Science.gov

Sample records for ontogenetic diet shifts

  1. Ontogenetic diet shifts and digestive constraints in the omnivorous freshwater turtle Trachemys scripta.

    PubMed

    Bouchard, Sarah S; Bjorndal, Karen A

    2006-01-01

    Many reptiles undergo an ontogenetic diet shift from carnivory to herbivory. In this study, we used the yellow-bellied slider turtle, Trachemys scripta, as a model to evaluate whether juvenile turtles are carnivorous because physiological constraints preclude herbivory. We conducted feeding trials in which we fed juvenile and adult turtles a duckweed plant, Lemna valdiviana, or a freshwater grass shrimp, Palaemontes paludosus, for 5 wk. During the trials, we measured mass-specific intake, digestibility, and digestible intake for both size classes, as well as juvenile growth. At the end of the trials, we measured the nutrient composition of the juvenile turtles. Juveniles fed shrimp grew 3.2 times faster than those fed duckweed and had equivalent lipid stores. Digestive processing in juveniles was extremely efficient on the shrimp diet, with higher mass-specific intakes than adults and very high digestibilities (97%). Juveniles digested duckweed as well as adults did; however, their intake of this diet was limited, possibly by the time required for fermentation. We concluded that although juveniles can process plant material, an animal diet allows for greater juvenile growth, which in turtles is linked to higher survivorship and increased future reproductive success.

  2. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    USGS Publications Warehouse

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic δ13C and δ15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes—resident and transient—collected across ~25° of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in δ15N values of ~2.5‰ through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable δ15N and δ13C values throughout the remainder of their lives, whereas δ15N values of most (n = 11) increased by ~1.5‰, suggestive of an ontogenetic increase in trophic level. Significant differences in mean δ13C and δ15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean

  3. Retrospective characterization of ontogenetic shifts in killer whale diets via δ13C and δ15N analysis of teeth

    USGS Publications Warehouse

    Newsome, Seth D.; Etnier, Michael A.; Monson, Daniel H.; Fogel, Marilyn L.

    2009-01-01

    Metabolically inert, accretionary structures such as the dentin growth layers in teeth provide a life history record of individual diet with near-annual resolution. We constructed ontogenetic ??13C and ??15N profiles by analyzing tooth dentin growth layers from 13 individual killer whales Orcinus orca collected in the eastern northeast Pacific Ocean between 1961 and 2003. The individuals sampled were 6 to 52 yr old, representing 2 ecotypes-resident and transient - collected across ???25?? of latitude. The average isotopic values of transient individuals (n = 10) are consistent with a reliance on mammalian prey, while the average isotopic values of residents (n = 3) are consistent with piscivory. Regardless of ecotype, most individuals show a decrease in ??15N values of ???2.5% through the first 3 yr of life, roughly equivalent to a decrease of one trophic level. We interpret this as evidence of gradual weaning, after which, ontogenetic shifts in isotopic values are highly variable. A few individuals (n = 2) maintained relatively stable ??15N and ??13C values throughout the remainder of their lives, whereas ??15N values of most (n = 11) increased by ???1.5%, suggestive of an ontogenetic increase in trophic level. Significant differences in mean ??13C and ??15N values among transients collected off California suggest that individuality in prey preferences may be prevalent within this ecotype. Our approach provides retrospective individual life history and dietary information that cannot be obtained through traditional field observations of free-ranging and elusive species such as killer whales, including unique historic ecological information that pre-dates modern studies. By providing insights into individual diet composition, stable isotope analysis of teeth and/or bones may be the only means of evaluating a number of hypothesized historical dietary shifts in killer whales of the northeast Pacific Ocean. ?? Inter-Research 2009.

  4. Ontogenetic diet shifts and their incidence on ecological processes: a case study using two morphologically similar stoneflies (Plecoptera)

    NASA Astrophysics Data System (ADS)

    Céréghino, Régis

    2006-07-01

    Most ecological studies consider conspecific individuals as ecologically equivalent, assuming that inter-instar variation is weak and has a limited influence on functional processes. To test this assumption, we investigated the life history and trophic basis of production in two predatory stoneflies, Perlodes microcephalus and Isoperla acicularis, in a mountain stream. The variety of prey types increased with predator size. However, larvae started their development with a strictly phytophagous diet (3 months), then ingested both vegetal material and animal prey (2-3 months). Finally, larvae were strictly carnivorous when head width reached 1.1 mm. Young (herbivorous) I. acicularis larvae occurred from June to August. Young P. microcephalus larvae hatched in October, and were herbivorous until December, when I. acicularis larvae were omnivorous. Competition for animal prey was likely to occur in the spring, but P. microcephalus grew faster and emerged earlier. The cohort productions were mostly based on carnivory (78.7-90.7%), because most production occurred in later instars. Ontogenetic diet shifts could play a role in the structuring of species assemblages by adjusting species' requirements to the temporal dynamics of environmental conditions, including food availability and biotic interactions. However, their incidence on global processes is quantitatively limited, large individuals having the greatest impacts on the way energy flows.

  5. Feeding habits and ontogenetic diet shifts of Bombay duck, Harpadon nehereus

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Jin, Xianshi

    2014-05-01

    Based on two bottom trawl surveys conducted in autumn 2000 and 2001, a total of 1106 stomach samples of Bombay duck Harpadon nehereus between 23-278 mm fork length were collected and analyzed. The results show that Bombay duck prey items consisted of 11 groups or 32 species, of which Apogon lineatus, Leptochela gracilis, Acetes chinensis, and Euphausia pacifi ca were the dominant prey species. Ontogenetic variations were found in feeding habits and feeding activity of Bombay duck. Feeding activity was highest in fish smaller than 50 mm, lowest in fish between 50 and 99 mm, and then increased with increasing size thereafter. As Bombay duck size increased, fish prey increased in importance, whereas euphausiids and decapods decreased in importance. Different trophic guilds were observed in feeding habits across the examined size range. Bombay duck smaller than 50 mm were zooplanktivores, mainly feeding on zooplankton and fish larva; those between 50 and 149 mm were generalist predators, mainly feeding on pelagic shrimps, demersal shrimps and fishes; and those larger than 150 mm were piscivores, mainly feeding on fishes.

  6. Are ontogenetic shifts in diet linked to shifts in feeding mechanics? Scaling of the feeding apparatus in the banded watersnake Nerodia fasciata.

    PubMed

    Vincent, Shawn E; Moon, Brad R; Herrel, Anthony; Kley, Nathan J

    2007-06-01

    The effects of size on animal behaviour, ecology, and physiology are widespread. Theoretical models have been developed to predict how animal form, function, and performance should change with increasing size. Yet, numerous animals undergo dramatic shifts in ecology (e.g. habitat use, diet) that may directly influence the functioning and presumably the scaling of the musculoskeletal system. For example, previous studies have shown that banded watersnakes (Nerodia fasciata) switch from fish prey as juveniles to frog prey as adults, and that fish and frogs represent functionally distinct prey types to watersnakes. We therefore tested whether this ontogenetic shift in diet was coupled to changes in the scaling patterns of the cranial musculoskeletal system in an ontogenetic size series (70-600 mm snout-vent length) of banded watersnakes. We found that all cranial bones and gape size exhibited significant negative allometry, whereas the muscle physiological cross-sectional area (pCSAs) scaled either isometrically or with positive allometry against snout-vent length. By contrast, we found that gape size, most cranial bones, and muscle pCSAs exhibited highly significant positive allometry against head length. Furthermore, the mechanical advantage of the jaw-closing lever system remained constant over ontogeny. Overall, these cranial allometries should enable watersnakes to meet the functional requirements of switching from fusiform fish to bulky frog prey. However, recent studies have reported highly similar allometries in a wide diversity of vertebrate taxa, suggesting that positive allometry within the cranial musculoskeletal system may actually be a general characteristic of vertebrates.

  7. Ontogenetic shifts in the diet of plains hog-nosed snakes (Heterodon nasicus) revealed by stable isotope analysis.

    PubMed

    Durso, Andrew M; Mullin, Stephen J

    2017-02-01

    Wild snake diets are difficult to study using traditional methods, but stable isotopes offer several advantages, including integrating dietary information over time, providing data from individuals that have not fed recently, and avoiding bias towards slowly-digesting prey items. We used stable isotope signatures of carbon and nitrogen from scale tissue, red blood cells, and blood plasma to assess the diet of wild plains hog-nosed snakes (Heterodon nasicus) in Illinois. We developed Bayesian mixing models which, taken together, predicted that H. nasicus shifted from a juvenile diet predominantly (31-63%) composed of six-lined racerunners (Aspidoscelis sexlineatus) and their eggs to an adult diet predominantly (44-56%) composed of eggs of the aquatic turtles Chrysemys picta and Chelydra serpentina, with a contribution from toads (Anaxyrus sp.; 6-27%) during their adolescent years. These results agreed with sparse data from gut contents. Combining traditional and isotopic techniques for studying the diets of wild snakes can increase the utility of both types of data.

  8. Ontogenetic shifts of heart position in snakes.

    PubMed

    Lillywhite, Harvey B; Lillywhite, Steven M

    2017-08-01

    Heart position relative to total body length (TL) varies among snakes, with anterior hearts in arboreal species and more centrally located hearts in aquatic or ground-dwelling species. Anterior hearts decrease the cardiac work associated with cranial blood flow and minimize drops in cranial pressure and flow during head-up climbing. Here, we investigate whether heart position shifts intraspecifically during ontogenetic increases in TL. Insular Florida cottonmouth snakes, Agkistrodon conanti, are entirely ground-dwelling and have a mean heart position that is 33.32% TL from the head. In contrast, arboreal rat snakes, Pantherophis obsoleta, of similar lengths have a mean heart position that is 17.35% TL from the head. In both species, relative heart position shifts craniad during ontogeny, with negative slopes = -.035 and -.021% TL/cm TL in Agkistrodon and Pantherophis, respectively. Using a large morphometric data set available for Agkistrodon (N = 192 individuals, 23-140 cm TL), we demonstrate there is an anterior ontogenetic shift of the heart position within the trunk (= 4.56% trunk length from base of head to cloacal vent), independent of head and tail allometry which are both negative. However, in longer snakes > 100 cm, the heart position reverses and shifts caudally in longer Agkistrodon but continues toward the head in longer individuals of Pantherophis. Examination of data sets for two independent lineages of fully marine snakes (Acrochordus granulatus and Hydrophis platurus), which do not naturally experience postural gravity stress, demonstrate both ontogenetic patterns for heart position that are seen in the terrestrial snakes. The anterior migration of the heart is greater in the terrestrial species, even if TL is standardized to that of the longer P. obsoleta, and compensates for about 5 mmHg gravitational pressure head if they are fully upright. © 2017 Wiley Periodicals, Inc.

  9. Hitting the moving target: modelling ontogenetic shifts with stable isotopes reveals the importance of isotopic turnover.

    PubMed

    Hertz, Eric; Trudel, Marc; El-Sabaawi, Rana; Tucker, Strahan; Dower, John F; Beacham, Terry D; Edwards, Andrew M; Mazumder, Asit

    2016-05-01

    Ontogenetic niche shifts are widely prevalent in nature and are important in shaping the structure and dynamics of ecosystems. Stable isotope analysis is a powerful tool to assess these shifts, with δ(15) N providing a measure of trophic level and δ(13) C a measure of energy source. Previous applications of stable isotopes to study ontogenetic niche shifts have not considered the appreciable time lag between diet and consumer tissue associated with isotopic turnover. These time lags introduce significant complexity into field studies of ontogenetic niche shifts. Juvenile Chinook salmon (Oncorhynchus tshawytscha) migrate from freshwater to marine ecosystems and shift their diet from feeding primarily on invertebrates to feeding primarily on fish. This dual ontogenetic habitat and diet shift, in addition to the long time lag associated with isotopic turnover, suggests that there is potential for a disconnect between the prey sources that juvenile salmon are consuming, and the inferred prey sources from stable isotopes. We developed a model that considered ontogenetic niche shifts and time lags associated with isotopic turnover, and compared this 'ontogeny' model to one that considered only isotopic turnover. We used a Bayesian framework to explicitly account for parameter uncertainty. Data showed overwhelming support for the ontogeny model relative to the isotopic turnover model. Estimated variables from best model fits indicate that the ontogeny model predicts a much greater reliance on fish prey than does the stomach content data. Overall, we found that this method of quantifying ontogenetic niche shifts effectively accounted for both isotopic turnover and ontogenetic diet shifts; a finding that could be widely applicable to a variety of systems. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  10. Growth dynamics of juvenile loggerhead sea turtles undergoing an ontogenetic habitat shift.

    PubMed

    Ramirez, Matthew D; Avens, Larisa; Seminoff, Jeffrey A; Goshe, Lisa R; Heppell, Selina S

    2017-04-01

    Ontogenetic niche theory predicts that individuals may undergo one or more changes in habitat or diet throughout their lifetime to maintain optimal growth rates, or to optimize trade-offs between mortality risk and growth. We combine skeletochronological and stable nitrogen isotope (δ(15)N) analyses of sea turtle humeri (n = 61) to characterize the growth dynamics of juvenile loggerhead sea turtles (Caretta caretta) during an oceanic-to-neritic ontogenetic shift. The primary objective of this study was to determine how ontogenetic niche theory extends to sea turtles, and to individuals with different patterns of resource use (discrete shifters, n = 23; facultative shifters n = 14; non-shifters, n = 24). Mean growth rates peaked at the start of the ontogenetic shift (based on change in δ(15)N values), but returned to pre-shift levels within 2 years. Turtles generally only experienced 1 year of relatively high growth, but the timing of peak growth relative to the start of an ontogenetic shift varied among individuals (before, n = 14; during, n = 12; after, n = 8). Furthermore, no reduction in growth preceded the transition, as is predicted by ontogenetic niche theory. Annual growth rates were similar between non-transitioning turtles resident in oceanic and neritic habitats and turtles displaying alternative patterns of resource use. These results suggest that factors other than maximization of size-specific growth may more strongly influence the timing of ontogenetic shifts in loggerhead sea turtles, and that alternative patterns of resource use may have limited influence on somatic growth and age at maturation in this species.

  11. Ontogenetic shifts in functional morphology of dragonfly legs (Odonata: Anisoptera).

    PubMed

    Leipelt, Klaus Guido; Suhling, Frank; Gorb, Stanislav N

    2010-12-01

    Anisopteran leg functions change dramatically from the final larval stadium to the adult. Larvae use legs mainly for locomotion, walking, climbing, clinging, or burrowing. Adults use them for foraging and grasping mates, for perching, clinging to the vegetation, and for repelling rivals. In order to estimate the ontogenetic shift in the leg construction from the larva to the adult, this study quantitatively compared lengths of fore, mid, and hind legs and the relationships between three leg segments, femur, tibia, and tarsus, in larval and adult Anisoptera of the families Gomphidae, Aeshnidae, Cordulegastridae, Corduliidae, and Libellulidae, represented by two species each. We found that leg segment length ratio as well as ontogenetic shift in length ratios was different between families, but rather similar within the families. While little ontogenetic shift occurred in Aeshnidae, there were some modifications in Corduliidae and Libellulidae. The severest shift occurred in Gomphidae and Cordulegastridae, both having burrowing larvae. These two families form a cluster, which is in contrast to their taxonomic relationship within the Anisoptera. Cluster analysis implies that the function of larval legs is primarily responsible for grouping, whereas adult behavior or the taxonomic relationships do not explain the grouping. This result supports the previous hypothesis about the convergent functional shift of leg characters in the dragonfly ontogenesis.

  12. Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae)

    PubMed Central

    2013-01-01

    Background One of the most widely accepted ecomorphological relationships in vertebrates is the negative correlation between intestinal length and proportion of animal prey in diet. While many fish groups exhibit this general pattern, other clades demonstrate minimal, and in some cases contrasting, associations between diet and intestinal length. Moreover, this relationship and its evolutionary derivation have received little attention from a phylogenetic perspective. This study documents the phylogenetic development of intestinal length variability, and resultant correlation with dietary habits, within a molecular phylogeny of 28 species of terapontid fishes. The Terapontidae (grunters), an ancestrally euryhaline-marine group, is the most trophically diverse of Australia’s freshwater fish families, with widespread shifts away from animal-prey-dominated diets occurring since their invasion of fresh waters. Results Description of ontogenetic development of intestinal complexity of terapontid fishes, in combination with ancestral character state reconstruction, demonstrated that complex intestinal looping (convolution) has evolved independently on multiple occasions within the family. This modification of ontogenetic development drives much of the associated interspecific variability in intestinal length evident in terapontids. Phylogenetically informed comparative analyses (phylogenetic independent contrasts) showed that the interspecific differences in intestinal length resulting from these ontogenetic developmental mechanisms explained ~65% of the variability in the proportion of animal material in terapontid diets. Conclusions The ontogenetic development of intestinal complexity appears to represent an important functional innovation underlying the extensive trophic differentiation seen in Australia’s freshwater terapontids, specifically facilitating the pronounced shifts away from carnivorous (including invertebrates and vertebrates) diets evident across the

  13. Ontogenetic Shifts in Brain Organization in the Bluespotted Stingray Neotrygon kuhlii (Chondrichthyes: Dasyatidae).

    PubMed

    Lisney, Thomas J; Yopak, Kara E; Camilieri-Asch, Victoria; Collin, Shaun P

    2017-02-28

    Fishes exhibit lifelong neurogenesis and continual brain growth. One consequence of this continual growth is that the nervous system has the potential to respond with enhanced plasticity to changes in ecological conditions that occur during ontogeny. The life histories of many teleost fishes are composed of a series of distinct stages that are characterized by shifts in diet, habitat, and behavior. In many cases, these shifts correlate with changes in overall brain growth and brain organization, possibly reflecting the relative importance of different senses and locomotor performance imposed by the new ecological niches they encounter throughout life. Chondrichthyan (cartilaginous) fishes also undergo ontogenetic shifts in habitat, movement patterns, diet, and behavior, but very little is known about any corresponding shifts in the size and organization of their brains. Here, we investigated postparturition ontogenetic changes in brain-body size scaling, the allometric scaling of seven major brain areas (olfactory bulbs, telencephalon, diencephalon, optic tectum, tegmentum, cerebellum, and medulla oblongata) relative to the rest of the brain, and cerebellar foliation in a chondrichthyan, i.e., the bluespotted stingray Neotrygon kuhlii. We also investigated the unusual morphological asymmetry of the cerebellum in this and other batoids. As in teleosts, the brain continues to grow throughout life, with a period of rapid initial growth relative to body size, before slowing considerably at the onset of sexual maturity. The olfactory bulbs and the cerebellum scale with positive allometry relative to the rest of the brain, whereas the other five brain areas scale with varying degrees of negative allometry. None of the major brain areas showed the stage-specific differences in rates of growth often found in teleosts. Cerebellar foliation also increases at a faster rate than overall brain growth. We speculate that changes in the olfactory bulbs and cerebellum could reflect

  14. Diel ontogenetic shift in parasitic activity in a gnathiid isopod on Caribbean coral reefs

    NASA Astrophysics Data System (ADS)

    Sikkel, P. C.; Ziemba, R. E.; Sears, W. T.; Wheeler, J. C.

    2009-06-01

    Ontogenetic niche shifts are characteristic of organisms with complex life cycles such as many marine invertebrates. Research has focused primarily on changes in habitat or diet. However, ontogenetic changes can also occur in the temporal pattern of foraging. Gnathiid isopods feed on fish blood throughout their larval stages and are the primary food item for cleaning organisms on coral reefs. At sites in Australia and the Caribbean, gnathiid larvae exhibit size-related differences in diel activity. However, it is unclear whether this is due to interspecific or intraspecific variation in behavior. Fish were deployed in cages near sunset on shallow reefs off St. John, U.S. Virgin Islands and allowed to be infected with larval gnathiids. Larvae collected from fish retrieved near midnight developed into adults, with most developing into females. In contrast, approximately 80% of gnathiids collected after first light developed into second or third stage larvae, and nearly all of the remaining, large, individuals developed into males. Comparison of ITS2 gene regions from individuals collected in emergence traps from the same reefs during the day versus during the night revealed no differences in this highly variable region. Thus, gnathiid larvae at this locality shift their time of activity as they develop, and larvae developing into males remain active over a longer time period than those developing into females.

  15. Detecting spatial ontogenetic niche shifts in complex dendritic ecological networks

    USGS Publications Warehouse

    Fields, William R.; Grant, Evan; Lowe, Winsor H.

    2017-01-01

    Ontogenetic niche shifts (ONS) are important drivers of population and community dynamics, but they can be difficult to identify for species with prolonged larval or juvenile stages, or for species that inhabit continuous habitats. Most studies of ONS focus on single transitions among discrete habitat patches at local scales. However, for species with long larval or juvenile periods, affinity for particular locations within connected habitat networks may differ among cohorts. The resulting spatial patterns of distribution can result from a combination of landscape-scale habitat structure, position of a habitat patch within a network, and local habitat characteristics—all of which may interact and change as individuals grow. We estimated such spatial ONS for spring salamanders (Gyrinophilus porphyriticus), which have a larval period that can last 4 years or more. Using mixture models to identify larval cohorts from size frequency data, we fit occupancy models for each age class using two measures of the branching structure of stream networks and three measures of stream network position. Larval salamander cohorts showed different preferences for the position of a site within the stream network, and the strength of these responses depended on the basin-wide spatial structure of the stream network. The isolation of a site had a stronger effect on occupancy in watersheds with more isolated headwater streams, while the catchment area, which is associated with gradients in stream habitat, had a stronger effect on occupancy in watersheds with more paired headwater streams. Our results show that considering the spatial structure of habitat networks can provide new insights on ONS in long-lived species.

  16. Evolution of ontogenetic dietary shifts and associated gut features in prickleback fishes (Teleostei: Stichaeidae).

    PubMed

    German, D P; Gawlicka, A K; Horn, M H

    2014-02-01

    We tested the hypothesis that an ontogenetic dietary shift from carnivory to herbivory or omnivory, and concomitant changes in the gut facilitating digestion of algae, are synapomorphies of the tribes Xiphisterini and Esselenichthyini in the family Stichaeidae (pricklebacks). Previous investigations have revealed that two xiphisterine pricklebacks-Xiphister mucosus and Xiphister atropurpureus-become herbivorous or omnivorous, respectively, as their bodies grow larger, and that their guts show related changes in length and function. In this study we found that, with increase in size, the basal member of the Xiphisterini, Phytichthys chirus, showed an increased proportion of algae in its diet, increased activity of α-amylase and decreased activity of aminopeptidase, all of which support the synapomorphy hypothesis. Cebidichthys violaceus, a herbivore in the Esselenichthyini, shows similar ontogenetic changes in diet and digestive tract length and physiology, but these features were not observed in two derived carnivores, Dictyosoma burgeri and Dictyosoma rubrimaculatum, within the clade. These results suggest that herbivory is isolated to C. violaceus within the Esselenichthyini. Allometric relationships of gut length as a function of body size generally follow diet within the Xiphisterini and Esselenichthyini, with herbivores having the longest guts, which become disproportionately longer than body size as the fishes grow, omnivores intermediate gut lengths, and carnivores the shortest. A carnivore from an adjacent clade, Anoplarchus purpurescens, had the shortest gut, which did not change in length relative to body length as the fish grew. Overall, our results clarify the patterns of dietary evolution within the Stichaeidae and lay the foundation for more detailed studies of dietary and digestive specialization in fishes in the family.

  17. Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes

    NASA Astrophysics Data System (ADS)

    Marsh, Jennifer M.; Mueter, Franz J.; Iken, Katrin; Danielson, Seth

    2017-01-01

    Climate warming and increasing development are expected to alter the ecosystem of the Chukchi Sea, including its fish communities. As a component of the Arctic Ecosystem Integrated Survey, we assessed the ontogenetic, spatial and temporal variability of the trophic level and diet of key fish species in the Chukchi Sea using N and C stable isotopes. During August and September of 2012 and 2013, 16 common fish species and two primary, invertebrate consumers were collected from surface, midwater and bottom trawls within the eastern Chukchi Sea. Linear mixed-effects models were used to detect possible variation in the relationship between body length and either δ13C or δ15N values among water masses and years for 13 fish species with an emphasis on Arctic cod (Boreogadus saida). We also examined the fish community isotopic niche space, trophic redundancy, and trophic separation within each water mass as measures of resiliency of the fish food web. Ontogenetic shifts in trophic level and diet were observed for most species and these changes tended to vary by water mass. As they increased in length, most fish species relied more on benthic prey with the exception of three forage fish species (walleye pollock, Gadus chalcogrammus, capelin, Mallotus villosus, and Pacific sandlance, Ammodytes hexapterus). Species that exhibited interannual differences in diet and trophic level were feeding at lower trophic levels and consumed a more pelagic diet in 2012 when zooplankton densities were higher. Fish communities occupied different isotopic niche spaces depending on water mass association. In more northerly Arctic waters, the fish community occupied the smallest isotopic niche space and relied heavily on a limited range of intermediate δ13C prey, whereas in warmer, nutrient-rich Bering Chukchi Summer Water, pelagic prey was important. In the warmest, Pacific-derived coastal water, fish consumed both benthic and pelagic prey. Examining how spatial gradients in trophic

  18. A Parent-Offspring Trade-Off Limits the Evolution of an Ontogenetic Niche Shift.

    PubMed

    Ten Brink, Hanna; de Roos, André M

    2017-07-01

    Many free-living animal species, including the majority of fish, insects, and amphibians, change their food and habitat during their life. Even though these ontogenetic changes in niche are common, it is not well understood which ecological conditions have favored the evolution of these shifts. Using an adaptive dynamics approach, we show that it is evolutionarily advantageous to switch to an alternative food source in the course of ontogeny when this results in a higher intake rate for the switching consumers. Individuals are, however, not able to specialize on this new food source when this negatively affects the performance early in life on the original food source. Selection on these early life stages is so strong that in species with a complete diet shift, evolution results in large juveniles and adults that are maladapted to the alternative food source while their offspring are specialized on the original food source when young. These outcomes suggest strong selection to decouple the different life stages, such that they can maximize their performance on different food sources independently from each other. Metamorphosis could be a way to decouple the different life stages and therefore evolve in species that feed on multiple food sources during their life.

  19. Predation and associational refuge drive ontogenetic niche shifts in an arctiid caterpillar.

    PubMed

    Grof-Tisza, Patrick; Holyoak, Marcel; Antell, Edward; Karban, Richard

    2015-01-01

    Despite the ubiquity of ontogenetic niche shifts, their drivers and consequences are poorly understood. Different nutritional requirements and stage-specific physiological limitations have often been offered as explanations for these life history features, but emerging work has demonstrated that top-down factors may also be important. We studied the roles of predation and associational refuge in ontogenetic niche shifts for a holometabolous insect (Platyprepia virginalis), which shifts habitats and host plants to pupate. We examined the effect of pupation site selection across habitats and host plants by late-instar caterpillars on the rate of predation during the relatively vulnerable pupal stage. Studying the ontogenetic transition from mobile caterpillar to non-feeding, sessile pupa allows isolation of top-down effects from bottom-up, nutritional effects. An observational study supported previous findings that feeding caterpillars preferred marsh habitats, but pupating caterpillars preferred prairie habitats. Experiments demonstrated that caterpillars preferred to pupate within a physically defended plant species. Pupation within this defended plant species resulted in reduced predation (an associational refuge), and removal of the physical defense structures negated the reduced-predation effect. This experiment shows that ontogenetic niche shifts can be driven by predation and can involve facilitation by a host plant that provides a refuge to predation. The co-option of plant chemical defenses by animals is widely established. However, finding a clear example in which an animal exploits a plant's physical defense is rare, especially in the context of ontogenetic niche shifts. This work shows that facilitation mediated by refuge from predation provided by host plants and life-stage-dependent predation risk can interact to shape species' distributions.

  20. Coexistence of predator and prey in intraguild predation systems with ontogenetic niche shifts.

    PubMed

    Hin, Vincent; Schellekens, Tim; Persson, Lennart; de Roos, André M

    2011-12-01

    In basic intraguild predation (IGP) systems, predators and prey also compete for a shared resource. Theory predicts that persistence of these systems is possible when intraguild prey is superior in competition and productivity is not too high. IGP often results from ontogenetic niche shifts, in which the diet of intraguild predators changes as a result of growth in body size (life-history omnivory). As a juvenile, a life-history omnivore competes with the species that becomes its prey later in life. Competition can hence limit growth of young predators, while adult predators can suppress consumers and therewith neutralize negative effects of competition. We formulate and analyze a stage-structured model that captures both basic IGP and life-history omnivory. The model predicts increasing coexistence of predators and consumers when resource use of stage-structured predators becomes more stage specific. This coexistence depends on adult predators requiring consumer biomass for reproduction and is less likely when consumers outcompete juvenile predators, in contrast to basic IGP. Therefore, coexistence occurs when predation structures the community and competition is negligible. Consequently, equilibrium patterns over productivity resemble those of three-species food chains. Life-history omnivory thus provides a mechanism that allows intraguild predators and prey to coexist over a wide range of resource productivity.

  1. Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates.

    PubMed

    Glazier, Douglas S; Hirst, Andrew G; Atkinson, David

    2015-03-07

    Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates

    PubMed Central

    Glazier, Douglas S.; Hirst, Andrew G.; Atkinson, David

    2015-01-01

    Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants. PMID:25652833

  3. Ontogenetic shifts and spatial associations in organ positions for snakes.

    PubMed

    Anderson, Gretchen E; Secor, Stephen M

    2015-12-01

    Snakes possess an elongated body form and serial placement of organs which provides the opportunity to explore historic and adaptive mechanisms of organ position. We examined the influence of body size and sex on the position of, and spatial associations between, the heart, liver, small intestine, and right kidney for ten phylogenetically diverse species of snakes that vary in body shape and habitat. Snake snout-vent length explained much of the variation in the position of these four organs. For all ten species, the position of the heart and liver relative to snout-vent length decreased as a function of size. As body size increased from neonate to adult, these two organs shifted anteriorly an average of 4.7% and 5.7% of snout-vent length, respectively. Similarly, the small intestine and right kidney shifted anteriorly with an increase in snout-vent length for seven and five of the species, respectively. The absolute and relative positioning of these organs did not differ between male and female Burmese pythons (Python molurus). However, for diamondback water snakes (Nerodia rhombifer), the liver and small intestine were more anteriorly positioned in females as compared to males, whereas the right kidney was positioned more anteriorly for males. Correlations of residuals of organ position (deviation from predicted position) demonstrated significant spatial associations between organs for nine of the ten species. For seven species, individuals with hearts more anterior (or posterior) than predicted also tended to possess livers that were similarly anteriorly (or posteriorly) placed. Positive associations between liver and small intestine positions and between small intestine and right kidney positions were observed for six species, while spatial associations between the heart and small intestine, heart and right kidney, and liver and right kidney were observed in three or four species. This study demonstrates that size, sex, and spatial associations may have

  4. Characterizing ontogenetic habitat shifts in marine fishes: advancing nascent methods for marine spatial management.

    PubMed

    Galaiduk, Ronen; Radford, Ben T; Saunders, Benjamin J; Newman, Stephen J; Harvey, Euan S

    2017-09-01

    Niche requirements and habitat resource partitioning by conspecific fishes of different sizes are significant knowledge gaps in the species distribution modelling domain. Management actions and operations are typically concentrated on static habitats, or specific areas of interest, without considering movement patterns of species associated with ontogenetic shifts in habitat usage. Generalized additive models were used to model the body-length-habitat relationships of six fish species. These models were used to identify subsets of environmental parameters that drive and explain the continuous length-habitat relationships for each of the study species, which vary in their degree of ecological and/or commercial importance. Continuous predictive maps of the length distributions for each of the six study species across approximately 200 km(2) of the study area were created from these models. The spatial patterns in habitat partitioning by individuals of different body lengths for all six study species provide strong evidence for ontogenetic shifts. This highlights the importance of considering ontogenetic processes for marine spatial management. Importantly, predictive hotspot maps were created that identify potential areas that accumulate individuals of similar life stages of multiple species (e.g., multispecies nursery areas). In circumstances where limited resources are available for monitoring and management of fish resources, predictive modelling is a valuable tool for studying previously overlooked processes such as ontogenetic habitat shifts. Predictive modelling provides crucial information that elucidates spatial patterns in community composition across mosaics of benthic habitats. This novel technique can contribute to the spatial management of coastal fish and fisheries by identifying areas that are important for different life history stages of multiple fish species. © 2017 by the Ecological Society of America.

  5. Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats.

    PubMed

    Price, James T; Paladino, Frank V; Lamont, Margaret M; Witherington, Blair E; Bates, Scott T; Soule, Tanya

    2017-01-01

    The gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure. Cloacal swabs were taken from individual turtles for analysis of the 16S rRNA gene sequences using Illumina sequencing. One fecal sample was also obtained, allowing for a preliminary comparison with the bacterial community of the cloaca. We found significant variation in the juvenile green turtle bacterial communities between pelagic and neritic habitats, suggesting that environmental and dietary factors support different bacterial communities in green turtles from these habitats. This is the first study to characterize the cloacal microbiome of green turtles in the context of their ontogenetic shifts, which could provide valuable insight into the origins of their gut bacteria and how the microbial community supports their shift to herbivory.

  6. Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats

    PubMed Central

    Price, James T.; Paladino, Frank V.; Lamont, Margaret M.; Witherington, Blair E.; Bates, Scott T.

    2017-01-01

    The gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure. Cloacal swabs were taken from individual turtles for analysis of the 16S rRNA gene sequences using Illumina sequencing. One fecal sample was also obtained, allowing for a preliminary comparison with the bacterial community of the cloaca. We found significant variation in the juvenile green turtle bacterial communities between pelagic and neritic habitats, suggesting that environmental and dietary factors support different bacterial communities in green turtles from these habitats. This is the first study to characterize the cloacal microbiome of green turtles in the context of their ontogenetic shifts, which could provide valuable insight into the origins of their gut bacteria and how the microbial community supports their shift to herbivory. PMID:28493980

  7. Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats

    USGS Publications Warehouse

    Price, James T.; Paladino, Frank V.; Lamont, Margaret M.; Witherington, Blair E.; Bates, Scott T.; Soule, Tanya

    2017-01-01

    The gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure. Cloacal swabs were taken from individual turtles for analysis of the 16S rRNA gene sequences using Illumina sequencing. One fecal sample was also obtained, allowing for a preliminary comparison with the bacterial community of the cloaca. We found significant variation in the juvenile green turtle bacterial communities between pelagic and neritic habitats, suggesting that environmental and dietary factors support different bacterial communities in green turtles from these habitats. This is the first study to characterize the cloacal microbiome of green turtles in the context of their ontogenetic shifts, which could provide valuable insight into the origins of their gut bacteria and how the microbial community supports their shift to herbivory.

  8. Predators with multiple ontogenetic niche shifts have limited potential for population growth and top-down control of their prey.

    PubMed

    van Leeuwen, Anieke; Huss, Magnus; Gårdmark, Anna; Casini, Michele; Vitale, Francesca; Hjelm, Joakim; Persson, Lennart; de Roos, André M

    2013-07-01

    Catastrophic collapses of top predators have revealed trophic cascades and community structuring by top-down control. When populations fail to recover after a collapse, this may indicate alternative stable states in the system. Overfishing has caused several of the most compelling cases of these dynamics, and in particular Atlantic cod stocks exemplify such lack of recovery. Often, competition between prey species and juvenile predators is hypothesized to explain the lack of recovery of predator populations. The predator is then considered to compete with its prey for one resource when small and to subsequently shift to piscivory. Yet predator life history is often more complex than that, including multiple ontogenetic diet shifts. Here we show that no alternative stable states occur when predators in an intermediate life stage feed on an additional resource (exclusive to the predator) before switching to piscivory, because predation and competition between prey and predator do not simultaneously structure community dynamics. We find top-down control by the predator only when there is no feedback from predator foraging on the additional resource. Otherwise, the predator population dynamics are governed by a bottleneck in individual growth occurring in the intermediate life stage. Therefore, additional resources for predators may be beneficial or detrimental for predator population growth and strongly influence the potential for top-down community control.

  9. Parasites as biological tags to track an ontogenetic shift in the feeding behaviour of Gadus morhua off West and East Greenland.

    PubMed

    Münster, Julian; Klimpel, Sven; Fock, Heino O; MacKenzie, Ken; Kuhn, Thomas

    2015-07-01

    Parasites, being an integral part of every ecosystem and trophically transmitted along the food webs, can provide detailed insights into the structure of food webs and can close the information gap between short-term stomach content analyses and long-term fish otolith analyses. They are useful for tracking ontogenetic shifts in the host's diet, the occurrence of specific organisms or migratory behaviour of their hosts, even in inaccessible environments. In the present study, stomach content analyses and parasitological examinations were performed on 70 Atlantic cod Gadus morhua, one of the most important high-level predators of small fish in the North Atlantic, caught during one research vessel cruise from West and East Greenlandic waters. Analyses revealed significant differences in fish size with higher values for East Greenland (average total length (TL) of 50.5 cm) compared to West Greenland (average TL of 33.3 cm). Clear differences were also present in prey and parasite composition. Crustacea was the main food source for all fish (IRI = 10082.70), while the importance of teleosts increased with fish size. With a prevalence of 85 % in West Greenland and 100 % in East Greenland, Nematoda were the most abundant parasite group. The results indicate an ontogenetic shift in the diet, which are discussed in the context of the common distribution theory, stock dynamics and migratory behaviour.

  10. Ontogenetic shifts in plant-plant interactions in a rare cycad within angiosperm communities.

    PubMed

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Dovčiak, Martin

    2014-06-01

    Gymnosperms and angiosperms can co-occur within the same habitats but key plant traits are thought to give angiosperms an evolutionary competitive advantage in many ecological settings. We studied ontogenetic changes in competitive and facilitative interactions between a rare gymnosperm (Dioon sonorense, our target species) and different plant and abiotic neighbours (conspecific-cycads, heterospecific-angiosperms, or abiotic-rocks) from 2007 to 2010 in an arid environment of northwestern Mexico. We monitored survival and growth of seedlings, juveniles, and adults of the cycad Dioon sonorense to evaluate how cycad survival and relative height growth rate (RHGR) responded to intra- and interspecific competition, canopy openness, and nearest neighbour. We tested spatial associations among D. sonorense life stages and angiosperm species and measured ontogenetic shifts in cycad shade tolerance. Canopy openness decreased cycad survival while intraspecific competition decreased survival and RHGR during early ontogeny. Seedling survival was higher in association with rocks and heterospecific neighbours where intraspecific competition was lower. Shade tolerance decreased with cycad ontogeny reflecting the spatial association of advanced stages with more open canopies. Interspecific facilitation during early ontogeny of our target species may promote its persistence in spite of increasing interspecific competition in later stages. We provide empirical support to the long-standing assumption that marginal rocky habitats serve as refugia from angiosperm competition for slow-growing gymnosperms such as cycads. The lack of knowledge of plant-plant interactions in rare or endangered species may hinder developing efficient conservation strategies (e.g. managing for sustained canopy cover), especially under the ongoing land use and climatic changes.

  11. Ontogenetic shifts in morphology and resource use of cisco Coregonus artedi.

    PubMed

    Muir, A M; Vecsei, P; Pratt, T C; Krueger, C C; Power, M; Reist, J D

    2013-02-01

    Two previously described lacustrine cisco Coregonus spp. morphs [i.e. a small (<300 mm fork length, L(F)), low-gillraker (≤44) morph and a large (≥300 mm L(F) ), high-gillraker (≥45) morph] from Great Slave Lake, NT, Canada, were found to be synonymous with cisco Coregonus artedi. Geometric body shape did not differ between the two size classes nor could they be differentiated by 24 size-corrected linear measurements, indicating that the two groups had similar phenotypes. Strong, positive correlations between all linear characters and geometric centroid size (a composite variable of fish body length, mass and age) suggested that body morphology changed with age as fish grew. Total gillraker number (N(GR)) increased with L(F) according to: N(GR) = 36.3 + 0.034L(F). Differences in gillraker number and phenotype with age and size were explained by shifts in habitat and trophic resource use. Relative abundance within 0-30, 30-60, 60-90 and >90 m depth strata differed between size classes suggesting that morphology changed when fish shifted their habitat as they grew older. Large C. artedi had lower δ(13)C and slightly higher δ(15)N, indicating greater reliance on pelagic prey resources (i.e. more or larger zooplankton, such as Mysis spp.), compared to small C. artedi, which relied slightly more on benthic prey. Gillraker shape and number have always been used as key diagnostic characters in coregonine taxonomy; based on the findings presented here, ontogenetic shifts should be accounted for in resulting classifications. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  12. The impacts of ontogenetic dietary shifts in yellow perch (Perca flavescens) on Zn and Hg accumulation.

    PubMed

    Kraemer, Lisa D; Evans, Douglas; Dillon, Peter J

    2012-04-01

    Yellow perch (Perca flavescens) undergo several ontogenetic dietary shifts, and consequently these fish feed at different trophic levels and rely on different carbon sources over their lifetime. Stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are powerful ecological tools that are used to provide a temporally integrated description of the feeding ecology of aquatic animals such as fish. The main objective of this study was to use stable isotopes of nitrogen and carbon to determine if dietary changes affected mercury (Hg) and zinc (Zn) accumulation in yellow perch ranging in size from approximately 5 cm to 27 cm. Results showed that Hg bioaccumulation generally increased with increasing trophic level in fish feeding at higher trophic levels, however, the relationship between Hg levels and δ(15)N was non-linear showing no relationship in small fish (less than 15 cm). In contrast, there was a negative, linear relationship between δ(15)N and Zn, suggesting that as perch fed at progressively higher trophic levels, less of Zn bioaccumulated. No relationship was observed between δ(13)C and metal levels in perch. Collectively, these results demonstrate a contrast in the behavior of Zn and Hg bioaccumulation in yellow perch as a function of trophic status. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Ontogenetic phase shifts in metabolism: links to development and anti-predator adaptation

    PubMed Central

    Yagi, Mitsuharu; Kanda, Takeshi; Takeda, Tatsusuke; Ishimatsu, Atsushi; Oikawa, Shin

    2010-01-01

    The allometric relationships between resting metabolism (VO2) and body mass (M), VO2 = aiMb, are considered a fundamental law of nature. A distinction though needs to be made between the ontogeny (within a species) and phylogeny (among species) of metabolism. However, the nature and significance of the intraspecific allometry (ontogeny of metabolism) have not been established in fishes. In this study, we present experimental evidence that a puffer fish ranging 0.0008–3 g in wet body mass has four distinct allometric phases in which three stepwise increases in scaling constants (ai, i = 1–4), i.e. ontogenetic phase shifts in metabolism, occur with growth during its early life stages at around 0.002, 0.01 and 0.1 g, keeping each scaling exponent constant in each phase (b = 0.795). Three stepwise increases in ai accompanied behavioural and morphological changes and three peaks of severe cannibalism, in which the majority of predation occurred on smaller fish that had a lower value of ai. Though fishes are generally highly fecund, producing a large number of small eggs, their survivability is very low. These results suggest that individuals with the ability to rapidly grow and step up ‘ai’ develop more anti-predator adaptation as a result of the decreased predatory risk. PMID:20444717

  14. Variations of Salminus hilarii diet (Ostariophysi, Characidae): seasonal and ontogenetic effects.

    PubMed

    Villares Junior, G A; Goitein, R

    2015-08-01

    This study described the variations seasonal and ontogenetic of Salminus hilarii diet. Samples were collected in the Sorocaba River, São Paulo, Brazil, one of the few rivers where individuals of the species still occur in a higher frequency. The preys consumed were analyzed by Importance Alimentary Index (AIi). To determine similarities between year seasons, the AIi data were analyzed by the Morisita-Horn index and reduced in cluster analysis, along with a statistical comparison made by one-way ANOSIM test (5%). The feeding activity was analyzed according to the stomach repletion index and compared among the year seasons using non parametric variance analysis Kruskal-Wallis test (5%). Comparison of prey consumed between immature and adult individuals was made by Spearman correlation (5%). A Pearson correlation (5%) was applied between the standard length of the fish and prey consumed, as well as between the mouth and prey heights. The analyzes of stomach contents showed that the diet of this species was exclusively piscivorous, with significant difference of prey consumption during the period, the same happening among adult and immature individuals. It was observed that these fishes use to swallow their prey whole and that significant correlations between size of predator and prey size can be observed. There is also correlation between the mouth height and the maximum prey depth. Salminus hilarii feeds on the available prey, and the species food composition and feeding activity depends on prey`s abundance, their size and morphology, as do the water temperatures.

  15. Ontogenetic Characterization of the Intestinal Microbiota of Channel Catfish through 16S rRNA Gene Sequencing Reveals Insights on Temporal Shifts and the Influence of Environmental Microbes

    PubMed Central

    Bledsoe, Jacob W.; Peterson, Brian C.; Swanson, Kelly S.; Small, Brian C.

    2016-01-01

    Aquaculture recently overtook capture fisheries as the largest producer of food fish, but to continue increasing fish production the industry is in search of better methods of improving fish health and growth. Pre- and probiotic supplementation has gained attention as a means of solving these issues, however, for such approaches to be successful, we must first gain a more holistic understanding of the factors influencing the microbial communities present in the intestines of fish. In this study, we characterize the bacterial communities associated with the digestive tract of a highly valuable U.S. aquaculture species, channel catfish Ictalurus punctatus, over the first 193 days of life to evaluate temporal changes that may occur throughout ontogenetic development of the host. Intestinal microbiota were surveyed with high-throughput DNA sequencing of 16S rRNA V4 gene amplicons derived from fish at 3, 65, 125, and 193 days post hatch (dph), while also characterizing the environmental microbes derived from the water supply and the administered diets. Microbial communities inhabiting the intestines of catfish early in life were dynamic, with significant shifts occurring up to 125 dph when the microbiota somewhat stabilized, as shifts were less apparent between 125 to 193 dph. Bacterial phyla present in the gut of catfish throughout ontogeny include Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria; with the species Cetobacterium somerae and Plesiomonas shigelloides showing the highest abundance in the catfish microbiota after 3 dph. Comparisons of the gut microbiota to the environmental microbes reveals that the fish gut is maintained as a niche habitat, separate from the overall microbial communities present in diets and water-supply. Although, there is also evidence that the environmental microbiota serves as an inoculum to the fish gut. Our results have implications for future research related to channel catfish biology and culture, and increase our

  16. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity.

    PubMed

    Mackessy, Stephen P; Sixberry, Nicole M; Heyborne, William H; Fritts, Thomas

    2006-04-01

    The Brown Treesnake (Boiga irregularis), a rear-fanged member of the polyphyletic family Colubridae, is an introduced predator on Guam which has been responsible for numerous human envenomations. Because little is known about this species' venom, we characterized venom proteins from B. irregularis using enzyme assays, one and 2D electrophoresis, Western blot analysis, mass spectrometry, HPLC and toxicity assays. Venom yields and protein content varied significantly with snake size, and large adult specimens averaged over 500 microl venom (19.2 mg, protein content approximately 90%). Only two enzymes, azocaseinolytic metalloprotease and acetylcholinesterase, were detected in venoms, and both activities increased with snake size/age. Western blot analysis demonstrated a 25 kDa CRiSP homolog in venoms from both neonate and adult snakes. 2D electrophoresis showed variation between venoms from neonate and adult snakes, especially with respect to metalloprotease and acetylcholinesterase. Analysis by MALDI-TOF mass spectrometry revealed the presence of numerous proteins with molecular masses of approximately 8.5-11 kDa. Adult B. irregularis venom was quite toxic to domestic chickens (Gallus domesticus; 1.75 microg/g) and lizards (Hemidactylus geckos: 2.5 microg/g and Carlia skinks: 4.5 microg/g), and intoxication was characterized by rapid paralysis of all species and neck droop in chickens. Toxicity of venom from neonates toward geckos was 1.1 microg/g, consistent with the presence of a greater diversity of 8-11 kDa proteins (suspected neurotoxins) in these venoms. All of these values were notably lower than murine LD50 values (neonate: 18 microg/g; adult: 31 microg/g). Like venoms of several front-fanged species, B. irregularis venom showed an ontogenetic shift in enzyme activities and toxicity, and neonate snakes produced more toxic venoms with lower protease and acetylcholinesterase activities. High toxicity toward non-mammalian prey demonstrated the presence of taxa

  17. Intersexual allometry differences and ontogenetic shifts of coloration patterns in two aquatic turtles, Graptemys oculifera and Graptemys flavimaculata

    USGS Publications Warehouse

    Ennen, Joshua R.; Lindeman, Peter V.; Lovich, Jeffrey E.

    2015-01-01

    Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves.

  18. Intersexual allometry differences and ontogenetic shifts of coloration patterns in two aquatic turtles, Graptemys oculifera and Graptemys flavimaculata

    PubMed Central

    Ennen, Joshua R; Lindeman, Peter V; Lovich, Jeffrey E

    2015-01-01

    Coloration can play critical roles in a species' biology. The allometry of color patterns may be useful for elucidating the evolutionary mechanisms responsible for shaping the traits. We measured characteristics relating to eight aspects of color patterns from Graptemys oculifera and G. flavimaculata to investigate the allometric differences among male, female, and unsexed juvenile specimens. Additionally, we investigated ontogenetic shifts by incorporating the unsexed juveniles into the male and female datasets. In general, male color traits were isometric (i.e., color scaled with body size), while females and juvenile color traits were hypoallometric, growing in size more slowly than the increase in body size. When we included unsexed juveniles in our male and female datasets, our linear regression analyses found all relationships to be hypoallometric and our model selection analysis found support for nonlinear models describing the relationship between body size and color patterns, suggestive of an ontogenetic shift in coloration traits for both sexes at maturity. Although color is critical for many species' biology and therefore under strong selective pressure in many other species, our results are likely explained by an epiphenomenon related to the different selection pressures on body size and growth rates between juveniles and adults and less attributable to the evolution of color patterns themselves. PMID:26078863

  19. Ontogenetic shift in crayfish δ(13)C as a measure of land-water ecotonal coupling.

    PubMed

    France, Robert

    1996-07-01

    Although ontogenetic changes in the carbon isotope ratios of marine fauna have been well studied those of freshwater organisms have not. As a result, we may have a less than adequate assessment of the incorporation of allochthonous detritus into freshwater foodwebs. This study found a δ(13)C range of 9‰ for crayfish (Orconectes virilis) from oligotrophic Canadian Shield lakes. Much (60-83%) of this variability was explained by body size. A simple isotopic mixing model suggests that by their third year of life, crayfish in these lakes rely more substantially upon terrestrial detritus than epilithic algae for energy.

  20. Integrating Ontogenetic Shift, Growth and Mortality to Determine a Species' Ecological Role from Isotopic Signatures

    PubMed Central

    Fontoura, Nelson F.; Rodrigues, Lúcia R.; Batista, Cibele B.; Persch, Tanilene S. P.; Janowicz, Mariola E.

    2015-01-01

    Understanding species linkages and energy transfer is a basic goal underlying any attempt at ecosystem analysis. Although the first food-web studies were based on gut contents of captured specimens, the assessment of stable isotopes, mainly δ13C and δ15N, has become a standard methodology for wide-range analyses in the last 30 years. Stable isotopes provide information on the trophic level of species, food-web length, and origin of organic matter ingested by consumers. In this study, we analyzed the ontogenetic variability of δ13C and δ15N obtained from samples of three Neotropical fish species: silver sardine (Lycengraulis grossidens, n=46), white lambari (Cyanocharax alburnus, n= 26), and the red-tail lambari (Astyanax fasciatus, n=23) in Pinguela Lagoon, southern Brazil. We developed a new metric, called the Weighted Isotopic Signature (φ 15N or φ 13C, ‰), that incorporates ontogenetic variability, body growth, and natural mortality into a single number. PMID:25996777

  1. The tooth, the whole tooth and nothing but the tooth: tooth shape and ontogenetic shift dynamics in the white shark Carcharodon carcharias.

    PubMed

    French, G C A; Stürup, M; Rizzuto, S; van Wyk, J H; Edwards, D; Dolan, R W; Wintner, S P; Towner, A V; Hughes, W O H

    2017-10-01

    Results from this study of the white shark Carcharodon carcharias include measurements obtained using a novel photographic method that reveal significant differences between the sexes in the relationship between tooth cuspidity and shark total length, and a novel ontogenetic change in male tooth shape. Males exhibit broader upper first teeth and increased distal inclination of upper third teeth with increasing length, while females do not present a consistent morphological change. Substantial individual variation, with implications for pace of life syndrome, was present in males and tooth polymorphism was suggested in females. Sexual differences and individual variation may play major roles in ontogenetic changes in tooth morphology in C. carcharias, with potential implications for their foraging biology. Such individual and sexual differences should be included in studies of ontogenetic shift dynamics in other species and systems. © 2017 The Fisheries Society of the British Isles.

  2. Characterising ontogenetic niche shifts in Nile crocodile using stable isotope (δ13C, δ15N) analyses of scute keratin.

    PubMed

    Radloff, Frans G T; Hobson, Keith A; Leslie, Alison J

    2012-09-01

    Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ(13) C) and nitrogen (δ(15) N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35-463 cm total length), we found prominent size-related changes in the scute keratin δ(13) C and δ(15) N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.

  3. Ontogenetic shifts in male mating preference and morph-specific polyandry in a female colour polymorphic insect.

    PubMed

    Sánchez-Guillén, Rosa Ana; Hammers, Martijn; Hansson, Bengt; Van Gossum, Hans; Cordero-Rivera, Adolfo; Galicia Mendoza, Dalia Ivette; Wellenreuther, Maren

    2013-06-06

    Sexual conflict over mating rates may favour the origin and maintenance of phenotypes with contrasting reproductive strategies. The damselfly Ischnura elegans is characterised by a female colour polymorphism that consists of one androchrome and two gynochrome female morphs. Previous studies have shown that the polymorphism is genetic and to a high extent maintained by negative frequency-dependent mating success that varies temporally and spatially. However, the role of learning in male mating preferences has received little attention. We used molecular markers to investigate differences in polyandry between female morphs. In addition, we experimentally investigated innate male mating preferences and experience-dependent shifts in male mating preferences for female morphs. Field and molecular data show that androchrome females were less polyandrous than gynochrome females. Interestingly, we found that naïve males showed significantly higher sexual preferences to androchrome than to gynochrome females in experimental trials. In contrast, experienced males showed no preference for androchrome females. The ontogenetic change in male mate preferences occurs most likely because of learned mate recognition after experience with females, which in this case does not result in a preference for one of the morphs, but rather in the loss of an innate preference for androchrome females.

  4. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    PubMed

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories.

  5. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates

    PubMed Central

    Codron, Daryl; Carbone, Chris; Müller, Dennis W. H.; Clauss, Marcus

    2012-01-01

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals—the other dominant vertebrate group since the Mesozoic—have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism—based on an understanding of different ecological and evolutionary constraints across vertebrate groups—that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous–Tertiary (K–T) boundary, and how post-K–T mammals were able to diversify into larger size categories. PMID:22513279

  6. Ontogenetic habitat shift, population growth, and burrowing behavior of the Indo-Pacific beach star, Archaster typicus (Echinodermata; Asteroidea).

    PubMed

    Bos, Arthur R; Gumanao, Girley S; van Katwijk, Marieke M; Mueller, Benjamin; Saceda, Marjho M; Tejada, Rosie Lynn P

    2011-01-01

    Archaster typicus, a common sea star in Indo-Pacific regions, has been a target for the ornamental trade, even though little is known about its population biology. Spatial and temporal patterns of abundance and size structure of A. typicus were studied in the Davao Gulf, the Philippines (125°42.7'E, 7°0.6'N), from February 2008 to December 2009. Specimens of A. typicus were associated with intertidal mangrove prop roots, seagrass meadows, sandy beaches, and shoals. Among prop roots, specimens were significantly smaller and had highest densities (131 ind. m(-2)) between November and March. High organic matter in sediment and a relatively low predation rate seemed to support juvenile life among mangroves. Size and density analyses provided evidence that individuals gradually move to seagrass, sandy habitats, and shoals as they age. Specimens were significantly larger at a shoal (maximum radius R = 81 mm). New recruits were found between August and November in both 2008 and 2009. Timing of recruitment and population size frequencies confirmed a seasonal reproductive cycle. Juveniles had relatively high growth rates (2-7 mm month(-1)) and may reach an R of 20-25 mm after 1 year. Growth rates of larger specimens (R > 30 mm) were generally <2 mm month(-1). The activity pattern of A. typicus was related to the tidal phase and not to time of day: Specimens moved over the sediment surface during low tides and were burrowed during high tides possibly avoiding predation. This is one of the first studies to document an ontogenetic habitat shift for sea stars and provides new biological information as a basis for management of harvested A. typicus populations.

  7. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts.

    PubMed

    Durban, Jordi; Sanz, Libia; Trevisan-Silva, Dilza; Neri-Castro, Edgar; Alagón, Alejandro; Calvete, Juan J

    2017-09-01

    Adult rattlesnakes within genus Crotalus express one of two distinct venom phenotypes, type I (hemorrhagic) and type II (neurotoxic). In Costa Rican Central American rattlesnake, ontogenetic changes in the concentration of miRNAs modulate venom type II to type I transition. Venomics and venom gland transcriptome analyses showed that adult C. simus and C. tzabcan expressed intermediate patterns between type II and type I venoms, whereas C. culminatus had a canonical type I venom. Neonate/juvenile and adult Mexican rattlesnakes showed notable inter- and intraspecific variability in the number, type, abundance and ontogenetic shifts of the transcriptional and translational venom gland activities. These results support a role for miRNAs in the ontogenetic venom compositional changes in the three congeneric Mexican rattlesnakes. It is worth noting the finding of dual-action miRNAs, which silence the translation of neurotoxic heterodimeric PLA2 crotoxin and acidic PLA2 mRNAs while simultaneously up-regulating SVMP-targeting mRNAs. Dual transcriptional regulation potentially explains the existence of mutually exclusive crotoxin-rich (type-II) and SVMP-rich (type-I) venom phenotypic dichotomy among rattlesnakes. Our results support the hypothesis that alterations of the distribution of miRNAs, modulating the translational activity of venom gland toxin-encoding mRNAs in response to an external cue, may contribute to the mechanism generating adaptive venom variability.

  8. Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ(15) N values from bone growth rings.

    PubMed

    Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Peckham, S Hoyt; Avens, Larisa; Kurle, Carolyn M

    2017-05-01

    Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ(15) N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ(15) N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the

  9. Integrated “omics” profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus

    PubMed Central

    2013-01-01

    Background Understanding the processes that drive the evolution of snake venom is a topic of great research interest in molecular and evolutionary toxinology. Recent studies suggest that ontogenetic changes in venom composition are genetically controlled rather than environmentally induced. However, the molecular mechanisms underlying these changes remain elusive. Here we have explored the basis and level of regulation of the ontogenetic shift in the venom composition of the Central American rattlesnake, Crotalus s. simus using a combined proteomics and transcriptomics approach. Results Proteomic analysis showed that the ontogenetic shift in the venom composition of C. s. simus is essentially characterized by a gradual reduction in the expression of serine proteinases and PLA2 molecules, particularly crotoxin, a β-neurotoxic heterodimeric PLA2, concominantly with an increment of PI and PIII metalloproteinases at age 9–18 months. Comparison of the transcriptional activity of the venom glands of neonate and adult C. s. simus specimens indicated that their transcriptomes exhibit indistinguisable toxin family profiles, suggesting that the elusive mechanism by which shared transcriptomes generate divergent venom phenotypes may operate post-transcriptionally. Specifically, miRNAs with frequency count of 1000 or greater exhibited an uneven distribution between the newborn and adult datasets. Of note, 590 copies of a miRNA targeting crotoxin B-subunit was exclusively found in the transcriptome of the adult snake, whereas 1185 copies of a miRNA complementary to a PIII-SVMP mRNA was uniquely present in the newborn dataset. These results support the view that age-dependent changes in the concentration of miRNA modulating the transition from a crotoxin-rich to a SVMP-rich venom from birth through adulhood can potentially explain what is observed in the proteomic analysis of the ontogenetic changes in the venom composition of C. s. simus. Conclusions Existing snake venom

  10. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus.

    PubMed

    Durban, Jordi; Pérez, Alicia; Sanz, Libia; Gómez, Aarón; Bonilla, Fabián; Rodríguez, Santos; Chacón, Danilo; Sasa, Mahmood; Angulo, Yamileth; Gutiérrez, José M; Calvete, Juan J

    2013-04-10

    Understanding the processes that drive the evolution of snake venom is a topic of great research interest in molecular and evolutionary toxinology. Recent studies suggest that ontogenetic changes in venom composition are genetically controlled rather than environmentally induced. However, the molecular mechanisms underlying these changes remain elusive. Here we have explored the basis and level of regulation of the ontogenetic shift in the venom composition of the Central American rattlesnake, Crotalus s. simus using a combined proteomics and transcriptomics approach. Proteomic analysis showed that the ontogenetic shift in the venom composition of C. s. simus is essentially characterized by a gradual reduction in the expression of serine proteinases and PLA2 molecules, particularly crotoxin, a β-neurotoxic heterodimeric PLA2, concominantly with an increment of PI and PIII metalloproteinases at age 9-18 months. Comparison of the transcriptional activity of the venom glands of neonate and adult C. s. simus specimens indicated that their transcriptomes exhibit indistinguisable toxin family profiles, suggesting that the elusive mechanism by which shared transcriptomes generate divergent venom phenotypes may operate post-transcriptionally. Specifically, miRNAs with frequency count of 1000 or greater exhibited an uneven distribution between the newborn and adult datasets. Of note, 590 copies of a miRNA targeting crotoxin B-subunit was exclusively found in the transcriptome of the adult snake, whereas 1185 copies of a miRNA complementary to a PIII-SVMP mRNA was uniquely present in the newborn dataset. These results support the view that age-dependent changes in the concentration of miRNA modulating the transition from a crotoxin-rich to a SVMP-rich venom from birth through adulthood can potentially explain what is observed in the proteomic analysis of the ontogenetic changes in the venom composition of C. s. simus. Existing snake venom toxins are the result of early

  11. Shifting the Balance of Sodium and Potassium in Your Diet

    MedlinePlus

    ... Resources About FAQ Contact Shifting the Balance of Sodium and Potassium in Your Diet Most Americans consume ... doctor before trying a potassium-based salt substitute. Sodium and Potassium Amounts in Fresh and Processed Foods ...

  12. Multistate characters and diet shifts: evolution of Erotylidae (Coleoptera).

    PubMed

    Leschen, Richard A B; Buckley, Thomas R

    2007-02-01

    The dominance of angiosperms has played a direct role in the diversification of insects, especially Coleoptera. The shift to angiosperm feeding from other diets is likely to have increased the rate of speciation in Phytophaga. However, Phytophaga is only one of many hyperdiverse lineages of beetles and studies of host-shift proliferation have been somewhat limited to groups that primitively feed on plants. We have studied the diet-diverse beetle family Erotylidae (Cucujoidea) to determine if diet is correlated with high diversification rates and morphological evolution by first reconstructing ancestral diets and then testing for associations between diet and species number and diet and ovipositor type. A Bayesian phylogenetic analysis of morphological data that was previously published in Leschen (2003, Pages 1-108 in Fauna of New Zealand, 47; 53 terminal taxa and 1 outgroup, 120 adult characters and 1 diet character) yielded results that are similar to the parsimony analyses of Leschen (2003). Ancestral state reconstructions based on Bayesian and parsimony inference were largely congruent and both reconstructed microfungal feeding (the diet of the outgroup Biphyllidae) at the root of the Erotylidae tree. Shifts among microfungal, saprophagous, and phytophagous diets were most frequent. The largest numbers of species are contained in lineages that are macrofungal feeders (subfamily Erotylinae) and phytophagous (derived Languriinae), although the Bayesian posterior predictive tests of character state correlation were unable to detect any significant associations. Ovipositor morphology correlated with diet (i.e., acute forms were associated with phytophagy and unspecialized forms were associated with a mixture of diets). Although there is a general trend to increased species number associated with the shift from microfungal feeding to phytophagy (based on character mapping and mainly restricted to shifts in Languriinae), there is a large radiation of taxa feeding on

  13. Ontogenetic shifts in fishes between vegetated and unvegetated tidepools: assessing the effect of physical structure on fish habitat selection.

    PubMed

    Oliveira, R R de S; Macieira, R M; Giarrizzo, T

    2016-07-01

    The aim of this study of tidepool fishes was analyse variation in their use of intertidal habitats (rocky shore, mangrove and salt marsh). Specimens were collected during wet and dry periods from 18 tidepools in the three habitats. A total of 7690 specimens, belonging to 19 families and 30 species, was captured. The fish assemblage in rocky shore pools was clearly distinct from that of vegetated habitats (mangrove and salt marshes). The rocky shore fauna was dominated by permanent resident species, whereas pools in mangrove and salt marsh habitats were inhabited primarily by opportunistic and transient species. Habitat segregation by ontogenetic stage (e.g. smaller individuals in mangroves, intermediate size classes in salt marsh and sub-adults/adults on rocky shores) indicates age-related migration in response to the physical structure of these habitats and to the natural history of each fish species. These findings are important for the development of effective conservation and management plans for intertidal fishes. © 2016 The Fisheries Society of the British Isles.

  14. The reaction of European lobster larvae (Homarus gammarus) to different quality food: effects of ontogenetic shifts and pre-feeding history.

    PubMed

    Schoo, Katherina L; Aberle, Nicole; Malzahn, Arne M; Schmalenbach, Isabel; Boersma, Maarten

    2014-02-01

    Young larval stages of many organisms represent bottlenecks in the life-history of many species. The high mortality commonly observed in, for example, decapod larvae has often been linked to poor nutrition, with most studies focussing on food quantity. Here, we focus instead on the effects of quality and have investigated its effects on the nutritional condition of lobster larvae. We established a tri-trophic food chain consisting of the cryptophyte Rhodomonas salina, the calanoid copepod Acartia tonsa and larvae of the European lobster Homarus gammarus. In a set of experiments, we manipulated the C:N:P stoichiometry of the primary producers, and accordingly those of the primary consumer. In a first experiment, R. salina was grown under N- and P-limitation and the nutrient content of the algae was manipulated by addition of the limiting nutrient to create a food quality gradient. In a second experiment, the effect on lobster larvae of long- and short-term exposure to food of varying quality during ontogenetic development was investigated. The condition of the lobster larvae was negatively affected even by subtle N- and P-nutrient limitations of the algae. Furthermore, younger lobster larvae were more vulnerable to nutrient limitation than older ones, suggesting an ontogenetic shift in the capacity of lobster larvae to cope with low quality food. The results presented here might have substantial consequences for the survival of lobster larvae in the field, as, in the light of future climate change and re-oligotrophication of the North Sea, lobster larvae might face marked changes in temperature and nutrient conditions, thus significantly altering their condition and growth.

