Science.gov

Sample records for ontology lookup service

  1. Utilization of ontology look-up services in information retrieval for biomedical literature.

    PubMed

    Vishnyakova, Dina; Pasche, Emilie; Lovis, Christian; Ruch, Patrick

    2013-01-01

    With the vast amount of biomedical data we face the necessity to improve information retrieval processes in biomedical domain. The use of biomedical ontologies facilitated the combination of various data sources (e.g. scientific literature, clinical data repository) by increasing the quality of information retrieval and reducing the maintenance efforts. In this context, we developed Ontology Look-up services (OLS), based on NEWT and MeSH vocabularies. Our services were involved in some information retrieval tasks such as gene/disease normalization. The implementation of OLS services significantly accelerated the extraction of particular biomedical facts by structuring and enriching the data context. The results of precision in normalization tasks were boosted on about 20%.

  2. Simple Lookup Service

    SciTech Connect

    2013-05-01

    Simple Lookup Service (sLS) is a REST/JSON based lookup service that allows users to publish information in the form of key-value pairs and search for the published information. The lookup service supports both pull and push model. This software can be used to create a distributed architecture/cloud.

  3. Research on e-learning services based on ontology theory

    NASA Astrophysics Data System (ADS)

    Liu, Rui

    2013-07-01

    E-learning services can realize network learning resource sharing and interoperability, but they can't realize automatic discovery, implementation and integration of services. This paper proposes a framework of e-learning services based on ontology, the ontology technology is applied to the publication and discovery process of e-learning services, in order to realize accurate and efficient retrieval and utilization of e-learning services.

  4. An Ontology Service for Linked Environments for Atmospheric Discovery (LEAD)

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Movva, S.

    2005-12-01

    An Ontology encodes concepts and the relationships among them. From a machine learning perspective, it is viewed as a formal, explicit specification of a shared conceptualization. Linked Environments for Atmospheric Discovery (LEAD) is a large NSF Information Technology Research (ITR) initiative to provide scalable, integrated gird framework for use in accessing, preparing, assimilating, predicting, analyzing and managing a broad array of meteorological and related information independent of format and physical location. An ontology that focuses on mesoscale meteorology is currently being designed and developed for LEAD. It uses the Semantic Web for Earth and Environmental Terminology - ontology (SWEET, Rob Raskin - JPL) as a building block and additional concepts for mesoscale meteorology are being added. An Ontology Inference Service (OIS) is also developed to provide querying capabilities on the LEAD Ontology. The drivers for developing such an ontology and inference service specifically for LEAD are many. The LEAD ontology serves as a common vocabulary to allow interoperability for metadata exchange between different LEAD catalogs. Coupled with these LEAD catalogs, the OIS will also provide a 'yellow pages' search capability to the end users. The OIS provides capabilities to search for similar and related concepts for a particular concept. This is essentially, searching with semantic meanings rather than searching with keywords. Thus allowing users to search for datasets without actually having to know and use the specific data parameter names in the catalogs. Finally, the OIS serves as a stand-alone smart search system for the atmospheric domain, specifically mesoscale meteorology. This smart search service collates the definition of a user's search term, useful datasets, related concepts, useful websites and additional related information. It serves as an educational portal for both students and researchers in LEAD.

  5. Global polar geospatial information service retrieval based on search engine and ontology reasoning

    USGS Publications Warehouse

    Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang

    2007-01-01

    In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.

  6. How Service Choreography Statistics Reduce the Ontology Mapping Problem

    NASA Astrophysics Data System (ADS)

    Besana, Paolo; Robertson, Dave

    In open and distributed environments ontology mapping provides interoperability between interacting actors. However, conventional mapping systems focus on acquiring static information, and on mapping whole ontologies, which is infeasible in open systems. This paper shows that the interactions themselves between the actors can be used to predict mappings, simplifying dynamic ontology mapping. The intuitive idea is that similar interactions follow similar conventions and patterns, which can be analysed. The computed model can be used to suggest the possible mappings for the exchanged messages in new interactions. The suggestions can be evaluate by any standard ontology matcher: if they are accurate, the matchers avoid evaluating mappings unrelated to the interaction.

  7. An Ontology for Learning Services on the Shop Floor

    ERIC Educational Resources Information Center

    Ullrich, Carsten

    2016-01-01

    An ontology expresses a common understanding of a domain that serves as a basis of communication between people or systems, and enables knowledge sharing, reuse of domain knowledge, reasoning and thus problem solving. In Technology-Enhanced Learning, especially in Intelligent Tutoring Systems and Adaptive Learning Environments, ontologies serve as…

  8. The Design and Engineering of Mobile Data Services: Developing an Ontology Based on Business Model Thinking

    NASA Astrophysics Data System (ADS)

    Al-Debei, Mutaz M.; Fitzgerald, Guy

    This paper addresses the design and engineering problem related to mobile data services. The aim of the research is to inform and advise mobile service design and engineering by looking at this issue from a rigorous and holistic perspective. To this aim, this paper develops an ontology based on business model thinking. The developed ontology identifies four primary dimensions in designing business models of mobile data services: value proposition, value network, value architecture, and value finance. Within these dimensions, 15 key design concepts are identified along with their interrelationships and rules in the telecommunication service business model domain and unambiguous semantics are produced. The developed ontology is of value to academics and practitioners alike, particularly those interested in strategic-oriented IS/IT and business developments in telecommunications. Employing the developed ontology would systemize mobile service engineering functions and make them more manageable, effective, and creative. The research approach to building the mobile service business model ontology essentially follows the design science paradigm. Within this paradigm, we incorporate a number of different research methods, so the employed methodology might be better characterized as a pluralist approach.

  9. Using Ontologies to Formalize Services Specifications in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Breitman, Karin Koogan; Filho, Aluizio Haendchen; Haeusler, Edward Hermann

    2004-01-01

    One key issue in multi-agent systems (MAS) is their ability to interact and exchange information autonomously across applications. To secure agent interoperability, designers must rely on a communication protocol that allows software agents to exchange meaningful information. In this paper we propose using ontologies as such communication protocol. Ontologies capture the semantics of the operations and services provided by agents, allowing interoperability and information exchange in a MAS. Ontologies are a formal, machine processable, representation that allows to capture the semantics of a domain and, to derive meaningful information by way of logical inference. In our proposal we use a formal knowledge representation language (OWL) that translates into Description Logics (a subset of first order logic), thus eliminating ambiguities and providing a solid base for machine based inference. The main contribution of this approach is to make the requirements explicit, centralize the specification in a single document (the ontology itself), at the same that it provides a formal, unambiguous representation that can be processed by automated inference machines.

  10. An ontology-based collaborative service framework for agricultural information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, China has developed modern agriculture energetically. An effective information framework is an important way to provide farms with agricultural information services and improve farmer's production technology and their income. The mountain areas in central China are dominated by agri...

  11. OntoCAT -- simple ontology search and integration in Java, R and REST/JavaScript

    PubMed Central

    2011-01-01

    Background Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. Results OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. Conclusions OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. Availability http://www.ontocat.org PMID:21619703

  12. An ontology-based semantic configuration approach to constructing Data as a Service for enterprises

    NASA Astrophysics Data System (ADS)

    Cai, Hongming; Xie, Cheng; Jiang, Lihong; Fang, Lu; Huang, Chenxi

    2016-03-01

    To align business strategies with IT systems, enterprises should rapidly implement new applications based on existing information with complex associations to adapt to the continually changing external business environment. Thus, Data as a Service (DaaS) has become an enabling technology for enterprise through information integration and the configuration of existing distributed enterprise systems and heterogonous data sources. However, business modelling, system configuration and model alignment face challenges at the design and execution stages. To provide a comprehensive solution to facilitate data-centric application design in a highly complex and large-scale situation, a configurable ontology-based service integrated platform (COSIP) is proposed to support business modelling, system configuration and execution management. First, a meta-resource model is constructed and used to describe and encapsulate information resources by way of multi-view business modelling. Then, based on ontologies, three semantic configuration patterns, namely composite resource configuration, business scene configuration and runtime environment configuration, are designed to systematically connect business goals with executable applications. Finally, a software architecture based on model-view-controller (MVC) is provided and used to assemble components for software implementation. The result of the case study demonstrates that the proposed approach provides a flexible method of implementing data-centric applications.

  13. Observing health professionals' workflow patterns for diabetes care - First steps towards an ontology for EHR services.

    PubMed

    Schweitzer, M; Lasierra, N; Hoerbst, A

    2015-01-01

    Increasing the flexibility from a user-perspective and enabling a workflow based interaction, facilitates an easy user-friendly utilization of EHRs for healthcare professionals' daily work. To offer such versatile EHR-functionality, our approach is based on the execution of clinical workflows by means of a composition of semantic web-services. The backbone of such architecture is an ontology which enables to represent clinical workflows and facilitates the selection of suitable services. In this paper we present the methods and results after running observations of diabetes routine consultations which were conducted in order to identify those workflows and the relation among the included tasks. Mentioned workflows were first modeled by BPMN and then generalized. As a following step in our study, interviews will be conducted with clinical personnel to validate modeled workflows.

  14. Persistent identifiers for web service requests relying on a provenance ontology design pattern

    NASA Astrophysics Data System (ADS)

    Car, Nicholas; Wang, Jingbo; Wyborn, Lesley; Si, Wei

    2016-04-01

    Delivering provenance information for datasets produced from static inputs is relatively straightforward: we represent the processing actions and data flow using provenance ontologies and link to stored copies of the inputs stored in repositories. If appropriate detail is given, the provenance information can then describe what actions have occurred (transparency) and enable reproducibility. When web service-generated data is used by a process to create a dataset instead of a static inputs, we need to use sophisticated provenance representations of the web service request as we can no longer just link to data stored in a repository. A graph-based provenance representation, such as the W3C's PROV standard, can be used to model the web service request as a single conceptual dataset and also as a small workflow with a number of components within the same provenance report. This dual representation does more than just allow simplified or detailed views of a dataset's production to be used where appropriate. It also allow persistent identifiers to be assigned to instances of a web service requests, thus enabling one form of dynamic data citation, and for those identifiers to resolve to whatever level of detail implementers think appropriate in order for that web service request to be reproduced. In this presentation we detail our reasoning in representing web service requests as small workflows. In outline, this stems from the idea that web service requests are perdurant things and in order to most easily persist knowledge of them for provenance, we should represent them as a nexus of relationships between endurant things, such as datasets and knowledge of particular system types, as these endurant things are far easier to persist. We also describe the ontology design pattern that we use to represent workflows in general and how we apply it to different types of web service requests. We give examples of specific web service requests instances that were made by systems

  15. Designing an architecture for monitoring patients at home: ontologies and web services for clinical and technical management integration.

    PubMed

    Lasierra, Nelia; Alesanco, Álvaro; García, José

    2014-05-01

    This paper presents the design and implementation of an architecture based on the combination of ontologies, rules, web services, and the autonomic computing paradigm to manage data in home-based telemonitoring scenarios. The architecture includes two layers: 1) a conceptual layer and 2) a data and communication layer. On the one hand, the conceptual layer based on ontologies is proposed to unify the management procedure and integrate incoming data from all the sources involved in the telemonitoring process. On the other hand, the data and communication layer based on REST web service (WS) technologies is proposed to provide practical backup to the use of the ontology, to provide a real implementation of the tasks it describes and thus to provide a means of exchanging data (support communication tasks). A case study regarding chronic obstructive pulmonary disease data management is presented in order to evaluate the efficiency of the architecture. This proposed ontology-based solution defines a flexible and scalable architecture in order to address main challenges presented in home-based telemonitoring scenarios and thus provide a means to integrate, unify, and transfer data supporting both clinical and technical management tasks.

  16. Towards automated biomedical ontology harmonization.

    PubMed

    Uribe, Gustavo A; Lopez, Diego M; Blobel, Bernd

    2014-01-01

    The use of biomedical ontologies is increasing, especially in the context of health systems interoperability. Ontologies are key pieces to understand the semantics of information exchanged. However, given the diversity of biomedical ontologies, it is essential to develop tools that support harmonization processes amongst them. Several algorithms and tools are proposed by computer scientist for partially supporting ontology harmonization. However, these tools face several problems, especially in the biomedical domain where ontologies are large and complex. In the harmonization process, matching is a basic task. This paper explains the different ontology harmonization processes, analyzes existing matching tools, and proposes a prototype of an ontology harmonization service. The results demonstrate that there are many open issues in the field of biomedical ontology harmonization, such as: overcoming structural discrepancies between ontologies; the lack of semantic algorithms to automate the process; the low matching efficiency of existing algorithms; and the use of domain and top level ontologies in the matching process.

  17. Integrating Distributed Data Systems Using Ontologies, Web Services and Standards: An MMI Case Study

    NASA Astrophysics Data System (ADS)

    Graybeal, J.; Bermudez, L. E.; Gomes, K.; Godin, M.

    2005-12-01

    The Marine Metadata Interoperability (MMI) project promotes the exchange, integration and use of marine data through enhanced data publishing, discovery, documentation and accessibility. One of the goals of the MMI project for 2005 is to create a web application that can query distributed and heterogeneous data repositories using ontologies to solve the semantic heterogeneities, SOAP web services as transport protocols, and content standards such as those promoted by the Dublin Core Metadata Initiative. The MMI demonstration began by making available, in one portal, two heterogeneous and distributed data systems built by the Monterey Bay Aquarium Research Institute (MBARI). The two systems were the Shore-Side Data System (SSDS) and the Autonomous Ocean Sampling Network (AOSN). SSDS is a data management system designed to systematically collect and catalog both data streaming from deployed observatory instruments, and data contained in external data files. The AOSN data system facilitates data collection, storage, retrieval, discovery, and public access for the intensive, multi-institutional Monterey Bay field program in 2003. The systems use different data models, and different names identify similar data fields. We will present the process we followed to demonstrate an interoperable solution, and lessons learned during the course of the demonstration. The process included development of interoperable solutions for communication protocols, metadata content standards, and the vocabularies used to exchange the standard content. Simple interfaces were defined and iteratively improved, and vocabulary lists from each system (addressing parameters, instruments, and units of measurement) were exported and mapped. Similar processes have been advocated by MMI for a wide variety of interoperability challenges, and this demonstration represented the first experience using real world systems and data. From these lessons, we will improve a larger demonstration project, as well

  18. Towards Agile Ontology Maintenance

    NASA Astrophysics Data System (ADS)

    Luczak-Rösch, Markus

    Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.

  19. Performing ontology.

    PubMed

    Aspers, Patrik

    2015-06-01

    Ontology, and in particular, the so-called ontological turn, is the topic of a recent themed issue of Social Studies of Science (Volume 43, Issue 3, 2013). Ontology, or metaphysics, is in philosophy concerned with what there is, how it is, and forms of being. But to what is the science and technology studies researcher turning when he or she talks of ontology? It is argued that it is unclear what is gained by arguing that ontology also refers to constructed elements. The 'ontological turn' comes with the risk of creating a pseudo-debate or pseudo-activity, in which energy is used for no end, at the expense of empirical studies. This text rebuts the idea of an ontological turn as foreshadowed in the texts of the themed issue. It argues that there is no fundamental qualitative difference between the ontological turn and what we know as constructivism.

  20. Quantum ontologies

    SciTech Connect

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.

  1. DEDUCE Clinical Text: An Ontology-based Module to Support Self-Service Clinical Notes Exploration and Cohort Development.

    PubMed

    Roth, Christopher; Rusincovitch, Shelley A; Horvath, Monica M; Brinson, Stephanie; Evans, Steve; Shang, Howard C; Ferranti, Jeffrey M

    2013-01-01

    Large amounts of information, as well as opportunities for informing research, education, and operations, are contained within clinical text such as radiology reports and pathology reports. However, this content is less accessible and harder to leverage than structured, discrete data. We report on an extension to the Duke Enterprise Data Unified Content Explorer (DEDUCE), a self-service query tool developed to provide clinicians and researchers with access to data within the Duke Medicine Enterprise Data Warehouse (EDW). The DEDUCE Clinical Text module supports ontology-based text searching, enhanced filtering capabilities based on document attributes, and integration of clinical text with structured data and cohort development. The module is implemented with open-source tools extensible to other institutions, including a Java-based search engine (Apache Solr) with complementary full-text indexing library (Lucene) employed with a negation engine (NegEx) modified by clinical users to include to local domain-specific negation phrases.

  2. EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats

    PubMed Central

    Ison, Jon; Kalaš, Matúš; Jonassen, Inge; Bolser, Dan; Uludag, Mahmut; McWilliam, Hamish; Malone, James; Lopez, Rodrigo; Pettifer, Steve; Rice, Peter

    2013-01-01

    Motivation: Advancing the search, publication and integration of bioinformatics tools and resources demands consistent machine-understandable descriptions. A comprehensive ontology allowing such descriptions is therefore required. Results: EDAM is an ontology of bioinformatics operations (tool or workflow functions), types of data and identifiers, application domains and data formats. EDAM supports semantic annotation of diverse entities such as Web services, databases, programmatic libraries, standalone tools, interactive applications, data schemas, datasets and publications within bioinformatics. EDAM applies to organizing and finding suitable tools and data and to automating their integration into complex applications or workflows. It includes over 2200 defined concepts and has successfully been used for annotations and implementations. Availability: The latest stable version of EDAM is available in OWL format from http://edamontology.org/EDAM.owl and in OBO format from http://edamontology.org/EDAM.obo. It can be viewed online at the NCBO BioPortal and the EBI Ontology Lookup Service. For documentation and license please refer to http://edamontology.org. This article describes version 1.2 available at http://edamontology.org/EDAM_1.2.owl. Contact: jison@ebi.ac.uk PMID:23479348

  3. Design of a Golf Swing Injury Detection and Evaluation open service platform with Ontology-oriented clustering case-based reasoning mechanism.

    PubMed

    Ku, Hao-Hsiang

    2015-01-01

    Nowadays, people can easily use a smartphone to get wanted information and requested services. Hence, this study designs and proposes a Golf Swing Injury Detection and Evaluation open service platform with Ontology-oritened clustering case-based reasoning mechanism, which is called GoSIDE, based on Arduino and Open Service Gateway initative (OSGi). GoSIDE is a three-tier architecture, which is composed of Mobile Users, Application Servers and a Cloud-based Digital Convergence Server. A mobile user is with a smartphone and Kinect sensors to detect the user's Golf swing actions and to interact with iDTV. An application server is with Intelligent Golf Swing Posture Analysis Model (iGoSPAM) to check a user's Golf swing actions and to alter this user when he is with error actions. Cloud-based Digital Convergence Server is with Ontology-oriented Clustering Case-based Reasoning (CBR) for Quality of Experiences (OCC4QoE), which is designed to provide QoE services by QoE-based Ontology strategies, rules and events for this user. Furthermore, GoSIDE will automatically trigger OCC4QoE and deliver popular rules for a new user. Experiment results illustrate that GoSIDE can provide appropriate detections for Golfers. Finally, GoSIDE can be a reference model for researchers and engineers.

  4. Tool support for software lookup table optimization

    PubMed Central

    Strout, Michelle Mills; Bieman, James M.

    2012-01-01

    A number of scientific applications are performance-limited by expressions that repeatedly call costly elementary functions. Lookup table (LUT) optimization accelerates the evaluation of such functions by reusing previously computed results. LUT methods can speed up applications that tolerate an approximation of function results, thereby achieving a high level of fuzzy reuse. One problem with LUT optimization is the difficulty of controlling the tradeoff between performance and accuracy. The current practice of manual LUT optimization adds programming effort by requiring extensive experimentation to make this tradeoff, and such hand tuning can obfuscate algorithms. In this paper we describe a methodology and tool implementation to improve the application of software LUT optimization. Our Mesa tool implements source-to-source transformations for C or C++ code to automate the tedious and error-prone aspects of LUT generation such as domain profiling, error analysis, and code generation. We evaluate Mesa with five scientific applications. Our results show a performance improvement of 3.0 × and 6.9 × for two molecular biology algorithms, 1.4 × for a molecular dynamics program, 2.1 × to 2.8 × for a neural network application, and 4.6 × for a hydrology calculation. We find that Mesa enables LUT optimization with more control over accuracy and less effort than manual approaches. PMID:24532963

  5. Tool Support for Software Lookup Table Optimization

    DOE PAGES

    Wilcox, Chris; Strout, Michelle Mills; Bieman, James M.

    2011-01-01

    A number of scientific applications are performance-limited by expressions that repeatedly call costly elementary functions. Lookup table (LUT) optimization accelerates the evaluation of such functions by reusing previously computed results. LUT methods can speed up applications that tolerate an approximation of function results, thereby achieving a high level of fuzzy reuse. One problem with LUT optimization is the difficulty of controlling the tradeoff between performance and accuracy. The current practice of manual LUT optimization adds programming effort by requiring extensive experimentation to make this tradeoff, and such hand tuning can obfuscate algorithms. In this paper we describe a methodology andmore » tool implementation to improve the application of software LUT optimization. Our Mesa tool implements source-to-source transformations for C or C++ code to automate the tedious and error-prone aspects of LUT generation such as domain profiling, error analysis, and code generation. We evaluate Mesa with five scientific applications. Our results show a performance improvement of 3.0× and 6.9× for two molecular biology algorithms, 1.4× for a molecular dynamics program, 2.1× to 2.8× for a neural network application, and 4.6× for a hydrology calculation. We find that Mesa enables LUT optimization with more control over accuracy and less effort than manual approaches.« less

  6. Extending netCDF and CF conventions to support enhanced Earth Observation Ontology services: the Prod-Trees project

    NASA Astrophysics Data System (ADS)

    Mazzetti, Paolo; Valentin, Bernard; Koubarakis, Manolis; Nativi, Stefano

    2013-04-01

    Access to Earth Observation products remains not at all straightforward for end users in most domains. Semantically-enabled search engines, generally accessible through Web portals, have been developed. They allow searching for products by selecting application-specific terms and specifying basic geographical and temporal filtering criteria. Although this mostly suits the needs of the general public, the scientific communities require more advanced and controlled means to find products. Ranges of validity, traceability (e.g. origin, applied algorithms), accuracy, uncertainty, are concepts that are typically taken into account in research activities. The Prod-Trees (Enriching Earth Observation Ontology Services using Product Trees) project will enhance the CF-netCDF product format and vocabulary to allow storing metadata that better describe the products, and in particular EO products. The project will bring a standardized solution that permits annotating EO products in such a manner that official and third-party software libraries and tools will be able to search for products using advanced tags and controlled parameter names. Annotated EO products will be automatically supported by all the compatible software. Because the entire product information will come from the annotations and the standards, there will be no need for integrating extra components and data structures that have not been standardized. In the course of the project, the most important and popular open-source software libraries and tools will be extended to support the proposed extensions of CF-netCDF. The result will be provided back to the respective owners and maintainers for ensuring the best dissemination and adoption of the extended format. The project, funded by ESA, has started in December 2012 and will end in May 2014. It is coordinated by Space Applications Services, and the Consortium includes CNR-IIA and the National and Kapodistrian University of Athens. The first activities included

  7. The Ontology for Biomedical Investigations.

    PubMed

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  8. The Ontology for Biomedical Investigations

    PubMed Central

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  9. Ontology Research and Development. Part 1-A Review of Ontology Generation.

    ERIC Educational Resources Information Center

    Ding, Ying; Foo, Schubert

    2002-01-01

    Discusses the role of ontology in knowledge representation, including enabling content-based access, interoperability, communications, and new levels of service on the Semantic Web; reviews current ontology generation studies and projects as well as problems facing such research; and discusses ontology mapping, information extraction, natural…

  10. Ontological analysis of SNOMED CT

    PubMed Central

    Héja, Gergely; Surján, György; Varga, Péter

    2008-01-01

    Background SNOMED CT is the most comprehensive medical terminology. However, its use for intelligent services based on formal reasoning is questionable. Methods The analysis of the structure of SNOMED CT is based on the formal top-level ontology DOLCE. Results The analysis revealed several ontological and knowledge-engineering errors, the most important are errors in the hierarchy (mostly from an ontological point of view, but also regarding medical aspects) and the mixing of subsumption relations with other types (mostly 'part of'). Conclusion The found errors impede formal reasoning. The paper presents a possible way to correct these problems. PMID:19007445

  11. A Table Look-Up Parser in Online ILTS Applications

    ERIC Educational Resources Information Center

    Chen, Liang; Tokuda, Naoyuki; Hou, Pingkui

    2005-01-01

    A simple table look-up parser (TLUP) has been developed for parsing and consequently diagnosing syntactic errors in semi-free formatted learners' input sentences of an intelligent language tutoring system (ILTS). The TLUP finds a parse tree for a correct version of an input sentence, diagnoses syntactic errors of the learner by tracing and…

  12. Marine Planning and Service Platform: specific ontology based semantic search engine serving data management and sustainable development

    NASA Astrophysics Data System (ADS)

    Manzella, Giuseppe M. R.; Bartolini, Andrea; Bustaffa, Franco; D'Angelo, Paolo; De Mattei, Maurizio; Frontini, Francesca; Maltese, Maurizio; Medone, Daniele; Monachini, Monica; Novellino, Antonio; Spada, Andrea

    2016-04-01

    The MAPS (Marine Planning and Service Platform) project is aiming at building a computer platform supporting a Marine Information and Knowledge System. One of the main objective of the project is to develop a repository that should gather, classify and structure marine scientific literature and data thus guaranteeing their accessibility to researchers and institutions by means of standard protocols. In oceanography the cost related to data collection is very high and the new paradigm is based on the concept to collect once and re-use many times (for re-analysis, marine environment assessment, studies on trends, etc). This concept requires the access to quality controlled data and to information that is provided in reports (grey literature) and/or in relevant scientific literature. Hence, creation of new technology is needed by integrating several disciplines such as data management, information systems, knowledge management. In one of the most important EC projects on data management, namely SeaDataNet (www.seadatanet.org), an initial example of knowledge management is provided through the Common Data Index, that is providing links to data and (eventually) to papers. There are efforts to develop search engines to find author's contributions to scientific literature or publications. This implies the use of persistent identifiers (such as DOI), as is done in ORCID. However very few efforts are dedicated to link publications to the data cited or used or that can be of importance for the published studies. This is the objective of MAPS. Full-text technologies are often unsuccessful since they assume the presence of specific keywords in the text; in order to fix this problem, the MAPS project suggests to use different semantic technologies for retrieving the text and data and thus getting much more complying results. The main parts of our design of the search engine are: • Syntactic parser - This module is responsible for the extraction of "rich words" from the text

  13. Use of the CIM Ontology

    SciTech Connect

    Neumann, Scott; Britton, Jay; Devos, Arnold N.; Widergren, Steven E.

    2006-02-08

    There are many uses for the Common Information Model (CIM), an ontology that is being standardized through Technical Committee 57 of the International Electrotechnical Commission (IEC TC57). The most common uses to date have included application modeling, information exchanges, information management and systems integration. As one should expect, there are many issues that become apparent when the CIM ontology is applied to any one use. Some of these issues are shortcomings within the current draft of the CIM, and others are a consequence of the different ways in which the CIM can be applied using different technologies. As the CIM ontology will and should evolve, there are several dangers that need to be recognized. One is overall consistency and impact upon applications when extending the CIM for a specific need. Another is that a tight coupling of the CIM to specific technologies could limit the value of the CIM in the longer term as an ontology, which becomes a larger issue over time as new technologies emerge. The integration of systems is one specific area of interest for application of the CIM ontology. This is an area dominated by the use of XML for the definition of messages. While this is certainly true when using Enterprise Application Integration (EAI) products, it is even more true with the movement towards the use of Web Services (WS), Service-Oriented Architectures (SOA) and Enterprise Service Buses (ESB) for integration. This general IT industry trend is consistent with trends seen within the IEC TC57 scope of power system management and associated information exchange. The challenge for TC57 is how to best leverage the CIM ontology using the various XML technologies and standards for integration. This paper will provide examples of how the CIM ontology is used and describe some specific issues that should be addressed within the CIM in order to increase its usefulness as an ontology. It will also describe some of the issues and challenges that will

  14. Simple Ontology Format (SOFT)

    SciTech Connect

    Sorokine, Alexandre

    2011-10-01

    Simple Ontology Format (SOFT) library and file format specification provides a set of simple tools for developing and maintaining ontologies. The library, implemented as a perl module, supports parsing and verification of the files in SOFt format, operations with ontologies (adding, removing, or filtering of entities), and converting of ontologies into other formats. SOFT allows users to quickly create ontologies using only a basic text editor, verify it, and portray it in a graph layout system using customized styles.

  15. Efficient halftoning based on multiple look-up tables.

    PubMed

    Guo, Jing-Ming; Liu, Yun-Fu; Chang, Jia-Yu; Lee, Jiann-Der

    2013-11-01

    Look-up table (LUT) halftoning is an efficient way to construct halftone images and approximately simulate the dot distribution of the learned halftone image set. In this paper, a general mechanism named multiple look-up table (MLUT) halftoning is proposed to generate the halftones of direct binary search (DBS), whereas the high efficient characteristic of the LUT is still preserved. In the MLUT, the standard deviation is adopted as an important feature to classify various tables. In addition, the proposed quick standard deviation evaluation is employed to yield an extremely low computational complexity in calculating the standard deviation. In the parameter optimization, the autocorrelation is adopted because it can fully characterize the periodicity of dot distribution. Experimental results demonstrate that the dot distribution generated by the proposed method approximates to that of the DBS, which enables the proposed scheme as a very competitive candidate in the copying and printing industry.

  16. Fast Pixel Buffer For Processing With Lookup Tables

    NASA Technical Reports Server (NTRS)

    Fisher, Timothy E.

    1992-01-01

    Proposed scheme for buffering data on intensities of picture elements (pixels) of image increases rate or processing beyond that attainable when data read, one pixel at time, from main image memory. Scheme applied in design of specialized image-processing circuitry. Intended to optimize performance of processor in which electronic equivalent of address-lookup table used to address those pixels in main image memory required for processing.

  17. BRAF Pyrosequencing Analysis Aided by a Lookup Table

    PubMed Central

    Olson, Matthew T.; Harrington, Colleen; Beierl, Katie; Chen, Guoli; Thiess, Michele; O'Neill, Alan; Taube, Janis M.; Zeiger, Martha A.; Lin, Ming-Tseh; Eshleman, James R.

    2015-01-01

    Objectives BRAF mutations have substantial therapeutic, diagnostic, and prognostic significance, so detecting and specifying them is an important part of the workload of molecular pathology laboratories. Pyrosequencing assays are well suited for this analysis but can produce complex results. Therefore, we introduce a pyrosequencing lookup table based on Pyromaker that assists the user in generating hypotheses for solving complex pyrosequencing results. Methods The lookup table contains all known mutations in the sequenced region and the positions in the dispensation sequence at which changes would occur with those mutations. We demonstrate the lookup table using a homebrew dispensation sequence for BRAF codons 596 to 605 as well as a commercially available kit-based dispensation sequence for codons 599 to 600. Results These results demonstrate that the homebrew dispensation sequence unambiguously identifies all known BRAF mutations in this region, whereas the kit-based dispensation sequence has one unresolvable degeneracy that could be solved with the addition of two injections. Conclusions Using the lookup table and confirmatory virtual pyrogram, we unambiguously solved clinical pyrograms of the complex mutations V600K (c.1798_1799delGTinsAA), V600R (c.1798_1799delGTinsAG), V600D (c.1799_1800delTGinsAT), V600E (c.1799_1800delTGinsAA), and V600_K601delinsE (c.1799_1801delTGA). In addition, we used the approach to hypothesize and confirm a new mutation in human melanoma, V600_K601delinsEI (c.1799_1802delTGAAinsAAAT). PMID:24713734

  18. Datamining with Ontologies.

    PubMed

    Hoehndorf, Robert; Gkoutos, Georgios V; Schofield, Paul N

    2016-01-01

    The use of ontologies has increased rapidly over the past decade and they now provide a key component of most major databases in biology and biomedicine. Consequently, datamining over these databases benefits from considering the specific structure and content of ontologies, and several methods have been developed to use ontologies in datamining applications. Here, we discuss the principles of ontology structure, and datamining methods that rely on ontologies. The impact of these methods in the biological and biomedical sciences has been profound and is likely to increase as more datasets are becoming available using common, shared ontologies.

  19. Research on the complex network of the UNSPSC ontology

    NASA Astrophysics Data System (ADS)

    Xu, Yingying; Zou, Shengrong; Gu, Aihua; Wei, Li; Zhou, Ta

    The UNSPSC ontology mainly applies to the classification system of the e-business and governments buying the worldwide products and services, and supports the logic structure of classification of the products and services. In this paper, the related technologies of the complex network were applied to analyzing the structure of the ontology. The concept of the ontology was corresponding to the node of the complex network, and the relationship of the ontology concept was corresponding to the edge of the complex network. With existing methods of analysis and performance indicators in the complex network, analyzing the degree distribution and community of the ontology, and the research will help evaluate the concept of the ontology, classify the concept of the ontology and improve the efficiency of semantic matching.

  20. Indexing of multidimensional lookup tables in embedded systems.

    PubMed

    Vrhel, Michael J

    2004-10-01

    The proliferation of color devices and the desire to have them accurately communicate color information has led to a need for embedded systems that perform color conversions. A common method for performing color space conversions is to characterize the device with a multidimensional lookup table (MLUT). To reduce cost, many of the embedded systems have limited computational abilities. This leads to a need for the design of efficient methods for performing MLUT indexing and interpolation. This paper examines and compares two methods of MLUT indexing within embedded systems. The comparison is made in terms of colorimetric accuracy and computational cost.

  1. Multiple Lookup Table-Based AES Encryption Algorithm Implementation

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Liu, Wenyi; Zhang, Huixin

    Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.

  2. Intepretation of tomographic images using automatic atlas lookup

    NASA Astrophysics Data System (ADS)

    Schiemann, Thomas; Hoehne, Karl H.; Koch, Christoph; Pommert, Andreas; Riemer, Martin; Schubert, Rainer; Tiede, Ulf

    1994-09-01

    We describe a system that automates atlas look-up when viewing cross-sectional images at a viewing station. Using simple specification of landmarks a linear transformation to a volume based anatomical atlas is performed. As a result corresponding atlas pictures containing information about structures, function, or blood supply, or classical atlas pages (like Talairach) appear next to the patient data for any chosen slice. In addition the slices are visible in the 3D context of the VOXEL-MAN 3D atlas, providing all its functionality.

