotent--stem cells derived from bone marrow.

  16. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    NASA Astrophysics Data System (ADS)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation <10 cGy (increasing natural radiation background in 100-500 times) and accommodating in hypo-magnetic camera (induction of magnetic field in 100-300 times lower than geomagnetic one) the germination of seeds was higher approximately twice under γ-radiation. Low doses of γ-radiation decreased and α-radiation increased a negative influence of hypo-magnetic field on these processes. It was shown that hypomagnetic field occurred, in general, beneficial effect on the development of Planorbarius corneus: the portion of teratogenic effect is decreased, embryos initially occurred in hypomagnetic conditions were characterized by lowering mortality. Mobility index increased in animals on the stage of late velikhonky and in embryos, passing metamorphosis. Under the sharp increasing of magnetic field to normal level the embryos and juvenile mollusks quickly perished, besides that juvenile mollusks practically stopped their growth. The electing induction by juvenile mollusks Planorbarius corneus depends on their adaptation to magnetic field. Mollusks, cultivating in the conditions of normal geomagnetic field, preferred the conditions with maximal induction, but cultivating in the conditions of hypomagnetic camera, on the contrary, the conditions with minimal induction. Model experiments accompanied with the control of oxidative-reduction properties of water. It is revealed that under the chronic ionized irradiation the value of oxidative-reduction potential increased, pH decreased and electrical currents in water electrochemical cells gradually decreased. In hypomagnetic camera the opposite tendency was observed. It is established the phenomena of stimulating effect of low doses of continuous γ-radiation (source of radiation Co60, period of radiation 10 days, average daily power dose 1,5-2,0 mGy, summary dose 15 mGy) on mezenchim stem cells of mice bone brain - a radiation hormezis which revealed in the intensifying of proliferative activity and increasing of number of colony-formed units-F in bone brain in 1,5-4,5 times. Regenerative capacity of bone brain stroma increased significantly (twice). Radiation hormezis observed only in the dose 48x10-3cGy under neutron irradiation. Hematopoetic ancestor cells were non-sensitive to studying doses of radiation. The activation of cells being capable to the migration and possessing histogenetic plasticity can represent a serious biomedical problem. Under the inspection of lymphocytes state in blood of pilots (the flight high 7000-17000 m, the measuring power dose 5-10 mrad/day) and cosmonauts (orbit high 350-450 km, 25-30 mrad/day ) by the method of DNA-comet were discovered molecular-biological and cytogenetgic disturbances: the damaging of DNA and chromosome aberrations. Moreover, it is revealed the increasing radio-sensitivity to additional radiation load (irradiation in dose 1 Gy). These biological markers define the disturbances which can be earlier risk indexes of origin of some different diseases including malignant tumors. Thus under the interplanetary cosmic flight and long stay on the orbit in the region of magnetosphere the studying kinds of radiation first effected on the water medium of organism as a result morpho-functional structures were changed.

Top