  15. The joint evolution of traits and habitat: ontogenetic shifts in leaf morphology and wetland specialization in Lasthenia.

    PubMed

    Forrestel, Elisabeth J; Ackerly, David D; Emery, Nancy C

    2015-11-01

    The interplay between functional traits and habitat associations drives species' evolutionary responses to environmental heterogeneity, including processes such as adaptation, ecological speciation, and niche evolution. Seasonal variation is an aspect of the environment that varies across habitats, and could result in adaptive shifts in trait values across the life cycle of a plant. Here, we use phylogenetic comparative methods to evaluate the joint evolution of plant traits and habitat associations in Lasthenia (Asteraceae), a small clade of predominantly annual plants that have differentiated into an ecologically diverse range of habitats, including seasonal ephemeral wetlands known as vernal pools. Our results support the hypothesis that there is a link between the evolution of leaf morphology and the ecohydrological niche in Lasthenia, and, in the formation of aerenchyma (air space), differentiation between vernal pool and terrestrial taxa is fine-tuned to specific stages of plant ontogeny that reflects the evolution of heterophylly. Our findings demonstrate how the relationships between traits and habitat type can vary across the development of an organism, while highlighting a carefully considered comparative approach for examining correlated trait and niche evolution in a recently diversified and ecologically diverse plant clade. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  16. Calorie shifting diet versus calorie restriction diet: a comparative clinical trial study.

    PubMed

    Davoodi, Sayed Hossein; Ajami, Marjan; Ayatollahi, Seyyed Abdulmajid; Dowlatshahi, Kamran; Javedan, Gholamali; Pazoki-Toroudi, Hamid Reza

    2014-04-01

    Finding new tolerable methods in weight loss has largely been an issue of interest for specialists. Present study compared a novel method of calorie shifting diet (CSD) with classic calorie restriction (CR) on weight loss in overweight and obese subjects. Seventy-four subjects (body mass index ≥25; 37) were randomized to 4 weeks control diet, 6 weeks CSD or CR diets, and 4 weeks follow-up period. CSD consisted of three phases each lasts for 2 weeks, 11 days calorie restriction which included four meals every day, and 4 h fasting between meals follow with 3 days self-selecting diet. CR subjects receive determined low calorie diet. Anthropometric and metabolic measures were assessed at different time points in the study. Four weeks after treatment, significant weight, and fat loss started (6.02 and 5.15 kg) and continued for 1 month of follow-up (5.24 and 4.3 kg), which was correlated to the restricted energy intake (P < 0.05). During three CSD phases, resting metabolic rate tended to remain unchanged. The decrease in plasma glucose, total cholesterol, and triacylglycerol were greater among subjects on the CSD diet (P < 0.05). Feeling of hunger decreased and satisfaction increased among those on the CSD diet after 4 weeks (P < 0.05). The CSD diet was associated with a greater improvement in some anthropometric measures, Adherence was better among CSD subjects. Longer and larger studies are required to determine the long-term safety and efficacy of CSD diet.

  17. Intraspecific diet shift in Talitrus saltator inhabiting exposed sandy beaches

    NASA Astrophysics Data System (ADS)

    Olabarria, Celia; Incera, Mónica; Garrido, Josefina; Rodil, Iván F.; Rossi, Francesca

    2009-09-01

    Talitrid amphipods are the most abundant herbivores on exposed sandy beaches. Despite their important role as trophic intermediates between macrophytes and higher levels (i.e. insect and bird) of beach food webs, very little information is available on their feeding patterns. The main aim of this study was to investigate intraspecific differences in the feeding behaviour of Talitrus saltator. We tested the hypotheses that: (1) adult females and males showed different isotope signatures and therefore relied on different sources of food; and (2) patterns of variation of isotope signatures of juveniles differed from those of adult specimens, evidencing a diet shift during the development. We used stable isotope signatures and tested for differences upon the level on the shore, times of the year and beaches experiencing similar morpho-dynamic and environmental conditions. Finally, we investigated the trophic significance of macrophyte detritus in the diet of males, females and juveniles. Results showed that adult males had a more variable diet than females and juveniles (inferred from δ 13C and δ 15N values). Dual-isotope graphs suggested that Sargassum muticum and Cystoseira baccata wrack could be among the main food sources for both juvenile and adult stage.

  18. Shifts in developmental diet breadth of Lymantria xylina (Lepidoptera: Lymantriidae).

    PubMed

    Hwang, Shaw-Yhi; Hwang, Fu-Chang; Shen, Tse-Chi

    2007-08-01

    The moth Lymantria xylina Swinhoe (1903) (Lepidoptera: Lymantriidae) is a major defoliator of hardwood and fruit trees in Taiwan. Although the plants identified as host plants of L. xylina usually refer to plants used as food or as shelter, most of the host plant identifications have not considered the role of these hosts on larval development. This study investigated various instars feeding on different plants to assess the developmental diet breath of L. xylina. Forty-seven plant species, belonging to 25 families were used in feeding trials. Various bioassays, including first instar survival and long-term feeding trials, indicated the most suitable host plants for the different developmental stages. Results of the first instar survival trial indicated that first instars could survive only on 13 of the tested plant species. In addition, first instars could only successfully grow to pupa on seven of these 13 test plants species. To assess the developmental diet breath shifts of this moth, 38 plant species (excluding those nine plant species that the first instars did not feed upon) were fed to third and fifth instars in long-term feeding trials. Survival to pupa was noted on 12 and 13 test plant species for the third and fifth instars, respectively. In short, we found that the larvae performed differently when fed on various host plants and that the host plant range increased with the larval stage. Therefore, it is necessary to adjust the host plant range of this moth and to consider host plant breadth together with the developmental stages of caterpillars.

  19. Diet shifts of Caribbean grunts (Haemulidae) and snappers (Lutjanidae) and the relation with nursery-to-coral reef migrations

    NASA Astrophysics Data System (ADS)

    Cocheret de la Morinière, E.; Pollux, B. J. A.; Nagelkerken, I.; van der Velde, G.

    2003-08-01

    The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species ( Haemulon sciurus and Haemulon flavolineatum) and of two snapper species ( Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species 'switched' from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger

  20. Diet quality and sleep quality among day and night shift nurses.

    PubMed

    Beebe, Deborah; Chang, Jen Jen; Kress, Kathleen; Mattfeldt-Beman, Mildred

    2017-10-01

    To determine whether night shift workers have a poorer diet quality and sleep quality when compared with day shift nurses. There is a dearth of research investigating the association between diet quality and sleep quality of day and night shift nurses. Data on nurses (n = 103) working either a day or night shift from two Midwestern hospitals were obtained from August 2015 to February 2016. The instruments used were the Diet History Questionnaire and the Pittsburg Sleep Quality Index. Independent samples t-tests were used to examine differences in diet and sleep quality by work shift schedule. There were no statistically significant differences between nurses working day or night shift and sleep quality (P = 0.0684), as well as diet quality (P = 0.6499). There was a significant difference between both body mass index (P = 0.0014) and exercise (P = 0.0020) with regard to diet quality. Body mass index and sleep quality were also significantly associated (P = 0.0032). Our study found no differences between day and night shift with regard to sleep and diet quality among nurses. Deliberate health initiatives and wellness programmes specifically targeting nurses are needed to increase knowledge about maintaining a healthy lifestyle while working as a nurse, whether it is day or night shift. © 2017 John Wiley & Sons Ltd.

  1. Genomic signatures of diet-related shifts during human origins

    PubMed Central

    Babbitt, Courtney C.; Warner, Lisa R.; Fedrigo, Olivier; Wall, Christine E.; Wray, Gregory A.

    2011-01-01

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates. PMID:21177690

  2. Genomic signatures of diet-related shifts during human origins.

    PubMed

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  3. Stochastic ontogenetic growth model

    NASA Astrophysics Data System (ADS)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  4. ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES

    EPA Science Inventory

    Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...

  5. ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES

    EPA Science Inventory

    Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...

  6. The contribution of vegetarian diets to health and disease: a paradigm shift?

    PubMed

    Sabaté, Joan

    2003-09-01

    Advances in nutrition research during the past few decades have changed scientists' understanding of the contribution of vegetarian diets to human health and disease. Diets largely based on plant foods, such as well-balanced vegetarian diets, could best prevent nutrient deficiencies as well as diet-related chronic diseases. However, restrictive or unbalanced vegetarian diets may lead to nutritional deficiencies, particularly in situations of high metabolic demand. If some vegetarian diets are healthier than diets largely based on animal products, this constitutes an important departure from previous views on dietary recommendations to prevent disease conditions. Based on different paradigms, 3 models are presented depicting the population health risks and benefits of vegetarian and meat-based diets. This series of models encapsulates the evolution of scientific understanding on the overall effects of these dietary patterns on human health. Recent scientific advances seem to have resulted in a paradigm shift: diets largely based on plant foods, such as well-balanced vegetarian diets, are viewed more as improving health than as causing disease, in contrast with meat-based diets.

  7. Intraspecific diet shift of Macoma balthica during community reassembly in an estuarine intertidal flat

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Middelburg, Jack J.

    2011-05-01

    During community reassembly, consumers may express adaptive feeding behaviour in response to the presence of other species or according to their development. During the community reassembly after hypoxia of a temperate estuarine intertidal area, we quantified the microphytobenthos contribution to the diet of the three numerically dominant macrofauna consumers, using 13C-carbon tracing experiments. We then explored the relationships between their size and the microphytobenthos contribution to their diet. The polychaetes Hediste diversicolor and Pygospio elegans did not show a clear pattern of diet shift. Conversely, at a late stage of community reassembly, there was a dramatic decrease in the contribution of benthic microalgae to the diet of the clam Macoma balthica within the juvenile specimens (≤5 mm), which were recolonising the sediment. The contribution of microphytobenthos decreased with the size ( r = -0.81, n = 18) and the largest juveniles incorporated benthic microalgal carbon similarly to their co-specific adults found in the undisturbed areas. Including both juveniles and adults, the size-diet relationship of M. balthica followed an inverse logarithmic curve during community reassembly. Such shape differed from the linear relationship based on the natural abundance of stable carbon isotope as previously collected in the undisturbed surroundings. Our study provides evidence of diet shift during community reassembly and suggests that such diet shift might follow both consumer development in the recolonising areas and other processes related to successional stages.

  8. Shifting diet, shifting culture? A bioarchaeological approach to island dietary development on Iron-Age Öland, Baltic Sea.

    PubMed

    Wilhelmson, Helene

    2017-06-01

    The diet and subsistence in Iron-Age Öland is debated as earlier studies and different archaeological sources seemingly provide conflicting interpretations. The objectives of this study are therefore to: (i) add new insights on diet and (ii) investigate the chronological variation in detail. It is common in studies of diet to investigate differences between datasets defined by archaeological periods (determined by artefact typology), but it is rare to explore whether these dietary changes are, in fact, well correlated with these temporal categories or not. Stable isotope analysis of 108 individuals and 25 animals was used to interpret diet in comparison with data from earlier studies. Different values of TLE (Trophic Level Effect) for δ(15) N were compared for interpretations of diet. Of the 108 individuals, 42 were subjected to (14) C analysis in this study. The isotopes from Iron-Age animals on Öland indicate that the local, contemporary ecology is specific. The human isotope values show chronological development both when pooled in chronological groups by typology and by more specific (14) C chronology. The new samples of animals as well as the use of 5‰ TLE for δ(15) N values results in the diet reinterpreted as mainly domesticate-based, with at least two shifts in diet occurring in the Iron Age. The use of (14) C dates in connection with the stable isotope results indicates a dietary transition occurring between 200 BC and AD 200, a date range that spans two typologically determined time periods. © 2017 Wiley Periodicals, Inc.

  9. Change your diet or die: predator-induced shifts in insectivorous lizard feeding ecology.

    PubMed

    Hawlena, Dror; Pérez-Mellado, Valentín

    2009-08-01

    Animal feeding ecology and diet are influenced by the fear of predation. While the mechanistic bases for such changes are well understood, technical difficulties often prevent testing how these mechanisms interact to affect a mesopredator's diet in natural environments. Here, we compared the insectivorous lizard Acanthodactylus beershebensis' feeding ecology and diet between high- and low-risk environments, using focal observations, intensive trapping effort and fecal pellet analysis. To create spatial variation in predation risk, we planted "artificial trees" in a scrubland habitat that lacks natural perches, allowing avian predators to hunt for lizards in patches that were previously unavailable to them. Lizards in elevated-risk environments became less mobile but did not change their microhabitat use or temporal activity. These lizards changed their diet, consuming smaller prey and less plant material. We suggest that diet shifts were mainly because lizards from risky environments consumed prey items that required shorter handling time.

  10. Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison)

    PubMed Central

    Bergmann, Gaddy T.; Craine, Joseph M.; Robeson, Michael S.; Fierer, Noah

    2015-01-01

    North American bison (Bison bison) are becoming increasingly important to both grassland management and commercial ranching. However, a lack of quantitative data on their diet constrains conservation efforts and the ability to predict bison effects on grasslands. In particular, we know little about the seasonality of the bison diet, the degree to which bison supplement their diet with eudicots, and how changes in diet influence gut microbial communities, all of which play important roles in ungulate performance. To address these knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community composition for a bison herd in Kansas using DNA sequencing-based analyses of both chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that spanned 166 days, we found that diet shifted continuously over the growing season, allowing bison to take advantage of the seasonal availability of high-protein plant species. Bison consumed more woody shrubs in spring and fall than in summer, when forb and grass intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted significantly in relative abundance over the growing season. This work suggests that North American bison can continuously adjust their diet with a high reliance on non-grasses throughout the year. In addition, we find evidence for seasonal patterns in gut community composition that are likely driven by the observed dietary changes. PMID:26562019

  11. Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison).

    PubMed

    Bergmann, Gaddy T; Craine, Joseph M; Robeson, Michael S; Fierer, Noah

    2015-01-01

    North American bison (Bison bison) are becoming increasingly important to both grassland management and commercial ranching. However, a lack of quantitative data on their diet constrains conservation efforts and the ability to predict bison effects on grasslands. In particular, we know little about the seasonality of the bison diet, the degree to which bison supplement their diet with eudicots, and how changes in diet influence gut microbial communities, all of which play important roles in ungulate performance. To address these knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community composition for a bison herd in Kansas using DNA sequencing-based analyses of both chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that spanned 166 days, we found that diet shifted continuously over the growing season, allowing bison to take advantage of the seasonal availability of high-protein plant species. Bison consumed more woody shrubs in spring and fall than in summer, when forb and grass intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted significantly in relative abundance over the growing season. This work suggests that North American bison can continuously adjust their diet with a high reliance on non-grasses throughout the year. In addition, we find evidence for seasonal patterns in gut community composition that are likely driven by the observed dietary changes.

  12. Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs

    PubMed Central

    Hamilton, Scott L.; Caselle, Jennifer E.; Lantz, Coulson A.; Egloff, Tiana L.; Kondo, Emi; Newsome, Seth D.; Loke-Smith, Kerri; Pondella, Daniel J.; Young, Kelly A.; Lowe, Christopher G.

    2015-01-01

    Interactions between predator and prey act to shape the structure of ecological communities, and these interactions can differ across space. California sheephead Semicossyphus pulcher are common predators of benthic invertebrates in kelp beds and rocky reefs in southern California, USA. Through gut content and stable isotope (δ13C and †15N) analyses, we investigated geographic and ontogenetic variation in trophic ecology across 9 populations located at island and mainland sites throughout southern California. We found extensive geographic variation in California sheephead diet composition over small spatial scales. Populations differed in the proportion of sessile filter/suspension feeders or mobile invertebrates in the diet. Spatial variation in diet was highly correlated with other life history and demographic traits (e.g. growth, survivorship, reproductive condition, and energy storage), in addition to proxies of prey availability from community surveys. Multivariate descriptions of the diet from gut contents roughly agreed with the spatial groupings of sites based on stable isotope analysis of both California sheephead and their prey. Ontogenetic changes in diet occurred consistently across populations, despite spatial differences in size structure. As California sheephead increase in size, diets shift from small filter feeders, like bivalves, to larger mobile invertebrates, such as sea urchins. Our results indicate that locations with large California sheephead present, such as many marine reserves, may experience increased predation pressure on sea urchins, which could ultimately affect kelp persistence. PMID:26246648

  13. Extensive geographic and ontogenetic variation characterizes the trophic ecology of a temperate reef fish on southern California (USA) rocky reefs.

    PubMed

    Hamilton, Scott L; Caselle, Jennifer E; Lantz, Coulson A; Egloff, Tiana L; Kondo, Emi; Newsome, Seth D; Loke-Smith, Kerri; Pondella, Daniel J; Young, Kelly A; Lowe, Christopher G

    Interactions between predator and prey act to shape the structure of ecological communities, and these interactions can differ across space. California sheephead Semicossyphus pulcher are common predators of benthic invertebrates in kelp beds and rocky reefs in southern California, USA. Through gut content and stable isotope (δ(13)C and †(15)N) analyses, we investigated geographic and ontogenetic variation in trophic ecology across 9 populations located at island and mainland sites throughout southern California. We found extensive geographic variation in California sheephead diet composition over small spatial scales. Populations differed in the proportion of sessile filter/suspension feeders or mobile invertebrates in the diet. Spatial variation in diet was highly correlated with other life history and demographic traits (e.g. growth, survivorship, reproductive condition, and energy storage), in addition to proxies of prey availability from community surveys. Multivariate descriptions of the diet from gut contents roughly agreed with the spatial groupings of sites based on stable isotope analysis of both California sheephead and their prey. Ontogenetic changes in diet occurred consistently across populations, despite spatial differences in size structure. As California sheephead increase in size, diets shift from small filter feeders, like bivalves, to larger mobile invertebrates, such as sea urchins. Our results indicate that locations with large California sheephead present, such as many marine reserves, may experience increased predation pressure on sea urchins, which could ultimately affect kelp persistence.

  14. Diet shifts and population dynamics of estuarine foraminifera during ecosystem recovery after experimentally induced hypoxia crises

    NASA Astrophysics Data System (ADS)

    Brouwer, G. M.; Duijnstee, I. A. P.; Hazeleger, J. H.; Rossi, F.; Lourens, L. J.; Middelburg, J. J.; Wolthers, M.

    2016-03-01

    This study shows foraminiferal dynamics after experimentally induced hypoxia within the wider context of ecosystem recovery. 13C-labeled bicarbonate and glucose were added to the sediments to examine foraminiferal diet shifts during ecosystem recovery and test-size measurements were used to deduce population dynamics. Hypoxia-treated and undisturbed patches were compared to distinguish natural (seasonal) fluctuations from hypoxia-induced responses. The effect of timing of disturbance and duration of recovery were investigated. The foraminiferal diets and population dynamics showed higher fluctuations in the recovering patches compared to the controls. The foraminiferal diet and population structure of Haynesina germanica and Ammonia beccarii responded differentially and generally inversely to progressive stages of ecosystem recovery. Tracer inferred diet estimates in April and June and the two distinctly visible cohorts in the test-size distribution, discussed to reflect reproduction in June, strongly suggest that the ample availability of diatoms during the first month of ecosystem recovery after the winter hypoxia was likely profitable to A. beccarii. Enhanced reproduction itself was strongly linked to the subsequent dietary shift to bacteria. The distribution of the test dimensions of H. germanica indicated that this species had less fluctuation in population structure during ecosystem recovery but possibly reproduced in response to the induced winter hypoxia. Bacteria seemed to consistently contribute more to the diet of H. germanica than diatoms. For the diet and test-size distribution of both species, the timing of disturbance seemed to have a higher impact than the duration of the subsequent recovery period.

  15. Ontogenetic effects of diet during early development on growth performance, myosin mRNA expression and metabolic enzyme activity in Atlantic cod juveniles reared at different salinities.

    PubMed

    Koedijk, Roland M; Le François, Nathalie R; Blier, Pierre U; Foss, Atle; Folkvord, Arild; Ditlecadet, Delphine; Lamarre, Simon G; Stefansson, Sigurd O; Imsland, Albert K

    2010-05-01

    This study investigates the effect of diet during early development on growth and metabolic capacity in the juvenile stage of Atlantic cod. Growth in three groups of Atlantic cod juveniles (10-70 g) was measured at two salinities (15 per thousand or 32 per thousand) in combination with two temperatures (10 degrees C or 14 degrees C). Groups of cod from a single egg batch differed by having been fed with rotifers (R) or natural zooplankton (Z) during the first 36 days post hatch. A third group was fed zooplankton from 1 to 22 dph, after which diet changed to rotifers from 22 to 36 dph (ZRZ). All fish were weaned at 36 dph. Juveniles from the Z and ZRZ groups performed equally well under all experimental conditions, but fish that had received rotifers as a larval diet showed overall significantly lower growth rates. Growth was significantly enhanced by reduced salinity. Metabolic enzyme activity and relative myosin mRNA expression levels were not affected by larval diet. Muscle AAT and MDH were affected by salinity while these enzymes in liver tissue were affected by the interaction between salinity and temperature. Metabolic enzymes were stronger correlated with fish size than growth rates. Our results indicate that larval diet has a pronounced effect on juvenile growth rates under varying environmental conditions as optimal larval diet (zooplankton) increased juvenile growth rates significantly. Metabolic enzyme activity and relative myosin mRNA expression were not affected by larval history, which suggests that the persisting juvenile growth difference is not a result of differing metabolic capacity.

  16. Diet shift of a facultative scavenger, the wolverine, following recolonization of wolves.

    PubMed

    van Dijk, Jiska; Gustavsen, Line; Mysterud, Atle; May, Roel; Flagstad, Øystein; Brøseth, Henrik; Andersen, Roy; Andersen, Reidar; Steen, Harald; Landa, Arild

    2008-11-01

    1. Wolves Canis lupus L. recolonized the boreal forests in the southern part of the Scandinavian peninsula during the late 1990s, but so far there has been little attention to its effect on ecosystem functioning. Wolf predation increases the availability of carcasses of large prey, especially moose Alces alces L., which may lead in turn to a diet switch in facultative scavengers such as the wolverine Gulo gulo L. 2. Using 459 wolverine scats collected during winter-spring 2001-04 for DNA identity and dietary contents, we compared diet inside and outside wolf territories while controlling for potential confounding factors, such as prey density. We tested the hypothesis that wolverine diet shifted towards moose in the presence of wolves, while taking into account possible sexual segregation between the sexes. Occurrence of reindeer, moose and small prey was modelled against explanatory covariates using logistic mixed-effects models. Furthermore, we compared diet composition and breadth among habitats and sexes. 3. Occurrence of reindeer, moose and small prey in the diet varied with prey availability and habitat. As expected, diet contained more moose and less reindeer and small prey in the presence of wolves. Their diet in tundra consisted of 40% reindeer Rangifer tarandus L., 39% moose and 9% rodents. In forest with wolf, their diet shifted to 76% moose, 18% reindeer and 5% rodents; compared to 42% moose, 32% reindeer and 15% rodents in forest without wolf. This diet switch could not be explained by higher moose density in wolf territories. Female diet consisted of more small prey than for males, but there was a tendency for females to use the highly available moose carrion opportunistically and to hunt less on small prey within wolf territories. 4. Our study highlights how wolves increase scavenging opportunities for wolverines, and how sexual differences in diet may also apply to large scavengers. Due to their more restricted home range, female wolverines are

  17. Diet shifts by planktivorous and benthivorous fishes in northern Lake Michigan in response to ecosystem changes

    USGS Publications Warehouse

    Bunnell, David B.; Davis, Bruce M.; Chriscinske, Margret Ann; Keeler, Kevin M.; Mychek-Londer, Justin G.

    2015-01-01

    In Lake Michigan, diets of planktivorous and benthivorous fishes have varied over the past decades, in part owing to food web changes. To update diet information and compare them to a similar effort in 1994–1995, we analyzed the diets of seven benthivorous and planktivorous fish species collected along two northern Lake Michigan transects that spanned nearshore (18 m), intermediate (46 m), and offshore (91, 110, 128 m) bottom depths during spring, summer, and autumn of 2010. Calanoid copepods (e.g., Limnocalanus macrurus, Leptodiaptomus sicilis, and Senecella calanoides) comprised a majority of the diets in at least one season for all sizes of alewife (Alosa pseudoharengus), bloater (Coregonus hoyi), and rainbow smelt (Osmerus mordax). Similarly, Mysis diluviana was the highest proportion in at least one season for large sizes of alewife, bloater, and rainbow smelt, as well as slimy sculpin (Cottus cognatus) and deepwater sculpin (Myoxocephalus thompsonii). The diets of the remaining two species, ninespine stickleback (Pungitius pungitius) and round goby (Neogobius melanostomus), were dominated by herbivorous cladocerans or dreissenid mussels, respectively. Interspecific diet overlap was minimal at 18 and 46 m. In offshore waters, however, overlap was relatively high, driven by frequent consumption of Mysis. Relative to 1994–1995, 2010 diets revealed increased feeding on calanoid copepods and Mysis, with corresponding declining consumption of Diporeia spp. and herbivorous cladocerans. Relative diet weight was also higher in 1994–1995 than in 2010 for small and large bloater and both sculpin species. We hypothesize that the shifts in diets are reflective of community-level changes in invertebrate prey availability.

  18. Continental-Scale Patterns Reveal Potential for Warming-Induced Shifts in Cattle Diet

    PubMed Central

    Craine, Joseph M.; Angerer, Jay P.; Elmore, Andrew; Fierer, Noah

    2016-01-01

    In North America, it has been shown that cattle in warmer, drier grasslands have lower quality diets than those cattle grazing cooler, wetter grasslands, which suggests warming will increase nutritional stress and reduce weight gain. Yet, little is known about how the plant species that comprise cattle diets change across these gradients and whether these shifts in dietary quality coincide with shifts in dietary composition, i.e. the relative abundance of different plant species consumed by cattle. To quantify geographic patterns in dietary composition, we analyzed the dietary composition and dietary quality of unsupplemented cattle from 289 sites across the central US by sequence-based analyses of plant DNA isolated from cattle fecal samples. Overall, assuming that the percentage of reads for a species in a sample corresponds to the percentage of protein derived from the species, only 45% of the protein intake for cattle was derived from grasses. Within the Great Plains, northern cattle relied more on grasses than southern cattle, which derived a greater proportion of their protein from herbaceous and woody eudicots. Eastern cattle were also more likely to consume a unique assemblage of plant species than western cattle. High dietary protein was not strongly tied to consumption of any specific plant species, which suggests that efforts to promote individual plant species may not easily remedy protein deficiencies. A few plant species were consistently associated with lower quality diets. For example, the diets of cattle with high amounts of Elymus or Hesperostipa were more likely to have lower crude protein concentrations than diets with less of these grasses. Overall, our analyses suggest that climatic warming will increase the reliance of cattle on eudicots as protein concentrations of grasses decline. Monitoring cattle diet with this DNA-based sequencing approach can be an effective tool for quantifying cattle diet to better increase animal performance and

  19. Continental-Scale Patterns Reveal Potential for Warming-Induced Shifts in Cattle Diet.

    PubMed

    Craine, Joseph M; Angerer, Jay P; Elmore, Andrew; Fierer, Noah

    2016-01-01

    In North America, it has been shown that cattle in warmer, drier grasslands have lower quality diets than those cattle grazing cooler, wetter grasslands, which suggests warming will increase nutritional stress and reduce weight gain. Yet, little is known about how the plant species that comprise cattle diets change across these gradients and whether these shifts in dietary quality coincide with shifts in dietary composition, i.e. the relative abundance of different plant species consumed by cattle. To quantify geographic patterns in dietary composition, we analyzed the dietary composition and dietary quality of unsupplemented cattle from 289 sites across the central US by sequence-based analyses of plant DNA isolated from cattle fecal samples. Overall, assuming that the percentage of reads for a species in a sample corresponds to the percentage of protein derived from the species, only 45% of the protein intake for cattle was derived from grasses. Within the Great Plains, northern cattle relied more on grasses than southern cattle, which derived a greater proportion of their protein from herbaceous and woody eudicots. Eastern cattle were also more likely to consume a unique assemblage of plant species than western cattle. High dietary protein was not strongly tied to consumption of any specific plant species, which suggests that efforts to promote individual plant species may not easily remedy protein deficiencies. A few plant species were consistently associated with lower quality diets. For example, the diets of cattle with high amounts of Elymus or Hesperostipa were more likely to have lower crude protein concentrations than diets with less of these grasses. Overall, our analyses suggest that climatic warming will increase the reliance of cattle on eudicots as protein concentrations of grasses decline. Monitoring cattle diet with this DNA-based sequencing approach can be an effective tool for quantifying cattle diet to better increase animal performance and

  20. Shifts in the diet of Lake Ontario alewife in response to ecosystem change

    USGS Publications Warehouse

    Stewart, T.J.; Sprules, W.G.; O'Gorman, R.

    2009-01-01

    In the 1990s, the Lake Ontario ecosystem was dramatically altered due to continued invasions of exotic species including dreissenid mussels and predatory cladocerans. We describe the diet and biomass of prey in the stomachs of adult (≥ 109 mm TL) and sub-adult (Alosa pseudoharengus) in 2004 and 2005 across seasons and depths and compare our results to data from 1972 to 1988. During 2004 and 2005, adult alewife consumed primarily zooplankton prey at bottom depth zones Mysis at bottom depth zones > 70 m. Mysis dominated the diets of adult alewife in all seasons except during the summer of 2004 when zooplankton dominated. Mysis dominated the diets of sub-adult alewife during early and late spring and zooplankton dominated the diets in summer and fall. Bythotrephes and Cercopagis were observed in the diets of both sub-adult and adult alewife. Diporeia was observed only rarely in adult alewife diets. The biomass of prey in alewife stomachs varied seasonally and increased with bottom depth for adult alewife. Alewife diets in 2004–2005 differed from those in 1972 and 1988 with an increase in the prevalence of Mysis, and a decline in the prevalence of zooplankton. The biomass of prey in adult alewife stomachs declined in 2004 and 2005 compared to 1972 and 1988, at bottom depth zones 70 m suggesting reduced food availability closer to shore. We hypothesize that consumption levels at the shallower depth zones, as indicated by very low biomass of prey in alewife stomachs, may not be sufficient to sustain alewife growth. The increased prevalence of Mysis and common occurrence of predatory cladocerans in the diet of alewife means that alewife have shifted to a higher trophic position.

  1. Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks.

    PubMed

    Estrada, James A; Rice, Aaron N; Natanson, Lisa J; Skomal, Gregory B

    2006-04-01

    We conducted stable 13C and 15N analysis on white shark vertebrae and demonstrated that incremental analysis of isotopes along the radius of a vertebral centrum produces a chronological record of dietary information, allowing for reconstruction of an individual's trophic history. Isotopic data showed significant enrichments in 15N with increasing sampling distance from the centrum center, indicating a correlation between body size and trophic level. Additionally, isotopic values verified two distinct ontogenetic trophic shifts in the white shark: one following parturition, marking a dietary switch from yolk to fish; and one at a total length of >341 cm, representing a known diet shift from fish to marine mammals. Retrospective trophic-level reconstruction using vertebral tissue will have broad applications in future studies on the ecology of threatened, endangered, or extinct species to determine life-long feeding patterns, which would be impossible through other methods.

  2. Diet shifts of lesser scaup are consistent with the spring condition hypothesis

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2006-01-01

    We compared diets of lesser scaup (Aythya affinis (Eyton, 1838)) in the springs of 2000 and 2001 to those reported in the 1970s and the 1980s to determine whether forage quality has declined as predicted by the spring condition hypothesis. In Minnesota, we found that the current aggregate percentage of Amphipoda (an important food item) in lesser scaup diets was 94% lower than that reported from the same locations in the 1980s. Current mean individual prey mass of Amphipoda and Bivalvia in Minnesota were 86.6% and 85.1% lower than historical levels, respectively. In Manitoba, current aggregate percentages of Trichoptera and Chaoboridae in lesser scaup diets (1% and 0%, respectively) were lower than those reported from the same location in the 1970s (14% and 2%, respectively), whereas the percentage of Chironomidae (40%) was higher than that of historical levels (19%). Current mean individual prey mass of all insects, seeds, Chironomidae, and Zygoptera in Manitoba were 63.5%, 65.4%, 44.1%, and 44.9% lower than those of historical levels, respectively. The observed dietary shift from Amphipoda to less nutritious prey in Minnesota, coupled with lower mean individual prey mass in both locations, likely constitutes lower forage quality in lesser scaup diets, which is consistent with the spring condition hypothesis. 

  3. Stable isotopes reveal habitat-related diet shifts in facultative deposit-feeders

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Baeta, Alexandra; Marques, João C.

    2015-01-01

    Seagrass patches interspersed in a sediment matrix may vary environmental conditions and affect feeding habits of consumers and food-web structure. This paper investigates diet shifts between bare sediments and a Zostera noltei (Hornemann, 1832) meadow for three facultative deposit-feeding macrofaunal consumers, notably the bivalve Scrobicularia plana (da Costa, 1778), the polychaete Hediste diversicolor (O.T. Müller, 1776), and the gastropod Hydrobia ulvae (Pennant, 1778). In July 2008, one eelgrass meadow and two bare sediment locations were chosen in the Mondego estuary (40° 08″ N, 8° 50‧ W, Portugal) and sampled for stable isotope signatures (δ13C and δ15N) of macrofauna consumers and some of their potential basal food sources, such as sedimentary organic matter (SOM), microphytobenthos (MPB), seagrass shoots, leaves and seaweeds laying on the surface sediment. The δ15N of H. diversicolor was 3‰ higher in the eelgrass meadow than in bare sediment, indicating a change of trophic position, whereas the Bayesian stable-isotope mixing model showed that S. plana assimilated more macroalgal detritus than microphytobenthos in the eelgrass bed. Such habitat-related diet shifts have the potential to change structure and spatial dynamics of benthic food webs.

  4. Feeding nine billion people sustainably: conserving land and water through shifting diets and changes in technologies.

    PubMed

    Springer, Nathaniel P; Duchin, Faye

    2014-04-15

    In the early 21st century the extensive clearing of forestland, fresh water scarcity, and sharp rises in the price of food have become causes for concern. These concerns may be substantially exacerbated over the next few decades by the need to provide improved diets for a growing global population. This study applies an inter-regional input-output model of the world economy, the World Trade Model, for analysis of alternative scenarios about satisfying future food requirements by midcentury. The scenario analysis indicates that relying only on more extensive use of arable land and fresh water would require clearing forests and exacerbating regional water scarcities. However, a combination of less resource-intensive diets and improved agricultural productivity, the latter especially in Africa, could make it possible to use these resources sustainably while also constraining increases in food prices. Unlike the scenario outcomes from other kinds of economic models, our framework reveals the potential for a decisive shift of production and export of agricultural products away from developed countries toward Africa and Latin America. Although the assumed changes in diets and technologies may not be realizable without incentives, our results suggest that these regions exhibit comparative advantages in agricultural production due to their large remaining resource endowments and their potential for higher yields.

  5. Diet Shift and Its Impact on Foraging Behavior of Siberian Crane (Grus Leucogeranus) in Poyang Lake

    PubMed Central

    Jia, Yifei; Jiao, Shengwu; Zhang, Yamian; Zhou, Yan; Lei, Guangchun; Liu, Guanhua

    2013-01-01

    The study of habitat selection and diet has a long history in ecology. This is often used to assess the functional roles of wetland in biodiversity conservation. Shifting habitat and diet may be one of the survival strategies during extremely adverse conditions. Therefore, sudden changes in habitat selection may indicate the deterioration of the habitat quality, and management interventions are necessary. Siberian crane (Grus leucogeranus) became critically endangered due to loss of habitat, and is currently a global conservation focus. Every winter, more than 95% of the species' global population congregates at Poyang Lake, and feeds on tubers of Vallisneria spiralis in shallow water and mudflat habitat. In this study, we reported the first sighting of large numbers of Siberian cranes foraging at wet meadows, where they fed on a different plant, Potentilla limprichtii due to extreme scarcity of their preferred tuber. To understand how well the cranes adapted to such unusual habitat, field surveys to assess the distribution of cranes across different habitats, and food availability in each habitat were carried out in the winter of 2011. Field observations on crane behaviors at different habitats were also conducted. Results show that cranes displayed significantly different behavior patterns when using the wet meadow, compared to the crane's optimal habitat - shallow water and mudflat. Both juveniles and adults spent significantly less time foraging, and more time alerting in meadows than in shallow waters and mudflats. These results indicated that the meadow might be a suboptimal wintering ground for Siberian crane, which helped the cranes survive from extreme unfavorable conditions. To some degree, this finding alleviates the general concern over the fluctuating of its food resources which was caused by hydrological disturbances. However, more studies are needed to assess the consequences of such diet and habitat shift for crane survival. PMID:23823943

  6. Variability in expression of Bothrops insularis snake venom proteases: an ontogenetic approach.

    PubMed

    Zelanis, André; de Souza Ventura, Janaina; Chudzinski-Tavassi, Ana Marisa; de Fátima Domingues Furtado, Maria

    2007-05-01

    Bothrops insularis is a threatened snake endemic to Queimada Grande Island, southern coast of São Paulo, Brazil, and the occurrence of sexual abnormalities in males, females and intersexes (females with functional ovaries and rudimentary hemipenis) has been reported in this population. The aim of this study was to identify ontogenetic shifts in protease expression of offspring of captive-bred B. insularis. Three neonates from a single litter were maintained at the facilities of Laboratory of Herpetology, Institute Butantan, for 41 months. The snakes were individually milked and venoms were analyzed both by SDS-PAGE, under reducing conditions, and for biochemical activities. The venoms from the mother and from a pool of adult specimens were used as references. In regard to the electrophoretic patterns, common bands were identified mainly between 14 and 50 kDa among snakes. The occurrence of proteolytic activity was noticed predominantly between 27 and 45 kDa in zymograms. Inhibitory assays with 1,10-phenantroline (10 mM) and PMSF (5 mM) showed that venoms possessed both metalloproteases and serine proteases. Venoms of young specimens showed a higher coagulant activity than those of adults, especially upon factors X and II. All venoms presented fibrino(geno)lytic activity, degrading Aalpha and Bbeta chains of fibrinogen, and lysing fibrin plate. These findings can reflect important individual, ontogenetic and sexual differences on venom composition and are likely correlated with diet habits of this species.

  7. Shifting to a control diet after a high-fat, high-sucrose diet intake induces epigenetic changes in retroperitoneal adipocytes of Wistar rats.

    PubMed

    Uriarte, G; Paternain, L; Milagro, F I; Martínez, J A; Campion, J

    2013-09-01

    The aim of the study was to analyze the phenotypic and epigenetic changes induced by the shift to a chow diet after an obesogenic environment. Animals were randomized to fed chow (control group) or high-fat-sucrose diet (HFS). After 10 weeks, half of the rats fed with HFS diet were reassigned to a chow diet (rest group) while the other half continued with the obesogenic diet (HFS group) until week 20. Changes in fat content, biochemical profile, and DNA methylation levels of several gene promoters from retroperitoneal adipocytes were analyzed. HFS diet intake for 10 weeks induced obese phenotype in the animals, increasing body weight and fat content. These effects were maintained until the end of the trial in HFS group, where an increase in liver fat content, a modification of lipid profile, and retroperitoneal adipose tissue hypertrophy were also observed. Changing the dietary pattern reversed these parameters. Epigenetic analysis showed that HFS diet intake for 20 weeks hypermethylated several CpG sites (6.7 and 29.30) and hypomethylated CpG site 15 from leptin gene promoter. Moreover, the obesogenic diet also hypomethylated CpG site 1 from Fasn (fatty acid synthase) gene promoter, without changes on Ppargc1a (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), Srebf1 (sterol regulatory element-binding transcription factor 1), and aquaporin 7. Shifting to a chow diet reverted HFS-induced DNA methylation levels of some CpG sites of leptin promoter. Changing the dietary pattern hypomethylated a CpG site of Srebf1 and hypermethylated other CpGs on Ppargc1a and Fasn promoter. This study shed light on the reversibility of phenotypical and epigenetic changes induced by a HFS diet intake.

  8. Caffeine Treatment Prevented from Weight Regain after Calorie Shifting Diet Induced Weight Loss

    PubMed Central

    Davoodi, Sayed Hossein; Hajimiresmaiel, Seyed Javad; Ajami, Marjan; Mohseni-Bandpei, Anoushiravan; Ayatollahi, Seyyed Abdulmajid; Dowlatshahi, Kamran; Javedan, Gholamali; Pazoki-Toroudi, Hamidreza

    2014-01-01

    Low calorie diets are always difficult for obese subjects to follow and lead to metabolic and behavioral adaptation. Therefore, we evaluated the effect of caffeine treatment with calorie shifting diet (CSD) on weight loss. Female subjects (n=60; BMI≥25) completed 4-weeks control diet, 6-weeks CSD (3 repeated phases; each 2-weeks) and 4-weeks follow-up diet, with or without caffeine treatment (5 mg/Kg/day). The first 11 days of each phase included calorie restriction with four meals every day and 4 hours intervals. Significant weight and fat loss were observed after 4-weeks of CSD (5.7 ± 1.24 Kg and 4.84 ± 1.53 Kg) or CSD+Caffeine (7.57 ± 2.33 Kg and 5.24 ± 2.07 Kg) which was consistent for one month of the follow-up (CSD: 5.24 ± 1.83 Kg and 4.3 ± 1.62 Kg, CSD+Caffeine: 12.11 ± 2.31 Kg and 9.85 ± 1.6 Kg, p < 0.05 vs CSD group) and correlated to the restricted energy intake (p < 0.05). During three CSD phases, RMR tended to remain unchanged in both groups.While, CSD or CSD + Caffeine treatments, significantly decreased plasma glucose, total-cholesterol, and triacylglycerol (p < 0.05), even during follow-up period (p < 0.05). HDL-cholesterol was not changed by CSD. Feeling of hunger decreased and subject’s satisfaction increased after 4-weeks of CSD (p < 0.05) and remained low to the end of study, while satiety was not affected. Coffeine increased the effect of CSD on feeling of hunger and subject’s satisfaction after week 7 (p < 0.05 vs. CSD). These findings indicated that combination of caffeine treatment with CSD could be an effective alternative approach to weight and fat loss with small changes in RMR and improved tolerance of subjects to the new diet. PMID:25237367

  9. Diet shift of lentic dragonfly larvae in response to reduced terrestrial prey subsidies

    USGS Publications Warehouse

    Kraus, Johanna M.

    2010-01-01

    Inputs of terrestrial plant detritus and nutrients play an important role in aquatic food webs, but the importance of terrestrial prey inputs in determining aquatic predator distribution and abundance has been appreciated only recently. I examined the numerical, biomass, and diet responses of a common predator, dragonfly larvae, to experimental reduction of terrestrial arthropod input into ponds. I distributed paired enclosures (n  =  7), one with a screen between the land and water (reduced subsidy) and one without a screen (ambient subsidy), near the shoreline of 2 small fishless ponds and sampled each month during the growing season in the southern Appalachian Mountains, Virginia (USA). Screens between water and land reduced the number of terrestrial arthropods that fell into screened enclosures relative to the number that fell into unscreened enclosures and open reference plots by 36%. The δ13C isotopic signatures of dragonfly larvae shifted towards those of aquatic prey in reduced-subsidy enclosures, a result suggesting that dragonflies consumed fewer terrestrial prey when fewer were available (ambient subsidy: 30%, reduced subsidy: 19% of diet). Overall abundance and biomass of dragonfly larvae did not change in response to reduced terrestrial arthropod inputs, despite the fact that enclosures permitted immigration/emigration. These results suggest that terrestrial arthropods can provide resources to aquatic predators in lentic systems, but that their effects on abundance and distribution might be subtle and confounded by in situ factors.

  10. Diet shift induced rapid evolution of size and function in a predatory bird.

    PubMed

    Tornberg, Risto; Liuska, Laura; Rytkönen, Seppo; Mutanen, Marko; Välimäki, Panu

    2014-11-01

    A predator's body size correlates with its prey size. Change in the diet may call for changes in the hunting mode and traits determining hunting success. We explored long-term trends in sternum size and shape in the northern goshawk by applying geometric morphometrics. Tetraonids, the primary prey of the goshawk, have decreased and been replaced by smaller birds in the diet. We expected that the size of the goshawk has decreased accordingly more in males than females based on earlier observations of outer morphology. We also expected changes in sternum shape as a function of changes in hunting mode. Size of both sexes has decreased during the preceding decades (1962-2008), seemingly reflecting a shift in prey size and hunting mode. Female goshawks hunting also mammalian prey tend to have a pronouncedly "Buteo-type" sternum compared to males preying upon birds. Interestingly, the shrinkage of body size resulted in an increasingly "Buteo-type" sternum in both sexes. In addition, the sternum shape in birds that died accidentally (i.e., fit individuals) was more Buteo-type than in starved ones, hinting that selection was towards a Buteo-type sternum shape. We conclude that these observed patterns are likely due to directional selection driven by changes in the diet towards smaller and more agile prey. On the other hand, global warming is predicted to also cause a decrease in size, thus these two scenarios are inseparable. Because of difficulties in studying fitness-related phenotypic changes of large raptors in the field, time series of museum exemplars collected over a wide geographical area may give answers to this conundrum.

  11. Ontogenetic and Among-Individual Variation in Foraging Strategies of Northeast Pacific White Sharks Based on Stable Isotope Analysis

    PubMed Central

    Kim, Sora L.; Tinker, M. Tim; Estes, James A.; Koch, Paul L.

    2012-01-01

    There is growing evidence for individuality in dietary preferences and foraging behaviors within populations of various species. This is especially important for apex predators, since they can potentially have wide dietary niches and a large impact on trophic dynamics within ecosystems. We evaluate the diet of an apex predator, the white shark (Carcharodon carcharias), by measuring the stable carbon and nitrogen isotope composition of vertebral growth bands to create lifetime records for 15 individuals from California. Isotopic variations in white shark diets can reflect within-region differences among prey (most importantly related to trophic level), as well as differences in baseline values among the regions in which sharks forage, and both prey and habitat preferences may shift with age. The magnitude of isotopic variation among sharks in our study (>5‰ for both elements) is too great to be explained solely by geographic differences, and so must reflect differences in prey choice that may vary with sex, size, age and location. Ontogenetic patterns in δ15N values vary considerably among individuals, and one third of the population fit each of these descriptions: 1) δ15N values increased throughout life, 2) δ15N values increased to a plateau at ∼5 years of age, and 3) δ15N values remained roughly constant values throughout life. Isotopic data for the population span more than one trophic level, and we offer a qualitative evaluation of diet using shark-specific collagen discrimination factors estimated from a 3+ year captive feeding experiment (Δ13Cshark-diet and Δ15Nshark-diet equal 4.2‰ and 2.5‰, respectively). We assess the degree of individuality with a proportional similarity index that distinguishes specialists and generalists. The isotopic variance is partitioned among differences between-individual (48%), within-individuals (40%), and by calendar year of sub-adulthood (12%). Our data reveal substantial ontogenetic and individual dietary

  12. Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis

    USGS Publications Warehouse

    Kim, S.L.; Tinker, M. Tim; Estes, J.A.; Koch, P.L.

    2012-01-01

    There is growing evidence for individuality in dietary preferences and foraging behaviors within populations of various species. This is especially important for apex predators, since they can potentially have wide dietary niches and a large impact on trophic dynamics within ecosystems. We evaluate the diet of an apex predator, the white shark (Carcharodon carcharias), by measuring the stable carbon and nitrogen isotope composition of vertebral growth bands to create lifetime records for 15 individuals from California. Isotopic variations in white shark diets can reflect within-region differences among prey (most importantly related to trophic level), as well as differences in baseline values among the regions in which sharks forage, and both prey and habitat preferences may shift with age. The magnitude of isotopic variation among sharks in our study (>5‰ for both elements) is too great to be explained solely by geographic differences, and so must reflect differences in prey choice that may vary with sex, size, age and location. Ontogenetic patterns in δ15N values vary considerably among individuals, and one third of the population fit each of these descriptions: 1) δ15N values increased throughout life, 2) δ15N values increased to a plateau at ~5 years of age, and 3) δ15N values remained roughly constant values throughout life. Isotopic data for the population span more than one trophic level, and we offer a qualitative evaluation of diet using shark-specific collagen discrimination factors estimated from a 3+ year captive feeding experiment (Δ13Cshark-diet and Δ15Nshark-diet equal 4.2‰ and 2.5‰, respectively). We assess the degree of individuality with a proportional similarity index that distinguishes specialists and generalists. The isotopic variance is partitioned among differences between-individual (48%), within-individuals (40%), and by calendar year of sub-adulthood (12%). Our data reveal substantial ontogenetic and individual dietary

  13. Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis.

    PubMed

    Kim, Sora L; Tinker, M Tim; Estes, James A; Koch, Paul L

    2012-01-01

    There is growing evidence for individuality in dietary preferences and foraging behaviors within populations of various species. This is especially important for apex predators, since they can potentially have wide dietary niches and a large impact on trophic dynamics within ecosystems. We evaluate the diet of an apex predator, the white shark (Carcharodon carcharias), by measuring the stable carbon and nitrogen isotope composition of vertebral growth bands to create lifetime records for 15 individuals from California. Isotopic variations in white shark diets can reflect within-region differences among prey (most importantly related to trophic level), as well as differences in baseline values among the regions in which sharks forage, and both prey and habitat preferences may shift with age. The magnitude of isotopic variation among sharks in our study (>5‰ for both elements) is too great to be explained solely by geographic differences, and so must reflect differences in prey choice that may vary with sex, size, age and location. Ontogenetic patterns in δ(15)N values vary considerably among individuals, and one third of the population fit each of these descriptions: 1) δ(15)N values increased throughout life, 2) δ(15)N values increased to a plateau at ∼5 years of age, and 3) δ(15)N values remained roughly constant values throughout life. Isotopic data for the population span more than one trophic level, and we offer a qualitative evaluation of diet using shark-specific collagen discrimination factors estimated from a 3+ year captive feeding experiment (Δ(13)C(shark-diet) and Δ(15)N(shark-diet) equal 4.2‰ and 2.5‰, respectively). We assess the degree of individuality with a proportional similarity index that distinguishes specialists and generalists. The isotopic variance is partitioned among differences between-individual (48%), within-individuals (40%), and by calendar year of sub-adulthood (12%). Our data reveal substantial ontogenetic and

  14. By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes.

    PubMed

    Hu, Yi; Holway, David A; Łukasik, Piotr; Chau, Linh; Kay, Adam D; LeBrun, Edward G; Miller, Katie A; Sanders, Jon G; Suarez, Andrew V; Russell, Jacob A

    2017-03-01

    The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause-effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low-nitrogen diets and specialized symbioses appear conserved and ancient. To address whether nitrogen-provisioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile - an invasive species that has transitioned towards greater consumption of sugar-rich, nitrogen-poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. Two, a Lactobacillus and an Acetobacteraceae species, were shared between native and introduced populations. The other, a Rickettsia, was found only in two introduced supercolonies. Across an eight-year period of trophic reduction in one introduced population, we found no change in symbionts, arguing against a relationship between natural dietary change and microbiome composition. Overall, our findings thus argue against major changes in symbiotic bacteria in association with the invasion and trophic shift of L. humile. In addition, genome content from close relatives of the identified symbionts suggests that just one can synthesize most essential amino acids; this bacterium was only modestly abundant in introduced populations, providing little support for a major role of nitrogen-provisioning symbioses in Argentine ant's dietary shift.

  15. Feeding ecology and ontogenic diet shifts of juvenile fish species in an inverse estuary: The Sine-Saloum, Senegal

    NASA Astrophysics Data System (ADS)

    Gning, Ndombour; Vidy, Guy; Thiaw, Omar Thiom

    2008-01-01

    We examined the diet of juvenile fish of four species - Eucinostomus melanopterus (Gerreidae), Ethmalosa fimbriata (Clupeidae), Monodactylus sebae (Monodactylidae), and Sarotherodon melanotheron (Cichlidae) - between their appearance on the nursery ground and the end of the recruitment season, when they began to shift to deeper parts of the estuary. Fish were collected from the Sine-Saloum, an inverse estuary in Senegal, West Africa. Sampling was conducted at six sites located along the salinity gradient. The study was conducted in the context of an inverse estuary where increasing salinity leads to the disappearance of mangroves. Stomach contents were sorted and the preferred prey determined to the lowest possible taxonomic level. Ontogenic changes in diet were characterized and results expressed as the frequency of occurrence of the prey. The results showed that almost all juveniles began with a "classical" zooplanktonic diet. Following that first stage, they then preyed on items belonging to the periphytic community in the vicinity of mangroves (when present). Juvenile Ethmalosa fimbriata, a phytoplankton feeder as an adult, displayed that kind of transitory diet, a finding not previously recorded. Plant material (algae and leaves) occurred frequently in the stomach contents. All four species began the ontogenic shift toward their adult diet at a length of 50 mm. The periphytic community supported on mangrove prop roots contributes to the diet of juvenile fish living in proximity to mangroves; this may not be verified for those fish living in open waters.

  16. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific

    USGS Publications Warehouse

    Hatch, Scott A.

    2013-01-01

    I examined ~2700 food samples collected from adult and nestling black-legged kittiwakes Rissa tridactyla from 1978 through 2011 on Middleton Island in the Gulf of Alaska. The kittiwake diet was composed chiefly of fish, but invertebrates were taken in appreciable quantities in April and May. Upon spring arrival at the colony, adult kittiwakes foraged regularly at night on vertically migrating mesopelagic prey—lanternfishes (Myctophidae), squids, crustaceans, and polychaetes—a behavior they largely discontinued by egg-laying. During incubation and chick-rearing, food samples contained mostly (~85% by weight) Pacific sand lance Ammodytes hexapterus, capelin Mallotus villosus, Pacific herring Clupea pallasii, sablefish Anopoploma fimbria, krill (Euphausiidae), and juvenile salmon Onchorynchus gorboscha and O. keta. A salient finding over the longitudinal study was the emergence, twice, of capelin as a dominant forage species—once in 2000 to 2003, and again in 2008 through 2011. Kittiwakes responded to capelin availability by producing markedly higher numbers of fledged young. The 2000 to 2003 event corresponded to a previously documented shift to cooler conditions in the NE Pacific, which apparently was relatively limited in magnitude or duration. The more recent transition appears stronger and may be more lasting. I submit that 2008 was an important turning point, marking a substantive reversal of warm conditions that began with the well-documented regime shift of 1977. That interpretation is consistent with the existence of a ~60 yr cycle in ocean and atmospheric conditions in the North Pacific. All else being equal, it predicts the next 20 to 30 yr will be favorable for species such as kittiwakes and Steller sea lions, which seemed to respond negatively to the 1977 to 2007 warm phase of the Pacific Decadal Oscillation.

  17. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay.

    PubMed

    Gormezano, Linda J; Rockwell, Robert F

    2013-09-01

    Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice-free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior.

  18. What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay

    PubMed Central

    Gormezano, Linda J; Rockwell, Robert F

    2013-01-01

    Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice-free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior. PMID:24223286

  19. Ontogenetic allometry of the Beagle

    PubMed Central

    2013-01-01

    Background Mammalian juveniles undergo dramatic changes in body conformation during development. As one of the most common companion animals, the time line and trajectory of a dog’s development and its body’s re-proportioning is of particular scientific interest. Several ontogenetic studies have investigated the skeletal development in dogs, but none has paid heed to the scapula as a critical part of the mammalian forelimb. Its functional integration into the forelimb changed the correspondence between fore- and hindlimb segments and previous ontogenetic studies observed more similar growth patterns for functionally than serially homologous elements. In this study, the ontogenetic development of six Beagle siblings was monitored between 9 and 51 weeks of age to investigate their skeletal allometry and compare this with data from other lines, breeds and species. Results Body mass increased exponentially with time; log linear increase was observed up to the age of 15 weeks. Compared with body mass, withers and pelvic height as well as the lengths of the trunk, scapula, brachium and antebrachium, femur and crus exhibited positive allometry. Trunk circumference and pes showed negative allometry in all, pelvis and manus in most dogs. Thus, the typical mammalian intralimb re-proportioning with the proximal limb elements exhibiting positive allometry and the very distal ones showing negative allometry was observed. Relative lengths of the antebrachium, femur and crus increased, while those of the distal elements decreased. Conclusions Beagles are fully-grown regarding body height but not body mass at about one year of age. Particular attention should be paid to feeding and physical exertion during the first 15 weeks when they grow more intensively. Compared with its siblings, a puppy’s size at 9 weeks is a good indicator for its final size. Among siblings, growth duration may vary substantially and appears not to be related to the adult size. Within breeds, a longer

  20. Diet shift of double-crested cormorants in eastern Lake Ontario associated with the expansion of the invasive round goby

    USGS Publications Warehouse

    Johnson, James H.; Ross, Robert M.; McCullough, Russell D.; Mathers, Alastair

    2010-01-01

    The proliferation of the invasive round goby (Apollonia melanostoma) in the Great Lakes has caused shifts in the trophic ecology in some areas. We examined the diet of double-crested cormorants (Phalacrocorax auritas) prior to, and immediately after, round goby population expansion at two colonies, Pigeon and Snake Islands, in eastern Lake Ontario from 1999 to 2007. Cormorant diet was determined from the examination of 10,167 pellets collected over the nine-year period. By the second year round gobies were found in the diet (2002 at Snake Island and 2003 at Pigeon Island) they were the main species consumed by cormorants at each colony. The dominance of round goby in cormorant diets had a significant effect on both daily fish consumption and seasonal trends in fish consumption compared to the pre-goby years. Seasonal differences that were observed during the pre-goby years were lost once gobies became the main diet component of cormorants. The rapid switch to a benthic prey such as round goby, from a largely limnetic fish diet demonstrates the adaptive foraging ability of cormorants. Round goby may act as a buffer for yellow perch and smallmouth bass, two sport fish impacted by cormorant predation in eastern Lake Ontario.

  1. Ontogenetic trajectories in the ornithischian endocranium.

    PubMed

    Lautenschlager, S; Hübner, T

    2013-09-01

    Understanding ontogenetic and developmental patterns is critical for reconstructing the life history of fossil vertebrates. In dinosaurs, ontogenetic studies have nearly exclusively focused on changes in the cranial and post-cranial skeleton, whereas ontogenetic changes in the endocranium have received little attention. Here, we present digital reconstructions of the brain and inner ear anatomy of two ontogenetic stages of the Jurassic ornithischian dinosaur Dysalotosaurus lettowvorbecki. Results show that the endocranial anatomy underwent considerable changes during growth, including a rostrocaudal elongation of the olfactory apparatus, a reduction in the cephalic and pontine flexure and an increase in cerebellum size. Functional elements, such as the cerebral hemispheres and the inner ear, were already well developed in early ontogenetic stages, indicating a large degree of precociality. The anisotropic pattern of size and shape changes in the endocranium further indicates that ontogenetic trajectories may be controlled by functional and environmental demands in the different growth stages in Dysalotosaurus lettowvorbecki. The occurrence of similar ontogenetic patterns in the endocranial anatomy of derived ornithopod dinosaurs suggests a more widespread distribution of this growth trajectory. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  2. The Ontogenetically Variable Trophic Niche of a Praying Mantid Revealed by Stable Isotope Analysis.

    PubMed

    Hurd, Lawrence E; Dehart, Pieter A P; Taylor, Joseph M; Campbell, Meredith C; Shearer, Megan M

    2015-04-01

    Praying mantids have been shown to exert strong influences on arthropod community composition. However, they may not occupy the same trophic level throughout their lives. Trophic shifting over a life cycle could explain the documented variation in results from field studies, but specific interactions of predators within food webs have been difficult to determine simply by comparing control and treatment assemblages in field experiments. We examined the trophic position of the Chinese praying mantid, Tenodera aridifolia sinensis (Saussure), using stable isotope analysis (SIA). We measured the δ(13)C and δ(15)N of field-collected arthropods, and of laboratory groups of mantids fed known diets of these arthropods chosen from the most abundant trophic guilds: herbivores (sap feeders and plant chewers), and carnivores. We also collected mantids from the field over a growing season and compared their SIA values to those of the laboratory groups. Both δ(13)C and δ(15)N of mantids fed carnivorous prey (spiders or other mantids) were higher than those fed herbivores (grasshoppers). SIA values from field-collected mantids were highly variable, and indicated that they did not take prey from trophic guilds in proportion to their abundances, i.e., were not frequency-dependent predators. Further, δ(15)N decreased from a high at egg hatch to a low at the third instar as early nymphs fed mainly on lower trophic levels, and increased steadily thereafter as they shifted to feeding on higher levels. We suggest that the community impact of generalist predators can be strongly influenced by ontogenetic shifts in diet.

  3. Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease.

    PubMed

    do Rosario, Vinicius A; Fernandes, Ricardo; Trindade, Erasmo B S de M

    2016-07-01

    Vegetarian diets have been associated with a lower incidence of several chronic diseases. The benefits of plant-based diets are related mainly to the improvement of metabolic parameters that can indicate risk for such diseases. Some metabolic factors, such as oxidative balance, lipid profile, and glucose homeostasis, can be improved directly by diet, but paradoxically, some characteristics of vegetarian diets may promote a negative scenario that increases the risk of certain chronic diseases. Additionally, many benefits of a vegetarian diet are mediated by the gut microbiota, members of which not only have taxonomic and functional differences but also produce diverse, specific metabolites that vary according to whether the host consumes an omnivorous or a vegetarian diet. This review examines the modulation of human metabolism and gut microbiota by vegetarian and omnivorous dietary patterns and explores how this modulation may affect the risk of cardiovascular disease. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Diet in pregnancy, 1930-1960: a shifting social, political and scientific concern.

    PubMed

    Sultan, Najia

    2010-12-01

    The diet of expectant mothers was a significant issue of social, political and scientific concern between 1930 and 1960. However, while histories of maternity services and nutritional science are independently available, no existing study addresses the nutrition of expectant mothers in this period. Between 1900 and 1930, maternal mortality rates were rising despite improving clinical antenatal provisions. Breakthroughs in nutritional science resulted in the identification of key dietary components, while changing social attitudes meant hunger was increasingly being seen as a humanitarian issue requiring a modern solution. As a result, the diet of expectant mothers first began to be addressed as a social concern in the 1930s. It subsequently made a transition into official policy as part of wartime rationing. The government entirely changed its attitude to maternal nutrition in a beneficial and successful way during the war; conferring to modern historians another example of war being a generator of change. Diet in pregnancy finally became the concern of the scientific community post-war, as illustrated by the work of the Royal College of Obstetrics and Gynaecology Nutrition Committee for Pregnancy, whose papers are considered for the first time here. This paper charts the rise of diet in pregnancy as a concern and considers the contributions of different communities involved between 1930 and 1960. It also notes that the actual recommended diet stayed the same. Thus while diet is the subject here, discussion focuses on why there were such distinct rearrangements of social, political and scientific forces around an issue that itself remained unchanged.

  5. Shifting forest composition and primate diets: a 13-year comparison of the Tana River mangabey and its habitat.

    PubMed

    Wieczkowski, Julie; Kinnaird, Margaret

    2008-04-01

    We compared the feeding behavior of a group of Tana River mangabeys (Cercocebus galeritus), densities of 25 diet species, and fruit availability of nine species in a 16.25 ha Tana River forest in southeastern Kenya studied in 1988 and in 2000-2001. For both studies, we enumerated all reproductively sized individuals of the 25 diet species and sampled nine of those species monthly for fruit availability. Mangabey feeding data were collected monthly from January to December 1988 and August 2000 to July 2001 using identical methods. We found a 17% increase in stem number of the 25 species between studies. Estimates of fruit production were lower in 2000 for five of the nine species monitored. Species composition of the mangabey diets shifted between 1988 and 2000-2001. We suggest that changes in forest composition may be due to declining human disturbance, elephant loss, changes in the river's hydrologic regime, and the 1997/98 ENSO event. Possible reasons for lower fruit availability are a younger demographic profile of the forest and changes in the river's hydrological regime. Only some of the changes in the mangabey diet mirrored changes in stem abundance and/or fruit availability. Mangabey dietary changes underscore their high degree of flexibility that allows them to persist in such a dynamic forest habitat.

  6. Ontogenetic Data Analyzed As Such in Phylogenies.

    PubMed

    Bardin, Jérémie; Rouget, Isabelle; Cecca, Fabrizio

    2016-06-16

    Ontogeny is rarely included in phylogenetic analyses of morphological data. When used, the ontogenetic information is reduced to one character for two or three different ontogenetic stages. Several examples show that current methods miss a major part of the information. We here propose a new method for including the ontogenetic dimension in coding schemes of phylogenetic analyses. Our goal was to maximize the phylogenetic information extracted from ontogenetic trajectories. For discrete features, we recommend including precise timings of transformation(s) from one state to another in the ontogenetic trajectories. For continuously varying features, growth laws are modeled on raw data using least-square regressions. Then, parameters of models are included in the coding scheme as continuous characters. This method is employed to reconstruct phylogenetic relationships using the ammonite family Amaltheidae as a test subject. Based on the same data set, a second analysis has been performed only for characters of the adult stage. Comparisons of retention index, bootstrap support, and stratigraphic congruence between the two analyses show that the inclusion of ontogeny yields better phylogenetic reconstruction. Morphological traits in ammonites which are usually the most homoplastic show a better fit to most parsimonious trees by including the ontogenetic dimension. In several cases, growth rates and patterns of growth have better fit to phylogeny than adult shapes, implying that paths of ontogeny can be more relevant than its products.

  7. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task

    PubMed Central

    Meule, Adrian; Lutz, Annika P. C.; Krawietz, Vera; Stützer, Judith; Vögele, Claus; Kübler, Andrea

    2014-01-01

    Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, that is, low inhibitory control, have been associated with higher body mass index (BMI), binge eating, and other problem behaviors (e.g., substance abuse, pathological gambling, etc.). Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task). In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted. PMID:24659978

  8. Food-cue affected motor response inhibition and self-reported dieting success: a pictorial affective shifting task.

    PubMed

    Meule, Adrian; Lutz, Annika P C; Krawietz, Vera; Stützer, Judith; Vögele, Claus; Kübler, Andrea

    2014-01-01

    Behavioral inhibition is one of the basic facets of executive functioning and is closely related to self-regulation. Impulsive reactions, that is, low inhibitory control, have been associated with higher body mass index (BMI), binge eating, and other problem behaviors (e.g., substance abuse, pathological gambling, etc.). Nevertheless, studies which investigated the direct influence of food-cues on behavioral inhibition have been fairly inconsistent. In the current studies, we investigated food-cue affected behavioral inhibition in young women. For this purpose, we used a go/no-go task with pictorial food and neutral stimuli in which stimulus-response mapping is reversed after every other block (affective shifting task). In study 1, hungry participants showed faster reaction times to and omitted fewer food than neutral targets. Low dieting success and higher BMI were associated with behavioral disinhibition in food relative to neutral blocks. In study 2, both hungry and satiated individuals were investigated. Satiation did not influence overall task performance, but modulated associations of task performance with dieting success and self-reported impulsivity. When satiated, increased food craving during the task was associated with low dieting success, possibly indicating a preload-disinhibition effect following food intake. Food-cues elicited automatic action and approach tendencies regardless of dieting success, self-reported impulsivity, or current hunger levels. Yet, associations between dieting success, impulsivity, and behavioral food-cue responses were modulated by hunger and satiation. Future research investigating clinical samples and including other salient non-food stimuli as control category is warranted.