  3. A Pipelined IP Address Lookup Module for 100 Gbps Line Rates and beyond

    NASA Astrophysics Data System (ADS)

    Teuchert, Domenic; Hauger, Simon

    New Internet services and technologies call for higher packet switching capacities in the core network. Thus, a performance bottleneck arises at the backbone routers, as forwarding of Internet Protocol (IP) packets requires to search the most specific entry in a forwarding table that contains up to several hundred thousand address prefixes. The Tree Bitmap algorithm provides a well-balanced solution in respect of storage needs as well as of search and update complexity. In this paper, we present a pipelined lookup module based on this algorithm, which allows for an easy adaption to diverse protocol and hardware constraints. We determined the pipelining degree required to achieve the throughput for a 100 Gbps router line card by analyzing a representative sub-unit for various configured sizes. The module supports IPv4 and IPv6 configurations providing this throughput, as we determined the performance of our design to achieve a processing rate of 178 million packets per second.

  4. Bringing Ontology to the Gene Ontology

    PubMed Central

    Andersen, William

    2003-01-01

    We present an analysis of some considerations involved in expressing the Gene Ontology (GO) as a machine-processible ontology, reflecting principles of formal ontology. GO is a controlled vocabulary that is intended to facilitate communication between biologists by standardizing usage of terms in database annotations. Making such controlled vocabularies maximally useful in support of bioinformatics applications requires explicating in machine-processible form the implicit background information that enables human users to interpret the meaning of the vocabulary terms. In the case of GO, this process would involve rendering the meanings of GO into a formal (logical) language with the help of domain experts, and adding additional information required to support the chosen formalization. A controlled vocabulary augmented in these ways is commonly called an ontology. In this paper, we make a modest exploration to determine the ontological requirements for this extended version of GO. Using the terms within the three GO hierarchies (molecular function, biological process and cellular component), we investigate the facility with which GO concepts can be ontologized, using available tools from the philosophical and ontological engineering literature. PMID:18629099

  5. Cache directory look-up re-use as conflict check mechanism for speculative memory requests

    DOEpatents

    Ohmacht, Martin

    2013-09-10

    In a cache memory, energy and other efficiencies can be realized by saving a result of a cache directory lookup for sequential accesses to a same memory address. Where the cache is a point of coherence for speculative execution in a multiprocessor system, with directory lookups serving as the point of conflict detection, such saving becomes particularly advantageous.

  6. Semantic Web Services with Web Ontology Language (OWL-S) - Specification of Agent-Services for DARPA Agent Markup Language (DAML)

    DTIC Science & Technology

    2006-08-01

    Sycara, and T. Nishimura, "Towards a Semantic Web Ecommerce ," in Proceedings of 6th Conference on Business Information Systems (BIS2003), Colorado...marketplace. Web Service technology are being adapted by Business -to- Business interaction and even in some Business -to- Consumer interactions. The widespread...messaging protocol) makes it possible to describe the functionalities of devices as Web services. As an example, consider a business meeting where

  7. A hierarchical P2P overlay network for interest-based media contents lookup

    NASA Astrophysics Data System (ADS)

    Lee, HyunRyong; Kim, JongWon

    2006-10-01

    We propose a P2P (peer-to-peer) overlay architecture, called IGN (interest grouping network), for contents lookup in the DHC (digital home community), which aims to provide a formalized home-network-extended construction of current P2P file sharing community. The IGN utilizes the Chord and de Bruijn graph for its hierarchical overlay network construction. By combining two schemes and by inheriting its features, the IGN efficiently supports contents lookup. More specifically, by introducing metadata-based lookup keyword, the IGN offers detailed contents lookup that can reflect the user interests. Moreover, the IGN tries to reflect home network environments of DHC by utilizing HG (home gateway) of each home network as a participating node of the IGN. Through experimental and analysis results, we show that the IGN is more efficient than Chord, a well-known DHT (distributed hash table)-based lookup protocol.

  8. Kuhn's Ontological Relativism.

    ERIC Educational Resources Information Center

    Sankey, Howard

    2000-01-01

    Discusses Kuhn's model of scientific theory change. Documents Kuhn's move away from conceptual relativism and rational relativism. Provides an analysis of his present ontological form of relativism. (CCM)

  9. Primer on Ontologies.

    PubMed

    Hastings, Janna

    2017-01-01

    As molecular biology has increasingly become a data-intensive discipline, ontologies have emerged as an essential computational tool to assist in the organisation, description and analysis of data. Ontologies describe and classify the entities of interest in a scientific domain in a computationally accessible fashion such that algorithms and tools can be developed around them. The technology that underlies ontologies has its roots in logic-based artificial intelligence, allowing for sophisticated automated inference and error detection. This chapter presents a general introduction to modern computational ontologies as they are used in biology.

  10. The Ontology of Disaster.

    ERIC Educational Resources Information Center

    Thompson, Neil

    1995-01-01

    Explores some key existential or ontological concepts to show their applicability to the complex area of disaster impact as it relates to health and social welfare practice. Draws on existentialist philosophy, particularly that of John Paul Sartre, and introduces some key ontological concepts to show how they specifically apply to the experience…

  11. Constructive Ontology Engineering

    ERIC Educational Resources Information Center

    Sousan, William L.

    2010-01-01

    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…

  12. Ayurveda research: Ontological challenges

    PubMed Central

    Nayak, Jayakrishna

    2012-01-01

    Collaborative research involving Ayurveda and the current sciences is undoubtedly an imperative and is emerging as an exciting horizon, particularly in basic sciences. Some work in this direction is already going on and outcomes are awaited with bated breath. For instance the ‘ASIIA (A Science Initiative In Ayurveda)’ projects of Dept of Science and Technology, Govt of India, which include studies such as Ayurvedic Prakriti and Genetics. Further intense and sustained collaborative research needs to overcome a subtle and fundamental challenge-the ontologic divide between Ayurveda and all the current sciences. Ontology, fundamentally, means existence; elaborated, ontology is a particular perspective of an object of existence and the vocabulary developed to share that perspective. The same object of existence is susceptible to several ontologies. Ayurveda and modern biomedical as well as other sciences belong to different ontologies, and as such, collaborative research cannot be carried out at required levels until a mutually acceptable vocabulary is developed. PMID:22529675

  13. BiOSS: A system for biomedical ontology selection.

    PubMed

    Martínez-Romero, Marcos; Vázquez-Naya, José M; Pereira, Javier; Pazos, Alejandro

    2014-04-01

    In biomedical informatics, ontologies are considered a key technology for annotating, retrieving and sharing the huge volume of publicly available data. Due to the increasing amount, complexity and variety of existing biomedical ontologies, choosing the ones to be used in a semantic annotation problem or to design a specific application is a difficult task. As a consequence, the design of approaches and tools addressed to facilitate the selection of biomedical ontologies is becoming a priority. In this paper we present BiOSS, a novel system for the selection of biomedical ontologies. BiOSS evaluates the adequacy of an ontology to a given domain according to three different criteria: (1) the extent to which the ontology covers the domain; (2) the semantic richness of the ontology in the domain; (3) the popularity of the ontology in the biomedical community. BiOSS has been applied to 5 representative problems of ontology selection. It also has been compared to existing methods and tools. Results are promising and show the usefulness of BiOSS to solve real-world ontology selection problems. BiOSS is openly available both as a web tool and a web service.

  14. Development of an Adolescent Depression Ontology for Analyzing Social Data.

    PubMed

    Jung, Hyesil; Park, Hyeoun-Ae; Song, Tae-Min; Jeon, Eunjoo; Kim, Ae Ran; Lee, Joo Yun

    2015-01-01

    Depression in adolescence is associated with significant suicidality. Therefore, it is important to detect the risk for depression and provide timely care to adolescents. This study aims to develop an ontology for collecting and analyzing social media data about adolescent depression. This ontology was developed using the 'ontology development 101'. The important terms were extracted from several clinical practice guidelines and postings on Social Network Service. We extracted 777 terms, which were categorized into 'risk factors', 'sign and symptoms', 'screening', 'diagnosis', 'treatment', and 'prevention'. An ontology developed in this study can be used as a framework to understand adolescent depression using unstructured data from social media.

  15. Application of Ontologies for Big Earth Data

    NASA Astrophysics Data System (ADS)

    Huang, T.; Chang, G.; Armstrong, E. M.; Boening, C.

    2014-12-01

    Connected data is smarter data! Earth Science research infrastructure must do more than just being able to support temporal, geospatial discovery of satellite data. As the Earth Science data archives continue to expand across NASA data centers, the research communities are demanding smarter data services. A successful research infrastructure must be able to present researchers the complete picture, that is, datasets with linked citations, related interdisciplinary data, imageries, current events, social media discussions, and scientific data tools that are relevant to the particular dataset. The popular Semantic Web for Earth and Environmental Terminology (SWEET) ontologies is a collection of ontologies and concepts designed to improve discovery and application of Earth Science data. The SWEET ontologies collection was initially developed to capture the relationships between keywords in the NASA Global Change Master Directory (GCMD). Over the years this popular ontologies collection has expanded to cover over 200 ontologies and 6000 concepts to enable scalable classification of Earth system science concepts and Space science. This presentation discusses the semantic web technologies as the enabling technology for data-intensive science. We will discuss the application of the SWEET ontologies as a critical component in knowledge-driven research infrastructure for some of the recent projects, which include the DARPA Ontological System for Context Artifact and Resources (OSCAR), 2013 NASA ACCESS Virtual Quality Screening Service (VQSS), and the 2013 NASA Sea Level Change Portal (SLCP) projects. The presentation will also discuss the benefits in using semantic web technologies in developing research infrastructure for Big Earth Science Data in an attempt to "accommodate all domains and provide the necessary glue for information to be cross-linked, correlated, and discovered in a semantically rich manner." [1] [1] Savas Parastatidis: A platform for all that we know

  16. Dynamic Generation of Reduced Ontologies to Support Resource Constraints of Mobile Devices

    ERIC Educational Resources Information Center

    Schrimpsher, Dan

    2011-01-01

    As Web Services and the Semantic Web become more important, enabling technologies such as web service ontologies will grow larger. At the same time, use of mobile devices to access web services has doubled in the last year. The ability of these resource constrained devices to download and reason across these ontologies to support service discovery…

  17. Data mining for ontology development.

    SciTech Connect

    Davidson, George S.; Strasburg, Jana; Stampf, David; Neymotin,Lev; Czajkowski, Carl; Shine, Eugene; Bollinger, James; Ghosh, Vinita; Sorokine, Alexandre; Ferrell, Regina; Ward, Richard; Schoenwald, David Alan

    2010-06-01

    A multi-laboratory ontology construction effort during the summer and fall of 2009 prototyped an ontology for counterfeit semiconductor manufacturing. This effort included an ontology development team and an ontology validation methods team. Here the third team of the Ontology Project, the Data Analysis (DA) team reports on their approaches, the tools they used, and results for mining literature for terminology pertinent to counterfeit semiconductor manufacturing. A discussion of the value of ontology-based analysis is presented, with insights drawn from other ontology-based methods regularly used in the analysis of genomic experiments. Finally, suggestions for future work are offered.

  18. A Method for Evaluating and Standardizing Ontologies

    ERIC Educational Resources Information Center

    Seyed, Ali Patrice

    2012-01-01

    The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative effort for developing interoperable, science-based ontologies. The Basic Formal Ontology (BFO) serves as the upper ontology for the domain-level ontologies of OBO. BFO is an upper ontology of types as conceived by defenders of realism. Among the ontologies developed for OBO…

  19. Ontologies for Bioinformatics

    PubMed Central

    Schuurman, Nadine; Leszczynski, Agnieszka

    2008-01-01

    The past twenty years have witnessed an explosion of biological data in diverse database formats governed by heterogeneous infrastructures. Not only are semantics (attribute terms) different in meaning across databases, but their organization varies widely. Ontologies are a concept imported from computing science to describe different conceptual frameworks that guide the collection, organization and publication of biological data. An ontology is similar to a paradigm but has very strict implications for formatting and meaning in a computational context. The use of ontologies is a means of communicating and resolving semantic and organizational differences between biological databases in order to enhance their integration. The purpose of interoperability (or sharing between divergent storage and semantic protocols) is to allow scientists from around the world to share and communicate with each other. This paper describes the rapid accumulation of biological data, its various organizational structures, and the role that ontologies play in interoperability. PMID:19812775

  20. Fast radiative transfer using monochromatic look-up tables

    NASA Astrophysics Data System (ADS)

    Anthony Vincent, R.; Dudhia, Anu

    2017-01-01

    Line-by-line (LBL) methods of numerically solving the equations of radiative transfer can be inhibitingly slow. Operational trace gas retrieval schemes generally require much faster output than current LBL radiative transfer models can achieve. One option to speed up computation is to precalculate absorption cross sections for each absorbing gas on a fixed grid and interpolate. This work presents a general method for creating, compressing, and validating a set of individual look-up tables (LUTs) for the 11 most abundant trace gases to use the Reference Forward Model (RFM) to simulate radiances observed by the Infrared Atmospheric Sounding Interferometer (IASI) at a more operational pace. These LUTs allow the RFM to generate radiances more than 20 times faster than LBL mode and were rigorously validated for 80 different atmospheric scenarios chosen to represent variability indicative of Earth's atmosphere. More than 99% of all IASI simulated spectral channels had LUT interpolation errors of brightness temperature less than 0.02 K, several factors below the IASI noise level. Including a reduced spectral grid for radiative transfer speed up the computation by another factor of six at the expense of approximately doubling interpolation errors, still factors below IASI noise. Furthermore, a simple spectral compression scheme based upon linear interpolation is presented, which reduced the total LUT file size from 120 Gbytes to 5.6 Gbytes; a compression to just 4.4% of the original. These LUTs are openly available for use by the scientific community, whether using the RFM or to be incorporated into any forward model.

  1. Lookup Tables Versus Stacked Rasch Analysis in Comparing Pre- and Postintervention Adult Strabismus-20 Data

    PubMed Central

    Leske, David A.; Hatt, Sarah R.; Liebermann, Laura; Holmes, Jonathan M.

    2016-01-01

    Purpose We compare two methods of analysis for Rasch scoring pre- to postintervention data: Rasch lookup table versus de novo stacked Rasch analysis using the Adult Strabismus-20 (AS-20). Methods One hundred forty-seven subjects completed the AS-20 questionnaire prior to surgery and 6 weeks postoperatively. Subjects were classified 6 weeks postoperatively as “success,” “partial success,” or “failure” based on angle and diplopia status. Postoperative change in AS-20 scores was compared for all four AS-20 domains (self-perception, interactions, reading function, and general function) overall and by success status using two methods: (1) applying historical Rasch threshold measures from lookup tables and (2) performing a stacked de novo Rasch analysis. Change was assessed by analyzing effect size, improvement exceeding 95% limits of agreement (LOA), and score distributions. Results Effect sizes were similar for all AS-20 domains whether obtained from lookup tables or stacked analysis. Similar proportions exceeded 95% LOAs using lookup tables versus stacked analysis. Improvement in median score was observed for all AS-20 domains using lookup tables and stacked analysis (P < 0.0001 for all comparisons). Conclusions The Rasch-scored AS-20 is a responsive and valid instrument designed to measure strabismus-specific health-related quality of life. When analyzing pre- to postoperative change in AS-20 scores, Rasch lookup tables and de novo stacked Rasch analysis yield essentially the same results. Translational Relevance We describe a practical application of lookup tables, allowing the clinician or researcher to score the Rasch-calibrated AS-20 questionnaire without specialized software. PMID:26933524

  2. Ontological engineering versus metaphysics

    NASA Astrophysics Data System (ADS)

    Tataj, Emanuel; Tomanek, Roman; Mulawka, Jan

    2011-10-01

    It has been recognized that ontologies are a semantic version of world wide web and can be found in knowledge-based systems. A recent time survey of this field also suggest that practical artificial intelligence systems may be motivated by this research. Especially strong artificial intelligence as well as concept of homo computer can also benefit from their use. The main objective of this contribution is to present and review already created ontologies and identify the main advantages which derive such approach for knowledge management systems. We would like to present what ontological engineering borrows from metaphysics and what a feedback it can provide to natural language processing, simulations and modelling. The potential topics of further development from philosophical point of view is also underlined.

  3. Geo-ontology design and its logic reasoning

    NASA Astrophysics Data System (ADS)

    Wang, Yandong; Dai, Jingjing; Sheng, Jizhen; Zhou, Kai; Gong, Jianya

    2007-06-01

    With the increasing application of geographic information system (GIS), GIS is faced with the difficulty of efficient management and comprehensive application of the spatial information from different resources and in different forms. In order to solve these problems, ontology is introduced into GIS field as a concept model which can represent object on semantic and knowledge level. Ontology not only can describe spatial data more easily understood by computers in semantic encoding method, but also can integrate geographical data from different sources and in different forms for reasoning. In this paper, a geo-ontology "GeographicalSpace" is built with Web Ontology Language (OWL) after analyzing the research and application of geo-ontology. A geo-ontology reasoning framework is put forward in which three layers are designed. The three layers are presentation layer, semantic service layer and spatial application server layer. By using the geo-ontology repository module and reasoning module in this framework, some more complex spatial location relationships in depth can be mined out. At last, an experiment is designed to demonstrate geo-ontology's ability to execute more intelligent query that can't be implemented in traditional GIS.

  4. Efficient lookup table using a linear function of inverse distance squared.

    PubMed

    Jung, Jaewoon; Mori, Takaharu; Sugita, Yuji

    2013-10-30

    The major bottleneck in molecular dynamics (MD) simulations of biomolecules exist in the calculation of pairwise nonbonded interactions like Lennard-Jones and long-range electrostatic interactions. Particle-mesh Ewald (PME) method is able to evaluate long-range electrostatic interactions accurately and quickly during MD simulation. However, the evaluation of energy and gradient includes time-consuming inverse square roots and complementary error functions. To avoid such time-consuming operations while keeping accuracy, we propose a new lookup table for short-range interaction in PME by defining energy and gradient as a linear function of inverse distance squared. In our lookup table approach, densities of table points are inversely proportional to squared pair distances, enabling accurate evaluation of energy and gradient at small pair distances. Regardless of the inverse operation here, the new lookup table scheme allows fast pairwise nonbonded calculations owing to efficient usage of cache memory.

  5. Using a Foundational Ontology for Reengineering a Software Enterprise Ontology

    NASA Astrophysics Data System (ADS)

    Perini Barcellos, Monalessa; de Almeida Falbo, Ricardo

    The knowledge about software organizations is considerably relevant to software engineers. The use of a common vocabulary for representing the useful knowledge about software organizations involved in software projects is important for several reasons, such as to support knowledge reuse and to allow communication and interoperability between tools. Domain ontologies can be used to define a common vocabulary for sharing and reuse of knowledge about some domain. Foundational ontologies can be used for evaluating and re-designing domain ontologies, giving to these real-world semantics. This paper presents an evaluating of a Software Enterprise Ontology that was reengineered using the Unified Foundation Ontology (UFO) as basis.

  6. Theory of ontology and land use ontology construction

    NASA Astrophysics Data System (ADS)

    Zhou, Guofeng; Liu, Yongxue; Chao, Junjie; Shen, Chenhua; Yang, Hui

    2007-06-01

    It mainly presents the problems of data share in land use database construction. How to accurately define geographic classification expression and how to quickly and accurately express the user demand are plaguing problems of information system developer. The introduction of ontology and relevant technologies address the problem with a brand new perspective and provide a strong theoretical and methodological support. From the relevant ontology theoretical study, this paper summarizes the essence of the concept of ontology; and explores the type, role, method, formalization expression and tools of ontology. On the basis of existing research, the paper brings forward 5-step method of ontology building and then uses this method to build ontology in land use database construction. It also puts forward the notion model of land use database based on ontology.

  7. Biomedicine: an ontological dissection.

    PubMed

    Baronov, David

    2008-01-01

    Though ubiquitous across the medical social sciences literature, the term "biomedicine" as an analytical concept remains remarkably slippery. It is argued here that this imprecision is due in part to the fact that biomedicine is comprised of three interrelated ontological spheres, each of which frames biomedicine as a distinct subject of investigation. This suggests that, depending upon one's ontological commitment, the meaning of biomedicine will shift. From an empirical perspective, biomedicine takes on the appearance of a scientific enterprise and is defined as a derivative category of Western science more generally. From an interpretive perspective, biomedicine represents a symbolic-cultural expression whose adherence to the principles of scientific objectivity conceals an ideological agenda. From a conceptual perspective, biomedicine represents an expression of social power that reflects structures of power and privilege within capitalist society. No one perspective exists in isolation and so the image of biomedicine from any one presents an incomplete understanding. It is the mutually-conditioning interrelations between these ontological spheres that account for biomedicine's ongoing development. Thus, the ontological dissection of biomedicine that follows, with particular emphasis on the period of its formal crystallization in the latter nineteenth and early twentieth century, is intended to deepen our understanding of biomedicine as an analytical concept across the medical social sciences literature.

  8. Dahlbeck and Pure Ontology

    ERIC Educational Resources Information Center

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  9. Ontology, Language, and Culture

    ERIC Educational Resources Information Center

    Hyde, Richard Bruce

    The purpose of this essay is to consider some of the practical implications of Martin Heideger's view that "Language is the house of Being," for the academic study of cultural transformation and intercultural communication. The paper describes the ontological basis of Heidegger's work, and the inquiry into Being, and contains sections on…

  10. Benchmarking Ontologies: Bigger or Better?

    PubMed Central

    Yao, Lixia; Divoli, Anna; Mayzus, Ilya; Evans, James A.; Rzhetsky, Andrey

    2011-01-01

    A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1) four of the most common medical ontologies with respect to a corpus of medical documents and (2) seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them. PMID:21249231

  11. Does Look-up Frequency Help Reading Comprehension of EFL Learners? Two Empirical Studies of Electronic Dictionaries

    ERIC Educational Resources Information Center

    Koyama, Toshiko; Takeuchi, Osamu

    2007-01-01

    Two empirical studies were conducted in which the differences in Japanese EFL learners' look-up behavior between hand-held electronic dictionaries (EDs) and printed dictionaries (PDs) were investigated. We focus here on the relation between learners' look-up frequency and degree of reading comprehension of the text. In the first study, a total of…

  12. The Ontological Reversal: A Figure of Thought of Importance for Science Education.

    ERIC Educational Resources Information Center

    Dahlin, Bo

    2003-01-01

    Investigated whether the "ontological reversal" described by E. Husserl, the tendency to view abstract mathematical models of phenomena as more real than the phenomena themselves, is present in the reasoning of pre-service science teachers. Findings for 23 pre-service teachers indicate the presence of the ontological reversal as a figure…

  13. Integrating the human phenotype ontology into HeTOP terminology-ontology server.

    PubMed

    Grosjean, Julien; Merabti, Tayeb; Soualmia, Lina F; Letord, Catherine; Charlet, Jean; Robinson, Peter N; Darmoni, Stéfan J

    2013-01-01

    The Human Phenotype Ontology (HPO) is a controlled vocabulary which provides phenotype data related to genes or diseases. The Health Terminology/Ontology Portal (HeTOP) is a tool dedicated to both human beings and computers to access and browse biomedical terminologies or ontologies (T/O). The objective of this work was to integrate the HPO into HeTOP in order to enhance both works. This integration is a success and allows users to search and browse the HPO with a dedicated interface. Furthermore, the HPO has been enhanced with the addition of content such as new synonyms, translations, mappings. Integrating T/O such as the HPO into HeTOP is a benefit to vocabularies because it allows enrichment of them and it is also a benefit for HeTOP which provides a better service to both humans and machines.

  14. Rehabilitation robotics ontology on the cloud.

    PubMed

    Dogmus, Zeynep; Papantoniou, Agis; Kilinc, Muhammed; Yildirim, Sibel A; Erdem, Esra; Patoglu, Volkan

    2013-06-01

    We introduce the first formal rehabilitation robotics ontology, called RehabRobo-Onto, to represent information about rehabilitation robots and their properties; and a software system RehabRobo-Query to facilitate access to this ontology. RehabRobo-Query is made available on the cloud, utilizing Amazon Web services, so that 1) rehabilitation robot designers around the world can add/modify information about their robots in RehabRobo-Onto, and 2) rehabilitation robot designers and physical medicine experts around the world can access the knowledge in RehabRobo-Onto by means of questions about robots, in natural language, with the guide of the intelligent userinterface of RehabRobo-Query. The ontology system consisting of RehabRobo-Onto and RehabRobo-Query is of great value to robot designers as well as physical therapists and medical doctors. On the one hand, robot designers can access various properties of the existing robots and to the related publications to further improve the state-of-the-art. On the other hand, physical therapists and medical doctors can utilize the ontology to compare rehabilitation robots and to identify the ones that serve best to cover their needs, or to evaluate the effects of various devices for targeted joint exercises on patients with specific disorders.

  15. Real-time color imaging system for NIR and visible based on neighborhood statistics lookup table

    NASA Astrophysics Data System (ADS)

    Wei, Sheng-yi; Jin, Zhen; Wang, Ling-xue; He, Yu; Zhou, Xing-guang

    2015-11-01

    The near infrared radiation is the main component of the solar radiation. It's widely used in the remote sensing, nightvision, spectral detection et al. The NIR images are usually monochromatic, while color images are benefit for scene reconstruction and object detection. In this paper a new computed color imaging method based on the neighborhood statistics lookup table for NIR and visible was presented, and its implementation system was built. The neighborhood statistics lookup table was established based on the neighborhood statistical properties of the image. The use of the neighborhood statistical properties can enriched the color transmission variables of the gray image. It obtained a colorful lookup table that could improve the effects of the color transfer and make the colorized image more natural. The proposed lookup table could also transfer the color details well for the neighborhood statistical information representing the texture of the image. The results shows that this method yields a color image with natural color appearance and it can be implemented in real-time.

  16. Improving the dictionary lookup approach for disease normalization using enhanced dictionary and query expansion

    PubMed Central

    Jonnagaddala, Jitendra; Jue, Toni Rose; Chang, Nai-Wen; Dai, Hong-Jie

    2016-01-01

    The rapidly increasing biomedical literature calls for the need of an automatic approach in the recognition and normalization of disease mentions in order to increase the precision and effectivity of disease based information retrieval. A variety of methods have been proposed to deal with the problem of disease named entity recognition and normalization. Among all the proposed methods, conditional random fields (CRFs) and dictionary lookup method are widely used for named entity recognition and normalization respectively. We herein developed a CRF-based model to allow automated recognition of disease mentions, and studied the effect of various techniques in improving the normalization results based on the dictionary lookup approach. The dataset from the BioCreative V CDR track was used to report the performance of the developed normalization methods and compare with other existing dictionary lookup based normalization methods. The best configuration achieved an F-measure of 0.77 for the disease normalization, which outperformed the best dictionary lookup based baseline method studied in this work by an F-measure of 0.13. Database URL: https://github.com/TCRNBioinformatics/DiseaseExtract PMID:27504009

  17. A hybrid table look-up method for H.264/AVC coeff_token decoding

    NASA Astrophysics Data System (ADS)

    Liu, Suhua; Zhang, Yixiong; Lu, Min; Tang, Biyu

    2011-10-01

    In this paper, a hybrid table look-up method for H.264 Coeff_Token Decoding is presented. In the proposed method the probabilities of the codewords with various lengths are analyzed, and based on the statistics a hybrid look-up table is constructed. In the coeff_token decoding process, firstly, a few bits are read from the bit-stream, if a matched codeword is found in the first look-up table, the further look-up steps will be skipped. Otherwise, more bits need to be read and looked up in the second table, which is built upon the number of leading 0's before the first number one. Experimental results on the RTSM Emulation Baseboard ARM926 of RealView show that the proposed method speeds up CAVLD of H.264 by about 8% with more efficient memory utilization, when compared to the prefix-based decoding method. And compared with the pattern-search method based on hashing algorithms adopted in the newest version of FFMPEG, the proposed method reduces memory space by about 77%.

  18. Cache directory lookup reader set encoding for partial cache line speculation support

    DOEpatents

    Gara, Alan; Ohmacht, Martin

    2014-10-21

    In a multiprocessor system, with conflict checking implemented in a directory lookup of a shared cache memory, a reader set encoding permits dynamic recordation of read accesses. The reader set encoding includes an indication of a portion of a line read, for instance by indicating boundaries of read accesses. Different encodings may apply to different types of speculative execution.

  19. Mini Ontologies and Metadata Expressions

    NASA Astrophysics Data System (ADS)

    King, T. A.; Ritschel, B.

    2013-12-01

    Ontologies come in many forms and with a wide range of detail and specificity. Of particular interest in the realm of science are classification schemes or taxonomies. Within general science domains there may be multiple taxonomies. Each taxonomy can be represented as a very narrowly defined domain ontology. We call such ontologies "mini ontologies". Since mini ontologies are very modular and portable they can be used in a variety of context. To illustrate the generation and use of mini ontologies we show how enumerations which may part of an existing data model, like SPASE *Region enumerations, can be modeled as a mini ontology. We show how such ontologies can be transformed to generate metadata expressions which can be readily used in different operational context, for example in the tag of a web page. We define a set of context specific transforms for commonly used metadata expressions which can preserve the semantic information in a mini ontology and describe how such expressions are reversible. The sharing and adoption of mini ontologies can significantly enhance the discovery and use of related data resources within a community. We look at several cases where this is true with a special focus on the international ESPAS project.

  20. An Ontology for Software Engineering Education

    ERIC Educational Resources Information Center

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  1. A full-spectrum k-distribution look-up table for radiative transfer in nonhomogeneous gaseous media

    NASA Astrophysics Data System (ADS)

    Wang, Chaojun; Ge, Wenjun; Modest, Michael F.; He, Boshu

    2016-01-01

    A full-spectrum k-distribution (FSK) look-up table has been constructed for gas mixtures within a certain range of thermodynamic states for three species, i.e., CO2, H2O and CO. The k-distribution of a mixture is assembled directly from the summation of the linear absorption coefficients of three species. The systematic approach to generate the table, including the generation of the pressure-based absorption coefficient and the generation of the k-distribution, is discussed. To efficiently obtain accurate k-values for arbitrary thermodynamic states from tabulated values, a 6-D linear interpolation method is employed. A large number of radiative heat transfer calculations have been carried out to test the accuracy of the FSK look-up table. Results show that, using the FSK look-up table can provide excellent accuracy compared to the exact results. Without the time-consuming process of assembling k-distribution from individual species plus mixing, using the FSK look-up table can save considerable computational cost. To evaluate the accuracy as well as the efficiency of the FSK look-up table, radiative heat transfer via a scaled Sandia D Flame is calculated to compare the CPU execution time using the FSK method based on the narrow-band database, correlations, and the look-up table. Results show that the FSK look-up table can provide a computationally cheap alternative without much sacrifice in accuracy.

  2. The ontology of biological taxa

    PubMed Central

    Schulz, Stefan; Stenzhorn, Holger; Boeker, Martin

    2008-01-01

    Motivation: The classification of biological entities in terms of species and taxa is an important endeavor in biology. Although a large amount of statements encoded in current biomedical ontologies is taxon-dependent there is no obvious or standard way for introducing taxon information into an integrative ontology architecture, supposedly because of ongoing controversies about the ontological nature of species and taxa. Results: In this article, we discuss different approaches on how to represent biological taxa using existing standards for biomedical ontologies such as the description logic OWL DL and the Open Biomedical Ontologies Relation Ontology. We demonstrate how hidden ambiguities of the species concept can be dealt with and existing controversies can be overcome. A novel approach is to envisage taxon information as qualities that inhere in biological organisms, organism parts and populations. Availability: The presented methodology has been implemented in the domain top-level ontology BioTop, openly accessible at http://purl.org/biotop. BioTop may help to improve the logical and ontological rigor of biomedical ontologies and further provides a clear architectural principle to deal with biological taxa information. Contact: stschulz@uni-freiburg.de PMID:18586729

  3. Spectral Retrieval of Latent Heating Profiles from TRMM PR Data: Comparison of Look-Up Tables

    NASA Technical Reports Server (NTRS)

    Shige, Shoichi; Takayabu, Yukari N.; Tao, Wei-Kuo; Johnson, Daniel E.; Shie, Chung-Lin

    2003-01-01

    The primary goal of the Tropical Rainfall Measuring Mission (TRMM) is to use the information about distributions of precipitation to determine the four dimensional (i.e., temporal and spatial) patterns of latent heating over the whole tropical region. The Spectral Latent Heating (SLH) algorithm has been developed to estimate latent heating profiles for the TRMM Precipitation Radar (PR) with a cloud- resolving model (CRM). The method uses CRM- generated heating profile look-up tables for the three rain types; convective, shallow stratiform, and anvil rain (deep stratiform with a melting level). For convective and shallow stratiform regions, the look-up table refers to the precipitation top height (PTH). For anvil region, on the other hand, the look- up table refers to the precipitation rate at the melting level instead of PTH. For global applications, it is necessary to examine the universality of the look-up table. In this paper, we compare the look-up tables produced from the numerical simulations of cloud ensembles forced with the Tropical Ocean Global Atmosphere (TOGA) Coupled Atmosphere-Ocean Response Experiment (COARE) data and the GARP Atlantic Tropical Experiment (GATE) data. There are some notable differences between the TOGA-COARE table and the GATE table, especially for the convective heating. First, there is larger number of deepest convective profiles in the TOGA-COARE table than in the GATE table, mainly due to the differences in SST. Second, shallow convective heating is stronger in the TOGA COARE table than in the GATE table. This might be attributable to the difference in the strength of the low-level inversions. Third, altitudes of convective heating maxima are larger in the TOGA COARE table than in the GATE table. Levels of convective heating maxima are located just below the melting level, because warm-rain processes are prevalent in tropical oceanic convective systems. Differences in levels of convective heating maxima probably reflect

  4. A Distributed Look-up Architecture for Text Mining Applications using MapReduce.

    PubMed

    Balkir, Atilla Soner; Foster, Ian; Rzhetsky, Andrey

    2011-11-01

    Text mining applications typically involve statistical models that require accessing and updating model parameters in an iterative fashion. With the growing size of the data, such models become extremely parameter rich, and naive parallel implementations fail to address the scalability problem of maintaining a distributed look-up table that maps model parameters to their values. We evaluate several existing alternatives to provide coordination among worker nodes in Hadoop [11] clusters, and suggest a new multi-layered look-up architecture that is specifically optimized for certain problem domains. Our solution exploits the power-law distribution characteristics of the phrase or n-gram counts in large corpora while utilizing a Bloom Filter [2], in-memory cache, and an HBase [12] cluster at varying levels of abstraction.