  9. Analysis of the rumen bacterial diversity of goats during shift from forage to concentrate diet.

    PubMed

    Grilli, Diego Javier; Fliegerová, Kateřina; Kopečný, Jan; Lama, Sebastián Paez; Egea, Vanina; Sohaefer, Noelia; Pereyra, Celia; Ruiz, María Soledad; Sosa, Miguel Angel; Arenas, Graciela Nora; Mrázek, Jakub

    2016-12-01

    High-grain feeding used in the animal production is known to affect the host rumen bacterial community, but our understanding of consequent changes in goats is limited. This study was therefore aimed to evaluate bacterial population dynamics during 20 days adaptation of 4 ruminally cannulated goats to the high-grain diet (grain: hay - ratio of 40:60). The dietary transition of goats from the forage to the high-grain-diet resulted in the significant decrease of rumen fluid pH, which was however still higher than value established for acute or subacute ruminal acidosis was not diagnosed in studied animals. DGGE analysis demonstrated distinct ruminal microbial populations in hay-fed and grain-fed animals, but the substantial animal-to-animal variation were detected. Quantitative PCR showed for grain-fed animals significantly higher number of bacteria belonging to Clostridium leptum group at 10 days after the incorporation of corn into the diet and significantly lower concentration of bacteria belonging to Actinobacteria phylum at the day 20 after dietary change. Taxonomic distribution analysed by NGS at day 20 revealed the similar prevalence of the phyla Firmicutes and Bacteroidetes in all goats, significantly higher presence of the unclassified genus of groups of Bacteroidales and Ruminococcaceae in grain-fed animals and significantly higher presence the genus Prevotella and Butyrivibrio in the forage-fed animals. The three different culture-independent methods used in this study show that high proportion of concentrate in goat diet does not induce any serious disturbance of their rumen ecosystem and indicate the good adaptive response of caprine ruminal bacteria to incorporation of corn into the diet.

  10. Muscle-Specific Myosin Heavy Chain Shifts in Response to a Long-Term High Fat/High Sugar Diet and Resveratrol Treatment in Nonhuman Primates

    PubMed Central

    Hyatt, Jon-Philippe K.; Nguyen, Lisa; Hall, Allison E.; Huber, Ashley M.; Kocan, Jessica C.; Mattison, Julie A.; de Cabo, Rafael; LaRocque, Jeannine R.; Talmadge, Robert J.

    2016-01-01

    Shifts in myosin heavy chain (MHC) expression within skeletal muscle can be induced by a host of stimuli including, but not limited to, physical activity, alterations in neural activity, aging, and diet or obesity. Here, we hypothesized that both age and a long-term (2 year) high fat/high sugar diet (HFS) would induce a slow to fast MHC shift within the plantaris, soleus, and extensor digitorum longus (EDL) muscles from rhesus monkeys. Furthermore, we tested whether supplementation with resveratrol, a naturally occurring compound that has been attributed with augmenting aerobic potential through mitochondrial proliferation, would counteract any diet-induced MHC changes by promoting a fast to slow isoform switch. In general, we found that MHC isoforms were not altered by aging during mid-life. The HFS diet had the largest impact within the soleus muscle where the greatest slow to fast isoform shifts were observed in both mRNA and protein indicators. As expected, long-term resveratrol treatment counteracted, or blunted, these diet-induced shifts within the soleus muscle. The plantaris muscle also demonstrated a fast-to-slow phenotypic response to resveratrol treatment. In conclusion, diet or resveratrol treatment impacts skeletal muscle phenotype in a muscle-specific manner and resveratrol supplementation may be one approach for promoting the fatigue-resistant MHC (type I) isoform especially if its expression is blunted as a result of a long-term high fat/sugar diet. PMID:26973542

  11. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark.

    PubMed

    Carlisle, Aaron B; Goldman, Kenneth J; Litvin, Steven Y; Madigan, Daniel J; Bigman, Jennifer S; Swithenbank, Alan M; Kline, Thomas C; Block, Barbara A

    2015-01-22

    Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny.

  12. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark

    PubMed Central

    Carlisle, Aaron B.; Goldman, Kenneth J.; Litvin, Steven Y.; Madigan, Daniel J.; Bigman, Jennifer S.; Swithenbank, Alan M.; Kline, Thomas C.; Block, Barbara A.

    2015-01-01

    Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny. PMID:25621332

  13. Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus Faecalis as alternatives to antibiotics

    PubMed Central

    Li, Pinghua; Niu, Qing; Wei, Qingtian; Zhang, Yeqiu; Ma, Xiang; Kim, Sung Woo; Lin, Mingxin; Huang, Ruihua

    2017-01-01

    Gut microbiota plays an important role in host health and nutrient digestion of animals. Probiotics have become one of effective alternatives to antibiotics enhancing animal health and performance through modulating gut microbiota. Previously, our research demonstrated that dietary Enterococcus Faecalis UC-100 substituting antibiotics enhanced growth and health of weaned pigs. To investigate the alterations of microbiota in the distal gut of pigs fed E. faecalis UC-100 substituting antibiotics, this study assessed fecal microbiota in pigs from different dietary treatments: the basal diet group, the E. faecalis group, and the antibiotic group on d 0, 14, and 28 of feeding through 16 S rRNA sequencing. Twenty-one phyla and 137 genera were shared by all pigs, whereas 12 genera were uniquely identified in the E. faecalis group on d 14 and 28. Bacterial abundance and diversity in the E. faecalis group, bacterial diversity in the antibiotic group, especially abundances of Fibrobacteres phylum and 12 genera in the E. faecalis group and antibiotics group were lower than that in the basal diet group on d 28. These results showed that microbial shifts in the porcine gut in response to diets containing E. faecalis were similar to the response to which containing antibiotics. PMID:28165001

  14. Lunar influence on prey availability, diet shifts and niche overlap between Engraulidae larvae in tropical mangrove creeks.

    PubMed

    Lima, A R A; Barletta, M

    2016-10-01

    The influence of the lunar cycle on prey availability, diet shifts and overlap between larval Anchovia clupeoides and Cetengraulis edentulus was evaluated in mangrove creeks of the Goiana Estuary. Copepod eggs were highly abundant in the first and last quarter, at the full moon and zoea of Ucides cordatus (Ocypodidae) in the new moon. The Engraulidae larvae fed on microcrustaceans, algae and early planktonic stages of benthic organisms. The relative importance of prey varied according to prey availability in all moon phases. Larval diets were more even in the full and new moons, when the relative importance of calanoid copepods and zoeae of U. cordatus as food items increased (index of relative importance, >80% IRI ). Mangrove creeks were very important feeding grounds for engraulid larvae during spring tides. Larval diets were more diverse in the first and last-quarter moon and included protozoeae of Caridean shrimp, larvae of Anomalocardia brasiliana (Veneridae), Isopoda, Gastropoda, ephippium of Daphnia sp. and nauplii of Cirripedia, Harpacticoidia and cyclopoid Copepoda. The last five items were not found in the creeks, suggesting feeding in the main channel. During neap tides, mangrove creeks were probably also used as refugia. These larvae are opportunistic and feed on highly available prey and both species feed on the same items, leading to high dietary overlap in all moon phases. The lunar cycle, which is related to the spring-neap tidal cycle, was the major driver of quantitative and qualitative changes in feeding of engraulid larvae on a short time scale.

  15. Coyote (Canis latrans) mammalian prey diet shifts in response to seasonal vegetation change.

    PubMed

    Seamster, Virginia A; Waits, Lisette P; Macko, Stephen A; Shugart, Herman H

    2014-01-01

    Drylands typically have strong seasonal variation in rainfall and primary productivity. This study examines the effects of seasonal change in grass-derived resource availability on the base of the food chain of a mammalian predator. Seasonal changes in live grass cover were measured in two vegetation types at the Sevilleta National Wildlife Refuge in central New Mexico, USA. Non-invasive genetic sampling of scat was used to identify individuals in the local coyote (Canis latrans) population. Stable carbon and nitrogen isotope analysis of hair removed from scats of 45 different coyotes was used to assess seasonal variation in the diet of mammalian coyote prey that came from C4 grasses. Live grass cover increased from the spring to the summer and fall; contribution of C4 grasses to the diet of mammalian coyote prey increased from the summer to the fall and was higher in grassland areas. There were significant differences in the seasonal patterns in the prey diet between grassland and shrubland areas.

  16. Ontogenetic and interspecific metabolic scaling in insects.

    PubMed

    Maino, James L; Kearney, Michael R

    2014-12-01

    Design constraints imposed by increasing size cause metabolic rate in animals to increase more slowly than mass. This ubiquitous biological phenomenon is referred to as metabolic scaling. However, mechanistic explanations for interspecific metabolic scaling do not apply to ontogenetic size changes within a species, implying different mechanisms for scaling phenomena. Here, we show that the dynamic energy budget theory approach of compartmentalizing biomass into reserve and structural components provides a unified framework for understanding ontogenetic and interspecific metabolic scaling. We formulate the theory for insects and show that it can account for ontogenetic metabolic scaling during the embryonic and larval phases, as well as the U-shaped respiration curve during pupation. After correcting for the predicted ontogenetic scaling effects, which we show to follow universal curves, the scaling of respiration between species is approximated by a three-quarters power law, supporting past empirical studies on insect metabolic scaling and our theoretical predictions. The ability to explain ontogenetic and interspecific metabolic scaling effects under one consistent framework suggests that the partitioning of biomass into reserve and structure is a necessary foundation to a general metabolic theory.

  17. Quantification of ontogenetic allometry in ammonoids.

    PubMed

    Korn, Dieter

    2012-01-01

    Ammonoids are well-known objects used for studies on ontogeny and phylogeny, but a quantification of ontogenetic change has not yet been carried out. Their planispirally coiled conchs allow for a study of "longitudinal" ontogenetic data, that is data of ontogenetic trajectories that can be obtained from a single specimen. Therefore, they provide a good model for ontogenetic studies of geometry in other shelled organisms. Using modifications of three cardinal conch dimensions, computer simulations can model artificial conchs. The trajectories of ontogenetic allometry of these simulations can be analyzed in great detail in a theoretical morphospace. A method for the classification of conch ontogeny and quantification of the degree of allometry is proposed. Using high-precision cross-sections, the allometric conch growth of real ammonoids can be documented and compared. The members of the Ammonoidea show a wide variety of allometric growth, ranging from near isometry to monophasic, biphasic, or polyphasic allometry. Selected examples of Palaeozoic and Mesozoic ammonoids are shown with respect to their degree of change during ontogeny of the conch.

  18. Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures.

    PubMed

    Cavieres, G; Bogdanovich, J M; Bozinovic, F

    2016-07-01

    Early experience and environmental conditions during ontogeny may affect organismal structure, physiology and fitness. Here, we assessed the effect of developmental acclimation to environmental thermal variability on walking speed in Drosophila melanogaster adults. Our results showed a shift in the performance curve to the right. Thus, upper and lower thermal limits exhibited developmental plasticity. Additionally, in constant and variable climatic scenarios, flies shifted to the right the optimum temperature but the maximum performance decreased only in flies reared on high temperatures and high thermal variability. Overall, we showed that environmental cues during ontogeny might help to construct phenotypic variation, which supports the hypothesis of ontogenetic dependence of thermal tolerances. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Starch plus sunflower oil addition to the diet of dry dairy cows results in a trans-11 to trans-10 shift of biohydrogenation.

    PubMed

    Zened, A; Enjalbert, F; Nicot, M C; Troegeler-Meynadier, A

    2013-01-01

    Trans fatty acids (FA), exhibit different biological properties. Among them, cis-9,trans-11 conjugated linoleic acid has some interesting putative health properties, whereas trans-10,cis-12 conjugated linoleic acid has negative effects on cow milk fat production and would negatively affect human health. In high-yielding dairy cows, a shift from trans-11 to trans-10 pathway of biohydrogenation (BH) can occur in the rumen of cows receiving high-concentrate diets, especially when the diet is supplemented with unsaturated fat sources. To study this shift, 4 rumen-fistulated nonlactating Holstein cows were assigned to a 4×4 Latin square design with 4 different diets during 4 periods. Cows received 12 kg of dry matter per day of 4 diets based on corn silage during 4 successive periods: a control diet (22% starch, <3% crude fat on DM basis), a high-starch diet supplemented with wheat plus barley (35% starch, <3% crude fat), a sunflower oil diet supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat), and a high-starch plus sunflower oil diet (33% starch, 7.3% crude fat). Five hours after feeding, proportions of trans-11 BH isomers greatly increased in the rumen content with the addition of sunflower oil, without change in ruminal pH compared with the control diet. Addition of starch to the control diet had no effect on BH pathways but decreased ruminal pH. The addition of a large amount of starch in association with sunflower oil increased trans-10 FA at the expense of trans-11 FA in the rumen content, revealing a trans-11 to trans-10 shift. Interestingly, with this latter diet, ruminal pH did not change compared with a single addition of starch. This trans-11 to trans-10 shift occurred progressively, after a decrease in the proportion of trans-11 FA in the rumen, suggesting that this shift could result from a dysbiosis in the rumen in favor of trans-10-producing bacteria at the expense of those producing trans-11 or a modification of bacterial activities.

  20. Turning point for US diets? Recessionary effects or behavioral shifts in foods purchased and consumed123

    PubMed Central

    Ng, Shu Wen; Slining, Meghan M; Popkin, Barry M

    2014-01-01

    Background: In the past decade, the United States has seen declining energy intakes and plateauing obesity levels. Objective: We examined whether these observed trends suggest a longer-term shift in dietary and health behavior that is independent of adverse economic conditions. Design: We used nationally representative cross-sectional surveys on intake and longitudinal household food purchase data along with random-effects models to address this question. Data included individuals in NHANES 2003–2004 to 2009–2010 (children: n = 13,422; adults: n = 10,791) and households from the 2000–2011 Nielsen Homescan Panel (households with children: n = 57,298; households with adults only: n = 108,932). Results: In both data sets, we showed that children decreased their calories the most. Even after we controlled for important socioeconomic factors, caloric purchases fell significantly from 2003 to 2011 (P < 0.001), particularly for households with children. The Great Recession was associated with small increases in caloric purchases, in which a 1–percentage point increase in unemployment in the local market was associated with a 1.6–4.1-kcal · capita−1 · d−1 (P < 0.001) increase in total calories purchased. Results also indicated shifts in caloric purchases were driven more by declines in caloric purchases from beverages than food. Conclusions: US consumers have exhibited changes in intake and purchasing behavior since 2003 that were independent from changing economic conditions linked with the Great Recession or food prices. Public health efforts in the past decade may have contributed to this trend. PMID:24429538

  1. Seasonal shifts in the diet of the big brown bat (Eptesicus fuscus), Fort Collins, Colorado

    USGS Publications Warehouse

    Valdez, Ernest W.; O'Shea, Thomas J.

    2014-01-01

    Recent analyses suggest that the big brown bat (Eptesicus fuscus) may be less of a beetle specialist (Coleoptera) in the western United States than previously thought, and that its diet might also vary with temperature. We tested the hypothesis that big brown bats might opportunistically prey on moths by analyzing insect fragments in guano pellets from 30 individual bats (27 females and 3 males) captured while foraging in Fort Collins, Colorado, during May, late July–early August, and late September 2002. We found that bats sampled 17–20 May (n = 12 bats) had a high (81–83%) percentage of volume of lepidopterans in guano, with the remainder (17–19% volume) dipterans and no coleopterans. From 28 May–9 August (n = 17 bats) coleopterans dominated (74–98% volume). On 20 September (n = 1 bat) lepidopterans were 99% of volume in guano. Migratory miller moths (Euxoa auxiliaris) were unusually abundant in Fort Collins in spring and autumn of 2002 and are known agricultural pests as larvae (army cutworms), suggesting that seasonal dietary flexibility in big brown bats has economic benefits.

  2. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California

    PubMed Central

    Newsome, Seth D.; Collins, Paul W.; Rick, Torben C.; Guthrie, Daniel A.; Erlandson, Jon M.; Fogel, Marilyn L.

    2010-01-01

    Studies of current interactions among species, their prey, and environmental factors are essential for mitigating immediate threats to population viability, but the true range of behavioral and ecological flexibility can be determined only through research on deeper timescales. Ecological data spanning centuries to millennia provide important contextual information for long-term management strategies, especially for species that now are living in relict populations. Here we use a variety of methods to reconstruct bald eagle diets and local abundance of their potential prey on the Channel Islands from the late Pleistocene to the time when the last breeding pairs disappeared from the islands in the mid-20th century. Faunal and isotopic analysis of bald eagles shows that seabirds were important prey for immature/adult eagles for millennia before the eagles’ local extirpation. In historic times (A.D. 1850–1950), however, isotopic and faunal data show that breeding bald eagles provisioned their chicks with introduced ungulates (e.g., sheep), which were locally present in high densities. Today, bald eagles are the focus of an extensive conservation program designed to restore a stable breeding population to the Channel Islands, but native and nonnative prey sources that were important for bald eagles in the past are either diminished (e.g., seabirds) or have been eradicated (e.g., introduced ungulates). In the absence of sufficient resources, a growing bald eagle population on the Channel Islands could expand its prey base to include carrion from local pinniped colonies, exert predation pressure on a recovering seabird population, and possibly prey on endangered island foxes. PMID:20439737

  3. Pleistocene to historic shifts in bald eagle diets on the Channel Islands, California.

    PubMed

    Newsome, Seth D; Collins, Paul W; Rick, Torben C; Guthrie, Daniel A; Erlandson, Jon M; Fogel, Marilyn L

    2010-05-18

    Studies of current interactions among species, their prey, and environmental factors are essential for mitigating immediate threats to population viability, but the true range of behavioral and ecological flexibility can be determined only through research on deeper timescales. Ecological data spanning centuries to millennia provide important contextual information for long-term management strategies, especially for species that now are living in relict populations. Here we use a variety of methods to reconstruct bald eagle diets and local abundance of their potential prey on the Channel Islands from the late Pleistocene to the time when the last breeding pairs disappeared from the islands in the mid-20th century. Faunal and isotopic analysis of bald eagles shows that seabirds were important prey for immature/adult eagles for millennia before the eagles' local extirpation. In historic times (A.D. 1850-1950), however, isotopic and faunal data show that breeding bald eagles provisioned their chicks with introduced ungulates (e.g., sheep), which were locally present in high densities. Today, bald eagles are the focus of an extensive conservation program designed to restore a stable breeding population to the Channel Islands, but native and nonnative prey sources that were important for bald eagles in the past are either diminished (e.g., seabirds) or have been eradicated (e.g., introduced ungulates). In the absence of sufficient resources, a growing bald eagle population on the Channel Islands could expand its prey base to include carrion from local pinniped colonies, exert predation pressure on a recovering seabird population, and possibly prey on endangered island foxes.

  4. The ontogenetic switch between odonate life history stages: effects on fitness when time and food are limited.

    PubMed

    Plaistow; Siva-jothy

    1999-09-01

    During the course of ontogeny, odonates switch from being aquatic larvae to being terrestrial adults. Ontogenetic niche shift theory proposes that such shifts are adaptive and have evolved to maximize a growth rate (size) to mortality rate ratio. Individuals should therefore switch from one niche to the other at an optimal size or state. Since the majority of odonates are seasonal breeders, the extent to which the switch is optimal will depend upon the time and the resources available during postembryonic development. We collected a cohort of larvae that varied in how close they were to eclosion and reared them on either a high-nutrition or a low-nutrition diet. We then determined the relative influence of both time and nutritional constraints on survival and development rate, as well as the body size, size-corrected flight muscle mass and fat reserves of individuals at eclosion. Damselflies in both high- and low-nutrition treatments responded to a short development period by developing faster and reducing their body size, but did not change their proportional investment in fat reserves and flight muscle. Reduced larval nutrition resulted in decreased body size, flight muscle mass and fat reserves at eclosion. However, it had no effect on survival to eclosion, or development rate. We discuss these results in terms of the influence that time and nutritional constraints have on odonate development patterns and fitness. Copyright 1999 The Association for the Study of Animal Behaviour.

  5. Fatty acid profiling reveals seasonal and spatial shifts in zooplankton diet in a temperate estuary

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. M. M.; Azeiteiro, U. M.; Pardal, M. A.; De Troch, M.

    2012-08-01

    Fatty acids composition of copepod and cladoceran species and their possible food sources was investigated in the Mondego estuary (southern Europe) in order to explain the seasonal variation of the small copepods Acartia clausi, Acartia tonsa, Copidodiaptomus numidicus, Temora longicornis and the freshwater cladoceran Daphnia longispina. A total of 12 zooplankton species (7 marine, 2 estuarine and 3 freshwater species) were studied. A multivariate analysis revealed a clear seasonal distribution of zooplankton species in terms of fatty acids composition and abundance, with winter and spring zooplankton species showing maximal concentrations and diversity of total fatty acids. These findings underline the role of lipids as storage during the colder seasons in a highly variable environment like an estuary. Estuarine and freshwater species showed a more diverse array of saturated and unsaturated fatty acids rather than marine species, except for Centropages typicus. Fatty acids markers of trophic position indicated the presence of two trophic levels: copepod species were primarily omnivorous, whereas cladocerans showed to be herbivorous. Our results suggest that feeding patterns of plankton change spatially and temporally, reflecting the shifts in dominance between diatoms and flagellates as well as between dinoflagellates/diatoms and small animals.

  6. Shifts in morphology and diet of non-native sticklebacks introduced into Japanese crater lakes

    PubMed Central

    Adachi, Tatsuya; Ishikawa, Asano; Mori, Seiichi; Makino, Wataru; Kume, Manabu; Kawata, Masakado; Kitano, Jun

    2012-01-01

    An increasing number of exotic animals are causing ecological problems. Therefore, for better ecosystem management, it is important to understand how exotic species colonize and adapt to novel environments. The threespine sticklebacks (Gasterosteus aculeatus) can be a good vertebrate model system to explore the ecological and genetic mechanisms of adaptation not only in natural populations, but also in non-native populations. Although morphological changes have been documented in several introduced populations of stickleback, little is known about the dietary changes during colonization into novel environments. Here, we investigated the morphological and dietary changes of exotic threespine stickleback populations introduced into three Japanese crater lakes (Lake Towada, Lake Kussharo, and Lake Shikotsu). Sticklebacks were introduced into the crater lakes likely along with salmonids transplanted for aquaculture. The stickleback population in Lake Kussharo had multiple mitochondrial haplotypes and had larger phenotypic variances than other crater lake stickleback populations that had only one mitochondrial haplotype. Compilation of historical data on the morphology and stomach contents of the Lake Towada stickleback population showed that substantial shifts in body size and stomach contents occurred after colonization. Some of these changes may be related to an outbreak of the Schistocephalus parasite. These results suggest that sticklebacks can change their morphology and trophic ecology when they colonize novel environments. Therefore, extreme care should be taken when salmonids are transported between watersheds for aquaculture and that long-term monitoring of exotic species is essential for ecosystem management. In addition, further genetic studies on phenotypic changes in crater lake sticklebacks would help elucidate the genetic mechanisms underlying the adaptation of exotic fishes to novel environments. PMID:22833786

  7. Short-term changes in consumption and oviposition rates of Neoseiulus californicus strains (Acari: Phytoseiidae) after a diet shift.

    PubMed

    Castagnoli, M; Simoni, S; Nachman, G

    2001-01-01

    Short-term effects on consumption and oviposition rates of four strains of Neoseiulus californicus (McGregor) after a diet shift were evaluated. The new feeding conditions experienced by the predators were six fixed densities of eggs or protonymphs of Tetranychus urticae Koch placed on excised strawberry leaflet discs and maintained under laboratory conditions (25 +/- 1 degrees C, 75-85% RH, 16L: 8D). The observations were made on the first and the fifth day of the experiment. The phytoseiids came from three long-term mass-reared strains fed on T. urticae, Dermatophagoidesfarinae Hughes, or Quercus spp. pollen, respectively. The fourth strain was collected directly in a strawberry field. Time since diet transfer can be added to the factors (i.e. feeding history and prey density) already known to affect the functional and numerical responses of N. californicus, both when it feeds on prey eggs and protonymphs. If consumption rates were averaged over all strains and densities, 9.04 and 11.41 eggs, and 6.97 and 6.48 protonymphs were consumed on the first and the fifth day, respectively. If the same was done for oviposition rates, predators feeding on eggs produced 1.46 and 2.36 eggs/female/day, whereas predators feeding on protonymphs produced 1.35 and 2.29 eggs/female/day. Time had the greatest impact on the functional response of the strain that had previously fed on tetranychids, while an effect of time on the numerical response was detectable in all strains.

  8. Environmental and Ontogenetic Effects on Intraspecific Trait Variation of a Macrophyte Species across Five Ecological Scales

    PubMed Central

    Zhong, Jiayou; Cao, Te; Ni, Leyi; Xie, Ping

    2013-01-01

    Although functional trait variability is increasingly used in community ecology, the scale- and size-dependent aspects of trait variation are usually disregarded. Here we quantified the spatial structure of shoot height, branch length, root/shoot ratio and leaf number in a macrophyte species Potamogeton maackianus, and then disentangled the environmental and ontogenetic effects on these traits. Using a hierarchical nested design, we measured the four traits from 681 individuals across five ecological scales: lake, transect, depth stratus, quadrat and individual. A notable high trait variation (coefficient variation: 48–112%) was observed within species. These traits differed in the spatial structure, depending on environmental factors of different scales. Shoot height and branch length were most responsive to lake, transect and depth stratus scales, while root/shoot ratio and leaf number to quadrat and individual scales. The trait variations caused by environment are nearly three times higher than that caused by ontogeny, with ontogenetic variance ranging from 21% (leaf number) to 33% (branch length) of total variance. Remarkably, these traits showed non-negligible ontogenetic variation (0–60%) in each ecological scale, and significant shifts in allometric trajectories at lake and depth stratus scales. Our results highlight that environmental filtering processes can sort individuals within species with traits values adaptive to environmental changes and ontogenetic variation of functional traits was non-negligible across the five ecological scales. PMID:23626856

  9. The Ontogenetic Osteohistology of Tenontosaurus tilletti

    PubMed Central

    Werning, Sarah

    2012-01-01

    Tenontosaurus tilletti is an ornithopod dinosaur known from the Early Cretaceous (Aptian-Albian) Cloverly and Antlers formations of the Western United States. It is represented by a large number of specimens spanning a number of ontogenetic stages, and these specimens have been collected across a wide geographic range (from central Montana to southern Oklahoma). Here I describe the long bone histology of T. tilletti and discuss histological variation at the individual, ontogenetic and geographic levels. The ontogenetic pattern of bone histology in T. tilletti is similar to that of other dinosaurs, reflecting extremely rapid growth early in life, and sustained rapid growth through sub-adult ontogeny. But unlike other iguanodontians, this dinosaur shows an extended multi-year period of slow growth as skeletal maturity approached. Evidence of termination of growth (e.g., an external fundamental system) is observed in only the largest individuals, although other histological signals in only slightly smaller specimens suggest a substantial slowing of growth later in life. Histological differences in the amount of remodeling and the number of lines of arrested growth varied among elements within individuals, but bone histology was conservative across sampled individuals of the species, despite known paleoenvironmental differences between the Antlers and Cloverly formations. The bone histology of T. tilletti indicates a much slower growth trajectory than observed for other iguanodontians (e.g., hadrosaurids), suggesting that those taxa reached much larger sizes than Tenontosaurus in a shorter time. PMID:22470454

  10. Low Dose Effects in Psychopharmacology: Ontogenetic Considerations

    PubMed Central

    Spear, Linda Patia; Varlinskaya, Elena I.

    2005-01-01

    Low doses of psychoactive drugs often elicit a behavioral profile opposite to that observed following administration of more substantial doses. Our laboratory has observed that these effects are often age-specific in rats. For instance, whereas moderate to high doses of the dopamine agonist apomorphine increase locomotion, suppressed locomotor activity is seen following low dose exposure, with this low dose effect not emerging consistently until adolescence. A somewhat earlier emergence of a low dose “paradoxical” effect is seen with the 5HT1a receptor agonist, 8-OH-DPAT, with late preweanling, but not neonatal, rats showing increases in ingestive behavior at low doses but suppression at higher doses. In contrast to these ontogenetic increases in expression of low dose drug effects, low dose facilitation of social behavior is seen following ethanol only in adolescent rats and not their mature counterparts, although suppression of social interactions at higher doses is seen at both ages. This hormesis-like low dose stimulation appears related in part to overcompensation, with brief social suppression preceding the subsequent stimulation response, and also bears a number of ontogenetic similarities to acute tolerance, a well characterized, rapidly emerging adaptation to ethanol. Implications of these and other ontogenetic findings for studies of hormesis are discussed. PMID:19330157

  11. Ontogenetic patterns in the mechanisms of tolerance to herbivory in Plantago

    PubMed Central

    Barton, Kasey E.

    2013-01-01

    Background and Aims Herbivory and plant defence differ markedly among seedlings and juvenile and mature plants in most species. While ontogenetic patterns of chemical resistance have been the focus of much research, comparatively little is known about how tolerance to damage changes across ontogeny. Due to dramatic shifts in plant size, resource acquisition, stored reserves and growth, it was predicted that tolerance and related underlying mechanisms would differ among ontogenetic stages. Methods Ontogenetic patterns in the mechanisms of tolerance were investigated in Plantago lanceolata and P. major (Plantaginaceae) using the genetic sib-ship approach. Pot-grown plants were subjected to 50 % defoliation at the seedling, juvenile and mature stages and either harvested in the short-term to look at plasticity in growth and photosynthesis in response to damage or allowed to grow through seed maturation to measure phenology, shoot compensation and reproductive fitness. Key Results Tolerance to defoliation was high in P. lanceolata, but low in P. major, and did not vary among ontogenetic stages in either species. Mechanisms underlying tolerance did vary across ontogeny. In P. lanceolata, tolerance was significantly related to flowering (juveniles) and pre-damage shoot biomass (mature plants). In P. major, tolerance was significantly related to pre-damage root biomass (seedlings) and induction of non-photochemical quenching, a photosynthetic parameter (juveniles). Conclusions Biomass partitioning was very plastic in response to damage and showed associations with tolerance in both species, indicating a strong role in plant defence. In contrast, photosynthesis and phenology showed weaker responses to damage and were related to tolerance only in certain ontogenetic stages. This study highlights the pivotal role of ontogeny in plant defence and herbivory. Additional studies in more species are needed to determine how seedlings tolerate herbivory in general and whether

  12. Ontogenetic scaling of bite force in lizards and turtles.

    PubMed

    Herrel, Anthony; O'reilly, James C

    2006-01-01

    Because selection on juvenile life-history stages is likely strong, disproportionately high levels of performance (e.g., sprint speed, endurance, etc.) might be expected. Whereas this phenomenon has been demonstrated with respect to locomotor performance, data for feeding are scarce. Here, we investigate the relationships among body dimensions, head dimensions, and bite force during growth in lizards and turtles. We also investigate whether ontogenetic changes in bite performance are related to changes in diet. Our analyses show that, for turtles, head dimensions generally increase with negative allometry. For lizards, heads scale as expected for geometrically growing systems. Bite force generally increased isometrically with carapace length in turtles but showed significant positive allometry relative to body dimensions in lizards. However, both lizards and turtles display positive allometric scaling of bite force relative to some measures of head size throughout ontogeny, suggesting (1) strong selection for increased relative bite performance with increasing head size and (2) intrinsic changes in the geometry and/or mass of the jaw adductors during growth. Whereas our data generally do not provide strong evidence of compensation for lower absolute levels of performance, they do show strong links among morphology, bite force, and diet during growth.

  13. Mediterranean diet supplemented with nuts reduces waist circumference and shifts lipoprotein subfractions to a less atherogenic pattern in subjects at high cardiovascular risk.

    PubMed

    Damasceno, Nagila R T; Sala-Vila, Aleix; Cofán, Montserrat; Pérez-Heras, Ana M; Fitó, Montserrat; Ruiz-Gutiérrez, Valentina; Martínez-González, Miguel-Ángel; Corella, Dolores; Arós, Fernando; Estruch, Ramon; Ros, Emilio

    2013-10-01

    The PREDIMED trial showed that Mediterranean diets supplemented with either extra-virgin olive oil or nuts reduced incident cardiovascular events compared to a control diet. Consumption of both supplemental foods has been associated with reduced LDL-cholesterol, but it is unknown whether they can shift lipoprotein subfractions to a less atherogenic pattern. We investigated changes in adiposity and lipoprotein subfractions after consumption of the PREDIMED diets. In a PREDIMED sub-cohort (n = 169), lipoprotein subclasses (particle concentrations and size) were determined by nuclear magnetic resonance spectroscopy at baseline and after intervention for 1 year. Participants allocated to the Mediterranean diet supplemented with nuts showed significant reductions from baseline of waist circumference (mean [95% CI]; -5 cm [-7; -3]) and concentrations of medium-small (-27 nmol/l [-46; -8]) and very small LDL (-111 nmol/l [-180; -42]); decreased LDL particle number (a nuclear magnetic resonance-specific measurement) (-98 nmol/l [-184; -11]); and an increase of large LDL concentrations (54 nmol/l [18; 90]), with a net increase (0.2 nmol/l [0.1; 0.4]) of LDL size. The Mediterranean diets with olive oil and nuts increased large HDL concentrations (0.6 μM [0.0; 1.1] and 1.0 μM [0.4; 1.5], respectively). Compared to the other two intervention groups, participants in the nut-enriched diet showed significantly reduced waist circumference (p ≤ 0.006, both) and increased LDL size (p < 0.05, both). Lipoprotein subfractions are shifted to a less atherogenic pattern by consumption of Mediterranean diets enriched with nuts. The results contribute mechanistic evidence for the reduction of cardiovascular events observed in the PREDIMED trial. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Towards an ontogenetic understanding of inflorescence diversity.

    PubMed

    Claßen-Bockhoff, Regine; Bull-Hereñu, Kester

    2013-11-01

    Conceptual and terminological conflicts in inflorescence morphology indicate a lack of understanding of the phenotypic diversity of inflorescences. In this study, an ontogeny-based inflorescence concept is presented considering different meristem types and developmental pathways. By going back to the ontogenetic origin, diversity is reduced to a limited number of types and terms. Species from 105 genera in 52 angiosperm families are investigated to identify their specific reproductive meristems and developmental pathways. Based on these studies, long-term experience with inflorescences and literature research, a conceptual framework for the understanding of inflorescences is presented. Ontogeny reveals that reproductive systems traditionally called inflorescences fall into three groups, i.e. 'flowering shoot systems' (FSS), 'inflorescences' sensu stricto and 'floral units' (FUs). Our concept is, first, based on the identification of reproductive meristem position and developmental potential. The FSS, defined as a seasonal growth unit, is used as a reference framework. As the FSS is a leafy shoot system bearing reproductive units, foliage and flowering sequence play an important role. Second, the identification of two different flower-producing meristems is essential. While 'inflorescence meristems' (IMs) share acropetal primordia production with vegetative meristems, 'floral unit meristems' (FUMs) resemble flower meristems in being indeterminate. IMs produce the basic inflorescence types, i.e. compound and simple racemes, panicles and botryoids. FUMs give rise to dense, often flower-like units (e.g. heads). They occur solitarily at the FSS or occupy flower positions in inflorescences, rendering the latter thyrses in the case of cymose branching. The ontogenetic concept differs from all existing inflorescence concepts in being based on meristems and developmental processes. It includes clear terms and allows homology statements. Transitional forms are an explicit

  15. Towards an ontogenetic understanding of inflorescence diversity

    PubMed Central

    Claßen-Bockhoff, Regine; Bull-Hereñu, Kester

    2013-01-01

    Backgrounds and Aims Conceptual and terminological conflicts in inflorescence morphology indicate a lack of understanding of the phenotypic diversity of inflorescences. In this study, an ontogeny-based inflorescence concept is presented considering different meristem types and developmental pathways. By going back to the ontogenetic origin, diversity is reduced to a limited number of types and terms. Methods Species from 105 genera in 52 angiosperm families are investigated to identify their specific reproductive meristems and developmental pathways. Based on these studies, long-term experience with inflorescences and literature research, a conceptual framework for the understanding of inflorescences is presented. Key Results Ontogeny reveals that reproductive systems traditionally called inflorescences fall into three groups, i.e. ‘flowering shoot systems’ (FSS), ‘inflorescences’ sensu stricto and ‘floral units’ (FUs). Our concept is, first, based on the identification of reproductive meristem position and developmental potential. The FSS, defined as a seasonal growth unit, is used as a reference framework. As the FSS is a leafy shoot system bearing reproductive units, foliage and flowering sequence play an important role. Second, the identification of two different flower-producing meristems is essential. While ‘inflorescence meristems’ (IMs) share acropetal primordia production with vegetative meristems, ‘floral unit meristems’ (FUMs) resemble flower meristems in being indeterminate. IMs produce the basic inflorescence types, i.e. compound and simple racemes, panicles and botryoids. FUMs give rise to dense, often flower-like units (e.g. heads). They occur solitarily at the FSS or occupy flower positions in inflorescences, rendering the latter thyrses in the case of cymose branching. Conclusions The ontogenetic concept differs from all existing inflorescence concepts in being based on meristems and developmental processes. It includes clear

  16. Ontogenetic development of the mammalian circadian system.

    PubMed

    Weinert, Dietmar

    2005-01-01

    This review summarizes the current knowledge about the ontogenetic development of the circadian system in mammals. The developmental changes of overt rhythms are discussed, although the main focus of the review is the underlying neuronal and molecular mechanisms. In addition, the review describes ontogenetic development, not only as a process of morpho-functional maturation. The need of repeated adaptations and readaptations due to changing developmental stage and environmental conditions is also considered. The review analyzes mainly rodent data, obtained from the literature and from the author's own studies. Results from other species, including humans, are presented to demonstrate common features and species-dependent differences. The review first describes the development of the suprachiasmatic nuclei as the central pacemaker system and shows that intrinsic circadian rhythms are already generated in the mammalian fetus. As in adult organisms, the period length is different from 24 h and needs continuous correction by environmental periodicities, or zeitgebers. The investigation of the ontogenetic development of the mechanisms of entrainment reveals that, at prenatal and early postnatal stages, non-photic cues deriving from the mother are effective. Light-dark entrainment develops later. At a certain age, both photic and non-photic zeitgebers may act in parallel, even though the respective time information is 12 h out of phase. That leads to a temporary internal desynchronization. Because rhythmic information needs to be transferred to effector organs, the corresponding neural and humoral signalling pathways are also briefly described. Finally, to be able to transform a rhythmic signal into an overt rhythm, the corresponding effector organs must be functionally mature. As many of these organs are able to generate their own intrinsic rhythms, another aspect of the review is dedicated to the development of peripheral oscillators and mechanisms of their entrainment

  17. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline.

    PubMed

    Li, Yuyan; Zhang, Lisheng; Chen, Hongyin; Koštál, Vladimir; Simek, Petr; Moos, Martin; Denlinger, David L

    2015-08-01

    The ectoparasitoid wasp, Nasonia vitripennis can enhance its cold tolerance by exploiting a maternally-induced larval diapause. A simple manipulation of the fly host diapause status and supplementation of the host diet with proline also dramatically increase cold tolerance in the parasitoid. In this study, we used a metabolomics approach to define alterations in metabolite profiles of N. vitripennis caused by diapause in the parasitoid, diapause of the host, and augmentation of the host's diet with proline. Metabolic profiles of diapausing and nondiapausing parasitoid were significantly differentiated, with pronounced distinctions in levels of multiple cryoprotectants, amino acids, and carbohydrates. The dynamic nature of diapause was underscored by a shift in the wasp's metabolomic profile as the duration of diapause increased, a feature especially evident for increased concentrations of a suite of cryoprotectants. Metabolic pathways involved in amino acid and carbohydrate metabolism were distinctly enriched during diapause in the parasitoid. Host diapause status also elicited a pronounced effect on metabolic signatures of the parasitoid, noted by higher cryoprotectants and elevated compounds derived from glycolysis. Proline supplementation of the host diet did not translate directly into elevated proline in the parasitoid but resulted in an alteration in the abundance of many other metabolites, including elevated concentrations of essential amino acids, and reduction in metabolites linked to energy utilization, lipid and amino acid metabolism. Thus, the enhanced cold tolerance of N. vitripennis associated with proline augmentation of the host diet appears to be an indirect effect caused by the metabolic perturbations associated with diet supplementation.

  18. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    PubMed

    Carreira, Bruno M; Segurado, Pedro; Laurila, Anssi; Rebelo, Rui

    2017-01-01

    In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  19. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc.

  20. Ontogenetic taurine biosynthesis ability in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Wang, Xuan; He, Gen; Mai, Kangsen; Xu, Wei; Zhou, Huihui

    2015-07-01

    Taurine (2-aminoethane sulfonic acid) plays important roles in multiple physiological processes including osmoregulation, bile salt conjugation and membrane protection. It is known that taurine biosynthesis varies in different fish species. However, its ontogenetic regulation has not been clear. In the present study, we found that the hepatic concentrations of taurine increased marginally with rainbow trout growth. The mRNA expression, protein levels and enzyme activities of key enzymes involved in taurine biosynthesis, cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSD), were analyzed. Our results showed that the mRNA levels and protein abundances of CSD increased dramatically with the development of rainbow trout stages while the enzyme activities showed a slight improvement. However, the expression and activities of CDO decreased with rainbow trout growth. These results provide valuable information on defining the exact supplementation of taurine in diets for different stages of rainbow trout and give new insights into elucidating the regulation of taurine metabolism in rainbow trout. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Feeding guilds and food resource partitioning in a lake fish assemblage: an ontogenetic approach.

    PubMed

    Specziár, A; Rezsu, E T

    2009-07-01

    Ontogenetic diet patterns and trophic guild structure of a 15 species temperate lake fish assemblage were analysed over wide size intervals (up to seven orders of magnitude in body mass), representing practically the whole life span in most species. A two-step objective clustering technique supplemented with other multivariate statistical tools proved that size-related diet changes clearly played an important role in structuring trophic organization of fishes inhabiting Lake Balaton. As many as 13 out of the 15 fish species showed marked size-related dietary changes with two to four ontogenetic feeding stages. At the assemblage level, 11 trophic guilds were separated. Guild membership was size-dependent in 11 fish species that participated in two to four trophic guilds during their life span. The most complex trophic ontogeny was observed in roach Rutilus rutilus and asp Aspius aspius with four guild memberships. This study showed that trophic status of fishes may be very size-sensitive and thus a universal classification of fish species to general trophic guilds, such as 'planktivore', 'benthivore', 'piscivore' or 'herbivore', should be applied very carefully even in environmental monitoring and fisheries management applications, unless it is supported by relevant results of life span diet analyses.

  2. Ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae

    PubMed Central

    Santos, Marcus; Lippi, Daniel L.; Silva, Pedro

    2016-01-01

    Parrotfish are fundamental species in controlling algal phase-shifts and ensuring the resilience of coral reefs. Nevertheless, little is known on their ecological role in the south-western Atlantic Ocean. The present study analysed the ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae using behavioural observation and benthic composition analyses. We found a significant negative relationship between fish size and feeding rates for S. zelindae individuals. Thus, terminal phase individuals forage with lower feeding rates compared to juveniles and initial phase individuals. The highest relative foraging frequency of S. zelindae was on epilithic algae matrix (EAM) with similar values for juveniles (86.6%), initial phase (88.1%) and terminal phase (88.6%) individuals. The second preferred benthos for juveniles was sponge (11.6%) compared with initial (4.5%) and terminal life phases (1.3%). Different life phases of S. zelindae foraged on different benthos according to their availability. Based on Ivlev’s electivity index, juveniles selected EAM and sponge, while initial phase and terminal phase individuals only selected EAM. Our findings demonstrate that the foraging frequency of the endemic parrotfish S. zelindae is reduced according to body size and that there is a slight ontogenetic change in feeding selectivity. Therefore, ecological knowledge of ontogenetic variations on resource use is critical for the remaining parrotfish populations which have been dramatically reduced in the Southwestern Atlantic Ocean. PMID:27761330

  3. Ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae.

    PubMed

    Pereira, Pedro H C; Santos, Marcus; Lippi, Daniel L; Silva, Pedro

    2016-01-01

    Parrotfish are fundamental species in controlling algal phase-shifts and ensuring the resilience of coral reefs. Nevertheless, little is known on their ecological role in the south-western Atlantic Ocean. The present study analysed the ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae using behavioural observation and benthic composition analyses. We found a significant negative relationship between fish size and feeding rates for S. zelindae individuals. Thus, terminal phase individuals forage with lower feeding rates compared to juveniles and initial phase individuals. The highest relative foraging frequency of S. zelindae was on epilithic algae matrix (EAM) with similar values for juveniles (86.6%), initial phase (88.1%) and terminal phase (88.6%) individuals. The second preferred benthos for juveniles was sponge (11.6%) compared with initial (4.5%) and terminal life phases (1.3%). Different life phases of S. zelindae foraged on different benthos according to their availability. Based on Ivlev's electivity index, juveniles selected EAM and sponge, while initial phase and terminal phase individuals only selected EAM. Our findings demonstrate that the foraging frequency of the endemic parrotfish S. zelindae is reduced according to body size and that there is a slight ontogenetic change in feeding selectivity. Therefore, ecological knowledge of ontogenetic variations on resource use is critical for the remaining parrotfish populations which have been dramatically reduced in the Southwestern Atlantic Ocean.

  4. "Pharm-ecology" of diet shifting: biotransformation of plant secondary compounds in creosote (Larrea tridentata) by a woodrat herbivore, Neotoma lepida.

    PubMed

    Haley, Shannon L; Lamb, John G; Franklin, Michael R; Constance, Jonathan E; Dearing, M Denise

    2008-01-01

    Diet switching in mammalian herbivores may necessitate a change in the biotransformation enzymes used to process plant secondary compounds (PSCs). We investigated differences in the biotransformation system in the mammalian herbivore, Neotoma lepida, after a radical shift in diet and secondary compound composition. Populations of N. lepida in the Mojave Desert have evolved over the past 10,000 years to feed on creosote (Larrea tridentata) from an ancestral state of consuming juniper (Juniperus osteosperma). This dietary shift represents a marked change in the dietary composition of PSCs in that creosote leaves are coated with phenolic resin, whereas juniper is high in terpenes but lacks phenolic resin. We quantified the enzyme activity of five major groups of biotransformation enzymes (cytochrome P450s, NAD(P)H:quinone oxidoreductase, glutathione conjugation, sulfation, and glucuronidation) recognized for their importance to mammalian biotransformation for the elimination of foreign compounds. Enzyme activities were compared between populations of Mojave and Great Basin woodrats fed control and creosote diets. In response to creosote, the Mojave population had greater levels of cytochrome P450s (CYP2B, CYP1A) and glutathione conjugation liver enzymes compared with the Great Basin population. Our results suggest that elevated levels of cytochrome P450s and glutathione conjugation enzymes in the Mojave population may be the underlying biotransformation mechanisms that facilitate feeding on creosote.

  5. The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures.

    PubMed

    Michl, Stéphanie Céline; Ratten, Jenni-Marie; Beyer, Matt; Hasler, Mario; LaRoche, Julie; Schulz, Carsten

    2017-01-01

    Plant-derived protein sources are the most relevant substitutes for fishmeal in aquafeeds. Nevertheless, the effects of plant based diets on the intestinal microbiome especially of juvenile Rainbow trout (Oncorhynchus mykiss) are yet to be fully investigated. The present study demonstrates, based on 16S rDNA bacterial community profiling, that the intestinal microbiome of juvenile Rainbow trout is strongly affected by dietary plant protein inclusion levels. After first feeding of juveniles with either 0%, 50% or 97% of total dietary protein content derived from plants, statistically significant differences of the bacterial gut community for the three diet-types were detected, both at phylum and order level. The microbiome of juvenile fish consisted mainly of the phyla Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria, and thus fits the salmonid core microbiome suggested in previous studies. Dietary plant proteins significantly enhanced the relative abundance of the orders Lactobacillales, Bacillales and Pseudomonadales. Animal proteins in contrast significantly promoted Bacteroidales, Clostridiales, Vibrionales, Fusobacteriales and Alteromonadales. The overall alpha diversity significantly decreased with increasing plant protein inclusion levels and with age of experimental animals. In order to investigate permanent effects of the first feeding diet-type on the early development of the microbiome, a diet change was included in the study after 54 days, but no such effects could be detected. Instead, the microbiome of juvenile trout fry was highly dependent on the actual diet fed at the time of sampling.

  6. [Ontogenetic clock: molecular-genetic mechanism].

    PubMed

    Pisaruk, A V

    2010-01-01

    Proposed is a hypothesis of the mechanism providing for the cell to count out the time of life and to change (according to the set program) the expression of chromosomal genes in order to control ontogenesis ("ontogenetic clock"). This mechanism represents an autonomous molecular-genetic oscillator, which memorizes the number of cycles of own oscillations through cutting the terminal tau-segment of chrono-DNA using special restrictase. The latter is formed at this segment out of two sub-units (proteins) in each cycle of oscillator operation. These proteins are alternately synthesized on ribosomes, since each inhibits the synthesis of the other, thus ensuring successive binding of restrictase sub-units at the terminal segment of chrono-DNA and its single section in one cycle. In addition, each of these proteins is a repressor of own gene and activator of the gene of the other protein, thus ensuring efficiency and reliability of oscillator operation. The design of oscillator of ontogenetic clock is similar to that of circadian oscillator, but its frequency is not synchronized with the nature's physical rhythms and depends on body temperature. Therefore, it is physical rather than biological time that is measured. The chrono-DNA consists of short repetitive sequences of nucleotides (tau-segments) and temporal (regulatory) genes inserted over specified number of these segments. The shortening of chrono-DNA leads to uncovering the next gene and to its destruction by exonuclease. As a result, the synthesis of activator (repressor) stops and the expression of some chromosomal genes changes, initiating the next stage of ontogenesis.

  7. Ontogenetic propulsive transitions by Sarsia tubulosa medusae.

    PubMed

    Katija, Kakani; Colin, Sean P; Costello, John H; Jiang, Houshuo

    2015-08-01

    While swimming in their natural environment, marine organisms must successfully forage, escape from predation, and search for mates to reproduce. In the process, planktonic organisms interact with their fluid environment, generating fluid signatures around their body and in their downstream wake through ontogeny. In the early stages of their life cycle, marine organisms operate in environments where viscous effects dominate and govern physical processes. Ontogenetic propulsive transitions in swimming organisms often involve dramatic changes in morphology and swimming behavior. However, for organisms that do not undergo significant changes in morphology, swimming behavior or propulsive mode, how is their swimming performance affected? We investigated the ontogenetic propulsive transitions of the hydromedusa Sarsia tubulosa, which utilizes jet propulsion and possesses a similar bell morphology throughout its life cycle. We used digital particle image velocimetry and high-speed imaging to measure the body kinematics, velocity fields and wake structures induced by swimming S. tubulosa with bell exit diameters from 1 to 10 mm. Our experimental observations revealed three distinct classes of hydrodynamic wakes: elongated vortex rings for 1030 (larger than 2 mm bell exit diameter) and elliptical vortex rings (or leading vortex rings) followed by trailing jets for most instances where Re>100 (larger than 4 or 5 mm bell exit diameter). The relative travel distance and propulsive efficiency remained unchanged throughout ontogeny, and the swimming proficiency and hydrodynamic cost of transport decreased non-linearly.

  8. Ontogenetic contingency of tolerance mechanisms in response to apical damage

    PubMed Central

    Gruntman, Michal; Novoplansky, Ariel

    2011-01-01

    Background and Aims Plants are able to tolerate tissue loss through vigorous branching which is often triggered by release from apical dominance and activation of lateral meristems. However, damage-induced branching might not be a mere physiological outcome of released apical dominance, but an adaptive response to environmental signals, such as damage timing and intensity. Here, branching responses to both factors were examined in the annual plant Medicago truncatula. Methods Branching patterns and allocation to reproductive traits were examined in response to variable clipping intensities and timings in M. truncatula plants from two populations that vary in the onset of reproduction. Phenotypic selection analysis was used to evaluate the strength and direction of selection on branching under the damage treatments. Key Results Plants of both populations exhibited an ontogenetic shift in tolerance mechanisms: while early damage induced greater meristem activation, late damage elicited investment in late-determined traits, including mean pod and seed biomass, and supported greater germination rates. Severe damage mostly elicited simultaneous development of multiple-order lateral branches, but this response was limited to early damage. Selection analyses revealed positive directional selection on branching in plants under early- compared with late- or no-damage treatments. Conclusions The results demonstrate that damage-induced meristem activation is an adaptive response that could be modified according to the plant's developmental stage, severity of tissue loss and their interaction, stressing the importance of considering these effects when studying plastic responses to apical damage. PMID:21873259

  9. Shifts in the diets of slimy sculpin (Cottus cognatus) and lake whitefish (Coregonus clupeaformis) in Lake Ontario following the collapse of the burrowing amphipod Diporeia

    USGS Publications Warehouse

    Owens, Randall W.; Dittman, Dawn E.

    2003-01-01

    In Lake Ontario, the diets of slimy sculpin Cottus cognatus and lake whitefish Coregonus clupeaformis shifted from a diet dominated by the burrowing amphipod, Diporeia, and to a lesser extent, Mysis, to a more diverse diet, after Diporeia collapsed, to one dominated by Mysis and prey that were formerly less important or uncommon such as Chironomidae, Oligochaeta, and Ostracoda. Additionally, lake whitefish still preyed on native mollusks like Sphaeriidae and Gastropoda, but also preyed on exotic mollusks, Dreissena spp., which are swallowed intact and subsequently crushed in its muscular stomach. Whether Diporeia was abundant (1992) or scarce (1999), selection indices for Diporeia by slimy sculpins was positive, suggesting that Diporeia was a preferred prey. Unlike lake whitefish, slimy sculpins avoided Dreissena; therefore, energy diverted to Dreissena production was a real loss for slimy sculpins. The shifts in the diet of these benthic fishes corresponded with drastic changes in the benthic community between 1992 and 1999. The collapse of Diporeia, formerly the most abundant macroinvertebrate in the benthic community, along with sharp declines in the abundance of Oligochaeta and Sphaeriidae, coincided with the establishment and rapid expansion of Dreissena bugensis, the quagga mussel, and to a lesser degree Dreissena polymorpha, the zebra mussel. It appears that the Diporeia population first collapsed at depths >70 m in southeastern Lake Ontario by autumn 1992, at shallower depths in the eastern Lake Ontario by 1995, and along the entire south shore line at depths <100 m, and perhaps in some areas >100 m by 1999. In response to the disappearance of Diporeia, populations of two native benthivores, slimy sculpin and lake whitefish, collapsed in eastern Lake Ontario, perhaps due in part to starvation, because Diporeia was their principal prey. Presently, alternative food resources do not appear sufficient to sustain these two benthivores at their former levels of

  10. Nitrogen stable isotopes reveal age-dependent dietary shift in the Japanese scallop Mizuhopecten yessoensis.

    PubMed

    Aya, Frolan A; Kudo, Isao

    2017-03-01

    Ontogenetic niche shifts in diet are a consequence of changes in body size or resource partitioning between age classes. To better resolve the feeding patterns of the Japanese scallop Mizuhopecten yessoensis, we examined the relative importance of age and size in the diet of this species using stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) from 2006 to 2009. Contribution of food sources was quantified using an isotope mixing model by comparing the muscle tissue isotope ratios to those of suspended particulate organic matter (SPOM) and their zooplankton prey (e.g. micro- and meso-zooplankton). Unlike the δ(13)C values, which remained constant with age and size, muscle δ(15)N values were more positively correlated with age accounting for 69 % of variations than size with only 46 %. Increasing (15)N values with age suggested that shifts in diet from SPOM to micro- and meso-zooplankton occurred during ontogeny in M. yessoensis. Results of the isotope mixing model indicated that SPOM contribution to scallop's diet decreased from 68 to 8 % while those of zooplankton increased from 15 to 50 % with increasing age. This study concludes that age-related dietary shift explains the enrichment of (15)N, as a result of predation on zooplankton by M. yessoensis.

  11. High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats.

    PubMed

    Wang, Lixin; Jacobs, Jonathan P; Lagishetty, Venu; Yuan, Pu-Qing; Wu, Shuping V; Million, Mulugeta; Reeve, Joseph R; Pisegna, Joseph R; Taché, Yvette

    2017-10-01

    High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.

  12. Allometric shape change of the lower pharyngeal jaw correlates with a dietary shift to piscivory in a cichlid fish

    NASA Astrophysics Data System (ADS)

    Hellig, Christoph J.; Kerschbaumer, Michaela; Sefc, Kristina M.; Koblmüller, Stephan

    2010-07-01

    The morphological versatility of the pharyngeal jaw of cichlid fishes is assumed to represent a key factor facilitating their unparalleled trophic diversification and explosive radiation. It is generally believed that the functional design of an organism relates to its ecology, and thus, specializations to different diets are typically associated with distinct morphological designs, especially manifested in the cichlids’ pharyngeal jaw apparatus. Thereby, the lower pharyngeal jaw (LPJ) incorporates some of the most predictive features for distinct diet-related morphotypes. Thus, considering that piscivorous cichlids experience an ontogenetic dietary shift from typically various kinds of invertebrates to fish, concomitant morphological changes in the LPJ are expected. Using Lepidiolamprologus elongatus, a top predator in the shallow rocky habitat of Lake Tanganyika, as model, and applying geometric and traditional morphometric techniques, we demonstrate an allometric change in ontogenetic LPJ shape development coinciding with the completion of the dietary shift toward piscivory. The piscivorous LPJ morphotype is initiated in juvenile fish by increasing elongation and narrowing of the LPJ and—when the fish reach a size of 80-90 mm standard length—further refined by the elongation of the posterior muscular processes, which serve as insertion for the fourth musculus levator externus. The enlarged muscular processes of the fully mature piscivorous morphotype provide for the construction of a powerful lever system, which allows the large individuals to process large prey fish and rely on exclusive piscivory.

  13. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation.

    PubMed Central

    Agus, Allison; Denizot, Jérémy; Thévenot, Jonathan; Martinez-Medina, Margarita; Massier, Sébastien; Sauvanet, Pierre; Bernalier-Donadille, Annick; Denis, Sylvain; Hofman, Paul; Bonnet, Richard; Billard, Elisabeth; Barnich, Nicolas

    2016-01-01

    Recent advances have shown that the abnormal inflammatory response observed in CD involves an interplay among intestinal microbiota, host genetics and environmental factors. The escalating consumption of fat and sugar in Western countries parallels an increased incidence of CD during the latter 20th century. The impact of a HF/HS diet in mice was evaluated for the gut micro-inflammation, intestinal microbiota composition, function and selection of an E. coli population. The HF/HS diet created a specific inflammatory environment in the gut, correlated with intestinal mucosa dysbiosis characterized by an overgrowth of pro-inflammatory Proteobacteria such as E. coli, a decrease in protective bacteria, and a significantly decreased of SCFA concentrations. The expression of GPR43, a SCFA receptor was reduced in mice treated with a HF/HS diet and reduced in CD patients compared with controls. Interestingly, mice treated with an agonist of GPR43 were protected against DSS-induced colitis. Finally, the transplantation of feces from HF/HS treated mice to GF mice increased susceptibility to AIEC infection. Together, our results demonstrate that a Western diet could aggravate the inflammatory process and that the activation of the GPR43 receptor pathway could be used as a new strategy to treat CD patients. PMID:26742586

  14. Diet-Dependent Shifts in the Bacterial Population of the Rumen Revealed with Real-Time PCR

    PubMed Central

    Tajima, K.; Aminov, R. I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y.

    2001-01-01

    A set of PCR primers was designed and validated for specific detection and quantification of Prevotella ruminicola, Prevotella albensis, Prevotella bryantii, Fibrobacter succinogenes, Selenomonas ruminantium-Mitsuokella multiacida, Streptococcus bovis, Ruminococcus flavefaciens, Ruminobacter amylophilus, Eubacterium ruminantium, Treponema bryantii, Succinivibrio dextrinosolvens, and Anaerovibrio lipolytica. By using these primers and the real-time PCR technique, the corresponding species in the rumens of cows for which the diet was switched from hay to grain were quantitatively monitored. The dynamics of two fibrolytic bacteria, F. succinogenes and R. flavefaciens, were in agreement with those of earlier, culture-based experiments. The quantity of F. succinogenes DNA, predominant in animals on the hay diet, fell 20-fold on the third day of the switch to a grain diet and further declined on day 28, with a 57-fold reduction in DNA. The R. flavefaciens DNA concentration on day 3 declined to approximately 10% of its initial value in animals on the hay diet and remained at this level on day 28. During the transition period (day 3), the quantities of two ruminal prevotella DNAs increased considerably: that of P. ruminicola increased 7-fold and that of P. bryantii increased 263-fold. On day 28, the quantity of P. ruminicola DNA decreased 3-fold, while P. bryantii DNA was still elevated 10-fold in comparison with the level found in animals on the initial hay diet. The DNA specific for another xylanolytic bacterium, E. ruminantium, dropped 14-fold during the diet switch and was maintained at this level on day 28. The concentration of a rumen spirochete, T. bryantii, decreased less profoundly and stabilized with a sevenfold decline by day 28. The variations in A. lipolytica DNA were not statistically significant. After an initial slight increase in S. dextrinosolvens DNA on day 3, this DNA was not detected at the end of the experiment. S. bovis DNA displayed a 67-fold

  15. Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example.

    PubMed

    Meier, Toni; Christen, Olaf; Semler, Edmund; Jahreis, Gerhard; Voget-Kleschin, Lieske; Schrode, Alexander; Artmann, Martina

    2014-03-01

    Nutrition is considered as one of the main drivers of global environmental change. Dietary patterns in particular, embedded in the international trade of foods and other biomass based commodities, determine the dimension of beneficial or harmful environmental impacts of the agri-food sector - both domestically and abroad. In this study we analysed different dietary scenarios from a virtual land flow perspective, based on representative consumption data for Germany in the years 2006 and 1985-89. Further we identified the consumer groups that would have to adapt most to balance Germany's virtual land import and analysed the impact reduced food wastage. For the study, official data sets concerning production, trade and consumption were used. We derived land use data from environmentally extended input-output data sets and FAO statistics. The conversion of agricultural raw products to consumed commodities is based on official processing and composition data. Subgroup-specific intake data from the last representative National Nutrition Survey in Germany were used. We analysed 42 commodities, aggregated into 23 product groups, seven land use types and six nutrition scenarios. The results show that in the baseline scenario the average nutrition in the year 2006 leads to a virtual land import of 707m(2)p(-1)a(-1), which represents 30% of the total nutrition-induced land demand of 2365m(2)p(-1)a(-1). On the other hand, the German agri-food sector exports virtual land, in the form of commodities, equivalent to 262m(2)p(-1)a(-1). In this paper we calculate that the resulting net import of virtual land could be balanced by way of a shift to an officially recommended diet and a reduction in the consumption of stimulants (cocoa, coffee, green/black tea, wine). A shift to an ovo-lacto-vegetarian or vegan diet would even lead to a positive virtual land balance (even with maintained consumption of stimulants). Moreover, we demonstrate that a shift in the average diet profile could

  16. Shift of circadian feeding pattern by high-fat diets is coincident with reward deficits in obese mice.

    PubMed

    Morales, Lidia; Del Olmo, Nuria; Valladolid-Acebes, Ismael; Fole, Alberto; Cano, Victoria; Merino, Beatriz; Stucchi, Paula; Ruggieri, Daniela; López, Laura; Alguacil, Luis Fernando; Ruiz-Gayo, Mariano

    2012-01-01

    Recent studies provide evidence that high-fat diets (HF) trigger both i) a deficit of reward responses linked to a decrease of mesolimbic dopaminergic activity, and ii) a disorganization of circadian feeding behavior that switch from a structured meal-based schedule to a continuous snacking, even during periods normally devoted to rest. This feeding pattern has been shown to be a cause of HF-induced overweight and obesity. Our hypothesis deals with the eventual link between the rewarding properties of food and the circadian distribution of meals. We have investigated the effect of circadian feeding pattern on reward circuits by means of the conditioned-place preference (CPP) paradigm and we have characterized the rewarding properties of natural (food) and artificial (cocaine) reinforcers both in free-feeding ad libitum HF mice and in HF animals submitted to a re-organized feeding schedule based on the standard feeding behavior displayed by mice feeding normal chow ("forced synchronization"). We demonstrate that i) ad libitum HF diet attenuates cocaine and food reward in the CPP protocol, and ii) forced synchronization of feeding prevents this reward deficit. Our study provides further evidence that the rewarding impact of food with low palatability is diminished in mice exposed to a high-fat diet and strongly suggest that the decreased sensitivity to chow as a positive reinforcer triggers a disorganized feeding pattern which might account for metabolic disorders leading to obesity.

  17. Colloquium paper: human adaptations to diet, subsistence, and ecoregion are due to subtle shifts in allele frequency.

    PubMed

    Hancock, Angela M; Witonsky, David B; Ehler, Edvard; Alkorta-Aranburu, Gorka; Beall, Cynthia; Gebremedhin, Amha; Sukernik, Rem; Utermann, Gerd; Pritchard, Jonathan; Coop, Graham; Di Rienzo, Anna

    2010-05-11

    Human populations use a variety of subsistence strategies to exploit an exceptionally broad range of ecoregions and dietary components. These aspects of human environments have changed dramatically during human evolution, giving rise to new selective pressures. To understand the genetic basis of human adaptations, we combine population genetics data with ecological information to detect variants that increased in frequency in response to new selective pressures. Our approach detects SNPs that show concordant differences in allele frequencies across populations with respect to specific aspects of the environment. Genic and especially nonsynonymous SNPs are overrepresented among those most strongly correlated with environmental variables. This provides genome-wide evidence for selection due to changes in ecoregion, diet, and subsistence. We find particularly strong signals associated with polar ecoregions, with foraging, and with a diet rich in roots and tubers. Interestingly, several of the strongest signals overlap with those implicated in energy metabolism phenotypes from genome-wide association studies, including SNPs influencing glucose levels and susceptibility to type 2 diabetes. Furthermore, several pathways, including those of starch and sucrose metabolism, are enriched for strong signals of adaptations to a diet rich in roots and tubers, whereas signals associated with polar ecoregions are overrepresented in genes associated with energy metabolism pathways.

  18. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish

    NASA Astrophysics Data System (ADS)

    Sousa, Lara L.; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E.; Trueman, Clive; Rosa, Rui; Sims, David W.; Queiroz, Nuno

    2016-07-01

    The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.

  19. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish

    PubMed Central

    Sousa, Lara L.; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E.; Trueman, Clive; Rosa, Rui; Sims, David W.; Queiroz, Nuno

    2016-01-01

    The ocean sunfish (Mola mola) is the world’s heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries’ bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions. PMID:27373803

  20. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish.

    PubMed

    Sousa, Lara L; Xavier, Raquel; Costa, Vânia; Humphries, Nicolas E; Trueman, Clive; Rosa, Rui; Sims, David W; Queiroz, Nuno

    2016-07-04

    The ocean sunfish (Mola mola) is the world's heaviest bony fish reaching a body mass of up to 2.3 tonnes. However, the prey M. mola consumes to fuel this prodigious growth remains poorly known. Sunfish were thought to be obligate gelatinous plankton feeders, but recent studies suggest a more generalist diet. In this study, through molecular barcoding and for the first time, the diet of sunfish in the north-east Atlantic Ocean was characterised. Overall, DNA from the diet content of 57 individuals was successfully amplified, identifying 41 different prey items. Sunfish fed mainly on crustaceans and teleosts, with cnidarians comprising only 16% of the consumed prey. Although no adult fishes were sampled, we found evidence for an ontogenetic shift in the diet, with smaller individuals feeding mainly on small crustaceans and teleost fish, whereas the diet of larger fish included more cnidarian species. Our results confirm that smaller sunfish feed predominantly on benthic and on coastal pelagic species, whereas larger fish depend on pelagic prey. Therefore, sunfish is a generalist predator with a greater diversity of links in coastal food webs than previously realised. Its removal as fisheries' bycatch may have wider reaching ecological consequences, potentially disrupting coastal trophic interactions.

  1. Fundamental insights into ontogenetic growth from theory and fish

    PubMed Central

    Sibly, Richard M.; Baker, Joanna; Grady, John M.; Luna, Susan M.; Kodric-Brown, Astrid; Venditti, Chris; Brown, James H.

    2015-01-01

    The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞. We derive two alternative empirically testable hypotheses and test them by analyzing data from FishBase. Across 576 species, which vary in size at maturity by almost nine orders of magnitude, K scaled as m∞−0.23. This supports our first hypothesis that growth rate scales as m∞−0.25 as predicted by metabolic scaling theory; it implies that species that grow to larger mature sizes grow faster as juveniles. Within fish species, however, K scaled as m∞−0.35. This supports our second hypothesis, which predicts that growth rate scales as m∞−0.33 when all juveniles grow at the same rate. The unexpected disparity between across- and within-species scaling challenges existing theoretical interpretations. We suggest that the similar ontogenetic programs of closely related populations constrain growth to m∞−0.33 scaling, but as species diverge over evolutionary time they evolve the near-optimal m∞−0.25 scaling predicted by metabolic scaling theory. Our findings have important practical implications because fish supply essential protein in human diets, and sustainable yields from wild harvests and aquaculture depend on growth rates. PMID:26508641

  2. Fundamental insights into ontogenetic growth from theory and fish.

    PubMed

    Sibly, Richard M; Baker, Joanna; Grady, John M; Luna, Susan M; Kodric-Brown, Astrid; Venditti, Chris; Brown, James H

    2015-11-10

    The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞. We derive two alternative empirically testable hypotheses and test them by analyzing data from FishBase. Across 576 species, which vary in size at maturity by almost nine orders of magnitude, K scaled as [Formula: see text]. This supports our first hypothesis that growth rate scales as [Formula: see text] as predicted by metabolic scaling theory; it implies that species that grow to larger mature sizes grow faster as juveniles. Within fish species, however, K scaled as [Formula: see text]. This supports our second hypothesis, which predicts that growth rate scales as [Formula: see text] when all juveniles grow at the same rate. The unexpected disparity between across- and within-species scaling challenges existing theoretical interpretations. We suggest that the similar ontogenetic programs of closely related populations constrain growth to [Formula: see text] scaling, but as species diverge over evolutionary time they evolve the near-optimal [Formula: see text] scaling predicted by metabolic scaling theory. Our findings have important practical implications because fish supply essential protein in human diets, and sustainable yields from wild harvests and aquaculture depend on growth rates.

  3. An ontogenetic perspective on individual differences

    PubMed Central

    Senner, Nathan R.; Conklin, Jesse R.; Piersma, Theunis

    2015-01-01

    Phenotypic differences among individuals can arise during any stage of life. Although several distinct processes underlying individual differences have been defined and studied (e.g. parental effects, senescence), we lack an explicit, unified perspective for understanding how these processes contribute separately and synergistically to observed variation in functional traits. We propose a conceptual framework based on a developmental view of life-history variation, linking each ontogenetic stage with the types of individual differences originating during that period. In our view, the salient differences among these types are encapsulated by three key criteria: timing of onset, when fitness consequences are realized, and potential for reversibility. To fill a critical gap in this framework, we formulate a new term to refer to individual differences generated during adulthood—reversible state effects. We define these as ‘reversible changes in a functional trait resulting from life-history trade-offs during adulthood that affect fitness’, highlighting how the adult phenotype can be repeatedly altered in response to environmental variation. Defining individual differences in terms of trade-offs allows explicit predictions regarding when and where fitness consequences should be expected. Moreover, viewing individual differences in a developmental context highlights how different processes can work in concert to shape phenotype and fitness, and lays a foundation for research linking individual differences to ecological and evolutionary theory. PMID:26336173

  4. Stipules in Apocynaceae: an ontogenetic perspective

    PubMed Central

    do Valle Capelli, Natalie; Alonso Rodrigues, Bruna

    2017-01-01

    Abstract Stipules are leaf structures common in many groups of plants that can take a variety of forms. In Gentianales, interpetiolar stipules are considered a synapomorphy of Rubiaceae; however, some reports in the literature refer to their presence in other families. The goal of this study was to analyze the development of leaf primordia to investigate the possible presence of reduced or modified stipules in Apocynaceae. Shoot apices of 12 genera were analyzed under light and scanning electron microscopy comparatively with one species of Rubiaceae. Early in their development, leaf primordia form two lateral expansions at the base of the petiole (stipules) that give rise to colleters in 11 of the 12 genera of Apocynaceae studied, similarly to the Rubiaceae species. The basal genera have pairs of stipules modified into colleters positioned laterally to the petiole, while other species belonging to the derived subfamilies have interpetiolar stipules that each project towards the opposite stipule and merge, forming a sheathing stipule and from this arc the interpetiolar colleters originate. The ontogenetic study proved for the first time that Apocynaceae is a stipulate family whose stipules are modified into colleters and their absence might be a secondary loss, changing the interpretation of stipule evolution in Gentianales. PMID:28694936

  5. Stipules in Apocynaceae: an ontogenetic perspective.

    PubMed

    do Valle Capelli, Natalie; Alonso Rodrigues, Bruna; Demarco, Diego

    2017-01-01

    Stipules are leaf structures common in many groups of plants that can take a variety of forms. In Gentianales, interpetiolar stipules are considered a synapomorphy of Rubiaceae; however, some reports in the literature refer to their presence in other families. The goal of this study was to analyze the development of leaf primordia to investigate the possible presence of reduced or modified stipules in Apocynaceae. Shoot apices of 12 genera were analyzed under light and scanning electron microscopy comparatively with one species of Rubiaceae. Early in their development, leaf primordia form two lateral expansions at the base of the petiole (stipules) that give rise to colleters in 11 of the 12 genera of Apocynaceae studied, similarly to the Rubiaceae species. The basal genera have pairs of stipules modified into colleters positioned laterally to the petiole, while other species belonging to the derived subfamilies have interpetiolar stipules that each project towards the opposite stipule and merge, forming a sheathing stipule and from this arc the interpetiolar colleters originate. The ontogenetic study proved for the first time that Apocynaceae is a stipulate family whose stipules are modified into colleters and their absence might be a secondary loss, changing the interpretation of stipule evolution in Gentianales.

  6. Variations in carotenoids, vitamins A and E, and color in cow's plasma and milk following a shift from hay diet to diets containing increasing levels of carotenoids and vitamin E.

    PubMed

    Calderón, F; Chauveau-Duriot, B; Pradel, P; Martin, B; Graulet, B; Doreau, M; Nozière, P

    2007-12-01

    This experiment was conducted to determine the variations in carotenoid, vitamins A and E concentrations, and color in the plasma and milk of dairy cows following a shift from a hay diet to diets containing increasing levels of carotenoids and vitamin E. This study was performed on 32 multiparous Montbéliarde dairy cows in midlactation. After a 6-wk preexperimental period on a diet based on hay and concentrates, the cows were allocated to 4 homogeneous groups, and thereafter fed for 6 wk on isoenergetic experimental diets where the hay was replaced by an experimental feed rich in carotenoids and vitamin E, consisting in 75% grass silage and 25% alfalfa protein concentrate (PX Agro Super Desialis, Châlons en Champagne, France). The hay-to-experimental feed ratios were 100/0 in group 1, 67/33 in group 2, 33/67 in group 3, and 0/100 in group 4, providing 1.6, 3.6, 5.4, and 7.4 g/d of total carotenoids, respectively. Variations in carotenoid, vitamins A and E concentrations as well as variations in color index (CI) were monitored from d -7 through to d 42 on the experimental diets. Zeaxanthin, lutein, 13-cis-beta-carotene, and all-trans-beta-carotene accounted for an average 3, 10, 9, and 78%, respectively, of total carotenoids in plasma and 0, 17, 12, and 71%, respectively, of total carotenoids in milk. The switch from preexperimental to experimental diets only slightly affected zeaxanthin, lutein, and vitamin A concentrations in plasma and milk. A rapid increase in vitamin E and beta-carotene (BC) was observed during the first week in both plasma and milk. For vitamin E, the time to reach a plateau was from 8 d (group 2) to 28 d (group 4) in plasma, and 5 d (groups 2-4) in milk. Plasma concentrations of BC had stabilized after 28 d in group 2 but were not stabilized after 42 d in groups 3 and 4, whereas milk concentrations of BC plateaued from d 21 in group 2 and d 28 in groups 3 and 4. At the end of the experimental period, BC and vitamin E concentrations in

  7. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations.

    PubMed

    Alape-Girón, Alberto; Sanz, Libia; Escolano, José; Flores-Díaz, Marietta; Madrigal, Marvin; Sasa, Mahmood; Calvete, Juan J

    2008-08-01

    We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in

  8. Hyperinsulinemia shifted energy supply from glucose to ketone bodies in early nonalcoholic steatohepatitis from high-fat high-sucrose diet induced Bama minipigs.

    PubMed

    Yang, Shu-lin; Xia, Ji-han; Zhang, Yuan-yuan; Fan, Jian-gao; Wang, Hua; Yuan, Jing; Zhao, Zhan-zhao; Pan, Qin; Mu, Yu-lian; Xin, Lei-lei; Chen, Yao-xing; Li, Kui

    2015-09-11

    The minipig can serve as a good pharmacological model for human subjects. However, the long-term pathogenesis of high-calorie diet-induced metabolic syndromes, including NASH, has not been well described in minipigs. We examined the development of metabolic syndromes in Bama minipigs that were fed a high-fat, high-sucrose diet (HFHSD) for 23 months, by using histology and serum biochemistry and by profiling the gene expression patterns in the livers of HFHSD pigs compared to controls. The pathology findings revealed microvesicular steatosis, iron overload, arachidonic acid synthesis, lipid peroxidation, reduced antioxidant capacity, increased cellular damage, and inflammation in the liver. RNA-seq analysis revealed that 164 genes were differentially expressed between the livers of the HFHSD and control groups. The pathogenesis of early-stage NASH was characterized by hyperinsulinemia and by de novo synthesis of fatty acids and nascent triglycerides, which were deposited as lipid droplets in hepatocytes. Hyperinsulinemia shifted the energy supply from glucose to ketone bodies, and the high ketone body concentration induced the overexpression of cytochrome P450 2E1 (CYP2E1). The iron overload, CYP2E1 and alcohol dehydrogenase 4 overexpression promoted reactive oxygen species (ROS) production, which resulted in arachidonic and linoleic acid peroxidation and, in turn, led to malondialdehyde production and a cellular response to ROS-mediated DNA damage.

  9. Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome.

    PubMed

    Kuo, Lydia E; Czarnecka, Magdalena; Kitlinska, Joanna B; Tilan, Jason U; Kvetnanský, Richard; Zukowska, Zofia

    2008-12-01

    In response to stress, some people lose while others gain weight. This is believed to be due to either increased beta-adrenergic activation, the body's main fat-burning mechanism, or increased intake of sugar- and fat-rich "comfort foods." A high-fat, high-sugar (HFS) diet alone, however, cannot account for the epidemic of obesity, and chronic stress alone tends to lower adiposity in mice. Here we discuss how chronic stress, when combined with an HFS diet, leads to abdominal obesity by releasing a sympathetic neurotransmitter, neuropeptide Y (NPY), directly into the adipose tissue. In vitro, when "stressed" with dexamethasone, sympathetic neurons shift toward expressing more NPY, which stimulates endothelial cell (angiogenesis) and preadipocyte proliferation, differentiation, and lipid-filling (adipogenesis) by activating the same NPY-Y2 receptors (Y2Rs). In vivo, chronic stress, consisting of cold water or aggression in HFS-fed mice, stimulates the release of NPY and the expression of Y2Rs in visceral fat, increasing its growth by 50% in 2 weeks. After 3 months, this results in metabolic syndrome-like symptoms with abdominal obesity, inflammation, hyperlipidemia, hyperinsulinemia, glucose intolerance, hepatic steatosis, and hypertension. Remarkably, local intra-fat Y2R inhibition pharmacologically or via adenoviral Y2R knock-down reverses or prevents fat accumulation and metabolic complications. These studies demonstrated for the first time that chronic stress, via the NPY-Y2R pathway, amplifies and accelerates diet-induced obesity and the metabolic syndrome. Our findings also suggest the use of local administration of Y2R antagonists for treatment of obesity and NPY-Y2 agonists for fat augmentation in other clinical applications.

  10. Intra-specific diet shift in manila clams (Ruditapes philippinarum) as revealed by carbon and nitrogen stable isotopes and fatty acid biomarker

    NASA Astrophysics Data System (ADS)

    Suh, Y.; Shin, K.

    2011-12-01

    Manila clams sampled in Seonjae Island, Korea with shell lengths (SL) below 19.76 mm in average showed a significantly depleted carbon and nitrogen isotope values (P<0.05) by 0.80~1.41 %. This size related variation can be caused by either altered carbon and nutrient source or by affected isotopic incorporation rates and discrimination factors. In order to examine size-related diet shift in manila clams, R. philippinarum with different sizes that were constantly fed on known mixed microalgae for several months were sampled from Incheon Fisheries Hacheries Research Institute (IFRI). These manila clams have shown a high intra-species variation in growth rate with a maximum difference of more or less 2.30 cm. The smallest size groups (3.68±0.17 mm and 6.88±0.21 mm) obtained their nutrition from both P. tricornutum and aggregated organic matter that consists of dead or decomposed microalgae or other detritus. Bigger size groups (10.92±0.34 mm and 14.81±0.25 mm) obtained most of their energy from P.tricorutum and also from other phytoplankton unlike the biggest size group (21.15±1.02 mm) that feeds mainly on fresh microalgae of all diets fed. This variation in diet reveals that smaller clams mostly inhale dead or decomposed microalgae that sinks on the bottom while the bigger clams uptake more fresh ones that are still alive. This variation in feeding behavior could have been caused by morphological constraints such as limited siphon length. The results suggest that manila clams greater than and below 19.76 mm in average have different feeding behavior and P. tricornutum and I. galbana were the two most preferred diets for manila clams cultured in IFHRI. The result of fatty acid composition of manila clams in relation to size or growth rate suggests that fast growing clams would have rapid metabolism of fatty acids not required by the animals and an accumulation of the essential fatty acids (PUFA). In addition, their higher energy requirement and more active state

  11. Shifting diets and the rise of male-biased inequality on the Central Plains of China during Eastern Zhou.

    PubMed

    Dong, Yu; Morgan, Chelsea; Chinenov, Yurii; Zhou, Ligang; Fan, Wenquan; Ma, Xiaolin; Pechenkina, Kate

    2017-01-31

    Farming domesticated millets, tending pigs, and hunting constituted the core of human subsistence strategies during Neolithic Yangshao (5000-2900 BC). Introduction of wheat and barley as well as the addition of domesticated herbivores during the Late Neolithic (∼2600-1900 BC) led to restructuring of ancient Chinese subsistence strategies. This study documents a dietary shift from indigenous millets to the newly introduced cereals in northcentral China during the Bronze Age Eastern Zhou Dynasty (771-221 BC) based on stable isotope analysis of human and animal bone samples. Our results show that this change affected females to a greater degree than males. We find that consumption of the newly introduced cereals was associated with less consumption of animal products and a higher rate of skeletal stress markers among females. We hypothesized that the observed separation of dietary signatures between males and females marks the rise of male-biased inequality in early China. We test this hypothesis by comparing Eastern Zhou human skeletal data with those from Neolithic Yangshao archaeological contexts. We find no evidence of male-female inequality in early farming communities. The presence of male-biased inequality in Eastern Zhou society is supported by increased body height difference between the sexes as well as the greater wealth of male burials.

  12. Individuals in food webs: the relationships between trophic position, omnivory and among-individual diet variation.

    PubMed

    Svanbäck, Richard; Quevedo, Mario; Olsson, Jens; Eklöv, Peter

    2015-05-01

    Among-individual diet variation is common in natural populations and may occur at any trophic level within a food web. Yet, little is known about its variation among trophic levels and how such variation could affect phenotypic divergence within populations. In this study we investigate the relationships between trophic position (the population's range and average) and among-individual diet variation. We test for diet variation among individuals and across size classes of Eurasian perch (Perca fluviatilis), a widespread predatory freshwater fish that undergoes ontogenetic niche shifts. Second, we investigate among-individual diet variation within fish and invertebrate populations in two different lake communities using stable isotopes. Third, we test potential evolutionary implications of population trophic position by assessing the relationship between the proportion of piscivorous perch (populations of higher trophic position) and the degree of phenotypic divergence between littoral and pelagic perch sub-populations. We show that among-individual diet variation is highest at intermediate trophic positions, and that this high degree of among-individual variation likely causes an increase in the range of trophic positions among individuals. We also found that phenotypic divergence was negatively related to trophic position in a population. This study thus shows that trophic position is related to and may be important for among-individual diet variation as well as to phenotypic divergence within populations.

  13. Patterns in micronekton diversity across the North Pacific Subtropical Gyre observed from the diet of longnose lancetfish (Alepisaurus ferox)

    NASA Astrophysics Data System (ADS)

    Portner, Elan J.; Polovina, Jeffrey J.; Choy, C. Anela

    2017-07-01

    We examined the diet of a common midwater predator, the longnose lancetfish (Alepisaurus ferox, n=1371), with respect to fork length, season, and capture location within the North Pacific Subtropical Gyre (NPSG). While A. ferox fed diversely across 97 prey families, approximately 70% of its diet by wet weight consisted of seven prey families (fishes: Sternoptychidae, Anoplogastridae, Omosudidae, Alepisauridae; hyperiid amphipods: Phrosinidae; octopods: Amphitretidae; polychaetes: Alciopidae). Altogether, these micronekton prey families constitute a poorly known forage community distinct from those exploited by other pelagic predators and poorly sampled by conventional methods. We demonstrate ontogenetic variation in diet between two size classes of A. ferox (<97 cm fork length=;small;, ≥97 cm fork length=;large;). Large A. ferox consumed more fish and octopods, fewer crustaceans, and were more cannibalistic than small A. ferox. Ontogenetic shifts in vertical foraging habitat were observed as the consumption of larger and more mesopelagic prey with increasing fork length. Spatial and seasonal variation in the diet of A. ferox is consistent with expected patterns of variation in prey distribution with respect to oceanographic features of the NPSG. Within both size classes, the diets of specimens collected from the oligotrophic core of the NPSG were more diverse than those collected near the boundaries of the gyre and appeared to track seasonal variation in the position of the northern boundary of the gyre. Our data suggest seasonal and spatial variability in the composition of midwater forage communities exploited by A. ferox across the NPSG, and demonstrate that sustained monitoring of diet could provide valuable insights into long-term changes in these understudied communities.

  14. Comparing Ontogenetic and Phylogenetic Stages of Human Development

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2005-01-01

    This paper will present evidence to support ontogenetic and phylogenetic parallels and draw from these comparisons to further illuminate our understanding of micro and macro human development. Individual and collective stages of physical, psychological and spiritual development will be compared and their homologous structures examined.…

  15. Food insecurity reported by children, but not by mothers, is associated with lower quality of diet and shifts in foods consumed.

    PubMed

    Bernal, Jennifer; Frongillo, Edward A; Rivera, Juan A

    2016-07-01

    Household food security shows little indication of nutrient inadequacy among children, according to reports made by parents. We examined the associations of food insecurity as reported by children and mothers with children's consumption of energy, macronutrients such as vitamin A, calcium, iron and zinc, and selected foods, and whether these associations differed by child's gender. This cross-sectional study had non-probabilistic 128 Venezuelan mother-child pairs. We assessed food insecurity and management strategies in children using 10- and nine-item instruments, respectively. Mothers' report of food insecurity came from a previously validated 12-item instrument. Nutrient intake of children was assessed with a 67-item food frequency questionnaire. Comparisons were made using chi-square test for contingency tables and t-tests for trends (P < 0.05). Linear regression models were used for intakes of nutrients and selected foods. We tested for interactions with gender. Prevalence of child- and mother-reported food insecurity was 83.6 and 61.7%, respectively (P < 0.01). Greater food insecurity or management strategies reported by boys was associated with lower calcium, iron and zinc intake (P < 0.05), but reported intakes were low in girls who are even food secure. Rice and corn flour consumption was higher with higher food insecurity in children. Papaya and banana were less consumed by food-insecure children. We found shifts in 13 of 67 foods consumed, with less quality in those food insecure, as reported by children. Mother-reported food insecurity was associated only with rice intake of children. In contrast to mothers' reports, food insecurity reported by children was associated with children's lower quality of diet and shifts in foods consumed.

  16. Ontogenetic variation in the body stoichiometry of two fish species.

    PubMed

    Boros, Gergely; Sály, Péter; Vanni, Michael J

    2015-10-01

    One of the central questions of ecological stoichiometry theory is to what extent animal species maintain constant elemental composition in their bodies. Although several recent studies demonstrate intraspecific variation in animal elemental composition, relatively little is known about ontogenetic changes in vertebrates, especially during early life stages. We studied the intraspecific and interspecific ontogenetic variation in the body stoichiometry of two fish species in two different orders; fathead minnow (Pimephales promelas) and sheepshead minnow (Cyprinodon variegatus), reared under controlled laboratory conditions. During ontogeny, we measured the chemical composition of fish bodies, including carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), and ribonucleic acid (RNA) contents. We found that N and RNA contents were relatively high in early life stages and declined substantially during development. In contrast, body C and C:N ratios were relatively low in embryos, post-embryos and larvae, and increased remarkably thereafter. Concentrations and ratios of some elements (e.g., Ca, P, Ca:P) did not exhibit consistent ontogenetic trends, but fluctuated dynamically between consecutive developmental stages in both species. Specific growth rates correlated significantly with RNA contents in both species. Analyses of the relative importance of different P pools at each developmental stage revealed that RNA was a considerable P pool in post-embryos, while bone-associated P was the dominant body P pool in later stages. Our results suggest that the elemental composition of fish bodies changes considerably during ontogeny. Each ontogenetic stage has its own stoichiometric signature, but the timing, magnitude and direction of ontogenetic changes can vary substantially between taxa.

  17. Contrasting Population and Diet Influences on Gut Length of an Omnivorous Tropical Fish, the Trinidadian Guppy (Poecilia reticulata).

    PubMed

    Zandonà, Eugenia; Auer, Sonya K; Kilham, Susan S; Reznick, David N

    2015-01-01

    Phenotypic plasticity is advantageous for organisms that live in variable environments. The digestive system is particularly plastic, responding to changes in diet. Gut length is the result of a trade-off between maximum nutrient absorption and minimum cost for its maintenance and it can be influenced by diet and by evolutionary history. We assessed variation in gut length of Trinidadian guppies (Poecilia reticulata) as a function of diet, season, ontogeny, and local adaptation. Populations of guppies adapted to different predation levels have evolved different life history traits and have different diets. We sampled guppies from sites with low (LP) and high predation (HP) pressure in the Aripo and Guanapo Rivers in Trinidad. We collected fish during both the dry and wet season and assessed their diet and gut length. During the dry season, guppies from HP sites fed mostly on invertebrates, while guppies in the LP sites fed mainly on detritus. During the wet season, the diet of LP and HP populations became very similar. We did not find strong evidence of an ontogenetic diet shift. Gut length was negatively correlated with the proportion of invertebrates in diet across fish from all sites, supporting the hypothesis that guppy digestive systems adapt in length to changes in diet. Population of origin also had an effect on gut length, as HP and LP fish maintained different gut lengths even in the wet season, when their diets were very similar and individuals in both types of populations fed mostly on detritus. Thus, both environment and population of origin influenced guppies gut length, but population of origin seemed to have a stronger effect. Our study also showed that, even in omnivorous fish, gut length adapted to different diets, being more evident when the magnitude of difference between animal and plant material in the diet was very large.

  18. Ontogenetic habitat use by mangrove/seagrass-associated coral reef fishes shows flexibility in time and space

    NASA Astrophysics Data System (ADS)

    Kimirei, Ismael A.; Nagelkerken, Ivan; Griffioen, Ben; Wagner, Coen; Mgaya, Yunus D.

    2011-03-01

    Tropical shallow-water habitats such as mangroves and seagrass beds are widely acknowledged as important juvenile habitats for various coral reef fish species, most of which are commercially important to fisheries. Spatio-temporal variability in ontogenetic habitat use by fish among these tropical coastal ecosystems has rarely been investigated, yet there are sufficient reasons to believe that this plays an important role. In the present study, we test the spatio-temporal variability in patterns of ontogenetic habitat use by some mangrove/seagrass-associated coral reef fishes ( Lethrinus harak, Lethrinus lentjan, Lutjanus fulviflamma and Siganus sutor). Abundances of these four species were investigated during two years in Tanzanian coastal waters, using underwater visual census in mangrove, seagrass, shallow and deep mudflat, and shallow and deep coral reef habitats. The study covered four distinct seasons of the year and was done at two spatially separated (>40 km) locations. Averaged across locations, seasons and years, juveniles (≤10 cm length) of the four study species had significantly higher relative densities in shallow-water (mangroves and seagrass beds) than in deep-water habitats (deep mudflats or coral reefs), whereas the opposite pattern was found for the adults (>15 cm). These findings suggest a strong and general pattern of ontogenetic habitat shifts from shallow- to deep-water habitats. However, specific habitat-use patterns of juveniles as well as adults differed significantly in time and space. Various species showed subtle to considerable flexibility in juvenile as well as adult habitat use across seasons, years, or at different locations. Furthermore, for some species the data suggest presence of ontogenetic habitat shifts at one location but lack thereof at the other location. In summary, ontogenetic habitat use needs to be considered at various spatial and temporal scales for the interpretation of habitat utilization by fish during different

  19. Diet shifts related to body size of the pirambeba Serrasalmus brandtii Lütken, 1875 (Osteichthyes, Serrasalminae) in the Cajuru Reservoir, São Francisco River Basin, Brazil.

    PubMed

    Oliveira, A K; Alvim, M C; Peret, A C; Alves, C B

    2004-02-01

    This study aimed to identify shifts in the Serrasalmus brandtii Lütken, 1875 diet related to body size. Specimens were collected from April 1992 to January 1993 at the Cajuru Reservoir, in the Pará River, São Francisco River Basin, by seining the shore with nets of nylon, 1 mm opening, and with gill nets. Stomach contents of 152 individuals measuring 15-192 mm SL were examined. Food items were identified and weighed separately. For qualitative analysis, the frequency of occurrence method was used. The relative importance of each food component was determined based on the alimentary index (IAi). The frequencies of occurrence data were subjected to cluster analysis using the Canberra coefficient of dissimilarity and UPGMA as the cluster method. Distinctive gradual changes in food habits, associated with body size, were identified in this species. The smaller individuals fed predominantly on microcrustaceans and insect larvae. The intermediate size classes ingested insects, fish fins, fish scales, and chunks of fish flesh, in this order of importance. For the larger pirambebas, fish was the most abundant food category identified, followed by insects.

  20. Moon phase influences the diet of southern Ray's bream Brama australis.

    PubMed

    Horn, P L; Forman, J S; Dunn, M R

    2013-04-01

    Diet composition of the southern Ray's bream Brama australis was examined from stomach contents of 399 specimens sampled by bottom trawl on Chatham Rise to the east of South Island, New Zealand, over 3 years. Prey items were predominantly mesopelagic fishes and crustaceans. Multivariate analysis indicated that moon phase explained more of the diet variability than any other predictor examined. It appears likely that diet composition is influenced by a combination of changes in both tidal flows and illumination. Different combinations of prey were consumed by B. australis at different times of the lunar cycle. An influence of moon phase on feeding by fishes has rarely been reported, but it is likely that moon phase influences the diets of other species that specialize in mesopelagic prey. The most important prey group by mass for B. australis was Myctophidae (primarily Lampanyctodes hectoris), followed by Stomiiformes (primarily Maurolicus australis) and shrimps (Sergestes spp). An ontogenetic shift in diet was observed, from numerical dominance by small crustaceans including amphipods and euphausiids (with some fishes) in smaller (mass <1045 g) B. australis to pelagic teleost prey (with a few larger crustaceans) in larger (>1440 g) B. australis. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  1. Mismatch between shape changes and ecological shifts during the post-settlement growth of the surgeonfish, Acanthurus triostegus

    PubMed Central

    2012-01-01

    Background Many coral reef fishes undergo habitat and diet shifts during ontogeny. However, studies focusing on the physiological and morphological adaptations that may prepare them for these transitions are relatively scarce. Here, we explored the body shape variation related to ontogenetic shifts in the ecology of the surgeonfish Acanthurus triostegus (Acanthuridae) from new settler to adult stages at Moorea Island (French Polynesia). Specifically, we tested the relationship between diet and habitat shifts and changes in overall body shape during the ontogeny of A. triostegus using a combination of geometric morphometric methods, stomach contents and stable isotope analysis. Results After reef settlement, stable isotope composition of carbon and nitrogen revealed a change from a zooplanktivorous to a benthic algae diet. The large amount of algae (> 75% of stomach contents) found in the digestive tract of small juveniles (25–30 mm SL) suggested the diet shift is rapid. The post-settlement growth of A. triostegus is highly allometric. The allometric shape changes mainly concern cephalic and pectoral regions. The head becomes shorter and more ventrally oriented during growth. Morphological changes are directly related to the diet shift given that a small mouth ventrally oriented is particularly suited for grazing activities at the adult stage. The pectoral fin is more anteriorely and vertically positioned and its basis is larger in adults than in juveniles. This shape variation had implications for swimming performance, manoeuvrability, turning ability and is related to habitat shift. Acanthurus triostegus achieves its main transformation of body shape to an adult-like form at size of 35–40 mm SL. Conclusion Most of the shape changes occurred after the reef colonization but before the transition between juvenile habitat (fringing reef) and adult habitat (barrier reef). A large amount of allometric variation was observed after diet shift from zooplankton to

  2. Contribution of different functional groups to the diet of major predatory fishes at a seagrass meadow in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, Katsumasa; Hori, Masakazu; Tanaka, Yoshiyuki; Hasegawa, Natsuki; Nakaoka, Masahiro

    2010-01-01

    We examined the variation in habitat use and diet of three dominant fish species ( Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.

  3. Bacterial diversity shift determined by different diets in the gut of the spotted wing fly Drosophila suzukii is primarily reflected on acetic acid bacteria.

    PubMed

    Vacchini, Violetta; Gonella, Elena; Crotti, Elena; Prosdocimi, Erica M; Mazzetto, Fabio; Chouaia, Bessem; Callegari, Matteo; Mapelli, Francesca; Mandrioli, Mauro; Alma, Alberto; Daffonchio, Daniele

    2017-04-01

    The pivotal role of diet in shaping gut microbiota has been evaluated in different animal models, including insects. Drosophila flies harbour an inconstant microbiota among which acetic acid bacteria (AAB) are important components. Here, we investigated the bacterial and AAB components of the invasive pest Drosophila suzukii microbiota, by studying the same insect population separately grown on fruit-based or non-fruit artificial diet. AAB were highly prevalent in the gut under both diets (90 and 92% infection rates with fruits and artificial diet respectively). Fluorescent in situ hybridization and recolonization experiments with green fluorescent protein (Gfp)-labelled strains showed AAB capability to massively colonize insect gut. High-throughput sequencing on 16S rRNA gene indicated that the bacterial microbiota of guts fed with the two diets clustered separately. By excluding AAB-related OTUs from the analysis, insect bacterial communities did not cluster separately according to the diet, suggesting that diet-based diversification of the community is primarily reflected on the AAB component of the community. Diet influenced also AAB alpha-diversity, with separate OTU distributions based on diets. High prevalence, localization and massive recolonization, together with AAB clustering behaviour in relation to diet, suggest an AAB role in the D. suzukii gut response to diet modification. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Ontogenetic patterns in the dreams of women across the lifespan.

    PubMed

    Dale, Allyson; Lortie-Lussier, Monique; De Koninck, Joseph

    2015-12-01

    The present study supports and extends previous research on the developmental differences in women's dreams across the lifespan. The participants included 75 Canadian women in each of 5 age groups from adolescence to old age including 12-17, 18-24, 25-39, 40-64, and 65-85, totaling 375 women. One dream per participant was scored by two independent judges using the method of content analysis. Trend analysis was used to determine the ontogenetic pattern of the dream content categories. Results demonstrated significant ontogenetic decreases (linear trends) for female and familiar characters, activities, aggression, and friendliness. These patterns of dream imagery reflect the waking developmental patterns as proposed by social theories and recognized features of aging as postulated by the continuity hypothesis. Limitations and suggestions for future research including the examining of developmental patterns in the dreams of males are discussed.

  5. Allometric growth in the extant coelacanth lung during ontogenetic development.

    PubMed

    Cupello, Camila; Brito, Paulo M; Herbin, Marc; Meunier, François J; Janvier, Philippe; Dutel, Hugo; Clément, Gaël

    2015-09-15

    Coelacanths are lobe-finned fishes known from the Devonian to Recent that were long considered extinct, until the discovery of two living species in deep marine waters of the Mozambique Channel and Sulawesi. Despite extensive studies, the pulmonary system of extant coelacanths has not been fully investigated. Here we confirm the presence of a lung and discuss its allometric growth in Latimeria chalumnae, based on a unique ontogenetic series. Our results demonstrate the presence of a potentially functional, well-developed lung in the earliest known coelacanth embryo, and its arrested growth at later ontogenetic stages, when the lung is clearly vestigial. The parallel development of a fatty organ for buoyancy control suggests a unique adaptation to deep-water environments. Furthermore, we provide the first evidence for the presence of small, hard, flexible plates around the lung in L. chalumnae, and consider them homologous to the plates of the 'calcified lung' of fossil coelacanths.

  6. Allometric growth in the extant coelacanth lung during ontogenetic development

    PubMed Central

    Cupello, Camila; Brito, Paulo M.; Herbin, Marc; Meunier, François J; Janvier, Philippe; Dutel, Hugo; Clément, Gaël

    2015-01-01

    Coelacanths are lobe-finned fishes known from the Devonian to Recent that were long considered extinct, until the discovery of two living species in deep marine waters of the Mozambique Channel and Sulawesi. Despite extensive studies, the pulmonary system of extant coelacanths has not been fully investigated. Here we confirm the presence of a lung and discuss its allometric growth in Latimeria chalumnae, based on a unique ontogenetic series. Our results demonstrate the presence of a potentially functional, well-developed lung in the earliest known coelacanth embryo, and its arrested growth at later ontogenetic stages, when the lung is clearly vestigial. The parallel development of a fatty organ for buoyancy control suggests a unique adaptation to deep-water environments. Furthermore, we provide the first evidence for the presence of small, hard, flexible plates around the lung in L. chalumnae, and consider them homologous to the plates of the ‘calcified lung' of fossil coelacanths. PMID:26372119

  7. Evidence of niche partitioning under ontogenetic influences among three morphologically similar siluriformes in small subtropical streams.

    PubMed

    Bonato, Karine Orlandi; Fialho, Clarice Bernhardt

    2014-01-01

    Ontogenetic influences in patterns of niche breadth and feeding overlap were investigated in three species of Siluriformes (Heptapterus sp., Rhamdia quelen and Trichomycterus poikilos) aiming at understanding the species coexistence. Samplings were conducted bimonthly by electrofishing technique from June/2012 to June/2013 in ten streams of the northwestern state of Rio Grande do Sul, Brazil. The stomach contents of 1,948 individuals were analyzed by volumetric method, with 59 food items identified. In general Heptapterus sp. consumed a high proportion of Aegla sp., terrestrial plant remains and Megaloptera; R. quelen consumed fish, and Oligochaeta, followed by Aegla sp.; while the diet of T. poikilos was based on Simuliidae, Ephemeroptera and Trichoptera. Specie segregation was observed in the NMDS. Through PERMANOVA analysis feeding differences among species, and between a combination of species plus size classes were observed. IndVal showed which items were indicators of these differences. Niche breadth values were high for all species. The niche breadth values were low only for the larger size of R. quelen and Heptapterus sp. while T. poikilos values were more similar. Overall the species were a low feeding overlap values. The higher frequency of high feeding overlap was observed for interaction between Heptapterus sp. and T. poikilos. The null model confirmed the niche partitioning between the species. The higher frequency of high and intermediate feeding overlap values were reported to smaller size classes. The null model showed resource sharing between the species/size class. Therefore, overall species showed a resource partitioning because of the use of occasional items. However, these species share resources mainly in the early ontogenetic stages until the emphasized change of morphological characteristics leading to trophic niche expansion and the apparent segregation observed.

  8. Evidence of Niche Partitioning under Ontogenetic Influences among Three Morphologically Similar Siluriformes in Small Subtropical Streams

    PubMed Central

    Bonato, Karine Orlandi; Fialho, Clarice Bernhardt

    2014-01-01

    Ontogenetic influences in patterns of niche breadth and feeding overlap were investigated in three species of Siluriformes (Heptapterus sp., Rhamdia quelen and Trichomycterus poikilos) aiming at understanding the species coexistence. Samplings were conducted bimonthly by electrofishing technique from June/2012 to June/2013 in ten streams of the northwestern state of Rio Grande do Sul, Brazil. The stomach contents of 1,948 individuals were analyzed by volumetric method, with 59 food items identified. In general Heptapterus sp. consumed a high proportion of Aegla sp., terrestrial plant remains and Megaloptera; R. quelen consumed fish, and Oligochaeta, followed by Aegla sp.; while the diet of T. poikilos was based on Simuliidae, Ephemeroptera and Trichoptera. Specie segregation was observed in the NMDS. Through PERMANOVA analysis feeding differences among species, and between a combination of species plus size classes were observed. IndVal showed which items were indicators of these differences. Niche breadth values were high for all species. The niche breadth values were low only for the larger size of R. quelen and Heptapterus sp. while T. poikilos values were more similar. Overall the species were a low feeding overlap values. The higher frequency of high feeding overlap was observed for interaction between Heptapterus sp. and T. poikilos. The null model confirmed the niche partitioning between the species. The higher frequency of high and intermediate feeding overlap values were reported to smaller size classes. The null model showed resource sharing between the species/size class. Therefore, overall species showed a resource partitioning because of the use of occasional items. However, these species share resources mainly in the early ontogenetic stages until the emphasized change of morphological characteristics leading to trophic niche expansion and the apparent segregation observed. PMID:25340614

  9. Different ontogenetic processes promote dicliny in Ficus L. (Moraceae)

    NASA Astrophysics Data System (ADS)

    Basso-Alves, João Paulo; Pereira, Rodrigo Augusto Santinelo; Peng, Yang-Qiong; Teixeira, Simone Pádua

    2014-05-01

    The absence of reproductive organs in flowers may ontogenetically arise from inception or by abortion during development. Ficus L., a species-rich genus of angiosperms, is an interesting model for floral developmental studies because of the diversity of sexual systems it contains. This study compares the floral morphology of Ficus citrifolia (monoecious), Ficus religiosa (monoecious), Ficus racemosa (secondarily monoecious), and Ficus hispida (gynodioecious) across development to establish the ontogenetic pathways that result in diclinous flowers. Figs were collected at various developmental stages and were prepared for surface (scanning electron microscopy) and histological (light microscopy) analyses. Dicliny in Ficus is defined by stamen absence from inception in pistillate flowers and either pistil absence from inception (F. citrifolia, F. racemosa and F. religiosa) or by abortion (F. hispida) in staminate flowers. The perianth is formed by a single whorl of sepals, as found in other families related to Moraceae. The gynoecium is tubular during development, a condition that may be related with pseudomonomery. The staminate and neutral flowers in F. hispida develop by similar mechanisms. The diversity in the sexual systems in Ficus results from combinations of different floral morphs (dicliny), which originate from both previously established ontogenetic mechanisms (loss of reproductive organ function by abortion or from inception). These mechanisms act independently of phylogenetic proximity or mechanisms of sex system evolution in Ficus. Other aspects of floral development observed in Ficus are discussed in relation to their systematic position and reproductive biology.

  10. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns.

    PubMed

    Domazet-Lošo, Tomislav; Tautz, Diethard

    2010-12-09

    Parallels between phylogeny and ontogeny have been discussed for almost two centuries, and a number of theories have been proposed to explain such patterns. Especially elusive is the phylotypic stage, a phase during development where species within a phylum are particularly similar to each other. Although this has formerly been interpreted as a recapitulation of phylogeny, it is now thought to reflect an ontogenetic progression phase, where strong constraints on developmental regulation and gene interactions exist. Several studies have shown that genes expressed during this stage evolve at a slower rate, but it has so far not been possible to derive an unequivocal molecular signature associated with this stage. Here we use a combination of phylostratigraphy and stage-specific gene expression data to generate a cumulative index that reflects the evolutionary age of the transcriptome at given ontogenetic stages. Using zebrafish ontogeny and adult development as a model, we find that the phylotypic stage does indeed express the oldest transcriptome set and that younger sets are expressed during early and late development, thus faithfully mirroring the hourglass model of morphological divergence. Reproductively active animals show the youngest transcriptome, with major differences between males and females. Notably, ageing animals express increasingly older genes. Comparisons with similar data sets from flies and nematodes show that this pattern occurs across phyla. Our results indicate that an old transcriptome marks the phylotypic phase and that phylogenetic differences at other ontogenetic stages correlate with the expression of newly evolved genes.

  11. Early differentiating neuron in larval abalone (Haliotis kamtschatkana) reveals the relationship between ontogenetic torsion and crossing of the pleurovisceral nerve cords.

    PubMed

    Page, Louise R

    2006-01-01

    Crossing of the pleurovisceral nerve cords in gastropods has supported the view that gastropods evolved by 180 degrees rotation between the ventral and dorsal body regions. Indeed, a rotation of this type occurs as a dramatic morphogenetic movement ("ontogenetic torsion") during the development of basal gastropods. According to a long-standing hypothesis, ontogenetic torsion in basal gastropods preserves an ancient developmental aberration that generated the contorted gastropod body plan. It follows from this reasoning that crossing of the pleurovisceral nerve cords during gastropod development should be mechanically coupled to ontogenetic torsion. The predicted mechanical coupling can now be examined because of the discovery of an early differentiating neuron in Haliotis kamtschatkana (Vetigastropoda) that expresses 5-hydroxytryptamine-like immunoreactivity. The neuron appeared to delineate the trajectory of the pleurovisceral nerve cords beginning before ontogenetic torsion. Before torsion, the neuronal soma is embedded in mantle epithelium at the ventral midline and two neurites extend anteriorly toward the apical sensory organ. Contrary to expectation, the two neurites of this cell did not cross-over during ontogenetic torsion because the soma of this mantle neuron shifted in the same direction as the rotating head and foot. Full crossing of the pleurovisceral nerve cords occurred gradually during later development as the mantle cavity deepened and expanded leftward. These results are consistent with a generalization emerging from comparative studies indicating a conserved developmental stage for gastropods in which the mantle cavity is localized to one side, despite a fully "post-torsional" orientation for other body components. Developmental morphology before this stage is much more variable among different gastropod clades.

  12. The influence of ontogenetic dietary fluctuations on zebrafish size and swimming performance

    PubMed Central

    Marks, Chris; Lombardo, Steven M.; Formanik, Kristie L.; Moore, Francisco B.-G.; Bagatto, Brian

    2012-01-01

    Phenotypic flexibility is critical in determining fitness. As conditions change during ontogeny, continued responsiveness is necessary to meet the demands of the environment. Studies have shown that subsequent ontogenetic periods of development can interact with one another and shape developmental outcomes. The role genetic variation within populations plays in shaping these outcomes remains unclear. Four full-sib families of zebrafish Danio rerio were raised under for dietary regimes: high food rations for 60 days (HH), low food rations for 60 days (LL), high food rations for 30 days followed by low food rations for 30 (HL), and low food rations for 30 days followed by high food rations for 30 (LH). While the low ration diet significantly reduced body length at 30 days, diet was no longer a significant factor at day 60. Only family level variation influenced body length. Furthermore, there was significant family level variation in the manner in which swimming performance responded to fluctuating dietary conditions. Some families increased swimming performance in response to dietary change, while others did not. These results suggest that plastic responsiveness to subsequent environmental changes can be trait specific and vary significantly within populations. PMID:22934061

  13. Vertical movement patterns and ontogenetic niche expansion in the tiger shark, Galeocerdo cuvier.

    PubMed

    Afonso, André S; Hazin, Fábio H V

    2015-01-01

    Sharks are top predators in many marine ecosystems and can impact community dynamics, yet many shark populations are undergoing severe declines primarily due to overfishing. Obtaining species-specific knowledge on shark spatial ecology is important to implement adequate management strategies for the effective conservation of these taxa. This is particularly relevant concerning highly-mobile species that use wide home ranges comprising coastal and oceanic habitats, such as tiger sharks, Galeocerdo cuvier. We deployed satellite tags in 20 juvenile tiger sharks off northeastern Brazil to assess the effect of intrinsic and extrinsic factors on depth and temperature usage. Sharks were tracked for a total of 1184 d and used waters up to 1112 m in depth. The minimum temperature recorded equaled 4°C. All sharks had a clear preference for surface (< 5 m) waters but variability in depth usage was observed as some sharks used mostly shallow (< 60 m) waters whereas others made frequent incursions into greater depths. A diel behavioral shift was detected, with sharks spending considerably more time in surface (< 10 m) waters during the night. Moreover, a clear ontogenetic expansion in the vertical range of tiger shark habitat was observed, with generalized linear models estimating a ~4-fold increase in maximum diving depth from 150- to 300-cm size-classes. The time spent in the upper 5 m of the water column did not vary ontogenetically but shark size was the most important factor explaining the utilization of deeper water layers. Young-of-the-year tiger sharks seem to associate with shallow, neritic habitats but they progressively move into deeper oceanic habitats as they grow larger. Such an early plasticity in habitat use could endow tiger sharks with access to previously unavailable prey, thus contributing to a wider ecological niche.

  14. Vertical Movement Patterns and Ontogenetic Niche Expansion in the Tiger Shark, Galeocerdo cuvier

    PubMed Central

    Afonso, André S.; Hazin, Fábio H. V.

    2015-01-01

    Sharks are top predators in many marine ecosystems and can impact community dynamics, yet many shark populations are undergoing severe declines primarily due to overfishing. Obtaining species-specific knowledge on shark spatial ecology is important to implement adequate management strategies for the effective conservation of these taxa. This is particularly relevant concerning highly-mobile species that use wide home ranges comprising coastal and oceanic habitats, such as tiger sharks, Galeocerdo cuvier. We deployed satellite tags in 20 juvenile tiger sharks off northeastern Brazil to assess the effect of intrinsic and extrinsic factors on depth and temperature usage. Sharks were tracked for a total of 1184 d and used waters up to 1112 m in depth. The minimum temperature recorded equaled 4°C. All sharks had a clear preference for surface (< 5 m) waters but variability in depth usage was observed as some sharks used mostly shallow (< 60 m) waters whereas others made frequent incursions into greater depths. A diel behavioral shift was detected, with sharks spending considerably more time in surface (< 10 m) waters during the night. Moreover, a clear ontogenetic expansion in the vertical range of tiger shark habitat was observed, with generalized linear models estimating a ~4-fold increase in maximum diving depth from 150- to 300-cm size-classes. The time spent in the upper 5 m of the water column did not vary ontogenetically but shark size was the most important factor explaining the utilization of deeper water layers. Young-of-the-year tiger sharks seem to associate with shallow, neritic habitats but they progressively move into deeper oceanic habitats as they grow larger. Such an early plasticity in habitat use could endow tiger sharks with access to previously unavailable prey, thus contributing to a wider ecological niche. PMID:25629732

  15. Analysis of bacterial community shifts in the gastrointestinal tract of pigs fed diets supplemented with β-glucan from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae.

    PubMed

    Murphy, P; Dal Bello, F; O'Doherty, J; Arendt, E K; Sweeney, T; Coffey, A

    2013-07-01

    This study was designed to evaluate the effects of algal and yeast β-glucans on the porcine gastrointestinal microbiota, specifically the community of Lactobacillus, Bifidobacterium and coliforms. A total of 48 pigs were fed four diets over a 28-day period to determine the effect that each had on these communities. The control diet consisted of wheat and soya bean meal. The remaining three diets contained wheat and soya bean meal supplemented with β-glucan at 250 g/tonne from Laminaria digitata, Laminaria hyperborea or Saccharomyces cerevisiae. Faecal samples were collected from animals before feeding each diet and after the feeding period. The animals were slaughtered the following day and samples were collected from the stomach, ileum, caecum, proximal colon and distal colon. Alterations in Lactobacillus in the gastrointestinal tract (GIT) were analysed using denaturing gradient gel electrophoresis (DGGE) profiles generated by group-specific 16S rRNA gene PCR amplicons. Plate count analysis was also performed to quantify total coliforms. DGGE profiles indicated that all β-glucan diets provoked the emergence of a richer community of Lactobacillus. The richest community of lactobacilli emerged after feeding L. digitata (LD β-glucan). Plate count analysis revealed that the L. hyperborea (LH β-glucan) diet had a statistically significant effect on the coliform counts in the proximal colon in comparison with the control diet. β-glucan from L. digitata and S. cerevisiae also generally reduced coliforms but to a lesser extent. Nevertheless, the β-glucan diets did not significantly reduce levels of Lactobacillus or Bifidobacterium. DGGE analysis of GIT samples indicated that the three β-glucan diets generally promoted the establishment of a more varied range of Lactobacillus species in the caecum, proximal and distal colon. The LH β-glucan had the most profound reducing effect on coliform counts when compared with the control diet and diets supplemented with L

  16. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut.

    PubMed

    Wong, Sandi; Stephens, W Zac; Burns, Adam R; Stagaman, Keaton; David, Lawrence A; Bohannan, Brendan J M; Guillemin, Karen; Rawls, John F

    2015-09-29

    Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their

  17. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology

    PubMed Central

    Kawabe, Soichiro; Matsuda, Seiji; Tsunekawa, Naoki; Endo, Hideki

    2015-01-01

    Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies. PMID:26053849

  18. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    PubMed

    Kawabe, Soichiro; Matsuda, Seiji; Tsunekawa, Naoki; Endo, Hideki

    2015-01-01

    Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  19. Energy allocation between brain and body during ontogenetic development.

    PubMed

    Kubera, Britta; Bosy-Westphal, Anja; Peters, Achim; Braun, Wiebke; Langemann, Dirk; Neugebohren, Stephanie; Heller, Martin; Müller, Manfred James

    2013-01-01

    We here studied how energy is allocated between brain and body both during the ontogenetic development from a child to an adult and during weight loss. We investigated 180 normal weight female and male children and adolescents (aged 6.1-19.9 years) as well as 35 overweight adolescents undergoing weight reduction intervention. 52 normal weight and 42 obese adult women were used for comparison. We assessed brain mass by magnetic-resonance-imaging and body metabolism by indirect calorimetry. To study how energy is allocated between brain and body, we measured plasma insulin, since insulin fulfils the functions of a glucose allocating hormone, i.e., peripheral glucose uptake depends on insulin, central uptake does not. We used reference data obtained in the field of comparative biology. In a brain-body-plot, we calculated the distance between each subject and a reference mammal of comparable size and named the distance "encephalic measure." With higher encephalic measures, more energy is allocated to the brain. We found that ontogenetic development from a child to an adult was indicated by decreasing encephalic measures in females (r = -0.729, P < 0.001) and increasing plasma insulin concentrations (F = 6.6, P = 0.002 in females and F = 8.6, P < 0.001 in males). Weight loss of about 5 kg in females and about 9 kg in males resulted in reduced insulin concentrations and increased encephalic measures. Our results indicate that the share of energy allocated to the brain increased with weight loss, but decreased during the ontogenetic development from childhood to adolescence. These developmental changes in brain-to-body energy allocation appear to be driven by increasing plasma insulin concentrations. Copyright © 2013 Wiley Periodicals, Inc.

  20. Ontogenetic Change of Signal Brightness in the Foot-Flagging Frog Species Staurois parvus and Staurois guttatus

    PubMed Central

    Stangel, Judith; Preininger, Doris; Sztatecsny, Marc; Hödl, Walter

    2015-01-01

    Adult individuals of several anuran species exhibit conspicuous visual displays during intraspecific communication. While signal properties in adults have been subject to an increasing number of studies, little is known about the variation of visual signals in juveniles and during ontogenetic changes. Foot-flagging signals of the Bornean frogs Staurois guttatus and S. parvus were observed in juveniles a few days after metamorphosis. We investigated color parameters of foot webbings and body coloration of individuals bred at the Vienna Zoo, and their relation to age and body size using spectrophotometry. Our results indicate that the brightness of foot webbings of S. guttatus and S. parvus increased with increasing age. Additionally, we compared the results with measurements of adult individuals from a population in Brunei and discuss possible differences related to diet and age as well as the habitat use of juveniles and adults. We suggest that the ontogenetic increase in foot-webbing brightness enhances visual conspicuousness and the signal-to-noise ratio of the visual signal with sexual maturity and potentially functions as cue to the age of the signaler. PMID:25983337

  1. An uncooked vegan diet shifts the profile of human fecal microflora: computerized analysis of direct stool sample gas-liquid chromatography profiles of bacterial cellular fatty acids.

    PubMed Central

    Peltonen, R; Ling, W H; Hänninen, O; Eerola, E

    1992-01-01

    The effect of an uncooked extreme vegan diet on fecal microflora was studied by direct stool sample gas-liquid chromatography (GLC) of bacterial cellular fatty acids and by quantitative bacterial culture by using classical microbiological techniques of isolation, identification, and enumeration of different bacterial species. Eighteen volunteers were divided randomly into two groups. The test group received an uncooked vegan diet for 1 month and a conventional diet of mixed Western type for the other month of the study. The control group consumed a conventional diet throughout the study period. Stool samples were collected. Bacterial cellular fatty acids were extracted directly from the stool samples and measured by GLC. Computerized analysis of the resulting fatty acid profiles was performed. Such a profile represents all bacterial cellular fatty acids in a sample and thus reflects its microflora and can be used to detect changes, differences, or similarities of bacterial flora between individual samples or sample groups. GLC profiles changed significantly in the test group after the induction and discontinuation of the vegan diet but not in the control group at any time, whereas quantitative bacterial culture did not detect any significant change in fecal bacteriology in either of the groups. The results suggest that an uncooked extreme vegan diet alters the fecal bacterial flora significantly when it is measured by direct stool sample GLC of bacterial fatty acids. PMID:1482187

  2. Ontogenetic, gravity-dependent development of rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either maintained with the dam as normal or put on an alternating feeding schedule as described above. The enlargement of mass (approximately 3 times), increase in myonuclear number (approximately 1.6 times) and myonuclear domain (approximately 2.6 times), and transformation toward a slow fiber phenotype (from 56 to 70% fibers expressing type I myosin heavy chain) observed in controls were inhibited by hindlimb unloading. These properties were normalized to control levels or higher within 1 mo of reambulation beginning immediately after the unloading period. Therefore, chronic unloading essentially stopped the ontogenetic developmental processes of 1) net increase in DNA available for transcription, 2) increase in amount of cytoplasm sustained by that DNA pool, and 3) normal transition of myosin isoforms that occur in some fibers from birth to weaning. It is concluded that normal ontogenetic development of a postural muscle is highly dependent on the gravitational environment even during the early postnatal period, when full weight-bearing activity is not routine.

  3. The ontogenetic bases for variation in ovary position in Melastomataceae.

    PubMed

    Basso-Alves, João Paulo; Goldenberg, Renato; Teixeira, Simone Pádua

    2017-08-21

    Although the ovary position is considered a stable character in angiosperms, Melastomataceae species have perigynous flowers in which the ovary varies from superior to inferior. Thus, we investigated the ontogenetic process involved in variation of the ovary position in Melastomataceae. We focused on histogenesis of the floral apex in search of developmental patterns for each type of ovary position. Six species in which the ovary varies from superior to inferior were chosen: Henriettea saldanhae, Leandra melastomoides, Miconia dodecandra, Microlicia euphorbioides, Rhynchanthera grandiflora, and Tibouchina clinopodifolia. Buds and flowers were processed for surface and histological examinations. The floral apex changes from convex to concave, resulting in a perigynous hypanthium. Cell divisions in the margins of the floral apex form an annular intercalary meristem that elevates the base of the primordia of almost all whorls. The joint growth of the carpel base with the gynoecial hypanthium originates semi-inferior ovaries in Leandra melastomoides, Miconia dodecandra, and Tibouchina clinopodifolia and inferior ovaries in Henriettea saldanhae. In Microlicia euphorbioides and Rhynchanthera grandiflora, the carpels are not affected by this hypanthial growth; flowers have a superior ovary. Changes in ovary position of Melastomataceae are due to intercalary meristematic activity, which is one of the main mechanisms for the origin of morphological innovations among plants. Our data illustrate the importance of the intercalary meristems in floral development, and we discuss the implications of this ontogenetic model for understanding the evolution of ovary position in Melastomataceae. © 2017 Botanical Society of America.

  4. Ontogenetic, gravity-dependent development of rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either maintained with the dam as normal or put on an alternating feeding schedule as described above. The enlargement of mass (approximately 3 times), increase in myonuclear number (approximately 1.6 times) and myonuclear domain (approximately 2.6 times), and transformation toward a slow fiber phenotype (from 56 to 70% fibers expressing type I myosin heavy chain) observed in controls were inhibited by hindlimb unloading. These properties were normalized to control levels or higher within 1 mo of reambulation beginning immediately after the unloading period. Therefore, chronic unloading essentially stopped the ontogenetic developmental processes of 1) net increase in DNA available for transcription, 2) increase in amount of cytoplasm sustained by that DNA pool, and 3) normal transition of myosin isoforms that occur in some fibers from birth to weaning. It is concluded that normal ontogenetic development of a postural muscle is highly dependent on the gravitational environment even during the early postnatal period, when full weight-bearing activity is not routine.

  5. Ontogenetic development of the helical heart: concepts and facts.

    PubMed

    Männer, Jörg

    2006-04-01

    The structural and functional organization of the ventricular myocardial mass is a controversial matter that cannot be resolved by anatomical studies alone. Therefore, other approaches such as investigations of the ontogenetic development of the ventricular myocardium might help to resolve controversies about its structural and functional organization. It has recently been proposed that the spatial orientation of Torrent-Guasp's ventricular myocardial band model (basal and apical loops) might be the mature morphological correlate of twists and torsions of the embryonic heart loop. In the present contribution, the suggestions made in this concept were analyzed in the light of currently known facts about the development of the embryonic heart. It was found that some of the suggestions made in this concept do not correspond to embryological facts, whereas other suggestions could neither be disproved nor confirmed on the basis of our current knowledge on heart development. The answer to the question as to which of the various models of myocardial fibre organization fits best with the ontogenesis of the myocardial mass awaits future studies. The myocardial units of Torrent-Guasp's myocardial band model are said to have a functional rather than a morphological personality. Future studies on the ontogenetic development of the myocardium, therefore, should comprise not only anatomical analyses of dead specimens but should additionally comprise high resolution in vivo analyses of the development of the spatio-temporal contraction patterns of embryonic and fetal hearts.

  6. Evidence for ontogenetic feeding strategies in four calanoid copepods in the East Sea (Japan Sea) in summer, revealed by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Im, Dong-Hoon; Wi, Jin Hee; Suh, Hae-Lip

    2015-09-01

    Deciphering the ontogenetic feeding ecology of copepods is essential to understanding their role in the energy transfer of marine ecosystems. We used stable isotope analysis to examine the ontogenetic feeding strategies of the four coexisting calanoid copepods, Mesocalanus tenuicornis, Metridia pacifica, Calanus sinicus, and Neocalanus plumchrus, in the East Sea (Japan Sea) in summer. Moreover, we used the stable carbon and nitrogen isotope composition of small-sized plankton in three cell size fractions, pico- (< 2 μm), nano- (2-20 μm) and microplankton (20-200 μm), to identify the dietary preference at each developmental stage. The relative carbon masses of pico-, nano- and microplankton were 18, 38, and 44%, respectively, and their δ13C and δ15N values gradually increased with increasing size classes. The ontogenetic trophic position of four copepods were relatively low and ranged from 2.1 to 2.6, indicating that herbivores feed on small-sized phytoplankton, pico- and nanoplankton. Among copepodid stages, the δ13C and δ15N values of M. tenuicornis and C. sinicus differed significantly, while those of M. pacifica and N. plumchrus were not significantly different. In M. tenuicornis, the smallest species among the four copepods examined, the diet preference of CIV for picoplankton changed to nanoplankton in the adult stage. When M. pacifica developed from CIV to adult, the diet preference changed from pico- to microplankton. The proportion of microplankton in the diet of C. sinicus and N. plumchrus increased from CIV to female adult and from CIII to CV, respectively. During the developmental progress in copepodid stages, the smaller copepods significantly changed their dietary preference from pico- to microplankton, while the larger copepods consistently fed on microplankton. We suggest that smaller copepods have an advantage in survival at early copepodid stages compared with larger copepods in summer when microplankton biomass is relatively low.

  7. Baseline Socio-demographic characteristics and self-reported diet and physical activity shifts among recent immigrants participating in the randomized controlled lifestyle intervention: "Live Well".

    PubMed

    Tovar, Alison; Boulos, Rebecca; Sliwa, Sarah; Must, Aviva; Gute, David M; Metayer, Nesly; Hyatt, Raymond R; Chui, Kenneth; Pirie, Alex; Luongo, Christina Kamis; Economos, Christina

    2014-06-01

    The goal of this paper is to describe the baseline characteristics of Live Well (intervention to prevent weight gain in recent immigrant mother-child dyads from Brazil, Haiti, and Latin America) participants, and to explore self-reported changes in diet and physical activity post-immigration. Baseline data from 383 mothers were used for this study. Dyads attended a measurement day where they completed self-administered surveys collecting information about socio-demographics, diet, physical activity, other psychosocial variables, and height and weight. Haitian mothers' socio-demographic profile differed significantly from that of Brazilians' and Latinas': they have been in the US for a shorter period of time, have higher rates of unemployment, are less likely to be married, more likely to have ≥3 children, more likely to be obese, and have immigrated for family or other reasons. In multivariate models, self-reported changes in diet and physical activity since migrating to the US were significantly associated with BMI with non-linear relationships identified. Future research is needed to understand how diet and physical activity change while acculturating to the US and explore the adoption of both healthy and unhealthy dietary changes.

  8. Beyond body size: muscle biochemistry and body shape explain ontogenetic variation of anti-predatory behaviour in the lizard Salvator merianae.

    PubMed

    de Barros, Fábio Cury; de Carvalho, José Eduardo; Abe, Augusto Shinya; Kohlsdorf, Tiana

    2016-06-01

    Anti-predatory behaviour evolves under the strong action of natural selection because the success of individuals avoiding predation essentially defines their fitness. Choice of anti-predatory strategies is defined by prey characteristics as well as environmental temperature. An additional dimension often relegated in this multilevel equation is the ontogenetic component. In the tegu Salvator merianae, adults run away from predators at high temperatures but prefer fighting when it is cold, whereas juveniles exhibit the same flight strategy within a wide thermal range. Here, we integrate physiology and morphology to understand ontogenetic variation in the temperature-dependent shift of anti-predatory behaviour in these lizards. We compiled data for body shape and size, and quantified enzyme activity in hindlimb and head muscles, testing the hypothesis that morphophysiological models explain ontogenetic variation in behavioural associations. Our prediction is that juveniles exhibit body shape and muscle biochemistry that enhance flight strategies. We identified biochemical differences between muscles mainly in the LDH:CS ratio, whereby hindlimb muscles were more glycolytic than the jaw musculature. Juveniles, which often use evasive strategies to avoid predation, have more glycolytic hindlimb muscles and are much smaller when compared with adults 1-2 years old. Ontogenetic differences in body shape were identified but marginally contributed to behavioural variation between juvenile and adult tegus, and variation in anti-predatory behaviour in these lizards resides mainly in associations between body size and muscle biochemistry. Our results are discussed in the ecological context of predator avoidance by individuals differing in body size living at temperature-variable environments, where restrictions imposed by the cold could be compensated by specific phenotypes. © 2016. Published by The Company of Biologists Ltd.

  9. Ontogenetic shifts in habitat use by the endangered Roanoke logperch (Percina rex)

    Treesearch

    Amanda Rosenberger; Paul L. Angermeier

    2003-01-01

    1. Conservation of the federally endangered Roanoke logperch (Percina rex, Jordan and Evermann) necessitates protection of habitat that is critical for all age classes. We examined habitat use patterns of individual logperch to determine: (1) if age classes of logperch in the Nottoway and Roanoke Rivers exhibit habitat selectivity, (2) if...

  10. Ontogenetic dietary shift in the larvae of Cybister japonicus (Coleoptera: Dytiscidae) in Japanese rice fields.

    PubMed

    Ohba, Shin-Ya

    2009-06-01

    A number of fragmentary reports suggest that the endangered diving beetle Cybister japonicus larvae feed on tadpoles, fish, and aquatic insects. However, no quantitative study on the feeding habits of C. japonicus larvae has been reported. In this study, field observations and rearing experiments were carried out to show the feeding ecology of C. japonicus larvae. Unlike previous commentaries, the first- and second-instar larvae of C. japonicus preyed on insects, mainly Odonata nymphs and Notonecta triguttata, irrespective of prey availability, but did not eat vertebrates such as tadpoles and fish in the field. On the contrary, the third-instar larvae fed on both insects and vertebrates. Rearing experiments showed that the number of Odonata nymphs consumed was significantly more than the number of tadpoles consumed by the first and second instars but third-instar larvae ate both the Odonata nymphs and tadpoles in the tadpole-Odonata nymph mixture experiment. The total body lengths of C. japonicus new adults in the Odonata nymph and tadpole-Odonata nymph mixture treatments were statistically equal. These results suggested that the first- and second-instar larvae of C. japonicus prey mainly on insects and do not eat vertebrate animals (insectivore), whereas the third-instar larvae fed on both insects and vertebrates (generalist).