  5. Ontological turns, turnoffs and roundabouts.

    PubMed

    Sismondo, Sergio

    2015-06-01

    There has been much talk of an 'ontological turn' in Science and Technology Studies. This commentary explores some recent work on multiple and historical ontologies, especially articles published in this journal, against a background of constructivism. It can be tempting to read an ontological turn as based and promoting a version of perspectivism, but that is inadequate to the scholarly work and opens multiple ontologies to serious criticisms. Instead, we should read our ontological turn or turns as being about multiplicities of practices and the ways in which these practices shape the material world. Ontologies arise out of practices through which people engage with things; the practices are fundamental and the ontologies derivative. The purchase in this move comes from the elucidating power of the verbs that scholars use to analyze relations of practices and objects--which turn out to be specific cases of constructivist verbs. The difference between this ontological turn and constructivist work in Science and Technology Studies appears to be a matter of emphases found useful for different purposes.

  6. Building Ontologies in DAML + OIL

    PubMed Central

    Wroe, Chris; Bechhofer, Sean; Lord, Phillip; Rector, Alan; Goble, Carole

    2003-01-01

    In this article we describe an approach to representing and building ontologies advocated by the Bioinformatics and Medical Informatics groups at the University of Manchester. The hand-crafting of ontologies offers an easy and rapid avenue to delivering ontologies. Experience has shown that such approaches are unsustainable. Description logic approaches have been shown to offer computational support for building sound, complete and logically consistent ontologies. A new knowledge representation language, DAML + OIL, offers a new standard that is able to support many styles of ontology, from hand-crafted to full logic-based descriptions with reasoning support. We describe this language, the OilEd editing tool, reasoning support and a strategy for the language’s use. We finish with a current example, in the Gene Ontology Next Generation (GONG) project, that uses DAML + OIL as the basis for moving the Gene Ontology from its current hand-crafted, form to one that uses logical descriptions of a concept’s properties to deliver a more complete version of the ontology. PMID:18629114

  7. Ontology through a Mindfulness Process

    ERIC Educational Resources Information Center

    Bearance, Deborah; Holmes, Kimberley

    2015-01-01

    Traditionally, when ontology is taught in a graduate studies course on social research, there is a tendency for this concept to be examined through the process of lectures and readings. Such an approach often leaves graduate students to grapple with a personal embodiment of this concept and to comprehend how ontology can ground their research.…

  8. A microprocessor-based table lookup approach for magnetic bearing linearization

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Miller, J. B.

    1981-01-01

    An approach for producing a linear transfer characteristic between force command and force output of a magnetic bearing actuator without flux biasing is presented. The approach is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing power driver. An experimental test setup used to demonstrate the feasibility of the approach is described, and test results are presented. The test setup contains bearing elements similar to those used in a laboratory model annular momentum control device.

  9. Updated H2SO4-H2O binary homogeneous nucleation look-up tables

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun

    2008-12-01

    The calculated rates of H2SO4-H2O binary homogeneous nucleation (BHN), which is the only nucleation mechanism currently widely used in global aerosol models, are well known to have large uncertainties. Recently, we have reduced the uncertainties in the BHN rates on the basis of a kinetic quasi-unary nucleation (KQUN) model, by taking into account the measured bonding energetics of H2SO4 monomers with hydrated sulfuric acid dimers and trimers. The uncertainties were further reduced by using two independent measurements to constrain the equilibrium constants for monomer hydration. In this paper, we present updated BHN rate look-up tables derived from the improved KQUN model which can be used by anyone to obtain the BHN rates under given conditions. The look-up tables cover a wide range of key parameters that can be found in the atmosphere and laboratory studies, and their usage significantly reduces the computational costs of the BHN rate calculations, which is critical for multidimensional modeling. The look-up tables can also be used by those involved in experiments and field measurements to quickly assess the likeliness of BHN. For quick application, one can obtain the BHN rates and properties of critical clusters by browsing through the tables. A comparison of results based on the look-up tables with those from widely used classical BHN model indicates that, in addition to several orders of magnitude difference in nucleation rates, there also exists substantial difference in the predicted numbers of sulfuric acid molecules in the critical clusters and their dependence on key parameters.

  10. GeoSciGraph: An Ontological Framework for EarthCube Semantic Infrastructure

    NASA Astrophysics Data System (ADS)

    Gupta, A.; Schachne, A.; Condit, C.; Valentine, D.; Richard, S.; Zaslavsky, I.

    2015-12-01

    The CINERGI (Community Inventory of EarthCube Resources for Geosciences Interoperability) project compiles an inventory of a wide variety of earth science resources including documents, catalogs, vocabularies, data models, data services, process models, information repositories, domain-specific ontologies etc. developed by research groups and data practitioners. We have developed a multidisciplinary semantic framework called GeoSciGraph semantic ingration of earth science resources. An integrated ontology is constructed with Basic Formal Ontology (BFO) as its upper ontology and currently ingests multiple component ontologies including the SWEET ontology, GeoSciML's lithology ontology, Tematres controlled vocabulary server, GeoNames, GCMD vocabularies on equipment, platforms and institutions, software ontology, CUAHSI hydrology vocabulary, the environmental ontology (ENVO) and several more. These ontologies are connected through bridging axioms; GeoSciGraph identifies lexically close terms and creates equivalence class or subclass relationships between them after human verification. GeoSciGraph allows a community to create community-specific customizations of the integrated ontology. GeoSciGraph uses the Neo4J,a graph database that can hold several billion concepts and relationships. GeoSciGraph provides a number of REST services that can be called by other software modules like the CINERGI information augmentation pipeline. 1) Vocabulary services are used to find exact and approximate terms, term categories (community-provided clusters of terms e.g., measurement-related terms or environmental material related terms), synonyms, term definitions and annotations. 2) Lexical services are used for text parsing to find entities, which can then be included into the ontology by a domain expert. 3) Graph services provide the ability to perform traversal centric operations e.g., finding paths and neighborhoods which can be used to perform ontological operations like

  11. Colour displays and look-up tables: real time modification of digital images.

    PubMed

    Lutz, R W; Pun, T; Pellegrini, C

    1991-01-01

    Image processing in biomedical research has become customary, along with use of colour displays to run image processing packages. The performance of softwares is highly dependent on the device they run on: architecture of colour display, depth of frame buffer, existence of look-up table, etc. Knowledge of such basic features is therefore becoming very important, especially because results can differ from device to device. This introductory paper discusses hardware features and software applications. A general architecture of colour displays is exposed, comparing the features of the most commonly used devices. Basic organisation of memory, electron gun and screen are analysed for each type of display, concluding with a more detailed study of raster scan devices. Frame buffer and look-up table organisation are then analysed in relation with overhead expenses such as time and memory. Relation between image data and displayed images is discussed. By means of examples, the manipulation of colour tables is examined in detail, showing how to improve display of images without altering image data. Finally, the basic operations performed by the look-up table editor developed at University of Geneva are presented.

  12. Efficient generation of 3D hologram for American Sign Language using look-up table

    NASA Astrophysics Data System (ADS)

    Park, Joo-Sup; Kim, Seung-Cheol; Kim, Eun-Soo

    2010-02-01

    American Sign Language (ASL) is one of the languages giving the greatest help for communication of the hearing impaired person. Current 2-D broadcasting, 2-D movies are used the ASL to give some information, help understand the situation of the scene and translate the foreign language. These ASL will not be disappeared in future three-dimensional (3-D) broadcasting or 3-D movies because the usefulness of the ASL. On the other hands, some approaches for generation of CGH patterns have been suggested like the ray-tracing method and look-up table (LUT) method. However, these methods have some drawbacks that needs much time or needs huge memory size for look-up table. Recently, a novel LUT (N-LUT) method for fast generation of CGH patterns of 3-D objects with a dramatically reduced LUT without the loss of computational speed was proposed. Therefore, we proposed the method to efficiently generate the holographic ASL in holographic 3DTV or 3-D movies using look-up table method. The proposed method is largely consisted of five steps: construction of the LUT for each ASL images, extraction of characters in scripts or situation, call the fringe patterns for characters in the LUT for each ASL, composition of hologram pattern for 3-D video and hologram pattern for ASL and reconstruct the holographic 3D video with ASL. Some simulation results confirmed the feasibility of the proposed method in efficient generation of CGH patterns for ASL.

  13. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  14. Generation of Look-Up Tables for Dynamic Job Shop Scheduling Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Oktaviandri, Muchamad; Hassan, Adnan; Mohd Shaharoun, Awaluddin

    2016-02-01

    Majority of existing scheduling techniques are based on static demand and deterministic processing time, while most job shop scheduling problem are concerned with dynamic demand and stochastic processing time. As a consequence, the solutions obtained from the traditional scheduling technique are ineffective wherever changes occur to the system. Therefore, this research intends to develop a decision support tool (DST) based on promising artificial intelligent that is able to accommodate the dynamics that regularly occur in job shop scheduling problem. The DST was designed through three phases, i.e. (i) the look-up table generation, (ii) inverse model development and (iii) integration of DST components. This paper reports the generation of look-up tables for various scenarios as a part in development of the DST. A discrete event simulation model was used to compare the performance among SPT, EDD, FCFS, S/OPN and Slack rules; the best performances measures (mean flow time, mean tardiness and mean lateness) and the job order requirement (inter-arrival time, due dates tightness and setup time ratio) which were compiled into look-up tables. The well-known 6/6/J/Cmax Problem from Muth and Thompson (1963) was used as a case study. In the future, the performance measure of various scheduling scenarios and the job order requirement will be mapped using ANN inverse model.

  15. Ontology-based geospatial data query and integration

    USGS Publications Warehouse

    Zhao, T.; Zhang, C.; Wei, M.; Peng, Z.-R.

    2008-01-01

    Geospatial data sharing is an increasingly important subject as large amount of data is produced by a variety of sources, stored in incompatible formats, and accessible through different GIS applications. Past efforts to enable sharing have produced standardized data format such as GML and data access protocols such as Web Feature Service (WFS). While these standards help enabling client applications to gain access to heterogeneous data stored in different formats from diverse sources, the usability of the access is limited due to the lack of data semantics encoded in the WFS feature types. Past research has used ontology languages to describe the semantics of geospatial data but ontology-based queries cannot be applied directly to legacy data stored in databases or shapefiles, or to feature data in WFS services. This paper presents a method to enable ontology query on spatial data available from WFS services and on data stored in databases. We do not create ontology instances explicitly and thus avoid the problems of data replication. Instead, user queries are rewritten to WFS getFeature requests and SQL queries to database. The method also has the benefits of being able to utilize existing tools of databases, WFS, and GML while enabling query based on ontology semantics. ?? 2008 Springer-Verlag Berlin Heidelberg.

  16. 40 CFR Table Nn-2 to Subpart Hh of... - Lookup Default Values for Calculation Methodology 2 of This Subpart

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. NN, Table NN-2 Table NN-2 to Subpart HH of Part 98—Lookup Default...

  17. 40 CFR Table Nn-2 to Subpart Hh of... - Lookup Default Values for Calculation Methodology 2 of This Subpart

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. NN, Table NN-2 Table NN-2 to Subpart HH of Part 98—Lookup Default...

  18. 40 CFR Table Nn-2 to Subpart Hh of... - Lookup Default Values for Calculation Methodology 2 of This Subpart

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Municipal Solid Waste Landfills Pt. 98, Subpt. NN, Table NN-2 Table NN-2 to Subpart HH of Part 98—Lookup Default...

  19. Gene Ontology Consortium: going forward

    PubMed Central

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. PMID:25428369

  20. Gene Ontology Consortium: going forward.

    PubMed

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology.

  1. Ontology Research and Development. Part 2 - A Review of Ontology Mapping and Evolving.

    ERIC Educational Resources Information Center

    Ding, Ying; Foo, Schubert

    2002-01-01

    Reviews ontology research and development, specifically ontology mapping and evolving. Highlights include an overview of ontology mapping projects; maintaining existing ontologies and extending them as appropriate when new information or knowledge is acquired; and ontology's role and the future of the World Wide Web, or Semantic Web. (Contains 55…

  2. Ontology-Oriented Programming for Biomedical Informatics.

    PubMed

    Lamy, Jean-Baptiste

    2016-01-01

    Ontologies are now widely used in the biomedical domain. However, it is difficult to manipulate ontologies in a computer program and, consequently, it is not easy to integrate ontologies with databases or websites. Two main approaches have been proposed for accessing ontologies in a computer program: traditional API (Application Programming Interface) and ontology-oriented programming, either static or dynamic. In this paper, we will review these approaches and discuss their appropriateness for biomedical ontologies. We will also present an experience feedback about the integration of an ontology in a computer software during the VIIIP research project. Finally, we will present OwlReady, the solution we developed.

  3. Multifunctional crop trait ontology for breeders' data: field book, annotation, data discovery and semantic enrichment of the literature

    PubMed Central

    Shrestha, Rosemary; Arnaud, Elizabeth; Mauleon, Ramil; Senger, Martin; Davenport, Guy F.; Hancock, David; Morrison, Norman; Bruskiewich, Richard; McLaren, Graham

    2010-01-01

    Background and aims Agricultural crop databases maintained in gene banks of the Consultative Group on International Agricultural Research (CGIAR) are valuable sources of information for breeders. These databases provide comparative phenotypic and genotypic information that can help elucidate functional aspects of plant and agricultural biology. To facilitate data sharing within and between these databases and the retrieval of information, the crop ontology (CO) database was designed to provide controlled vocabulary sets for several economically important plant species. Methodology Existing public ontologies and equivalent catalogues of concepts covering the range of crop science information and descriptors for crops and crop-related traits were collected from breeders, physiologists, agronomists, and researchers in the CGIAR consortium. For each crop, relationships between terms were identified and crop-specific trait ontologies were constructed following the Open Biomedical Ontologies (OBO) format standard using the OBO-Edit tool. All terms within an ontology were assigned a globally unique CO term identifier. Principal results The CO currently comprises crop-specific traits for chickpea (Cicer arietinum), maize (Zea mays), potato (Solanum tuberosum), rice (Oryza sativa), sorghum (Sorghum spp.) and wheat (Triticum spp.). Several plant-structure and anatomy-related terms for banana (Musa spp.), wheat and maize are also included. In addition, multi-crop passport terms are included as controlled vocabularies for sharing information on germplasm. Two web-based online resources were built to make these COs available to the scientific community: the ‘CO Lookup Service’ for browsing the CO; and the ‘Crops Terminizer’, an ontology text mark-up tool. Conclusions The controlled vocabularies of the CO are being used to curate several CGIAR centres' agronomic databases. The use of ontology terms to describe agronomic phenotypes and the accurate mapping of these

  4. An Ontology Infrastructure for an E-Learning Scenario

    ERIC Educational Resources Information Center

    Guo, Wen-Ying; Chen, De-Ren

    2007-01-01

    Selecting appropriate learning services for a learner from a large number of heterogeneous knowledge sources is a complex and challenging task. This article illustrates and discusses how Semantic Web technologies such as RDF [resource description framework] and ontology can be applied to e-learning systems to help the learner in selecting an…

  5. A Probabilistic Ontology Development Methodology

    DTIC Science & Technology

    2014-06-01

    to have a tool guiding the user on the steps necessary to create a probabilistic ontology and link this documentation to its implementation … [4...extension that is beyond the scope of this work and includes methods such as ONIONS , FCA-Merge, and PROMPT. The interested reader may find these...construction “It would be interesting to have a tool guiding the user on the steps necessary to create a probabilistic ontology and link this

  6. Approach for ontological modeling of database schema for the generation of semantic knowledge on the web

    NASA Astrophysics Data System (ADS)

    Rozeva, Anna

    2015-11-01

    Currently there is large quantity of content on web pages that is generated from relational databases. Conceptual domain models provide for the integration of heterogeneous content on semantic level. The use of ontology as conceptual model of a relational data sources makes them available to web agents and services and provides for the employment of ontological techniques for data access, navigation and reasoning. The achievement of interoperability between relational databases and ontologies enriches the web with semantic knowledge. The establishment of semantic database conceptual model based on ontology facilitates the development of data integration systems that use ontology as unified global view. Approach for generation of ontologically based conceptual model is presented. The ontology representing the database schema is obtained by matching schema elements to ontology concepts. Algorithm of the matching process is designed. Infrastructure for the inclusion of mediation between database and ontology for bridging legacy data with formal semantic meaning is presented. Implementation of the knowledge modeling approach on sample database is performed.

  7. Spatial frequency sampling look-up table method for computer-generated hologram

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Huang, Yingqing; Jiang, Xiaoyu; Yan, Xingpeng

    2016-04-01

    A spatial frequency sampling look-up table method is proposed to generate a hologram. The three-dimensional (3-D) scene is sampled as several intensity images by computer rendering. Each object point on the rendered images has a defined spatial frequency. The basis terms for calculating fringe patterns are precomputed and stored in a table to improve the calculation speed. Both numerical simulations and optical experiments are performed. The results show that the proposed approach can easily realize color reconstructions of a 3-D scene with a low computation cost. The occlusion effects and depth information are all provided accurately.

  8. An improved lookup protocol model for peer-to-peer networks

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Ye, Dongfen

    2011-12-01

    With the development of the peer-to-peer (P2P) technology, file sharing is becoming the hottest, fastest growing application on the Internet. Although we can benefit from different protocols separately, our research shows that if there exists a proper model, most of the seemingly different protocols can be classified to a same framework. In this paper, we propose an improved Chord arithmetic based on the binary tree for P2P networks. We perform extensive simulations to study our proposed protocol. The results show that the improved Chord reduces the average lookup path length without increasing the joining and departing complexity.

  9. A VLSI architecture for performing finite field arithmetic with reduced table look-up

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Reed, I. S.

    1986-01-01

    A new table look-up method for finding the log and antilog of finite field elements has been developed by N. Glover. In his method, the log and antilog of a field element is found by the use of several smaller tables. The method is based on a use of the Chinese Remainder Theorem. The technique often results in a significant reduction in the memory requirements of the problem. A VLSI architecture is developed for a special case of this new algorithm to perform finite field arithmetic including multiplication, division, and the finding of an inverse element in the finite field.

  10. ``Force,'' ontology, and language

    NASA Astrophysics Data System (ADS)

    Brookes, David T.; Etkina, Eugenia

    2009-06-01

    We introduce a linguistic framework through which one can interpret systematically students’ understanding of and reasoning about force and motion. Some researchers have suggested that students have robust misconceptions or alternative frameworks grounded in everyday experience. Others have pointed out the inconsistency of students’ responses and presented a phenomenological explanation for what is observed, namely, knowledge in pieces. We wish to present a view that builds on and unifies aspects of this prior research. Our argument is that many students’ difficulties with force and motion are primarily due to a combination of linguistic and ontological difficulties. It is possible that students are primarily engaged in trying to define and categorize the meaning of the term “force” as spoken about by physicists. We found that this process of negotiation of meaning is remarkably similar to that engaged in by physicists in history. In this paper we will describe a study of the historical record that reveals an analogous process of meaning negotiation, spanning multiple centuries. Using methods from cognitive linguistics and systemic functional grammar, we will present an analysis of the force and motion literature, focusing on prior studies with interview data. We will then discuss the implications of our findings for physics instruction.

  11. Ontology and rules based model for traffic query

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Du, Qingyun; Huang, Qian; Zhao, Haiyun

    2008-10-01

    This paper will combine ontology and rule based qualitative reason with real time calculation, designing a combined traffic model of national scope which contains highway, railroad, water carriage, scheduled flight etc. That method follows the sense of people to space, establishes ontologies and rules knowledge base, using concepts, instances, relations and rules of traffic field as the basic knowledge for qualitative reason to discover implicit semantic information and eliminate unnecessary ambiguities. The knowledge from the ontologies and rules provides abundant information for query which can lighten the burden of computation, in the mean time, real-time calculation guarantees the accuracy of the data, has raised accuracy and efficiency of the query, which has strengthened the ease of query service and improved web users' experience.

  12. Spatial Data Integration Using Ontology-Based Approach

    NASA Astrophysics Data System (ADS)

    Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.

    2015-12-01

    In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  13. How granularity issues concern biomedical ontology integration.

    PubMed

    Schulz, Stefan; Boeker, Martin; Stenzhorn, Holger

    2008-01-01

    The application of upper ontologies has been repeatedly advocated for supporting interoperability between domain ontologies in order to facilitate shared data use both within and across disciplines. We have developed BioTop as a top-domain ontology to integrate more specialized ontologies in the biomolecular and biomedical domain. In this paper, we report on concrete integration problems of this ontology with the domain-independent Basic Formal Ontology (BFO) concerning the issue of fiat and aggregated objects in the context of different granularity levels. We conclude that the third BFO level must be ignored in order not to obviate cross-granularity integration.

  14. An extended lookup table of cloud detection for MTSAT-1R

    NASA Astrophysics Data System (ADS)

    Chen, Wuhan; Zhong, Bo; Li, Weisheng; Wu, Shanlong; Yu, Shanshan

    2014-11-01

    Cloud detection is a key work for the estimation of solar radiation from remote sensing. Particularly, the detection of thin cirrus cloud and the edges of thicker cloud is critical and difficult. To obtain accurate estimates of cloud cover of MTSAT-1R image, we propose an effective cloud detection algorithm for improving the detection of thin cirrus cloud and the edges of thicker cloud. Using the brightness temperature difference (BTD) and lookup table to identify cloud-free and cloud-filled pixels is not sufficient for MTSAT-1R data on the region of China. Therefore, a new lookup table (LUT) is made by extending the original one. On the basis of the exiting method, in order to apply to the MTSAT-1R satellite data in China region, we expand the scope of the latitude and extend the applicable scope of satellite zenith angle. We change the interpolation method from linear mode to nonlinear mode. The evaluation results indicate that our proposed method is effective for the cirrus and the edges of thicker cloud detection of MTSAT-1R in China region.

  15. Lookup-table method for imaging optical properties with structured illumination beyond the diffusion theory regime

    PubMed Central

    Erickson, Tim A.; Mazhar, Amaan; Cuccia, David; Durkin, Anthony J.; Tunnell, James W.

    2010-01-01

    Sinusoidally structured illumination is used in concert with a phantom-based lookup-table (LUT) to map wide-field optical properties in turbid media with reduced albedos as low as 0.44. A key advantage of the lookup-table approach is the ability to measure the absorption (μa) and reduced scattering coefficients (μs′) over a much broader range of values than permitted by current diffusion theory methods. Through calibration with a single reflectance standard, the LUT can extract μs′ from 0.8 to 2.4 mm−1 with an average root-mean-square (rms) error of 7% and extract μa from 0 to 1.0 mm−1 with an average rms error of 6%. The LUT is based solely on measurements of two parameters, reflectance R and modulation M at an illumination period of 10 mm. A single set of three phase-shifted images is sufficient to measure both M and R, which are then used to generate maps of absorption and scattering by referencing the LUT. We establish empirically that each pair (M,R) maps uniquely to only one pair of (μs′,μa) and report that the phase function (i.e., size) of the scatterers can influence the accuracy of optical property extraction. PMID:20615015

  16. Integrated data lookup and replication scheme in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Nahrstedt, Klara

    2001-11-01

    Accessing remote data is a challenging task in mobile ad hoc networks. Two problems have to be solved: (1) how to learn about available data in the network; and (2) how to access desired data even when the original copy of the data is unreachable. In this paper, we develop an integrated data lookup and replication scheme to solve these problems. In our scheme, a group of mobile nodes collectively host a set of data to improve data accessibility for all members of the group. They exchange data availability information by broadcasting advertising (ad) messages to the group using an adaptive sending rate policy. The ad messages are used by other nodes to derive a local data lookup table, and to reduce data redundancy within a connected group. Our data replication scheme predicts group partitioning based on each node's current location and movement patterns, and replicates data to other partitions before partitioning occurs. Our simulations show that data availability information can quickly propagate throughout the network, and that the successful data access ratio of each node is significantly improved.

  17. On the look-up tables for the critical heat flux in tubes (history and problems)

    SciTech Connect

    Kirillov, P.L.; Smogalev, I.P.

    1995-09-01

    The complication of critical heat flux (CHF) problem for boiling in channels is caused by the large number of variable factors and the variety of two-phase flows. The existence of several hundreds of correlations for the prediction of CHF demonstrates the unsatisfactory state of this problem. The phenomenological CHF models can provide only the qualitative predictions of CHF primarily in annular-dispersed flow. The CHF look-up tables covered the results of numerous experiments received more recognition in the last 15 years. These tables are based on the statistical averaging of CHF values for each range of pressure, mass flux and quality. The CHF values for regions, where no experimental data is available, are obtained by extrapolation. The correction of these tables to account for the diameter effect is a complicated problem. There are ranges of conditions where the simple correlations cannot produce the reliable results. Therefore, diameter effect on CHF needs additional study. The modification of look-up table data for CHF in tubes to predict CHF in rod bundles must include a method which to take into account the nonuniformity of quality in a rod bundle cross section.

  18. Hydrologic Ontology for the Web

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Piasecki, M.

    2003-12-01

    This poster presents the conceptual development of a Hydrologic Ontology for the Web (HOW) that will facilitate data sharing among the hydrologic community. Hydrologic data is difficult to share because of its predicted vast increase in data volume, the availability of new measurement technologies and the heterogeneity of information systems used to produced, store, retrieved and used the data. The augmented capacity of the Internet and the technologies recommended by the W3C, as well as metadata standards provide sophisticated means to make data more usable and systems to be more integrated. Standard metadata is commonly used to solve interoperability issues. For the hydrologic field an explicit metadata standard does not exist, but one could be created extending metadata standards such as the FGDC-STD-001-1998 or ISO 19115. Standard metadata defines a set of elements required to describe data in a consistent manner, and their domains are sometimes restricted by a finite set of values or controlled vocabulary (e.g. code lists in ISO/DIS 19115). This controlled vocabulary is domain specific varying from one information community to another, allowing dissimilar descriptions to similar data sets. This issue is sometimes called semantic non-interoperability or semantic heterogeneity, and it is usually the main problem when sharing data. Explicit domain ontologies could be created to provide semantic interoperability among heterogeneous information communities. Domain ontologies supply the values for restricted domains of some elements in the metadata set and the semantic mapping with other domain ontologies. To achieve interoperability between applications that exchange machine-understandable information on the Web, metadata is expressed using Resource Description Framework (RDF) and domain ontologies are expressed using the Ontology Web Language (OWL), which is also based on RDF. A specific OWL ontology for hydrology is HOW. HOW presents, using a formal syntax, the

  19. An IPv6 routing lookup algorithm using weight-balanced tree based on prefix value for virtual router

    NASA Astrophysics Data System (ADS)

    Chen, Lingjiang; Zhou, Shuguang; Zhang, Qiaoduo; Li, Fenghua

    2016-10-01

    Virtual router enables the coexistence of different networks on the same physical facility and has lately attracted a great deal of attention from researchers. As the number of IPv6 addresses is rapidly increasing in virtual routers, designing an efficient IPv6 routing lookup algorithm is of great importance. In this paper, we present an IPv6 lookup algorithm called weight-balanced tree (WBT). WBT merges Forwarding Information Bases (FIBs) of virtual routers into one spanning tree, and compresses the space cost. WBT's average time complexity and the worst case time complexity of lookup and update process are both O(logN) and space complexity is O(cN) where N is the size of routing table and c is a constant. Experiments show that WBT helps reduce more than 80% Static Random Access Memory (SRAM) cost in comparison to those separation schemes. WBT also achieves the least average search depth comparing with other homogeneous algorithms.

  20. A look-up table based approach to characterize crystal twinning for synchrotron X-ray Laue microdiffraction scans

    SciTech Connect

    Li, Yao; Wan, Liang; Chen, Kai

    2015-04-25

    An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin–parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mapped automatically from Laue microdiffraction raster scans with thousands of data points. Finally, taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system.

  1. A look-up table based approach to characterize crystal twinning for synchrotron X-ray Laue microdiffraction scans

    DOE PAGES

    Li, Yao; Wan, Liang; Chen, Kai

    2015-04-25

    An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin–parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mappedmore » automatically from Laue microdiffraction raster scans with thousands of data points. Finally, taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system.« less

  2. A look-up table based approach to characterize crystal twinning for synchrotron X-ray Laue microdiffraction scans

    PubMed Central

    Li, Yao; Wan, Liang; Chen, Kai

    2015-01-01

    An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle–axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin–parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mapped automatically from Laue microdiffraction raster scans with thousands of data points. Taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system. PMID:26089764

  3. A look-up table based approach to characterize crystal twinning for synchrotron X-ray Laue microdiffraction scans.

    PubMed

    Li, Yao; Wan, Liang; Chen, Kai

    2015-06-01

    An automated method has been developed to characterize the type and spatial distribution of twinning in crystal orientation maps from synchrotron X-ray Laue microdiffraction results. The method relies on a look-up table approach. Taking into account the twin axis and twin plane for plausible rotation and reflection twins, respectively, and the point group symmetry operations for a specific crystal, a look-up table listing crystal-specific rotation angle-axis pairs, which reveal the orientation relationship between the twin and the parent lattice, is generated. By comparing these theoretical twin-parent orientation relationships in the look-up table with the measured misorientations, twin boundaries are mapped automatically from Laue microdiffraction raster scans with thousands of data points. Taking advantage of the high orientation resolution of the Laue microdiffraction method, this automated approach is also applicable to differentiating twinning elements among multiple twinning modes in any crystal system.

  4. Complex Topographic Feature Ontology Patterns

    USGS Publications Warehouse

    Varanka, Dalia E.; Jerris, Thomas J.

    2015-01-01

    Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.

  5. Ontology Matching with Semantic Verification

    PubMed Central

    Jean-Mary, Yves R.; Shironoshita, E. Patrick; Kabuka, Mansur R.

    2009-01-01

    ASMOV (Automated Semantic Matching of Ontologies with Verification) is a novel algorithm that uses lexical and structural characteristics of two ontologies to iteratively calculate a similarity measure between them, derives an alignment, and then verifies it to ensure that it does not contain semantic inconsistencies. In this paper, we describe the ASMOV algorithm, and then present experimental results that measure its accuracy using the OAEI 2008 tests, and that evaluate its use with two different thesauri: WordNet, and the Unified Medical Language System (UMLS). These results show the increased accuracy obtained by combining lexical, structural and extensional matchers with semantic verification, and demonstrate the advantage of using a domain-specific thesaurus for the alignment of specialized ontologies. PMID:20186256

  6. An ontology for sensor networks

    NASA Astrophysics Data System (ADS)

    Compton, Michael; Neuhaus, Holger; Bermudez, Luis; Cox, Simon

    2010-05-01

    Sensors and networks of sensors are important ways of monitoring and digitizing reality. As the number and size of sensor networks grows, so too does the amount of data collected. Users of such networks typically need to discover the sensors and data that fit their needs without necessarily understanding the complexities of the network itself. The burden on users is eased if the network and its data are expressed in terms of concepts familiar to the users and their job functions, rather than in terms of the network or how it was designed. Furthermore, the task of collecting and combining data from multiple sensor networks is made easier if metadata about the data and the networks is stored in a format and conceptual models that is amenable to machine reasoning and inference. While the OGC's (Open Geospatial Consortium) SWE (Sensor Web Enablement) standards provide for the description and access to data and metadata for sensors, they do not provide facilities for abstraction, categorization, and reasoning consistent with standard technologies. Once sensors and networks are described using rich semantics (that is, by using logic to describe the sensors, the domain of interest, and the measurements) then reasoning and classification can be used to analyse and categorise data, relate measurements with similar information content, and manage, query and task sensors. This will enable types of automated processing and logical assurance built on OGC standards. The W3C SSN-XG (Semantic Sensor Networks Incubator Group) is producing a generic ontology to describe sensors, their environment and the measurements they make. The ontology provides definitions for the structure of sensors and observations, leaving the details of the observed domain unspecified. This allows abstract representations of real world entities, which are not observed directly but through their observable qualities. Domain semantics, units of measurement, time and time series, and location and mobility

  7. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  8. Design of schistosomiasis ontology (IDOSCHISTO) extending the infectious disease ontology.

    PubMed

    Camara, Gaoussou; Despres, Sylvie; Djedidi, Rim; Lo, Moussa

    2013-01-01

    Epidemiological monitoring of the schistosomiasis' spreading brings together many practitioners working at different levels of granularity (biology, host individual, host population), who have different perspectives (biology, clinic and epidemiology) on the same phenomenon. Biological perspective deals with pathogens (e.g. life cycle) or physiopathology while clinical perspective deals with hosts (e.g. healthy or infected host, diagnosis, treatment, etc.). In an epidemiological perspective corresponding to the host population level of granularity, the schistosomiasis disease is characterized according to the way (causes, risk factors, etc.) it spreads in this population over space and time. In this paper we provide an ontological analysis and design for the Schistosomiasis domain knowledge and spreading dynamics. IDOSCHISTO - the schistosomiasis ontology - is designed as an extension of the Infectious Disease Ontology (IDO). This ontology aims at supporting the schistosomiasis monitoring process during a spreading crisis by enabling data integration, semantic interoperability, for collaborative work on one hand and for risk analysis and decision making on the other hand.

  9. A Gene Ontology Tutorial in Python.

    PubMed

    Vesztrocy, Alex Warwick; Dessimoz, Christophe

    2017-01-01

    This chapter is a tutorial on using Gene Ontology resources in the Python programming language. This entails querying the Gene Ontology graph, retrieving Gene Ontology annotations, performing gene enrichment analyses, and computing basic semantic similarity between GO terms. An interactive version of the tutorial, including solutions, is available at http://gohandbook.org .