  11. Redox homeostasis and reactive oxygen species scavengers shift during ontogenetic phase changes in apple.

    PubMed

    Du, Zhen; Jia, Xiao Lin; Wang, Yi; Wu, Ting; Han, Zhen Hai; Zhang, Xin Zhong

    2015-07-01

    The change from juvenile to adult phase is a universal phenomenon in perennial plants such as apple. To validate the changes in hydrogen peroxide (H2O2) levels and scavenging during ontogenesis in apple seedlings, the H2O2 contents, its scavenging capacity, and the expression of related genes, as well as miR156 levels, were measured in leaf samples from different nodes in seedlings of 'Zisai Pearl' (Malus asiatica)×'Red Fuji' (M. domestica). Then in vitro shoots were treated with redox modulating chemicals to verify the response of miR156 to redox alteration. The expression of miR156 decreased gradually during ontogenesis, indicating a progressive loss of juvenility. During the phase changes, H2O2 and ascorbate contents, the ratio of ascorbate to dehydroascorbate, the ascorbate peroxidase, catalase and glutathione reductase activities, and the expressions of some MdGR and MdAPX gene family members increased remarkably. However, the glutathione content and glutathione to glutathione disulfide ratio declined. In chemicals treated in vitro shoots, the changes in miR156 levels were coordinated with GSH contents and GSH/GSSG ratio but not H2O2 contents. Conclusively, the relative reductive thiol redox status is critical for the maintenance of juvenility and the reductive ascorbate redox environment was elevated and sustained during the reproductive phase. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Ontogenetic comparisons of standard metabolism in three species of crocodilians

    PubMed Central

    Brien, Matthew L.; Tracy, Christopher R.; Manolis, S. Charlie; Webb, Grahame J. W.; Seymour, Roger S.; Christian, Keith A.

    2017-01-01

    Due in part to their large size, aggressive temperament, and difficulty in handling, there are few physiological studies of adult crocodilians in the literature. As a result, studies comparing individuals across an ontogenetic series and comparisons among species are also lacking. We addressed this gap in knowledge by measuring standard metabolic rates (SMR) of three species of crocodilians (Crocodylus porosus, C. johnsoni, and Alligator mississippiensis), and included individuals that ranged from 0.22 to 114 kg. Allometric scaling of SMR with body mass was similar among the species, but C. porosus had significantly higher SMR than did C. johnsoni or A. mississippiensis. Differences in SMR among species are potentially related to behavioural differences in levels of aggression; C. porosus are the most aggressive of the crocodilians measured, and have rates of standard metabolism that are approximately 36% higher at the grand mean body size than those measured for C. johnsoni or A. mississippiensis, which are among the least aggressive crocodilians. PMID:28182696

  13. Ontogenetic relationships between cranium and mandible in coyotes and hyenas.

    PubMed

    La Croix, Suzanne; Holekamp, Kay E; Shivik, John A; Lundrigan, Barbara L; Zelditch, Miriam Leah

    2011-06-01

    Developing animals must resolve the conflicting demands of survival and growth, ensuring that they can function as infants or juveniles while developing toward their adult form. In the case of the mammalian skull, the cranium and mandible must maintain functional integrity to meet the feeding needs of a juvenile even as the relationship between parts must change to meet the demands imposed on adults. We examine growth and development of the cranium and mandible, using a unique ontogenetic series of known-age coyotes (Canis latrans), analyzing ontogenetic changes in the shapes of each part, and the relationship between them, relative to key life-history events. Both cranial and mandibular development conform to general mammalian patterns, but each also exhibits temporally and spatially localized maturational transformations, yielding a complex relationship between growth and development of each part as well as complex patterns of synchronous growth and asynchronous development between parts. One major difference between cranium and mandible is that the cranium changes dramatically in both size and shape over ontogeny, whereas the mandible undergoes only modest shape change. Cranium and mandible are synchronous in growth, reaching adult size at the same life-history stage; growth and development are synchronous for the cranium but not for the mandible. This synchrony of growth between cranium and mandible, and asynchrony of mandibular development, is also characteristic of a highly specialized carnivore, the spotted hyena (Crocuta crocuta), but coyotes have a much less protracted development, being handicapped relative to adults for a much shorter time. Morphological development does not predict life-history events in these two carnivores, which is contrary to what has been reported for two rodent species. The changes seen in skull shape in successive life-history stages suggest that adult functional demands cannot be satisfied by the morphology characterizing

  14. Divergence and ontogenetic coupling of larval behaviour and thermal reaction norms in three closely related butterflies.

    PubMed

    Berger, David; Friberg, Magne; Gotthard, Karl

    2011-01-22

    Genetic trade-offs such as between generalist-specialist strategies can be masked by changes in compensatory processes involving energy allocation and acquisition which regulation depends on the state of the individual and its ecological surroundings. Failure to account for such state dependence may thus lead to misconceptions about the trade-off structure and nature of constraints governing reaction norm evolution. Using three closely related butterflies, we first show that foraging behaviours differ between species and change remarkably throughout ontogeny causing corresponding differences in the thermal niches experienced by the foraging larvae. We further predicted that thermal reaction norms for larval growth rate would show state-dependent variation throughout development as a result of selection for optimizing feeding strategies in the respective foraging niches of young and old larvae. We found substantial developmental plasticity in reaction norms that was species-specific and reflected the different ontogenetic niche shifts. Any conclusions regarding constraints on performance curves or species-differentiation in thermal physiology depend on when reaction norms were measured. This demonstrates that standardized estimates at single points in development, or in general, allow variation in only one ecological dimension, may sometimes provide incomplete information on reaction norm constraints.

  15. Natal departure timing from spatially varying environments is dependent of individual ontogenetic status

    NASA Astrophysics Data System (ADS)

    Cucherousset, Julien; Paillisson, Jean-Marc; Roussel, Jean-Marc

    2013-08-01

    Natal departure timing represents one of the first crucial decisions for juveniles born in spatially varying environments that ultimately disappear, but our knowledge on its determinants is limited. The present study aimed at understanding the determinants of juvenile natal departure by releasing individually tagged juvenile pike ( Esox lucius L.) with variable body size and trophic position in a temporary flooded grassland. Specifically, we investigated whether natal departure depends on individual competitive status (`competition hypothesis'), physiological tolerance to environmental conditions (`physiological hypothesis') or individual trophic position and the spatial heterogeneity of trophic resources (`trophic hypothesis'). The results indicated that departure timing was negatively correlated with body size at release, showing that the dominance status among competing individuals was not the main trigger of juvenile departure. A positive correlation between departure timing and individual body size at departure was observed, suggesting that inter-individual variability in physiological tolerance did not explain departure patterns. While individual growth performances were similar irrespective of the timing of natal departure, stable isotope analyses revealed that juveniles with higher trophic position departed significantly earlier than individuals with lower trophic position. Therefore, the trade-off driving the use of spatially varying environments was most likely dependent upon the benefits associated with energetic returns than the costs associated with inter-individual competition or physiological stress. This result highlighted how ontogeny, and particularly ontogenetic niche shift, can play a central role in juvenile's decision to depart from natal habitats in a predatory species.

  16. Chemical polymorphism in defense secretions during ontogenetic development of the millipede Niponia nodulosa.

    PubMed

    Kuwahara, Yasumasa; Ichiki, Yayoi; Morita, Masashi; Tanabe, Tsutomu; Asano, Yasuhisa

    2015-01-01

    A mixture of defense compounds (benzaldehyde, benzoyl cyanide, benzoic acid, mandelonitrile, and mandelonitrile benzoate), found commonly in cyanogenic polydesmid millipedes, was identified in the non-cyanogenic millipede Niponia nodulosa. These compounds were major components in 1st-4th instars, but were absent in older instars and adults. Extracts of older instars and adults contained 1-octen-3-ol, 2-methyl-2-bornene, E-2-octen-1-ol, 2-methyl-isoborneol, and geosmin; these compounds were minor components in 1st-4th instars. This ontogenetic allomone shift may be explained by the high cost of biosynthesis of polydesmid compounds from L-phenylalanine being offset by their potency in protecting the insect during fragile and sensitive growth stages. However, as the cuticle hardens in older juveniles (5th, 6th, 7th instars) and adults, this allows for a switch in defense to using less effective and less costly volatile organic compounds (presumably microbial in origin) that are ubiquitous in the millipede's habitat or are produced by symbiotic microbes and may be readily available through food intake or aspiration.

  17. Natal departure timing from spatially varying environments is dependent of individual ontogenetic status.

    PubMed

    Cucherousset, Julien; Paillisson, Jean-Marc; Roussel, Jean-Marc

    2013-08-01

    Natal departure timing represents one of the first crucial decisions for juveniles born in spatially varying environments that ultimately disappear, but our knowledge on its determinants is limited. The present study aimed at understanding the determinants of juvenile natal departure by releasing individually tagged juvenile pike (Esox lucius L.) with variable body size and trophic position in a temporary flooded grassland. Specifically, we investigated whether natal departure depends on individual competitive status ('competition hypothesis'), physiological tolerance to environmental conditions ('physiological hypothesis') or individual trophic position and the spatial heterogeneity of trophic resources ('trophic hypothesis'). The results indicated that departure timing was negatively correlated with body size at release, showing that the dominance status among competing individuals was not the main trigger of juvenile departure. A positive correlation between departure timing and individual body size at departure was observed, suggesting that inter-individual variability in physiological tolerance did not explain departure patterns. While individual growth performances were similar irrespective of the timing of natal departure, stable isotope analyses revealed that juveniles with higher trophic position departed significantly earlier than individuals with lower trophic position. Therefore, the trade-off driving the use of spatially varying environments was most likely dependent upon the benefits associated with energetic returns than the costs associated with inter-individual competition or physiological stress. This result highlighted how ontogeny, and particularly ontogenetic niche shift, can play a central role in juvenile's decision to depart from natal habitats in a predatory species.

  18. Beyond glucose: metabolic shifts in responses to the effects of the oral glucose tolerance test and the high-fructose diet in rats.

    PubMed

    Lin, Shuhai; Yang, Zhu; Liu, Hongde; Tang, Leihan; Cai, Zongwei

    2011-05-01

    High-fructose diet-fed rats as one of the insulin resistant models was used widely for understanding the mechanisms of type 2 diabetes mellitus. Systems-level metabolic profiling of the rat model, however, has not been deciphered clearly. To address this issue, mass spectrometry-based metabolomics was employed to unlock the metabolic snapshots of the oral glucose tolerance test (oGTT) effect in either healthy or diabetic rats, as well as to delineate the metabolic signatures in tissues of rats fed with high-fructose diet. Several differentiating metabolites were highlighted to reveal the metabolic perturbation of the oGTT effects in healthy and diabetic rats, which involved amino acid biosynthesis, polyunsaturated fatty acids, phospholipids and purine metabolism. Surprisingly, the patterns of relationships for the metabolic phenotypes by using data mining revealed that glucose ingestion might induce the healthy group to display its trajectory towards diabetic status, while only a very slight influence was observed on the high-fructose diet-fed rats 120 min after glucose ingestion. The data treatment for liver, skeletal muscle and brain tissues suggested that oxidative stress, such as lipid peroxidation and the declined antioxidant, the elevated amino acids and the perturbation of fatty acids, were caused by the high-fructose diet in liver and skeletal muscle tissues. On the other hand, the up-regulation in purine biosynthesis and the decreased concentrations for amino acids were observed in the cerebral cortex and hippocampus tissues. Collectively, the obtained results might provide a new insight not only for the impairment of glucose tolerance but also for the dietary style in rats.

  19. Human-Induced Long-Term Shifts in Gull Diet from Marine to Terrestrial Sources in North America's Coastal Pacific: More Evidence from More Isotopes (δ2H, δ34S).

    PubMed

    Hobson, Keith A; Blight, Louise K; Arcese, Peter

    2015-09-15

    Measurements of naturally occurring stable isotopes in tissues of seabirds and their prey are a powerful tool for investigating long-term changes in marine foodwebs. Recent isotopic (δ(15)N, δ(13)C) evidence from feathers of Glaucous-winged Gulls (Larus glaucescens) has shown that over the last 150 years, this species shifted from a midtrophic marine diet to one including lower trophic marine prey and/or more terrestrial or freshwater foods. However, long-term isotopic patterns of δ(15)N and δ(13)C cannot distinguish between the relative importance of lower trophic-level marine foods and terrestrial sources. We examined 48 feather stable-hydrogen (δ(2)H) and -sulfur (δ(34)S) isotope values from this same 150-year feather set and found additional isotopic evidence supporting the hypothesis that gulls shifted to terrestrial and/or freshwater prey. Mean feather δ(2)H and δ(34)S values (± SD) declined from the earliest period (1860-1915; n = 12) from -2.5 ± 21.4 ‰ and 18.9 ± 2.7 ‰, respectively, to -35.5 ± 15.5 ‰ and 14.8 ± 2.4 ‰, respectively, for the period 1980-2009 (n = 12). We estimated a shift of ∼ 30% increase in dependence on terrestrial/freshwater sources. These results are consistent with the hypothesis that gulls increased terrestrial food inputs in response to declining forage fish availability.

  20. Factors influencing recruitment of walleye and white bass to three distinct early ontogenetic stages

    USGS Publications Warehouse

    DeBoer, Jason A.; Pope, Kevin L.

    2015-01-01

    Determining the factors that influence recruitment to sequential ontogenetic stages is critical for understanding recruitment dynamics of fish and for effective management of sportfish, particularly in dynamic and unpredictable environments. We sampled walleye (Sander vitreus) and white bass (Morone chrysops) at 3 ontogenetic stages (age 0 during spring: ‘age-0 larval’; age 0 during autumn: ‘age-0 juvenile’; and age 1 during autumn: ‘age-1 juvenile’) from 3 reservoirs. We developed multiple linear regression models to describe factors influencing age-0 larval, age-0 juvenile and age-1 juvenile walleye and white bass abundance indices. Our models explained 40–80% (68 ± 9%; mean ± SE) and 71%–97% (81 ± 6%) of the variability in catch for walleye and white bass respectively. For walleye, gizzard shad were present in the candidate model sets for all three ontogenetic stages we assessed. For white bass, there was no unifying variable in all three stage-specific candidate model sets, although walleye abundance was present in two of the three white bass candidate model sets. We were able to determine several factors affecting walleye and white bass year-class strength at multiple ontogenetic stages; comprehensive analyses of factors influencing recruitment to multiple early ontogenetic stages are seemingly rare in the literature. Our models demonstrate the interdependency among early ontogenetic stages and the complexities involved with sportfish recruitment.

  1. Growth trajectories in the cave bear and its extant relatives: an examination of ontogenetic patterns in phylogeny.

    PubMed

    Fuchs, Manuela; Geiger, Madeleine; Stange, Madlen; Sánchez-Villagra, Marcelo R

    2015-11-02

    The study of postnatal ontogeny can provide insights into evolution by offering an understanding of how growth trajectories have evolved resulting in adult morphological disparity. The Ursus lineage is a good subject for studying cranial and mandibular shape and size variation in relation to postnatal ontogeny and phylogeny because it is at the same time not diverse but the species exhibit different feeding ecologies. Cranial and mandibular shapes of Ursus arctos (brown bear), U. maritimus (polar bear), U. americanus (American black bear), and the extinct U. spelaeus (cave bear) were examined, using a three-dimensional geometric morphometric approach. Additionally, ontogenetic series of crania and mandibles of U. arctos and U. spelaeus ranging from newborns to senile age were sampled. The distribution of specimens in morphospace allowed to distinguish species and age classes and the ontogenetic trajectories U. arctos and U. spelaeus were found to be more similar than expected by chance. Cranial shape changes during ontogeny are largely size related whereas the evolution of cranial shape disparity in this clade appears to be more influenced by dietary adaptation than by size and phylogeny. The different feeding ecologies are reflected in different cranial and mandibular shapes among species. The cranial and mandibular shape disparity in the Ursus lineage appears to be more influenced by adaptation to diet than by size or phylogeny. In contrast, the cranial and mandibular shape changes during postnatal ontogeny in U. arctos and U. spelaeus are probably largely size related. The patterns of morphospace occupation of the cranium and the mandible in adults and through ontogeny are different.

  2. The ontogenetic scaling of bite force and head size in loggerhead sea turtles (Caretta caretta): implications for durophagy in neritic, benthic habitats.

    PubMed

    Marshall, Christopher D; Guzman, Alejandra; Narazaki, Tomoko; Sato, Katsufumi; Kane, Emily A; Sterba-Boatwright, Blair D

    2012-12-01

    Ontogenetic studies of vertebrate feeding performance can help address questions relevant to foraging ecology. Feeding morphology and performance can either limit access to food resources or open up new trophic niches in both aquatic and terrestrial systems. Loggerhead sea turtles are long-lived vertebrates with complex life histories that are marked by an ontogenetic shift from an oceanic habitat to a coastal neritic habitat, and a transition from soft oceanic prey to hard, benthic prey. Although considered durophagous and strong biters, bite performance has not been measured in loggerheads, nor has the ontogeny of bite performance been characterized. In the present study, we collected measurements of bite force in loggerhead turtles from hatchlings to adults. When subadults reach the body size at which the ontogenetic shift occurs, their crushing capability is great enough for them to consume numerous species of hard benthic prey of small sizes. As loggerheads mature and bite performance increases, larger and harder benthic prey become accessible. Loggerhead bite performance eventually surpasses the crushing capability of other durophagous carnivores, thereby potentially reducing competition for hard benthic prey. The increasing bite performance and accompanying changes in morphology of the head and jaws are likely an effective mechanism for resource partitioning and decreasing trophic competition. Simultaneous measurements of body and head size and the use of non-linear reduced major axis regression show that bite force increases with significant positive allometry relative to body size (straight carapace length, straight carapace width and mass) and head size (head width, height and length). Simple correlation showed that all recorded morphometrics were good predictors of measured bite performance, but an AICc-based weighted regression showed that body size (straight carapace width followed by straight carapace length and mass, respectively) were more likely

  3. Exceptional dinosaur fossils show ontogenetic development of early feathers.

    PubMed

    Xu, Xing; Zheng, Xiaoting; You, Hailu

    2010-04-29

    Recent discoveries of feathered dinosaur specimens have greatly improved our understanding of the origin and early evolution of feathers, but little information is available on the ontogenetic development of early feathers. Here we describe an early-juvenile specimen and a late-juvenile specimen, both referable to the oviraptorosaur Similicaudipteryx, recovered from the Lower Cretaceous Yixian Formation of western Liaoning, China. The two specimens have strikingly different remiges and rectrices, suggesting that a radical morphological change occurred during feather development, as is the case for modern feathers. However, both the remiges and the rectrices are proximally ribbon-like in the younger specimen but fully pennaceous in the older specimen, a pattern not known in any modern bird. In combination with the wide distribution of proximally ribbon-like pennaceous feathers and elongate broad filamentous feathers among extinct theropods, this find suggests that early feathers were developmentally more diverse than modern ones and that some developmental features, and the resultant morphotypes, have been lost in feather evolution.

  4. Ontogenetic data and the evolutionary origin of the mammalian scapula

    NASA Astrophysics Data System (ADS)

    Sánchez-Villagra, Marcelo; Maier, Wolfgang

    2002-09-01

    One of the most useful diagnostic therian features is the division of the lateral surface of the scapula into two fossae separated by a scapular spine. A new model to describe this evolutionary innovation based on ontogenetic data is provided, consistent with information provided by recent fossil discoveries. The development of the scapula in three didelphid and one dasyurid marsupials using histological sections was studied. Only the ventral, acromial portion of the scapular spine, which originates from the anterior margin of the scapular blade, is preformed in cartilage. The major dorsal portion is formed at a later stage by appositional bone, which expands from the perichondral ossification of the scapula into an intermuscular aponeurosis between the supra-and infraspinatus muscles. This intermuscular aponeurosis inserts more or less in the middle of the lateral surface of the developing scapula. Thus, the floor of the supraspinous fossa is already present at the beginning of scapular development, simultaneous with the infraspinous fossa. The portion of the scapular spine that is situated dorsal to the acromial process is hypothesized to be a neomorphic structure of therians. The dorsal portion of the scapular spine evolved as additional attachment for powerful supraspinatus and infraspinatus muscles meeting near the middle of the lateral scapula.

  5. Plasticity during Early Brain Development Is Determined by Ontogenetic Potential.

    PubMed

    Krägeloh-Mann, Ingeborg; Lidzba, Karen; Pavlova, Marina A; Wilke, Marko; Staudt, Martin

    2017-04-01

    Two competing hypotheses address neuroplasticity during early brain development: the "Kennard principle" describes the compensatory capacities of the immature developing CNS as superior to those of the adult brain, whereas the "Hebb principle" argues that the young brain is especially sensitive to insults. We provide evidence that these principles are not mutually exclusive. Following early brain lesions that are unilateral, the brain can refer to homotopic areas of the healthy hemisphere. This potential for reorganization is unique to the young brain but available only when, during ontogenesis of brain development, these areas have been used for the functions addressed. With respect to motor function, ipsilateral motor tracts can be recruited, which are only available during early brain development. Language can be reorganized to the right after early left hemispheric lesions, as the representation of the language network is initially bilateral. However, even in these situations, compensatory capacities of the developing brain are found to have limitations, probably defined by early determinants. Thus, plasticity and adaptivity are seen only within ontogenetic potential; that is, axonal or cortical structures cannot be recruited beyond early developmental possibilities. The young brain is probably more sensitive and vulnerable to lesions when these are bilateral. This is shown here for bilateral periventricular white matter lesions that clearly have an impact on cortical architecture and function, thus probably interfering with early network building.

  6. Identifying ontogenetic, environmental and individual components of forest tree growth

    PubMed Central

    Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann

    2009-01-01

    Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021

  7. Ontogenetic bases of canine dimorphism in anthropoid primates.

    PubMed

    Leigh, Steven R; Setchell, Joanna M; Buchanan, Laurel S

    2005-07-01

    This study tests hypotheses regarding the ontogeny of canine tooth size dimorphism in five anthropoid primate species (Saguinus fuscicollis, Macaca mulatta, Cercocebus atys, Papio hamadryas, and Mandrillus sphinx). Canine measurements and chronological age data are analyzed to determine if bimaturism, a sex difference in the age at which eruption ceases, accounts for canine tooth sexual dimorphism. Canine height measurements are evaluated through a variety of regression techniques. Results show a lack of sexual dimorphism in Saguinus. While size dimorphism is absent in the deciduous teeth of all species analyzed, the adult teeth in cercopithecines become increasingly dimorphic through ontogeny. Female adult tooth eruption regularly precedes male tooth eruption, and regression-based eruption trajectories for both sexes intersect at about the age at which the female tooth reaches adult size. Males erupt the tooth later and more rapidly than females. Males also reach a larger adult size than females by erupting the tooth for much longer periods of time. Bimaturism is primary in the production of dimorphism, but rates of eruption show modest variation. These results point to the scheduling of sexual selection through intermale competition as a primary factor determining male eruption timing, rates of eruption, and adult size. Life history factors may play a role in determining the relations between the scheduling of intrasexual competition and canine eruption. Female contributions to sexual dimorphism are apparent in these species, suggesting that similar levels of dimorphism can be attained through diverse ontogenetic pathways.

  8. Ontogenetic Trajectories of Chimpanzee Social Play: Similarities with Humans

    PubMed Central

    Cordoni, Giada; Palagi, Elisabetta

    2011-01-01

    Social play, a widespread phenomenon in mammals, is a multifunctional behavior, which can have many different roles according to species, sex, age, relationship quality between playmates, group membership, context, and habitat. Play joins and cuts across a variety of disciplines leading directly to inquiries relating to individual developmental changes and species adaptation, thus the importance of comparative studies appears evident. Here, we aim at proposing a possible ontogenetic pathway of chimpanzee play (Pan troglodytes) and contrast our data with those of human play. Chimpanzee play shows a number of changes from infancy to juvenility. Particularly, solitary and social play follows different developmental trajectories. While solitary play peaks in infancy, social play does not show any quantitative variation between infancy and juvenility but shows a strong qualitative variation in complexity, asymmetry, and playmate choice. Like laughter in humans, the playful expressions in chimpanzees (at the different age phases) seem to have a role in advertising cooperative dispositions and intentions thus increasing the likelihood of engaging in solid social relationships. In conclusion, in chimpanzees, as in humans, both play behavior and the signals that accompany play serve multiple functions according to the different age phases. PMID:22110630

  9. Molecular analysis of the diets of snakes: changes in prey exploitation during development of the rare smooth snake Coronella austriaca.

    PubMed

    Brown, David S; Ebenezer, Katie L; Symondson, William O C

    2014-08-01

    Reptiles are declining in many parts of the world, mainly due to habitat loss and environmental change. A major factor in this is availability of suitable food. For many animals, dietary requirements shift during developmental stages and a habitat will only be suitable for conserving a species if it supports all stages. Conventional methods for establishing diet often rely on visual recognition of morphologically identifiable features of prey in faeces, regurgitation or stomach contents, which suffer from biases and poor resolution of taxa. DNA-based techniques facilitate noninvasive analysis of diet from faeces without these constraints. We tested the hypothesis that diet changes during growth stages of smooth snakes (Coronella austriaca), which have a highly restricted distribution in the UK but are widespread in continental Europe. Small numbers of the sympatric grass snake (Natrix natrix) were analysed for comparison. Faecal samples were collected from snakes and prey DNA analysed using PCR, targeting amphibians, reptiles, mammals and invertebrates. Over 85% of smooth snakes were found to have eaten reptiles and 28% had eaten mammals. Predation on mammals increased with age and was entirely absent among juveniles and subadults. Predation on reptiles did not change ontogenetically. Smooth snakes may, therefore, be restricted to areas of sufficiently high reptile densities to support young snakes.

  10. The Making of a Monster: Postnatal Ontogenetic Changes in Craniomandibular Shape in the Great Sabercat Smilodon

    PubMed Central

    Christiansen, Per

    2012-01-01

    Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial ontogenetic changes

  11. Exploring the ontogenetic scaling hypothesis during the diversification of pollination syndromes in Caiophora (Loasaceae, subfam. Loasoideae)

    PubMed Central

    Strelin, Marina M.; Benitez-Vieyra, Santiago; Fornoni, Juan; Klingenberg, Christian Peter; Cocucci, Andrea A.

    2016-01-01

    Background and aims Phenotypic diversification of flowers is frequently attributed to selection by different functional groups of pollinators. During optimization of floral phenotype, developmental robustness to genetic and non-genetic perturbations is expected to limit the phenotypic space available for future evolutionary changes. Although adaptive divergence can occur without altering the basic developmental programme of the flower (ontogenetic scaling hypothesis), the rarity of reversion to ancestral states following adaptive radiations of pollination syndromes suggests that changes in the ancestral developmental programme of the flower are common during such evolutionary transitions. Evidence suggests that flower diversification into different pollination syndromes in the Loasoideae genus Caiophora took place during a recent adaptive radiation in the central Andes. This involved transitions from bee to hummingbird and small rodent pollination. The aim of this work was to examine if the adaptive radiation of pollination syndromes in Caiophora occurred through ontogenetic scaling or involved a departure from the ontogenetic pattern basal to this genus. Methods We used geometric morphometric variables to describe the shape and size of floral structures taking part in the pollination mechanism of Loasoideae. This approach was used to characterize the developmental trajectories of three species basal to the genus Caiophora through shape–size relationships (ontogenetic allometry). We then tested if the shape–size combinations of these structures in mature flowers of derived Caiophora species fall within the phenotypic space predicted by the development of basal species. Key Results Variation in the size and shape of Caiophora flowers does not overlap with the pattern of ontogenetic allometry of basal species. Derived bee-, hummingbird- and rodent-pollinated species had divergent ontogenetic patterns of floral development from that observed for basal bee

  12. The making of a monster: postnatal ontogenetic changes in craniomandibular shape in the great sabercat Smilodon.

    PubMed

    Christiansen, Per

    2012-01-01

    Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial ontogenetic changes

  13. Exploring the ontogenetic scaling hypothesis during the diversification of pollination syndromes in Caiophora (Loasaceae, subfam. Loasoideae).

    PubMed

    Strelin, Marina M; Benitez-Vieyra, Santiago; Fornoni, Juan; Klingenberg, Christian Peter; Cocucci, Andrea A

    2016-04-01

    Phenotypic diversification of flowers is frequently attributed to selection by different functional groups of pollinators. During optimization of floral phenotype, developmental robustness to genetic and non-genetic perturbations is expected to limit the phenotypic space available for future evolutionary changes. Although adaptive divergence can occur without altering the basic developmental programme of the flower (ontogenetic scaling hypothesis), the rarity of reversion to ancestral states following adaptive radiations of pollination syndromes suggests that changes in the ancestral developmental programme of the flower are common during such evolutionary transitions. Evidence suggests that flower diversification into different pollination syndromes in the Loasoideae genus Caiophora took place during a recent adaptive radiation in the central Andes. This involved transitions from bee to hummingbird and small rodent pollination. The aim of this work was to examine if the adaptive radiation of pollination syndromes in Caiophora occurred through ontogenetic scaling or involved a departure from the ontogenetic pattern basal to this genus. We used geometric morphometric variables to describe the shape and size of floral structures taking part in the pollination mechanism of Loasoideae. This approach was used to characterize the developmental trajectories of three species basal to the genus Caiophora through shape-size relationships (ontogenetic allometry). We then tested if the shape-size combinations of these structures in mature flowers of derived Caiophora species fall within the phenotypic space predicted by the development of basal species. Variation in the size and shape of Caiophora flowers does not overlap with the pattern of ontogenetic allometry of basal species. Derived bee-, hummingbird- and rodent-pollinated species had divergent ontogenetic patterns of floral development from that observed for basal bee-pollinated species. The adaptive radiation of

  14. Morphological Integration of the Orbital Region in a Human Ontogenetic Sample.

    PubMed

    Barbeito-Andrés, Jimena; Anzelmo, Marisol; Ventrice, Fernando; Pucciarelli, Héctor M; Sardi, Marina L

    2016-01-01

    Most studies on craniofacial morphology have focused on adult individuals, but patterns of variation are the outcome of genetic and epigenetic variables that interact throughout ontogeny. Among cranial regions, the orbits exhibit morphological variation and occupy an intermediate position between neurocranial and facial structures. The main objective of this work was to analyze postnatal ontogenetic variation and covariation in the morphology of the orbital region in a cross-sectional series of humans from 0 to 31 years old. Landmarks and semilandmarks were digitized on the orbital rim, as well as in neighboring neural and facial structures. Data were analyzed using geometric morphometrics. Results indicated that orbital size increases during the first years of postnatal life, while the shape of the orbital aperture does not change significantly with age. In general, the pattern and magnitude of shape covariation do not vary markedly during postnatal life although some subtle shifts were documented. Additionally, the shape of the orbital aperture is more related to the anterior neurocranium than to zygomatic structures, even when the allometry is adjusted. Although we expected some influence from postnatal craniofacial growth and from some functional factors, such as mastication, on the development of the orbits, this assumption was not completely supported by our results. As a whole, our findings are in line with the prediction of an early influence of the eyes and extraocular tissues on orbital morphology, and could be interpreted in relation to processes promoting early neural development that coordinately affects orbital traits and the neurocranial skeleton. © 2015 Wiley Periodicals, Inc.

  15. Ontogenetic variation in the mandibular ramus of great apes and humans.

    PubMed

    Terhune, Claire E; Robinson, Chris A; Ritzman, Terrence B

    2014-06-01

    Considerable variation exists in mandibular ramus form among primates, particularly great apes and humans. Recent analyses of adult ramal morphology have suggested that features on the ramus, especially the coronoid process and sigmoid notch, can be treated as phylogenetic characters that can be used to reconstruct relationships among great ape and fossil hominin taxa. Others have contended that ramal morphology is more influenced by function than phylogeny. In addition, it remains unclear how ontogeny of the ramus contributes to adult variation in great apes and humans. Specifically, it is unclear whether differences among adults appear early and are maintained throughout ontogeny, or if these differences appear, or are enhanced, during later development. To address these questions, the present study examined a broad ontogenetic sample of great apes and humans using two-dimensional geometric morphometric analysis. Variation within and among species was summarized using principal component and thin plate spline analyses, and Procrustes distances and discriminant function analyses were used to statistically compare species and age classes. Results suggest that morphological differences among species in ramal morphology appear early in ontogeny and persist into adulthood. Morphological differences among adults are particularly pronounced in the height and angulation of the coronoid process, the depth and anteroposterior length of the sigmoid notch, and the inclination of the ramus. In all taxa, the ascending ramus of the youngest specimens is more posteriorly inclined in relation to the occlusal plane, shifting to become more upright in adults. These results suggest that, although there are likely functional influences over the form of the coronoid process and ramus, the morphology of this region can be profitably used to differentiate among great apes, modern humans, and fossil hominid taxa. Copyright © 2014 Wiley Periodicals, Inc.

  16. Ontogenetic changes in the internal and external morphology of the ilium in modern humans.

    PubMed

    Abel, Richard; Macho, Gabriele A

    2011-03-01

    Trabecular architecture forms an important structural component of bone and, depending on the loading conditions encountered during life, is organised in a systematic, bone- and species-specific manner. However, recent studies suggested that gross trabecular arrangement (e.g. density distribution), like overall bone shape, is predetermined and/or affected by factors other than loading and perhaps less plastic than commonly assumed. To explore this issue further, the present cross-sectional ontogenetic study investigated morphological changes in external bone shape in relation to changes in trabecular bundle orientation and anisotropy. Radiographs of 73 modern human ilia were assessed using radiographic and Geometric Morphometric techniques. The study confirmed the apparently strong predetermination of trabecular bundle development, i.e. prior to external loading, although loading clearly also had an effect on overall morphology. For example, the sacro-pubic bundle, which follows the path of load transmission from the auricular surface to the acetabulum, is well defined and shows relatively high levels of anisotropy from early stages of development; the situation for the ischio-iliac strut is similar. However, while the sacro-pubic strut retains a constant relationship with the external landmarks defining the joint surfaces, the ischio-iliac bundle changes its relationship with the external landmarks and becomes aligned with the iliac tubercle only during late adolescence/early adulthood. It is tentatively proposed that the rearrangement of the ischio-iliac strut may reflect a change in locomotor pattern and/or a shift in positional behavior with increasing mass after growth of external bone dimensions has slowed/ceased.

  17. Ontogenetic changes in the internal and external morphology of the ilium in modern humans

    PubMed Central

    Abel, Richard; Macho, Gabriele A

    2011-01-01

    Trabecular architecture forms an important structural component of bone and, depending on the loading conditions encountered during life, is organised in a systematic, bone- and species-specific manner. However, recent studies suggested that gross trabecular arrangement (e.g. density distribution), like overall bone shape, is predetermined and/or affected by factors other than loading and perhaps less plastic than commonly assumed. To explore this issue further, the present cross-sectional ontogenetic study investigated morphological changes in external bone shape in relation to changes in trabecular bundle orientation and anisotropy. Radiographs of 73 modern human ilia were assessed using radiographic and Geometric Morphometric techniques. The study confirmed the apparently strong predetermination of trabecular bundle development, i.e. prior to external loading, although loading clearly also had an effect on overall morphology. For example, the sacro-pubic bundle, which follows the path of load transmission from the auricular surface to the acetabulum, is well defined and shows relatively high levels of anisotropy from early stages of development; the situation for the ischio-iliac strut is similar. However, while the sacro-pubic strut retains a constant relationship with the external landmarks defining the joint surfaces, the ischio-iliac bundle changes its relationship with the external landmarks and becomes aligned with the iliac tubercle only during late adolescence/early adulthood. It is tentatively proposed that the rearrangement of the ischio-iliac strut may reflect a change in locomotor pattern and/or a shift in positional behavior with increasing mass after growth of external bone dimensions has slowed/ceased. PMID:21323915

  18. Ontogenetic Development of Vestibulo-Ocular Reflexes in Amphibians

    PubMed Central

    Branoner, Francisco; Chagnaud, Boris P.; Straka, Hans

    2016-01-01

    Vestibulo-ocular reflexes (VOR) ensure gaze stability during locomotion and passively induced head/body movements. In precocial vertebrates such as amphibians, vestibular reflexes are required very early at the onset of locomotor activity. While the formation of inner ears and the assembly of sensory-motor pathways is largely completed soon after hatching, angular and translational/tilt VOR display differential functional onsets and mature with different time courses. Otolith-derived eye movements appear immediately after hatching, whereas the appearance and progressive amelioration of semicircular canal-evoked eye movements is delayed and dependent on the acquisition of sufficiently large semicircular canal diameters. Moreover, semicircular canal functionality is also required to tune the initially omnidirectional otolith-derived VOR. The tuning is due to a reinforcement of those vestibulo-ocular connections that are co-activated by semicircular canal and otolith inputs during natural head/body motion. This suggests that molecular mechanisms initially guide the basic ontogenetic wiring, whereas semicircular canal-dependent activity is required to establish the spatio-temporal specificity of the reflex. While a robust VOR is activated during passive head/body movements, locomotor efference copies provide the major source for compensatory eye movements during tail- and limb-based swimming of larval and adult frogs. The integration of active/passive motion-related signals for gaze stabilization occurs in central vestibular neurons that are arranged as segmentally iterated functional groups along rhombomere 1–8. However, at variance with the topographic maps of most other sensory systems, the sensory-motor transformation of motion-related signals occurs in segmentally specific neuronal groups defined by the extraocular motor output targets. PMID:27877114

  19. Ontogenetic evidence for the Paleozoic ancestry of salamanders.

    PubMed

    Schoch, Rainer R; Carroll, Robert L

    2003-01-01

    The phylogenetic positions of frogs, salamanders, and caecilians have been difficult to establish. Data matrices based primarily on Paleozoic taxa support a monophyletic origin of all Lissamphibia but have resulted in widely divergent hypotheses of the nature of their common ancestor. Analysis that concentrates on the character states of the stem taxa of the extant orders, in contrast, suggests a polyphyletic origin from divergent Paleozoic clades. Comparison of patterns of larval development in Paleozoic and modern amphibians provides a means to test previous phylogenies based primarily on adult characteristics. This proves to be highly informative in the case of the origin of salamanders. Putative ancestors of salamanders are recognized from the Permo-Carboniferous boundary of Germany on the basis of ontogenetic changes observed in fossil remains of larval growth series. The entire developmental sequence from hatching to metamorphosis is revealed in an assemblage of over 600 specimens from a single locality, all belonging to the genus Apateon. Apateon forms the most speciose genus of the neotenic temnospondyl family Branchiosauridae. The sequence of ossification of individual bones and the changing configuration of the skull closely parallel those observed in the development of primitive living salamanders. These fossils provide a model of how derived features of the salamander skull may have evolved in the context of feeding specializations that appeared in early larval stages of members of the Branchiosauridae. Larvae of Apateon share many unique derived characters with salamanders of the families Hynobiidae, Salamandridae, and Ambystomatidae, which have not been recognized in any other group of Paleozoic amphibians.

  20. External and internal ontogenetic changes in the first rib.

    PubMed

    García-Martínez, Daniel; Gil, Orosia García; Cambra-Moo, Oscar; Canillas, María; Rodríguez, Miguel A; Bastir, Markus; Martín, Armando González

    2017-09-23

    First ribs bear information about thorax morphology and are usually well preserved, compared to other ribs, in bone/fossil samples. Several studies have addressed ontogeny of the first rib by studying changes in bone microanatomy and rib morphology separately, but no studies have combined both approaches to study how internal and external changes covary during ontogeny. The aim of this project is to fill this gap in our knowledge. We applied 3D geometric morphometrics of sliding semilandmarks to 14 first ribs of Homo sapiens to quantify rib curvature and mid-shaft cross-section outline. Ontogenetic variation was addressed throughout a principal component analysis (PCA). Additionally, we made histological sections at the mid-shaft of the same ribs and studied tissue matrix composition and compartmentalization. Finally, we performed partial least squares (PLS) and regression analyses to study covariation between rib morphology and compartmentalization variables. PCA shows that first ribs increase their curvature over the course of ontogeny and the rib midshaft becomes less rounded during ontogeny. In addition, the sternal end becomes more medially oriented during ontogeny and the relative head-tubercle distance becomes longer. Compartmentalization shows a decrease in the area occupied by mineralized tissues and an increase in the area occupied by non-mineralized tissues over the course of ontogeny, which covaries with mid-shaft cross-section shape. Our results show detailed variation in rib morphology along with histological changes in bone tissue compartmentalization and, for the first time, the correlation between the two. This could be related to muscle attachments on the 1st rib and also to changes in breathing mode, from diaphragmatic in perinatals to pulmonary in adults, which could also have implications for understanding thorax evolution. © 2017 Wiley Periodicals, Inc.

  1. Modelling Ontogenetic Changes of Nitrogen and Water Content in Lettuce

    PubMed Central

    SEGINER, IDO; BLEYAERT, PETER; BREUGELMANS, MAAIKE

    2004-01-01

    • Background and Aims It is well established that the nitrogen content of plants, including lettuce, decreases with time. It has also been observed that water content of lettuce increases between planting and harvest. This paper is an attempt at modelling these observations. • Methods An existing dynamic model (Nicolet), designed to predict growth and nitrate content of glasshouse lettuce, is modified to accommodate the ontogenetic changes of reduced-nitrogen and water contents (on a dry matter basis). The decreasing reduced-N content and the increasing water content are mimicked by dividing the originally uniform plant into ‘metabolically active’ tissue and ‘support’ tissue. The ‘metabolic’ tissue is assumed to contain a higher nitrogen content and a lower water content than the ‘support’ tissue. As the plants grow, the ratio of ‘support’ to ‘metabolic’ tissue increases, resulting in an increased mean water content and a decreased reduced-N content. Simulations with the new model are compared with experimental glasshouse data over four seasons. • Key Results The empirical linear relationship between water and reduced-N contents, matches, to a good approximation, the corresponding relationship based on the model. The agreement between the two makes it possible to effectively uncouple the estimation of the ‘ontogenetic’ parameters from the estimation of the other parameters. The growth and nitrate simulation results match the data rather well and are hardly affected by the new refinement. The reduced-N and water contents are predicted much better with the new model. • Conclusion Prediction of nitrogen uptake for the substantial nitrate pool of lettuce depends on the water content. Hence, the modified model may assist in making better fertilization decisions and better estimates of nitrogen leaching. PMID:15294851

  2. Age-dependent shift in response to food element composition in Collembola: contrasting effects of dietary nitrogen.

    PubMed

    Jensen, Thomas C; Leinaas, Hans Petter; Hessen, Dag O

    2006-10-01

    We examined the effect of different food qualities, in terms of the C:N:P content, on the collembolan Hypogastrura viatica. We hypothesised that (faster growing) juveniles would have higher demands for P and N than adults; this, however, was rejected by our experiments. There was no difference between the elemental compositions of juveniles and adults. In food preference experiments, juveniles and adults were offered green algae Raphidocelis subcapitata with three different C:N:P ratios. There was a strong shift in dietary response with age; juveniles preferred algae with low or medium N contents over the most N-rich algae, whereas adults showed the opposite. No response was seen when the specific P content in the food was varied. Juveniles fed on algae with high N content showed lower growth rates and survival than those fed on algae with other food qualities. In contrast, adults had lowest growth rates when fed on algae with a low N content. The negative effect on juveniles of the most N-rich diet appeared to be a toxic response that was directly or indirectly related to the algal N content. Adults had higher tolerance for N-rich diets, but were also more likely to face dietary N-limitation. These animals face a stoichiometric trade-off scenario in the sense that adaptation to maximise retention of a limiting element may result in reduced physiological ability to cope with excessive elements when feeding on "richer" diets, and vice versa. This problem is partly solved in H. viatica by contrasting selective feeding and ontogenetic dietary shifts between juveniles and adults.

  3. Proteomic Analysis of the Ontogenetic Variability in Plasma Composition of Juvenile and Adult Bothrops jararaca Snakes

    PubMed Central

    de Morais-Zani, Karen; Grego, Kathleen Fernandes; Tanaka, Aparecida Sadae; Tanaka-Azevedo, Anita Mitico

    2013-01-01

    The ontogenetic variability in venom composition of some snake genera, including Bothrops, as well as the biological implications of such variability and the search of new molecules that can neutralize the toxic components of these venoms have been the subject of many studies. Thus, considering the resistance of Bothrops jararaca to the toxic action of its own venom and the ontogenetic variability in venom composition described in this species, a comparative study of the plasma composition of juvenile and adult B. jararaca snakes was performed through a proteomic approach based on 2D electrophoresis and mass spectrometry, which allowed the identification of proteins that might be present at different levels during ontogenetic development. Among the proteins identified by mass spectrometry, antihemorrhagic factor Bj46a was found only in adult plasma. Moreover, two spots identified as phospholipase A2 inhibitors were significantly increased in juvenile plasma, which can be related to the higher catalytic PLA2 activity shown by juvenile venom in comparison to that of adult snakes. This work shows the ontogenetic variability of B. jararaca plasma, and that these changes can be related to the ontogenetic variability described in its venom. PMID:24062950

  4. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species

    PubMed Central

    Borzak, Christina L.; Potts, Brad M.; Davies, Noel W.; O’Reilly-Wapstra, Julianne M.

    2015-01-01

    Background and Aims The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant–herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings. Methods Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds. Key Results Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific. Conclusions The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways. PMID:25434028

  5. Seasonal and ontogenetic variation of skin microbial communities and relationships to natural disease dynamics in declining amphibians

    PubMed Central

    Longo, Ana V.; Savage, Anna E.; Hewson, Ian; Zamudio, Kelly R.

    2015-01-01

    Recently, microbiologists have focused on characterizing the probiotic role of skin bacteria for amphibians threatened by the fungal disease chytridiomycosis. However, the specific characteristics of microbial diversity required to maintain health or trigger disease are still not well understood in natural populations. We hypothesized that seasonal and developmental transitions affecting susceptibility to chytridiomycosis could also alter the stability of microbial assemblages. To test our hypothesis, we examined patterns of skin bacterial diversity in two species of declining amphibians (Lithobates yavapaiensis and Eleutherodactylus coqui) affected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). We focused on two important transitions that affect Bd susceptibility: ontogenetic (from juvenile to adult) shifts in E. coqui and seasonal (from summer to winter) shifts in L. yavapaiensis. We used a combination of community-fingerprinting analyses and 16S rRNA amplicon sequencing to quantify changes in bacterial diversity and assemblage composition between seasons and developmental stages, and to investigate the relationship between bacterial diversity and pathogen load. We found that winter-sampled frogs and juveniles, two states associated with increased Bd susceptibility, exhibited higher diversity compared with summer-sampled frogs and adult individuals. Our findings also revealed that hosts harbouring higher bacterial diversity carried lower Bd infections, providing support for the protective role of bacterial communities. Ongoing work to understand skin microbiome resilience after pathogen disturbance has the potential to identify key taxa involved in disease resistance. PMID:26587253

  6. The adaptive significance of ontogenetic colour change in a tropical python.

    PubMed

    Wilson, David; Heinsohn, Robert; Endler, John A

    2007-02-22

    Ontogenetic colour change is typically associated with changes in size, vulnerability or habitat, but assessment of its functional significance requires quantification of the colour signals from the receivers' perspective. The tropical python, Morelia viridis, is an ideal species to establish the functional significance of ontogenetic colour change. Neonates hatch either yellow or red and both the morphs change to green with age. Here, we show that colour change from red or yellow to green provides camouflage from visually oriented avian predators in the different habitats used by juveniles and adults. This reflects changes in foraging behaviour and vulnerability as individuals mature and provides a rare demonstration of the adaptive value of ontogenetic colour change.

  7. Bland diet

    MedlinePlus

    Heartburn - bland diet; Nausea - bland diet; Diarrhea - bland diet; Peptic ulcer - bland diet ... changes to help treat ulcers, heartburn, nausea, vomiting, diarrhea, and gas. You may also need a bland ...

  8. [Evolutionary aspects of sleep and stress interaction: phylo-, ontogenetic approach].

    PubMed

    Aristakesian, E A

    2009-01-01

    This work deals the comparative behavioral, somatosensor and neurophysiological characteristics of these forms of passive defensive behavior included in amphibian's sleep-wakefulness cycle and their developmental dynamics in the ascending vertebrates secale. Sleep formation in early postnatal ontogenesis of mature- and immature-born mammals - from undifferent sleep to the mature sleep divided into two phases as well as stress formation are considered in parallel. Comparative phylo-, and ontogenetic analysis of several aspects of stress-reactions, sleep, and immobility phenomenon of cataleptic type allows concluding that amphibians and reptilians catalepsy can be interpreted as preadaptive from of behavior underlying in the stress of homoeothermic animals. Another word, the cataleptic state can be considered as the homologic state of stress-reaction. Catalepsy is the genetically programmed state of poykilothermic animals characterized by comparatively high alertness of animal, its freezing in immobile but active posture with a possibility of fast exit into waking state and alongside with other somatosensor and neurophysiological characteristics determines the entire subsequent complex of evolutionary morphofunctional, neurophysiological and hormonal changes in nomoyptherms. This in many aspects unspecific behavioral adaptive reaction in poykilotherms is realized on the corresponding hormonal and neurophysiological levels of development and promotes to fast mobilization and stabilization their homeostasis. At the higher evolutionary scale after development of most brain neurotransmitter and hypothalamo-pituitary-adrenal systems the leading role in stress regulation begins to be predominent the hormonal reaction. Only in the alertness phase of stress-reaction the elements of activation of extrapyramidal regulatory system of locomotion are observed. This is manifested by the cateleptic immobility. Thus the stress as the general adaptational syndrome reflects the

  9. The ontogenetic origins of skull shape disparity in the Triturus cristatus group.

    PubMed

    Cvijanović, Milena; Ivanović, Ana; Kalezić, Miloš L; Zelditch, Miriam L

    2014-09-01

    Comparative studies of ontogenies of closely related species provide insights into the mechanisms responsible for morphological diversification. Using geometric morphometrics, we investigated the ontogenetic dynamics of postlarval skull shape and disparity in three closely related crested newt species. The skull shapes of juveniles just after metamorphosis (hereafter metamorphs) and adult individuals were sampled by landmark configurations that describe the shape of the dorsal and ventral side of the newt skull, and analyzed separately. The three species differ in skull size and shape in metamorphs and adults. The ontogenies of dorsal and ventral skull differ in the orientation but not lengths of the ontogenetic trajectories. The disparity of dorsal skull shape increases over ontogeny, but that of ventral skull shape does not. Thus, modifications of ontogenetic trajectories can, but need not, increase the disparity of shape. In species with biphasic life-cycles, when ontogenetic trajectories for one stage can be decoupled from those of another, increases and decreases in disparity are feasible, but our results show that they need not occur.

  10. Ontogenetic Change in the Auditory Conditioned Stimulus Pathway for Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Campolattaro, Matthew M.

    2008-01-01

    Two experiments examined the neural mechanisms underlying the ontogenetic emergence of auditory eyeblink conditioning. Previous studies found that the medial auditory thalamus is necessary for eyeblink conditioning with an auditory conditioned stimulus (CS) in adult rats. In experiment 1, stimulation of the medial auditory thalamus was used as a…

  11. Diets of deepwater oreos (Oreosomatidae) and orange roughy Hoplostethus atlanticus.

    PubMed

    Forman, J S; Horn, P L; Stevens, D W

    2016-06-01

    The diets of black oreo Allocyttus niger, smooth oreo Pseudocyttus maculatus, spiky oreo Neocyttus rhomboidalis and orange roughy Hoplostethus atlanticus were determined from examination of contents of 240, 311, 76 and 415 non-empty stomachs, from fishes sampled by bottom trawl on Chatham Rise to the east of South Island, New Zealand. Hoplostethus atlanticus had an opportunistic predatory strategy with a broad diet dominated by prawns and mesopelagic teleosts, but with substantial components of mysids and cephalopods. Pseudocyttus maculatus was strongly specialized on gelatinous zooplankton (jellyfish and salps). Allocyttus niger consumed mainly salps and hyperiid amphipods, and to a lesser extent fishes, prawns, mysids and copepods. Neocyttus rhomboidalis primarily consumed salps, along with mysids, euphausiids and fishes. Only P. maculatus did not exhibit significant ontogenetic variation in diet. The diets were also influenced by year and bottom depth. Differences in the distributions and diets of the four species probably reduce conflicts in resource use.

  12. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis.

    PubMed

    Allen, Vivian; Elsey, Ruth M; Jones, Nicola; Wright, Jordon; Hutchinson, John R

    2010-04-01

    Crocodylians exhibit a fascinating diversity of terrestrial gaits and limb motions that remain poorly described and are of great importance to understanding their natural history and evolution. Their musculoskeletal anatomy is pivotal to this diversity and yet only qualitative studies of muscle-tendon unit anatomy exist. The relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of American alligators (Alligator mississippiensis Daudin 1801) were recorded for an ontogenetic series of wild specimens (n = 15, body masses from 0.5 to 60 kg). The data were analysed by reduced major axis regression to determine scaling relationships with body mass. Physiological cross-sectional areas and therefore muscle force-generating capacity were found to be greater in the extensor (anti-gravity) muscles of the pelvic limb than in the pectoral limb, reflecting how crocodylians differ from mammals in having greater loading of the hindlimbs than the forelimbs. Muscle masses and architecture were generally found to scale isometrically with body mass, suggesting an ontogenetic decrease in terrestrial athleticism. This concurs with the findings of previous studies showing ontogenetic decreases in limb bone length and the general scaling principle of a decline of strength : weight ratios with increasing size in animals. Exceptions to isometric scaling found included positive allometry in fascicle length for extensor musculature of both limbs, suggesting an ontogenetic increase in working range interpreted as increasing postural variability - in particular the major hip extensors - the interpretation of which is complicated by previous described ontogenetic increase of moment arms for these muscles.

  13. Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects.

    PubMed

    Lardies, Marco A; Arias, María Belén; Poupin, María Josefina; Bacigalupe, Leonardo D

    2014-08-01

    Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis

    PubMed Central

    Allen, Vivian; Elsey, Ruth M; Jones, Nicola; Wright, Jordon; Hutchinson, John R

    2010-01-01

    Crocodylians exhibit a fascinating diversity of terrestrial gaits and limb motions that remain poorly described and are of great importance to understanding their natural history and evolution. Their musculoskeletal anatomy is pivotal to this diversity and yet only qualitative studies of muscle-tendon unit anatomy exist. The relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of American alligators (Alligator mississippiensis Daudin 1801) were recorded for an ontogenetic series of wild specimens (n = 15, body masses from 0.5 to 60 kg). The data were analysed by reduced major axis regression to determine scaling relationships with body mass. Physiological cross-sectional areas and therefore muscle force-generating capacity were found to be greater in the extensor (anti-gravity) muscles of the pelvic limb than in the pectoral limb, reflecting how crocodylians differ from mammals in having greater loading of the hindlimbs than the forelimbs. Muscle masses and architecture were generally found to scale isometrically with body mass, suggesting an ontogenetic decrease in terrestrial athleticism. This concurs with the findings of previous studies showing ontogenetic decreases in limb bone length and the general scaling principle of a decline of strength : weight ratios with increasing size in animals. Exceptions to isometric scaling found included positive allometry in fascicle length for extensor musculature of both limbs, suggesting an ontogenetic increase in working range interpreted as increasing postural variability – in particular the major hip extensors – the interpretation of which is complicated by previous described ontogenetic increase of moment arms for these muscles. PMID:20148991

  15. Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species.

    PubMed

    Borzak, Christina L; Potts, Brad M; Davies, Noel W; O'Reilly-Wapstra, Julianne M

    2015-01-01

    The development of plant secondary metabolites during early life stages can have significant ecological and evolutionary implications for plant-herbivore interactions. Foliar terpenes influence a broad range of ecological interactions, including plant defence, and their expression may be influenced by ontogenetic and genetic factors. This study investigates the role of these factors in the expression of foliar terpene compounds in Eucalyptus globulus seedlings. Seedlings were sourced from ten families each from three genetically distinct populations, representing relatively high and low chemical resistance to mammalian herbivory. Cotyledon-stage seedlings and consecutive leaf pairs of true leaves were harvested separately across an 8-month period, and analysed for eight monoterpene compounds and six sesquiterpene compounds. Foliar terpenes showed a series of dynamic changes with ontogenetic trajectories differing between populations and families, as well as between and within the two major terpene classes. Sesquiterpenes changed rapidly through ontogeny and expressed opposing trajectories between compounds, but showed consistency in pattern between populations. Conversely, changed expression in monoterpene trajectories was population- and compound-specific. The results suggest that adaptive opportunities exist for changing levels of terpene content through ontogeny, and evolution may exploit the ontogenetic patterns of change in these compounds to create a diverse ontogenetic chemical mosaic with which to defend the plant. It is hypothesized that the observed genetically based patterns in terpene ontogenetic trajectories reflect multiple changes in the regulation of genes throughout different terpene biosynthetic pathways. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Distinguishing the Biomass Allocation Variance Resulting from Ontogenetic Drift or Acclimation to Soil Texture

    PubMed Central

    Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan

    2012-01-01

    In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64–70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients. PMID:22911802

  17. Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture.

    PubMed

    Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan

    2012-01-01

    In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64-70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients.

  18. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  19. Shifting Attention

    ERIC Educational Resources Information Center

    Ingram, Jenni

    2014-01-01

    This article examines the shifts in attention and focus as one teacher introduces and explains an image that represents the processes involved in a numeric problem that his students have been working on. This paper takes a micro-analytic approach to examine how the focus of attention shifts through what the teacher and students do and say in the…

  20. Habitat-Specific Density and Diet of Rapidly Expanding Invasive Red Lionfish, Pterois volitans, Populations in the Northern Gulf of Mexico

    PubMed Central

    Dahl, Kristen A.; Patterson, William F.

    2014-01-01

    Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m−2) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m−2), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length) fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region. PMID:25170922

  1. Habitat-specific density and diet of rapidly expanding invasive red lionfish, Pterois volitans, populations in the northern Gulf of Mexico.

    PubMed

    Dahl, Kristen A; Patterson, William F

    2014-01-01

    Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m(-2)) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m(-2)), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length) fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region.

  2. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    PubMed

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  3. Life stage, not climate change, explains observed tree range shifts.

    PubMed

    Máliš, František; Kopecký, Martin; Petřík, Petr; Vladovič, Jozef; Merganič, Ján; Vida, Tomáš

    2016-05-01

    Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages.

  4. Spikelet structure and development in Cyperoideae (Cyperaceae): a monopodial general model based on ontogenetic evidence

    PubMed Central

    Vrijdaghs, Alexander; Reynders, Marc; Larridon, Isabel; Muasya, A. Muthama; Smets, Erik; Goetghebeur, Paul

    2010-01-01

    Background and Aims In Cyperoideae, one of the two subfamilies in Cyperaceae, unresolved homology questions about spikelets remained. This was particularly the case in taxa with distichously organized spikelets and in Cariceae, a tribe with complex compound inflorescences comprising male (co)florescences and deciduous female single-flowered lateral spikelets. Using ontogenetic techniques, a wide range of taxa were investigated, including some controversial ones, in order to find morphological arguments to understand the nature of the spikelet in Cyperoideae. This paper presents a review of both new ontogenetic data and current knowledge, discussing a cyperoid, general, monopodial spikelet model. Methods Scanning electron microscopy and light microscopy were used to examine spikelets of 106 species from 33 cyperoid genera. Results Ontogenetic data presented allow a consistent cyperoid spikelet model to be defined. Scanning and light microscopic images in controversial taxa such as Schoenus nigricans, Cariceae and Cypereae are interpreted accordingly. Conclusions Spikelets in all species studied consist of an indeterminate rachilla, and one to many spirally to distichously arranged glumes, each subtending a flower or empty. Lateral spikelets are subtended by a bract and have a spikelet prophyll. In distichously organized spikelets, combined concaulescence of the flowers and epicaulescence (a newly defined metatopic displacement) of the glumes has caused interpretational controversy in the past. In Cariceae, the male (co)florescences are terminal spikelets. Female single-flowered spikelets are positioned proximally on the rachis. To explain both this and the secondary spikelets in some Cypereae, the existence of an ontogenetic switch determining the development of a primordium into flower, or lateral axis is postulated. PMID:20197291

  5. The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish (Aurelia aurita).

    PubMed

    McHenry, Matthew J; Jed, Jason

    2003-11-01

    It is not well understood how ontogenetic changes in the motion and morphology of aquatic animals influence the performance of swimming. The goals of the present study were to understand how changes in size, shape and behavior affect the hydrodynamics of jet propulsion in the jellyfish Aurelia aurita and to explore how such changes affect the ontogenetic scaling of swimming speed and cost of transport. We measured the kinematics of jellyfish swimming from video recordings and simulated the hydrodynamics of swimming with two computational models that calculated thrust generation by paddle and jet mechanisms. Our results suggest that thrust is generated primarily by jetting and that there is negligible thrust generation by paddling. We examined how fluid forces scaled with body mass using the jet model. Despite an ontogenetic increase in the range of motion by the bell diameter and a decrease in the height-to-diameter ratio, we found that thrust and acceleration reaction scaled with body mass as predicted by kinematic similarity. However, jellyfish decreased their pulse frequency with growth, and speed consequently scaled at a lower exponential rate than predicted by kinematic similarity. Model simulations suggest that the allometric growth in Aurelia results in swimming that is slower, but more energetically economical, than isometric growth with a prolate bell shape. The decrease in pulse frequency over ontogeny allows large Aurelia medusae to avoid a high cost of transport but generates slower swimming than if they maintained a high pulse frequency. Our findings suggest that ontogenetic change in the height-to-diameter ratio and pulse frequency of Aurelia results in swimming that is relatively moderate in speed but is energetically economical.

  6. Three-dimensional ontogenetic shape changes in the human cranium during the fetal period

    PubMed Central

    Morimoto, Naoki; Ogihara, Naomichi; Katayama, Kazumichi; Shiota, Kohei

    2008-01-01

    Knowledge of the pattern of human craniofacial development in the fetal period is important for understanding the mechanisms underlying the emergence of variations in human craniofacial morphology. However, the precise character of the prenatal ontogenetic development of the human cranium has yet to be fully established. This study investigates ontogenetic changes in cranial shape in the fetal period, as exhibited in Japanese fetal specimens housed at Kyoto University. A total of 31 human fetal specimens aged from approximately 8 to 42 weeks of gestation underwent helical computed tomographic scanning, and 68 landmarks were digitized on the internal and external surfaces of the extracted crania. Ontogenetic shape change was then analyzed cross-sectionally and three-dimensionally using a geometric morphometric technique. The results of the present study are generally consistent with previously reported findings. It was found that during the prenatal ontogenetic process, the growth rate of the length of the cranium is greater than that of the width and height, and the growth rate of the length of the posterior cranial base is smaller than that of the anterior cranial base. Furthermore, it was observed that the change in shape of the human viscerocranium is smaller than that of the neurocranium during the fetal period, and that concurrently the basicranium extends by approximately 8° due to the relative elevation of the basilar and lateral parts of occipital bone. These specific growth-related changes are the opposite of those reported for the postnatal period. Our findings therefore indicate that the allometric pattern of the human cranium is not a simple continuous transformation, but changes drastically from before to after birth. PMID:18430090

  7. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; hide

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described

  8. Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications.

    PubMed

    Lü, Junchang; Currie, Philip J; Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai

    2013-02-01

    Oviraptorids are a group of specialized non-avian theropod dinosaurs that were generally one to 8 m in body length. New specimens of baby oviraptorids from the Late Cretaceous of Henan Province are some of the smallest individuals known. They include diagnostic characters such as the relative position of the antorbital fenestra and the external naris, distinct opening in the premaxilla anteroventral to the external naris, antorbital fossa partly bordered by premaxilla posterodorsally, lacrimal process of premaxilla does not contact the anterodorsal process of the lacrimal, parietal almost as long as frontal; in dorsal view, posterior margin forms a straight line between the postzygapophyses in each of the fourth and fifth cervicals; femur longer than ilium. They also elucidate the ontogenetic processes of oviraptorids, including fusion of cranial elements and changes in relative body proportions. Hind limb proportions are constant in oviraptorids, regardless of absolute body size or ontogenetic stage. This suggests a sedentary lifestyle that did not involve the pursuit of similar-sized prey. The functional implications for bite force and therefore dietary preferences are better understood through the study of such small animals. The comparison of the measurements of 115 skeletons indicates that oviraptorids maintain their hind limb proportions regardless of ontogenetic stage or absolute size, which is a pattern seen more commonly in herbivores than in carnivores. This may weakly support the hypothesis that oviraptorids are herbivores rather than active carnivores.

  9. Ontogenetic anatomy of the distal vagina: relevance for local tumor spread and implications for cancer surgery.

    PubMed

    Höckel, Michael; Horn, Lars-Christian; Illig, Romana; Dornhöfer, Nadja; Fritsch, Helga

    2011-08-01

    We have suggested to base cancer surgery on ontogenetic anatomy and the compartment theory of tumor permeation in order to improve local tumor control and to lower treatment-related morbidity. Following the validation of this concept for the uterine cervix, proximal vagina and vulva, this study explores its applicability for the distal vagina. Serial transverse sections of female embryos and fetuses aged 8-17 weeks were assessed for the morphological changes in the region defined by the deep urogenital sinus-vaginal plate complex. Histopathological pattern analysis of local tumor spread was performed with carcinomas of the lower genital tract involving the distal vagina to test the compartment theory. Ontogenetically, the female urethra, urethrovaginal septum, distal vagina and rectovaginal septum represent a morphogenetic unit derived from the deep urogenital sinus-vaginal plate complex. Herein, the posterior urethra, the urethrovaginal septum and the distal vagina form a distinct subcompartment differentiated from the dorsal wall of the urogenital sinus. From 150 consecutive patients with distal vaginectomy as part of their surgical treatment 26 carcinomas of the lower genital tract had infiltrated the distal vagina. All 22 tumors involving the ventral wall invaded the urethra/periurethral tissue. Of the five carcinomas involving the dorsal wall none invaded the rectum/mesorectum. The pattern of local tumor permeation of lower genital tract cancer in the distal vagina can be consistently explained with ontogenetic anatomy and the compartment theory. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Herbivore attack in Casearia nitida influenced by plant ontogenetic variation in foliage quality and plant architecture.

    PubMed

    Boege, Karina

    2005-03-01

    Traits influencing plant quality as food and/or shelter for herbivores may change during plant ontogeny, and as a consequence, influence the amount of herbivory that plants receive as they develop. In this study, differences in herbivore density and herbivory were evaluated for two ontogenetic stages of the tropical tree Casearia nitida. To assess plant ontogenetic differences in foliage quality as food for herbivores, nutritional and defensive traits were evaluated in saplings and reproductive trees. Predatory arthropods were quantified and the foraging preferences of a parasitoid wasp of the genus Zacremnops were assessed. In addition, survival rates of lepidopteran herbivores (Geometridae) were evaluated experimentally. Herbivore density was three times higher and herbivory was 66% greater in saplings than in reproductive trees. Accordingly, concentrations of total foliar phenolics were higher in reproductive trees than in saplings, whereas leaf toughness, water and nitrogen concentration did not vary between ontogenetic stages. Survival rates of lepidopteran larvae exposed to natural enemies were equivalent in reproductive trees and saplings. Given the greater herbivore density on saplings, equal survival rates implied a greater foraging effort of predators on reproductive trees. Furthermore, observed foraging of parasitoid wasps was restricted to reproductive trees. I propose that herbivore density, and as a consequence, leaf damage were lower in reproductive trees than in saplings due to both traits influencing food quality, and architectural or unmeasured indirect defensive traits influencing foraging preference of natural enemies of herbivores.

  11. Combining ontogenetic and evolutionary scales of morphological disparity: a study of early Jurassic ammonites.

    PubMed

    Gerber, Sylvain; Neige, Pascal; Eble, Gunther J

    2007-01-01

    Two major research themes in Evolutionary Developmental Biology and in Paleobiology, respectively, have each become central for the analysis and interpretation of morphological changes in evolution: the study of ontogeny/phylogeny connections, mainly within the widespread and controversial framework of heterochrony; and the study of morphological disparity, the morphological signal of biodiversity, describing secular changes in morphospace occupation during the history of any given clade. Although enriching in their respective fields, these two themes have remained rather isolated to date, despite the potential value of integrating them as some recent studies begin to suggest. Here, we explore the recent notion of developmental morphospace-morphospace carrying ontogenetic information-as a potential tool for bridging the gap between disparity dynamics and developmental dynamics. We elaborate this approach with a case study of Early Jurassic ammonite family Hildoceratidae (Mollusca, Cephalopoda). Morphometric analyses of the shell shape of 20 species spanning the morphological spectrum of the family are used to quantify and contrast juvenile and adult disparity levels. Adult disparity is significantly greater than juvenile disparity at the family level; yet, some subclades also display different patterns. In addition, comparisons of ontogenetic trajectories underline the prevalence of heterochrony-based evolutionary modifications within subfamilies (via ontogenetic scaling); they also point to the probable existence of pervasive developmental constraints structuring inhomogeneous morphospace occupation.

  12. Ontogenetic change in molecular and functional properties of blood of garter snakes, Thamnophis sirtalis.

    PubMed

    Pough, F H

    1977-07-01

    At birth the blood of garter snakes (Thamnophis sirtalis) has high oxygen affinity (P50 at 25 degrees C and pH 7.2 = 21 mm Hg), low hematocrit (14%), and a high proportion of inactive hemoglobin (44%). Growth of the snakes is accompanied by a steady decrease in oxygen affinity (P50 = 44 mm Hg in adults), increased hematocrit (to 44%), and decreased inactive hemoglobin (to 3%). These adult values are reached in the second or third year of a snake's life. There is a continuous change in the electrophoretically separable hemoglobin fractions during this period, but there is no ontogenetic change in the oxygen affinity of phosphate-stripped hemoglobin in solution. Organic triphosphates do not fully explain the ontogenetic change in blood oxygen affinity. Similar ontogenetic changes in blood oxygen affinity were found in two other species of snakes. The unusual morphology of snake lungs and consequent changes in pulmonary pO2 and pCO2 during ontogeny may be the basis for the unusual relationship between body size and blood oxygen affinity in snakes.

  13. Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications

    NASA Astrophysics Data System (ADS)

    Lü, Junchang; Currie, Philip J.; Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai

    2013-02-01

    Oviraptorids are a group of specialized non-avian theropod dinosaurs that were generally one to 8 m in body length. New specimens of baby oviraptorids from the Late Cretaceous of Henan Province are some of the smallest individuals known. They include diagnostic characters such as the relative position of the antorbital fenestra and the external naris, distinct opening in the premaxilla anteroventral to the external naris, antorbital fossa partly bordered by premaxilla posterodorsally, lacrimal process of premaxilla does not contact the anterodorsal process of the lacrimal, parietal almost as long as frontal; in dorsal view, posterior margin forms a straight line between the postzygapophyses in each of the fourth and fifth cervicals; femur longer than ilium. They also elucidate the ontogenetic processes of oviraptorids, including fusion of cranial elements and changes in relative body proportions. Hind limb proportions are constant in oviraptorids, regardless of absolute body size or ontogenetic stage. This suggests a sedentary lifestyle that did not involve the pursuit of similar-sized prey. The functional implications for bite force and therefore dietary preferences are better understood through the study of such small animals. The comparison of the measurements of 115 skeletons indicates that oviraptorids maintain their hind limb proportions regardless of ontogenetic stage or absolute size, which is a pattern seen more commonly in herbivores than in carnivores. This may weakly support the hypothesis that oviraptorids are herbivores rather than active carnivores.

  14. Ontogenetic and sexual differences of thermal biology and locomotor performance in a lacertid lizard, Eremias multiocellata.

    PubMed

    Tang, Xiao-long; Yue, Feng; He, Jian-zheng; Wang, Ning-bo; Ma, Ming; Mo, Jia-run; Chen, Qiang

    2013-12-01

    A viviparous lizard, Eremias multiocellata, was used to investigate the possible sexual and ontogenetic effects on selected body temperature, thermal tolerance range and the thermal dependence of locomotor performance. We show that adults are sexually dimorphic and males have larger bodies and heads than females. Adults selected higher body temperatures (34.5 vs. 32.4°C) and could tolerate a broader range of body temperatures (8.1-46.8 vs. 9.1-43.1°C) than juveniles. The sprint speed and maximum sprint distance increased with temperature from 21°C to 33°C, but decreased at 36°C and 39°C in both juveniles and adults. Adults ran faster and longer than juveniles at each tested temperature. Adult locomotor performance was not correlated with snout-vent length (SVL) or sex, and sprint speed was positively correlated with hindlimb length. Juvenile locomotor performance was positively correlated with both SVL and hindlimb length. The ontogenetic variation in selected body temperature, thermal tolerance and locomotor performance in E. multiocellata suggests that the effects of morphology on temperature selection and locomotor performance vary at different ontogenetic stages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Ontophyletics of the nervous system: eyeless mutants illustrate how ontogenetic buffer mechanisms channel evolution.

    PubMed Central

    Katz, M J; Lasek, R J; Kaiserman-Abramof, I R

    1981-01-01

    Genetics and molecular biology have shown the mechanisms that allow the genome to provide both the continuity and the variation from generation to generation within a phylogeny. Embryology and developmental biology show the mechanisms that turn the genome into an organism. Mutations, the basis for evolutionary change, cannot in themselves ensure concordance between their products and the products of unchanged genes. Thus, mutations will not necessarily produce a viable organism. On the other hand, ontogenetic buffer mechanisms normally maintain concordance in the developing organism. In addition, ontogenetic buffer mechanisms can integrate discordant mutations into viable organisms that can then be perpetuated during evolution. The evolutionary role of one ontogenetic buffer mechanism, compensatory innervation, is well illustrated in the anopthalmic mutant mouse. In the anopthalmic mouse, a single gene mutation removes afferent axons of the dorsal lateral geniculate nucleus, and compensatory innervation by another population of axons ensures that the dorsal lateral geniculate remains integrated into the central nervous system. Within each organism's ontogeny is a hierarchy of sources of compensatory innervation, and this hierarchy will determine how any particular deafferentating mutation will be buffered. In this way, an ontogeny can channel the phylogeny of which it is a member. PMID:6941255

  16. Stable isotope evaluation of population- and individual-level diet variability in a large, oligotrophic lake with non-native lake trout

    USGS Publications Warehouse

    Ng, Elizabeth L.; Fredericks, Jim P.; Quist, Michael C.

    2016-01-01

    Non-native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake troutSalvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic-origin carbon did not overlap with those using more littoral-origin carbon. Species using more littoral-origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non-native species.

  17. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.; hide

    2016-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by

  18. Impacts of ontogenetically migrating copepods on downward carbon flux in the western subarctic Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kobari, Toru; Steinberg, Deborah K.; Ueda, Ai; Tsuda, Atsushi; Silver, Mary W.; Kitamura, Minoru

    2008-07-01

    To evaluate the impacts of ontogenetically (seasonally) migrating copepods on carbon transport to the mesopelagic zone, we investigated depth distribution, population structure, and feeding activity of the ontogentic copepod community in the western subarctic Pacific Ocean from day-night pairs of zooplankton samples down to 1000 m during the VERtical Transport In the Global Ocean (VERTIGO) program. Over the 31 July-16 August 2005 study period, the biomass of Neocalanus cristatus and Neocalanus plumchrus predominated in the near surface waters, while Neocalanus flemingeri was already dormant at depth. We observed a strong diel migration for Metridia pacifica, and a seasonal downward migration for Eucalanus bungii. Based on gut pigment analysis, ingestion rate of the copepod community was 214-375 mg C m -2 day -1, which was equal to 26-37% of the concurrent primary production. However, comparison of grazing estimated from gut pigments to calculated carbon demand of the copepod community indicates that phytoplankton comprised 37-59% of the ingested carbon. Thus, the copepod community appears to have also relied on detritus and microzooplankton for their nutrition, likely because primary production during this time was dominated by picophytoplankton too small to be grazed by these large copepods. Fecal pellet flux by the copepod community was estimated to account for 141-223% of the sedimentary particulate organic carbon (POC) flux at 150 m, suggesting considerable fragmentation and consumption of pellets in the upper layers. Fecal pellets alone were adequate to meet copepod carbon demand in the surface 0-150 m layer. Active carbon flux by diel migration of M. pacifica (respiration, egestion, and mortality) was 4-17 mg C m -2 day -1, equal to 6-44% of sedimentary POC flux at 150 m. Active carbon flux by N. flemingeri ontogenetic migration (i.e., respiration and mortality at depth) contributed 246 mg C m -2 year -1, equal to 9% of sedimentary POC flux at 1000 m. The

  19. Ontogenetic changes in isotopic signatures of an omnivorous fish Cultrichthys erythropterus in East Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Li, Yunkai; Zhang, Miao

    2015-05-01

    The relationship between body size and stable isotopic signatures of the omnivorous Redfin Culter ( Cultrichthys erythropterus), commonly found in East Lake Taihu, was investigated. Previous analyses of C. erythropterus stomach contents have shown that this species undergoes a diet switch from being predominantly zooplanktivorous to piscivorous during its life history. This was confirmed by stable carbon isotopic signature (δ13C) in this study, in which δ13C was positively correlated with both standard length and weight. The importance of littoral-benthic resources in supporting C. erythropterus during its lifespan was also demonstrated using a two-source mixing model, the results of which showed a significant increasing trend in the contribution of littoral-benthic energy. However, the stable nitrogen isotopic signature (δ15N) exhibited an unusual pattern compared with previous studies. The δ15N of C. erythropterus showed no relationship with body size, even though dietary changes were observed. This indicated that δ15N alone cannot fully reflect a diet shift in a species and possible variability in isotopic signatures over its life history. This should be considered when using stable isotopic signatures to investigate intra-specific variations and the timing of life-history events, such as estimating the trophic positions of fish species.

  20. Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River

    USGS Publications Warehouse

    Roseman, Edward F.

    2014-01-01

    Deepwater sculpins (Myoxocephalus thompsonii) are an important link in deepwater benthic foodwebs of the Great Lakes. Little information exists about deepwater sculpin spawning habits and early life history ecology due to difficulty in sampling deep offshore habitats. Larval and age-0 deepwater sculpins collected in northern Lake Huron and the Detroit River during 2007 were used to improve our understanding of their habitat use, diet, age, and growth. Peak larval density reached 8.4/1000 m3 in the Detroit River during April and was higher than that in Lake Huron. Offshore bottom trawls at DeTour and Hammond Bay first collected benthic age-0 deepwater sculpins in early September when fish were ≥ 25 mm TL. Otolith analysis revealed that hatch dates for pelagic larvae occurred during late March and larvae remained pelagic for 40 to 60 days. Diet of pelagic larvae (10–21 mm TL) was dominated by calanoid copepods at all sample locations. Diets of benthic age-0 fish varied by location and depth: Mysis and chironomids were prevalent in fish from Hammond Bay and the 91 m site at DeTour, but only chironomids were found in fish from the 37 m DeTour site. This work showed that nearshore epilimnetic sites were important for pelagic larvae and an ontogenetic shift from pelagic planktivore to benthivore occurred at about 25 mm TL in late summer. Age analysis showed that larvae remained pelagic long enough to be transported through the St. Clair–Detroit River system, Lake Erie, and the Niagara River, potentially contributing to populations in Lake Ontario.

  1. Snake venomics across genus Lachesis. Ontogenetic changes in the venom composition of Lachesis stenophrys and comparative proteomics of the venoms of adult Lachesis melanocephala and Lachesis acrochorda.

    PubMed

    Madrigal, Marvin; Sanz, Libia; Flores-Díaz, Marietta; Sasa, Mahmood; Núñez, Vitelbina; Alape-Girón, Alberto; Calvete, Juan J

    2012-12-21

    We report the proteomic analysis of ontogenetic changes in venom composition of the Central American bushmaster, Lachesis stenophrys, and the characterization of the venom proteomes of two congeneric pitvipers, Lachesis melanocephala (black-headed bushmaster) and Lachesis acrochorda (Chochoan bushmaster). Along with the previous characterization of the venom proteome of Lachesis muta muta (from Bolivia), our present outcome enables a comparative overview of the composition and distribution of the toxic proteins across genus Lachesis. Comparative venomics revealed the close kinship of Central American L. stenophrys and L. melanocephala and support the elevation of L. acrochorda to species status. Major ontogenetic changes in the toxin composition of L. stenophrys venom involves quantitative changes in the concentration of vasoactive peptides and serine proteinases, which steadily decrease from birth to adulthood, and age-dependent de novo biosynthesis of Gal-lectin and snake venom metalloproteinases (SVMPs). The net result is a shift from a bradykinin-potentiating and C-type natriuretic peptide (BPP/C-NP)-rich and serine proteinase-rich venom in newborns and 2-years-old juveniles to a (PI>PIII) SVMP-rich venom in adults. Notwithstanding minor qualitative and quantitative differences, the venom arsenals of L. melanocephala and L. acrochorda are broadly similar between themselves and also closely mirror those of adult L. stenophrys and L. muta venoms. The high conservation of the overall composition of Central and South American bushmaster venoms provides the ground for rationalizing the "Lachesis syndrome", characterized by vagal syntomatology, sensorial disorders, hematologic, and cardiovascular manifestations, documented in envenomings by different species of this wide-ranging genus. This finding let us predict that monospecific Lachesic antivenoms may exhibit paraspecificity against all congeneric species. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Ontogenetic shifts in brain scaling reflect behavioral changes in the life cycle of the pouched lamprey Geotria australis

    PubMed Central

    Salas, Carlos A.; Yopak, Kara E.; Warrington, Rachael E.; Hart, Nathan S.; Potter, Ian C.; Collin, Shaun P.

    2015-01-01

    Very few studies have described brain scaling in vertebrates throughout ontogeny and none in lampreys, one of the two surviving groups of the early agnathan (jawless) stage in vertebrate evolution. The life cycle of anadromous parasitic lampreys comprises two divergent trophic phases, firstly filter-feeding as larvae in freshwater and secondly parasitism as adults in the sea, with the transition marked by a radical metamorphosis. We characterized the growth of the brain during the life cycle of the pouched lamprey Geotria australis, an anadromous parasitic lamprey, focusing on the scaling between brain and body during ontogeny and testing the hypothesis that the vast transitions in behavior and environment are reflected in differences in the scaling and relative size of the major brain subdivisions throughout life. The body and brain mass and the volume of six brain structures of G. australis, representing six points of the life cycle, were recorded, ranging from the early larval stage to the final stage of spawning and death. Brain mass does not increase linearly with body mass during the ontogeny of G. australis. During metamorphosis, brain mass increases markedly, even though the body mass does not increase, reflecting an overall growth of the brain, with particularly large increases in the volume of the optic tectum and other visual areas of the brain and, to a lesser extent, the olfactory bulbs. These results are consistent with the conclusions that ammocoetes rely predominantly on non-visual and chemosensory signals, while adults rely on both visual and olfactory cues. PMID:26283894

  3. Low plasticity in digestive physiology constrains feeding ecology in diet specialist, zebra finch (Taeniopygia guttata).

    PubMed

    Brzek, Paweł; Lessner, Krista M; Caviedes-Vidal, Enrique; Karasov, William H

    2010-03-01

    It can be hypothesized that species with a wide or variable food niche are able to adjust their digestive physiology to current food type. In diet specialists, however, the capacity for such presumably costly plasticity is not necessary and flexibility of digestive physiology should be lower. Recently, we found that ontogenetic changes in the activity of digestive enzymes in house sparrow, a species that gradually consumes more carbohydrates during ontogeny, are strongly modified by diet composition. In the present study we examined digestive flexibility of nestling and adult zebra finches, typical diet specialists that consume only seeds after hatching. Both adult and nestling zebra finches could not thrive on a protein-rich and carbohydrate-free diet that supported normal development of young house sparrows. Mass-specific activity of intestinal carbohydrases (maltase and sucrase) was not elevated by higher diet carbohydrate content in both nestling and adult birds. Mass-specific activity of maltase changed less during ontogenetic development in zebra finch than in house sparrow. We conclude that the digestive physiology of zebra finch is adapted to process carbohydrate-rich food after hatching and is much less flexible than in house sparrow. We hypothesize that this difference might reflect the lack of a diet switch during ontogeny or result from high specialization to a narrow diet niche.

  4. IBS Diet

    MedlinePlus

    ... and Diarrhea Foods that Cause Gas and Bloating Dietary Fiber 12 Week Elimination Diet for IBS Rice Based ... and Diarrhea Foods that Cause Gas and Bloating Dietary Fiber 12 Week Elimination Diet for IBS Rice-Based ...

  5. Diet & Nutrition

    MedlinePlus

    ... Nutrition Share this page Facebook Twitter Email Diet & Nutrition Eating healthy to take charge of your health. Shelly Diagnosed in 2006 Diet & Nutrition Take Control of Your Weight Portion Control Low ...

  6. Vegetarian Diet

    MedlinePlus

    A vegetarian diet focuses on plants for food. These include fruits, vegetables, dried beans and peas, grains, seeds and nuts. There is no single type of vegetarian diet. Instead, vegetarian eating patterns usually fall into ...

  7. Ontogenetic investigation of underwater hearing capabilities in loggerhead sea turtles (Caretta caretta) using a dual testing approach.

    PubMed

    Lavender, Ashley L; Bartol, Soraya M; Bartol, Ian K

    2014-07-15

    Sea turtles reside in different acoustic environments with each life history stage and may have different hearing capacity throughout ontogeny. For this study, two independent yet complementary techniques for hearing assessment, i.e. behavioral and electrophysiological audiometry, were employed to (1) measure hearing in post-hatchling and juvenile loggerhead sea turtles Caretta caretta (19-62 cm straight carapace length) to determine whether these migratory turtles exhibit an ontogenetic shift in underwater auditory detection and (2) evaluate whether hearing frequency range and threshold sensitivity are consistent in behavioral and electrophysiological tests. Behavioral trials first required training turtles to respond to known frequencies, a multi-stage, time-intensive process, and then recording their behavior when they were presented with sound stimuli from an underwater speaker using a two-response forced-choice paradigm. Electrophysiological experiments involved submerging restrained, fully conscious turtles just below the air-water interface and recording auditory evoked potentials (AEPs) when sound stimuli were presented using an underwater speaker. No significant differences in behavior-derived auditory thresholds or AEP-derived auditory thresholds were detected between post-hatchling and juvenile sea turtles. While hearing frequency range (50-1000/1100 Hz) and highest sensitivity (100-400 Hz) were consistent in audiograms pooled by size class for both behavior and AEP experiments, both post-hatchlings and juveniles had significantly higher AEP-derived than behavior-derived auditory thresholds, indicating that behavioral assessment is a more sensitive testing approach. The results from this study suggest that post-hatchling and juvenile loggerhead sea turtles are low-frequency specialists, exhibiting little differences in threshold sensitivity and frequency bandwidth despite residence in acoustically distinct environments throughout ontogeny.

  8. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, Michael; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Sargsyan, A.; Martin, D.; Lui, J.; Macias, B.; Arbeille, P.; hide

    2014-01-01

    NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 30% of ISS astronauts experience more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the space flight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration space flight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during space flight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's pre-flight condition and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound

  9. Spatial structure in the diet of imperial eagles Aquila heliaca in Kazakhstan

    USGS Publications Warehouse

    Katzner, T.E.; Bragin, E.A.; Knick, S.T.; Smith, A.T.

    2006-01-01

    We evaluated the relationship between spatial variability in prey and food habits of eastern imperial eagles Aquila heliaca at a 90,000 ha national nature reserve in north-central Kazakhstan. Eagle diet varied greatly within the population and the spatial structure of eagle diet within the population varied according to the scale of measurement. Patterns in dietary response were inconsistent with expectations if either ontogenetic imprinting or competition determined diet choice, but they met expectations if functional response determined diet. Eagles nesting near a high-density prey resource used that resource almost exclusively. In contrast, in locations with no single high-density prey species, eagles' diet was more diverse. Our results demonstrate that spatial structuring of diet of vertebrate predators can provide important insight into the mechanisms that drive dietary decisions. ?? OIKOS.

  10. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  11. Shifting Plasma

    NASA Image and Video Library

    2017-05-09

    Strands of plasma at the sun edge shifted and twisted back and forth over a 22-hour period, May 2-3, 2017. In this close-up from NASA Solar Dynamics Observatory, the strands are being manipulated by strong magnetic forces associated with active region. This kind of activity is not at all uncommon, but best viewed in profile. The images were taken in a wavelength of extreme ultraviolet light. To give a sense of scale, the strands hover above the sun more than several times the size of Earth. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21632

  12. Testing the ontogenetic base for the transient model of inflorescence development.

    PubMed

    Bull-Hereñu, Kester; Claßen-Bockhoff, Regine

    2013-11-01

    Current research in plant science has concentrated on revealing ontogenetic processes of key attributes in plant evolution. One recently discussed model is the 'transient model' successful in explaining some types of inflorescence architectures based on two main principles: the decline of the so called 'vegetativeness' (veg) factor and the transient nature of apical meristems in developing inflorescences. This study examines whether both principles find a concrete ontogenetic correlate in inflorescence development. To test the ontogenetic base of veg decline and the transient character of apical meristems the ontogeny of meristematic size in developing inflorescences was investigated under scanning electron microscopy. Early and late inflorescence meristems were measured and compared during inflorescence development in 13 eudicot species from 11 families. The initial size of the inflorescence meristem in closed inflorescences correlates with the number of nodes in the mature inflorescence. Conjunct compound inflorescences (panicles) show a constant decrease of meristematic size from early to late inflorescence meristems, while disjunct compound inflorescences present an enlargement by merging from early inflorescence meristems to late inflorescence meristems, implying a qualitative change of the apical meristems during ontogeny. Partial confirmation was found for the transient model for inflorescence architecture in the ontogeny: the initial size of the apical meristem in closed inflorescences is consistent with the postulated veg decline mechanism regulating the size of the inflorescence. However, the observed biphasic kinetics of the development of the apical meristem in compound racemes offers the primary explanation for their disjunct morphology, contrary to the putative exclusive transient mechanism in lateral axes as expected by the model.

  13. Testing the ontogenetic base for the transient model of inflorescence development

    PubMed Central

    Bull-Hereñu, Kester; Claßen-Bockhoff, Regine

    2013-01-01

    Backgrounds and Aims Current research in plant science has concentrated on revealing ontogenetic processes of key attributes in plant evolution. One recently discussed model is the ‘transient model’ successful in explaining some types of inflorescence architectures based on two main principles: the decline of the so called ‘vegetativeness’ (veg) factor and the transient nature of apical meristems in developing inflorescences. This study examines whether both principles find a concrete ontogenetic correlate in inflorescence development. Methods To test the ontogenetic base of veg decline and the transient character of apical meristems the ontogeny of meristematic size in developing inflorescences was investigated under scanning electron microscopy. Early and late inflorescence meristems were measured and compared during inflorescence development in 13 eudicot species from 11 families. Key Results The initial size of the inflorescence meristem in closed inflorescences correlates with the number of nodes in the mature inflorescence. Conjunct compound inflorescences (panicles) show a constant decrease of meristematic size from early to late inflorescence meristems, while disjunct compound inflorescences present an enlargement by merging from early inflorescence meristems to late inflorescence meristems, implying a qualitative change of the apical meristems during ontogeny. Conclusions Partial confirmation was found for the transient model for inflorescence architecture in the ontogeny: the initial size of the apical meristem in closed inflorescences is consistent with the postulated veg decline mechanism regulating the size of the inflorescence. However, the observed biphasic kinetics of the development of the apical meristem in compound racemes offers the primary explanation for their disjunct morphology, contrary to the putative exclusive transient mechanism in lateral axes as expected by the model. PMID:23425784

  14. Small sample sizes in the study of ontogenetic allometry; implications for palaeobiology

    PubMed Central

    Vavrek, Matthew J.

    2015-01-01

    Quantitative morphometric analyses, particularly ontogenetic allometry, are common methods used in quantifying shape, and changes therein, in both extinct and extant organisms. Due to incompleteness and the potential for restricted sample sizes in the fossil record, palaeobiological analyses of allometry may encounter higher rates of error. Differences in sample size between fossil and extant studies and any resulting effects on allometric analyses have not been thoroughly investigated, and a logical lower threshold to sample size is not clear. Here we show that studies based on fossil datasets have smaller sample sizes than those based on extant taxa. A similar pattern between vertebrates and invertebrates indicates this is not a problem unique to either group, but common to both. We investigate the relationship between sample size, ontogenetic allometric relationship and statistical power using an empirical dataset of skull measurements of modern Alligator mississippiensis. Across a variety of subsampling techniques, used to simulate different taphonomic and/or sampling effects, smaller sample sizes gave less reliable and more variable results, often with the result that allometric relationships will go undetected due to Type II error (failure to reject the null hypothesis). This may result in a false impression of fewer instances of positive/negative allometric growth in fossils compared to living organisms. These limitations are not restricted to fossil data and are equally applicable to allometric analyses of rare extant taxa. No mathematically derived minimum sample size for ontogenetic allometric studies is found; rather results of isometry (but not necessarily allometry) should not be viewed with confidence at small sample sizes. PMID:25780770

  15. Ontogenetic changes in genetic variances of age-dependent plasticity along a latitudinal gradient

    PubMed Central

    Nilsson-Örtman, V; Rogell, B; Stoks, R; Johansson, F

    2015-01-01

    The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length. PMID:25649500

  16. Evaluation of long bone surface textures as ontogenetic indicators in centrosaurine ceratopsids.

    PubMed

    Tumarkin-Deratzian, Allison R

    2009-09-01

    The search for criteria for aging non-mammalian fossil vertebrates has preoccupied paleobiologists in recent years. Previous studies of the long bones of pterosaurs and modern and subfossil birds as well as of cranial material of centrosaurine ceratopsid dinosaurs have documented variations in surface textures that seem to be ontogenetically related. In this study, long bones from the centrosaurine ceratopsid genera Centrosaurus, Einiosaurus, and Pachyrhinosaurus are examined to test the hypothesis that changes in bone surface textures and reduction of surface porosity could be correlated with size (and presumably age) classes, as has been previously documented in pterosaurs and birds. The data set includes 141 bones representing all six long bone elements, collected from monodominant centrosaurine bone beds. Bone surface patterns are documented by macroscopic visual examination, and a sequence of five texture classes ordered by decreasing surface porosity is described based on the common distributions of these patterns. Calculations of Spearman's rank correlation coefficients reveal significant correlations between texture class and size. The smallest bones are invariably associated with porous midshaft textures that grade to fibrous and long-grained patterns proximally and distally [Texture Class (TC) 1]. Post-hoc analysis after Kruskal-Wallis ANOVA on ranks confirms that the mean size of TC1 bones is, in most cases, significantly different than the mean size of bones in other texture classes. Results of this study suggest the presence of an ontogenetic surface textural signal in centrosaurine long bones; however, comparison of texture classes with size-independent maturity criteria is needed to clarify further the potential ontogenetic significance of higher texture classes.

  17. Contrasting ontogenetic trajectories for phenolic and terpenoid defences in Eucalyptus froggattii

    PubMed Central

    Goodger, Jason Q. D.; Heskes, Allison M.; Woodrow, Ian E.

    2013-01-01

    Background and Aims Plant defence metabolites are considered costly due to diversion of energy and nutrients away from growth. These costs combined with changes in resource availability and herbivory throughout plant ontogeny are likely to promote changes in defence metabolites. A comprehensive understanding of plant defence strategy requires measurement of lifetime ontogenetic trajectories – a dynamic component largely overlooked in plant defence theories. This study aimed to compare ontogenetic trajectories of foliar phenolics and terpenoids. Phenolics are predicted to be inexpensive to biosynthesize, whereas expensive terpenoids also require specialized, non-photosynthetic secretory structures to avoid autotoxicity. Based on these predicted costs, it is hypothesized that phenolics would be maximally deployed early in ontogeny, whereas terpenoids would be maximally deployed later, once the costs of biosynthesis and foregone photosynthesis could be overcome by enhanced resource acquisition. Methods Leaves were harvested from a family of glasshouse-grown Eucalyptus froggattii seedlings, field-grown saplings and the maternal parent tree, and analysed for total terpenoids and phenolics. Key Results Foliar phenolics were highest in young seedlings and lowest in the adult tree. Indeed the ratio of total phenolics to total terpenoids decreased in a significantly exponential manner with plant ontogeny. Most individual terpene constituents increased with plant ontogeny, but some mono- and sesquiterpenes remained relatively constant or even decreased in concentration as plants aged. Conclusions Plant ontogeny can influence different foliar defence metabolites in directionally opposite ways, and the contrasting trajectories support our hypothesis that phenolics would be maximally deployed earlier than terpenoids. The results highlight the importance of examining ontogenetic trajectories of defence traits when developing and testing theories of plant defence, and

  18. Gastropod ontogenetic torsion: developmental remnants of an ancient evolutionary change in body plan.

    PubMed

    Page, Louise R

    2003-06-15

    A dramatic morphogenetic movement ('ontogenetic torsion') during the development of gastropods has been proposed as a recapitulation of the original developmental departure that established the novel gastropod body plan. Nevertheless, speculative literature about ontogenetic torsion and its evolutionary significance has far outstripped empirical observations and recent results suggest that the developmental process may be somewhat different than the traditional description. I used scanning electron microscopy, immunohistochemistry, phalloidin labeling, and histological sections to monitor displacements of five components of the visceropallium with respect to axial coordinates of the cephalopodium in developing embryos of the caenogastropod, Trichotropis cancellata. Embryos of this species achieve a transient stage of anatomical organization that also arises during development of a vetigastropod (Haliotis kamtschatkana), although morphogenetic processes that generate this stage are different in these two species. At the stage of similarity, the embryonic shell has achieved its definitive orientation with respect to the cephalopodium, but the developing mantle cavity, sensory osphradium, and anus are confined to the right side. I also show that this stage of anatomical organization is recognizable during the development of other gastropods, which collectively represent three major gastropod clades. I propose that ontogenetic torsion should be viewed as a conserved stage of anatomical organization during development, rather than a conserved process of 180 degrees rotation between the visceropallium and cephalopodium. The results lead to the suggestion that the mantle cavity of extant gastropods evolved by enlargement of the right side of the mantle cavity in a monoplacophoran-like ancestor. Under this interpretation, there is no need for a hypothetical pre-gastropod with a mantle cavity that was restricted to the posterior end.

  19. Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus?

    NASA Astrophysics Data System (ADS)

    Mitchell, Katherine A.; Sinclair, Brent J.; Terblanche, John S.

    2013-03-01

    Ontogenetic variation in plasticity is important to understanding mechanisms and patterns of thermal tolerance variation. The Bogert effect postulates that, to compensate for their inability to behaviourally thermoregulate, less-mobile life stages of ectotherms are expected to show greater plasticity of thermal tolerance than more-mobile life stages. We test this general prediction by comparing plasticity of thermal tolerance (rapid cold-hardening, RCH) between mobile adults and less-mobile larvae of 16 Drosophila species. We find an RCH response in adults of 13 species but only in larvae of four species. Thus, the Bogert effect is not as widespread as expected.

  20. [Ontogenetic diversity of colonies and intercellular cytoplasmic bridges in the algae of the genuis Volvox].

    PubMed

    Desnitskiĭ, A G

    2014-01-01

    In all representatives of the genus Volvox, cells of cleaving embryos are connected by cytoplasmic bridges, which play an important role in the process of young colony inversion. However, during subsequent development, the intercellular bridges are retained not in all species of Volvox; the occurrence of the bridges in an adult colony correlates withthe small size of mature gonidia (asexual reproductive cells) and with the presence of cell growth in the intervals between divisions. This complex of ontogenetic features is derived and arises independently in three evolutionary lineages of colonial volvocine algae. A putative role of the syncytial state of adult colonies for the evolution of developmental cycles in Volvox is discussed.

  1. High salt diets dose-dependently promote gastric chemical carcinogenesis in Helicobacter pylori-infected Mongolian gerbils associated with a shift in mucin production from glandular to surface mucous cells.

    PubMed

    Kato, Sosuke; Tsukamoto, Tetsuya; Mizoshita, Tsutomu; Tanaka, Harunari; Kumagai, Toshiko; Ota, Hiroyoshi; Katsuyama, Tsutomu; Asaka, Masahiro; Tatematsu, Masae

    2006-10-01

    Intake of salt and salty food is known as a risk factor for gastric carcinogenesis. To examine the dose-dependence and the mechanisms underlying enhancing effects, Mongolian gerbils were treated with N-methyl-N-nitrosourea (MNU), Helicobacter pylori and food containing various concentrations of salt, and were sacrificed after 50 weeks. Among gerbils treated with MNU and H. pylori, the incidences of glandular stomach cancers were 15% in the normal diet group and 33%, 36% and 63% in the 2.5%, 5% and 10% NaCl diet groups, showing dose-dependent increase (p < 0.01). Intermittent intragastric injection of saturated NaCl solution, in contrast, did not promote gastric carcinogenesis. In gerbils infected with H. pylori, a high salt diet was associated with elevation of anti-H. pylori antibody titers, serum gastrin levels and inflammatory cell infiltration in a dose-dependent fashion. Ten percent NaCl diet upregulated the amount of surface mucous cell mucin (p < 0.05), suitable for H. pylori colonization, despite no increment of MUC5AC mRNA, while H. pylori infection itself had an opposing effect, stimulating transcription of MUC6 and increasing the amount of gland mucous cell mucin (GMCM). High salt diet, in turn, decreased the amount of GMCM, which acts against H. pylori infection. In conclusion, the present study demonstrated dose-dependent enhancing effects of salt in gastric chemical carcinogenesis in H. pylori-infected Mongolian gerbils associated with alteration of the mucous microenvironment. Reduction of salt intake could thus be one of the most important chemopreventive methods for human gastric carcinogenesis.

  2. Ontogenetic variation of volatiles and antioxidant activity in leaves of Astragalus compactus Lam. (Fabaceae)

    PubMed Central

    Naghiloo, Somayeh; Movafeghi, Ali; Delazar, Abbas; Nazemiyeh, Hosein; Asnaashari, Solmaz; Dadpour, Mohammad Reza

    2012-01-01

    The genus Astragalus is a rich source of a variety of biologically active compounds including phenols, saponins, polysaccharides and essential oils. The present study was conducted to determine ontogenetic variation of the volatile organic compounds as well as total phenolic contents and antioxidant activity in leaves of A. compactus. The leaves of plant were harvested at vegetative, flowering and fructification stages and were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Total phenolic content (TPC) was determined using the Folin-Ciocalteau reagent and the antioxidant capacity was evaluated with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. Different classes of volatile compounds were identified including alcohols, esters, hydrocarbons, sterols and terpenoides. Significant variation of these compounds was found during phenological stages of development. Sterols and hydrocarbons were the main components of essential oils at the vegetative stage. The presence of terpenoides (phytol) and alcohols (docosanol) was significant at the flowering stage. Fructification phase was characterized by the high content of sterols and hydrocarbons and absence of phytol. The antioxidant activity and phenolic content were related to the physiological stage and the highest amount detected at fructification phase. The ontogenetic variations of phenolic contents and antioxidant properties are largely contributed by climatic factors such as temperature and solar radiation. PMID:27418917

  3. Ontogenetic Variation in Biological Activities of Venoms from Hybrids between Bothrops erythromelas and Bothrops neuwiedi Snakes.

    PubMed

    Santoro, Marcelo Larami; do Carmo, Thaís; Cunha, Bruna Heloísa Lopes; Alves, André Fonseca; Zelanis, André; Serrano, Solange Maria de Toledo; Grego, Kathleen Fernandes; Sant'Anna, Savio Stefanini; Barbaro, Katia Cristina; Fernandes, Wilson

    2015-01-01

    Lance-headed snakes are found in Central and South America, and they account for most snakebites in Brazil. The phylogeny of South American pitvipers has been reviewed, and the presence of natural and non-natural hybrids between different species of Bothrops snakes demonstrates that reproductive isolation of several species is still incomplete. The present study aimed to analyze the biological features, particularly the thrombin-like activity, of venoms from hybrids born in captivity, from the mating of a female Bothrops erythromelas and a male Bothrops neuwiedi, two species whose venoms are known to display ontogenetic variation. Proteolytic activity on azocoll and amidolytic activity on N-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA) were lowest when hybrids were 3 months old, and increased over body growth, reaching values similar to those of the father when hybrids were 12 months old. The clotting activity on plasma diminished as hybrids grew; venoms from 3- and 6-months old hybrids showed low clotting activity on fibrinogen (i.e., thrombin-like activity), like the mother venom, and such activity was detected only when hybrids were older than 1 year of age. Altogether, these results point out that venom features in hybrid snakes are genetically controlled during the ontogenetic development. Despite the presence of the thrombin-like enzyme gene(s) in hybrid snakes, they are silenced during the first six months of life.

  4. Revisiting a model of ontogenetic growth: estimating model parameters from theory and data.

    PubMed

    Moses, Melanie E; Hou, Chen; Woodruff, William H; West, Geoffrey B; Nekola, Jeffery C; Zuo, Wenyun; Brown, James H

    2008-05-01

    The ontogenetic growth model (OGM) of West et al. provides a general description of how metabolic energy is allocated between production of new biomass and maintenance of existing biomass during ontogeny. Here, we reexamine the OGM, make some minor modifications and corrections, and further evaluate its ability to account for empirical variation on rates of metabolism and biomass in vertebrates both during ontogeny and across species of varying adult body size. We show that the updated version of the model is internally consistent and is consistent with other predictions of metabolic scaling theory and empirical data. The OGM predicts not only the near universal sigmoidal form of growth curves but also the M(1/4) scaling of the characteristic times of ontogenetic stages in addition to the curvilinear decline in growth efficiency described by Brody. Additionally, the OGM relates the M(3/4) scaling across adults of different species to the scaling of metabolic rate across ontogeny within species. In providing a simple, quantitative description of how energy is allocated to growth, the OGM calls attention to unexplained variation, unanswered questions, and opportunities for future research.

  5. Ontogenetic Variation in the Thermal Biology of Yarrow's Spiny Lizard, Sceloporus jarrovii

    PubMed Central

    Gilbert, Anthony L.; Lattanzio, Matthew S.

    2016-01-01

    Climate change is rapidly altering the way current species interact with their environment to satisfy life-history demands. In areas anticipated to experience extreme warming, rising temperatures are expected to diminish population growth, due either to environmental degradation, or the inability to tolerate novel temperature regimes. Determining how at risk ectotherms, and lizards in particular, are to changes in climate traditionally emphasizes the thermal ecology and thermal sensitivity of physiology of adult members of a population. In this study, we reveal ontogenetic differences in thermal physiological and ecological traits that have been used to anticipate how ectotherms will respond to climate change. We show that the thermal biological traits of juvenile Yarrow’s Spiny Lizards (Sceloporus jarrovii) differ from the published estimates of the same traits for adult lizards. Juvenile S. jarrovii differ in their optimal performance temperature, field field-active body temperature, and critical thermal temperatures compared to adult S. jarrovii. Within juvenile S. jarrovii, males and females exhibit differences in field-active body temperature and desiccation tolerance. Given the observed age- and sex-related variation in thermal physiology, we argue that not including physiological differences in thermal biology throughout ontogeny may lead to misinterpretation of patterns of ecological or evolutionary change due to climate warming. Further characterizing the potential for ontogenetic changes in thermal biology would be useful for a more precise and accurate estimation of the role of thermal physiology in mediating population persistence in warmer environments. PMID:26840620

  6. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidification.

    PubMed

    Benítez, Samanta; Duarte, Cristian; López, Jorge; Manríquez, Patricio H; Navarro, Jorge M; Bonta, Cesar C; Torres, Rodrigo; Quijón, Pedro A

    2016-11-15

    Global stressors like ocean acidification (OA) are expected to influence the quality or palatability of primary producers like algae. Such changes can trigger a response on algal consumers' feeding strategies, and this response may not necessarily be the same for the consumers during the ontogeny. We used a mesocosm's system to expose algae to current and projected OA conditions (390 and 1000ppm, respectively) and then compared the feeding behavior and absorption efficiency of juvenile and adult stages of the amphipod Orchestoidea tuberculata. Specifically, we measured consumption rates (with and without a choice) and absorption efficiency on algae exposed and not exposed to OA. Our results show that OA affect the amphipod's consumption and feeding preferences, and that these effects were related with the analyzed ontogenetic stage (juveniles versus adults). These results support the existence of an ontogenetic change in the response of this species and others similar marine invertebrates to OA, which highlight the need to incorporate different life stages in the study of OA or others global stressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ontogenetic changes in leaf traits of tropical rainforest trees differing in juvenile light requirement.

    PubMed

    Houter, Nico C; Pons, Thijs L

    2012-05-01

    Relationships between leaf traits and the gap dependence for regeneration, and ontogenetic changes therein, were investigated in juvenile and adult tropical rainforest tree species. The juveniles of the 17 species included in the study were grown in high light, similar to the exposed crowns of the adult trees. The traits were structural, biomechanical, chemical and photosynthetic. With increasing species gap dependence, leaf mass per area (LMA) decreased only slightly in juveniles and remained constant in adults, whereas punch strength together with tissue density decreased, and photosynthetic capacity and chlorophyll increased. Contrary to what has been mostly found in evergreen tropical rainforest, the trade-off between investment in longevity and in productivity was evident at an essentially constant LMA. Of the traits pertaining to the chloroplast level, photosynthetic capacity per unit chlorophyll increased with gap dependence, but the chlorophyll a/b ratio showed no relationship. Adults had a twofold higher LMA, but leaf strength was on average only about 50% larger. Leaf tissue density, and chlorophyll and leaf N per area were also higher, whereas chlorophyll and leaf N per unit dry mass were lower. Ranking of the species, relationships between traits and with the gap dependence of the species were similar for juveniles and adults. However, the magnitudes of most ontogenetic changes were not clearly related to a species' gap dependence. The adaptive value of the leaf traits for juveniles and adults is discussed.

  8. Ontogenetic variation of volatiles and antioxidant activity in leaves of Astragalus compactus Lam. (Fabaceae).

    PubMed

    Naghiloo, Somayeh; Movafeghi, Ali; Delazar, Abbas; Nazemiyeh, Hosein; Asnaashari, Solmaz; Dadpour, Mohammad Reza

    2012-01-01

    The genus Astragalus is a rich source of a variety of biologically active compounds including phenols, saponins, polysaccharides and essential oils. The present study was conducted to determine ontogenetic variation of the volatile organic compounds as well as total phenolic contents and antioxidant activity in leaves of A. compactus. The leaves of plant were harvested at vegetative, flowering and fructification stages and were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). Total phenolic content (TPC) was determined using the Folin-Ciocalteau reagent and the antioxidant capacity was evaluated with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. Different classes of volatile compounds were identified including alcohols, esters, hydrocarbons, sterols and terpenoides. Significant variation of these compounds was found during phenological stages of development. Sterols and hydrocarbons were the main components of essential oils at the vegetative stage. The presence of terpenoides (phytol) and alcohols (docosanol) was significant at the flowering stage. Fructification phase was characterized by the high content of sterols and hydrocarbons and absence of phytol. The antioxidant activity and phenolic content were related to the physiological stage and the highest amount detected at fructification phase. The ontogenetic variations of phenolic contents and antioxidant properties are largely contributed by climatic factors such as temperature and solar radiation.

  9. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    PubMed

    Gosney, Benjamin J; O Reilly-Wapstra, Julianne M; Forster, Lynne G; Barbour, Robert C; Iason, Glenn R; Potts, Brad M

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  10. Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities

    PubMed Central

    Gosney, Benjamin J.; O′Reilly-Wapstra, Julianne M.; Forster, Lynne G.; Barbour, Robert C.; Iason, Glenn R.; Potts, Brad M.

    2014-01-01

    Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings. PMID:25469641

  11. Ontogenetic changes in cranial vault thickness in a modern sample of Homo sapiens.

    PubMed

    Anzelmo, Marisol; Ventrice, Fernando; Barbeito-Andrés, Jimena; Pucciarelli, Héctor M; Sardi, Marina L

    2015-01-01

    This work assesses cranial vault thickness (CVT) ontogenetic changes using a computed tomography database to register thickness across multiple regions. Vault images of 143 individuals from 0 to 31 years old were analyzed by thickness semiautomatic measurements. For each individual, we obtained a thickness mean measure (TMM) and its coefficient of variation, a measure of endocranial volume (EV), the distribution of relative frequencies of thickness-relative frequency polygon, and a topographic mapping that shows the thickness arrangement through a chromatic scale. Ontogenetic changes of these variables were evaluated by different regression models (TMM vs. age, EV vs. age, TMM vs. EV) and visual comparisons between the age groups. TMM increased during ontogeny until the onset of adulthood without sex differences, but the most accelerated growth rates occur during the first 6 years of postnatal life. TMM variations were associated with EV only in infants and children, but not in later periods. The polygons showed a flattening during ontogeny, probably due to an increase in thickness variation within individuals. However, the adult pattern of thickness arrangement, with the lateral region thinner than the regions near sagittal plane, was detected from infancy. The pattern of thickness arrangement is established early in ontogeny but CVT increases and changes in distribution until adolescence. Several factors may influence CVT, such as the brain, muscles, vessels, and sutures. © 2014 Wiley Periodicals, Inc.

  12. Ontogenetic development and sexual dimorphism of franciscana dolphin skull: A 3D geometric morphometric approach.

    PubMed

    del Castillo, Daniela L; Flores, David A; Cappozzo, Humberto L

    2014-12-01

    The aim of this work was to study the postnatal ontogenetic development of Pontoporia blainvillei skull, identifying major changes on shape, and relating them to relevant factors in the life history of the species. We analyzed a complete ontogenetic series (73♂, 83♀) with three-dimensional geometric morphometric techniques. Immature dolphins showed a very well-developed braincase and a poorly developed rostrum, and the principal postnatal changes affected the rostrum and the temporal fossa, both structures implied functionally to the feeding apparatus, thus suggesting a specialized mode for catch fast prey in P. blainvillei. Osseous elements associated with sound production were already well developed on immature dolphins, suggesting the importance of this apparatus since the beginning of postnatal life. Sexual dimorphism was detected on both shape and size variables. Females were bigger than males, in accordance with previous studies. Shape differences between sexes were found on the posterior part of premaxillaries and external bony nares (P < 0.01), suggesting that this sexual dimorphism is related to differences on vocalization capabilities.

  13. Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals

    PubMed Central

    Gomes Rodrigues, Helder; Billet, Guillaume

    2017-01-01

    Investigating life history traits in mammals is crucial to understand their survival in changing environments. However, these parameters are hard to estimate in a macroevolutionary context. Here we show that the use of dental ontogenetic parameters can provide clues to better understand the adaptive nature of phenotypic traits in extinct species such as South American notoungulates. This recently extinct order of mammals evolved in a context of important geological, climatic, and environmental variations. Interestingly, notoungulates were mostly herbivorous and acquired high-crowned teeth very early in their evolutionary history. We focused on the variations in crown height, dental eruption pattern, and associated body mass of 69 notoungulate taxa, placed in their phylogenetic and geological contexts. We showed that notoungulates evolved higher crowns several times between 45 and 20 Ma, independently of the variation in body mass. Interestingly, the independent acquisitions of ever-growing teeth were systematically accompanied by eruption of molars faster than permanent premolars. These repeated associations of dental innovations have never been documented for other mammals and raise questions on their significance and causal relationships. We suggest that these correlated changes could originate from ontogenetic adjustments favored by structural constraints, and may indicate accelerated life histories. Complementarily, these more durable and efficient dentitions could be selected to cope with important ingestions of abrasive particles in the context of intensified volcanism and increasing aridity. This study demonstrates that assessing both life history and ecological traits allows a better knowledge of the specializations of extinct mammals that evolved under strong environmental constraints. PMID:28096389

  14. Ontogenetic scaling of metabolism, growth, and assimilation: testing metabolic scaling theory with Manduca sexta larvae.

    PubMed

    Sears, Katie E; Kerkhoff, Andrew J; Messerman, Arianne; Itagaki, Haruhiko

    2012-01-01

    Metabolism, growth, and the assimilation of energy and materials are essential processes that are intricately related and depend heavily on animal size. However, models that relate the ontogenetic scaling of energy assimilation and metabolism to growth rely on assumptions that have yet to be rigorously tested. Based on detailed daily measurements of metabolism, growth, and assimilation in tobacco hornworms, Manduca sexta, we provide a first experimental test of the core assumptions of a metabolic scaling model of ontogenetic growth. Metabolic scaling parameters changed over development, in violation of the model assumptions. At the same time, the scaling of growth rate matches that of metabolic rate, with similar scaling exponents both across and within developmental instars. Rates of assimilation were much higher than expected during the first two instars and did not match the patterns of scaling of growth and metabolism, which suggests high costs of biosynthesis early in development. The rapid increase in size and discrete instars observed in larval insect development provide an ideal system for understanding how patterns of growth and metabolism emerge from fundamental cellular processes and the exchange of materials and energy between an organism and its environment.

  15. Ontogenetic Variation in Biological Activities of Venoms from Hybrids between Bothrops erythromelas and Bothrops neuwiedi Snakes

    PubMed Central

    Santoro, Marcelo Larami; do Carmo, Thaís; Cunha, Bruna Heloísa Lopes; Alves, André Fonseca; Zelanis, André; Serrano, Solange Maria de Toledo; Grego, Kathleen Fernandes; Sant’Anna, Savio Stefanini; Barbaro, Katia Cristina; Fernandes, Wilson

    2015-01-01

    Lance-headed snakes are found in Central and South America, and they account for most snakebites in Brazil. The phylogeny of South American pitvipers has been reviewed, and the presence of natural and non-natural hybrids between different species of Bothrops snakes demonstrates that reproductive isolation of several species is still incomplete. The present study aimed to analyze the biological features, particularly the thrombin-like activity, of venoms from hybrids born in captivity, from the mating of a female Bothrops erythromelas and a male Bothrops neuwiedi, two species whose venoms are known to display ontogenetic variation. Proteolytic activity on azocoll and amidolytic activity on N-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA) were lowest when hybrids were 3 months old, and increased over body growth, reaching values similar to those of the father when hybrids were 12 months old. The clotting activity on plasma diminished as hybrids grew; venoms from 3- and 6-months old hybrids showed low clotting activity on fibrinogen (i.e., thrombin-like activity), like the mother venom, and such activity was detected only when hybrids were older than 1 year of age. Altogether, these results point out that venom features in hybrid snakes are genetically controlled during the ontogenetic development. Despite the presence of the thrombin-like enzyme gene(s) in hybrid snakes, they are silenced during the first six months of life. PMID:26714190

  16. Ontogenetic changes in seminal fluid gene expression and the protein composition of cricket seminal fluid.

    PubMed

    Simmons, Leigh W; Beveridge, Maxine; Li, Lei; Li, Lie; Tan, Yew-Foon; Millar, A Harvey

    2014-03-01

    The ejaculates of most internally fertilizing species consists of both sperm and seminal fluid proteins. Seminal fluid proteins have been studied largely in relation to their post-mating effects on female reproductive physiology, and predominantly in genomically well-characterized species. Seminal fluids can also play important roles in sperm maturation and performance. In the field cricket Teleogryllus oceanicus the viability of ejaculated sperm increases as males age, as does their competitive fertilization success. Here, using quantitative proteomics and quantitative real-time PCR, we document ontogenetic changes in seminal fluid protein abundance and in seminal fluid gene expression. We identified at least nine proteins that changed in abundance in the seminal fluid of crickets as they aged. Gene expression was quantified for five seminal fluid protein genes, and in four of these gene expression changed as males aged. These ontogenetic changes were associated with a general increase in the size of the male accessory glands. Several of the seminal fluid proteins that we have identified are novel, and some have BLAST matches to proteins implicated in sperm function. Our data suggest that age related changes in competitive fertilization success may be dependent on seminal fluid chemistry.

  17. Ontogenetic Variation in the Thermal Biology of Yarrow's Spiny Lizard, Sceloporus jarrovii.

    PubMed

    Gilbert, Anthony L; Lattanzio, Matthew S

    2016-01-01

    Climate change is rapidly altering the way current species interact with their environment to satisfy life-history demands. In areas anticipated to experience extreme warming, rising temperatures are expected to diminish population growth, due either to environmental degradation, or the inability to tolerate novel temperature regimes. Determining how at risk ectotherms, and lizards in particular, are to changes in climate traditionally emphasizes the thermal ecology and thermal sensitivity of physiology of adult members of a population. In this study, we reveal ontogenetic differences in thermal physiological and ecological traits that have been used to anticipate how ectotherms will respond to climate change. We show that the thermal biological traits of juvenile Yarrow's Spiny Lizards (Sceloporus jarrovii) differ from the published estimates of the same traits for adult lizards. Juvenile S. jarrovii differ in their optimal performance temperature, field field-active body temperature, and critical thermal temperatures compared to adult S. jarrovii. Within juvenile S. jarrovii, males and females exhibit differences in field-active body temperature and desiccation tolerance. Given the observed age- and sex-related variation in thermal physiology, we argue that not including physiological differences in thermal biology throughout ontogeny may lead to misinterpretation of patterns of ecological or evolutionary change due to climate warming. Further characterizing the potential for ontogenetic changes in thermal biology would be useful for a more precise and accurate estimation of the role of thermal physiology in mediating population persistence in warmer environments.

  18. Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals.

    PubMed

    Gomes Rodrigues, Helder; Herrel, Anthony; Billet, Guillaume

    2017-01-31

    Investigating life history traits in mammals is crucial to understand their survival in changing environments. However, these parameters are hard to estimate in a macroevolutionary context. Here we show that the use of dental ontogenetic parameters can provide clues to better understand the adaptive nature of phenotypic traits in extinct species such as South American notoungulates. This recently extinct order of mammals evolved in a context of important geological, climatic, and environmental variations. Interestingly, notoungulates were mostly herbivorous and acquired high-crowned teeth very early in their evolutionary history. We focused on the variations in crown height, dental eruption pattern, and associated body mass of 69 notoungulate taxa, placed in their phylogenetic and geological contexts. We showed that notoungulates evolved higher crowns several times between 45 and 20 Ma, independently of the variation in body mass. Interestingly, the independent acquisitions of ever-growing teeth were systematically accompanied by eruption of molars faster than permanent premolars. These repeated associations of dental innovations have never been documented for other mammals and raise questions on their significance and causal relationships. We suggest that these correlated changes could originate from ontogenetic adjustments favored by structural constraints, and may indicate accelerated life histories. Complementarily, these more durable and efficient dentitions could be selected to cope with important ingestions of abrasive particles in the context of intensified volcanism and increasing aridity. This study demonstrates that assessing both life history and ecological traits allows a better knowledge of the specializations of extinct mammals that evolved under strong environmental constraints.

  19. Vegetarian diets.

    PubMed

    Sutnick, M R

    1975-06-01

    A growing number of Americans are choosing to follow vegetarian diets. These diets can meet the nutritional needs of individuals of all ages. Vegetarians who eat eggs and/or milk and dairy products have no special problems in obtaining adequate nutrients. Pure vegetarians, who avoid all animal products, should pay particular attention to sources of protein, calcium, and riboflavin. Supplementation of vitamin B12 is indicated in these individuals. Guidelines for both good normal nutrition and therapeutic diets can be adapted for use with a vegetarian diet.

  20. Differential ontogenetic exposure to obesogenic environment induces hyperproliferative status and nuclear receptors imbalance in the rat prostate at adulthood.

    PubMed

    Pytlowanciv, Eloísa Zanin; Pinto-Fochi, Maria Etelvina; Reame, Vanessa; Gobbo, Marina Guimarães; Ribeiro, Daniele Lisboa; Taboga, Sebastião Roberto; Góes, Rejane Maira

    2016-05-01

    Experimental data indicate that high-fat diet (HFD) may alter proliferative activity and prostate health. However, the consequences of HFD exposure during different periods of ontogenetic development on prostate histophysiology remain to be elucidated. Herein, we compare the influence of obesogenic environment (OE) due to maternal obesity and HFD at different periods of life on proliferative activity and nuclear receptors frequency in the rat ventral prostate and a possible relationship with metabolic and hormonal alterations. Male Wistar rats (19 weeks old), treated with balanced chow (Control group-C; 3% high-fat, 3.5 Kcal/g), were compared with those exposed to HFD (20% high-fat, 4.9 kcal/g) during gestation (G-maternal obesity), gestation and lactation (GL), from post-weaning to adulthood (WA), from lactation to adulthood (LA) and from gestation to adulthood (GA). After the experimental period, the ventral prostate lobes were removed and analyzed with different methods. Metabolic data indicated that G and GL rats became insulin resistant and WA, LA, and GA became insulin resistant and obese. There was a strong inverse correlation between serum testosterone (∼133% lower) and leptin levels (∼467% higher) in WA, LA, and GA groups. Estrogen serum levels increased in GA, and insulin levels increased in all groups, especially in WA (64.8×). OE-groups exhibited prostatic hypertrophy, since prostate weight increased ∼40% in G, GL, LA, and GA and 31% in WA. As indicated by immunohistochemistry, all HFD-groups except G exhibited an increase in epithelial cell proliferation (PCNA-positive) and a decrease in frequency of AR- and ERβ-positive epithelial cells; there was also an increment of ERα-positive stromal cells in comparison with control. Cells containing PPARγ increased in both epithelium and stroma of all OE groups and those expressing LXRα decreased, particularly in groups OE-exposed during gestation (G, GL and GA). OE leads to prostate hypertrophy

  1. Developmental Shift of Short-term Synaptic Plasticity in Cortical Organotypic Slices

    PubMed Central

    Chen, Weixiang; Buonomano, Dean V.

    2012-01-01

    Although short-term synaptic plasticity (STP) is ubiquitous in neocortical synapses its functional role in neural computations is not well understood. Critical to elucidating the function of STP will be to understand how STP itself changes with development and experience. Previous studies have reported developmental changes in STP using acute slices. It is not clear, however, to what extent the changes in STP are a function of local ontogenetic programs or the result of the many different sensory and experience-dependent changes that accompany development in vivo. To address this question we examined the in vitro development of STP in organotypic slices cultured for up to four weeks. Paired recordings were performed in L5 pyramidal neurons at different stages of in vitro development. We observed a shift in STP in the form of a decrease in the paired-pulse ratio (less depression) from the second to fourth week in vitro. This shift in STP was not accompanied by a change in initial EPSP amplitude. Fitting STP to a quantitative model indicated that the developmental shift is consistent with presynaptic changes. Importantly, despite the change in the paired-pulse ratio we did not observe changes in the time constant governing STP. Since these experiments were conducted in vitro our results indicate that the shift in STP does not depend on in vivo sensory experience. Although sensory experience may shape STP, we suggest that developmental shifts in STP are at least in part ontogenetically determined. PMID:22521823

  2. A Study of Ontogenetic and Generational Change in Adolescent Personality by Means of Multivariate Longitudinal Sequences: Phase II. Final Report.

    ERIC Educational Resources Information Center

    Nesselroade, John R.; Baltes, Paul B.

    Assessment of the relationship between ontogenetic (individual) and generational (historical) change in adolescent personality development was the focus of this study. The total sample included 1000 male and female adolescents (ages 13-18) randomly drawn from 32 public school systems in West Virginia following a design using longitudinal sequences…

  3. Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni

    PubMed Central

    2010-01-01

    Background Surveys of ontogenetic development of hearing and sound production in fish are scarce, and the ontogenetic development of acoustic communication has been investigated in only two fish species so far. Studies on the labyrinth fish Trichopsis vittata and the toadfish Halobatrachus didactylus show that the ability to detect conspecific sounds develops during growth. In otophysine fish, which are characterized by Weberian ossicles and improved hearing sensitivities, the ontogenetic development of sound communication has never been investigated. We analysed the ontogeny of the auditory sensitivity and vocalizations in the mochokid catfish Synodontis schoutedeni. Mochokid catfishes of the genus Synodontis are commonly called squeakers because they produce broadband stridulation sounds during abduction and adduction of pectoral fin spines. Fish from six different size groups - from 22 mm standard length to 126 mm - were studied. Hearing thresholds were measured between 50 Hz and 6 kHz using the auditory evoked potentials recording technique; stridulation sounds were recorded and their sound pressure levels determined. Finally, absolute sound power spectra were compared to auditory sensitivity curves within each size group. Results The smallest juveniles showed the poorest hearing abilities of all size groups between 50 and 1,000 Hz and highest hearing sensitivity at 5 and 6 kHz. The duration of abduction and adduction sounds and the pulse period increased and sound pressure level (in animals smaller than 58 mm) increased, while the dominant frequency of sounds decreased with size in animals larger than 37 mm. Comparisons between audiograms and sound spectra revealed that the most sensitive frequencies correlate with the dominant frequencies of stridulation sounds in all S. schoutedeni size groups and that all specimens are able to detect sounds of all size groups. Conclusions This study on the squeaker catfish S. schoutedeni is the first to demonstrate that

  4. The ontogenetic allometry of body morphology and chemical composition in dairy goat wethers.

    PubMed

    Vieira, R A M; Rohem Júnior, N M; Gomes, R S; Oliveira, T S; Bendia, L C R; Azevedo, F H V; Barbosa, D L; Glória, L S; Rodrigues, M T

    2017-08-03

    We studied the ontogenetic growth of goat wethers (castrated male goats) of the Saanen and Swiss Alpine breeds based on a large range of intraspecific body mass (BM). The body parts and the chemical constituents of the empty body were described by the allometric function by using BM and the empty body mass (EBM) as the predictors for morphological traits and chemical composition, respectively. We fitted the allometric scaling function by applying the SAS NLMIXED procedure, but to evaluate assumptions regarding variances in morphological and compositional traits, we combined the scaling function with homoscedastic (MOD1), and the heteroscedastic exponential (MOD2) and power-of-the-mean (MOD3) variance functions. We also predicted the ontogenetic growth by using the traditional log-log transformation and back-transformed results into the arithmetic scale (MOD4). We obtained predictions from MOD4 in the arithmetic scale by a two-step process, and evaluated MOD1, MOD2 and MOD3 by a model selection framework, and compared MOD4 with MOD1, MOD2 and MOD3 based on goodness-of-fit measures. Based on information criteria for model selection, heterogeneous variance functions were more likely to describe 10 over 36 traits with a low level of model selection uncertainty. One trait was predicted by averaging the MOD1 and MOD2 variance functions; and nine traits were better described by averaging the MOD2 and MOD3 variance functions. The predictions for other 16 traits were averaged from MOD1, MOD2 and MOD3. However, MOD4 better described 11 traits according to the goodness-of-fit measures. Depending on the variable being analyzed, the body parts and the chemical amounts exhibited the three types of allometric behavior with respect to BM and EBM, that is, positive, negative and isometric ontogenetic growth. Reference BMs, that is, 20, 27, 35 and 45 kg, were used to compute the net protein and energy requirements based on the first derivative of the scaling function, and the

  5. Cranial endocasts from a growth series of Monodelphis domestica (Didelphidae, Marsupialia): A study of individual and ontogenetic variation.

    PubMed

    Macrini, Thomas E; Rowe, Timothy; Vandeberg, John L

    2007-10-01

    Intraspecific variation (e.g., ontogenetic, individual, sexual dimorphic) is rarely examined among cranial endocasts (infillings of the braincase cavity) because of the difficulty in obtaining multiple specimens of a species, particularly fossil taxa. We extracted digital cranial endocasts from CT scans of a growth series of skulls of Monodelphis domestica, the gray short-tailed opossum, as a preliminary assessment of the amount of intraspecific variation in mammalian endocranial morphology. The goals of this study were 1) to provide an anatomical description to document developmental changes in endocranial morphology of M. domestica and 2) to examine ontogenetic and individual variation with respect to phylogenetic characters of endocranial cavities that are known to be variable between different mammalian taxa. In this study, "ontogenetic variation" refers to variation between specimens of different ages whereas "individual variation" (i.e., polymorphism) is restricted to variation between specimens of comparable age. Aside from size, changes in shape account for the greatest amount of morphological variation between the endocasts of different ages. Endocast length, width, and volume increase with age for the growth series. Relative olfactory bulb cast size increases with age in the growth series, but the relative size of the parafloccular casts shows a slight negative allometric trend through ontogeny. More than one-third of the phylogenetic characters of the endocranial cavity we examined showed some sort of variation (ontogenetic, individual, or both). This suggests that although endocasts are potentially informative for systematics, both ontogenetic and individual variation affect how endocranial characters are scored for phylogenetic analysis. Further studies such as this are necessary to determine the taxonomic extent of significant intraspecific variation of these endocranial characters.

  6. Cranial ontogenetic variation in early saurischians and the role of heterochrony in the diversification of predatory dinosaurs

    PubMed Central

    Hedrick, Brandon P.; Ezcurra, Martin D.