  10. Controlled Vocabularies, Mini Ontologies and Interoperability (Invited)

    NASA Astrophysics Data System (ADS)

    King, T. A.; Walker, R. J.; Roberts, D.; Thieman, J.; Ritschel, B.; Cecconi, B.; Genot, V. N.

    2013-12-01

    Interoperability has been an elusive goal, but in recent years advances have been made using controlled vocabularies, mini-ontologies and a lot of collaboration. This has led to increased interoperability between disciplines in the U.S. and between international projects. We discuss the successful pattern followed by SPASE, IVOA and IPDA to achieve this new level of international interoperability. A key aspect of the pattern is open standards and open participation with interoperability achieved with shared services, public APIs, standard formats and open access to data. Many of these standards are expressed as controlled vocabularies and mini ontologies. To illustrate the pattern we look at SPASE related efforts and participation of North America's Heliophysics Data Environment and CDPP; Europe's Cluster Active Archive, IMPEx, EuroPlanet, ESPAS and HELIO; and Japan's magnetospheric missions. Each participating project has its own life cycle and successful standards development must always take this into account. A major challenge for sustained collaboration and interoperability is the limited lifespan of many of the participating projects. Innovative approaches and new tools and frameworks are often developed as competitively selected, limited term projects, but for sustainable interoperability successful approaches need to become part of a long term infrastructure. This is being encouraged and achieved in many domains and we are entering a golden age of interoperability.

  11. Gene Ontology Annotations and Resources

    PubMed Central

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new ‘phylogenetic annotation’ process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources. PMID:23161678

  12. Gene Ontology annotations and resources.

    PubMed

    Blake, J A; Dolan, M; Drabkin, H; Hill, D P; Li, Ni; Sitnikov, D; Bridges, S; Burgess, S; Buza, T; McCarthy, F; Peddinti, D; Pillai, L; Carbon, S; Dietze, H; Ireland, A; Lewis, S E; Mungall, C J; Gaudet, P; Chrisholm, R L; Fey, P; Kibbe, W A; Basu, S; Siegele, D A; McIntosh, B K; Renfro, D P; Zweifel, A E; Hu, J C; Brown, N H; Tweedie, S; Alam-Faruque, Y; Apweiler, R; Auchinchloss, A; Axelsen, K; Bely, B; Blatter, M -C; Bonilla, C; Bouguerleret, L; Boutet, E; Breuza, L; Bridge, A; Chan, W M; Chavali, G; Coudert, E; Dimmer, E; Estreicher, A; Famiglietti, L; Feuermann, M; Gos, A; Gruaz-Gumowski, N; Hieta, R; Hinz, C; Hulo, C; Huntley, R; James, J; Jungo, F; Keller, G; Laiho, K; Legge, D; Lemercier, P; Lieberherr, D; Magrane, M; Martin, M J; Masson, P; Mutowo-Muellenet, P; O'Donovan, C; Pedruzzi, I; Pichler, K; Poggioli, D; Porras Millán, P; Poux, S; Rivoire, C; Roechert, B; Sawford, T; Schneider, M; Stutz, A; Sundaram, S; Tognolli, M; Xenarios, I; Foulgar, R; Lomax, J; Roncaglia, P; Khodiyar, V K; Lovering, R C; Talmud, P J; Chibucos, M; Giglio, M Gwinn; Chang, H -Y; Hunter, S; McAnulla, C; Mitchell, A; Sangrador, A; Stephan, R; Harris, M A; Oliver, S G; Rutherford, K; Wood, V; Bahler, J; Lock, A; Kersey, P J; McDowall, D M; Staines, D M; Dwinell, M; Shimoyama, M; Laulederkind, S; Hayman, T; Wang, S -J; Petri, V; Lowry, T; D'Eustachio, P; Matthews, L; Balakrishnan, R; Binkley, G; Cherry, J M; Costanzo, M C; Dwight, S S; Engel, S R; Fisk, D G; Hitz, B C; Hong, E L; Karra, K; Miyasato, S R; Nash, R S; Park, J; Skrzypek, M S; Weng, S; Wong, E D; Berardini, T Z; Huala, E; Mi, H; Thomas, P D; Chan, J; Kishore, R; Sternberg, P; Van Auken, K; Howe, D; Westerfield, M

    2013-01-01

    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources.

  13. Gradient Learning Algorithms for Ontology Computing

    PubMed Central

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  14. Ontology for Vector Surveillance and Management

    PubMed Central

    LOZANO-FUENTES, SAUL; BANDYOPADHYAY, ARITRA; COWELL, LINDSAY G.; GOLDFAIN, ALBERT; EISEN, LARS

    2013-01-01

    Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an “umbrella” for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a “term tree” to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage

  15. Ontology for vector surveillance and management.

    PubMed

    Lozano-Fuentes, Saul; Bandyopadhyay, Aritra; Cowell, Lindsay G; Goldfain, Albert; Eisen, Lars

    2013-01-01

    Ontologies, which are made up by standardized and defined controlled vocabulary terms and their interrelationships, are comprehensive and readily searchable repositories for knowledge in a given domain. The Open Biomedical Ontologies (OBO) Foundry was initiated in 2001 with the aims of becoming an "umbrella" for life-science ontologies and promoting the use of ontology development best practices. A software application (OBO-Edit; *.obo file format) was developed to facilitate ontology development and editing. The OBO Foundry now comprises over 100 ontologies and candidate ontologies, including the NCBI organismal classification ontology (NCBITaxon), the Mosquito Insecticide Resistance Ontology (MIRO), the Infectious Disease Ontology (IDO), the IDOMAL malaria ontology, and ontologies for mosquito gross anatomy and tick gross anatomy. We previously developed a disease data management system for dengue and malaria control programs, which incorporated a set of information trees built upon ontological principles, including a "term tree" to promote the use of standardized terms. In the course of doing so, we realized that there were substantial gaps in existing ontologies with regards to concepts, processes, and, especially, physical entities (e.g., vector species, pathogen species, and vector surveillance and management equipment) in the domain of surveillance and management of vectors and vector-borne pathogens. We therefore produced an ontology for vector surveillance and management, focusing on arthropod vectors and vector-borne pathogens with relevance to humans or domestic animals, and with special emphasis on content to support operational activities through inclusion in databases, data management systems, or decision support systems. The Vector Surveillance and Management Ontology (VSMO) includes >2,200 unique terms, of which the vast majority (>80%) were newly generated during the development of this ontology. One core feature of the VSMO is the linkage, through

  16. Ontologies as integrative tools for plant science

    PubMed Central

    Walls, Ramona L.; Athreya, Balaji; Cooper, Laurel; Elser, Justin; Gandolfo, Maria A.; Jaiswal, Pankaj; Mungall, Christopher J.; Preece, Justin; Rensing, Stefan; Smith, Barry; Stevenson, Dennis W.

    2012-01-01

    Premise of the study Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the semantic web. Methods This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). Key results Ontologies can advance plant science in four keys areas: (1) comparative genetics, genomics, phenomics, and development; (2) taxonomy and systematics; (3) semantic applications; and (4) education. Conclusions Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies. PMID:22847540

  17. CLASSIFYING PROCESSES: AN ESSAY IN APPLIED ONTOLOGY

    PubMed Central

    Smith, Barry

    2013-01-01

    We begin by describing recent developments in the burgeoning discipline of applied ontology, focusing especially on the ways ontologies are providing a means for the consistent representation of scientific data. We then introduce Basic Formal Ontology (BFO), a top-level ontology that is serving as domain-neutral framework for the development of lower level ontologies in many specialist disciplines, above all in biology and medicine. BFO is a bicategorial ontology, embracing both three-dimensionalist (continuant) and four-dimensionalist (occurrent) perspectives within a single framework. We examine how BFO-conformant domain ontologies can deal with the consistent representation of scientific data deriving from the measurement of processes of different types, and we outline on this basis the first steps of an approach to the classification of such processes within the BFO framework.1 PMID:23888086

  18. Ontological realism: A methodology for coordinated evolution of scientific ontologies

    PubMed Central

    Smith, Barry; Ceusters, Werner

    2011-01-01

    Since 2002 we have been testing and refining a methodology for ontology development that is now being used by multiple groups of researchers in different life science domains. Gary Merrill, in a recent paper in this journal, describes some of the reasons why this methodology has been found attractive by researchers in the biological and biomedical sciences. At the same time he assails the methodology on philosophical grounds, focusing specifically on our recommendation that ontologies developed for scientific purposes should be constructed in such a way that their terms are seen as referring to what we call universals or types in reality. As we show, Merrill’s critique is of little relevance to the success of our realist project, since it not only reveals no actual errors in our work but also criticizes views on universals that we do not in fact hold. However, it nonetheless provides us with a valuable opportunity to clarify the realist methodology, and to show how some of its principles are being applied, especially within the framework of the OBO (Open Biomedical Ontologies) Foundry initiative. PMID:21637730

  19. Memory-efficient table look-up optimized algorithm for context-based adaptive variable length decoding in H.264/advanced video coding

    NASA Astrophysics Data System (ADS)

    Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong

    2016-03-01

    Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.

  20. Evaluation of research in biomedical ontologies.

    PubMed

    Hoehndorf, Robert; Dumontier, Michel; Gkoutos, Georgios V

    2013-11-01

    Ontologies are now pervasive in biomedicine, where they serve as a means to standardize terminology, to enable access to domain knowledge, to verify data consistency and to facilitate integrative analyses over heterogeneous biomedical data. For this purpose, research on biomedical ontologies applies theories and methods from diverse disciplines such as information management, knowledge representation, cognitive science, linguistics and philosophy. Depending on the desired applications in which ontologies are being applied, the evaluation of research in biomedical ontologies must follow different strategies. Here, we provide a classification of research problems in which ontologies are being applied, focusing on the use of ontologies in basic and translational research, and we demonstrate how research results in biomedical ontologies can be evaluated. The evaluation strategies depend on the desired application and measure the success of using an ontology for a particular biomedical problem. For many applications, the success can be quantified, thereby facilitating the objective evaluation and comparison of research in biomedical ontology. The objective, quantifiable comparison of research results based on scientific applications opens up the possibility for systematically improving the utility of ontologies in biomedical research.

  1. Revealing ontological commitments by magic.

    PubMed

    Griffiths, Thomas L

    2015-03-01

    Considering the appeal of different magical transformations exposes some systematic asymmetries. For example, it is more interesting to transform a vase into a rose than a rose into a vase. An experiment in which people judged how interesting they found different magic tricks showed that these asymmetries reflect the direction a transformation moves in an ontological hierarchy: transformations in the direction of animacy and intelligence are favored over the opposite. A second and third experiment demonstrated that judgments of the plausibility of machines that perform the same transformations do not show the same asymmetries, but judgments of the interestingness of such machines do. A formal argument relates this sense of interestingness to evidence for an alternative to our current physical theory, with magic tricks being a particularly pure source of such evidence. These results suggest that people's intuitions about magic tricks can reveal the ontological commitments that underlie human cognition.

  2. Ontology Reuse in Geoscience Semantic Applications

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Gross, M. B.; Daniels, M. D.; Rowan, L. R.; Stott, D.; Maull, K. E.; Khan, H.; Corson-Rikert, J.

    2015-12-01

    The tension between local ontology development and wider ontology connections is fundamental to the Semantic web. It is often unclear, however, what the key decision points should be for new semantic web applications in deciding when to reuse existing ontologies and when to develop original ontologies. In addition, with the growth of semantic web ontologies and applications, new semantic web applications can struggle to efficiently and effectively identify and select ontologies to reuse. This presentation will describe the ontology comparison, selection, and consolidation effort within the EarthCollab project. UCAR, Cornell University, and UNAVCO are collaborating on the EarthCollab project to use semantic web technologies to enable the discovery of the research output from a diverse array of projects. The EarthCollab project is using the VIVO Semantic web software suite to increase discoverability of research information and data related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) diverse research projects informed by geodesy through the UNAVCO geodetic facility and consortium. This presentation will outline of EarthCollab use cases, and provide an overview of key ontologies being used, including the VIVO-Integrated Semantic Framework (VIVO-ISF), Global Change Information System (GCIS), and Data Catalog (DCAT) ontologies. We will discuss issues related to bringing these ontologies together to provide a robust ontological structure to support the EarthCollab use cases. It is rare that a single pre-existing ontology meets all of a new application's needs. New projects need to stitch ontologies together in ways that fit into the broader semantic web ecosystem.

  3. Representing COA with Probabilistic Ontologies

    DTIC Science & Technology

    2011-06-01

    in utility measures, may be combined with probabilities (RUSSEL; NORVIG , 2002). Ontologies have been proposed as a tool to better express a domain...all non mentioned literals are unknown (RUSSEL; NORVIG , 2002) and must be described in the context nodes. Thus, all available information should be...Information Systems: Meeting the Challenge of the Knowledge Era. : Greenwood Publishing Group, 1996. 183 p. RUSSEL, S.; NORVIG , P. Artificial

  4. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities.

    PubMed

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J; Gómez-Rodríguez, Alma

    2014-12-08

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment.

  5. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities

    PubMed Central

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J.; Gómez-Rodríguez, Alma

    2014-01-01

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment. PMID:25494353

  6. Track-Level-Compensation Look-Up Table Improves Antenna Pointing Precision

    NASA Technical Reports Server (NTRS)

    Gawronski, W.; Baher, F.; Gama, E.

    2006-01-01

    This article presents the improvement of the beam-waveguide antenna pointing accuracy due to the implementation of the track-level-compensation look-up table. It presents the development of the table, from the measurements of the inclinometer tilts to the processing of the measurement data and the determination of the threeaxis alidade rotations. The table consists of three axis rotations of the alidade as a function of the azimuth position. The article also presents the equations to determine the elevation and cross-elevation errors of the antenna as a function of the alidade rotations and the antenna azimuth and elevation positions. The table performance was verified using radio beam pointing data. The pointing error decreased from 4.5 mdeg to 1.4 mdeg in elevation and from 14.5 mdeg to 3.1 mdeg in cross-elevation. I. Introduction The Deep Space Station 25 (DSS 25) antenna shown in Fig. 1 is one of NASA s Deep Space Network beam-waveguide (BWG) antennas. At 34 GHz (Ka-band) operation, it is necessary to be able to track with a pointing accuracy of 2-mdeg root-mean-square (rms). Repeatable pointing errors of several millidegrees of magnitude have been observed during the BWG antenna calibration measurements. The systematic errors of order 4 and lower are eliminated using the antenna pointing model. However, repeatable pointing errors of higher order are out of reach of the model. The most prominent high-order systematic errors are the ones caused by the uneven azimuth track. The track is shown in Fig. 2. Manufacturing and installation tolerances, as well as gaps between the segments of the track, are the sources of the pointing errors that reach over 14-mdeg peak-to-peak magnitude, as reported in [1,2]. This article presents a continuation of the investigations and measurements of the pointing errors caused by the azimuth-track-level unevenness that were presented in [1] and [2], and it presents the implementation results. Track-level-compensation (TLC) look-up

  7. Anatomy Ontology Matching Using Markov Logic Networks

    PubMed Central

    Li, Chunhua; Zhao, Pengpeng; Wu, Jian; Cui, Zhiming

    2016-01-01

    The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment. PMID:27382498

  8. Instance testing of the family history ontology.

    PubMed

    Peace, Jane; Brennan, Patricia Flatley; Brennan, Patti

    2008-11-06

    The Family History Ontology formalizes nursing conceptualization about family and family history. Traditional methods of instance testing were applied to evaluate the completeness of the ontology and demonstrated favorable domain coverage. Testing also revealed a need for a new category of instance test results, "by inference", for data that can be represented through the use of inference rules associated with the ontology rather than requiring direct manual entry.

  9. C2 Domain Ontology within Our Lifetime

    DTIC Science & Technology

    2009-06-01

    process or an event). [21] Figure 1, adopted from [16], depicts the concept of ontological levels for a post office application based on the Husserl ...University, NJ, 2008. [23] Husserl , E., Id Macmillan. 1931. [24] Basic Formal Ontology (multiple references and artifacts): http://www.ifomis.org/bfo/BFO...Applied Ontology An Introduction, pp 39-56, Transaction Books, Rutgers University, NJ, 2008.  [23] Husserl , E., Ideas: General Introduction to Pure

  10. A Marketplace for Ontologies and Ontology-Based Tools and Applications in the Life Sciences

    SciTech Connect

    McEntire, R; Goble, C; Stevens, R; Neumann, E; Matuszek, P; Critchlow, T; Tarczy-Hornoch, P

    2005-06-30

    This paper describes a strategy for the development of ontologies in the life sciences, tools to support the creation and use of those ontologies, and a framework whereby these ontologies can support the development of commercial applications within the field. At the core of these efforts is the need for an organization that will provide a focus for ontology work that will engage researchers as well as drive forward the commercial aspects of this effort.

  11. Lookup Tables for Predicting CHF and Film-Boiling Heat Transfer: Past, Present, and Future

    SciTech Connect

    Groeneveld, D.C.; Leung, L.K. H.; Guo, Y.; Vasic, A.; El Nakla, M.; Peng, S.W.; Yang, J.; Cheng, S.C.

    2005-10-15

    Lookup tables (LUTs) have been used widely for the prediction of critical heat flux (CHF) and film-boiling heat transfer for water-cooled tubes. LUTs are basically normalized data banks. They eliminate the need to choose between the many different CHF and film-boiling heat transfer prediction methods available.The LUTs have many advantages; e.g., (a) they are simple to use, (b) there is no iteration required, (c) they have a wide range of applications, (d) they may be applied to nonaqueous fluids using fluid-to-fluid modeling relationships, and (e) they are based on a very large database. Concerns associated with the use of LUTs include (a) there are fluctuations in the value of the CHF or film-boiling heat transfer coefficient (HTC) with pressure, mass flux, and quality, (b) there are large variations in the CHF or the film-boiling HTC between the adjacent table entries, and (c) there is a lack or scarcity of data at certain flow conditions.Work on the LUTs is continuing. This will resolve the aforementioned concerns and improve the LUT prediction capability. This work concentrates on better smoothing of the LUT entries, increasing the database, and improving models at conditions where data are sparse or absent.

  12. Track Level Compensation Look-up Table Improves Antenna Pointing Precision

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek; Baher, Farrokh; Gama, Eric

    2006-01-01

    The pointing accuracy of the NASA Deep Space Network antennas is significantly impacted by the unevenness of the antenna azimuth track. The track unevenness causes repeatable antenna rotations, and repeatable pointing errors. The paper presents the improvement of the pointing accuracy of the antennas by implementing the track-level-compensation look-up table. The table consists of three axis rotations of the alidade as a function of the azimuth position. The paper presents the development of the table, based on the measurements of the inclinometer tilts, processing the measurement data, and determination of the three-axis alidade rotations from the tilt data. It also presents the determination of the elevation and cross-elevation errors of the antenna as a function of the alidade rotations. The pointing accuracy of the antenna with and without a table was measured using various radio beam pointing techniques. The pointing error decreased when the table was used, from 1.5 mdeg to 1.2 mdeg in elevation, and from 20.4 mdeg to 2.2 mdeg in cross-elevation.

  13. Efficient Lookup Table-Based Adaptive Baseband Predistortion Architecture for Memoryless Nonlinearity

    NASA Astrophysics Data System (ADS)

    Ba, Seydou N.; Waheed, Khurram; Zhou, G. Tong

    2010-12-01

    Digital predistortion is an effective means to compensate for the nonlinear effects of a memoryless system. In case of a cellular transmitter, a digital baseband predistorter can mitigate the undesirable nonlinear effects along the signal chain, particularly the nonlinear impairments in the radiofrequency (RF) amplifiers. To be practically feasible, the implementation complexity of the predistorter must be minimized so that it becomes a cost-effective solution for the resource-limited wireless handset. This paper proposes optimizations that facilitate the design of a low-cost high-performance adaptive digital baseband predistorter for memoryless systems. A comparative performance analysis of the amplitude and power lookup table (LUT) indexing schemes is presented. An optimized low-complexity amplitude approximation and its hardware synthesis results are also studied. An efficient LUT predistorter training algorithm that combines the fast convergence speed of the normalized least mean squares (NLMSs) with a small hardware footprint is proposed. Results of fixed-point simulations based on the measured nonlinear characteristics of an RF amplifier are presented.

  14. One-eighth look-up table method for effectively generating computer-generated hologram patterns

    NASA Astrophysics Data System (ADS)

    Cho, Sungjin; Ju, Byeong-Kwon; Kim, Nam-Young; Park, Min-Chul

    2014-05-01

    To generate ideal digital holograms, a computer-generated hologram (CGH) has been regarded as a solution. However, it has an unavoidable problem in that the computational burden for generating CGH is very large. Recently, many studies have been conducted to investigate different solutions in order to reduce the computational complexity of CGH by using particular methods such as look-up tables (LUTs) and parallel processing. Each method has a positive effectiveness about reducing computational time for generating CGH. However, it appears to be difficult to apply both methods simultaneously because of heavy memory consumption of the LUT technique. Therefore, we proposed a one-eighth LUT method where the memory usage of the LUT is reduced, making it possible to simultaneously apply both of the fast computing methods for the computation of CGH. With the one-eighth LUT method, only one-eighth of the zone plates were stored in the LUT. All of the zone plates were accessed by indexing method. Through this method, we significantly reduced memory usage of LUT. Also, we confirmed the feasibility of reducing the computational time of the CGH by using general-purpose graphic processing units while reducing the memory usage.

  15. A Monte Carlo based lookup table for spectrum analysis of turbid media in the reflectance probe regime

    SciTech Connect

    Xiang Wen; Xiewei Zhong; Tingting Yu; Dan Zhu

    2014-07-31

    Fibre-optic diffuse reflectance spectroscopy offers a method for characterising phantoms of biotissue with specified optical properties. For a commercial reflectance probe (six source fibres surrounding a central collection fibre with an inter-fibre spacing of 480 μm; R400-7, Ocean Optics, USA) we have constructed a Monte Carlo based lookup table to create a function called getR(μ{sub a}, μ'{sub s}), where μ{sub a} is the absorption coefficient and μ'{sub s} is the reduced scattering coefficient. Experimental measurements of reflectance from homogeneous calibrated phantoms with given optical properties are compared with the predicted reflectance from the lookup table. The deviation between experiment and prediction is on average 12.1%. (laser biophotonics)

  16. Scientific Digital Libraries, Interoperability, and Ontologies

    NASA Technical Reports Server (NTRS)

    Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris A.

    2009-01-01

    Scientific digital libraries serve complex and evolving research communities. Justifications for the development of scientific digital libraries include the desire to preserve science data and the promises of information interconnectedness, correlative science, and system interoperability. Shared ontologies are fundamental to fulfilling these promises. We present a tool framework, some informal principles, and several case studies where shared ontologies are used to guide the implementation of scientific digital libraries. The tool framework, based on an ontology modeling tool, was configured to develop, manage, and keep shared ontologies relevant within changing domains and to promote the interoperability, interconnectedness, and correlation desired by scientists.

  17. Agile development of ontologies through conversation

    NASA Astrophysics Data System (ADS)

    Braines, Dave; Bhattal, Amardeep; Preece, Alun D.; de Mel, Geeth

    2016-05-01

    Ontologies and semantic systems are necessarily complex but offer great potential in terms of their ability to fuse information from multiple sources in support of situation awareness. Current approaches do not place the ontologies directly into the hands of the end user in the field but instead hide them away behind traditional applications. We have been experimenting with human-friendly ontologies and conversational interactions to enable non-technical business users to interact with and extend these dynamically. In this paper we outline our approach via a worked example, covering: OWL ontologies, ITA Controlled English, Sensor/mission matching and conversational interactions between human and machine agents.

  18. Creating a magnetic resonance imaging ontology

    PubMed Central

    Lasbleiz, Jérémy; Saint-Jalmes, Hervé; Duvauferrier, Régis; Burgun, Anita

    2011-01-01

    The goal of this work is to build an ontology of Magnetic Resonance Imaging. The MRI domain has been analysed regarding MRI simulators and the DICOM standard. Tow MRI simulators have been analysed: JEMRIS, which is developed in XML and C++, has a hierarchical organisation and SIMRI, which is developed in C, has a good representation of MRI physical processes. To build the ontology we have used Protégé 4, owl2 that allows quantitative representations. The ontology has been validated by a reasoner (Fact++) and by a good representation of DICOM headers and of MRI processes. The MRI ontology would improved MRI simulators and eased semantic interoperability. PMID:21893854

  19. Predicting the extension of biomedical ontologies.

    PubMed

    Pesquita, Catia; Couto, Francisco M

    2012-01-01

    Developing and extending a biomedical ontology is a very demanding task that can never be considered complete given our ever-evolving understanding of the life sciences. Extension in particular can benefit from the automation of some of its steps, thus releasing experts to focus on harder tasks. Here we present a strategy to support the automation of change capturing within ontology extension where the need for new concepts or relations is identified. Our strategy is based on predicting areas of an ontology that will undergo extension in a future version by applying supervised learning over features of previous ontology versions. We used the Gene Ontology as our test bed and obtained encouraging results with average f-measure reaching 0.79 for a subset of biological process terms. Our strategy was also able to outperform state of the art change capturing methods. In addition we have identified several issues concerning prediction of ontology evolution, and have delineated a general framework for ontology extension prediction. Our strategy can be applied to any biomedical ontology with versioning, to help focus either manual or semi-automated extension methods on areas of the ontology that need extension.

  20. Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies

    ERIC Educational Resources Information Center

    Soares, Andrey

    2009-01-01

    This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…

  1. Where to Publish and Find Ontologies? A Survey of Ontology Libraries.

    PubMed

    d'Aquin, Mathieu; Noy, Natalya F

    2012-03-01

    One of the key promises of the Semantic Web is its potential to enable and facilitate data interoperability. The ability of data providers and application developers to share and reuse ontologies is a critical component of this data interoperability: if different applications and data sources use the same set of well defined terms for describing their domain and data, it will be much easier for them to "talk" to one another. Ontology libraries are the systems that collect ontologies from different sources and facilitate the tasks of finding, exploring, and using these ontologies. Thus ontology libraries can serve as a link in enabling diverse users and applications to discover, evaluate, use, and publish ontologies. In this paper, we provide a survey of the growing-and surprisingly diverse-landscape of ontology libraries. We highlight how the varying scope and intended use of the libraries a ects their features, content, and potential exploitation in applications. From reviewing eleven ontology libraries, we identify a core set of questions that ontology practitioners and users should consider in choosing an ontology library for finding ontologies or publishing their own. We also discuss the research challenges that emerge from this survey, for the developers of ontology libraries to address.

  2. Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration

    PubMed Central

    Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun

    2017-01-01

    Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. PMID:27733503

  3. Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration.

    PubMed

    Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun

    2017-01-04

    Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies.

  4. Where to Publish and Find Ontologies? A Survey of Ontology Libraries

    PubMed Central

    d'Aquin, Mathieu; Noy, Natalya F.

    2011-01-01

    One of the key promises of the Semantic Web is its potential to enable and facilitate data interoperability. The ability of data providers and application developers to share and reuse ontologies is a critical component of this data interoperability: if different applications and data sources use the same set of well defined terms for describing their domain and data, it will be much easier for them to “talk” to one another. Ontology libraries are the systems that collect ontologies from different sources and facilitate the tasks of finding, exploring, and using these ontologies. Thus ontology libraries can serve as a link in enabling diverse users and applications to discover, evaluate, use, and publish ontologies. In this paper, we provide a survey of the growing—and surprisingly diverse—landscape of ontology libraries. We highlight how the varying scope and intended use of the libraries a ects their features, content, and potential exploitation in applications. From reviewing eleven ontology libraries, we identify a core set of questions that ontology practitioners and users should consider in choosing an ontology library for finding ontologies or publishing their own. We also discuss the research challenges that emerge from this survey, for the developers of ontology libraries to address. PMID:22408576

  5. How Ontologies are Made: Studying the Hidden Social Dynamics Behind Collaborative Ontology Engineering Projects.

    PubMed

    Strohmaier, Markus; Walk, Simon; Pöschko, Jan; Lamprecht, Daniel; Tudorache, Tania; Nyulas, Csongor; Musen, Mark A; Noy, Natalya F

    2013-05-01

    Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.

  6. Surreptitious, Evolving and Participative Ontology Development: An End-User Oriented Ontology Development Methodology

    ERIC Educational Resources Information Center

    Bachore, Zelalem

    2012-01-01

    Ontology not only is considered to be the backbone of the semantic web but also plays a significant role in distributed and heterogeneous information systems. However, ontology still faces limited application and adoption to date. One of the major problems is that prevailing engineering-oriented methodologies for building ontologies do not…

  7. Federated ontology-based queries over cancer data

    PubMed Central

    2012-01-01

    Background Personalised medicine provides patients with treatments that are specific to their genetic profiles. It requires efficient data sharing of disparate data types across a variety of scientific disciplines, such as molecular biology, pathology, radiology and clinical practice. Personalised medicine aims to offer the safest and most effective therapeutic strategy based on the gene variations of each subject. In particular, this is valid in oncology, where knowledge about genetic mutations has already led to new therapies. Current molecular biology techniques (microarrays, proteomics, epigenetic technology and improved DNA sequencing technology) enable better characterisation of cancer tumours. The vast amounts of data, however, coupled with the use of different terms - or semantic heterogeneity - in each discipline makes the retrieval and integration of information difficult. Results Existing software infrastructures for data-sharing in the cancer domain, such as caGrid, support access to distributed information. caGrid follows a service-oriented model-driven architecture. Each data source in caGrid is associated with metadata at increasing levels of abstraction, including syntactic, structural, reference and domain metadata. The domain metadata consists of ontology-based annotations associated with the structural information of each data source. However, caGrid's current querying functionality is given at the structural metadata level, without capitalising on the ontology-based annotations. This paper presents the design of and theoretical foundations for distributed ontology-based queries over cancer research data. Concept-based queries are reformulated to the target query language, where join conditions between multiple data sources are found by exploiting the semantic annotations. The system has been implemented, as a proof of concept, over the caGrid infrastructure. The approach is applicable to other model-driven architectures. A graphical user

  8. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy.

    PubMed

    Nichols, Brandon S; Rajaram, Narasimhan; Tunnell, James W

    2012-05-01

    Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively.

  9. XOA: Web-Enabled Cross-Ontological Analytics

    SciTech Connect

    Riensche, Roderick M.; Baddeley, Bob; Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu

    2007-07-09

    The paper being submitted (as an "extended abstract" prior to conference acceptance) provides a technical description of our proof-of-concept prototype for the XOA method. Abstract: To address meaningful questions, scientists need to relate information across diverse classification schemes such as ontologies, terminologies and thesauri. These resources typically address a single knowledge domain at a time and are not cross-indexed. Information that is germane to the same object may therefore remain unlinked with consequent loss of knowledge discovery across disciplines and even sub-domains of the same discipline. We propose to address these problems by fostering semantic interoperability through the development of ontology alignment web services capable of enabling cross-scale knowledge discovery, and demonstrate a specific application of such an approach to the biomedical domain.

  10. Ontology driven health information systems architectures enable pHealth for empowered patients.

    PubMed

    Blobel, Bernd

    2011-02-01

    The paradigm shift from organization-centered to managed care and on to personal health settings increases specialization and distribution of actors and services related to the health of patients or even citizens before becoming patients. As a consequence, extended communication and cooperation is required between all principals involved in health services such as persons, organizations, devices, systems, applications, and components. Personal health (pHealth) environments range over many disciplines, where domain experts present their knowledge by using domain-specific terminologies and ontologies. Therefore, the mapping of domain ontologies is inevitable for ensuring interoperability. The paper introduces the care paradigms and the related requirements as well as an architectural approach for meeting the business objectives. Furthermore, it discusses some theoretical challenges and practical examples of ontologies, concept and knowledge representations, starting general and then focusing on security and privacy related services. The requirements and solutions for empowering the patient or the citizen before becoming a patient are especially emphasized.

  11. A method of extracting ontology module using concept relations for sharing knowledge in mobile cloud computing environment.

    PubMed

    Lee, Keonsoo; Rho, Seungmin; Lee, Seok-Won

    2014-01-01

    In mobile cloud computing environment, the cooperation of distributed computing objects is one of the most important requirements for providing successful cloud services. To satisfy this requirement, all the members, who are employed in the cooperation group, need to share the knowledge for mutual understanding. Even if ontology can be the right tool for this goal, there are several issues to make a right ontology. As the cost and complexity of managing knowledge increase according to the scale of the knowledge, reducing the size of ontology is one of the critical issues. In this paper, we propose a method of extracting ontology module to increase the utility of knowledge. For the given signature, this method extracts the ontology module, which is semantically self-contained to fulfill the needs of the service, by considering the syntactic structure and semantic relation of concepts. By employing this module, instead of the original ontology, the cooperation of computing objects can be performed with less computing load and complexity. In particular, when multiple external ontologies need to be combined for more complex services, this method can be used to optimize the size of shared knowledge.

  12. Semantic similarity between ontologies at different scales

    SciTech Connect

    Zhang, Qingpeng; Haglin, David J.

    2016-04-01

    In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea via studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.

  13. A Gross Anatomy Ontology for Hymenoptera

    PubMed Central

    Yoder, Matthew J.; Mikó, István; Seltmann, Katja C.; Bertone, Matthew A.; Deans, Andrew R.