    2016-01-01

    Non-avian saurischian skulls underwent at least 165 million years of evolution and shapes varied from elongated skulls, such as in the theropod Coelophysis, to short and box-shaped skulls, such as in the sauropod Camarasaurus. A number of factors have long been considered to drive skull shape, including phylogeny, dietary preferences and functional constraints. However, heterochrony is increasingly being recognized as an important factor in dinosaur evolution. In order to quantitatively analyse the impact of heterochrony on saurischian skull shape, we analysed five ontogenetic trajectories using two-dimensional geometric morphometrics in a phylogenetic framework. This allowed for the comparative investigation of main ontogenetic shape changes and the evaluation of how heterochrony affected skull shape through both ontogenetic and phylogenetic trajectories. Using principal component analyses and multivariate regressions, it was possible to quantify different ontogenetic trajectories and evaluate them for evidence of heterochronic events allowing testing of previous hypotheses on cranial heterochrony in saurischians. We found that the skull shape of the hypothetical ancestor of Saurischia likely led to basal Sauropodomorpha through paedomorphosis, and to basal Theropoda mainly through peramorphosis. Paedomorphosis then led from Orionides to Avetheropoda, indicating that the paedomorphic trend found by previous authors in advanced coelurosaurs may extend back into the early evolution of Avetheropoda. Not only are changes in saurischian skull shape complex due to the large number of factors that affected it, but heterochrony itself is complex, with a number of possible reversals throughout non-avian saurischian evolution. In general, the sampling of complete ontogenetic trajectories including early juveniles is considerably lower than the sampling of single adult or subadult individuals, which is a major impediment to the study of heterochrony on non-avian dinosaurs

  7. Application of DNA barcoding for identification of freshwater carnivorous fish diets: Is number of prey items dependent on size class for Micropterus salmoides?

    PubMed Central

    Jo, Hyunbin; Gim, Jeong-An; Jeong, Kwang-Seuk; Kim, Heui-Soo; Joo, Gea-Jae

    2014-01-01

    Understanding predator–prey interactions is a major challenge in ecological studies. In particular, the accurate identification of prey is a fundamental requirement in elucidating food-web structure. This study took a molecular approach in determining the species identity of consumed prey items of a freshwater carnivorous fish (largemouth bass, Micropterus salmoides), according to their size class. Thirty randomly selected gut samples were categorized into three size classes, based on the total length of the bass. Using the universal primer for the mtDNA cytochrome oxidase I (COI) region, polymerase chain reaction (PCR) amplification was performed on unidentified gut contents and then sequenced after cloning. Two gut samples were completely empty, and DNA materials from 27 of 28 gut samples were successfully amplified by PCR (success rate: 96.4%). Sequence database navigation yielded a total of 308 clones, containing DNA from 26 prey items. They comprised four phyla, including seven classes, 12 orders, and 12 families based on BLAST and BOLD database searches. The results indicate that largemouth bass show selective preferences in prey item consumption as they mature. These results corroborate a hypothesis, presence of ontogenetic diet shift, derived through other methodological approaches. Despite the practical limitations inherent in DNA barcoding analysis, high-resolution (i.e., species level) identification was possible, and the predation patterns of predators of different sizes were identifiable. The utilization of this method is strongly recommended for determining specific predator–prey relationships in complex freshwater ecosystems. PMID:24558577

  8. Application of DNA barcoding for identification of freshwater carnivorous fish diets: Is number of prey items dependent on size class for Micropterus salmoides?

    PubMed

    Jo, Hyunbin; Gim, Jeong-An; Jeong, Kwang-Seuk; Kim, Heui-Soo; Joo, Gea-Jae

    2014-01-01

    Understanding predator-prey interactions is a major challenge in ecological studies. In particular, the accurate identification of prey is a fundamental requirement in elucidating food-web structure. This study took a molecular approach in determining the species identity of consumed prey items of a freshwater carnivorous fish (largemouth bass, Micropterus salmoides), according to their size class. Thirty randomly selected gut samples were categorized into three size classes, based on the total length of the bass. Using the universal primer for the mtDNA cytochrome oxidase I (COI) region, polymerase chain reaction (PCR) amplification was performed on unidentified gut contents and then sequenced after cloning. Two gut samples were completely empty, and DNA materials from 27 of 28 gut samples were successfully amplified by PCR (success rate: 96.4%). Sequence database navigation yielded a total of 308 clones, containing DNA from 26 prey items. They comprised four phyla, including seven classes, 12 orders, and 12 families based on BLAST and BOLD database searches. The results indicate that largemouth bass show selective preferences in prey item consumption as they mature. These results corroborate a hypothesis, presence of ontogenetic diet shift, derived through other methodological approaches. Despite the practical limitations inherent in DNA barcoding analysis, high-resolution (i.e., species level) identification was possible, and the predation patterns of predators of different sizes were identifiable. The utilization of this method is strongly recommended for determining specific predator-prey relationships in complex freshwater ecosystems.

  9. Ontogenetic Variation in Food Consumption of Rusty Crayfish (Orconectes rusticus) in a Central New York Stream

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.

    2010-01-01

    We examined feeding periodicity of three size groups of the rusty crayfish (Orconectes rusticus) at four-hour intervals over a 28-hour period during July in a headwater stream of the Susquehanna River drainage in central New York. Feeding activity was expressed as the ratio of stomach weight divided by the crayfish wet weight. The diel food consumption patterns of all three size groups of rusty crayfish (i.e., ≤ 10 mm, 11–20 mm, and > 20 mm carapace length) were significantly different. Peak feeding of the smallest crayfish occurred during crepuscular periods. Food consumption of the intermediate size crayfish was highest at 2000 h, and feeding of large crayfish was consistently high from 1200 h to 0400 h. Feeding intensity of both small and intermediate size crayfish was highest when feeding intensity of large crayfsh was lowest. Ontogenetic differences in feeding periodicity may be associated with predation pressure from large rusty crayfish on smaller individuals.

  10. Dream content of Canadian males from adolescence to old age: An exploration of ontogenetic patterns.

    PubMed

    Dale, Allyson; Lafrenière, Alexandre; De Koninck, Joseph

    2017-03-01

    The present study was a first look at the ontogenetic pattern of dream content across the lifespan for men. The participants included 50 Canadian men in each of 5 age groups, from adolescence to old age including 12-17, 18-24, 25-39, 40-64, and 65-85. The last age group included 31 participants, totaling 231 males. One dream per participant was scored by two independent judges using content analysis. Trend analysis was used to determine the lifespan-developmental pattern of the dream content categories. Results demonstrated a predominance of aggressive dream imagery in the adolescent age group in line with social-developmental research. These patterns of dream imagery reflect the waking developmental patterns as proposed by social theories and recognized features of aging. Limitations and suggestions for future research, including the examining of the developmental pattern of gender differences across the lifespan, are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus.

    PubMed

    Shi, Wei; Xianyu, Anjin; Han, Zhi; Tang, Xing; Li, Zhizhong; Zhong, Haining; Mao, Tianyi; Huang, Kun; Shi, Song-Hai

    2017-04-01

    The thalamus connects the cortex with other brain regions and supports sensory perception, movement, and cognitive function via numerous distinct nuclei. However, the mechanisms underlying the development and organization of diverse thalamic nuclei remain largely unknown. Here we report an intricate ontogenetic logic of mouse thalamic structures. Individual radial glial progenitors in the developing thalamus actively divide and produce a cohort of neuronal progeny that shows striking spatial configuration and nuclear occupation related to functionality. Whereas the anterior clonal cluster displays relatively more tangential dispersion and contributes predominantly to nuclei with cognitive functions, the medial ventral posterior clonal cluster forms prominent radial arrays and contributes mostly to nuclei with sensory- or motor-related activities. Moreover, the first-order and higher-order sensory and motor nuclei across different modalities are largely segregated clonally. Notably, sonic hedgehog signaling activity influences clonal spatial distribution. Our study reveals lineage relationship to be a critical regulator of nonlaminated thalamus development and organization.

  12. Ontogenetic changes of trunk muscle structure in the Japanese black salamander (Hynobius nigrescens).

    PubMed

    Omura, Ayano; Anzai, Wataru; Koyabu, Daisuke; Endo, Hideki

    2015-08-01

    We investigated ontogenetic changes in the trunk muscles of the Japanese black salamander (Hynobius nigrescens) before, during and after metamorphosis. Given that amphibians change their locomotive patterns with metamorphosis, we hypothesized that they may also change the structure of their trunk muscles. The trunk muscles were macroscopically observed, and the weight ratios of each trunk muscle group were quantified at six different developmental stages. Immediately after hatching, we found that the lateral hypaxial muscle was composed of one thick M. ventralis, from ventral edge of which M. transversus abdominis arose later, followed by M. obliquus externus and M. rectus abdominis. The weight ratios of the dorsal and abdominal muscles to the trunk muscles increased with growth. We suggest that a single thick and large lateral hypaxial muscle facilitates swimming during early developmental stages. The increase in the weight ratios of the dorsal and abdominal muscles with growth possibly assists with gravity resistance necessary for terrestrial life.

  13. The ontogenetic origins of mirror neurons: evidence from 'tool-use' and 'audiovisual' mirror neurons.

    PubMed

    Cook, Richard

    2012-10-23

    Since their discovery, mirror neurons--units in the macaque brain that discharge both during action observation and execution--have attracted considerable interest. Whether mirror neurons are an innate endowment or acquire their sensorimotor matching properties ontogenetically has been the subject of intense debate. It is widely believed that these units are an innate trait; that we are born with a set of mature mirror neurons because their matching properties conveyed upon our ancestors an evolutionary advantage. However, an alternative view is that mirror neurons acquire their matching properties during ontogeny, through correlated experience of observing and performing actions. The present article re-examines frequently overlooked neurophysiological reports of 'tool-use' and 'audiovisual' mirror neurons within the context of this debate. It is argued that these findings represent compelling evidence that mirror neurons are a product of sensorimotor experience, and not an innate endowment.

  14. Ontogenetic variation in food consumption of rusty crayfish (Orconectes rusticus) in a central New York stream

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.

    2010-01-01

    We examined feeding periodicity of three size groups of the rusty crayfish (Orconectes rusticus) at four-hour intervals over a 28-hour period during July in a headwater stream of the Susquehanna River drainage in central New York. Feeding activity was expressed as the ratio of stomach weight divided by the crayfish wet weight. The diel food consumption patterns of all three size groups of rusty crayfish (i.e., ??? 10 mm, 11-20 mm, and > 20 mm carapace length) were significantly different. Peak feeding of the smallest crayfish occurred during crepuscular periods. Food consumption of the intermediate size crayfish was highest at 2000 h, and feeding of large crayfish was consistently high from 1200 h to 0400 h. Feeding intensity of both small and intermediate size crayfish was highest when feeding intensity of large crayfsh was lowest. Ontogenetic differences in feeding periodicity may be associated with predation pressure from large rusty crayfish on smaller individuals.

  15. Drought Effects on Proanthocyanidins in Sainfoin (Onobrychis viciifolia Scop.) Are Dependent on the Plant's Ontogenetic Stage.

    PubMed

    Malisch, Carsten S; Salminen, Juha-Pekka; Kölliker, Roland; Engström, Marica T; Suter, Daniel; Studer, Bruno; Lüscher, Andreas

    2016-12-14

    Sainfoin (Onobrychis viciifolia Scop.) is a forage legume, which improves animal health and the environmental impact of livestock farming due to its proanthocyanidin content. To identify the impact of drought on acetone/water-extractable proanthocyanidin (PA) concentration and composition in the generative and vegetative stages, a rain exclosure experiment was established. Leaves of 120 plants from 5 different sainfoin accessions were sampled repeatedly and analyzed by UPLC-ESI-MS/MS. The results showed distinct differences in response to drought between vegetative and generative plants. Whereas vegetative plants showed a strong response to drought in growth (-56%) and leaf PA concentration (+46%), generative plants showed no response in growth (-2%) or PA concentration (-9%). The PA composition was stable across environments. The five accessions varied in PA concentrations and composition but showed the same pattern of response to the experimental treatments. These results show that the ontogenetic stage at which drought occurs significantly affects the plant's response.

  16. Long bone histology of the subterranean rodent Bathyergus suillus (Bathyergidae): ontogenetic pattern of cortical bone thickening.

    PubMed

    Montoya-Sanhueza, Germán; Chinsamy, Anusuya

    2017-02-01

    Patterns of bone development in mammals are best known from terrestrial and cursorial groups, but there is a considerable gap in our understanding of how specializations for life underground affect bone growth and development. Likewise, studies of bone microstructure in wild populations are still scarce, and they often include few individuals and tend to be focused on adults. For these reasons, the processes generating bone microstructural variation at intra- and interspecific levels are not fully understood. This study comprehensively examines the bone microstructure of an extant population of Cape dune molerats, Bathyergus suillus (Bathyergidae), the largest subterranean mammal endemic to the Western Cape of South Africa. The aim of this study is to investigate the postnatal bone growth of B. suillus using undecalcified histological sections (n = 197) of the femur, humerus, tibia-fibula, ulna and radius, including males and females belonging to different ontogenetic and reproductive stages (n = 42). Qualitative histological features demonstrate a wide histodiversity with thickening of the cortex mainly resulting from endosteal and periosteal bone depositions, whilst there is scarce endosteal resorption and remodeling throughout ontogeny. This imbalanced bone modeling allows the tissues deposited during ontogeny to remain relatively intact, thus preserving an excellent record of growth. The distribution of the different bone tissues observed in the cortex depends on ontogenetic status, anatomical features (e.g. muscle attachment structures) and location on the bone (e.g. anterior or lateral). The type of bone microstructure and modeling is discussed in relation to digging behavior, reproduction and physiology of this species. This study is the first histological assessment describing the process of cortical thickening in long bones of a fossorial mammal.

  17. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories.

    PubMed

    Codron, Daryl; Carbone, Chris; Clauss, Marcus

    2013-01-01

    Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs' successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals

  18. Ecological Interactions in Dinosaur Communities: Influences of Small Offspring and Complex Ontogenetic Life Histories

    PubMed Central

    Codron, Daryl; Carbone, Chris; Clauss, Marcus

    2013-01-01

    Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs’ successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals

  19. Scaling of feeding biomechanics in the horn shark Heterodontus francisci: ontogenetic constraints on durophagy.

    PubMed

    Kolmann, Matthew A; Huber, Daniel R

    2009-01-01

    Organismal performance changes over ontogeny as the musculoskeletal systems underlying animal behavior grow in relative size and shape. As performance is a determinant of feeding ecology, ontogenetic changes in the former can influence the latter. The horn shark Heterodontus francisci consumes hard-shelled benthic invertebrates, which may be problematic for younger animals with lower performance capacities. Scaling of feeding biomechanics was investigated in H. francisci (n=16, 19-59cm standard length (SL)) to determine the biomechanical basis of allometric changes in feeding performance and whether this performance capacity constrains hard-prey consumption over ontogeny. Positive allometry of anterior (8-163N) and posterior (15-382N) theoretical bite force was attributed to positive allometry of cross-sectional area in two jaw adducting muscles and mechanical advantage at the posterior bite point (0.79-1.26). Mechanical advantage for anterior biting scaled isometrically (0.52). Fracture forces for purple sea urchins Strongylocentrotus purpuratus consumed by H. francisci ranged from 24 to 430N. Comparison of these fracture forces to the bite force of H. francisci suggests that H. francisci is unable to consume hard prey early in its life history, but can consume the majority of S. purpuratus by the time it reaches maximum size. Despite this constraint, positive allometry of biting performance appears to facilitate an earlier entry into the durophagous niche than would an isometric ontogenetic trajectory. The posterior gape of H. francisci is significantly smaller than the urchins capable of being crushed by its posterior bite force. Thus, the high posterior bite forces of H. francisci cannot be fully utilized while consuming prey of similar toughness and size to S. purpuratus, and its potential trophic niche is primarily determined by anterior biting capacity.

  20. Ontogenetic influence on neural spine bifurcation in Diplodocoidea (Dinosauria: Sauropoda): a critical phylogenetic character.

    PubMed

    Woodruff, D Cary; Fowler, Denver W

    2012-07-01

    Within Diplodocoidea (Dinosauria: Sauropoda), phylogenetic position of the three subclades Rebbachisauridae, Dicraeosauridae, and Diplodocidae is strongly influenced by a relatively small number of characters. Neural spine bifurcation, especially within the cervical vertebrae, is considered to be a derived character, with taxa that lack this feature regarded as relatively basal. Our analysis of dorsal and cervical vertebrae from small-sized diplodocoids (representing at least 18 individuals) reveals that neural spine bifurcation is less well developed or absent in smaller specimens. New preparation of the roughly 200-cm long diplodocid juvenile Sauriermuseum Aathal 0009 reveals simple nonbifurcated cervical neural spines, strongly reminiscent of more basal sauropods such as Omeisaurus. An identical pattern of ontogenetically linked bifurcation has also been observed in several specimens of the basal macronarian Camarasaurus, suggesting that this is characteristic of several clades of Sauropoda. We suggest that neural spine bifurcation performs a biomechanical function related to horizontal positioning of the neck that may become significant only at the onset of a larger body size, hence, its apparent absence or weaker development in smaller specimens. These results have significant implications for the taxonomy and phylogenetic position of taxa described from specimens of small body size. On the basis of shallow bifurcation of its cervical and dorsal neural spines, the small diplodocid Suuwassea is more parsimoniously interpreted as an immature specimen of an already recognized diplodocid taxon. Our findings emphasize the view that nonmature dinosaurs often exhibit morphologies more similar to their ancestral state and may therefore occupy a more basal position in phylogenetic analyses than would mature specimens of the same species. In light of this, we stress the need for phylogenetic reanalysis of sauropod clades where vital characters may be ontogenetically

  1. Prickly poppies can get pricklier: ontogenetic patterns in the induction of physical defense traits.

    PubMed

    Hoan, Ryan P; Ormond, Rhys A; Barton, Kasey E

    2014-01-01

    Plant ontogeny is a common source of variation in defense and herbivory. Yet, few studies have investigated how the induction of physical defense traits changes across plant ontogeny. Physical defense traits are costly to produce, and thus, it was predicted that induction as a cost-saving strategy would be particularly favorable for seedlings, leading to ontogenetic declines in the inducibility of these traits. We tested for induction of three different physical defense traits (prickles, latex and leaf toughness) in response to mechanical defoliation and jasmonic acid application using prickly poppies (Argemone glauca and A. mexicana, Papaveraceae) as a model system. Genetic variation in the induction of physical defenses was tested using maternal sib-ships sampled from multiple populations. Both species induced higher densities of laminar prickles, although the magnitude of induction was much higher in the endemic Hawaiian prickly poppy, A. glauca, than in the cosmopolitan A. mexicana. The magnitude of prickle induction was also higher in young compared to older juvenile plant stages in A. glauca, demonstrating a strong role of ontogeny. Neither latex exudation nor leaf toughness was induced in either species. Although significant genetic variation was detected within and among populations for constitutive expression of physical defense traits in Argemone, there was no evidence for genetic variation in the induction of these traits. This study provides the first evidence for the induction of physical defenses in prickly poppies, emphasizing how an ontogenetically explicit framework can reveal new insights into plant defense. Moreover, this study illustrates how sister species comparisons between island vs. continental plants can provide new insights into plant functional and evolutionary ecology, highlighting a fruitful area for future research on more species pairs.

  2. Prickly Poppies Can Get Pricklier: Ontogenetic Patterns in the Induction of Physical Defense Traits

    PubMed Central

    Hoan, Ryan P.; Ormond, Rhys A.; Barton, Kasey E.

    2014-01-01

    Plant ontogeny is a common source of variation in defense and herbivory. Yet, few studies have investigated how the induction of physical defense traits changes across plant ontogeny. Physical defense traits are costly to produce, and thus, it was predicted that induction as a cost-saving strategy would be particularly favorable for seedlings, leading to ontogenetic declines in the inducibility of these traits. We tested for induction of three different physical defense traits (prickles, latex and leaf toughness) in response to mechanical defoliation and jasmonic acid application using prickly poppies (Argemone glauca and A. mexicana, Papaveraceae) as a model system. Genetic variation in the induction of physical defenses was tested using maternal sib-ships sampled from multiple populations. Both species induced higher densities of laminar prickles, although the magnitude of induction was much higher in the endemic Hawaiian prickly poppy, A. glauca, than in the cosmopolitan A. mexicana. The magnitude of prickle induction was also higher in young compared to older juvenile plant stages in A. glauca, demonstrating a strong role of ontogeny. Neither latex exudation nor leaf toughness was induced in either species. Although significant genetic variation was detected within and among populations for constitutive expression of physical defense traits in Argemone, there was no evidence for genetic variation in the induction of these traits. This study provides the first evidence for the induction of physical defenses in prickly poppies, emphasizing how an ontogenetically explicit framework can reveal new insights into plant defense. Moreover, this study illustrates how sister species comparisons between island vs. continental plants can provide new insights into plant functional and evolutionary ecology, highlighting a fruitful area for future research on more species pairs. PMID:24802133

  3. Ontogenetic changes in limb bone structural proportions in mountain gorillas (Gorilla beringei beringei).

    PubMed

    Ruff, Christopher B; Burgess, M Loring; Bromage, Timothy G; Mudakikwa, Antoine; McFarlin, Shannon C

    2013-12-01

    Behavioral studies indicate that adult mountain gorillas (Gorilla beringei) are the most terrestrial of all nonhuman hominoids, but that infant mountain gorillas are much more arboreal. Here we examine ontogenetic changes in diaphyseal strength and length of the femur, tibia, humerus, radius, and ulna in 30 Virunga mountain gorillas, including 18 immature specimens and 12 adults. Comparisons are also made with 14 adult western lowland gorillas (Gorilla gorilla gorilla), which are known to be more arboreal than adult mountain gorillas. Infant mountain gorillas have significantly stronger forelimbs relative to hind limbs than older juveniles and adults, but are nonsignificantly different from western lowland gorilla adults. The change in inter-limb strength proportions is abrupt at about two years of age, corresponding to the documented transition to committed terrestrial quadrupedalism in mountain gorillas. The one exception is the ulna, which shows a gradual increase in strength relative to the radius and other long bones during development, possibly corresponding to the gradual adoption of stereotypical fully pronated knuckle-walking in older juvenile gorillas. Inter-limb bone length proportions show a contrasting developmental pattern, with hind limb/forelimb length declining rapidly from birth to five months of age, and then showing no consistent change through adulthood. The very early change in length proportions, prior to significant independent locomotion, may be related to the need for relatively long forelimbs for climbing in a large-bodied hominoid. Virunga mountain gorilla older juveniles and adults have equal or longer forelimb relative to hind limb bones than western lowland adults. These findings indicate that both ontogenetically and among closely related species of Gorilla, long bone strength proportions better reflect actual locomotor behavior than bone length proportions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Ontogenetic scaling of fore- and hind limb posture in wild chacma baboons (Papio hamadryas ursinus).

    PubMed

    Patel, Biren A; Horner, Angela M; Thompson, Nathan E; Barrett, Louise; Henzi, S Peter

    2013-01-01

    Large-scale interspecific studies of mammals ranging between 0.04-280 kg have shown that larger animals walk with more extended limb joints. Within a taxon or clade, however, the relationship between body size and joint posture is less straightforward. Factors that may affect the lack of congruence between broad and narrow phylogenetic analyses of limb kinematics include limited sampling of (1) ranges of body size, and/or (2) numbers of individuals. Unfortunately, both issues are inherent in laboratory-based or zoo locomotion research. In this study, we examined the relationship between body mass and elbow and knee joint angles (our proxies of fore- and hind limb posture, respectively) in a cross-sectional ontogenetic sample of wild chacma baboons (Papio hamadryas ursinus) habituated in the De Hoop Nature Reserve, South Africa. Videos were obtained from 33 individuals of known age (12 to ≥ 108 months) and body mass (2-29.5 kg) during walking trials. Results show that older, heavier baboons walk with significantly more extended knee joints but not elbow joints. This pattern is consistent when examining only males, but not within the female sample. Heavier, older baboons also display significantly less variation in their hind limb posture compared to lighter, young animals. Thus, within this ontogenetic sample of a single primate species spanning an order of magnitude in body mass, hind limb posture exhibited a postural scaling phenomenon while the forelimbs did not. These findings may further help explain 1) why younger mammals (including baboons) tend to have relatively stronger bones than adults, and 2) why humeri appear relatively weaker than femora (in at least baboons). Finally, this study demonstrates how field-acquired kinematics can help answer fundamental biomechanical questions usually addressed only in animal gait laboratories.

  5. Ontogenetic Changes in Azoxyglycoside Levels in the Leaves of Dioon edule Lindl.

    PubMed

    Prado, Alberto; Rubio-Mendez, Gabriel; Yañez-Espinosa, Laura; Bede, Jacqueline C

    2016-11-01

    Plants have multiple strategies, including phytochemicals that protect their vulnerable tissues against pathogens and herbivores. Dioon edule, like all cycads, possess unique azoxy-type compounds, azoxyglycosides (AZGs) as a chemical defense; however, the ontogenetic variability of these compounds in this long-lived cycad is unknown. Here, we investigated the effects of plant age, sex, genotype and individual heterozygosity on AZG levels in mature leaves of wild D. edule populations from eastern Mexico. Individuals were divided into three ontogenetic stages: seedlings, juveniles and adults. We established overall leaf quality by quantifying pigments associated with photosynthesis; chlorophylla, chlorophyllb and lutein. Leaf chlorophylla levels were higher in seedlings compared to adult cycads. Plants were genotyped using 11 microsatellite markers and foliar AZG levels were quantified by HPLC. AZG levels do not correlate with plant genotype or the individual's heterozygosity. Genetic analysis identified a distinction between lowland and highland individuals; foliar AZG levels were higher in lowland adult cycads compared to highland individuals. In both populations, the highest AZG levels were found in seedlings compared to adult cycads. These young cycads are highly reliant on their few leaves since seedlings bear one or two leaves for the first years of their life and, thus, are unlikely to recover from defoliation. The results suggest that cycad leaves with a greater nutritive content and a higher value for long-term survival are better protected with higher AZG levels. Female adult cycads have higher AZG levels compared to males, suggesting that the benefits of defense could also be linked to reproductive costs.

  6. Ontogenetic scaling patterns and functional anatomy of the pelvic limb musculature in emus (Dromaius novaehollandiae)

    PubMed Central

    Main, Russell P.; Hutchinson, John R.

    2014-01-01

    Emus (Dromaius novaehollandiae) are exclusively terrestrial, bipedal and cursorial ratites with some similar biomechanical characteristics to humans. Their growth rates are impressive, as their body mass increases eighty-fold from hatching to adulthood whilst maintaining the same mode of locomotion throughout life. These ontogenetic characteristics stimulate biomechanical questions about the strategies that allow emus to cope with their rapid growth and locomotion, which can be partly addressed via scaling (allometric) analysis of morphology. In this study we have collected pelvic limb anatomical data (muscle architecture, tendon length, tendon mass and bone lengths) and calculated muscle physiological cross sectional area (PCSA) and average tendon cross sectional area from emus across three ontogenetic stages (n = 17, body masses from 3.6 to 42 kg). The data were analysed by reduced major axis regression to determine how these biomechanically relevant aspects of morphology scaled with body mass. Muscle mass and PCSA showed a marked trend towards positive allometry (26 and 27 out of 34 muscles respectively) and fascicle length showed a more mixed scaling pattern. The long tendons of the main digital flexors scaled with positive allometry for all characteristics whilst other tendons demonstrated a less clear scaling pattern. Finally, the two longer bones of the limb (tibiotarsus and tarsometatarsus) also exhibited positive allometry for length, and two others (femur and first phalanx of digit III) had trends towards isometry. These results indicate that emus experience a relative increase in their muscle force-generating capacities, as well as potentially increasing the force-sustaining capacities of their tendons, as they grow. Furthermore, we have clarified anatomical descriptions and provided illustrations of the pelvic limb muscle–tendon units in emus. PMID:25551028

  7. Adrenarche in bonobos (Pan paniscus): evidence from ontogenetic changes in urinary dehydroepiandrosterone-sulfate levels.

    PubMed

    Behringer, Verena; Hohmann, Gottfried; Stevens, Jeroen M G; Weltring, Anja; Deschner, Tobias

    2012-07-01

    Adrenarche is characterized by the onset of adrenal secretions of increasing amounts of dehydroepiandrosterone-sulfate (DHEA-S). While the function of adrenarche remains a matter of speculation, evidence suggests that the morphological and physiological changes related to it are restricted to humans and closely related primates. Within the primate order, adrenarche has been described only in humans and chimpanzees, but bonobos, the sister species of chimpanzees, have not yet been studied regarding the early ontogenetic changes such as adrenarche. While bonobos and chimpanzees share many morphological and behavioral characteristics, they differ in a number of behavioral traits, and there is a growing interest in terms of the physiological differences that can be linked to species-specific patterns of social behavior. In this study, we measured urinary DHEA-S levels to determine whether bonobos experience physiological changes that are indicative of adrenarche. We measured DHEA-S in urine using ELISA and analyzed its levels in the samples from 53 bonobos aged 1-18 years. Our results show that bonobos experience an increase in DHEA-S levels after 5 years of age, which is comparable with the patterns observed in humans and chimpanzees. This indicates that bonobos do undergo adrenarche and that the timing of onset is similar to that of the two Pan species. The extraction procedures described in this report demonstrate the use of urine for monitoring ontogenetic changes in DHEA-S excretion. If applicable to other species, the technique would facilitate more research on the evolutionary origin of adrenarche and other developmental processes.

  8. Development and growth of ontogenetically migrating copepods during the spring phytoplankton bloom in the Oyashio region

    NASA Astrophysics Data System (ADS)

    Kobari, T.; Ueda, A.; Nishibe, Y.

    2010-09-01

    We have evaluated development and growth of the ontogenetically migrating copepods in the northwestern subarctic Pacific by frequent sampling and by molting rate experiments during the spring phytoplankton bloom. Since different water masses frequently moved into the surface layers at our sampling station, the copepod abundance and species composition fluctuated greatly. Early copepodite stages of Eucalanus bungii and Neocalanus plumchrus appeared abundantly when a warmer and more saline water mass was present. Despite the fluctuating temporal pattern, the population structure revealed that each copepod species had a different life history strategy during the bloom. Eucalanus bungii were in the stages of gonad maturation, spawning and naupliar development when chlorophyll a concentrations were high. The phytoplankton bloom was utilized for development and lipid accumulation by late copepodites of Neocalanus cristatus and Neocalanus flemingeri and for development of nauplii and early copepodites of N. plumchrus. Molting experiments showed that carbon weight of 'molters' in the incubations was greater than that of 'non-molters', indicating that primarily animals with heavier body weight are those that molt into the next stage. Mean stage durations estimated by the molting rate method were on the order of 9.7 (C3) to 16.6 days (C4) for N. flemingeri, 13.9 (C3) to 29.1 days (C4) for N. plumchrus, and 12.2 days (C2) for E. bungii. Large fluctuations were observed for stage duration estimates, suggesting different development histories (i.e. ages-within-stage distributions) among the replicate incubations. From these results, we discuss development and growth of the ontogenetically migrating copepods during strongly fluctuating hydrographic conditions in the Oyashio.

  9. Ontogenetic Scaling of Fore- and Hind Limb Posture in Wild Chacma Baboons (Papio hamadryas ursinus)

    PubMed Central

    Patel, Biren A.; Horner, Angela M.; Thompson, Nathan E.; Barrett, Louise; Henzi, S. Peter

    2013-01-01

    Large-scale interspecific studies of mammals ranging between 0.04–280 kg have shown that larger animals walk with more extended limb joints. Within a taxon or clade, however, the relationship between body size and joint posture is less straightforward. Factors that may affect the lack of congruence between broad and narrow phylogenetic analyses of limb kinematics include limited sampling of (1) ranges of body size, and/or (2) numbers of individuals. Unfortunately, both issues are inherent in laboratory-based or zoo locomotion research. In this study, we examined the relationship between body mass and elbow and knee joint angles (our proxies of fore- and hind limb posture, respectively) in a cross-sectional ontogenetic sample of wild chacma baboons (Papio hamadryas ursinus) habituated in the De Hoop Nature Reserve, South Africa. Videos were obtained from 33 individuals of known age (12 to ≥108 months) and body mass (2–29.5 kg) during walking trials. Results show that older, heavier baboons walk with significantly more extended knee joints but not elbow joints. This pattern is consistent when examining only males, but not within the female sample. Heavier, older baboons also display significantly less variation in their hind limb posture compared to lighter, young animals. Thus, within this ontogenetic sample of a single primate species spanning an order of magnitude in body mass, hind limb posture exhibited a postural scaling phenomenon while the forelimbs did not. These findings may further help explain 1) why younger mammals (including baboons) tend to have relatively stronger bones than adults, and 2) why humeri appear relatively weaker than femora (in at least baboons). Finally, this study demonstrates how field-acquired kinematics can help answer fundamental biomechanical questions usually addressed only in animal gait laboratories. PMID:23923046

  10. Ontogenetic criteria to distinguish vertebral types on the debated xenarthran synsacrum.

    PubMed

    Galliari, Fernando C; Carlini, Alfredo A

    2015-05-01

    The presence of a synsacrum formed by the fusion of vertebrae that come into closed contact with the ilium and ischium is a feature that characterizes the clade Xenarthra. Nevertheless, the proper identity of each vertebral element that forms it is a matter of discussion. In this article, we provide ontogenetic information about skeletal ossification of the xenarthran synsacrum and define the position of the sacrocaudal limit within it. We analyzed the synsacrum of 25 specimens of nonadult and 101 adult armadillos and anteaters: Dasypus hybridus, D. novemcinctus, Chaetophractus vellerosus, C. villosus, Tamandua tetradactyla, and Myrmecophaga tridactyla. Two sets of vertebrae were identified: an anterior set, often attached to the iliac bones, in which transverse processes are originated mainly from an expansion of the base of the neural arches, and secondarily from a lateroventral ossification center. A posterior set is characterized by a series of vertebrae along which extra lateral ossifications (described here for the first time) are developed and form exclusively the transverse processes. Among armadillos, the sacrocaudal limit is set between the last vertebrae attached to the iliac bones and the first vertebrae that form the dorsal border of the sacroischial fenestra. In addition, anterior free caudals also showed extra lateral ossifications forming exclusively the transverse processes, supporting the notion that more posterior synsacrals are in fact caudal vertebrae that were incorporated to the synsacrum. In pilosans, the sacrocaudal limit is set between the first vertebrae that come into contact with the ischial bones and the immediately anterior one. However, the pattern of homologies is obscured by the low resolution in the ontogenetic sequence when compared to that of armadillos.

  11. Gout Diet

    MedlinePlus

    ... to lower levels of uric acid. A little history Gout has been associated for centuries with overindulgence ... nutrition-and-healthy-eating/in-depth/gout-diet/art-20048524 . Mayo Clinic Footer Legal Conditions and Terms ...

  12. Diet & Nutrition

    MedlinePlus

    ... Omega-3 Publication Diet and MS Research Review Paper With increasing interest in the possible role of ... for people with MS. A recent research review paper by Pavan Bhargava, MD, provides information and current ...

  13. On the nymphs of lantana lace bug Teleonemia scrupulosa Stål (Hemiptera: Heteroptera: Tingidae: Tinginae): ontogenetic features of integumentary structures highlighted.

    PubMed

    Guidoti, Marcus; Barcellos, Aline

    2013-02-11

    The five instars of Teleonemia scrupulosa Stål are described. The postembryonic ontogenetic development of integumentary structures is emphasized, with a discussion on its potential use in cladistic studies within Tingidae.

  14. ShiftDetector: detection of shift mutations.

    PubMed

    Seroussi, Eyal; Ron, Micha; Kedra, Darek

    2002-08-01

    Sequencing of a bi-allelic PCR product, which contains an allele with a deletion/insertion mutation results in a superimposed tracefile following the site of this shift mutation. A trace file of this type hampers the use of current computer programs for base calling. ShiftDetector analyses a sequencing trace file in order to discover if it is a superimposed sequence of two molecules that differ in a shift mutation of 1 to 25 bases. The program calculates a probability score for the existence of such a shift and reconstructs the sequence of the original molecule. ShiftDetector is available from http://cowry.agri.huji.ac.il

  15. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study

    PubMed Central

    Bonnell, Emily K.; Huggins, Catherine E.; Huggins, Chris T.; McCaffrey, Tracy A.; Palermo, Claire; Bonham, Maxine P.

    2017-01-01

    Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups (n = 41) were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls (n = 19). Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day) did not differ between days that included a day or night shift but greater energy density (EDenergy, kJ/g/day) of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted. PMID:28245625

  16. Influences on Dietary Choices during Day versus Night Shift in Shift Workers: A Mixed Methods Study.

    PubMed

    Bonnell, Emily K; Huggins, Catherine E; Huggins, Chris T; McCaffrey, Tracy A; Palermo, Claire; Bonham, Maxine P

    2017-02-26

    Shift work is associated with diet-related chronic conditions such as obesity and cardiovascular disease. This study aimed to explore factors influencing food choice and dietary intake in shift workers. A fixed mixed method study design was undertaken on a convenience sample of firefighters who continually work a rotating roster. Six focus groups (n = 41) were conducted to establish factors affecting dietary intake whilst at work. Dietary intake was assessed using repeated 24 h dietary recalls (n = 19). Interviews were audio recorded, transcribed verbatim, and interpreted using thematic analysis. Dietary data were entered into FoodWorks and analysed using Wilcoxon signed-rank test; p < 0.05 was considered significant. Thematic analysis highlighted four key themes influencing dietary intake: shift schedule; attitudes and decisions of co-workers; time and accessibility; and knowledge of the relationship between food and health. Participants reported consuming more discretionary foods and limited availability of healthy food choices on night shift. Energy intakes (kJ/day) did not differ between days that included a day or night shift but greater energy density (EDenergy, kJ/g/day) of the diet was observed on night shift compared with day shift. This study has identified a number of dietary-specific shift-related factors that may contribute to an increase in unhealthy behaviours in a shift-working population. Given the increased risk of developing chronic diseases, organisational change to support workers in this environment is warranted.

  17. Alternative diets.

    PubMed

    Berschneider, Helen M

    2002-02-01

    As pet owners become more conscious of their own diets and the impact it has on their health, they naturally become more interested in what their animal companions are eating and how that might be affecting their pet's health. Many are exploring alternatives to standard commercial pet foods, and some are asking their veterinarians for advice. Small-animal nutrition is an ever-changing field. What veterinarians were taught 10 years ago may no longer be sound advice. This article explores some of the reasoning behind the development of both conventional commercial pet foods and the alternative foods and diets. It questions some of the conventional dogma as well as some of the trendy assumptions in the current marketplace. The intent is to provide the veterinarian with some balanced information on which to base nutritional advice to clients, and to begin forming new opinions or at least asking new questions. Guidelines on formulating a homemade diet for dogs are included.

  18. Comparative ontogenetic development of two marine teleosts, gilthead seabream and European sea bass: New insights into nutrition and immunity.

    PubMed

    Cordero, Héctor; Guzmán-Villanueva, Laura T; Chaves-Pozo, Elena; Arizcun, Marta; Ascencio-Valle, Felipe; Cuesta, Alberto; Esteban, María A

    2016-12-01

    Gilthead seabream and European sea bass are two of the most commonly farmed fish species. Larval development is critical to ensure high survival rates and thus avoid unacceptable economic losses, while nutrition and immunity are also important factors. For this reason this paper evaluates the ontogenetic development of seabream and sea bass digestive and immune systems from eggs to 73 days post-fertilisation (dpf) by assessing the expression levels of some nutrition-relevant (tryp, amya, alp and pept1) and immune-relevant (il1b, il6, il8, tnfa, cox2, casp1, tf, nccrp1, ighm and ight) genes. The results point to similar ontogenetic development trends for both species as regard nutrition and differences in some immunity related genes.

  19. Prolixus (Acari: Trombidiformes: Tenuipalpidae) newly recorded from New Zealand: A new species from Cyperaceae and its ontogenetic patterns in chaetotaxy.

    PubMed

    Xu, Yun; Zhang, Zhi-Qiang

    2014-12-19

    The genus Prolixus (Acari: Tenuipalpidae) was represented by two species from Australian sedges prior to this study. A new species, Prolixus meyerae sp. nov., is here described and illustrated from leaves of Gahnia (Cyperaceae) in Auckland, New Zealand. In this paper, we present the ontogenetic additions in idiosomal and leg chaetotaxy from larva to adult. A key to world species of Prolixus is also proposed.

  20. The interplay between phenotypic and ontogenetic plasticities can be assessed using reaction-diffusion models : The case of Pseudoplatystoma fishes.

    PubMed

    Ledesma-Durán, Aldo; Juárez-Valencia, Lorenzo-Héctor; Morales-Malacara, Juan-Bibiano; Santamaría-Holek, Iván

    2017-06-01

    Every morphological, behavioral, or even developmental character expression of living beings is coded in its genotype and is expressed in its phenotype. Nevertheless, the interplay between phenotypic and ontogenetic plasticities, that is, the capability to manifest trait variations, is a current field of research that needs morphometric, numerical, or even mathematical modeling investigations. In the present work, we are searching for a phenotypic index able to identify the underlying correlation among phenotypic, ontogenetic, and geographic distribution of the evolutionary development of species of the same genus. By studying the case of Pseudoplatystoma fishes, we use their skin patterns as an auxiliary trait that can be reproduced by means of a reaction diffusion (RD) model. From this model, we infer the phenotypic index in terms of one of the parameters appearing in the mathematical equations. To achieve this objective, we perform extensive numerical simulations and analysis of the model equations and link the parameter variations with different environmental and physicochemical conditions in which the individuals develop, and which may be regulated by the ontogenetic plasticity of the species. Our numerical study indicates that the patterns predicted by a set of reaction diffusion equations are not uniquely determined by the value of the parameters of the equation, but also depend on how the process is initiated and on the spatial distribution of values of these parameters. These factors are therefore significant, since they show that an individual's growth dynamics and apparent secondary transport processes, like advection, can be determinant for the alignment of motifs in a skin pattern. Our results allow us to discern the correlation between phenotypic, ontogenetic, and geographic distribution of the different species of Pseudoplatystoma fishes, thus indicating that RD models represent a useful taxonomic tool able to quantify evolutionary indexes.

  1. Ontogenetic change of body color patterns in laboratory-raised juveniles of six terrestrial hermit crab species.

    PubMed

    Hamasaki, Katsuyuki; Tsuru, Takuma; Sanda, Tetsuya; Fujikawa, Shunsuke; Dan, Shigeki; Kitada, Shuichi

    2017-01-30

    We examined the ontogenetic change of body color patterns in the laboratory-raised juveniles of six terrestrial hermit crab species, including Birgus latro, Coenobita brevimanus, C. cavipes, C. purpureus, C. rugosus, and C. violascens, which commonly occur in the southern islands, Japan. The body color patterns of coenobitid juveniles were species-specific. The diagnostic features of body color patterns enable identification of juveniles of coenobitid crab species in the wild, thereby helping to understand the precise habitats of each coenobitid species.

  2. Brief communication: Endocranial volumes in an ontogenetic sample of chimpanzees from the Taï Forest National Park, Ivory Coast.

    PubMed

    Neubauer, Simon; Gunz, Philipp; Schwarz, Uta; Hublin, Jean-Jacques; Boesch, Christophe

    2012-02-01

    Ontogenetic samples of endocranial volumes (EVs) from great apes and humans are critical for understanding the evolution of the brain growth pattern in the hominin lineage. However, high quality ontogenetic data are scarce, especially for nonhuman primates. Here, we provide original data derived from an osteological collection of a wild population of Pan troglodytes verus from the Taï Forest National Park, Ivory Coast. This sample is unique, because age, sex, and pedigree information are available for many specimens from behavioral observations in the wild. We scanned crania of all 30 immature specimens and 13 adult individuals using high-resolution computed tomography. We then created virtual casts of the bony braincase (endocasts) to measure EVs. We also measured cranial length, width, and height and attempted to relate cranial distances to EV via regression analysis. Our data are consistent with previous studies. The only neonate in the sample has an EV of 127 cm(3) or 34% of the adult mean. EV increases rapidly during early ontogeny. The average adult EV in this sample is 378.7 ± 30.1 cm(3) . We found sexual dimorphism in adults; males seem to be already larger than females before adult EV is attained. Regressions on cranial width and multiple regression provide better estimates for EV than regressions on cranial length or height. Increasing the sample size and compiling more high quality ontogenetic data of EV will help to reconcile ongoing discussions about the evolution of hominin brain growth. Copyright © 2011 Wiley Periodicals, Inc.

  3. Postnatal ontogenetic size and shape changes in the craniums of plateau pika and woolly hare (Mammalia: Lagomorpha).

    PubMed

    Zhang, Zhi-Gui; Ge, De-Yan

    2014-07-01

    In the present study, postnatal ontogenetic size and shape changes in the cranium of two lagomorph species, the plateau pika (Ochotona curzoniae) and woolly hare (Lepus oiostolus), were investigated by geometric morphometrics. The ontogenetic size and shape changes of their cranium exhibited different growth patterns in response to similar environmental pressures on the Qinghai-Tibetan Plateau. The overall size change in the cranium of the plateau pika was slower than that of the woolly hare. The percentage of ontogenetic shape variance explained by size in the woolly hare was greater than that in the plateau pika. The overall shape of the cranium was narrowed in both species, and morphological components in relation to neural maturity showed negative allometry, while those responsible for muscular development showed isometric or positive allometry. The most remarkable shape variations in the plateau pika were associated with food acquisition (temporalis development), though other remarkable shape variations in the incisive and palatal foramen in the ventral view were also observed. The most important shape change in the woolly hare was demonstrated by the elongation of the nasal bones, expansion of the supra-orbital process and shape variation of the neurocranium.

  4. Postnatal ontogenetic size and shape changes in the craniums of plateau pika and woolly hare (Mammalia: Lagomorpha)

    PubMed Central

    Zhi-Gui, ZHANG; De-Yan, GE

    2014-01-01

    In the present study, postnatal ontogenetic size and shape changes in the cranium of two lagomorph species, the plateau pika (Ochotona curzoniae) and woolly hare (Lepus oiostolus), were investigated by geometric morphometrics. The ontogenetic size and shape changes of their cranium exhibited different growth patterns in response to similar environmental pressures on the Qinghai-Tibetan Plateau. The overall size change in the cranium of the plateau pika was slower than that of the woolly hare. The percentage of ontogenetic shape variance explained by size in the woolly hare was greater than that in the plateau pika. The overall shape of the cranium was narrowed in both species, and morphological components in relation to neural maturity showed negative allometry, while those responsible for muscular development showed isometric or positive allometry. The most remarkable shape variations in the plateau pika were associated with food acquisition (temporalis development), though other remarkable shape variations in the incisive and palatal foramen in the ventral view were also observed. The most important shape change in the woolly hare was demonstrated by the elongation of the nasal bones, expansion of the supra-orbital process and shape variation of the neurocranium. PMID:25017747

  5. Ontogenetic variation in the bony labyrinth of Monodelphis domestica (Mammalia: Marsupialia) following ossification of the inner ear cavities.

    PubMed

    Ekdale, Eric G

    2010-11-01

    Ontogeny, or the development of an individual from conception to death, is a major source of variation in vertebrate morphology. All anatomical systems are affected by ontogeny, and knowledge of the ontogenetic history of these systems is important to understand when formulating biological interpretations of evolutionary history and physiology. The present study is focused on how variation affects the bony labyrinth across a growth series of an extant mammal after ossification of the inner ear chambers. Digital endocasts of the bony labyrinth were constructed using CT data across an ontogenetic sequence of Monodelphis domestica, an important experimental animal. Various aspects of the labyrinth were measured, including angles between the semicircular canals, number of turns of the cochlea, volumes of inner ear constituents, as well as linear dimensions of semicircular canals. There is a strong correlation between skull length and age, but from 27 days after birth onward, there is no correlation with age among most of the inner ear measurements. Exceptions are the height of the arc of the lateral semicircular canal, the angular deviation of the lateral canal from planarity, the length of the slender portion of the posterior semicircular canal, and the length of the canaliculus cochleae. Adult dimensions of several of the inner ear structures, such as the arcs of the semicircular canals, are achieved before the inner ear is functional, and the non-ontogenetic variation in the bony labyrinth serves as an important source for behavioral, physiological, and possibly phylogenetic information.

  6. Acne and diet.

    PubMed

    Wolf, Ronni; Matz, Hagit; Orion, Edith

    2004-01-01

    Forbidden foods? "The first law of dietetics seems to be: If it tastes good, it's bad for you" (Isaac Asimov, Russian-born biochemist and science fiction writer). This was essentially the Magna Carta for dermatologists of the 1950s: anything coveted by the teenage palate was suspect for morning after acne. Today, half a century later, although the slant has shifted away for this line of thinking in our dermatologic textbooks, several articles on the beliefs and perceptions of acne patients showed that nothing much has changed and that they expect us to give them detailed instructions of what "acne-related" foods they should avoid. In one such study(1), diet was the third most frequently implicated factor (after hormones and genetics) as the cause of the disease, with 32% of the respondents selecting diet as the main cause, and 44% thinking that foods aggravate acne. In another study that analyzed knowledge about causes of acne among English teenagers, 11% of the responders blamed greasy food as the main cause of the disease(2), whereas in another study found that 41% of final-year medical students of the University of Melbourne chose diet as an important factor of acne exacerbation on a final examination.(3)

  7. Ontogenetic change in the lipid and fatty acid composition of scleractinian coral larvae

    NASA Astrophysics Data System (ADS)

    Figueiredo, J.; Baird, A. H.; Cohen, M. F.; Flot, J.-F.; Kamiki, T.; Meziane, T.; Tsuchiya, M.; Yamasaki, H.

    2012-06-01

    Some scleractinian coral larvae have an extraordinary capacity to delay metamorphosis, and this is reflected in the large geographic range of many species. Coral eggs typically contain a high proportion of wax esters, which have been hypothesized to provide a source of energy for long-distance dispersal. To better understand the role of lipids in the dispersal of broadcast spawning coral larvae, ontogenetic changes in the lipid and fatty acid composition of Goniastrea retiformis were measured from the eggs until larvae were 30 days old. Egg biomass was 78.8 ± 0.5% lipids, 86.3 ± 0.2% of which were wax esters, 9.3 ± 0.0% polar lipids, 4.1 ± 0.2% sterols, and 0.3 ± 0.1% triacylglycerols. The biomass of wax esters declined significantly through time, while polar lipids, sterols and triacylglycerols remained relatively constant, suggesting that wax esters are the prime source of energy for development. The most prevalent fatty acid in the eggs was palmitic acid, a marker of the dinoflagellate Symbiodinium, highlighting the importance of symbiosis in coral reproductive ecology. The proportion of polyunsaturated fatty acids declined through time, suggesting that they are essential for larval development. Interestingly, triacylglycerols are only abundant in the propagules that contain Symbiodinium, suggesting important differences in the energetic of dispersal among species with vertical and horizontal transmission of symbionts.

  8. Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation.

    PubMed

    Voitsekhovskaja, O V; Tyutereva, E V

    2015-09-15

    Chlorophyll b (Chlb) is an antenna chlorophyll. The binding of Chlb by antenna proteins is crucial for the correct assembly of the antenna complexes in thylakoid membranes. Since the levels of the proteins of major and minor antenna are affected to different extents by Chlb binding, the availability of Chlb influences the composition and the size of antenna complexes which in turn determine the supramolecular organization of the thylakoid membranes in grana. Therefore, Chlb synthesis levels have a major impact on lateral mobility and diffusion of membrane molecules, and thus affect not only light harvesting and thermal energy dissipation processes, but also linear electron transport and repair processes in grana. Furthermore, in angiosperms Chlb synthesis affects plant functions beyond chloroplasts. First, the stability of pigment-protein complexes in the antennae, which depends on Chlb, is an important factor in the regulation of plant ontogenesis, and Chlb levels were recently shown to influence plant ontogenetic signaling. Second, the amounts of minor antenna proteins in chloroplasts, which depend on the availability of Chlb, were recently shown to affect ABA levels and signaling in plants. These mechanisms can be examined in mutants where Chlb synthesis is reduced or abolished. The dramatic effects caused by the lack of Chlb on plant productivity are interpreted in this review in light of the pleiotropic effects on photosynthesis and signaling, and the potential to manipulate Chlb biosynthesis for the improvement of crop production is discussed.

  9. Manganese-induced oxidative stress in two ontogenetic stages of chamomile and amelioration by nitric oxide.

    PubMed

    Kováčik, Jozef; Babula, Petr; Hedbavny, Josef; Švec, Pavel

    2014-02-01

    Impact of manganese (Mn(2+)) excess (100, 500 and 1000 μM over 7 days) on two ontogenetic stages (7-week-old plants and 7-day-old seedlings) of Matricaria chamomilla was compared. Mn excess depressed growth of seedlings (but not germination) and stimulated oxidative stress (ROS and lipid peroxidation) in both plants and seedlings. Growth inhibition could be evoked by higher Mn uptake and higher translocation factor in seedlings than in plants. Total thiols staining revealed elevation in almost all treatments. In 7-week-old plants, activity of peroxidases increased slightly and rather decreased under high Mn doses. Superoxide rather than hydrogen peroxide contributed to visualized ROS presence. Fluorescence of nitric oxide (NO) showed stimulation in plants but decrease in seedlings. Impact of exogenous nitric oxide donor (sodium nitroprusside/SNP) was therefore tested and results showed amelioration of 1000 μM Mn-induced oxidative stress in seedlings (decrease in H2O2 and increase in NO content while antioxidative enzyme activities were variably affected) concomitantly with depleted Mn accumulation. It is concluded that NO participates in tolerance to Mn excess but negative effects of the highest SNP dose were also observed. Extensive fluorescence microscopy is also explanatively discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. [On filo- and ontogenetic development of dopaminergic regylation of wakefulness-sleep cycle in vertabrates].

    PubMed

    Oganesian, G A; Aristakesian, E A; Romanova, I V; Vataev, S I; Kuzik, V V

    2012-10-01

    The comparative immunohistochemical researches of dofamine containing neurons and fibers are carried uot in telencephalic and diencephalic departments of the brain in different vertebratts (adults rats, rats aged 14 and 30 days and frogs). For analysis of quantitative changes dynamics in thyrozinhydroxylase, D1 and D2 immunoreactive material in sleep-wakefulness cycle the model of sleepdeprivation is used. There are found the facts of morphofunctional correlations in the reactions of dophaminergic system during ontogeny and phylogeny. Besides, the pharmacological effects of dofamine agonist and antagonists on the sleep-wakefulness cycle in young rats and in frogs are shown. So, dopamine and its agonist apomorphine increase in sleep-wakefulness cycle duration of sleep-like state ofcataplexy (homolog of the sleep) in frogs, in 30-day-old rats it increase the share of wakefulness and catalepsy. D1 receptors antagonist (SCH 23390) adminisrated to frogs, caused increase of wakefulness and catatonic type states duration, where as D2 receptors antagonist (apomorphine) increased cataleptic condition. Administration of dopamine antagonist (haloperidol) to 30-day-old rats previously causes the increase of cataleptic state, after which the slow wave sleep state is enhanced. The questions of phylo-, ontogenetic formation of dopaminergic system regulating role in sleep-wakefulness cycle, when transition mainly from neurosecretory diencephalic influences of dophamine to the mainly neurotransmittory functins of telencephalic regions occured, is discussed.

  11. Ontogenetic cell death and phagocytosis in the visual system of vertebrates.

    PubMed

    Francisco-Morcillo, Javier; Bejarano-Escobar, Ruth; Rodríguez-León, Joaquín; Navascués, Julio; Martín-Partido, Gervasio

    2014-10-01

    Programmed cell death (PCD), together with cell proliferation, cell migration, and cell differentiation, is an essential process during development of the vertebrate nervous system. The visual system has been an excellent model on which to investigate the mechanisms involved in ontogenetic cell death. Several phases of PCD have been reported to occur during visual system ontogeny. During these phases, comparative analyses demonstrate that dying cells show similar but not identical spatiotemporally restricted patterns in different vertebrates. Additionally, the chronotopographical coincidence of PCD with the entry of specialized phagocytes in some regions of the developing vertebrate visual system suggests that factors released from degenerating cells are involved in the cell migration of macrophages and microglial cells. Contradicting this hypothesis however, in many cases the cell corpses generated during degeneration are rapidly phagocytosed by neighboring cells, such as neuroepithelial cells or Müller cells. In this review, we describe the occurrence and the sites of PCD during the morphogenesis and differentiation of the retina and optic pathways of different vertebrates, and discuss the possible relationship between PCD and phagocytes during ontogeny. Copyright © 2014 Wiley Periodicals, Inc.

  12. Ontogenetic development of magnetic compass orientation in domestic chickens (Gallus gallus).

    PubMed

    Denzau, Susanne; Nießner, Christine; Rogers, Lesley J; Wiltschko, Wolfgang

    2013-08-15

    Domestic chickens (Gallus gallus) can be trained to search for a social stimulus in a specific magnetic direction, and cryptochrome 1a, found in the retina, has been proposed as a receptor molecule mediating magnetic directions. The present study combines immuno-histochemical and behavioural data to analyse the ontogenetic development of this ability. Newly hatched chicks already have a small amount of cryptochrome 1a in their violet cones; on day 5, the amount of cryptochrome 1a reached the same level as in adult chickens, suggesting that the physical basis for magnetoreception is present. In behavioural tests, however, young chicks 5 to 7 days old failed to show a preference of the training direction; on days 8, 9 and 12, they could be successfully trained to search along a specific magnetic axis. Trained and tested again 1 week later, the chicks that had not shown a directional preference on days 5 to 7 continued to search randomly, while the chicks tested from day 8 onward preferred the correct magnetic axis when tested 1 week later. The observation that the magnetic compass is not functional before day 8 suggests that certain maturation processes in the magnetosensitive system in the brain are not yet complete before that day. The reasons why chicks that have been trained before that day fail to learn the task later remain unclear.

  13. Ontogenetic allometry in the thoracolumbar spine of mammal species with differing gait use.

    PubMed

    Jones, Katrina E; German, Rebecca Z

    2014-03-01

    Vertebrae are serially homologous structures with tight integration through their evolution and development. However, in mammals, the thoracic and lumbar regions are morphologically and functionally differentiated. We test the hypothesis that locomotor specialization is associated with altered post-natal growth patterns in vertebrae from different vertebral regions. We use longitudinal data to examine thoracolumbar growth in two specialized half-bounding (Oryctolagus cuniculus and Chinchilla lanigera) and two non-specialized (Cavia porcellus and Monodelphis domestica) species with similar body sizes. Lateral X-rays of 38 individuals were the source of centrum length, centrum height and intervertebral space length measures for 19-20 thoracolumbar vertebrae. The repeated measurements design included the same individuals soon after birth and again at adult size. Data from columns with different vertebral counts were compared by either summing (length) or averaging (height) within regions, and individual vertebrae were directly compared at the first and last five vertebral positions. Specialized half-bounders had longer lumbar regions than generalists, which was attributable to positively allometric growth of the lumbar centra. Lumbar centrum length was more variable both ontogenetically and interspecifically than the other variables, suggesting heterochrony may be generating lumbar variation. Craniocaudal patterns of centrum growth correlate with expression of regionalizing genes (i.e., Hox).

  14. Large ontogenetic declines in intra-crown leaf area index in two temperate deciduous tree species.

    PubMed

    Nock, C A; Caspersen, J P; Thomas, S C

    2008-03-01

    The widespread occurrence of age-related changes in leaf morphology and allocation suggests that the leaf area index of individual trees (intra-crown LAI) may decline late in ontogeny. We used direct, within-canopy measurements to quantify the LAI of canopy trees with exposed crowns of two temperate deciduous species. Intra-crown LAI declined from approximately 7 to 4 in Acer saccharum, and from approximately 9.5 to 6.5 in Betula alleghaniensis, as tree size increased (from 15 to 72 cm diameter at breast height [dbh]). For A. saccharum, age (which varied from 30 to 160 years) was a significantly better predictor of LAI decline than dbh. We also modeled the effect of ontogenetic declines in LAI on understory light availability and found that light transmission increases significantly as canopy trees grow and mature. Our results thus suggest that gradual declines in LAI with tree age may play an important and overlooked role in contributing to the heterogeneity of sub-canopy light regimes in mature forests.

  15. Ontogenetic adaptations in the visual systems of deep-sea crustaceans.

    PubMed

    Frank, Tamara M

    2017-04-05

    For all visually competent organisms, the driving force behind the adaptation of photoreceptors involves obtaining the best balance of resolution to sensitivity in the prevailing light regime, as an increase in sensitivity often results in a decrease in resolution. A number of marine species have an additional problem to deal with, in that the juvenile stages live in relatively brightly lit shallow (100-200 m depth) waters, whereas the adult stages have daytime depths of more than 600 m, where little downwelling light remains. Here, I present the results of electrophysiological analyses of the temporal resolution and irradiance sensitivity of juvenile and adult stages of two species of ontogenetically migrating crustaceans (Gnathophausia ingens and Systellaspis debilis) that must deal with dramatically different light environments and temperatures during their life histories. The results demonstrate that there are significant effects of temperature on temporal resolution, which help to optimize the visual systems of the two life-history stages for their respective light environments.This article is part of the themed issue 'Vision in dim light'.

  16. Measurement error of 3D cranial landmarks of an ontogenetic sample using Computed Tomography

    PubMed Central

    Barbeito-Andrés, Jimena; Anzelmo, Marisol; Ventrice, Fernando; Sardi, Marina L.

    2012-01-01

    Background/Aim Computed Tomography (CT) is a powerful tool in craniofacial research that focuses on morphological variation. In this field, an ontogenetic approach has been taken to study the developmental sources of variation and to understand the basis of morphological evolution. This work aimed to determine measurement error (ME) in cranial CT in diverse developmental stages and to characterize how this error relates to different types of landmarks. Material and methods We used a sample of fifteen skulls ranging from 0 to 31 years. Two observers placed landmarks in each image three times. Measurement error was assessed before and after Generalized Procrustes Analysis. Results The results indicated that ME is larger in neurocranial structures, which are described mainly by type III landmarks and semilandmarks. In addition, adult and infant specimens showed the same level of ME. These results are specially relevant in the context of craniofacial growth research. Conclusion CT images have become a frequent evidence to study cranial variation. Evaluation of ME gives insight into the potential source of error in interpreting results. Neural structures present higher ME which is mainly associated to landmark localization. However, this error is irrespective of age. If landmarks are correctly selected, they can be analyzed with the same level of reliability in adults and subadults. PMID:25737840

  17. Ontogenetic scaling of the humerus in sea turtles and its implications for locomotion.

    PubMed

    Nishizawa, Hideaki; Asahara, Masakazu; Kamezaki, Naoki

    2013-03-01

    In the present study, we analyzed the ontogenetic scaling of humeri in the green turtle (Chelonia mydas) and loggerhead turtle (Caretta caretta). Green turtles have relatively thicker humeri than loggerhead turtles, indicating that the humerus of the green turtle can resist greater loads. Our results are consistent with isometry, or slightly negative allometry, of diameter in relation to length of the humerus in both species. Geometric similarity or isometry of the humerus in relation to body mass is supported by estimates of the cross-sectional properties of green turtles. Sea turtles are adapted for aquatic life, but also perform terrestrial locomotion. Thus, during terrestrial locomotion, which requires support against gravity, the observed scaling relationships indicate that there may be greater stress and fracture risk on the humeri of larger green turtles than on the humeri of smaller turtles. In aquatic habitats, in which limbs are mainly used for propulsion, the stress and fracture risk for green turtle humeri are estimated to increase with greater speed. This scaling pattern may be related to the possibility that smaller turtles swim at a relatively faster speed per body length.

  18. Ontogenetic differences in heterostylous plants and implications for development from a herkogamous ancestor.

    PubMed

    Faivre, A E

    2000-06-01

    Alternative ontogenetic pathways among heterostylous species of Rubiaceae may reflect differences in their evolutionary histories. In this study, measurements were taken at different developmental stages on a series of long-styled (LS) and short-styled (SS) buds of the heterostylous taxa Psychotria chiapensis, P. poeppigiana, and Bouvardia ternifolia (all Rubiaceae). Results indicated that modifications in growth rates of stamens relative to corollas in all three species led to differences in anther heights between LS and SS flowers. Distinct style heights for LS and SS flowers of P. chiapensis and P. poeppigiana originate in the earlier stages of bud development and are maintained as styles elongate at equal rates. This contrasts with B. ternifolia, which has differences in style heights resulting from unequal relative growth rates between floral morphs. The "approach herkogamous" floral morphology, defined by having stigmas positioned above anthers, has been proposed as a potential evolutionary precursor for heterostylous taxa. To examine this hypothesis, floral development of two species with approach herkogamous morphologies, Psychotria pittieri and P. brachiata, was compared to that of the three heterostylous taxa. Differences in the relative rates of style elongation for flowers of approach herkogamous versus heterostylous species predict additional steps in the original model for the evolution of heterostyly from an approach herkogamous ancestor. The diversity of heterostylous ontogenies found within Rubiaceae provides insight into potential evolutionary pathways for this sexual system in other angiosperm families.

  19. Regional, ontogenetic, and sex-related variations in elastic properties of cortical bone in baboon mandibles

    PubMed Central

    Wang, Qian; Ashley, Dennis W.; Dechow, Paul C.

    2010-01-01

    Understanding the mechanical features of cortical bone and their changes with growth and adaptation to function plays an important role in our ability to interpret the morphology and evolution of craniofacial skeletons. We assessed the elastic properties of cortical bone of juvenile and adult baboon mandibles using ultrasonic techniques. Results showed that, overall, cortical bone from baboon mandibles could be modeled as an orthotropic elastic solid. There were significant differences in the directions of maximum stiffness, thickness, density, and elastic stiffness among different functional areas, indicating regional adaptations. After maturity, the cortical bone becomes thicker, denser, and stiffer, but less anisotropic. There were differences in elastic properties of the corpus and ramus between male and female mandibles which are not observed in human mandibles. There were correlations between cortical thicknesses and densities, between bone elastic properties and microstructural configuration, and between the directions of maximum stiffness and bone anatomical axes in some areas. The relationships between bone extrinsic and intrinsic properties bring us insights into the integration of form and function in craniofacial skeletons and suggest that we need to consider both macroscopic form, microstructural variation, and the material properties of bone matrix when studying the functional properties and adaptive nature of the craniofacial skeleton in primates. The differences between baboon and human mandibles is at variance to the pattern of differences in crania, suggesting differences in bone adaption to varying skeletal geometries and loading regimes at both phylogenetic and ontogenetic levels. PMID:19927280

  20. Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning.