    2010-01-01

    Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information—millions of statements about hymenopteran phenotypes—remains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology

  14. A gross anatomy ontology for hymenoptera.

    PubMed

    Yoder, Matthew J; Mikó, István; Seltmann, Katja C; Bertone, Matthew A; Deans, Andrew R

    2010-12-29

    Hymenoptera is an extraordinarily diverse lineage, both in terms of species numbers and morphotypes, that includes sawflies, bees, wasps, and ants. These organisms serve critical roles as herbivores, predators, parasitoids, and pollinators, with several species functioning as models for agricultural, behavioral, and genomic research. The collective anatomical knowledge of these insects, however, has been described or referred to by labels derived from numerous, partially overlapping lexicons. The resulting corpus of information--millions of statements about hymenopteran phenotypes--remains inaccessible due to language discrepancies. The Hymenoptera Anatomy Ontology (HAO) was developed to surmount this challenge and to aid future communication related to hymenopteran anatomy. The HAO was built using newly developed interfaces within mx, a Web-based, open source software package, that enables collaborators to simultaneously contribute to an ontology. Over twenty people contributed to the development of this ontology by adding terms, genus differentia, references, images, relationships, and annotations. The database interface returns an Open Biomedical Ontology (OBO) formatted version of the ontology and includes mechanisms for extracting candidate data and for publishing a searchable ontology to the Web. The application tools are subject-agnostic and may be used by others initiating and developing ontologies. The present core HAO data constitute 2,111 concepts, 6,977 terms (labels for concepts), 3,152 relations, 4,361 sensus (links between terms, concepts, and references) and over 6,000 text and graphical annotations. The HAO is rooted with the Common Anatomy Reference Ontology (CARO), in order to facilitate interoperability with and future alignment to other anatomy ontologies, and is available through the OBO Foundry ontology repository and BioPortal. The HAO provides a foundation through which connections between genomic, evolutionary developmental biology

  15. Issues in learning an ontology from text

    PubMed Central

    Brewster, Christopher; Jupp, Simon; Luciano, Joanne; Shotton, David; Stevens, Robert D; Zhang, Ziqi

    2009-01-01

    Ontology construction for any domain is a labour intensive and complex process. Any methodology that can reduce the cost and increase efficiency has the potential to make a major impact in the life sciences. This paper describes an experiment in ontology construction from text for the animal behaviour domain. Our objective was to see how much could be done in a simple and relatively rapid manner using a corpus of journal papers. We used a sequence of pre-existing text processing steps, and here describe the different choices made to clean the input, to derive a set of terms and to structure those terms in a number of hierarchies. We describe some of the challenges, especially that of focusing the ontology appropriately given a starting point of a heterogeneous corpus. Using mainly automated techniques, we were able to construct an 18055 term ontology-like structure with 73% recall of animal behaviour terms, but a precision of only 26%. We were able to clean unwanted terms from the nascent ontology using lexico-syntactic patterns that tested the validity of term inclusion within the ontology. We used the same technique to test for subsumption relationships between the remaining terms to add structure to the initially broad and shallow structure we generated. All outputs are available at . We present a systematic method for the initial steps of ontology or structured vocabulary construction for scientific domains that requires limited human effort and can make a contribution both to ontology learning and maintenance. The method is useful both for the exploration of a scientific domain and as a stepping stone towards formally rigourous ontologies. The filtering of recognised terms from a heterogeneous corpus to focus upon those that are the topic of the ontology is identified to be one of the main challenges for research in ontology learning. PMID:19426458

  16. Semantics and metaphysics in informatics: toward an ontology of tasks.

    PubMed

    Figdor, Carrie

    2011-04-01

    This article clarifies three principles that should guide the development of any cognitive ontology. First, that an adequate cognitive ontology depends essentially on an adequate task ontology; second, that the goal of developing a cognitive ontology is independent of the goal of finding neural implementations of the processes referred to in the ontology; and third, that cognitive ontologies are neutral regarding the metaphysical relationship between cognitive and neural processes.

  17. Probabilistic Ontology Architecture for a Terrorist Identification Decision Support System

    DTIC Science & Technology

    2014-06-01

    Ontology in Protégé. The Support Layer consists of technological artifacts highlighted by the OWL and MEBN languages used to represent the ontology and...additional individuals for an extended knowledge base. 6) Ontology. The Terrorist Identification Ontology is created in OWL using Protégé. The...application areas. 2) Modeling Languages. Ontological engineering was conducted in the Web Ontology Language ( OWL ) due to its incorporation within Protégé

  18. Security Ontology for Annotating Resources

    DTIC Science & Technology

    2005-08-31

    RSA SHA- 25 H-CCMAC -Blowfish RPM S TdpAeDES (hasNSALevel &assurance;typeS) u-wMD4 "MD5 CAST Skipjack (hasNSALevel = &assurance;type2) CRAYON ...type3) MD5tMD5 CAST Skipjack (hasNSALevel = &assurance;type2) CRAYON (hasNSALevel = &assurance;type1) 28 C.4. NRL Security Assurance Ontology...34&assurance;Type2"/> </SymmetricAlgorithm> <SymmetricAlgorithm rdf:ID=" CRAYON "> <hasNSALevel rdf:resource="&assurance;Typel"/> </SymmetricAlgori thmn

  19. Ontology-Driven Information Integration

    NASA Technical Reports Server (NTRS)

    Tissot, Florence; Menzel, Chris

    2005-01-01

    Ontology-driven information integration (ODII) is a method of computerized, automated sharing of information among specialists who have expertise in different domains and who are members of subdivisions of a large, complex enterprise (e.g., an engineering project, a government agency, or a business). In ODII, one uses rigorous mathematical techniques to develop computational models of engineering and/or business information and processes. These models are then used to develop software tools that support the reliable processing and exchange of information among the subdivisions of this enterprise or between this enterprise and other enterprises.

  20. Nosology, ontology and promiscuous realism.

    PubMed

    Binney, Nicholas

    2015-06-01

    Medics may consider worrying about their metaphysics and ontology to be a waste of time. I will argue here that this is not the case. Promiscuous realism is a metaphysical position which holds that multiple, equally valid, classification schemes should be applied to objects (such as patients) to capture different aspects of their complex and heterogeneous nature. As medics at the bedside may need to capture different aspects of their patients' problems, they may need to use multiple classification schemes (multiple nosologies), and thus consider adopting a different metaphysics to the one commonly in use.

  1. Developing Domain Ontologies for Course Content

    ERIC Educational Resources Information Center

    Boyce, Sinead; Pahl, Claus

    2007-01-01

    Ontologies have the potential to play an important role in instructional design and the development of course content. They can be used to represent knowledge about content, supporting instructors in creating content or learners in accessing content in a knowledge-guided way. While ontologies exist for many subject domains, their quality and…

  2. Ontological Annotation with WordNet

    SciTech Connect

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  3. Statistical mechanics of ontology based annotations

    NASA Astrophysics Data System (ADS)

    Hoyle, David C.; Brass, Andrew

    2016-01-01

    We present a statistical mechanical theory of the process of annotating an object with terms selected from an ontology. The term selection process is formulated as an ideal lattice gas model, but in a highly structured inhomogeneous field. The model enables us to explain patterns recently observed in real-world annotation data sets, in terms of the underlying graph structure of the ontology. By relating the external field strengths to the information content of each node in the ontology graph, the statistical mechanical model also allows us to propose a number of practical metrics for assessing the quality of both the ontology, and the annotations that arise from its use. Using the statistical mechanical formalism we also study an ensemble of ontologies of differing size and complexity; an analysis not readily performed using real data alone. Focusing on regular tree ontology graphs we uncover a rich set of scaling laws describing the growth in the optimal ontology size as the number of objects being annotated increases. In doing so we provide a further possible measure for assessment of ontologies.

  4. Ontology Design Patterns as Interfaces (invited)

    NASA Astrophysics Data System (ADS)

    Janowicz, K.

    2015-12-01

    In recent years ontology design patterns (ODP) have gained popularity among knowledge engineers. ODPs are modular but self-contained building blocks that are reusable and extendible. They minimize the amount of ontological commitments and thereby are easier to integrate than large monolithic ontologies. Typically, patterns are not directly used to annotate data or to model certain domain problems but are combined and extended to form data and purpose-driven local ontologies that serve the needs of specific applications or communities. By relying on a common set of patterns these local ontologies can be aligned to improve interoperability and enable federated queries without enforcing a top-down model of the domain. In previous work, we introduced ontological views as layer on top of ontology design patterns to ease the reuse, combination, and integration of patterns. While the literature distinguishes multiple types of patterns, e.g., content patterns or logical patterns, we propose to use them as interfaces here to guide the development of ontology-driven systems.

  5. Automating Ontological Annotation with WordNet

    SciTech Connect

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  6. Design and optimization of color lookup tables on a simplex topology.

    PubMed

    Monga, Vishal; Bala, Raja; Mo, Xuan

    2012-04-01

    An important computational problem in color imaging is the design of color transforms that map color between devices or from a device-dependent space (e.g., RGB/CMYK) to a device-independent space (e.g., CIELAB) and vice versa. Real-time processing constraints entail that such nonlinear color transforms be implemented using multidimensional lookup tables (LUTs). Furthermore, relatively sparse LUTs (with efficient interpolation) are employed in practice because of storage and memory constraints. This paper presents a principled design methodology rooted in constrained convex optimization to design color LUTs on a simplex topology. The use of n simplexes, i.e., simplexes in n dimensions, as opposed to traditional lattices, recently has been of great interest in color LUT design for simplex topologies that allow both more analytically tractable formulations and greater efficiency in the LUT. In this framework of n-simplex interpolation, our central contribution is to develop an elegant iterative algorithm that jointly optimizes the placement of nodes of the color LUT and the output values at those nodes to minimize interpolation error in an expected sense. This is in contrast to existing work, which exclusively designs either node locations or the output values. We also develop new analytical results for the problem of node location optimization, which reduces to constrained optimization of a large but sparse interpolation matrix in our framework. We evaluate our n -simplex color LUTs against the state-of-the-art lattice (e.g., International Color Consortium profiles) and simplex-based techniques for approximating two representative multidimensional color transforms that characterize a CMYK xerographic printer and an RGB scanner, respectively. The results show that color LUTs designed on simplexes offer very significant benefits over traditional lattice-based alternatives in improving color transform accuracy even with a much smaller number of nodes.

  7. Global Aerosol Optical Models and Lookup Tables for the New MODIS Aerosol Retrieval over Land

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Loraine A.; Dubovik, Oleg

    2007-01-01

    Since 2000, MODIS has been deriving aerosol properties over land from MODIS observed spectral reflectance, by matching the observed reflectance with that simulated for selected aerosol optical models, aerosol loadings, wavelengths and geometrical conditions (that are contained in a lookup table or 'LUT'). Validation exercises have showed that MODIS tends to under-predict aerosol optical depth (tau) in cases of large tau (tau greater than 1.0), signaling errors in the assumed aerosol optical properties. Using the climatology of almucantur retrievals from the hundreds of global AERONET sunphotometer sites, we found that three spherical-derived models (describing fine-sized dominated aerosol), and one spheroid-derived model (describing coarse-sized dominated aerosol, presumably dust) generally described the range of observed global aerosol properties. The fine dominated models were separated mainly by their single scattering albedo (omega(sub 0)), ranging from non-absorbing aerosol (omega(sub 0) approx. 0.95) in developed urban/industrial regions, to neutrally absorbing aerosol (omega(sub 0) approx.90) in forest fire burning and developing industrial regions, to absorbing aerosol (omega(sub 0) approx. 0.85) in regions of savanna/grassland burning. We determined the dominant model type in each region and season, to create a 1 deg. x 1 deg. grid of assumed aerosol type. We used vector radiative transfer code to create a new LUT, simulating the four aerosol models, in four MODIS channels. Independent AERONET observations of spectral tau agree with the new models, indicating that the new models are suitable for use by the MODIS aerosol retrieval.

  8. FROG - Fingerprinting Genomic Variation Ontology

    PubMed Central

    Bhardwaj, Anshu

    2015-01-01

    Genetic variations play a crucial role in differential phenotypic outcomes. Given the complexity in establishing this correlation and the enormous data available today, it is imperative to design machine-readable, efficient methods to store, label, search and analyze this data. A semantic approach, FROG: “FingeRprinting Ontology of Genomic variations” is implemented to label variation data, based on its location, function and interactions. FROG has six levels to describe the variation annotation, namely, chromosome, DNA, RNA, protein, variations and interactions. Each level is a conceptual aggregation of logically connected attributes each of which comprises of various properties for the variant. For example, in chromosome level, one of the attributes is location of variation and which has two properties, allosomes or autosomes. Another attribute is variation kind which has four properties, namely, indel, deletion, insertion, substitution. Likewise, there are 48 attributes and 278 properties to capture the variation annotation across six levels. Each property is then assigned a bit score which in turn leads to generation of a binary fingerprint based on the combination of these properties (mostly taken from existing variation ontologies). FROG is a novel and unique method designed for the purpose of labeling the entire variation data generated till date for efficient storage, search and analysis. A web-based platform is designed as a test case for users to navigate sample datasets and generate fingerprints. The platform is available at http://ab-openlab.csir.res.in/frog. PMID:26244889

  9. FROG - Fingerprinting Genomic Variation Ontology.

    PubMed

    Abinaya, E; Narang, Pankaj; Bhardwaj, Anshu

    2015-01-01

    Genetic variations play a crucial role in differential phenotypic outcomes. Given the complexity in establishing this correlation and the enormous data available today, it is imperative to design machine-readable, efficient methods to store, label, search and analyze this data. A semantic approach, FROG: "FingeRprinting Ontology of Genomic variations" is implemented to label variation data, based on its location, function and interactions. FROG has six levels to describe the variation annotation, namely, chromosome, DNA, RNA, protein, variations and interactions. Each level is a conceptual aggregation of logically connected attributes each of which comprises of various properties for the variant. For example, in chromosome level, one of the attributes is location of variation and which has two properties, allosomes or autosomes. Another attribute is variation kind which has four properties, namely, indel, deletion, insertion, substitution. Likewise, there are 48 attributes and 278 properties to capture the variation annotation across six levels. Each property is then assigned a bit score which in turn leads to generation of a binary fingerprint based on the combination of these properties (mostly taken from existing variation ontologies). FROG is a novel and unique method designed for the purpose of labeling the entire variation data generated till date for efficient storage, search and analysis. A web-based platform is designed as a test case for users to navigate sample datasets and generate fingerprints. The platform is available at http://ab-openlab.csir.res.in/frog.

  10. Ontology for Genome Comparison and Genomic Rearrangements

    PubMed Central

    Flanagan, Keith; Stevens, Robert; Pocock, Matthew; Lee, Pete

    2004-01-01

    We present an ontology for describing genomes, genome comparisons, their evolution and biological function. This ontology will support the development of novel genome comparison algorithms and aid the community in discussing genomic evolution. It provides a framework for communication about comparative genomics, and a basis upon which further automated analysis can be built. The nomenclature defined by the ontology will foster clearer communication between biologists, and also standardize terms used by data publishers in the results of analysis programs. The overriding aim of this ontology is the facilitation of consistent annotation of genomes through computational methods, rather than human annotators. To this end, the ontology includes definitions that support computer analysis and automated transfer of annotations between genomes, rather than relying upon human mediation. PMID:18629137

  11. An Ontology Based Approach to Information Security

    NASA Astrophysics Data System (ADS)

    Pereira, Teresa; Santos, Henrique

    The semantically structure of knowledge, based on ontology approaches have been increasingly adopted by several expertise from diverse domains. Recently ontologies have been moved from the philosophical and metaphysics disciplines to be used in the construction of models to describe a specific theory of a domain. The development and the use of ontologies promote the creation of a unique standard to represent concepts within a specific knowledge domain. In the scope of information security systems the use of an ontology to formalize and represent the concepts of security information challenge the mechanisms and techniques currently used. This paper intends to present a conceptual implementation model of an ontology defined in the security domain. The model presented contains the semantic concepts based on the information security standard ISO/IEC_JTC1, and their relationships to other concepts, defined in a subset of the information security domain.

  12. Applying ontological realism to medically unexplained syndromes.

    PubMed

    Doing-Harris, Kristina; Meystre, Stephane M; Samore, Matthew; Ceusters, Werner

    2013-01-01

    The past decade has witnessed an increased interest in what are called "medically unexplained syndromes" (MUS). We address the question of whether structuring the domain knowledge for MUS can be achieved by applying the principles of Ontological Realism in light of criticisms about their usefulness in areas where science has not yet led to insights univocally endorsed by the relevant communities. We analyzed whether the different perspectives held by MUS researchers can be represented without taking any particular stance and whether existing ontologies based on Ontological Realism can be further built upon. We did not find refutation of the applicability of the principles. We found the Ontology of General Medical Science and Information Artifact Ontology to provide useful frameworks for analyzing certain MUS controversies, although leaving other questions open.

  13. XML, Ontologies, and Their Clinical Applications.

    PubMed

    Yu, Chunjiang; Shen, Bairong

    2016-01-01

    The development of information technology has resulted in its penetration into every area of clinical research. Various clinical systems have been developed, which produce increasing volumes of clinical data. However, saving, exchanging, querying, and exploiting these data are challenging issues. The development of Extensible Markup Language (XML) has allowed the generation of flexible information formats to facilitate the electronic sharing of structured data via networks, and it has been used widely for clinical data processing. In particular, XML is very useful in the fields of data standardization, data exchange, and data integration. Moreover, ontologies have been attracting increased attention in various clinical fields in recent years. An ontology is the basic level of a knowledge representation scheme, and various ontology repositories have been developed, such as Gene Ontology and BioPortal. The creation of these standardized repositories greatly facilitates clinical research in related fields. In this chapter, we discuss the basic concepts of XML and ontologies, as well as their clinical applications.

  14. Temporal Ontologies for Geoscience: Alignment Challenges

    NASA Astrophysics Data System (ADS)

    Cox, S. J. D.

    2014-12-01

    Time is a central concept in geoscience. Geologic histories are composed of sequences of geologic processes and events. Calibration of their timing ties a local history into a broader context, and enables correlation of events between locations. The geologic timescale is standardized in the International Chronostratigraphic Chart, which specifies interval names, and calibrations for the ages of the interval boundaries. Time is also a key concept in the world at large. A number of general purpose temporal ontologies have been developed, both stand-alone and as parts of general purpose or upper ontologies. A temporal ontology for geoscience should apply or extend a suitable general purpose temporal ontology. However, geologic time presents two challenges: Geology involves greater spans of time than in other temporal ontologies, inconsistent with the year-month-day/hour-minute-second formalization that is a basic assumption of most general purpose temporal schemes; The geologic timescale is a temporal topology. Its calibration in terms of an absolute (numeric) scale is a scientific issue in its own right supporting a significant community. In contrast, the general purpose temporal ontologies are premised on exact numeric values for temporal position, and do not allow for temporal topology as a primary structure. We have developed an ontology for the geologic timescale to account for these concerns. It uses the ISO 19108 distinctions between different types of temporal reference system, also linking to an explicit temporal topology model. Stratotypes used in the calibration process are modelled as sampling-features following the ISO 19156 Observations and Measurements model. A joint OGC-W3C harmonization project is underway, with standardization of the W3C OWL-Time ontology as one of its tasks. The insights gained from the geologic timescale ontology will assist in development of a general ontology capable of modelling a richer set of use-cases from geoscience.

  15. SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.

    PubMed

    Youn, Seongwook

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

  16. SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology

    PubMed Central

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance. PMID:25254240

  17. Reasoning Based Quality Assurance of Medical Ontologies: A Case Study

    PubMed Central

    Horridge, Matthew; Parsia, Bijan; Noy, Natalya F.; Musenm, Mark A.

    2014-01-01

    The World Health Organisation is using OWL as a key technology to develop ICD-11 – the next version of the well-known International Classification of Diseases. Besides providing better opportunities for data integration and linkages to other well-known ontologies such as SNOMED-CT, one of the main promises of using OWL is that it will enable various forms of automated error checking. In this paper we investigate how automated OWL reasoning, along with a Justification Finding Service can be used as a Quality Assurance technique for the development of large and complex ontologies such as ICD-11. Using the International Classification of Traditional Medicine (ICTM) – Chapter 24 of ICD-11 – as a case study, and an expert panel of knowledge engineers, we reveal the kinds of problems that can occur, how they can be detected, and how they can be fixed. Specifically, we found that a logically inconsistent version of the ICTM ontology could be repaired using justifications (minimal entailing subsets of an ontology). Although over 600 justifications for the inconsistency were initially computed, we found that there were three main manageable patterns or categories of justifications involving TBox and ABox axioms. These categories represented meaningful domain errors to an expert panel of ICTM project knowledge engineers, who were able to use them to successfully determine the axioms that needed to be revised in order to fix the problem. All members of the expert panel agreed that the approach was useful for debugging and ensuring the quality of ICTM. PMID:25954373

  18. CiTO, the Citation Typing Ontology

    PubMed Central

    2010-01-01

    CiTO, the Citation Typing Ontology, is an ontology for describing the nature of reference citations in scientific research articles and other scholarly works, both to other such publications and also to Web information resources, and for publishing these descriptions on the Semantic Web. Citation are described in terms of the factual and rhetorical relationships between citing publication and cited publication, the in-text and global citation frequencies of each cited work, and the nature of the cited work itself, including its publication and peer review status. This paper describes CiTO and illustrates its usefulness both for the annotation of bibliographic reference lists and for the visualization of citation networks. The latest version of CiTO, which this paper describes, is CiTO Version 1.6, published on 19 March 2010. CiTO is written in the Web Ontology Language OWL, uses the namespace http://purl.org/net/cito/, and is available from http://purl.org/net/cito/. This site uses content negotiation to deliver to the user an OWLDoc Web version of the ontology if accessed via a Web browser, or the OWL ontology itself if accessed from an ontology management tool such as Protégé 4 (http://protege.stanford.edu/). Collaborative work is currently under way to harmonize CiTO with other ontologies describing bibliographies and the rhetorical structure of scientific discourse. PMID:20626926

  19. Ontology-Based Multiple Choice Question Generation

    PubMed Central

    Al-Yahya, Maha

    2014-01-01

    With recent advancements in Semantic Web technologies, a new trend in MCQ item generation has emerged through the use of ontologies. Ontologies are knowledge representation structures that formally describe entities in a domain and their relationships, thus enabling automated inference and reasoning. Ontology-based MCQ item generation is still in its infancy, but substantial research efforts are being made in the field. However, the applicability of these models for use in an educational setting has not been thoroughly evaluated. In this paper, we present an experimental evaluation of an ontology-based MCQ item generation system known as OntoQue. The evaluation was conducted using two different domain ontologies. The findings of this study show that ontology-based MCQ generation systems produce satisfactory MCQ items to a certain extent. However, the evaluation also revealed a number of shortcomings with current ontology-based MCQ item generation systems with regard to the educational significance of an automatically constructed MCQ item, the knowledge level it addresses, and its language structure. Furthermore, for the task to be successful in producing high-quality MCQ items for learning assessments, this study suggests a novel, holistic view that incorporates learning content, learning objectives, lexical knowledge, and scenarios into a single cohesive framework. PMID:24982937

  20. Nuclear Nonproliferation Ontology Assessment Team Final Report

    SciTech Connect

    Strasburg, Jana D.; Hohimer, Ryan E.

    2012-01-01

    Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importance of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.

  1. Multiangle Implementation of Atmospheric Correction (MAIAC):. 1; Radiative Transfer Basis and Look-up Tables

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Martonchik, John; Wang, Yujie; Laszlo, Istvan; Korkin, Sergey

    2011-01-01

    This paper describes a radiative transfer basis of the algorithm MAIAC which performs simultaneous retrievals of atmospheric aerosol and bidirectional surface reflectance from the Moderate Resolution Imaging Spectroradiometer (MODIS). The retrievals are based on an accurate semianalytical solution for the top-of-atmosphere reflectance expressed as an explicit function of three parameters of the Ross-Thick Li-Sparse model of surface bidirectional reflectance. This solution depends on certain functions of atmospheric properties and geometry which are precomputed in the look-up table (LUT). This paper further considers correction of the LUT functions for variations of surface pressure/height and of atmospheric water vapor, which is a common task in the operational remote sensing. It introduces a new analytical method for the water vapor correction of the multiple ]scattering path radiance. It also summarizes the few basic principles that provide a high efficiency and accuracy of the LUT ]based radiative transfer for the aerosol/surface retrievals and optimize the size of LUT. For example, the single-scattering path radiance is calculated analytically for a given surface pressure and atmospheric water vapor. The same is true for the direct surface-reflected radiance, which along with the single-scattering path radiance largely defines the angular dependence of measurements. For these calculations, the aerosol phase functions and kernels of the surface bidirectional reflectance model are precalculated at a high angular resolution. The other radiative transfer functions depend rather smoothly on angles because of multiple scattering and can be calculated at coarser angular resolution to reduce the LUT size. At the same time, this resolution should be high enough to use the nearest neighbor geometry angles to avoid costly three ]dimensional interpolation. The pressure correction is implemented via linear interpolation between two LUTs computed for the standard and reduced

  2. A Knowledge Engineering Approach to Develop Domain Ontology

    ERIC Educational Resources Information Center

    Yun, Hongyan; Xu, Jianliang; Xiong, Jing; Wei, Moji

    2011-01-01

    Ontologies are one of the most popular and widespread means of knowledge representation and reuse. A few research groups have proposed a series of methodologies for developing their own standard ontologies. However, because this ontological construction concerns special fields, there is no standard method to build domain ontology. In this paper,…

  3. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2013-12-01

    service is provided for semantic-based querying of the ontology.

  4. Hierarchical Analysis of the Omega Ontology

    SciTech Connect

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  5. Ontological Stratification in an Ecology of Infohabitants

    NASA Astrophysics Data System (ADS)

    Abramov, V. A.; Goossenaerts, J. B. M.; de Wilde, P.; Correia, L.

    This paper reports progress from the EEII research project where ontological stratification is applied in the study of openness. We explain a stratification approach to reduce the overall complexity of conceptual models, and to enhance their modularity. A distinction is made between ontological and epistemological stratification. The application of the stratification approach to agent system design is explained and illustrated. A preliminary characterization of the relevant strata is given. The wider relevance of this result for information infrastructure design is addressed: ontological stratification will be key to the model management and semantic interoperability in a ubiquitous and model driven information infrastructure.

  6. Matching arthropod anatomy ontologies to the Hymenoptera Anatomy Ontology: results from a manual alignment

    PubMed Central

    Bertone, Matthew A.; Mikó, István; Yoder, Matthew J.; Seltmann, Katja C.; Balhoff, James P.; Deans, Andrew R.

    2013-01-01

    Matching is an important step for increasing interoperability between heterogeneous ontologies. Here, we present alignments we produced as domain experts, using a manual mapping process, between the Hymenoptera Anatomy Ontology and other existing arthropod anatomy ontologies (representing spiders, ticks, mosquitoes and Drosophila melanogaster). The resulting alignments contain from 43 to 368 mappings (correspondences), all derived from domain-expert input. Despite the many pairwise correspondences, only 11 correspondences were found in common between all ontologies, suggesting either major intrinsic differences between each ontology or gaps in representing each group’s anatomy. Furthermore, we compare our findings with putative correspondences from Bioportal (derived from LOOM software) and summarize the results in a total evidence alignment. We briefly discuss characteristics of the ontologies and issues with the matching process. Database URL: http://purl.obolibrary.org/obo/hao/2012-07-18/arthropod-mappings.obo PMID:23303300

  7. Matching arthropod anatomy ontologies to the Hymenoptera Anatomy Ontology: results from a manual alignment.

    PubMed

    Bertone, Matthew A; Mikó, István; Yoder, Matthew J; Seltmann, Katja C; Balhoff, James P; Deans, Andrew R

    2013-01-01

    Matching is an important step for increasing interoperability between heterogeneous ontologies. Here, we present alignments we produced as domain experts, using a manual mapping process, between the Hymenoptera Anatomy Ontology and other existing arthropod anatomy ontologies (representing spiders, ticks, mosquitoes and Drosophila melanogaster). The resulting alignments contain from 43 to 368 mappings (correspondences), all derived from domain-expert input. Despite the many pairwise correspondences, only 11 correspondences were found in common between all ontologies, suggesting either major intrinsic differences between each ontology or gaps in representing each group's anatomy. Furthermore, we compare our findings with putative correspondences from Bioportal (derived from LOOM software) and summarize the results in a total evidence alignment. We briefly discuss characteristics of the ontologies and issues with the matching process.

  8. Utilizing a structural meta-ontology for family-based quality assurance of the BioPortal ontologies.

    PubMed

    Ochs, Christopher; He, Zhe; Zheng, Ling; Geller, James; Perl, Yehoshua; Hripcsak, George; Musen, Mark A

    2016-06-01

    An Abstraction Network is a compact summary of an ontology's structure and content. In previous research, we showed that Abstraction Networks support quality assurance (QA) of biomedical ontologies. The development of an Abstraction Network and its associated QA methodologies, however, is a labor-intensive process that previously was applicable only to one ontology at a time. To improve the efficiency of the Abstraction-Network-based QA methodology, we introduced a QA framework that uses uniform Abstraction Network derivation techniques and QA methodologies that are applicable to whole families of structurally similar ontologies. For the family-based framework to be successful, it is necessary to develop a method for classifying ontologies into structurally similar families. We now describe a structural meta-ontology that classifies ontologies according to certain structural features that are commonly used in the modeling of ontologies (e.g., object properties) and that are important for Abstraction Network derivation. Each class of the structural meta-ontology represents a family of ontologies with identical structural features, indicating which types of Abstraction Networks and QA methodologies are potentially applicable to all of the ontologies in the family. We derive a collection of 81 families, corresponding to classes of the structural meta-ontology, that enable a flexible, streamlined family-based QA methodology, offering multiple choices for classifying an ontology. The structure of 373 ontologies from the NCBO BioPortal is analyzed and each ontology is classified into multiple families modeled by the structural meta-ontology.

  9. The Gene Ontology: enhancements for 2011.

    PubMed

    2012-01-01

    The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources.

  10. The Gene Ontology: enhancements for 2011

    PubMed Central

    2012-01-01

    The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources. PMID:22102568

  11. Ontology-Driven Disability-Aware E-Learning Personalisation with ONTODAPS

    ERIC Educational Resources Information Center

    Nganji, Julius T.; Brayshaw, Mike; Tompsett, Brian

    2013-01-01

    Purpose: The purpose of this paper is to show how personalisation of learning resources and services can be achieved for students with and without disabilities, particularly responding to the needs of those with multiple disabilities in e-learning systems. The paper aims to introduce ONTODAPS, the Ontology-Driven Disability-Aware Personalised…

  12. GFVO: the Genomic Feature and Variation Ontology.

    PubMed

    Baran, Joachim; Durgahee, Bibi Sehnaaz Begum; Eilbeck, Karen; Antezana, Erick; Hoehndorf, Robert; Dumontier, Michel

    2015-01-01

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology's GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  13. An Approach to Support Collaborative Ontology Construction.

    PubMed

    Tahar, Kais; Schaaf, Michael; Jahn, Franziska; Kücherer, Christian; Paech, Barbara; Herre, Heinrich; Winter, Alfred

    2016-01-01

    The increasing number of terms used in textbooks for information management (IM) in hospitals makes it difficult for medical informatics students to grasp IM concepts and their interrelations. Formal ontologies which comprehend and represent the essential content of textbooks can facilitate the learning process in IM education. The manual construction of such ontologies is time-consuming and thus very expensive [3]. Moreover, most domain experts lack skills in using a formal language like OWL [2] and usually have no experience with standard editing tools like Protégé http://protege.stanford.edu [4,5]. This paper presents an ontology modeling approach based on Excel2OWL, a self-developed tool which efficiently supports domain experts in collaboratively constructing ontologies from textbooks. This approach was applied to classic IM textbooks, resulting in an ontology called SNIK. Our method facilitates the collaboration between domain experts and ontologists in the development process. Furthermore, the proposed approach enables ontologists to detect modeling errors and also to evaluate and improve the quality of the resulting ontology rapidly. This approach allows us to visualize the modeled textbooks and to analyze their semantics automatically. Hence, it can be used for e-learning purposes, particularly in the field of IM in hospitals.

  14. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance

    PubMed Central

    Cui, Licong

    2015-01-01

    Biomedical ontologies play a vital role in healthcare information management, data integration, and decision support. Ontology quality assurance (OQA) is an indispensable part of the ontology engineering cycle. Most existing OQA methods are based on the knowledge provided within the targeted ontology. This paper proposes a novel cross-ontology analysis method, Cross-Ontology Hierarchical Relation Examination (COHeRE), to detect inconsistencies and possible errors in hierarchical relations across multiple ontologies. COHeRE leverages the Unified Medical Language System (UMLS) knowledge source and the MapReduce cloud computing technique for systematic, large-scale ontology quality assurance work. COHeRE consists of three main steps with the UMLS concepts and relations as the input. First, the relations claimed in source vocabularies are filtered and aggregated for each pair of concepts. Second, inconsistent relations are detected if a concept pair is related by different types of relations in different source vocabularies. Finally, the uncovered inconsistent relations are voted according to their number of occurrences across different source vocabularies. The voting result together with the inconsistent relations serve as the output of COHeRE for possible ontological change. The highest votes provide initial suggestion on how such inconsistencies might be fixed. In UMLS, 138,987 concept pairs were found to have inconsistent relationships across multiple source vocabularies. 40 inconsistent concept pairs involving hierarchical relationships were randomly selected and manually reviewed by a human expert. 95.8% of the inconsistent relations involved in these concept pairs indeed exist in their source vocabularies rather than being introduced by mistake in the UMLS integration process. 73.7% of the concept pairs with suggested relationship were agreed by the human expert. The effectiveness of COHeRE indicates that UMLS provides a promising environment to enhance

  15. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance.

    PubMed

    Cui, Licong

    Biomedical ontologies play a vital role in healthcare information management, data integration, and decision support. Ontology quality assurance (OQA) is an indispensable part of the ontology engineering cycle. Most existing OQA methods are based on the knowledge provided within the targeted ontology. This paper proposes a novel cross-ontology analysis method, Cross-Ontology Hierarchical Relation Examination (COHeRE), to detect inconsistencies and possible errors in hierarchical relations across multiple ontologies. COHeRE leverages the Unified Medical Language System (UMLS) knowledge source and the MapReduce cloud computing technique for systematic, large-scale ontology quality assurance work. COHeRE consists of three main steps with the UMLS concepts and relations as the input. First, the relations claimed in source vocabularies are filtered and aggregated for each pair of concepts. Second, inconsistent relations are detected if a concept pair is related by different types of relations in different source vocabularies. Finally, the uncovered inconsistent relations are voted according to their number of occurrences across different source vocabularies. The voting result together with the inconsistent relations serve as the output of COHeRE for possible ontological change. The highest votes provide initial suggestion on how such inconsistencies might be fixed. In UMLS, 138,987 concept pairs were found to have inconsistent relationships across multiple source vocabularies. 40 inconsistent concept pairs involving hierarchical relationships were randomly selected and manually reviewed by a human expert. 95.8% of the inconsistent relations involved in these concept pairs indeed exist in their source vocabularies rather than being introduced by mistake in the UMLS integration process. 73.7% of the concept pairs with suggested relationship were agreed by the human expert. The effectiveness of COHeRE indicates that UMLS provides a promising environment to enhance

  16. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  17. Speeding up ontology creation of scientific terms

    NASA Astrophysics Data System (ADS)

    Bermudez, L. E.; Graybeal, J.

    2005-12-01

    An ontology is a formal specification of a controlled vocabulary. Ontologies are composed of classes (similar to categories), individuals (members of classes) and properties (attributes of the individuals). Having vocabularies expressed in a formal specification like the Web Ontology Language (OWL) enables interoperability due to the comprehensiveness of OWL by software programs. Two main non-inclusive strategies exist when constructing an ontology: an up-down approach and a bottom-up approach. The former one is directed towards the creation of top classes first (main concepts) and then finding the required subclasses and individuals. The later approach starts from the individuals and then finds similar properties promoting the creation of classes. At the Marine Metadata Interoperability (MMI) Initiative we used a bottom-up approach to create ontologies from simple-vocabularies (those that are not expressed in a conceptual way). We found that the vocabularies were available in different formats (relational data bases, plain files, HTML, XML, PDF) and sometimes were composed of thousands of terms, making the ontology creation process a very time consuming activity. To expedite the conversion process we created a tool VOC2OWL that takes a vocabulary in a table like structure (CSV or TAB format) and a conversion-property file to create automatically an ontology. We identified two basic structures of simple-vocabularies: Flat vocabularies (e.g., phone directory) and hierarchical vocabularies (e.g., taxonomies). The property file defines a list of attributes for the conversion process for each structure type. The attributes included metadata information (title, description, subject, contributor, urlForMoreInformation) and conversion flags (treatAsHierarchy, generateAutoIds) and other conversion information needed to create the ontology (columnForPrimaryClass, columnsToCreateClassesFrom, fileIn, fileOut, namespace, format). We created more than 50 ontologies and

  18. Ontology Mapping Neural Network: An Approach to Learning and Inferring Correspondences among Ontologies

    ERIC Educational Resources Information Center

    Peng, Yefei

    2010-01-01

    An ontology mapping neural network (OMNN) is proposed in order to learn and infer correspondences among ontologies. It extends the Identical Elements Neural Network (IENN)'s ability to represent and map complex relationships. The learning dynamics of simultaneous (interlaced) training of similar tasks interact at the shared connections of the…

  19. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery

    PubMed Central

    2014-01-01

    The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org. PMID:24602174

  20. An ontology-based hierarchical semantic modeling approach to clinical pathway workflows.

    PubMed

    Ye, Yan; Jiang, Zhibin; Diao, Xiaodi; Yang, Dong; Du, Gang

    2009-08-01

    This paper proposes an ontology-based approach of modeling clinical pathway workflows at the semantic level for facilitating computerized clinical pathway implementation and efficient delivery of high-quality healthcare services. A clinical pathway ontology (CPO) is formally defined in OWL web ontology language (OWL) to provide common semantic foundation for meaningful representation and exchange of pathway-related knowledge. A CPO-based semantic modeling method is then presented to describe clinical pathways as interconnected hierarchical models including the top-level outcome flow and intervention workflow level along a care timeline. Furthermore, relevant temporal knowledge can be fully represented by combing temporal entities in CPO and temporal rules based on semantic web rule language (SWRL). An illustrative example about a clinical pathway for cesarean section shows the applicability of the proposed methodology in enabling structured semantic descriptions of any real clinical pathway.

  1. A Prototype Ontology Tool and Interface for Coastal Atlas Interoperability

    NASA Astrophysics Data System (ADS)

    Wright, D. J.; Bermudez, L.; O'Dea, L.; Haddad, T.; Cummins, V.

    2007-12-01

    While significant capacity has been built in the field of web-based coastal mapping and informatics in the last decade, little has been done to take stock of the implications of these efforts or to identify best practice in terms of taking lessons learned into consideration. This study reports on the second of two transatlantic workshops that bring together key experts from Europe, the United States and Canada to examine state-of-the-art developments in coastal web atlases (CWA), based on web enabled geographic information systems (GIS), along with future needs in mapping and informatics for the coastal practitioner community. While multiple benefits are derived from these tailor-made atlases (e.g. speedy access to multiple sources of coastal data and information; economic use of time by avoiding individual contact with different data holders), the potential exists to derive added value from the integration of disparate CWAs, to optimize decision-making at a variety of levels and across themes. The second workshop focused on the development of a strategy to make coastal web atlases interoperable by way of controlled vocabularies and ontologies. The strategy is based on web service oriented architecture and an implementation of Open Geospatial Consortium (OGC) web services, such as Web Feature Services (WFS) and Web Map Service (WMS). Atlases publishes Catalog Web Services (CSW) using ISO 19115 metadata and controlled vocabularies encoded as Uniform Resource Identifiers (URIs). URIs allows the terminology of each atlas to be uniquely identified and facilitates mapping of terminologies using semantic web technologies. A domain ontology was also created to formally represent coastal erosion terminology as a use case, and with a test linkage of those terms between the Marine Irish Digital Atlas and the Oregon Coastal Atlas. A web interface is being developed to discover coastal hazard themes in distributed coastal atlases as part of a broader International Coastal

  2. OpenTox predictive toxicology framework: toxicological ontology and semantic media wiki-based OpenToxipedia

    PubMed Central

    2012-01-01

    Background The OpenTox Framework, developed by the partners in the OpenTox project (http://www.opentox.org), aims at providing a unified access to toxicity data, predictive models and validation procedures. Interoperability of resources is achieved using a common information model, based on the OpenTox ontologies, describing predictive algorithms, models and toxicity data. As toxicological data may come from different, heterogeneous sources, a deployed ontology, unifying the terminology and the resources, is critical for the rational and reliable organization of the data, and its automatic processing. Results The following related ontologies have been developed for OpenTox: a) Toxicological ontology – listing the toxicological endpoints; b) Organs system and Effects ontology – addressing organs, targets/examinations and effects observed in in vivo studies; c) ToxML ontology – representing semi-automatic conversion of the ToxML schema; d) OpenTox ontology– representation of OpenTox framework components: chemical compounds, datasets, types of algorithms, models and validation web services; e) ToxLink–ToxCast assays ontology and f) OpenToxipedia community knowledge resource on toxicology terminology. OpenTox components are made available through standardized REST web services, where every compound, data set, and predictive method has a unique resolvable address (URI), used to retrieve its Resource Description Framework (RDF) representation, or to initiate the associated calculations and generate new RDF-based resources. The services support the integration of toxicity and chemical data from various sources, the generation and validation of computer models for toxic effects, seamless integration of new algorithms and scientifically sound validation routines and provide a flexible framework, which allows building arbitrary number of applications, tailored to solving different problems by end users (e.g. toxicologists). Availability The OpenTox toxicological

  3. GFVO: the Genomic Feature and Variation Ontology

    PubMed Central

    Durgahee, Bibi Sehnaaz Begum; Eilbeck, Karen; Antezana, Erick; Hoehndorf, Robert; Dumontier, Michel

    2015-01-01

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use. PMID:26019997

  4. Building a semi-automatic ontology learning and construction system for geosciences

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Sunderraman, R.; Zhu, Y.

    2013-12-01

    We are developing an ontology learning and construction framework that allows continuous, semi-automatic knowledge extraction, verification, validation, and maintenance by potentially a very large group of collaborating domain experts in any geosciences field. The system brings geoscientists from the side-lines to the center stage of ontology building, allowing them to collaboratively construct and enrich new ontologies, and merge, align, and integrate existing ontologies and tools. These constantly evolving ontologies can more effectively address community's interests, purposes, tools, and change. The goal is to minimize the cost and time of building ontologies, and maximize the quality, usability, and adoption of ontologies by the community. Our system will be a domain-independent ontology learning framework that applies natural language processing, allowing users to enter their ontology in a semi-structured form, and a combined Semantic Web and Social Web approach that lets direct participation of geoscientists who have no skill in the design and development of their domain ontologies. A controlled natural language (CNL) interface and an integrated authoring and editing tool automatically convert syntactically correct CNL text into formal OWL constructs. The WebProtege-based system will allow a potentially large group of geoscientists, from multiple domains, to crowd source and participate in the structuring of their knowledge model by sharing their knowledge through critiquing, testing, verifying, adopting, and updating of the concept models (ontologies). We will use cloud storage for all data and knowledge base components of the system, such as users, domain ontologies, discussion forums, and semantic wikis that can be accessed and queried by geoscientists in each domain. We will use NoSQL databases such as MongoDB as a service in the cloud environment. MongoDB uses the lightweight JSON format, which makes it convenient and easy to build Web applications using

  5. NOA: a novel Network Ontology Analysis method.

    PubMed

    Wang, Jiguang; Huang, Qiang; Liu, Zhi-Ping; Wang, Yong; Wu, Ling-Yun; Chen, Luonan; Zhang, Xiang-Sun

    2011-07-01

    Gene ontology analysis has become a popular and important tool in bioinformatics study, and current ontology analyses are mainly conducted in individual gene or a gene list. However, recent molecular network analysis reveals that the same list of genes with different interactions may perform different functions. Therefore, it is necessary to consider molecular interactions to correctly and specifically annotate biological networks. Here, we propose a novel Network Ontology Analysis (NOA) method to perform gene ontology enrichment analysis on biological networks. Specifically, NOA first defines link ontology that assigns functions to interactions based on the known annotations of joint genes via optimizing two novel indexes 'Coverage' and 'Diversity'. Then, NOA generates two alternative reference sets to statistically rank the enriched functional terms for a given biological network. We compare NOA with traditional enrichment analysis methods in several biological networks, and find that: (i) NOA can capture the change of functions not only in dynamic transcription regulatory networks but also in rewiring protein interaction networks while the traditional methods cannot and (ii) NOA can find more relevant and specific functions than traditional methods in different types of static networks. Furthermore, a freely accessible web server for NOA has been developed at http://www.aporc.org/noa/.

  6. Text-Content-Analysis based on the Syntactic Correlations between Ontologies

    NASA Astrophysics Data System (ADS)

    Tenschert, Axel; Kotsiopoulos, Ioannis; Koller, Bastian

    The work presented in this chapter is concerned with the analysis of semantic knowledge structures, represented in the form of Ontologies, through which Service Level Agreements (SLAs) are enriched with new semantic data. The objective of the enrichment process is to enable SLA negotiation in a way that is much more convenient for a Service Users. For this purpose the deployment of an SLA-Management-System as well as the development of an analyzing procedure for Ontologies is required. This chapter will refer to the BREIN, the FinGrid and the LarKC projects. The analyzing procedure examines the syntactic correlations of several Ontologies whose focus lies in the field of mechanical engineering. A method of analyzing text and content is developed as part of this procedure. In order to so, we introduce a formalism as well as a method for understanding content. The analysis and methods are integrated to an SLA Management System which enables a Service User to interact with the system as a service by negotiating the user requests and including the semantic knowledge. Through negotiation between Service User and Service Provider the analysis procedure considers the user requests by extending the SLAs with semantic knowledge. Through this the economic use of an SLA-Management-System is increased by the enhancement of SLAs with semantic knowledge structures. The main focus of this chapter is the analyzing procedure, respectively the Text-Content-Analysis, which provides the mentioned semantic knowledge structures.

  7. The ontology model of FrontCRM framework

    NASA Astrophysics Data System (ADS)

    Budiardjo, Eko K.; Perdana, Wira; Franshisca, Felicia

    2013-03-01

    Adoption and implementation of Customer Relationship Management (CRM) is not merely a technological installation, but the emphasis is more on the application of customer-centric philosophy and culture as a whole. CRM must begin at the level of business strategy, the only level that thorough organizational changes are possible to be done. Changes agenda can be directed to each departmental plans, and supported by information technology. Work processes related to CRM concept include marketing, sales, and services. FrontCRM is developed as framework to guide in identifying business processes related to CRM in which based on the concept of strategic planning approach. This leads to processes and practices identification in every process area related to marketing, sales, and services. The Ontology model presented on this paper by means serves as tools to avoid framework misunderstanding, to define practices systematically within process area and to find CRM software features related to those practices.

  8. An Earthquake Source Ontology for Seismic Hazard Analysis and Ground Motion Simulation

    NASA Astrophysics Data System (ADS)

    Zechar, J. D.; Jordan, T. H.; Gil, Y.; Ratnakar, V.

    2005-12-01

    Representation of the earthquake source is an important element in seismic hazard analysis and earthquake simulations. Source models span a range of conceptual complexity - from simple time-independent point sources to extended fault slip distributions. Further computational complexity arises because the seismological community has established so many source description formats and variations thereof; what this means is that conceptually equivalent source models are often expressed in different ways. Despite the resultant practical difficulties, there exists a rich semantic vocabulary for working with earthquake sources. For these reasons, we feel it is appropriate to create a semantic model of earthquake sources using an ontology, a computer science tool from the field of knowledge representation. Unlike the domain of most ontology work to date, earthquake sources can be described by a very precise mathematical framework. Another uniqueness associated with developing such an ontology is that earthquake sources are often used as computational objects. A seismologist generally wants more than to simply construct a source and have it be well-formed and properly described; additionally, the source will be used for performing calculations. Representation and manipulation of complex mathematical objects presents a challenge to the ontology development community. In order to enable simulations involving many different types of source models, we have completed preliminary development of a seismic point source ontology. The use of an ontology to represent knowledge provides machine interpretability and the ability to validate logical consistency and completeness. Our ontology, encoded using the OWL Web Ontology Language - a standard from the World Wide Web Consortium, contains the conceptual definitions and relationships necessary for source translation services. For example, specification of strike, dip, rake, and seismic moment will automatically translate into a double

  9. Experimental Verification of Look-Up Table Based Real-Time Commutation of 6-DOF Planar Actuators

    NASA Astrophysics Data System (ADS)

    Boeij, Jeroen De; Lomonova, Elena

    The control of contactless magnetically levitated planar actuators with stationary coils, moving magnets and 6-DOF is very complicated. In contradiction to normal synchronous AC machines the forces and torques cannot be decoupled using a sinusoidal commutation scheme. Instead, a feedback linearization law has to be applied as commutation scheme that decouples the forces and torques and calculates the required currents to realize the desired forces and torques of the magnetic suspension. This feedback linearization law is based on the coupling matrix that links the current in each coil to the force and torque vector on the actuator. The accurate calculation of this coupling matrix in real-time is critical for controlling the planar actuator. In this paper a look-up table based method is used to apply feedback linearization and the performance of the algorithm is verified with measurements.

  10. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments.

    PubMed

    Zhong, Xiewei; Wen, Xiang; Zhu, Dan

    2014-01-27

    Fiber reflectance spectroscopy is a non-invasive method for diagnosing skin diseases or evaluating aesthetic efficacy, but it is dependent on the inverse model validity. In this work, a lookup-table-based inverse model is developed using two-layered Monte Carlo simulations in order to extract the physiological and optical properties of skin. The melanin volume fraction and blood oxygen parameters are extracted from fiber reflectance spectra of in vivo human skin. The former indicates good coincidence with a commercial skin-melanin probe, and the latter (based on forearm venous occlusion and ischemia, and hot compress experiment) shows that the measurements are in agreement with physiological changes. These results verify the potential of this spectroscopy technique for evaluating the physiological characteristics of human skin.

  11. Ontology Driven Piecemeal Development of Smart Spaces

    NASA Astrophysics Data System (ADS)

    Ovaska, Eila

    Software development is facing new challenges due to transformation from product based software engineering towards integration and collaboration based software engineering that embodies high degree of dynamism both at design time and run time. Short time-to-markets require cost reduction by maximizing software reuse; openness for new innovations presumes a flexible innovation platform and agile software development; and user satisfaction assumes high quality in a situation based manner. How to deal with these contradictory requirements in software engineering? The main contribution of this paper is a novel approach that is influenced by business innovation, human centered design, model driven development and ontology oriented design. The approach is called Ontology driven Piecemeal Software Engineering (OPSE). OPSE facilitates incremental software development based on software pieces that follow the design principles defined by means of ontologies. Its key elements are abstraction, aggregation and adaptivity. The approach is intended for and applied to the development of smart spaces.

  12. Modularizing Spatial Ontologies for Assisted Living Systems

    NASA Astrophysics Data System (ADS)

    Hois, Joana

    Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.

  13. Ontology-enriched Visualization of Human Anatomy

    SciTech Connect

    Pouchard, LC

    2005-12-20

    The project focuses on the problem of presenting a human anatomical 3D model associated with other types of human systemic information ranging from physiological to anatomical information while navigating the 3D model. We propose a solution that integrates a visual 3D interface and navigation features with the display of structured information contained in an ontology of anatomy where the structures of the human body are formally and semantically linked. The displayed and annotated anatomy serves as a visual entry point into a patient's anatomy, medical indicators and other information. The ontology of medical information provides labeling to the highlighted anatomical parts in the 3D display. Because of the logical organization and links between anatomical objects found in the ontology and associated 3D model, the analysis of a structure by a physician is greatly enhanced. Navigation within the 3D visualization and between this visualization and objects representing anatomical concepts within the model is also featured.

  14. The Locus Lookup Tool at MaizeGDB: Identification of Genomic Regions in Maize by Integrating Sequence Information with Physical and Genetic Maps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to automatically integrate sequence information with physical and genetic maps are scarce. The Locus Lookup Tool enables researchers to define windows of genomic sequence likely to contain loci of interest where only genetic or physical mapping associations are reported. Using the Locus Look...

  15. A Posteriori Ontology Engineering for Data-Driven Science

    SciTech Connect

    Gessler, Damian Dg; Joslyn, Cliff A.; Verspoor, Karin M.

    2013-05-28

    Science—and biology in particular—has a rich tradition in categorical knowledge management. This continues today in the generation and use of formal ontologies. Unfortunately, the link between hard data and ontological content is predominately qualitative, not quantitative. The usual approach is to construct ontologies of qualitative concepts, and then annotate the data to the ontologies. This process has seen great value, yet it is laborious, and the success to which ontologies are managing and organizing the full information content of the data is uncertain. An alternative approach is the converse: use the data itself to quantitatively drive ontology creation. Under this model, one generates ontologies at the time they are needed, allowing them to change as more data influences both their topology and their concept space. We outline a combined approach to achieve this, taking advantage of two technologies, the mathematical approach of Formal Concept Analysis (FCA) and the semantic web technologies of the Web Ontology Language (OWL).

  16. OAE: The Ontology of Adverse Events

    PubMed Central

    2014-01-01

    Background A medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health. Description The Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term ‘adverse event’ denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA. Conclusion OAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of

  17. Food for thought ... A toxicology ontology roadmap.

    PubMed

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    Foreign substances can have a dramatic and unpredictable adverse effect on human health. In the development of new therapeutic agents, it is essential that the potential adverse effects of all candidates be identified as early as possible. The field of predictive toxicology strives to profile the potential for adverse effects of novel chemical substances before they occur, both with traditional in vivo experimental approaches and increasingly through the development of in vitro and computational methods which can supplement and reduce the need for animal testing. To be maximally effective, the field needs access to the largest possible knowledge base of previous toxicology findings, and such results need to be made available in such a fashion so as to be interoperable, comparable, and compatible with standard toolkits. This necessitates the development of open, public, computable, and standardized toxicology vocabularies and ontologies so as to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. Such ontology development will support data management, model building, integrated analysis, validation and reporting, including regulatory reporting and alternative testing submission requirements as required by guidelines such as the REACH legislation, leading to new scientific advances in a mechanistically-based predictive toxicology. Numerous existing ontology and standards initiatives can contribute to the creation of a toxicology ontology supporting the needs of predictive toxicology and risk assessment. Additionally, new ontologies are needed to satisfy practical use cases and scenarios where gaps currently exist. Developing and integrating these resources will require a well-coordinated and sustained effort across numerous stakeholders engaged in a public-private partnership. In this communication, we set out a roadmap for the development of an integrated toxicology ontology

  18. Primitive Ontology and the Classical World

    NASA Astrophysics Data System (ADS)

    Allori, Valia

    In this chapter, I present the common structure of quantum theories with a primitive ontology (PO), and discuss in what sense the classical world emerges from quantum theories as understood in this framework. In addition, I argue that the PO approach is better at analyzing the classical limit than the rival wave function ontology approach or any other approach in which the classical world is non-reductively "emergent:" even if the classical limit within this framework needs to be fully developed, the difficulties are technical rather than conceptual, while this is not true for the alternatives.

  19. Methodology of decreasing software complexity using ontology

    NASA Astrophysics Data System (ADS)

    DÄ browska-Kubik, Katarzyna

    2015-09-01

    In this paper a model of web application`s source code, based on the OSD ontology (Ontology for Software Development), is proposed. This model is applied to implementation and maintenance phase of software development process through the DevOntoCreator tool [5]. The aim of this solution is decreasing software complexity of that source code, using many different maintenance techniques, like creation of documentation, elimination dead code, cloned code or bugs, which were known before [1][2]. Due to this approach saving on software maintenance costs of web applications will be possible.

  20. Ontology-Based Model Of Firm Competitiveness

    NASA Astrophysics Data System (ADS)

    Deliyska, Boryana; Stoenchev, Nikolay

    2010-10-01

    Competitiveness is important characteristics of each business organization (firm, company, corporation etc). It is of great significance for the organization existence and defines evaluation criteria of business success at microeconomical level. Each criterium comprises set of indicators with specific weight coefficients. In the work an ontology-based model of firm competitiveness is presented as a set of several mutually connected ontologies. It would be useful for knowledge structuring, standardization and sharing among experts and software engineers who develop application in the domain. Then the assessment of the competitiveness of various business organizations could be generated more effectively.

  1. Terminology Representation Guidelines for Biomedical Ontologies in the Semantic Web Notations

    PubMed Central

    Tao, Cui; Pathak, Jyotishman; Solbrig, Harold R.; Wei, Wei-Qi; Chute, Christopher G.

    2012-01-01

    Terminologies and ontologies are increasingly prevalent in health-care and biomedicine. However they suffer from inconsistent renderings, distribution formats, and syntax that make applications through common terminologies services challenging. To address the problem, one could posit a shared representation syntax, associated schema, and tags. We identified a set of commonly-used elements in biomedical ontologies and terminologies based on our experience with the Common Terminology Services 2 (CTS2) Specification as well as the Lexical Grid (LexGrid) project. We propose guidelines for precisely such a shared terminology model, and recommend tags assembled from SKOS, OWL, Dublin Core, RDF Schema, and DCMI meta-terms. We divide these guidelines into lexical information (e.g. synonyms, and definitions) and semantic information (e.g. hierarchies.) The latter we distinguish for use by informal terminologies vs. formal ontologies. We then evaluate the guidelines with a spectrum of widely used terminologies and ontologies to examine how the lexical guidelines are implemented, and whether our proposed guidelines would enhance interoperability. PMID:23026232

  2. Terminology representation guidelines for biomedical ontologies in the semantic web notations.

    PubMed

    Tao, Cui; Pathak, Jyotishman; Solbrig, Harold R; Wei, Wei-Qi; Chute, Christopher G

    2013-02-01

    Terminologies and ontologies are increasingly prevalent in healthcare and biomedicine. However they suffer from inconsistent renderings, distribution formats, and syntax that make applications through common terminologies services challenging. To address the problem, one could posit a shared representation syntax, associated schema, and tags. We identified a set of commonly-used elements in biomedical ontologies and terminologies based on our experience with the Common Terminology Services 2 (CTS2) Specification as well as the Lexical Grid (LexGrid) project. We propose guidelines for precisely such a shared terminology model, and recommend tags assembled from SKOS, OWL, Dublin Core, RDF Schema, and DCMI meta-terms. We divide these guidelines into lexical information (e.g. synonyms, and definitions) and semantic information (e.g. hierarchies). The latter we distinguish for use by informal terminologies vs. formal ontologies. We then evaluate the guidelines with a spectrum of widely used terminologies and ontologies to examine how the lexical guidelines are implemented, and whether our proposed guidelines would enhance interoperability.

  3. CODEX: exploration of semantic changes between ontology versions.

    PubMed

    Hartung, Michael; Gross, Anika; Rahm, Erhard

    2012-03-15

    Life science ontologies substantially change over time to meet the requirements of their users and to include the newest domain knowledge. Thus, an important task is to know what has been modified between two versions of an ontology (diff). This diff should contain all performed changes as compact and understandable as possible. We present CODEX (Complex Ontology Diff Explorer), a tool that allows determining semantic changes between two versions of an ontology, which users can interactively analyze in multiple ways.

  4. An Ontology for Insider Threat Indicators Development and Applications

    DTIC Science & Technology

    2014-11-01

    ontology using the Web Ontology Language ( OWL ), due to its maturity, wide use, and extensibility [24]. B. Overview of Top-Level Classes The top-level...event logs into the CybOX format, and, using simple scripts, automatically generating the OWL XML code to create individuals for a small subset of our...G. Antoniou and F. Van Harmelen, "Web ontology language: Owl ," in Handbook on ontologies, ed: Springer, 2004, pp. 67-92

  5. Spectral retrieval of latent heating profiles from TRMM PR data: comparisons of lookup tables from two- and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Shige, Shoichi; Takayabu, Yukari N.; Kida, Satoshi; Tao, Wei-Kuo; Zeng, Xiping; L'Ecuyer, Tristan

    2008-12-01

    The Spectral Latent Heating (SLH) algorithm was developed to estimate latent heating profiles for the TRMM PR. The method uses PR information (precipitation top height, precipitation rates at the surface and melting level, and rain type) to select heating profiles from lookup tables. Lookup tables for the three rain types-convective, shallow stratiform, and anvil rain (deep stratiform with a melting level)-were derived from numerical simulations of tropical cloud systems from the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean-Atmosphere Response Experiment (COARE) utilizing a cloud-resolving model (CRM). The two-dimensional ("2D") CRM was used in the previous studies. The availability of exponentially increasing computer capabilities has resulted in three-dimensional ("3D") CRM simulations for multiday periods becoming increasing prevalent. In this study, we compare lookup tables from the 2D and 3D simulations. The lookup table from 3D simulations results in less agreement between the SLH-retrieved heating and sounding-based one for the South China Sea Monsoon Experiment (SCSMEX). The level of SLH-estimated maximum heating is lower than that of the sounding-derived one. This is explained by the fact that the 3D lookup table produces stronger convective heating and weaker stratiform heating above the melting level that 2D counterpart. Condensate generated in and carried over from the convective region is larger in 3D than in 2D, and condensate that is produced by the stratiform region's own upward motion is smaller in 3D than 2D.

  6. Unsupervised Ontology Generation from Unstructured Text. CRESST Report 827

    ERIC Educational Resources Information Center

    Mousavi, Hamid; Kerr, Deirdre; Iseli, Markus R.

    2013-01-01

    Ontologies are a vital component of most knowledge acquisition systems, and recently there has been a huge demand for generating ontologies automatically since manual or supervised techniques are not scalable. In this paper, we introduce "OntoMiner", a rule-based, iterative method to extract and populate ontologies from unstructured or…

  7. Developing Learning Materials Using an Ontology of Mathematical Logic

    ERIC Educational Resources Information Center

    Boyatt, Russell; Joy, Mike

    2012-01-01

    Ontologies describe a body of knowledge and give formal structure to a domain by describing concepts and their relationships. The construction of an ontology provides an opportunity to develop a shared understanding and a consistent vocabulary to be used for a given activity. This paper describes the construction of an ontology for an area of…

  8. Children's Reasoning about Physics within and across Ontological Kinds.

    ERIC Educational Resources Information Center

    Heyman, Gail D.; Phillips, Ann T.; Gelman, Susan A.

    2003-01-01

    Examined reasoning about physics principles within and across ontological kinds among 5- and 7-year-olds and adults. Found that all age groups tended to appropriately generalize what they learned across ontological kinds. Children assumed that principles learned with reference to one ontological kind were more likely to apply within that kind than…

  9. The Relationship between User Expertise and Structural Ontology Characteristics

    ERIC Educational Resources Information Center

    Waldstein, Ilya Michael

    2014-01-01

    Ontologies are commonly used to support application tasks such as natural language processing, knowledge management, learning, browsing, and search. Literature recommends considering specific context during ontology design, and highlights that a different context is responsible for problems in ontology reuse. However, there is still no clear…

  10. The Ontology of Interactive Art

    ERIC Educational Resources Information Center

    Lopes, Dominic M. McIver

    2001-01-01

    Developments in the art world seem always to keep one step ahead of philosophical attempts to characterize the nature and value of art. A pessimist may conclude that theories of art are doomed to failure. But those more optimistic about the prospects for progress in philosophy may retort that avant-garde art does philosophers a great service. It…

  11. On Static and Dynamic Intuitive Ontologies

    ERIC Educational Resources Information Center

    Hammer, David; Gupta, Ayush; Redish, Edward F.

    2011-01-01

    The authors appreciate Professor Slotta's responding to their critique (Slotta, this issue). For their part, they believe that Professor Slotta has misinterpreted aspects of their position. In this commentary, the authors clarify two particular points. First, they explain their use of "static ontologies," which they maintain applies. Second, they…

  12. Production Determines Category: An Ontology of Art

    ERIC Educational Resources Information Center

    Weh, Michael

    2010-01-01

    It is a mainstream view within the ontology of art that there are singular as well as multiple artworks, but it is also a view that is contested. In this article, the author investigates whether the singular/multiple distinction can be sustained and argues for a new way to determine the category to which an artwork belongs. The author stresses…

  13. CSEO – the Cigarette Smoke Exposure Ontology

    PubMed Central

    2014-01-01

    Background In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. Results The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. Conclusions The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science. PMID:25093069

  14. In Defense of Chi's Ontological Incompatibility Hypothesis

    ERIC Educational Resources Information Center

    Slotta, James D.

    2011-01-01

    This article responds to an article by A. Gupta, D. Hammer, and E. F. Redish (2010) that asserts that M. T. H. Chi's (1992, 2005) hypothesis of an "ontological commitment" in conceptual development is fundamentally flawed. In this article, I argue that Chi's theoretical perspective is still very much intact and that the critique offered by Gupta…

  15. An Ontology Representation for Water Bodies

    NASA Astrophysics Data System (ADS)

    Brodaric, B.; Hahmann, T.; Gruninger, M.

    2015-12-01

    The interoperability of hydrological data has been a major concern in recent years, as evident by the maturation of international standards as well as the development of national and international data systems. Notwithstanding the related significant efforts at modeling hydrological entities, there remain unresolved questions about some core entities that impact the design of hydro schemas, ontologies, and similar knowledge models. One such central entity is the water body, which is represented quite heterogeneously in such models, potentially challenging their interoperability. To meet this challenge, we carry out an ontological analysis of the water body entity and propose a new ontological representation for it, as part of a wider initiative into foundational hydro ontology. The representation exhibits the surprising result that a water body is a mereological entity that is essentially grounded in two types of whole-part relations. The nuanced nature of this result has the potential to inform the design of other hydro knowledge models, as well as to foster interoperability between them.

  16. Development of an Ontology for Occupational Exposure

    EPA Science Inventory

    When discussing a scientific domain, the use of a common language is required, particularly when communicating across disciplines. This common language, or ontology, is a prescribed vocabulary and a web of contextual relationships within the vocabulary that describe the given dom...

  17. Interoperability between phenotype and anatomy ontologies

    PubMed Central

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-01-01

    Motivation: Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. Results: We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. Availability: http://bioonto.de/pmwiki.php/Main/PheneOntology Contact: rh497@cam.ac.uk PMID:20971987

  18. Modeling biochemical pathways in the gene ontology

    PubMed Central

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; Mungall, Christopher J.; Renedo, Nikolai; Blake, Judith A.

    2016-01-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. PMID:27589964

  19. Ontology for cell-based geographic information

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Huang, Lina; Lu, Xinhai

    2009-10-01

    Inter-operability is a key notion in geographic information science (GIS) for the sharing of geographic information (GI). That requires a seamless translation among different information sources. Ontology is enrolled in GI discovery to settle the semantic conflicts for its natural language appearance and logical hierarchy structure, which are considered to be able to provide better context for both human understanding and machine cognition in describing the location and relationships in the geographic world. However, for the current, most studies on field ontology are deduced from philosophical theme and not applicable for the raster expression in GIS-which is a kind of field-like phenomenon but does not physically coincide to the general concept of philosophical field (mostly comes from the physics concepts). That's why we specifically discuss the cell-based GI ontology in this paper. The discussion starts at the investigation of the physical characteristics of cell-based raster GI. Then, a unified cell-based GI ontology framework for the recognition of the raster objects is introduced, from which a conceptual interface for the connection of the human epistemology and the computer world so called "endurant-occurrant window" is developed for the better raster GI discovery and sharing.

  20. Deafblindness, ontological security, and social recognition.

    PubMed

    Danermark, Berth D; Möller, Kerstin

    2008-11-01

    Trust, ontological security, and social recognition are discussed in relation to self-identity among people with acquired deafblindness. To date the phenomenon has not been elaborated in the context of deafblindness. When a person with deafblindness interacts with the social and material environment, the reliability, constancy, and predictability of his or her relations is crucial for maintaining or achieving ontological security or a general and fairly persistent feeling of well-being. When these relations fundamentally change, the impact on ontological security will be very negative. The construction of social recognition through the interaction between the self and others is embodied across three dimensions: at the individual level, at the legal systems level, and at the normative or value level. The relationship between trust and ontological security on the one hand and social recognition on the other hand is discussed. It is argued that these basic processes affecting personality development have to be identified and acknowledged in the interactions people with deafblindness experience. Some implications for the rehabilitation of people with acquired deafblindness are presented and illustrated.

  1. Bridging the gap between data acquisition and inference ontologies: toward ontology-based link discovery

    NASA Astrophysics Data System (ADS)

    Goldstein, Michel L.; Morris, Steven A.; Yen, Gary G.