    PubMed

    Barbosa, Alexandra; Mäthger, Lydia M; Chubb, Charles; Florio, Christopher; Chiao, Chuan-Chin; Hanlon, Roger T

    2007-04-01

    Among the changeable camouflage patterns of cuttlefish, disruptive patterning is shown in response to certain features of light objects in the visual background. However, whether animals show disruptive patterns is dependent not only on object size but also on their body size. Here, we tested whether cuttlefish (Sepia officinalis) are able to match their disruptive body patterning with increasing size of background objects as they grow from hatchling to adult size (0.7 to 19.6 cm mantle length; factor of 28). Specifically, do cuttlefish have a single ;visual sampling rule' that scales accurately during ontogeny? For each of seven size classes of cuttlefish, we created black and white checkerboards whose check sizes corresponded to 4, 12, 40, 120, 400 and 1200% of the area of the cuttlefish's White square, which is a neurophysiologically controlled component of the skin. Disruptive body patterns were evoked when, regardless of animal size, the check size measured either 40 or 120% of the area of the cuttlefish's White square, thus demonstrating a remarkable ontogenetic conformity to a single visual sampling rule. Cuttlefish have no known visual feedback loop with which to adjust their skin patterns. Since the area of a cuttlefish's White square skin component is a function of body size, our results indicate that cuttlefish are solving a visual scaling problem of camouflage presumably without visual confirmation of the size of their own skin component.

  1. Changes of motor abilities during ontogenetic development in Lurcher mutant mice.

    PubMed

    Markvartová, V; Cendelín, J; Vozeh, F

    2010-07-14

    Lurcher mutant mice represent a natural model of olivocerebellar degeneration. This degeneration is caused by a mutation of the gene for the delta2 glutamate receptor. Lurcher mutants suffer from cerebellar ataxia and cognitive functions deficiency as a consequence of excitotoxic apoptosis of Purkinje cells in the cerebellar cortex and a secondary decrease of granule cells and inferior olive neurons. This process finishes by the 90th day of postnatal life, but already by 14 days, the Purkinje cells are damaged and the ataxia is fully developed. Purkinje cells die by apoptosis within the first 3 weeks of life. The aim of our work was to study the development of motor functions in the course of the ontogenetic development in Lurcher mutant mice of the B6CBA strain and to compare it with wild type mice of the same strain. Mice aged 2, 3, 6, 9, and 22 weeks were used in our experiment. Motor skills were examined using four standard tests: the horizontal wire, rotating cylinder, footbridge and slanting ladder. Our findings in Lurcher mutant mice show a significant increase of motor abilities up to the sixth postnatal week and selective decrease early after this period. This improvement of motor skills is caused by the physiological development of musculature and the nervous system, probably with some contribution of plasticity of the maturing brain. The cause of the decline of these abilities immediately after the completion of the development is unknown.

  2. Ontogenetic dynamics of mercury accumulation in Northwest Atlantic sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Drevnick, P.E.; Horgan, M.J.; Oris, J.T.; Kynard, B.E.

    2006-01-01

    We examined the ontogenetic dynamics of mercury accumulation in sea lamprey (Petromyzon marinus) from the Connecticut River, USA. Mercury concentrations in eggs (mean 84 ng??g-1 wet weight) were lowest of all life stages and correlated to concentrations in females. There was a higher rate of maternal transfer of mercury to eggs compared with teleosts. Ammocoetes had high mercury concentrations for their trophic level (e.g., mean of age-4 ammocoetes 492 ng??g-1 wet weight). A further investigation of four streams showed that ammocoetes reflected the level of contamination in their nursery streams. Concentrations of mercury decreased during metamorphosis from ammocoete to adult. Mercury concentrations in adults ranged from 83 to 942 ng??g-1 wet weight and, unlike teleosts, showed no relation to sex, length, or weight. We provide evidence from stable isotope analyses that this high variability is due to feeding ecology. There are fundamental differences in mercury accumulation between sea lamprey and teleosts. ?? 2006 NRC Canada.

  3. Long-Term and Ontogenetic Patterns of Heavy Metal Contamination in Lake Baikal Seals (Pusa sibirica).

    PubMed

    Ozersky, Ted; Pastukhov, Mikhail V; Poste, Amanda E; Deng, Xiu Y; Moore, Marianne V

    2017-09-19

    Little is known about the history of heavy metal pollution of Russia's Lake Baikal, one of the world's largest lakes and a home to numerous endemic species, including the Baikal Seal, Pusa sibirica. We investigated the history of heavy metal (V, Cu, Zn, Cd, Hg, Tl, Pb, U) pollution in Lake Baikal seals over the past 8 decades. C and N stable isotope analysis (SIA) and laser-ablation ICP-MS of seal teeth were used to examine changes in feeding ecology, heavy metal levels associated with life history events and long-term variation in metal exposure. SIA did not suggest large changes in the feeding ecology of Baikal seals over the past 80 years. LA-ICP-MS analyses revealed element-specific ontogenetic variability in metal concentrations, likely related to maternal transfer, changes in food sources and starvation. Hg and Cd levels in seals varied significantly across the time series, with concentrations peaking in the 1960s - 1970s but then declining to contemporary levels similar to those observed in the 1930s and 1940s. Trends in atmospheric emissions of Hg suggest that local sources as well as emissions from eastern Russia and Europe may be important contributors of Hg to Lake Baikal and that, despite the size of Lake Baikal, its food web appears to respond rapidly to changing inputs of contaminants.

  4. Terreneuvian orthothecid (Hyolitha) digestive tracts from northern Montagne Noire, France; taphonomic, ontogenetic and phylogenetic implications.

    PubMed

    Devaere, Léa; Clausen, Sébastien; Alvaro, J Javier; Peel, John S; Vachard, Daniel

    2014-01-01

    More than 285 specimens of Conotheca subcurvata with three-dimensionally preserved digestive tracts were recovered from the Terreneuvian (early Cambrian) Heraultia Limestone of the northern Montagne Noire, southern France. They represent one of the oldest occurrences of such preserved guts. The newly discovered operculum of some complete specimens provides additional data allowing emendation of the species diagnosis. Infestation of the U-shaped digestive tracts by smooth uniseriate, branching to anastomosing filaments along with isolated botryoidal coccoids attests to their early, microbially mediated phosphatisation. Apart from taphonomic deformation, C. subcurvata exhibits three different configurations of the digestive tract: (1) anal tube and gut parallel, straight to slightly undulating; (2) anal tube straight and loosely folded gut; and (3) anal tube straight and gut straight with local zigzag folds. The arrangement of the digestive tracts and its correlation with the mean apertural diameter of the specimens are interpreted as ontogenetically dependent. The simple U-shaped gut, usually considered as characteristic of the Hyolithida, developed in earlier stages of C. subcurvata, whereas the more complex orthothecid type-3 only appears in largest specimens. This growth pattern suggests a distinct phylogenetic relationship between these two hyolith orders through heterochronic processes.

  5. Ontogenetic variations and structural adjustments in mammals evolving prolonged to continuous dental growth.

    PubMed

    Gomes Rodrigues, Helder; Lefebvre, Rémi; Fernández-Monescillo, Marcos; Mamani Quispe, Bernardino; Billet, Guillaume

    2017-07-01

    Studying dental ontogeny in mammals can provide valuable insight on the evolution of their masticatory apparatus and their related adaptations. The multiple acquisitions of a prolonged to continuous growth of teeth in herbivorous mammals in response to high abrasion represent an intensively investigated issue. However, the ontogenetic and architectural patterns associated with these repeated dental innovations remain poorly known. Here, we focused on two case studies corresponding to distant mammalian clades, the extinct Mesotheriidae (Notoungulata), which shared some striking dental features with the extant Ctenodactylidae (Rodentia). We studied the impact of prolonged to continuous growth of molars on their occlusal complexity, their relative size and their dynamics in the jaw. We found that variations of occlusal complexity patterns are the result of paedomorphic or peramorphic heterochronic processes impacting dental crown. We showed that variations in both upper and lower molar proportions generally follow the inhibitory developmental cascade model. In that context, prolonged dental growth implies transitory adjustments due to wear, and also involves dental migration and loss when combined with molar lengthening. Interestingly, these features may be present in many mammals having prolonged dental growth, and emphasize the crucial need of considering these aspects in future evolutionary and developmental studies.

  6. Bone formation and body composition of European elk: an ontogenetic model.

    PubMed

    Bartosiewicz, L

    1989-01-01

    Metapodial and femur measurements were gathered on 8 female and 12 male western European elk (Alces alces [L. 1758] alces) skeletons in four osteological collections in Scandinavia. Additional variables such as carcass and bone weight as well as metacarpal measurements recorded on 43 females and 47 males hunted in Central Sweden were completed by metatarsal measurements available for 28 female and 29 male individuals of the same sample. These bones were divided into two gross age groups on the basis of epiphyseal fusion. Sex-dependent development of the metapodial bones was studied in terms of longitudinal growth and in relation to carcass weight and a number of important carcass characteristics. While metacarpals in both sexes grow at a slower rate relative to carcass weight than do metatarsals, skeletal development is more intensive in young females resulting in mature forms at a smaller absolute size. Analysis of the two sets of data was completed with parameters of dissection statistics from the literature and integrated into an ontogenetic model. A 100 to 140 kg carcass weight interval was found critical both in terms of weaning and the onset of sexual maturation.

  7. Ontogenetic Variation of Individual and Total Capsaicinoids in Malagueta Peppers (Capsicum frutescens) during Fruit Maturation.

    PubMed

    Fayos, Oreto; de Aguiar, Ana Carolina; Jiménez-Cantizano, Ana; Ferreiro-González, Marta; Garcés-Claver, Ana; Martínez, Julián; Mallor, Cristina; Ruiz-Rodríguez, Ana; Palma, Miguel; Barroso, Carmelo G; Barbero, Gerardo F

    2017-05-03

    The ontogenetic variation of total and individual capsaicinoids (nordihydrocapsaicin (n-DHC), capsaicin (C), dihydrocapsaicin (DHC), homocapsaicin (h-C) and homodihydrocapsaicin (h-DHC)) present in Malagueta pepper (Capsicum frutescens) during fruit ripening has been studied. Malagueta peppers were grown in a greenhouse under controlled temperature and humidity conditions. Capsaicinoids were extracted using ultrasound-assisted extraction (UAE) and the extracts were analyzed by ultra-performance liquid chromatography (UHPLC) with fluorescence detection. A significant increase in the total content of capsaicinoids was observed in the early days (between 12 and 33). Between day 33 and 40 there was a slight reduction in the total capsaicinoid content (3.3% decrease). C was the major capsaicinoid, followed by DHC, n-DHC, h-C and h-DHC. By considering the evolution of standardized values of the capsaicinoids it was verified that n-DHC, DHC and h-DHC (dihydrocapsaicin-like capsaicinoids) present a similar behavior pattern, while h-C and C (capsaicin-like capsaicinoids) show different evolution patterns.

  8. Terreneuvian Orthothecid (Hyolitha) Digestive Tracts from Northern Montagne Noire, France; Taphonomic, Ontogenetic and Phylogenetic Implications

    PubMed Central

    Devaere, Léa; Clausen, Sébastien; Álvaro, J. Javier; Peel, John S.; Vachard, Daniel

    2014-01-01

    More than 285 specimens of Conotheca subcurvata with three-dimensionally preserved digestive tracts were recovered from the Terreneuvian (early Cambrian) Heraultia Limestone of the northern Montagne Noire, southern France. They represent one of the oldest occurrences of such preserved guts. The newly discovered operculum of some complete specimens provides additional data allowing emendation of the species diagnosis. Infestation of the U-shaped digestive tracts by smooth uniseriate, branching to anastomosing filaments along with isolated botryoidal coccoids attests to their early, microbially mediated phosphatisation. Apart from taphonomic deformation, C. subcurvata exhibits three different configurations of the digestive tract: (1) anal tube and gut parallel, straight to slightly undulating; (2) anal tube straight and loosely folded gut; and (3) anal tube straight and gut straight with local zigzag folds. The arrangement of the digestive tracts and its correlation with the mean apertural diameter of the specimens are interpreted as ontogenetically dependent. The simple U-shaped gut, usually considered as characteristic of the Hyolithida, developed in earlier stages of C. subcurvata, whereas the more complex orthothecid type-3 only appears in largest specimens. This growth pattern suggests a distinct phylogenetic relationship between these two hyolith orders through heterochronic processes. PMID:24533118

  9. Ontogenetic variations and structural adjustments in mammals evolving prolonged to continuous dental growth

    NASA Astrophysics Data System (ADS)

    Gomes Rodrigues, Helder; Lefebvre, Rémi; Fernández-Monescillo, Marcos; Mamani Quispe, Bernardino; Billet, Guillaume

    2017-07-01

    Studying dental ontogeny in mammals can provide valuable insight on the evolution of their masticatory apparatus and their related adaptations. The multiple acquisitions of a prolonged to continuous growth of teeth in herbivorous mammals in response to high abrasion represent an intensively investigated issue. However, the ontogenetic and architectural patterns associated with these repeated dental innovations remain poorly known. Here, we focused on two case studies corresponding to distant mammalian clades, the extinct Mesotheriidae (Notoungulata), which shared some striking dental features with the extant Ctenodactylidae (Rodentia). We studied the impact of prolonged to continuous growth of molars on their occlusal complexity, their relative size and their dynamics in the jaw. We found that variations of occlusal complexity patterns are the result of paedomorphic or peramorphic heterochronic processes impacting dental crown. We showed that variations in both upper and lower molar proportions generally follow the inhibitory developmental cascade model. In that context, prolonged dental growth implies transitory adjustments due to wear, and also involves dental migration and loss when combined with molar lengthening. Interestingly, these features may be present in many mammals having prolonged dental growth, and emphasize the crucial need of considering these aspects in future evolutionary and developmental studies.

  10. Ontogenetic differences in the feeding biomechanics of oviparous and viviparous caecilians (Lissamphibia: Gymnophiona).

    PubMed

    Kleinteich, Thomas

    2010-10-01

    Caecilians have a unique dual jaw-closing system in that jaw closure is driven by the ancestral jaw-closing muscles (mm. levatores mandibulae) plus a secondarily recruited hyobranchial muscle (m. interhyoideus posterior). There is a variety of feeding habits (suction feeding, skin feeding, intrauterine scraping, and biting) during ontogeny that relate to reproductive modes in different caecilian species. This study examines the cranial biomechanics of caecilians in the suction-feeding larva of Ichthyophis cf. kohtaoensis, in the embryo and juvenile of the skin-feeding Boulengerula taitana, and in a newborn of the intrauterine feeder Typhlonectes natans. A lever arm model was applied to calculate effective mechanical advantages of jaw-closing muscles over gape angles and to predict total bite force in developing caecilians. In I. cf. kohtaoensis, Notable differences were found in the larval jaw-closing system compared to that of the adult. The suction-feeding larva of I. cf. kohtaoensis has comparatively large mm. levatores mandibulae that insert with an acute muscle fiber angle to the lower jaw and a m. interhyoideus posterior that has its optimal leverage at small gape angles. Conversely, the skin-feeding juvenile of B. taitana and the neonate T. natans are very similar in the feeding parameters considered herein compared to adult caecilians. Some ontogenetic variation in the feeding system of B. taitana before the onset of feeding was present. This study contributes to our understanding of the functional demands that feeding habits put on the development of cranial structures.

  11. Psychopathology of Shift Work.

    ERIC Educational Resources Information Center

    Akinnawo, Ebenezer Olutope

    1989-01-01

    Examined incidence and nature of general psychopathology among Nigerian shift workers (N=320). Found shift workers more significantly psychopathological than non-shift workers (p<0.001). Prominent disorders among shift workers were intellectual, sleep, mood, and general somatic disorders. No significant difference could be attributed to gender…

  12. Psychopathology of Shift Work.

    ERIC Educational Resources Information Center

    Akinnawo, Ebenezer Olutope

    1989-01-01

    Examined incidence and nature of general psychopathology among Nigerian shift workers (N=320). Found shift workers more significantly psychopathological than non-shift workers (p<0.001). Prominent disorders among shift workers were intellectual, sleep, mood, and general somatic disorders. No significant difference could be attributed to gender…

  13. Diet and Nutrition

    MedlinePlus

    ... Resources > Diet and Nutrition Go Back Diet and Nutrition Email Print + Share Diet and nutrition concerns of ... you. NEW!! Test your knowledge of diet and nutrition by taking this self-assessment for an opportunity ...

  14. Potassium in diet

    MedlinePlus

    ... the diet; Hypokalemia - potassium in the diet; Chronic kidney disease - potassium in diet; Kidney failure - potassium in diet ... are also excellent sources of potassium. People with kidney problems, especially those on dialysis, should not eat ...

  15. Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga

    NASA Astrophysics Data System (ADS)

    Silveira, Andréa P.; Martins, Fernando R.; Araújo, Francisca S.

    2012-08-01

    In temperate and tropical rainforests, ontogenetic structure and allometry during tree ontogeny are often associated with light gradients. Light is not considered a limiting resource in deciduous thorny woodland (DTW), but establishment and growth occur during a short rainy period, when the canopy is fully leaved and light in the understory may be modified. Our aim was to investigate whether the light gradient in DTW and the biomechanical limitations of tree growth would be enough to produce an ontogenetic structure and allometric growth similar to rainforest canopy trees. We investigated the ontogenetic stages and diameter-height relationship of Cordia oncocalyx (Boraginaceae), a dominant canopy tree of the DTW of semiarid northeastern Brazil. We tagged, measured and classified the ontogenetic stages of 2.895 individuals in a 1 ha area (5°6'58.1″S and 40°52'19.4″W). In the rainy season only 4.7% of the light falling on the canopy reached the ground. Initial ontogenetic stages, mainly infant (50.9%) and seedling (42.1%), were predominant in the population, with the remaining 7% distributed among juvenile, immature, virginile and reproductive. The ontogenetic structure was similar to that of rainforest tree species, but the population formed both permanent seed and infant banks in response to long dry periods and erratic rainy spells. Like many other Boraginaceae tree species in tropical rainforests, C. oncocalyx has a Prévost architectural model, but allometric growth was quite different from rainforest trees. C. oncocalyx invested slightly more in diameter at first, then in height and finally invested greatly in diameter and attained an asymptotic height. The continued high investment in diameter growth at late stages and the asymptotic height point to low tree density and more frequent xylem embolism as the main drivers of tree allometric shape in DTW. This indicates that tree ontogenetic structure and allometric relationships depend on vegetation

  16. Gear shift control mechanism

    SciTech Connect

    Janson, D.A.

    1987-03-10

    A gear shift control mechanism is described comprising: multiple shift rods directed substantially parallel to one another, each rod carrying a shift fork for axial movement; a shift lever supported for pivotal movement about a first axis directed parallel to the axes of the shift rods and for pivotal movement about a second axis directed substantially perpendicular to the axes of the shift rods. The lever is moveable about the first axis and the second axis into engagement with a selected shift fork; interlock means located on each lateral side of the shift lever and mounted for pivotal movement about the first axis for blocking engagement with the shift forks; detent means for holding the shift lever in multiple predetermined angular positions about the second axis; and spring means located on a lateral side of the shift lever and mounted for pivotal movement about the first axis into interference contact with the shift forks for producing a force tending to resiliently bias the shift lever out of engagement with the selected shift fork.

  17. Ontogenetic variations in the venom proteome of the Amazonian snake Bothrops atrox.

    PubMed

    Guércio, Rafael A P; Shevchenko, Anna; Shevchenko, Andrej; López-Lozano, Jorge L; Paba, Jaime; Sousa, Marcelo V; Ricart, Carlos A O

    2006-05-11

    Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Previous studies have demonstrated that the biological and pharmacological activities of B. atrox venom alter with the age of the animal. Here, we present a comparative proteome analysis of B. atrox venom collected from specimens of three different stages of maturation: juveniles, sub-adults and adults. Optimized conditions for two-dimensional gel electrophoresis (2-DE) of pooled venom samples were achieved using immobilized pH gradient (IPG) gels of non-linear 3-10 pH range during the isoelectric focusing step and 10-20% gradient polyacrylamide gels in the second dimension. Software-assisted analysis of the 2-DE gels images demonstrated differences in the number and intensity of spots in juvenile, sub-adult and adult venoms. Although peptide mass fingerprinting (PMF) failed to identify even a minor fraction of spots, it allowed us to group spots that displayed similar peptide maps. The spots were subjected to a combination of tandem mass spectrometry and Mascot and MS BLAST database searches that identified several classes of proteins, including metalloproteinases, serine proteinases, lectins, phospholipases A2, L-amino oxidases, nerve growth factors, vascular endothelial growth factors and cysteine-rich secretory proteins. The analysis of B. atrox samples from specimens of different ages by 2-DE and mass spectrometry suggested that venom proteome alters upon ontogenetic development. We identified stage specific and differentially expressed polypeptides that may be responsible for the activities of the venom in each developmental stage. The results provide insight into the molecular basis of the relation between symptomatology of snakebite accidents in humans and the venom composition. Our findings underscore the importance of the use of venoms from individual specimen at various stages of maturation for the production of antivenoms.

  18. Ontogenetic development of digestive functionality in golden pompano Trachinotus ovatus (Linnaeus 1758).

    PubMed

    Ma, Zhenhua; Guo, Huayang; Zheng, Panlong; Wang, Long; Jiang, Shigui; Qin, Jian G; Zhang, Dianchang

    2014-08-01

    Ontogenetic development of the digestive system in golden pompano (Trachinotus ovatus, Linnaeus 1758) larvae was histologically and enzymatically studied from hatch to 32 day post-hatch (DPH). The development of digestive system in golden pompano can be divided into three phases: phase I starting from hatching and ending at the onset of exogenous feeding; phase II starting from first feeding (3 DPH) and finishing at the formation of gastric glands; and phase III starting from the appearance of gastric glands on 15 DPH and continuing onward. The specific activities of trypsin, amylase, and lipase increased sharply from the onset of first feeding to 5-7 DPH, followed by irregular fluctuations. Toward the end of this study, the specific activities of trypsin and amylase showed a declining trend, while the lipase activity remained at similar levels as it was at 5 DPH. The specific activity of pepsin was first detected on 15 DPH and increased with fish age. The dynamics of digestive enzymes corresponded to the structural development of the digestive system. The enzyme activities tend to be stable after the formation of the gastric glands in fish stomach on 15 DPH. The composition of digestive enzymes in larval pompano indicates that fish are able to digest protein, lipid and carbohydrate at early developmental stages. Weaning of larval pompano is recommended from 15 DPH onward. Results of the present study lead to a better understanding of the ontogeny of golden pompano during the larval stage and provide a guide to feeding and weaning of this economically important fish in hatcheries.

  19. Spatial and ontogenetic variability in the chemical composition of juvenile common sole ( Solea solea) otoliths

    NASA Astrophysics Data System (ADS)

    Tanner, S. E.; Vasconcelos, R. P.; Reis-Santos, P.; Cabral, H. N.; Thorrold, S. R.

    2011-01-01

    A description of variations in the chemical composition of fish otoliths at different spatial scales and life history stages is a prerequisite for their use as natural tags in fish population connectivity and migration studies. Otolith geochemistry of juvenile common sole ( Solea solea), a marine migrant species collected in six Portuguese estuaries was examined. Elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca, Sr:Ca, Ba:Ca, Pb:Ca) were analysed in two zones of the right otolith (corresponding to late larval and juvenile stages) using laser ablation inductively coupled plasma mass spectrometry (ICP-MS). Stable carbon and oxygen isotopes (δ 13C and δ 18O) were determined in left otoliths using isotopic ratio monitoring mass spectrometry (irm-MS). Significant differences in otolith geochemical signatures were found among estuaries, among sites within estuaries and between otolith zones. Several elemental ratios (Mg:Ca, Mn:Ca, Cu:Ca and Sr:Ca) showed consistent patterns between otolith zones and were likely influenced by environmental factors and ontogenetic effects associated with physiological changes during metamorphosis. Assignment of individuals to their collection estuary based on the otolith geochemical signatures was more accurate at the site level (81%) than among estuaries (69%). Site temperature was not correlated with any of the elemental or isotope ratios, but salinity was significantly correlated with Ba:Ca, δ 13C and δ 18O. Observed spatial variations among estuaries and sites within estuaries indicate that geochemical signatures in otoliths are accurate natural tags of estuarine habitat in common sole. Nevertheless, the significant variations observed between otolith zones should be taken into account in the design of population connectivity studies.

  20. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-09-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  1. Ontogenetic differences in mesophyll structure and chlorophyll distribution in Eucalyptus globulus ssp. globulus.

    PubMed

    James, S A; Smith, W K; Vogelmann, T C

    1999-02-01

    Mesophyll structure has been associated with the photosynthetic performance of leaves via the regulation of internal light and CO(2) profiles. Differences in mesophyll structure and chlorophyll distribution within three ontogenetically different leaf types of Eucalyptus globulus ssp. globulus were investigated. Juvenile leaves are blue-grey in color, dorsiventral (adaxial palisade layer only), hypostomatous, and approximately horizontal in orientation. In contrast, adult leaves are dark green in color, isobilateral (adaxial and abaxial palisade), amphistomatous, and nearly vertical in orientation. The transitional leaf type has structural features that appear intermediate between the juvenile and adult leaves. The ratio of mesophyll cell surface area per unit leaf surface area (A(mes)/A) of juvenile leaves was maximum at the base of a single, adaxial palisade layer and declined through the spongy mesophyll. Chlorophyll a + b content showed a coincident pattern, while the chlorophyll a:b ratio declined linearly from the adaxial to abaxial epidermis. In comparison, the mesophyll of adult leaves had a bimodal distribution of A(mes)/A, with maxima occurring beneath both the adaxial and abaxial surfaces within the first layer of multiple palisade layers. The distribution of chlorophyll a + b content had a similar pattern, although the maximum ratio of chlorophyll a:b occurred immediately beneath the adaxial and abaxial epidermis. The matching distributions of A(mes)/A and chlorophyll provide further evidence that mesophyll structure may act to influence photosynthetic performance. These changes in internal leaf structure at different life stages of E. globulus may be an adaptation for increased xeromorphy under increasing light exposure experienced from the seedling to adult tree, similar to the characteristics reported for different species according to sunlight exposure and water availability within their native habitats.

  2. Characterization and ontogenetic development of digestive enzymes in Pacific bluefin tuna Thunnus orientalis larvae.

    PubMed

    Murashita, Koji; Matsunari, Hiroyuki; Kumon, Kazunori; Tanaka, Yosuke; Shiozawa, Satoshi; Furuita, Hirofumi; Oku, Hiromi; Yamamoto, Takeshi

    2014-12-01

    The major digestive enzymes in Pacific bluefin tuna Thunnus orientalis larvae were characterized, and the physiological characteristics of the enzymes during early ontogeny were clarified using biochemical and molecular approaches. The maximum activity of trypsin (Try), chymotrypsin (Ct) and amylase (Amy) was observed at pH 6-11, 8-11 and 6-9, respectively. Maximum activity of Try, Ct and Amy occurred at 50 °C, that of lipase (Lip) was at 60 °C and that of pepsin (Pep) was at 40-50 °C. These pH and thermal profiles were similar to those for other fish species but differed from those previously reported for adult bluefin tuna. Enzyme activity for all enzymes assayed was found to decrease at high temperatures (Try, Ct, Amy and Pep: 50 °C; Lip: 40 °C), which is similar to findings for other fish species with one marked exception-increased Try activity was observed at 40 °C. Lip activity appeared to be dependent on bile salts under our assay conditions, resulting in a significant increase in activity in the presence of bile salts. Ontogenetic changes in pancreatic digestive enzymes showed similar gene expression patterns to those of other fish species, whereas marked temporal increases in enzyme activities were observed at 10-12 days post hatching (dph), coinciding with previously reported timing of the development of the pyloric caeca in bluefin tuna larvae. However, complete development of digestive function was indicated by the high pep gene expression from 19 dph, which contradicts the profile of Pep activity and previously reported development timing of the gastric gland. These findings contribute to the general knowledge of bluefin tuna larval digestive system development.

  3. Ontogenetic tissue modification in Malus fruit peduncles: the role of sclereids

    PubMed Central

    Horbens, Melanie; Feldner, Alexander; Höfer, Monika; Neinhuis, Christoph

    2014-01-01

    Background and Aims Apple (Malus) fruit peduncles are highly modified stems with limited secondary growth because fruit ripening lasts only one season. They must reliably connect rather heavy fruits to the branch and cope with increasing fruit weight, which induces dynamic stresses under oscillating wind loads. This study focuses on tissue modification of these small, exposed structures during fruit development. Methods A combination of microscopic, static and dynamic mechanical tests, as well as Raman spectroscopy, was used to study structure–function relationships in peduncles of one cultivar and 12 wild species, representatively chosen from all sections of the genus Malus. Tissue differentiation and ontogenetic changes in mechanical properties of Malus peduncles were observed throughout one growing season and after successive removal of tissues. Key Results Unlike in regular stems, the vascular cambium produces mainly phloem during secondary growth. Hence, in addition to a reduced xylem, all species developed a centrally arranged sclerenchyma ring composed of fibres and brachysclereids. Based on differences in cell-wall thickness, and proportions and arrangement of sclereids, two types of peduncle construction could be distinguished. Fibres provide an increased maximum tensile strength and contribute most to the overall axial rigidity of the peduncles. Sclereids contribute insignificantly to peduncle strength; however, despite being shown to have a lower elastic modulus than fibres, they are the most effective tissue in stiffening peduncles against bending. Conclusions The experimental data revealed that sclereids originating from cortical parenchyma act as ‘accessory’ cells to enhance proportions of sclerenchyma during secondary growth in peduncles. The mechanism can be interpreted as an adaptation to continuously increasing fruit loads. Under oscillating longitudinal stresses, sclereids may be regarded as regulating elements between maintenance of

  4. Understanding ontogenetic trajectories of indirect defence: ecological and anatomical constraints in the production of extrafloral nectaries

    PubMed Central

    Villamil, Nora; Márquez-Guzmán, Judith; Boege, Karina

    2013-01-01

    Background and Aims Early ontogenetic stages of myrmecophytic plants are infrequently associated with ants, probably due to constraints on the production of rewards. This study reports for the first time the anatomical and histological limitations constraining the production of extrafloral nectar in young plants, and the implications that the absence of protective ants imposes for plants early during their ontogeny are discussed. Methods Juvenile, pre-reproductive and reproductive plants of Turnera velutina were selected in a natural population and their extrafloral nectaries (EFNs) per leaf were quantified. The anatomical and morphological changes in EFNs during plant ontogeny were studied using scanning electron and light microscopy. Extrafloral nectar volume and sugar concentration were determined as well as the number of patrolling ants. Key Results Juvenile plants were unable to secrete or contain nectar. Pre-reproductive plants secreted and contained nectar drops, but the highest production was achieved at the reproductive stage when the gland is fully cup-shaped and the secretory epidermis duplicates. No ants were observed in juvenile plants, and reproductive individuals received greater ant patrolling than pre-reproductive individuals. The issue of the mechanism of extrafloral nectar release in T. velutina was solved given that we found an anatomical, transcuticular pore that forms a channel-like structure and allows nectar to flow outward from the gland. Conclusions Juvenile stages had no ant protection against herbivores probably due to resource limitation but also due to anatomical constraints. The results are consistent with the growth-differentiation balance hypothesis. As plants age, they increase in size and have larger nutrient-acquiring, photosynthetic and storage capacity, so they are able to invest in defence via specialized organs, such as EFNs. Hence, the more vulnerable juvenile stage should rely on other defensive strategies to reduce the

  5. Feeding impacts of ontogenetically migrating copepods on the spring phytoplankton bloom in the Oyashio region

    NASA Astrophysics Data System (ADS)

    Kobari, T.; Inoue, Y.; Nakamura, Y.; Okamura, H.; Ota, T.; Nishibe, Y.; Ichinomiya, M.

    2010-09-01

    We investigated the feeding habits and grazing rates of the ontogenetically migrating copepods in the Oyashio region to evaluate their grazing impacts on the food web during the spring phytoplankton bloom. The bloom was in progress from early to late April, although chlorophyll a concentrations fluctuated considerably with the frequent exchange of different water masses. Biomass of the copepod community reached a maximum in mid-April when late copepodites of Neocalanus cristatus, Neocalanus flemingeri and Eucalanus bungii contributed to the biomass increase. Gut pigment contents of the predominant copepods were much higher during the bloom compared with the levels in March (pre-bloom). The temporal fluctuations were not correlated with those of mean chlorophyll a concentrations in the 0-50 m layer. Feeding experiments indicated that major food items for the copepods were centric diatoms and flagellates. During the period of lower ambient chlorophyll, the copepods changed their heterotrophic prey from naked ciliates to tintinnids. Apparent clearance rates were positive for naked ciliates and negative for heterotrophic nanoplankton, Cryptophyceae and bacteria when chlorophyll was high, suggesting trophic cascade effects from copepod feeding even during the phytoplankton bloom. The carbon demands of the copepod community were estimated to be 156 mgC m -2 day -1 in early March to 797 mgC m -2 day -1 in mid-April. The grazing rates on phytoplankton reached 480 mgC m -2 day -1, equivalent to as much as 28% of primary production. Non-phytoplankton prey supported 40 to 71% of the copepod carbon requirement. These results suggest that the copepod community does not graze the phytoplankton bloom down, but it does have significant impacts on microbial food webs.

  6. Cloning, tissue and ontogenetic expression of the taurine transporter in the flatfish Senegalese sole (Solea senegalensis).

    PubMed

    Pinto, Wilson; Rønnestad, Ivar; Jordal, Ann-Elise Olderbakk; Gomes, Ana S; Dinis, Maria Teresa; Aragão, Cláudia

    2012-04-01

    Flatfish species seem to require dietary taurine for normal growth and development. Although dietary taurine supplementation has been recommended for flatfish, little is known about the mechanisms of taurine absorption in the digestive tract of flatfish throughout ontogeny. This study described the cloning and ontogenetic expression of the taurine transporter (TauT) in the flatfish Senegalese sole (Solea senegalensis). Results showed a high similarity between TauT in Senegalese sole and other vertebrates, but a change in TauT amino acid sequences indicates that taurine transport may differ between mammals and fish, reptiles or birds. Moreover, results showed that Senegalese sole metamorphosis is an important developmental trigger to promote taurine transport in larvae, especially in muscle tissues, which may be important for larval growth. Results also indicated that the capacity to uptake dietary taurine in the digestive tract is already established in larvae at the onset of metamorphosis. In Senegalese sole juveniles, TauT expression was highest in brain, heart and eye. These are organs where taurine is usually found in high concentrations and is believed to play important biological roles. In the digestive tract of juveniles, TauT was more expressed in stomach and hindgut, indicating that dietary taurine is quickly absorbed when digestion begins and taurine endogenously used for bile salt conjugation may be recycled at the posterior end of the digestive tract. Therefore, these results suggest an enterohepatic recycling pathway for taurine in Senegalese sole, a process that may be important for maintenance of the taurine body levels in flatfish species.

  7. Cloning and ontogenetic expression of the uncoupling protein 1 gene UCP1 in sheep.

    PubMed

    Yuan, Ya-Nan; Liu, Wen-Zhong; Liu, Jian-Hua; Qiao, Li-Ying; Wu, Jian-Liang

    2012-05-01

    The uncoupling protein 1 (UCP1) is an indicator of brown adipocytes and is involved in the control of body temperature and regulation of energy balance. It abundantly expresses in newborns and has important functions in adults. However, little information was known on UCP1 gene expression in young and adolescent sheep. In this study, we cloned and identified the full-length DNA and cDNA sequences of the ovine UCP1 gene, which were 6659 bp and 1621 bp, respectively, and predicted the location of the gene on chromosome 17. Forty-eight animals with an equal number of males and females each for both Guangling Large Tail sheep (GLT) and Small Tail sheep Han (STH) sheep were used to study the ontogenetic expression of UCP1 mRNA in eight adipose tissues by quantitative real-time polymerase chain reaction (PCR). The results showed that the mRNA was expressed in all tissues studied and at all stages from 2 to 12 months of age. Nevertheless, the mRNA in perirenal fat was expressed significantly higher than that in other tissues and lower in superficial fat than in deep deposits. The highest expression was observed in animals at 2 months of age and then decreased gradually with age. Global expression in GLT was significantly higher than that in STH. Interactions between tissue and breed and age also influenced the mRNA expression significantly. In addition, the mRNA expression was associated with the single nucleotide polymorphism (SNP) haplotypes detected in the cDNA of the gene.

  8. Ontogenetic change in skull morphology and mechanical advantage in the spotted hyena (Crocuta crocuta).

    PubMed

    Tanner, Jaime B; Zelditch, Miriam L; Lundrigan, Barbara L; Holekamp, Kay E

    2010-03-01

    Weaning represents a challenging transition for young mammals, one particularly difficult for species coping with extreme conditions during feeding. Spotted hyenas (Crocuta crocuta) experience such extreme conditions imposed by intense feeding competition during which the ability to consume large quantities of food quickly is highly advantageous. As adult spotted hyenas have massive skulls specialized for durophagy and can feed very rapidly, young individuals are likely at a competitive disadvantage until that specialized morphology is completely developed. Here we document developmental changes in skull size, shape, and mechanical advantage of the jaws. Sampling an ontogenetic series of Crocuta skulls from individuals ranging in age from 2 months to 18 years, we use linear measurements and geometric morphometrics to test hypotheses suggesting that size, limited mechanical advantage of the jaws, and/or limited attachment sites for jaw muscles might constrain the feeding performance of juveniles. We also examine skull development in relation to key life history events, including weaning and reproductive maturity, to inquire whether ontogeny of the feeding apparatus is slower or more protracted in this species than in carnivores not specialized for durophagy. We find that, although mechanical advantage reaches maturity in hyenas at 22 months, adult skull size is not achieved until 29 months of age, and skull shape does not reach maturity until 35 months. The latter is nearly 2 years after mean weaning age, and more than 1 year after reproductive maturity. Thus, skull development in Crocuta is indeed protracted relative to that in most other carnivores. Based on the skull features that continue to change and to provide additional muscle attachment area, protracted development may be largely due to development of the massive musculature required by durophagy. These findings may ultimately shed light on the adaptive significance of the unusual "role-reversed" pattern of

  9. Evaluating Hair as a Predictor of Blood Mercury: The Influence of Ontogenetic Phase and Life History in Pinnipeds.

    PubMed

    Peterson, Sarah H; McHuron, Elizabeth A; Kennedy, Stephanie N; Ackerman, Joshua T; Rea, Lorrie D; Castellini, J Margaret; O'Hara, Todd M; Costa, Daniel P

    2016-01-01

    Mercury (Hg) biomonitoring of pinnipeds increasingly utilizes nonlethally collected tissues such as hair and blood. The relationship between total Hg concentrations ([THg]) in these tissues is not well understood for marine mammals, but it can be important for interpretation of tissue concentrations with respect to ecotoxicology and biomonitoring. We examined [THg] in blood and hair in multiple age classes of four pinniped species. For each species, we used paired blood and hair samples to quantify the ability of [THg] in hair to predict [THg] in blood at the time of sampling and examined the influence of varying ontogenetic phases and life history of the sampled animals. Overall, we found that the relationship between [THg] in hair and blood was affected by factors including age class, weaning status, growth, and the time difference between hair growth and sample collection. Hair [THg] was moderately to strongly predictive of current blood [THg] for adult female Steller sea lions (Eumetopias jubatus), adult female California sea lions (Zalophus californianus), and adult harbor seals (Phoca vitulina), whereas hair [THg] was poorly predictive or not predictive (different times of year) of blood [THg] for adult northern elephant seals (Mirounga angustirostris). Within species, except for very young pups, hair [THg] was a weaker predictor of blood [THg] for prereproductive animals than for adults likely due to growth, variability in foraging behavior, and transitions between ontogenetic phases. Our results indicate that the relationship between hair [THg] and blood [THg] in pinnipeds is variable and that ontogenetic phase and life history should be considered when interpreting [THg] in these tissues.

  10. Ontogenetic trends in aspartic acid racemization and amino acid composition within modern and fossil shells of the bivalve Arctica

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.; Weidman, Christopher R.

    2001-06-01

    Ontogenetic trends (umbo to growth edge of shell) in aspartic acid (Asp) racemization and amino acid composition and their evolution over time are examined in serial samples of annual growth bands from a time-series of three live-collected and two fossil (ca. 500 and 1000 y BP) shells of the long-lived bivalve Arctica islandica. The rate of Asp racemization is shown to be higher in the umbonal portion of the shells (laid down when the clams are young) but constant from a biological age of 10 to 20 y to more than 100 y. Corresponding changes are also seen in amino acid composition and concentration: with increasing biological age of the clam: total amino acid concentration increases substantially, the acidic amino acids Asp, glutamic acid, and alanine decrease in relative concentration (mole-percent) and more basic amino acids including tyrosine, phenylalanine, and lysine increase in relative concentration. These ontogenetic trends are generally retained in the fossil shells. These trends may reflect changing protein composition related to changes in growth rate. Clams grow considerably faster in their youth than when they are older, as indicated by changes in the annual growth increments. Production of more acidic proteins, which play a role in crystal growth, may be favored during the phase of faster growth, whereas more structural proteins, perhaps enhancing structural strength of the shell, may be favored during later growth. These ontogenetic differences in protein composition affect the observed rates of racemization of the protein pool. Some weak diagenetic trends in amino acid composition and abundance may be represented in the time series of shells. These results emphasize the importance of standardization of the location from which samples are taken from shells for dating by amino acid racemization analysis.

  11. Evaluating hair as a predictor of blood mercury: the influence of ontogenetic phase and life history in pinnipeds

    USGS Publications Warehouse

    Peterson, Sarah H.; McHuron, Elizabeth A.; Kennedy, Stephanie N.; Ackerman, Joshua T.; Rea, Lorrie D.; Castellini, J. Margaret; O'Hara, Todd M.; Costa, Daniel P.

    2016-01-01

    Mercury (Hg) biomonitoring of pinnipeds increasingly utilizes nonlethally collected tissues such as hair and blood. The relationship between total Hg concentrations ([THg]) in these tissues is not well understood for marine mammals, but it can be important for interpretation of tissue concentrations with respect to ecotoxicology and biomonitoring. We examined [THg] in blood and hair in multiple age classes of four pinniped species. For each species, we used paired blood and hair samples to quantify the ability of [THg] in hair to predict [THg] in blood at the time of sampling and examined the influence of varying ontogenetic phases and life history of the sampled animals. Overall, we found that the relationship between [THg] in hair and blood was affected by factors including age class, weaning status, growth, and the time difference between hair growth and sample collection. Hair [THg] was moderately to strongly predictive of current blood [THg] for adult female Steller sea lions (Eumetopias jubatus), adult female California sea lions (Zalophus californianus), and adult harbor seals (Phoca vitulina), whereas hair [THg] was poorly predictive or not predictive (different times of year) of blood [THg] for adult northern elephant seals (Mirounga angustirostris). Within species, except for very young pups, hair [THg] was a weaker predictor of blood [THg] for prereproductive animals than for adults likely due to growth, variability in foraging behavior, and transitions between ontogenetic phases. Our results indicate that the relationship between hair [THg] and blood [THg] in pinnipeds is variable and that ontogenetic phase and life history should be considered when interpreting [THg] in these tissues.

  12. Sharing morphospaces: early ontogenetic shape changes in two clingfish larvae (Pisces: Gobiesocidae) from the south-east Pacific Ocean.

    PubMed

    Bernal-Durán, V; Jahnsen-Guzmán, N; Landaeta, M F

    2017-09-18

    Larval body shape changes and developmental timing were examined in two clingfish species from the south-east Pacific Ocean, Gobiesox marmoratus and Sicyases sanguineus. Ontogenetic allometry showed no interspecific variation and <7 mm standard length (LS ) larvae of both species occupied similar morphospace, but larger G. marmoratus showed increased body depth while larvae of S. sanguineus developed a flattened head and maintained a hydrodynamic body. Estimated developmental timing suggests that larval body shape changes were faster in G. marmoratus than in S. sanguineus prior to settlement. © 2017 The Fisheries Society of the British Isles.

  13. A new species of slender coralsnake from Colombia, and its clinal an ontogenetic variation (Serpentes, Elapidae: Leptomicrurus).

    PubMed

    Lamar, William W

    2003-01-01

    Leptomicrurus renjifoi is described from tropical semi-deciduous forest of the eastern Colombian Ilanos. It is one of the smallest species in the genus, is most similar to L. scutiventris, and it may be distinguished from known congeners by a combination of color, pattern, and scale characters. Evidence for the recognition of Leptomicrurus is convincing, although its members were recently thought to comprise a closely related assemblage within Micrurus. A supposedly aberrant specimen of L. scutiventris may indicate clinal or ontogenetic variation in pattern.

  14. Childhood absence epilepsy successfully treated with the paleolithic ketogenic diet.

    PubMed

    Clemens, Zsófia; Kelemen, Anna; Fogarasi, András; Tóth, Csaba

    2013-12-01

    Childhood absence epilepsy is an epilepsy syndrome responding relatively well to the ketogenic diet with one-third of patients becoming seizure-free. Less restrictive variants of the classical ketogenic diet, however, have been shown to confer similar benefits. Beneficial effects of high fat, low-carbohydrate diets are often explained in evolutionary terms. However, the paleolithic diet itself which advocates a return to the human evolutionary diet has not yet been studied in epilepsy. Here, we present a case of a 7-year-old child with absence epilepsy successfully treated with the paleolithic ketogenic diet alone. In addition to seizure freedom achieved within 6 weeks, developmental and behavioral improvements were noted. The child remained seizure-free when subsequently shifted toward a paleolithic diet. It is concluded that the paleolithic ketogenic diet was effective, safe and feasible in the treatment of this case of childhood absence epilepsy.

  15. Heterochronic processes in human evolution: an ontogenetic analysis of the hominid pelvis.

    PubMed

    Berge, C

    1998-04-01

    Changes in pelvic shape in human ontogeny and hominid phylogeny suggest that the heterochronic processes involved differ greatly from the neotenic process traditionally described in the evolution of the skull. The morphology of 150 juvenile and adult pelves of African apes, 60 juvenile and adult pelves of modern humans, two adult pelves and a juvenile hip bone of australopithecines (Sts 14, AL 288, MLD 7) was studied. Multivariate results, ontogenetic allometries, and growth curves confirm that the pelvic growth pattern in humans differs markedly from those of the African apes. The results permit the following conclusions. First, the appearance of a new feature (acetabulo-cristal buttress and cristal tubercle) at the time of human birth allows the addition of traits, such as the attainment of a proportionally narrower pelvis, with more sagittally positioned iliac blades. Pelvic proportions and orientation change progressively in early childhood as bipedalism is practiced. Other changes in pelvic proportions occur later with the adolescent growth spurt. Second, comparison of juvenile and adult australopithecines to modern humans indicates that 1) some pelvic traits of adult Australopithecus resemble those of neonate Homo; 2) the pelvic growth of Australopithecus was probably closer to that of apes, than to that of humans; and 3) prolonged growth in length of hindlimb and pelvis after sexual maturity seems to be a unique feature of Homo. The position of the acetabulo-cristal buttress and of the cristal tubercle on the ilium are similar in adult Australopithecus and neonate Homo suggesting that this feature may have been displaced later during hominid evolution. Progressive displacement of the acetabulo-cristal buttress on the ilium occurs both during hominid evolution (from Australopithecus to Homo sapiens) and human growth (from neonate to adult). This suggests peramorphic evolution of the pelvic morphology of hominids combining three processes of recapitulation

  16. Diet - liver disease

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002441.htm Diet - liver disease To use the sharing features on this page, please enable JavaScript. Some people with liver disease must eat a special diet. This diet ...

  17. Diet and Nutrition

    MedlinePlus

    ... need to know about Wilson Disease Diet and Nutrition Food . . . . Adherence to a low copper diet is ... Symptoms Diagnosis Treatments Generic Zinc Options Inheritence Diet & Nutrition Kayser-Fleischer Rings Wilson Disease FAQs Definitions Transplantation ...

  18. Nutrition and Diet

    MedlinePlus

    ... Thai HbH:Vietnamese Relevant links Living with Thalassemia NUTRITION ▶ Nutrition and DietDiet for the Non-transfused ... Nutrition with Connie Schroepfer, MS, RD: Dec 2016 Nutrition and Diet Nutritional deficiencies are common in thalassemia, ...

  19. Diet myths and facts

    MedlinePlus

    Obesity - diet myths and facts; Overweight - diet myths and fact; Weight-loss diet myths and facts ... evidence: using the proposed effect of breakfast on obesity to show 2 practices that distort scientific evidence. ...

  20. Diet after gastric banding

    MedlinePlus

    Gastric banding surgery - your diet; Obesity - diet after banding; Weight loss - diet after banding ... al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised ...

  1. Ontogenetic Differences in Dietary Fat Influence Microbiota Assembly in the Zebrafish Gut

    PubMed Central

    Wong, Sandi; Stephens, W. Zac; Burns, Adam R.; Stagaman, Keaton; David, Lawrence A.; Bohannan, Brendan J. M.; Guillemin, Karen

    2015-01-01

    ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. PMID:26419876

  2. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris).

    PubMed

    Moore, Colby D; Crocker, Daniel E; Fahlman, Andreas; Moore, Michael J; Willoughby, Darryn S; Robbins, Kathleen A; Kanatous, Shane B; Trumble, Stephen J

    2014-01-01

    Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle.

  3. Ontogenetic changes in skeletal muscle fiber type, fiber diameter and myoglobin concentration in the Northern elephant seal (Mirounga angustirostris)

    PubMed Central

    Moore, Colby D.; Crocker, Daniel E.; Fahlman, Andreas; Moore, Michael J.; Willoughby, Darryn S.; Robbins, Kathleen A.; Kanatous, Shane B.; Trumble, Stephen J.

    2014-01-01

    Northern elephant seals (Mirounga angustirostris) (NES) are known to be deep, long-duration divers and to sustain long-repeated patterns of breath-hold, or apnea. Some phocid dives remain within the bounds of aerobic metabolism, accompanied by physiological responses inducing lung compression, bradycardia, and peripheral vasoconstriction. Current data suggest an absence of type IIb fibers in pinniped locomotory musculature. To date, no fiber type data exist for NES, a consummate deep diver. In this study, NES were biopsied in the wild. Ontogenetic changes in skeletal muscle were revealed through succinate dehydrogenase (SDH) based fiber typing. Results indicated a predominance of uniformly shaped, large type I fibers and elevated myoglobin (Mb) concentrations in the longissimus dorsi (LD) muscle of adults. No type II muscle fibers were detected in any adult sampled. This was in contrast to the juvenile animals that demonstrated type II myosin in Western Blot analysis, indicative of an ontogenetic change in skeletal muscle with maturation. These data support previous hypotheses that the absence of type II fibers indicates reliance on aerobic metabolism during dives, as well as a depressed metabolic rate and low energy locomotion. We also suggest that the lack of type IIb fibers (adults) may provide a protection against ischemia reperfusion (IR) injury in vasoconstricted peripheral skeletal muscle. PMID:24959151

  4. Ontogenetic scaling of the morphology and biomechanics of the feeding apparatus in the Pacific hagfish Eptatretus stoutii.

    PubMed

    Clark, A J; Summers, A P

    2012-01-01

    The form and function of the support skeleton, musculature and teeth were examined in an ontogenetic series of Pacific hagfish Eptatretus stoutii spanning about a six-fold range in total length (L(T)). Tooth area, feeding apparatus length, basal plate size, theoretical dental plate retractile force, penetration force and applied tooth stress were measured relative to body size. Morphological variables (e.g. tooth area and basal plate size) scaled with positive allometry and functional variables (e.g. retractile force and applied tooth stress) scaled isometrically with L(T). These results suggest that juveniles do not undergo ontogenetic dietary changes and consume functionally equivalent prey to adults, although adults can grasp proportionally larger portions of food. Low tooth stress in juveniles and adults imposes mechanical constraints to puncturing and tearing, which are circumvented by a preference for softer prey tissue or the inclusion of knotting behaviours for reducing tougher prey. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  5. Ontogenetic modulation of branch size, shape, and biomechanics produces diversity across habitats in the Bursera simaruba clade of tropical trees.

    PubMed

    Rosell, Julieta A; Olson, Mark E; Aguirre-Hernández, Rebeca; Sánchez-Sesma, Francisco J

    2012-01-01

    Organismal size and shape inseparably interact with tissue biomechanical properties. It is therefore essential to understand how size, shape, and biomechanics interact in ontogeny to produce morphological diversity. We estimated within species branch length-diameter allometries and reconstructed the rates of ontogenetic change along the stem in mechanical properties across the simaruba clade in the tropical tree genus Bursera, measuring 376 segments from 97 branches in nine species in neotropical dry to rain forest. In general, species with stiffer materials had longer, thinner branches, which became stiffer more quickly in ontogeny than their counterparts with more flexible materials. We found a trend from short stature and flexible tissues to tall statures and stiff tissues across an environmental gradient of increasing water availability, likely reflecting a water storage-mechanical support tradeoff. Ontogenetic variation in size, shape, and mechanics results in diversity of habits, for example, rapid length extension, sluggish diameter expansion, and flexible tissues results in a liana, as in Bursera instabilis. Even species of similar habit exhibited notable changes in tissue mechanical properties with increasing size, illustrating the inseparable relationship between organismal proportions and their tissue mechanics in the ontogeny and evolution of morphological diversity.

  6. The conceptual framework of ontogenetic trajectories: parallel transport allows the recognition and visualization of pure deformation patterns.

    PubMed

    Piras, P; Teresi, L; Traversetti, L; Varano, V; Gabriele, S; Kotsakis, T; Raia, P; Puddu, P E; Scalici, M

    2016-05-01

    Ontogeny is usually studied by analyzing a deformation series spanning over juvenile to adult shapes. In geometric morphometrics, this approach implies applying generalized Procrustes analysis coupled with principal component analysis on multiple individuals or multiple species datasets. The trouble with such a procedure is that it mixes intra- and inter-group variation. While MANCOVA models are relevant statistical/mathematical tools to draw inferences about the similarities of trajectories, if one wants to observe and interpret the morphological deformation alone by filtering inter-group variability, a particular tool, namely parallel transport, is necessary. In the context of ontogenetic trajectories, one should firstly perform separate multivariate regressions between shape and size, using regression predictions to estimate within-group deformations relative to the smallest individuals. These deformations are then applied to a common reference (the mean of per-group smallest individuals). The estimation of deformations can be performed on the Riemannian manifold by using sophisticated connection metrics. Nevertheless, parallel transport can be effectively achieved by estimating deformations in the Euclidean space via ordinary Procrustes analysis. This approach proved very useful in comparing ontogenetic trajectories of species presenting large morphological differences at early developmental stages. © 2016 Wiley Periodicals, Inc.

  7. Ontogenetic trajectory and allometry of Diplonychus rusticus (Fabricius), an Oriental aquatic bug (Hemiptera: Belostomatidae) from the Western Ghats of India.

    PubMed

    Doke, Dnyaneshwar; Morey, Rashmi; Dahanukar, Neelesh; Padhye, Sameer M; Paripatyadar, Shruti V

    2017-03-01

    Despite being one of the dominant groups in freshwater ecosystems, morphological and ontogenetic studies on aquatic Hemiptera have received little attention in the Oriental region. We present the ontogenetic trajectory and allometry of the widespread Oriental belostomatid species, Diplonychus rusticus (Fabricius) for the first time. We have measured nine different morphological variables throughout the growth of the bug using both field captured and laboratory reared specimens. Our results suggest that the developmental instars can be distinguished by the size variables, as seen in the Principal Component Analysis. On the basis of a CHAID (Chi-squared Automatic Interaction Detection) based regression tree, we also show that the characters - total length without head and maximum width - prove to be adequate for effective instar identification. The multivariate allometric growth pattern shows that different body parts exhibit different types of allometry. This is apparent in the allometry exhibited by forelegs and mid and hind legs, which show allometry of opposite polarities. This may be due to the different functions attributed to these body parts. Our results show that the growth pattern in D. rusticus is comparable with the New World genus Belostoma, suggesting a conserved growth pattern in the family Belostomatidae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spectral Sensitivity Change May Precede Habitat Shift in the Developing Retina of the Atlantic Tarpon (Megalops atlanticus).

    PubMed

    Schweikert, Lorian E; Grace, Michael S

    Fish that undergo ontogenetic migrations between habitats often encounter new light environments that require changes in the spectral sensitivity of the retina. For many fish, sensitivity of the retina changes to match the environmental spectrum, but the timing of retinal change relative to habitat shift remains unknown. Does retinal change in fish precede habitat shift, or is it a response to encountered changes in environmental light? Spectral sensitivity changes were examined over the development of the Atlantic tarpon (Megalops atlanticus) retina relative to ontogenetic shifts in habitat light. Opsin gene isoform expression and inferred chromophore use of visual pigments were examined over the course of M. atlanticus development. Spectral sensitivity of the retina was then determined by electroretinography and compared to the spectroradiometric measurements of habitat light encountered by M. atlanticus from juveniles to adults. These data, along with previously known microspectrophotometric measurements of sensitivity in M. atlanticus, indicate retinal spectral sensitivity that matches the dominant wavelengths of environmental light for juvenile and adult fish. For the intervening subadult stage, however, spectral sensitivity does not match the dominant wavelength of light it occupies but better matches the dominant wavelengths of light in the habitat of its forthcoming migration. These results first indicate that the relationship between environmental light spectrum and spectral sensitivity of the retina changes during M. atlanticus development and then suggest that such changes may be programmed to support visual anticipation of new photic environments.

  9. Vegan diet alleviates fibromyalgia symptoms.

    PubMed

    Kaartinen, K; Lammi, K; Hypen, M; Nenonen, M; Hanninen, O; Rauma, A L

    2000-01-01

    The effect of a strict, low-salt, uncooked vegan diet rich in lactobacteria on symptoms in 18 fibromyalgia patients during and after a 3-month intervention period in an open, non-randomized controlled study was evaluated. As control 15 patients continued their omnivorous diet. The groups did not differ significantly from each other in the beginning of the study in any other parameters except in pain and urine sodium. The results revealed significant improvements in Visual analogue scale of pain (VAS) (p=0.005), joint stiffness (p=0.001), quality of sleep (p=0.0001), Health assessment questionnaire (HAQ) (p=0.031), General health questionnaire (GHQ) (p=0.021), and a rheumatologist's own questionnaire (p=0.038). The majority of patients were overweight to some extent at the beginning of the study and shifting to a vegan food caused a significant reduction in body mass index (BMI) (p=0.0001). Total serum cholesterol showed a statistically significant lowering (p=0.003). Urine sodium dropped to 1/3 of the beginning values (p=0.0001) indicating good diet compliance. It can be concluded that vegan diet had beneficial effects on fibromyalgia symptoms at least in the short run.

  10. Style Shift in Translation

    ERIC Educational Resources Information Center

    Al-Qinai, Jamal

    2009-01-01

    The phenomenon of style shift in translated texts is ascribed mainly to textual incompatibility in terms of rhetorical asymmetry and divergence at the formality level. Mandatory shifts result from a systematic dissimilarity between the source language and the target language in terms of the underlying system of syntax, semantics and rhetorical…

  11. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  12. Making Shifts toward Proficiency

    ERIC Educational Resources Information Center

    McGatha, Maggie B.; Bay-Williams, Jennifer M.

    2013-01-01

    The Leading for Mathematical Proficiency (LMP) Framework (Bay-Williams et al.) has three components: (1) The Standards for Mathematical Practice; (2) Shifts in classroom practice; and (3) Teaching skills. This article briefly describes each component of the LMP framework and then focuses more in depth on the second component, the shifts in…

  13. Shifting scintillator neutron detector

    DOEpatents

    Clonts, Lloyd G; Cooper, Ronald G; Crow, Jr., Morris Lowell; Hannah, Bruce W; Hodges, Jason P; Richards, John D; Riedel, Richard A

    2014-03-04

    Provided are sensors and methods for detecting thermal neutrons. Provided is an apparatus having a scintillator for absorbing a neutron, the scintillator having a back side for discharging a scintillation light of a first wavelength in response to the absorbed neutron, an array of wavelength-shifting fibers proximate to the back side of the scintillator for shifting the scintillation light of the first wavelength to light of a second wavelength, the wavelength-shifting fibers being disposed in a two-dimensional pattern and defining a plurality of scattering plane pixels where the wavelength-shifting fibers overlap, a plurality of photomultiplier tubes, in coded optical communication with the wavelength-shifting fibers, for converting the light of the second wavelength to an electronic signal, and a processor for processing the electronic signal to identify one of the plurality of scattering plane pixels as indicative of a position within the scintillator where the neutron was absorbed.

  14. Habitat quality of the coastal southeastern Bering Sea for juvenile flatfishes from the relationships between diet, body condition and prey availability

    NASA Astrophysics Data System (ADS)

    Yeung, Cynthia; Yang, Mei-Sun

    2017-01-01

    The distribution and body condition of juvenile northern rock sole (NRS), Lepidopsetta polyxystra, and yellowfin sole (YFS), Limanda aspera, were studied in relation to prey availability across the coastal shelf at the Alaska Peninsula boundary of the eastern Bering Sea (EBS) to assess spatial variability in habitat quality. Juveniles of ≤ 20 cm and adults of ≥ 30 cm total length were collected from bottom trawl catch samples at stations located 10 to 120 km from the Alaska Peninsula coast, and in bottom depths of 28 to 85 m. Stomach contents and stable isotopes of carbon and nitrogen from muscle tissue were analyzed to describe diet composition. The quantity and quality of prey did not significantly affect the distribution of juvenile NRS and YFS. Spatial mismatch between the diet composition and the infauna prey assemblage suggested that prey availability was not limiting across the area, allowing fish to select for prey, presumably to maximize net energy gain. The body condition of juvenile NRS was higher in the eastern section of the area (Bristol Bay) - where they shared spatial and dietary niches with juvenile YFS, than in the west section (Unimak Island) where juvenile YFS were largely absent. A difference in body condition suggests that habitat quality may be higher in Bristol Bay. For NRS, stomach contents and stable isotopes in muscle tissue indicated an ontogenetic diet shift from amphipods to polychaetes from juvenile to adult stages. In contrast, for YFS, amphipods seemed to remain the primary prey and polychaetes the least important prey from juvenile to adult stage. Given that the high prey availability found in this south coastal area of EBS extends to areas across the EBS shelf, favorable habitat for juvenile flatfishes should be extensive. However, much of this potential juvenile habitat is underutilized by NRS, which were mainly limited to Bristol Bay and the Alaska Peninsula, whereas YFS did extend north over 500 km from Bristol Bay along

  15. Visual sensitivities tuned by heterochronic shifts in opsin gene expression

    PubMed Central

    Carleton, Karen L; Spady, Tyrone C; Streelman, J Todd; Kidd, Michael R; McFarland, William N; Loew, Ellis R

    2008-01-01

    Background Cichlid fishes have radiated into hundreds of species in the Great Lakes of Africa. Brightly colored males display on leks and vie to be chosen by females as mates. Strong discrimination by females causes differential male mating success, rapid evolution of male color patterns and, possibly, speciation. In addition to differences in color pattern, Lake Malawi cichlids also show some of the largest known shifts in visual sensitivity among closely related species. These shifts result from modulated expression of seven cone opsin genes. However, the mechanisms for this modulated expression are unknown. Results In this work, we ask whether these differences might result from changes in developmental patterning of cone opsin genes. To test this, we compared the developmental pattern of cone opsin gene expression of the Nile tilapia, Oreochromis niloticus, with that of several cichlid species from Lake Malawi. In tilapia, quantitative polymerase chain reaction showed that opsin gene expression changes dynamically from a larval gene set through a juvenile set to a final adult set. In contrast, Lake Malawi species showed one of two developmental patterns. In some species, the expressed gene set changes slowly, either retaining the larval pattern or progressing only from larval to juvenile gene sets (neoteny). In the other species, the same genes are expressed in both larvae and adults but correspond to the tilapia adult genes (direct development). Conclusion Differences in visual sensitivities among species of Lake Malawi cichlids arise through heterochronic shifts relative to the ontogenetic pattern of the tilapia outgroup. Heterochrony has previously been shown to be a powerful mechanism for change in morphological evolution. We found that altering developmental expression patterns is also an important mechanism for altering sensory systems. These resulting sensory shifts will have major impacts on visual communication and could help drive cichlid speciation

  16. Ontogenetic development of the inner ear saccule and utricle in the Lusitanian toadfish: Potential implications for auditory sensitivity.

    PubMed

    Chaves, Patrícia P; Valdoria, Ciara M C; Amorim, M Clara P; Vasconcelos, Raquel O

    2017-09-01

    Studies addressing structure-function relationships of the fish auditory system during development are sparse compared to other taxa. The Batrachoididae has become an important group to investigate mechanisms of auditory plasticity and evolution of auditory-vocal systems. A recent study reported ontogenetic improvements in the inner ear saccule sensitivity of the Lusitanian toadfish, Halobatrachus didactylus, but whether this results from changes in the sensory morphology remains unknown. We investigated how the macula and organization of auditory receptors in the saccule and utricle change during growth in this species. Inner ear sensory epithelia were removed from the end organs of previously PFA-fixed specimens, from non-vocal posthatch fry (<1.4 cm, standard length) to adults (>23 cm). Epithelia were phalloidin-stained and analysed for area, shape, number and orientation patterns of hair cells (HC), and number and size of saccular supporting cells (SC). Saccular macula area expanded 41x in total, and significantly more (relative to body length) among vocal juveniles (2.3-2.9 cm). Saccular HC number increased 25x but HC density decreased, suggesting that HC addition is slower relative to epithelial growth. While SC density decreased, SC apical area increased, contributing to the epithelial expansion. The utricule revealed increased HC density (striolar region) and less epithelial expansion (5x) with growth, contrasting with the saccule that may have a different developmental pattern due to its larger size and main auditory functions. Both macula shape and HC orientation patterns were already established in the posthatch fry and retained throughout growth in both end organs. We suggest that previously reported ontogenetic improvements in saccular sensitivity might be associated with changes in HC number (not density), size and/or molecular mechanisms controlling HC sensitivity. This is one of the first studies investigating the ontogenetic development of the

  17. Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes

    USDA-ARS?s Scientific Manuscript database

    Aquaculture recently overtook capture fisheries as the largest producer of food fish; however, to continue increasing fish production the industry is looking for ways of improving fish health and growth. Pre- and probiotic supplementation has gained attention as a means of solving these issues, howe...

  18. Diet and survival after prostate cancer diagnosis.

    PubMed

    Berkow, Susan E; Barnard, Neal D; Saxe, Gordon A; Ankerberg-Nobis, Trulie

    2007-09-01

    Prostate cancer is the most commonly diagnosed non-skin cancer in men in the United States. Among environmental factors, diet may play a particularly important role in its incidence, progression, and clinical outcome. This article reviews the findings of eight observational studies and 17 intervention or laboratory trials on the effect of plant-based diets and plant nutrients on both the progression and clinical outcome of prostate cancer as well as additional studies examining mechanisms that may explain dietary effects. While additional long-term therapeutic clinical trials are needed to further elucidate the role of diet, these early investigations suggest that a recommendation for individual patients to shift their diets toward plant foods may serve as an important component of the tertiary treatment of prostate cancer.