    2003-09-01

    Bridging the gap between low level ontologies used for data acquisition and high level ontologies used for inference is essential to enable the discovery of high-level links between low-level entities. This is of utmost importance in many applications, where the semantic distance between the observable evidence and the target relations is large. Examples of these applications would be detection of terrorist activity, crime analysis, and technology monitoring, among others. Currently this inference gap has been filled by expert knowledge. However, with the increase of the data and system size, it has become too costly to perform such manual inference. This paper proposes a semi-automatic system to bridge the inference gap using network correlation methods, similar to Bayesian Belief Networks, combined with hierarchical clustering, to group and organize data so that experts can observe and build the inference gap ontologies quickly and efficiently, decreasing the cost of this labor-intensive process. A simple application of this method is shown here, where the co-author collaboration structure ontology is inferred from the analysis of a collection of journal publications on the subject of anthrax. This example uncovers a co-author collaboration structures (a well defined ontology) from a scientific publication dataset (also a well defined ontology). Nevertheless, the evidence of author collaboration is poorly defined, requiring the use of evidence from keywords, citations, publication dates, and paper co-authorship. The proposed system automatically suggests candidate collaboration group patterns for evaluation by experts. Using an intuitive graphic user interface, these experts identify, confirm and refine the proposed ontologies and add them to the ontology database to be used in subsequent processes.

  2. Cross-Ontology multi-level association rule mining in the Gene Ontology.

    PubMed

    Manda, Prashanti; Ozkan, Seval; Wang, Hui; McCarthy, Fiona; Bridges, Susan M

    2012-01-01

    The Gene Ontology (GO) has become the internationally accepted standard for representing function, process, and location aspects of gene products. The wealth of GO annotation data provides a valuable source of implicit knowledge of relationships among these aspects. We describe a new method for association rule mining to discover implicit co-occurrence relationships across the GO sub-ontologies at multiple levels of abstraction. Prior work on association rule mining in the GO has concentrated on mining knowledge at a single level of abstraction and/or between terms from the same sub-ontology. We have developed a bottom-up generalization procedure called Cross-Ontology Data Mining-Level by Level (COLL) that takes into account the structure and semantics of the GO, generates generalized transactions from annotation data and mines interesting multi-level cross-ontology association rules. We applied our method on publicly available chicken and mouse GO annotation datasets and mined 5368 and 3959 multi-level cross ontology rules from the two datasets respectively. We show that our approach discovers more and higher quality association rules from the GO as evaluated by biologists in comparison to previously published methods. Biologically interesting rules discovered by our method reveal unknown and surprising knowledge about co-occurring GO terms.

  3. An ontology for description of drug discovery investigations.

    PubMed

    Qi, Da; King, Ross D; Hopkins, Andrew L; Bickerton, G Richard J; Soldatova, Larisa N

    2010-03-25

    The paper presents an ontology for the description of Drug Discovery Investigation (DDI).This has been developed through the use of a Robot Scientist "Eve", and in consultation with industry. DDI aims to define the principle entities and the relations in the research and development phase of the drug discovery pipeline. DDI is highly transferable and extendable due to its adherence to accepted standards, and compliance with existing ontology resources. This enables DDI to be integrated with such related ontologies as the Vaccine Ontology, the Advancing Clinico-Genomic Trials on Cancer Master Ontology, etc. DDI is available at http://purl.org/ddi/wikipedia or http://purl.org/ddi/home.

  4. Exploring biomedical ontology mappings with graph theory methods

    PubMed Central

    2017-01-01

    Background In the era of semantic web, life science ontologies play an important role in tasks such as annotating biological objects, linking relevant data pieces, and verifying data consistency. Understanding ontology structures and overlapping ontologies is essential for tasks such as ontology reuse and development. We present an exploratory study where we examine structure and look for patterns in BioPortal, a comprehensive publicly available repository of live science ontologies. Methods We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time points. We identify communities, i.e., sets of overlapping ontologies, and define similar and closest communities. We demonstrate evolution of identified communities over time and identify core ontologies of the closest communities. We use BioPortal project and category data to measure community coherence. We also validate identified communities with their mutual mentions in scientific literature. Results With comparing mapping data gathered at five different time points, we identified similar and closest communities of overlapping ontologies, and demonstrated evolution of communities over time. Results showed that anatomy and health ontologies tend to form more isolated communities compared to other categories. We also showed that communities contain all or the majority of ontologies being used in narrower projects. In addition, we identified major changes in mapping data after migration to BioPortal Version 4. PMID:28265499

  5. From Information Society to Knowledge Society: The Ontology Issue

    NASA Astrophysics Data System (ADS)

    Roche, Christophe

    2002-09-01

    Information society, virtual enterprise, e-business rely more and more on communication and knowledge sharing between heterogeneous actors. But, no communication is possible, and all the more so no co-operation or collaboration, if those actors do not share the same or at least a compatible meaning for the terms they use. Ontology, understood as an agreed vocabulary of common terms and meanings, is a solution to that problem. Nevertheless, although there is quite a lot of experience in using ontologies, several barriers remain which stand against a real use of ontology. As a matter of fact, it is very difficult to build, reuse and share ontologies. We claim that the ontology problem requires a multidisciplinary approach based on sound epistemological, logical and linguistic principles. This article presents the Ontological Knowledge Station (OK Station©), a software environment for building and using ontologies which relies on such principles. The OK Station is currently being used in several industrial applications.

  6. An Ontological Approach to Representing and Reasoning about Events in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Devaraju, Anusuriya

    2013-04-01

    While observations are fed into the Sensor Web through a growing number of environmental sensors, the challenge is to infer information about geographic events they reflect. For example, we may ask what the measurements mean when a service compiles hourly wind speeds from different providers. The service should perhaps include meaningful descriptions than just the measurements; for instance, whether the wind occurring at a particular site is nearly calm or reflects a windstorm. Similarly, we may want to know the intensity of a snowfall occurrence from a series of visibility measurements supplied by a visibility sensor. A systematic approach representing domain knowledge is vital when reasoning about events at the conceptual level. A description of how one gets from observations to inferred events must be expressed. Environmental models usually capture such information. Nonetheless, they jeopardize transparency; the information contained within these models is implicit, limited to domain experts, and hard to acquire or manipulate. The formal specifications in the Semantic Sensor Web primarily describe sensors and observations; they do not describe information concerning geographic events. Existing event-oriented ontologies represent common concepts concerning events, e.g., participant, time, location and relations between events. Nevertheless, the event-of-interest is not explicitly associated with sensing concepts such as observation event, sensor and result. This paper delivers an ontology to formally capture the relations between observations and geographic events. The ontology constitutes common building blocks for constructing application ontologies that account for inferences of the former from the latter. The formal vocabularies are exploited with a rule-based mechanism to support inferences of events from in-situ observations. The paper also demonstrates how these vocabularies are used to formulate symbolic spatio-temporal queries in the Sensor Web. A use

  7. A UML profile for the OBO relation ontology

    PubMed Central

    2012-01-01

    Background Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions The use of an established and well-known graphical language in the development of biomedical ontologies provides a more

  8. Informatics in radiology: radiology gamuts ontology: differential diagnosis for the Semantic Web.

    PubMed

    Budovec, Joseph J; Lam, Cesar A; Kahn, Charles E

    2014-01-01

    The Semantic Web is an effort to add semantics, or "meaning," to empower automated searching and processing of Web-based information. The overarching goal of the Semantic Web is to enable users to more easily find, share, and combine information. Critical to this vision are knowledge models called ontologies, which define a set of concepts and formalize the relations between them. Ontologies have been developed to manage and exploit the large and rapidly growing volume of information in biomedical domains. In diagnostic radiology, lists of differential diagnoses of imaging observations, called gamuts, provide an important source of knowledge. The Radiology Gamuts Ontology (RGO) is a formal knowledge model of differential diagnoses in radiology that includes 1674 differential diagnoses, 19,017 terms, and 52,976 links between terms. Its knowledge is used to provide an interactive, freely available online reference of radiology gamuts ( www.gamuts.net ). A Web service allows its content to be discovered and consumed by other information systems. The RGO integrates radiologic knowledge with other biomedical ontologies as part of the Semantic Web.

  9. PAV ontology: provenance, authoring and versioning

    PubMed Central

    2013-01-01

    Background Provenance is a critical ingredient for establishing trust of published scientific content. This is true whether we are considering a data set, a computational workflow, a peer-reviewed publication or a simple scientific claim with supportive evidence. Existing vocabularies such as Dublin Core Terms (DC Terms) and the W3C Provenance Ontology (PROV-O) are domain-independent and general-purpose and they allow and encourage for extensions to cover more specific needs. In particular, to track authoring and versioning information of web resources, PROV-O provides a basic methodology but not any specific classes and properties for identifying or distinguishing between the various roles assumed by agents manipulating digital artifacts, such as author, contributor and curator. Results We present the Provenance, Authoring and Versioning ontology (PAV, namespace http://purl.org/pav/): a lightweight ontology for capturing “just enough” descriptions essential for tracking the provenance, authoring and versioning of web resources. We argue that such descriptions are essential for digital scientific content. PAV distinguishes between contributors, authors and curators of content and creators of representations in addition to the provenance of originating resources that have been accessed, transformed and consumed. We explore five projects (and communities) that have adopted PAV illustrating their usage through concrete examples. Moreover, we present mappings that show how PAV extends the W3C PROV-O ontology to support broader interoperability. Method The initial design of the PAV ontology was driven by requirements from the AlzSWAN project with further requirements incorporated later from other projects detailed in this paper. The authors strived to keep PAV lightweight and compact by including only those terms that have demonstrated to be pragmatically useful in existing applications, and by recommending terms from existing ontologies when plausible. Discussion

  10. Developing an Ontology for Ocean Biogeochemistry Data

    NASA Astrophysics Data System (ADS)

    Chandler, C. L.; Allison, M. D.; Groman, R. C.; West, P.; Zednik, S.; Maffei, A. R.

    2010-12-01

    Semantic Web technologies offer great promise for enabling new and better scientific research. However, significant challenges must be met before the promise of the Semantic Web can be realized for a discipline as diverse as oceanography. Evolving expectations for open access to research data combined with the complexity of global ecosystem science research themes present a significant challenge, and one that is best met through an informatics approach. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is funded by the National Science Foundation Division of Ocean Sciences to work with ocean biogeochemistry researchers to improve access to data resulting from their respective programs. In an effort to improve data access, BCO-DMO staff members are collaborating with researchers from the Tetherless World Constellation (Rensselaer Polytechnic Institute) to develop an ontology that formally describes the concepts and relationships in the data managed by the BCO-DMO. The project required transforming a legacy system of human-readable, flat files of metadata to well-ordered controlled vocabularies to a fully developed ontology. To improve semantic interoperability, terms from the BCO-DMO controlled vocabularies are being mapped to controlled vocabulary terms adopted by other oceanographic data management organizations. While the entire process has proven to be difficult, time-consuming and labor-intensive, the work has been rewarding and is a necessary prerequisite for the eventual incorporation of Semantic Web tools. From the beginning of the project, development of the ontology has been guided by a use case based approach. The use cases were derived from data access related requests received from members of the research community served by the BCO-DMO. The resultant ontology satisfies the requirements of the use cases and reflects the information stored in the metadata database. The BCO-DMO metadata database currently contains information that

  11. Data Quality Screening Service

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Lynnes, Christopher; Hearty, Thomas; Won, Young-In; Fox, Peter; Zednik, Stephan

    2013-01-01

    A report describes the Data Quality Screening Service (DQSS), which is designed to help automate the filtering of remote sensing data on behalf of science users. Whereas this process often involves much research through quality documents followed by laborious coding, the DQSS is a Web Service that provides data users with data pre-filtered to their particular criteria, while at the same time guiding the user with filtering recommendations of the cognizant data experts. The DQSS design is based on a formal semantic Web ontology that describes data fields and the quality fields for applying quality control within a data product. The accompanying code base handles several remote sensing datasets and quality control schemes for data products stored in Hierarchical Data Format (HDF), a common format for NASA remote sensing data. Together, the ontology and code support a variety of quality control schemes through the implementation of the Boolean expression with simple, reusable conditional expressions as operands. Additional datasets are added to the DQSS simply by registering instances in the ontology if they follow a quality scheme that is already modeled in the ontology. New quality schemes are added by extending the ontology and adding code for each new scheme.

  12. The use of three-parameter rating table lookup programs, RDRAT and PARM3, in hydraulic flow models

    USGS Publications Warehouse

    Sanders, C.L.

    1995-01-01

    Subroutines RDRAT and PARM3 enable computer programs such as the BRANCH open-channel unsteady-flow model to route flows through or over combinations of critical-flow sections, culverts, bridges, road- overflow sections, fixed spillways, and(or) dams. The subroutines also obstruct upstream flow to simulate operation of flapper-type tide gates. A multiplier can be applied by date and time to simulate varying numbers of tide gates being open or alternative construction scenarios for multiple culverts. The subroutines use three-parameter (headwater, tailwater, and discharge) rating table lookup methods. These tables may be manually prepared using other programs that do step-backwater computations or compute flow through bridges and culverts or over dams. The subroutine, therefore, precludes the necessity of incorporating considerable hydraulic computational code into the client program, and provides complete flexibility for users of the model for routing flow through almost any affixed structure or combination of structures. The subroutines are written in Fortran 77 language, and have minimal exchange of information with the BRANCH model or other possible client programs. The report documents the interpolation methodology, data input requirements, and software.

  13. Implementation of a digital optical matrix-vector multiplier using a holographic look-up table and residue arithmetic

    NASA Technical Reports Server (NTRS)

    Habiby, Sarry F.

    1987-01-01

    The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.

  14. An OGSA Middleware for managing medical images using ontologies.

    PubMed

    Espert, Ignacio Blanquer; Garcáa, Vicente Hernández; Quilis, J Damià Segrelles

    2005-10-01

    This article presents a Middleware based on Grid Technologies that addresses the problem of sharing, transferring and processing DICOM medical images in a distributed environment using an ontological schema to create virtual communities and to define common targets. It defines a distributed storage that builds-up virtual repositories integrating different individual image repositories providing global searching, progressive transmission, automatic encryption and pseudo-anonimisation and a link to remote processing services. Users from a Virtual Organisation can share the cases that are relevant for their communities or research areas, epidemiological studies or even deeper analysis of complex individual cases. Software architecture has been defined for solving the problems that has been exposed before. Briefly, the architecture comprises five layers (from the more physical layer to the more logical layer) based in Grid Technologies. The lowest level layers (Core Middleware Layer and Server Services sc layer) are composed of Grid Services that implement the global managing of resources. The Middleware Components Layer provides a transparent view of the Grid environment and it has been the main objective of this work. Finally, the highest layer (the Application Layer) comprises the applications, and a simple application has been implemented for testing the components developed in the Components Middleware Layer. Other side-results of this work are the services developed in the Middleware Components Layer for managing DICOM images, creating virtual DICOM storages, progressive transmission, automatic encryption and pseudo-anonimisation depending on the ontologies. Other results, such as the Grid Services developed in the lowest layers, are also described in this article. Finally a brief performance analysis and several snapshots from the applications developed are shown. The performance analysis proves that the components developed in this work provide image processing

  15. Construction of ontology augmented networks for protein complex prediction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  16. Quality control for terms and definitions in ontologies and taxonomies

    PubMed Central

    Köhler, Jacob; Munn, Katherine; Rüegg, Alexander; Skusa, Andre; Smith, Barry

    2006-01-01

    Background Ontologies and taxonomies are among the most important computational resources for molecular biology and bioinformatics. A series of recent papers has shown that the Gene Ontology (GO), the most prominent taxonomic resource in these fields, is marked by flaws of certain characteristic types, which flow from a failure to address basic ontological principles. As yet, no methods have been proposed which would allow ontology curators to pinpoint flawed terms or definitions in ontologies in a systematic way. Results We present computational methods that automatically identify terms and definitions which are defined in a circular or unintelligible way. We further demonstrate the potential of these methods by applying them to isolate a subset of 6001 problematic GO terms. By automatically aligning GO with other ontologies and taxonomies we were able to propose alternative synonyms and definitions for some of these problematic terms. This allows us to demonstrate that these other resources do not contain definitions superior to those supplied by GO. Conclusion Our methods provide reliable indications of the quality of terms and definitions in ontologies and taxonomies. Further, they are well suited to assist ontology curators in drawing their attention to those terms that are ill-defined. We have further shown the limitations of ontology mapping and alignment in assisting ontology curators in rectifying problems, thus pointing to the need for manual curation. PMID:16623942

  17. Mining Gene Ontology Data with AGENDA.

    PubMed

    Ovezmyradov, Guvanch; Lu, Qianhao; Göpfert, Martin C

    2012-01-01

    The Gene Ontology (GO) initiative is a collaborative effort that uses controlled vocabularies for annotating genetic information. We here present AGENDA (Application for mining Gene Ontology Data), a novel web-based tool for accessing the GO database. AGENDA allows the user to simultaneously retrieve and compare gene lists linked to different GO terms in diverse species using batch queries, facilitating comparative approaches to genetic information. The web-based application offers diverse search options and allows the user to bookmark, visualize, and download the results. AGENDA is an open source web-based application that is freely available for non-commercial use at the project homepage. URL: http://sourceforge.net/projects/bioagenda.

  18. A Cognitive Support Framework for Ontology Mapping

    NASA Astrophysics Data System (ADS)

    Falconer, Sean M.; Storey, Margaret-Anne

    Ontology mapping is the key to data interoperability in the semantic web. This problem has received a lot of research attention, however, the research emphasis has been mostly devoted to automating the mapping process, even though the creation of mappings often involve the user. As industry interest in semantic web technologies grows and the number of widely adopted semantic web applications increases, we must begin to support the user. In this paper, we combine data gathered from background literature, theories of cognitive support and decision making, and an observational case study to propose a theoretical framework for cognitive support in ontology mapping tools. We also describe a tool called CogZ that is based on this framework.

  19. Quality of computationally inferred gene ontology annotations.

    PubMed

    Skunca, Nives; Altenhoff, Adrian; Dessimoz, Christophe

    2012-05-01

    Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms. Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when they use evidence other than experiments from primary literature. This work provides the means to identify the subset of electronic annotations that can be relied upon-an important outcome given that >98% of all annotations are inferred without direct curation.

  20. Ontologies and Information Systems: A Literature Survey

    DTIC Science & Technology

    2011-06-01

    KAON proposes a framework aimed at providing a comprehensive management infras - tructure for ontologies and metadata. KAON provides support for change...Columbus, USA, pp. 69–87. 84. Euzenat, J. 1996. Corporate memory through cooperative creation of knowledge bases and hyper -documents. In Proceedings of the...Z. 2006b. Network Topology Gener- ation and Discovery Tools. In Proceedings of the 7th EPSRC Annual Postgraduate Symposium on the Convergence of

  1. Ontological approach to reduce complexity in polypharmacy.

    PubMed

    Farrish, Susan; Grando, Adela

    2013-01-01

    Patients that are on many medications are often non-compliant due to the complexity of the medication regimen; consequently, a patient that is non-compliant can have poor medical outcomes. Providers are not always aware of the complexity of their patient's prescriptions. Methods have been developed to calculate the complexity for a patient's regimen but there are no widely available automated tools that will do this for a provider. Given that ontologies are known to provide well-principled, sharable, setting-independent and machine-interpretable declarative specification frameworks for modeling and reasoning on biomedical problems, we have explored their use in the context of reducing medication complexity. Previously we proposed an Ontology for modeling drug-related knowledge and a repository for complexity scoring. Here we tested the Ontology with patient data from the University of California San Diego Epic database, and we built a decision aide that computes the complexity and recommends changes to reduce the complexity, if needed.

  2. Ontology-Based Search of Genomic Metadata.

    PubMed

    Fernandez, Javier D; Lenzerini, Maurizio; Masseroli, Marco; Venco, Francesco; Ceri, Stefano

    2016-01-01

    The Encyclopedia of DNA Elements (ENCODE) is a huge and still expanding public repository of more than 4,000 experiments and 25,000 data files, assembled by a large international consortium since 2007; unknown biological knowledge can be extracted from these huge and largely unexplored data, leading to data-driven genomic, transcriptomic, and epigenomic discoveries. Yet, search of relevant datasets for knowledge discovery is limitedly supported: metadata describing ENCODE datasets are quite simple and incomplete, and not described by a coherent underlying ontology. Here, we show how to overcome this limitation, by adopting an ENCODE metadata searching approach which uses high-quality ontological knowledge and state-of-the-art indexing technologies. Specifically, we developed S.O.S. GeM (http://www.bioinformatics.deib.polimi.it/SOSGeM/), a system supporting effective semantic search and retrieval of ENCODE datasets. First, we constructed a Semantic Knowledge Base by starting with concepts extracted from ENCODE metadata, matched to and expanded on biomedical ontologies integrated in the well-established Unified Medical Language System. We prove that this inference method is sound and complete. Then, we leveraged the Semantic Knowledge Base to semantically search ENCODE data from arbitrary biologists' queries. This allows correctly finding more datasets than those extracted by a purely syntactic search, as supported by the other available systems. We empirically show the relevance of found datasets to the biologists' queries.

  3. Using Ontology Network Structure in Text Mining

    PubMed Central

    Berndt, Donald J.; McCart, James A.; Luther, Stephen L.

    2010-01-01

    Statistical text mining treats documents as bags of words, with a focus on term frequencies within documents and across document collections. Unlike natural language processing (NLP) techniques that rely on an engineered vocabulary or a full-featured ontology, statistical approaches do not make use of domain-specific knowledge. The freedom from biases can be an advantage, but at the cost of ignoring potentially valuable knowledge. The approach proposed here investigates a hybrid strategy based on computing graph measures of term importance over an entire ontology and injecting the measures into the statistical text mining process. As a starting point, we adapt existing search engine algorithms such as PageRank and HITS to determine term importance within an ontology graph. The graph-theoretic approach is evaluated using a smoking data set from the i2b2 National Center for Biomedical Computing, cast as a simple binary classification task for categorizing smoking-related documents, demonstrating consistent improvements in accuracy. PMID:21346937

  4. A Uniform Ontology for Software Interfaces

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    2002-01-01

    It is universally the case that computer users who are not also computer specialists prefer to deal with computers' in terms of a familiar ontology, namely that of their application domains. For example, the well-known Windows ontology assumes that the user is an office worker, and therefore should be presented with a "desktop environment" featuring entities such as (virtual) file folders, documents, appointment calendars, and the like, rather than a world of machine registers and machine language instructions, or even the DOS command level. The central theme of this research has been the proposition that the user interacting with a software system should have at his disposal both the ontology underlying the system, as well as a model of the system. This information is necessary for the understanding of the system in use, as well as for the automatic generation of assistance for the user, both in solving the problem for which the application is designed, and for providing guidance in the capabilities and use of the system.

  5. The Human Phenotype Ontology in 2017

    PubMed Central

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M.; Boerkoel, Cornelius F.; Boycott, Kym M.; Brudno, Michael; Buske, Orion J.; Chinnery, Patrick F.; Cipriani, Valentina; Connell, Laureen E.; Dawkins, Hugh J.S.; DeMare, Laura E.; Devereau, Andrew D.; de Vries, Bert B.A.; Firth, Helen V.; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A.; James, Roger; Krause, Roland; F. Laulederkind, Stanley J.; Lochmüller, Hanns; Lyon, Gholson J.; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H.; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H.; Segal, Michael; Sergouniotis, Panagiotis I.; Sever, Richard; Smith, Cynthia L.; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W.M.; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O.B.; Groza, Tudor; Smedley, Damian; Mungall, Christopher J.; Haendel, Melissa; Robinson, Peter N.

    2017-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology. PMID:27899602

  6. Ontological knowledge structure of intuitive biology

    NASA Astrophysics Data System (ADS)

    Martin, Suzanne Michele

    It has become increasingly important for individuals to understand infections disease, as there has been a tremendous rise in viral and bacterial disease. This research examines systematic misconceptions regarding the characteristics of viruses and bacteria present in individuals previously educated in biological sciences at a college level. 90 pre-nursing students were administered the Knowledge Acquisition Device (KAD) which consists of 100 True/False items that included statements about the possible attributes of four entities: bacteria, virus, amoeba, and protein. Thirty pre-nursing students, who incorrectly stated that viruses were alive, were randomly assigned to three conditions. (1) exposed to information about the ontological nature of viruses, (2) Information about viruses, (3) control. In the condition that addressed the ontological nature of a virus, all of those participants were able to classify viruses correctly as not alive; however any items that required inferences, such as viruses come in male and female forms or viruses breed with each other to make baby viruses were still incorrectly answered by all conditions in the posttest. It appears that functional knowledge, ex. If a virus is alive or dead, or how it is structured, is not enough for an individual to have a full and accurate understanding of viruses. Ontological knowledge information may alter the functional knowledge but underlying inferences remain systematically incorrect.

  7. THE COMPOSITIONAL STRUCTURE OF GENE ONTOLOGY TERMS

    PubMed Central

    OGREN, P. V.; COHEN, K. B.; ACQUAAH-MENSAH, G. K.; EBERLEIN, J.; HUNTER, L.

    2008-01-01

    An analysis of the term names in the Gene Ontology reveals the prevalence of substring relations between terms: 65.3% of all GO terms contain another GO term as a proper substring. This substring relation often coincides with a derivational relationship between the terms. For example, the term regulation of cell proliferation (GO:0042127) is derived from the term cell proliferation (GO:0008283) by addition of the phrase regulation of. Further, we note that particular substrings which are not themselves GO terms (e.g. regulation of in the preceding example) recur frequently and in consistent subtrees of the ontology, and that these frequently occurring substrings often indicate interesting semantic relationships between the related terms. We describe the extent of these phenomena—substring relations between terms, and the recurrence of derivational phrases such as regulation of—and propose that these phenomena can be exploited in various ways to make the information in GO more computationally accessible, to construct a conceptually richer representation of the data encoded in the ontology, and to assist in the analysis of natural language texts. PMID:14992505

  8. Ontological System for Context Artifacts and Resources

    NASA Astrophysics Data System (ADS)

    Huang, T.; Chung, N. T.; Mukherjee, R. M.

    2012-12-01

    The Adaptive Vehicle Make (AVM) program is a portfolio of programs, managed by the Defense Advanced Research Projects Agency (DARPA). It was established to revolutionize how DoD designs, verifies, and manufactures complex defense systems and vehicles. The Component, Context, and Manufacturing Model Library (C2M2L; pronounced "camel") seeks to develop domain-specific models needed to enable design, verification, and fabrication of the Fast Adaptable Next-Generation (FANG) infantry fighting vehicle using in its overall infrastructure. Terrain models are being developed to represent the surface/fluid that an amphibious infantry fighting vehicle would traverse, ranging from paved road surfaces to rocky, mountainous terrain, slope, discrete obstacles, mud, sand snow, and water fording. Context models are being developed to provide additional data for environmental factors, such as: humidity, wind speed, particulate presence and character, solar radiation, cloud cover, precipitation, and more. The Ontological System for Context Artifacts and Resources (OSCAR) designed and developed at the Jet Propulsion Laboratory is semantic web data system that enables context artifacts to be registered and searched according to their meaning, rather than indexed according to their syntactic structure alone (as in the case for traditional search engines). The system leverages heavily on the Semantic Web for Earth and Environmental Terminology (SWEET) ontologies to model physical terrain environment and context model characteristics. In this talk, we focus on the application of the SWEET ontologies and the design of the OSCAR system architecture.

  9. The Human Phenotype Ontology in 2017.

    PubMed

    Köhler, Sebastian; Vasilevsky, Nicole A; Engelstad, Mark; Foster, Erin; McMurry, Julie; Aymé, Ségolène; Baynam, Gareth; Bello, Susan M; Boerkoel, Cornelius F; Boycott, Kym M; Brudno, Michael; Buske, Orion J; Chinnery, Patrick F; Cipriani, Valentina; Connell, Laureen E; Dawkins, Hugh J S; DeMare, Laura E; Devereau, Andrew D; de Vries, Bert B A; Firth, Helen V; Freson, Kathleen; Greene, Daniel; Hamosh, Ada; Helbig, Ingo; Hum, Courtney; Jähn, Johanna A; James, Roger; Krause, Roland; F Laulederkind, Stanley J; Lochmüller, Hanns; Lyon, Gholson J; Ogishima, Soichi; Olry, Annie; Ouwehand, Willem H; Pontikos, Nikolas; Rath, Ana; Schaefer, Franz; Scott, Richard H; Segal, Michael; Sergouniotis, Panagiotis I; Sever, Richard; Smith, Cynthia L; Straub, Volker; Thompson, Rachel; Turner, Catherine; Turro, Ernest; Veltman, Marijcke W M; Vulliamy, Tom; Yu, Jing; von Ziegenweidt, Julie; Zankl, Andreas; Züchner, Stephan; Zemojtel, Tomasz; Jacobsen, Julius O B; Groza, Tudor; Smedley, Damian; Mungall, Christopher J; Haendel, Melissa; Robinson, Peter N

    2017-01-04

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  10. Cyber Forensics Ontology for Cyber Criminal Investigation

    NASA Astrophysics Data System (ADS)

    Park, Heum; Cho, Sunho; Kwon, Hyuk-Chul

    We developed Cyber Forensics Ontology for the criminal investigation in cyber space. Cyber crime is classified into cyber terror and general cyber crime, and those two classes are connected with each other. The investigation of cyber terror requires high technology, system environment and experts, and general cyber crime is connected with general crime by evidence from digital data and cyber space. Accordingly, it is difficult to determine relational crime types and collect evidence. Therefore, we considered the classifications of cyber crime, the collection of evidence in cyber space and the application of laws to cyber crime. In order to efficiently investigate cyber crime, it is necessary to integrate those concepts for each cyber crime-case. Thus, we constructed a cyber forensics domain ontology for criminal investigation in cyber space, according to the categories of cyber crime, laws, evidence and information of criminals. This ontology can be used in the process of investigating of cyber crime-cases, and for data mining of cyber crime; classification, clustering, association and detection of crime types, crime cases, evidences and criminals.

  11. Dual lookup table algorithm: an enhanced method of displaying 16-bit gray-scale images on 8-bit RGB graphic systems.

    PubMed

    Gillespy, T; Rowberg, A H

    1994-02-01

    Most digital radiologic images have an extended contrast range of 9 to 13 bits, and are stored in memory and disk as 16-bit integers. Consequently, it is difficult to view such images on computers with 8-bit red-green-blue (RGB) graphic systems. Two approaches have traditionally been used: (1) perform a one-time conversion of the 16-bit image data to 8-bit gray-scale data, and then adjust the brightness and contrast of the image by manipulating the color palette (palette animation); and (2) use a software lookup table to interactively convert the 16-bit image data to 8-bit gray-scale values with different window width and window level parameters. The first method can adjust image appearance in real time, but some image features may not be visible because of the lack of access to the full contrast range of the image and any region of interest measurements may be inaccurate. The second method allows "windowing" and "leveling" through the full contrast range of the image, but there is a delay after each adjustment that some users may find objectionable. We describe a method that combines palette animation and the software lookup table conversion method that optimizes the changes in image contrast and brightness on computers with standard 8-bit RGB graphic hardware--the dual lookup table algorithm. This algorithm links changes in the window/level control to changes in image contrast and brightness via palette animation.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Detecting Inconsistencies in the Gene Ontology Using Ontology Databases with Not-gadgets

    NASA Astrophysics Data System (ADS)

    Lependu, Paea; Dou, Dejing; Howe, Doug

    We present ontology databases with not-gadgets, a method for detecting inconsistencies in an ontology with large numbers of annotated instances by using triggers and exclusion dependencies in a unique way. What makes this work relevant is the use of the database itself, rather than an external reasoner, to detect logical inconsistencies given large numbers of annotated instances. What distinguishes this work is the use of event-driven triggers together with the introduction of explicit negations. We applied this approach toward the serotonin example, an open problem in biomedical informatics which aims to use annotations to help identify inconsistencies in the Gene Ontology. We discovered 75 inconsistencies that have important implications in biology, which include: (1) methods for refining transfer rules used for inferring electronic annotations, and (2) highlighting possible biological differences across species worth investigating.

  13. Overlapping ontologies and Indigenous knowledge. From integration to ontological self-determination.

    PubMed

    Ludwig, David

    2016-10-01

    Current controversies about knowledge integration reflect conflicting ideas of what it means to "take Indigenous knowledge seriously". While there is increased interest in integrating Indigenous and Western scientific knowledge in various disciplines such as anthropology and ethnobiology, integration projects are often accused of recognizing Indigenous knowledge only insofar as it is useful for Western scientists. The aim of this article is to use tools from philosophy of science to develop a model of both successful integration and integration failures. On the one hand, I argue that cross-cultural recognition of property clusters leads to an ontological overlap that makes knowledge integration often epistemically productive and socially useful. On the other hand, I argue that knowledge integration is limited by ontological divergence. Adequate models of Indigenous knowledge will therefore have to take integration failures seriously and I argue that integration efforts need to be complemented by a political notion of ontological self-determination.

  14. Theory and ontology for sharing temporal knowledge

    NASA Technical Reports Server (NTRS)

    Loganantharaj, Rasiah

    1996-01-01

    Using current technology, the sharing or re-using of knowledge-bases is very difficult, if not impossible. ARPA has correctly recognized the problem and funded a knowledge sharing initiative. One of the outcomes of this project is a formal language called Knowledge Interchange Format (KIF) for representing knowledge that could be translated into other languages. Capturing and representing design knowledge and reasoning with them have become very important for NASA who is a pioneer of innovative design of unique products. For upgrading an existing design for changing technology, needs, or requirements, it is essential to understand the design rationale, design choices, options and other relevant information associated with the design. Capturing such information and presenting them in the appropriate form are part of the ongoing Design Knowledge Capture project of NASA. The behavior of an object and various other aspects related to time are captured by the appropriate temporal knowledge. The captured design knowledge will be represented in such a way that various groups of NASA who are interested in various aspects of the design cycle should be able to access and use the design knowledge effectively. To facilitate knowledge sharing among these groups, one has to develop a very well defined ontology. Ontology is a specification of conceptualization. In the literature several specific domains were studied and some well defined ontologies were developed for such domains. However, very little, or no work has been done in the area of representing temporal knowledge to facilitate sharing. During the ASEE summer program, I have investigated several temporal models and have proposed a theory for time that is flexible to accommodate the time elements, such as, points and intervals, and is capable of handling the qualitative and quantitative temporal constraints. I have also proposed a primitive temporal ontology using which other relevant temporal ontologies can be built. I

  15. Enabling Ontology Based Semantic Queries in Biomedical Database Systems

    PubMed Central

    Zheng, Shuai; Wang, Fusheng; Lu, James; Saltz, Joel

    2013-01-01

    While current biomedical ontology repositories offer primitive query capabilities, it is difficult or cumbersome to support ontology based semantic queries directly in semantically annotated biomedical databases. The problem may be largely attributed to the mismatch between the models of the ontologies and the databases, and the mismatch between the query interfaces of the two systems. To fully realize semantic query capabilities based on ontologies, we develop a system DBOntoLink to provide unified semantic query interfaces by extending database query languages. With DBOntoLink, semantic queries can be directly and naturally specified as extended functions of the database query languages without any programming needed. DBOntoLink is adaptable to different ontologies through customizations and supports major biomedical ontologies hosted at the NCBO BioPortal. We demonstrate the use of DBOntoLink in a real world biomedical database with semantically annotated medical image annotations. PMID:23404054

  16. Natural Language Processing methods and systems for biomedical ontology learning.

    PubMed

    Liu, Kaihong; Hogan, William R; Crowley, Rebecca S

    2011-02-01

    While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they must achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships as well as difficulty in updating the ontology as knowledge changes. Methodologies developed in the fields of Natural Language Processing, information extraction, information retrieval and machine learning provide techniques for automating the enrichment of an ontology from free-text documents. In this article, we review existing methodologies and developed systems, and discuss how existing methods can benefit the development of biomedical ontologies.

  17. Exact Score Distribution Computation for Similarity Searches in Ontologies

    NASA Astrophysics Data System (ADS)

    Schulz, Marcel H.; Köhler, Sebastian; Bauer, Sebastian; Vingron, Martin; Robinson, Peter N.

    Semantic similarity searches in ontologies are an important component of many bioinformatic algorithms, e.g., protein function prediction with the Gene Ontology. In this paper we consider the exact computation of score distributions for similarity searches in ontologies, and introduce a simple null hypothesis which can be used to compute a P-value for the statistical significance of similarity scores. We concentrate on measures based on Resnik’s definition of ontological similarity. A new algorithm is proposed that collapses subgraphs of the ontology graph and thereby allows fast score distribution computation. The new algorithm is several orders of magnitude faster than the naive approach, as we demonstrate by computing score distributions for similarity searches in the Human Phenotype Ontology.

  18. Natural Language Processing Methods and Systems for Biomedical Ontology Learning

    PubMed Central

    Liu, Kaihong; Hogan, William R.; Crowley, Rebecca S.

    2010-01-01

    While the biomedical informatics community widely acknowledges the utility of domain ontologies, there remain many barriers to their effective use. One important requirement of domain ontologies is that they must achieve a high degree of coverage of the domain concepts and concept relationships. However, the development of these ontologies is typically a manual, time-consuming, and often error-prone process. Limited resources result in missing concepts and relationships as well as difficulty in updating the ontology as knowledge changes. Methodologies developed in the fields of natural language processing, information extraction, information retrieval and machine learning provide techniques for automating the enrichment of an ontology from free-text documents. In this article, we review existing methodologies and developed systems, and discuss how existing methods can benefit the development of biomedical ontologies. PMID:20647054

  19. Meeting report: advancing practical applications of biodiversity ontologies

    PubMed Central

    2014-01-01

    We describe the outcomes of three recent workshops aimed at advancing development of the Biological Collections Ontology (BCO), the Population and Community Ontology (PCO), and tools to annotate data using those and other ontologies. The first workshop gathered use cases to help grow the PCO, agreed upon a format for modeling challenging concepts such as ecological niche, and developed ontology design patterns for defining collections of organisms and population-level phenotypes. The second focused on mapping datasets to ontology terms and converting them to Resource Description Framework (RDF), using the BCO. To follow-up, a BCO hackathon was held concurrently with the 16th Genomics Standards Consortium Meeting, during which we converted additional datasets to RDF, developed a Material Sample Core for the Global Biodiversity Information Framework, created a Web Ontology Language (OWL) file for importing Darwin Core classes and properties into BCO, and developed a workflow for converting biodiversity data among formats.

  20. A Science Ontology for Goal Driven Datamining in Astronomy

    NASA Astrophysics Data System (ADS)

    Shaya, E.; Thomas, B.; Teuben, P.; Huang, Z.

    2005-12-01

    An ontology, in the computer science sense, is a formal description of objects, their properties and the relationship between properties. Ontology based systems are able to reason and draw inferences. An important facility of ontological networks is an ability to calculate paths to find all paths that lead to a given goal. Ontology can be used to tag or describe data (tables, columns, rows, data files, etc) in a powerful new way that paves the way for high level query, ie. science based rather than datacentric. We will present the Science ontology in the Web Ontology Language (http://archive.astro.umd.edu/ont/Science.owl) and describe how it will be employed at the UMD Astronomical Data Center (http://adc.astro.umd.edu and http://archive.astro.umd.edu/archive) for goal driven datamining and metadata enhancement.

  1. NanoParticle Ontology for Cancer Nanotechnology Research

    PubMed Central

    Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A.

    2010-01-01

    Data generated from cancer nanotechnology research are so diverse and large in volume that it is difficult to share and efficiently use them without informatics tools. In particular, ontologies that provide a unifying knowledge framework for annotating the data are required to facilitate the semantic integration, knowledge-based searching, unambiguous interpretation, mining and inferencing of the data using informatics methods. In this paper, we discuss the design and development of NanoParticle Ontology (NPO), which is developed within the framework of the Basic Formal Ontology (BFO), and implemented in the Ontology Web Language (OWL) using well-defined ontology design principles. The NPO was developed to represent knowledge underlying the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. Public releases of the NPO are available through BioPortal website, maintained by the National Center for Biomedical Ontology. Mechanisms for editorial and governance processes are being developed for the maintenance, review, and growth of the NPO. PMID:20211274

  2. An Ontology for Modeling Complex Inter-relational Organizations

    NASA Astrophysics Data System (ADS)

    Wautelet, Yves; Neysen, Nicolas; Kolp, Manuel

    This paper presents an ontology for organizational modeling through multiple complementary aspects. The primary goal of the ontology is to dispose of an adequate set of related concepts for studying complex organizations involved in a lot of relationships at the same time. In this paper, we define complex organizations as networked organizations involved in a market eco-system that are playing several roles simultaneously. In such a context, traditional approaches focus on the macro analytic level of transactions; this is supplemented here with a micro analytic study of the actors' rationale. At first, the paper overviews enterprise ontologies literature to position our proposal and exposes its contributions and limitations. The ontology is then brought to an advanced level of formalization: a meta-model in the form of a UML class diagram allows to overview the ontology concepts and their relationships which are formally defined. Finally, the paper presents the case study on which the ontology has been validated.

  3. Best behaviour? Ontologies and the formal description of animal behaviour.

    PubMed

    Gkoutos, Georgios V; Hoehndorf, Robert; Tsaprouni, Loukia; Schofield, Paul N

    2015-10-01

    The development of ontologies for describing animal behaviour has proved to be one of the most difficult of all scientific knowledge domains. Ranging from neurological processes to human emotions, the range and scope needed for such ontologies is highly challenging, but if data integration and computational tools such as automated reasoning are to be fully applied in this important area the underlying principles of these ontologies need to be better established and development needs detailed coordination. Whilst the state of scientific knowledge is always paramount in ontology and formal description framework design, this is a particular problem with neurobehavioural ontologies where our understanding of the relationship between behaviour and its underlying biophysical basis is currently in its infancy. In this commentary, we discuss some of the fundamental problems in designing and using behaviour ontologies, and present some of the best developed tools in this domain.

  4. Ontology development for provenance tracing in National Climate Assessment of the US Global Change Research Program

    NASA Astrophysics Data System (ADS)

    Ma, X.; Zheng, J. G.; Goldstein, J.; Duggan, B.; Xu, J.; Du, C.; Akkiraju, A.; Aulenbach, S.; Tilmes, C.; Fox, P. A.

    2013-12-01

    The periodical National Climate Assessment (NCA) of the US Global Change Research Program (USGCRP) [1] produces reports about findings of global climate change and the impacts of climate change on the United States. Those findings are of great public and academic concerns and are used in policy and management decisions, which make the provenance information of findings in those reports especially important. The USGCRP is developing a Global Change Information System (GCIS), in which the NCA reports and associated provenance information are the primary records. We were modeling and developing Semantic Web applications for the GCIS. By applying a use case-driven iterative methodology [2], we developed an ontology [3] to represent the content structure of a report and the associated provenance information. We also mapped the classes and properties in our ontology into the W3C PROV-O ontology [4] to realize the formal presentation of provenance. We successfully implemented the ontology in several pilot systems for a recent National Climate Assessment report (i.e., the NCA3). They provide users the functionalities to browse and search provenance information with topics of interest. Provenance information of the NCA3 has been made structured and interoperable by applying the developed ontology. Besides the pilot systems we developed, other tools and services are also able to interact with the data in the context of the 'Web of data' and thus create added values. Our research shows that the use case-driven iterative method bridges the gap between Semantic Web researchers and earth and environmental scientists and is able to be deployed rapidly for developing Semantic Web applications. Our work also provides first-hand experience for re-using the W3C PROV-O ontology in the field of earth and environmental sciences, as the PROV-O ontology is recently ratified (on 04/30/2013) by the W3C as a recommendation and relevant applications are still rare. [1] http

  5. Evaluating Health Information Systems Using Ontologies

    PubMed Central

    Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan

    2016-01-01

    Background There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. Objectives The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems—whether similar or heterogeneous—by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. Methods On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and

  6. Candidate General Ontologies for Situating Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Simons, Peter

    Ontology is traditionally an a priori discipline purveying its categories and principles independently of mere facts, but this arrogance of philosophers has led them into latent or patent incompatibility with good science and has landed them with philosophical aporiai such as the mind-body problem and the universals dispute. So while maintaining the abstractness and systematic universality of ontology it pays to craft one's categories with an eye to the best empirical science, while not necessarily trying to read the ontology off that science. I present desiderata for a systematic ontology and give several reasons why one cannot use physical theory alone as the source of one's a posteriori ontology. With this in mind I survey six ontological theories as possible frameworks for QFT, four briefly, two at greater length. The first is the traditional substanceattribute metaphysic, which is clearly obsolete, and on which I expend little time. The second is its modern logico-linguistic replacement, the ontology of individuals and sets touted as semantic values in logical semantics. This too falls by the wayside for several reasons. A third is the closely related ontology or ontologies of facts, against which I argue on general grounds. A fourth is Whiteheadian process ontology, which is an improvement over the previous three but still leaves several questions unsatisfactorily answered. The most flexible and promising to date is the ontology of tropes and trope bundles, which I have discussed in several places. After expounding this I reject it not because it is false but because it is neither broad nor deep enough. As a final, sixth alternative, I present an ontology of invariant factors inspired in part by Whitehead and in part by remarks of Max Planck, and offer it as a promising future abstract framework within which to situate the physics of QFT.

  7. Ontological reconstruction of the clinical terminology of traditional Chinese medicine.

    PubMed

    Ma, Li; Liu, Baoyan; Xie, Qi; Mao, Shusong; Cui, Zhiwei

    2014-09-01

    This study proposes the ontological reconstruction of the current clinical terminology of traditional Chinese medicine (TCM). It also provides an overview of preliminary work related to the said reconstruction, including the ontology-based analysis of TCM clinical terminology. We conclude that the ontological reconstruction of TCM clinical terminology provides a proper translation from the idealized organizational model to real-world implementation and to a formalized, shared, and knowledge-based framework.

  8. The Teleost Anatomy Ontology: Anatomical Representation for the Genomics Age

    PubMed Central

    Dahdul, Wasila M.; Lundberg, John G.; Midford, Peter E.; Balhoff, James P.; Lapp, Hilmar; Vision, Todd J.; Haendel, Melissa A.; Westerfield, Monte; Mabee, Paula M.

    2010-01-01

    The rich knowledge of morphological variation among organisms reported in the systematic literature has remained in free-text format, impractical for use in large-scale synthetic phylogenetic work. This noncomputable format has also precluded linkage to the large knowledgebase of genomic, genetic, developmental, and phenotype data in model organism databases. We have undertaken an effort to prototype a curated, ontology-based evolutionary morphology database that maps to these genetic databases (http://kb.phenoscape.org) to facilitate investigation into the mechanistic basis and evolution of phenotypic diversity. Among the first requirements in establishing this database was the development of a multispecies anatomy ontology with the goal of capturing anatomical data in a systematic and computable manner. An ontology is a formal representation of a set of concepts with defined relationships between those concepts. Multispecies anatomy ontologies in particular are an efficient way to represent the diversity of morphological structures in a clade of organisms, but they present challenges in their development relative to single-species anatomy ontologies. Here, we describe the Teleost Anatomy Ontology (TAO), a multispecies anatomy ontology for teleost fishes derived from the Zebrafish Anatomical Ontology (ZFA) for the purpose of annotating varying morphological features across species. To facilitate interoperability with other anatomy ontologies, TAO uses the Common Anatomy Reference Ontology as a template for its upper level nodes, and TAO and ZFA are synchronized, with zebrafish terms specified as subtypes of teleost terms. We found that the details of ontology architecture have ramifications for querying, and we present general challenges in developing a multispecies anatomy ontology, including refinement of definitions, taxon-specific relationships among terms, and representation of taxonomically variable developmental pathways. PMID:20547776

  9. AmiGO: online access to ontology and annotation data

    SciTech Connect

    Carbon, Seth; Ireland, Amelia; Mungall, Christopher J.; Shu, ShengQiang; Marshall, Brad; Lewis, Suzanna

    2009-01-15

    AmiGO is a web application that allows users to query, browse, and visualize ontologies and related gene product annotation (association) data. AmiGO can be used online at the Gene Ontology (GO) website to access the data provided by the GO Consortium; it can also be downloaded and installed to browse local ontologies and annotations. AmiGO is free open source software developed and maintained by the GO Consortium.

  10. The missions and means framework as an ontology

    NASA Astrophysics Data System (ADS)

    Deitz, Paul H.; Bray, Britt E.; Michaelis, James R.

    2016-05-01

    The analysis of warfare frequently suffers from an absence of logical structure for a] specifying explicitly the military mission and b] quantitatively evaluating the mission utility of alternative products and services. In 2003, the Missions and Means Framework (MMF) was developed to redress these shortcomings. The MMF supports multiple combatants, levels of war and, in fact, is a formal embodiment of the Military Decision-Making Process (MDMP). A major effect of incomplete analytic discipline in military systems analyses is that they frequently fall into the category of ill-posed problems in which they are under-specified, under-determined, or under-constrained. Critical context is often missing. This is frequently the result of incomplete materiel requirements analyses which have unclear linkages to higher levels of warfare, system-of-systems linkages, tactics, techniques and procedures, and the effect of opposition forces. In many instances the capabilities of materiel are assumed to be immutable. This is a result of not assessing how platform components morph over time due to damage, logistics, or repair. Though ill-posed issues can be found many places in military analysis, probably the greatest challenge comes in the disciplines of C4ISR supported by ontologies in which formal naming and definition of the types, properties, and interrelationships of the entities are fundamental to characterizing mission success. Though the MMF was not conceived as an ontology, over the past decade some workers, particularly in the field of communication, have labelled the MMF as such. This connection will be described and discussed.

  11. On the Ontology Based Representation of Cell Lines

    PubMed Central

    Ganzinger, Matthias; He, Shan; Breuhahn, Kai; Knaup, Petra

    2012-01-01

    Cell lines are frequently used as highly standardized and reproducible in vitro models for biomedical analyses and assays. Cell lines are distributed by cell banks that operate databases describing their products. However, the description of the cell lines' properties are not standardized across different cell banks. Existing cell line-related ontologies mostly focus on the description of the cell lines' names, but do not cover aspects like the origin or optimal growth conditions. The objective of this work is to develop an ontology that allows for a more comprehensive description of cell lines and their metadata, which should cover the data elements provided by cell banks. This will provide the basis for the standardized annotation of cell lines and corresponding assays in biomedical research. In addition, the ontology will be the foundation for automated evaluation of such assays and their respective protocols in the future. To accomplish this, a broad range of cell bank databases as well as existing ontologies were analyzed in a comprehensive manner. We identified existing ontologies capable of covering different aspects of the cell line domain. However, not all data fields derived from the cell banks' databases could be mapped to existing ontologies. As a result, we created a new ontology called cell culture ontology (CCONT) integrating existing ontologies where possible. CCONT provides classes from the areas of cell line identification, origin, cell line properties, propagation and tests performed. PMID:23144907

  12. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    PubMed

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  13. Toward a general ontology for digital forensic disciplines.

    PubMed

    Karie, Nickson M; Venter, Hein S

    2014-09-01

    Ontologies are widely used in different disciplines as a technique for representing and reasoning about domain knowledge. However, despite the widespread ontology-related research activities and applications in different disciplines, the development of ontologies and ontology research activities is still wanting in digital forensics. This paper therefore presents the case for establishing an ontology for digital forensic disciplines. Such an ontology would enable better categorization of the digital forensic disciplines, as well as assist in the development of methodologies and specifications that can offer direction in different areas of digital forensics. This includes such areas as professional specialization, certifications, development of digital forensic tools, curricula, and educational materials. In addition, the ontology presented in this paper can be used, for example, to better organize the digital forensic domain knowledge and explicitly describe the discipline's semantics in a common way. Finally, this paper is meant to spark discussions and further research on an internationally agreed ontological distinction of the digital forensic disciplines. Digital forensic disciplines ontology is a novel approach toward organizing the digital forensic domain knowledge and constitutes the main contribution of this paper.

  14. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics

    PubMed Central

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M.

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system. PMID:26710335

  15. FMA-RadLex: An Application Ontology of Radiological Anatomy derived from the Foundational Model of Anatomy Reference Ontology

    PubMed Central

    Mejino, Jose L.V.; Rubin, Daniel L.; Brinkley, James F.

    2008-01-01

    Domain reference ontologies are being developed to serve as generalizable and reusable sources designed to support any application specific to the domain. The challenge is how to develop ways to derive or adapt pertinent portions of reference ontologies into application ontologies. In this paper we demonstrate how a subset of anatomy relevant to the domain of radiology can be derived from an anatomy reference ontology, the Foundational Model of Anatomy (FMA) Ontology, to create an application ontology that is robust and expressive enough to incorporate and accommodate all salient anatomical knowledge necessary to support existing and emerging systems for managing anatomical information related to radiology. The principles underlying this work are applicable to domains beyond radiology, so our results could be extended to other areas of biomedicine in the future. PMID:18999035

  16. Standards and ontologies in computational systems biology.

    PubMed

    Sauro, Herbert M; Bergmann, Frank T

    2008-01-01

    With the growing importance of computational models in systems biology there has been much interest in recent years to develop standard model interchange languages that permit biologists to easily exchange models between different software tools. In the present chapter two chief model exchange standards, SBML (Systems Biology Markup Language) and CellML are described. In addition, other related features including visual layout initiatives, ontologies and best practices for model annotation are discussed. Software tools such as developer libraries and basic editing tools are also introduced, together with a discussion on the future of modelling languages and visualization tools in systems biology.

  17. Standards and Ontologies in Computational Systems Biology

    PubMed Central

    Sauro, Herbert M.; Bergmann, Frank

    2009-01-01

    With the growing importance of computational models in systems biology there has been much interest in recent years to develop standard model interchange languages that permit biologists to easily exchange models between different software tools. In this chapter two chief model exchange standards, SBML and CellML are described. In addition, other related features including visual layout initiatives, ontologies and best practices for model annotation are discussed. Software tools such as developer libraries and basic editing tools are also introduced together with a discussion on the future of modeling languages and visualization tools in systems biology. PMID:18793134

  18. Applications of Ontologies in Knowledge Management Systems

    NASA Astrophysics Data System (ADS)

    Rehman, Zobia; Kifor, Claudiu V.

    2014-12-01

    Enterprises are realizing that their core asset in 21st century is knowledge. In an organization knowledge resides in databases, knowledge bases, filing cabinets and peoples' head. Organizational knowledge is distributed in nature and its poor management causes repetition of activities across the enterprise. To get true benefits from this asset, it is important for an organization to "know what they know". That's why many organizations are investing a lot in managing their knowledge. Artificial intelligence techniques have a huge contribution in organizational knowledge management. In this article we are reviewing the applications of ontologies in knowledge management realm

  19. An Ontology Driven Information Architecture for Big Data and Diverse Domains

    NASA Astrophysics Data System (ADS)

    Hughes, John S.; Crichton, Dan; Hardman, Sean; Joyner, Ron; Ramirez, Paul

    2013-04-01

    The Planetary Data System's has just released the PDS4 system for first use. Its architecture is comprised of three principle parts, an ontology that captures knowledge from the planetary science domain, a federated registry/repository system for product identification, versioning, tracking, and storage, and a REST-based service layer for search, retrieval, and distribution. An ontology modeling tool is used to prescriptively capture product definitions that adhere to object-oriented principles and that are compliant with specific registry, archive, and data dictionary reference models. The resulting information model is product centric, allowing all information to be packaged into products and tracked in the registry. The flexibility required in a diverse domain is provided through the use of object-oriented extensions and a hierarchical governance scheme with common, discipline, and mission levels. Finally all PDS4 data standards are generated or derived from the information model. The federated registry provides identification, versioning, and tracking functionality across federated repositories and is configured for deployment using configuration files generated from the ontology. Finally a REST-based service layer provides for metadata harvest, product transformation, packaging, and search, and portal hosting. A model driven architecture allows the data and software engineering teams to develop in parallel with minimal team interaction. The resulting software remains relatively stable as the domain evolves. Finally the development of a single shared ontology promotes interoperability and data correlation and helps meet the expectations of modern scientists for science data discovery, access and use. This presentation will provide an overview of PDS4 focusing on the data standards, how they were developed, how they are now being used, and will present some of the lessons learned while developing in a diverse scientific community. Copyright 2013 California

  20. Measuring the Evolution of Ontology Complexity: The Gene Ontology Case Study

    PubMed Central

    Dameron, Olivier; Bettembourg, Charles; Le Meur, Nolwenn

    2013-01-01

    Ontologies support automatic sharing, combination and analysis of life sciences data. They undergo regular curation and enrichment. We studied the impact of an ontology evolution on its structural complexity. As a case study we used the sixty monthly releases between January 2008 and December 2012 of the Gene Ontology and its three independent branches, i.e. biological processes (BP), cellular components (CC) and molecular functions (MF). For each case, we measured complexity by computing metrics related to the size, the nodes connectivity and the hierarchical structure. The number of classes and relations increased monotonously for each branch, with different growth rates. BP and CC had similar connectivity, superior to that of MF. Connectivity increased monotonously for BP, decreased for CC and remained stable for MF, with a marked increase for the three branches in November and December 2012. Hierarchy-related measures showed that CC and MF had similar proportions of leaves, average depths and average heights. BP had a lower proportion of leaves, and a higher average depth and average height. For BP and MF, the late 2012 increase of connectivity resulted in an increase of the average depth and average height and a decrease of the proportion of leaves, indicating that a major enrichment effort of the intermediate-level hierarchy occurred. The variation of the number of classes and relations in an ontology does not provide enough information about the evolution of its complexity. However, connectivity and hierarchy-related metrics revealed different patterns of values as well as of evolution for the three branches of the Gene Ontology. CC was similar to BP in terms of connectivity, and similar to MF in terms of hierarchy. Overall, BP complexity increased, CC was refined with the addition of leaves providing a finer level of annotations but decreasing slightly its complexity, and MF complexity remained stable. PMID:24146805

  1. Measuring the evolution of ontology complexity: the gene ontology case study.

    PubMed

    Dameron, Olivier; Bettembourg, Charles; Le Meur, Nolwenn

    2013-01-01

    Ontologies support automatic sharing, combination and analysis of life sciences data. They undergo regular curation and enrichment. We studied the impact of an ontology evolution on its structural complexity. As a case study we used the sixty monthly releases between January 2008 and December 2012 of the Gene Ontology and its three independent branches, i.e. biological processes (BP), cellular components (CC) and molecular functions (MF). For each case, we measured complexity by computing metrics related to the size, the nodes connectivity and the hierarchical structure. The number of classes and relations increased monotonously for each branch, with different growth rates. BP and CC had similar connectivity, superior to that of MF. Connectivity increased monotonously for BP, decreased for CC and remained stable for MF, with a marked increase for the three branches in November and December 2012. Hierarchy-related measures showed that CC and MF had similar proportions of leaves, average depths and average heights. BP had a lower proportion of leaves, and a higher average depth and average height. For BP and MF, the late 2012 increase of connectivity resulted in an increase of the average depth and average height and a decrease of the proportion of leaves, indicating that a major enrichment effort of the intermediate-level hierarchy occurred. The variation of the number of classes and relations in an ontology does not provide enough information about the evolution of its complexity. However, connectivity and hierarchy-related metrics revealed different patterns of values as well as of evolution for the three branches of the Gene Ontology. CC was similar to BP in terms of connectivity, and similar to MF in terms of hierarchy. Overall, BP complexity increased, CC was refined with the addition of leaves providing a finer level of annotations but decreasing slightly its complexity, and MF complexity remained stable.

  2. Margin based ontology sparse vector learning algorithm and applied in biology science.

    PubMed

    Gao, Wei; Qudair Baig, Abdul; Ali, Haidar; Sajjad, Wasim; Reza Farahani, Mohammad

    2017-01-01

    In biology field, the ontology application relates to a large amount of genetic information and chemical information of molecular structure, which makes knowledge of ontology concepts convey much information. Therefore, in mathematical notation, the dimension of vector which corresponds to the ontology concept is often very large, and thus improves the higher requirements of ontology algorithm. Under this background, we consider the designing of ontology sparse vector algorithm and application in biology. In this paper, using knowledge of marginal likelihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant ontology to verify its efficiency.

  3. War of Ontology Worlds: Mathematics, Computer Code, or Esperanto?

    PubMed Central

    Rzhetsky, Andrey; Evans, James A.

    2011-01-01

    The use of structured knowledge representations—ontologies and terminologies—has become standard in biomedicine. Definitions of ontologies vary widely, as do the values and philosophies that underlie them. In seeking to make these views explicit, we conducted and summarized interviews with a dozen leading ontologists. Their views clustered into three broad perspectives that we summarize as mathematics, computer code, and Esperanto. Ontology as mathematics puts the ultimate premium on rigor and logic, symmetry and consistency of representation across scientific subfields, and the inclusion of only established, non-contradictory knowledge. Ontology as computer code focuses on utility and cultivates diversity, fitting ontologies to their purpose. Like computer languages C++, Prolog, and HTML, the code perspective holds that diverse applications warrant custom designed ontologies. Ontology as Esperanto focuses on facilitating cross-disciplinary communication, knowledge cross-referencing, and computation across datasets from diverse communities. We show how these views align with classical divides in science and suggest how a synthesis of their concerns could strengthen the next generation of biomedical ontologies. PMID:21980276

  4. An evaluation of ontology exchange languages for bioinformatics.

    PubMed

    McEntire, R; Karp, P; Abernethy, N; Benton, D; Helt, G; DeJongh, M; Kent, R; Kosky, A; Lewis, S; Hodnett, D; Neumann, E; Olken, F; Pathak, D; Tarczy-Hornoch, P; Toldo, L; Topaloglou, T

    2000-01-01

    Ontologies are specifications of the concepts in a given field, and of the relationships among those concepts. The development of ontologies for molecular-biology information and the sharing of those ontologies within the bioinformatics community are central problems in bioinformatics. If the bioinformatics community is to share ontologies effectively, ontologies must be exchanged in a form that uses standardized syntax and semantics. This paper reports on an effort among the authors to evaluate alternative ontology-exchange languages, and to recommend one or more languages for use within the larger bioinformatics community. The study selected a set of candidate languages, and defined a set of capabilities that the ideal ontology-exchange language should satisfy. The study scored the languages according to the degree to which they satisfied each capability. In addition, the authors performed several ontology-exchange experiments with the two languages that received the highest scores: OML and Ontolingua. The result of those experiments, and the main conclusion of this study, was that the frame-based semantic model of Ontolingua is preferable to the conceptual graph model of OML, but that the XML-based syntax of OML is preferable to the Lisp-based syntax of Ontolingua.

  5. ExO: An Ontology for Exposure Science

    EPA Science Inventory

    An ontology is a formal representation of knowledge within a domain and typically consists of classes, the properties of those classes, and the relationships between them. Ontologies are critically important for specifying data of interest in a consistent manner, thereby enablin...

  6. Disease Ontology: a backbone for disease semantic integration.

    PubMed

    Schriml, Lynn Marie; Arze, Cesar; Nadendla, Suvarna; Chang, Yu-Wei Wayne; Mazaitis, Mark; Felix, Victor; Feng, Gang; Kibbe, Warren Alden

    2012-01-01

    The Disease Ontology (DO) database (http://disease-ontology.org) represents a comprehensive knowledge base of 8043 inherited, developmental and acquired human diseases (DO version 3, revision 2510). The DO web browser has been designed for speed, efficiency and robustness through the use of a graph database. Full-text contextual searching functionality using Lucene allows the querying of name, synonym, definition, DOID and cross-reference (xrefs) with complex Boolean search strings. The DO semantically integrates disease and medical vocabularies through extensive cross mapping and integration of MeSH, ICD, NCI's thesaurus, SNOMED CT and OMIM disease-specific terms and identifiers. The DO is utilized for disease annotation by major biomedical databases (e.g. Array Express, NIF, IEDB), as a standard representation of human disease in biomedical ontologies (e.g. IDO, Cell line ontology, NIFSTD ontology, Experimental Factor Ontology, Influenza Ontology), and as an ontological cross mappings resource between DO, MeSH and OMIM (e.g. GeneWiki). The DO project (http://diseaseontology.sf.net) has been incorporated into open source tools (e.g. Gene Answers, FunDO) to connect gene and disease biomedical data through the lens of human disease. The next iteration of the DO web browser will integrate DO's extended relations and logical definition representation along with these biomedical resource cross-mappings.

  7. Linking Assessment and Instruction Using Ontologies. CSE Technical Report 693

    ERIC Educational Resources Information Center

    Chung, Gregory K. W. K.; Delacruz, Girlie C.; Dionne, Gary B.; Bewley, William L.

    2006-01-01

    In this study we report on a test of a method that uses ontologies to individualize instruction by directly linking assessment results to the delivery of relevant content. Our sample was 2nd Lieutenants undergoing entry-level training on rifle marksmanship. Ontologies are explicit expressions of the concepts in a domain, the links among the…

  8. Ontology-Based Annotation of Learning Object Content

    ERIC Educational Resources Information Center

    Gasevic, Dragan; Jovanovic, Jelena; Devedzic, Vladan

    2007-01-01

    The paper proposes a framework for building ontology-aware learning object (LO) content. Previously ontologies were exclusively employed for enriching LOs' metadata. Although such an approach is useful, as it improves retrieval of relevant LOs from LO repositories, it does not enable one to reuse components of a LO, nor to incorporate an explicit…

  9. Ontology Extraction Tools: An Empirical Study with Educators

    ERIC Educational Resources Information Center

    Hatala, M.; Gasevic, D.; Siadaty, M.; Jovanovic, J.; Torniai, C.

    2012-01-01

    Recent research in Technology-Enhanced Learning (TEL) demonstrated several important benefits that semantic technologies can bring to the TEL domain. An underlying assumption for most of these research efforts is the existence of a domain ontology. The second unspoken assumption follows that educators will build domain ontologies for their…

  10. IDEF5 Ontology Description Capture Method: Concept Paper

    NASA Technical Reports Server (NTRS)

    Menzel, Christopher P.; Mayer, Richard J.

    1990-01-01

    The results of research towards an ontology capture method referred to as IDEF5 are presented. Viewed simply as the study of what exists in a domain, ontology is an activity that can be understood to be at work across the full range of human inquiry prompted by the persistent effort to understand the world in which it has found itself - and which it has helped to shape. In the contest of information management, ontology is the task of extracting the structure of a given engineering, manufacturing, business, or logistical domain and storing it in an usable representational medium. A key to effective integration is a system ontology that can be accessed and modified across domains and which captures common features of the overall system relevant to the goals of the disparate domains. If the focus is on information integration, then the strongest motivation for ontology comes from the need to support data sharing and function interoperability. In the correct architecture, an enterprise ontology base would allow th e construction of an integrated environment in which legacy systems appear to be open architecture integrated resources. If the focus is on system/software development, then support for the rapid acquisition of reliable systems is perhaps the strongest motivation for ontology. Finally, ontological analysis was demonstrated to be an effective first step in the construction of robust knowledge based systems.

  11. An ontology design pattern for surface water features

    USGS Publications Warehouse

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  12. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  13. Web information retrieval based on ontology

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2013-03-01

    The purpose of the Information Retrieval (IR) is to find a set of documents that are relevant for a specific information need of a user. Traditional Information Retrieval model commonly used in commercial search engine is based on keyword indexing system and Boolean logic queries. One big drawback of traditional information retrieval is that they typically retrieve information without an explicitly defined domain of interest to the users so that a lot of no relevance information returns to users, which burden the user to pick up useful answer from these no relevance results. In order to tackle this issue, many semantic web information retrieval models have been proposed recently. The main advantage of Semantic Web is to enhance search mechanisms with the use of Ontology's mechanisms. In this paper, we present our approach to personalize web search engine based on ontology. In addition, key techniques are also discussed in our paper. Compared to previous research, our works concentrate on the semantic similarity and the whole process including query submission and information annotation.

  14. Discovering Diabetes Complications: an Ontology Based Model

    PubMed Central

    Daghistani, Tahani; Shammari, Riyad Al; Razzak, Muhammad Imran

    2015-01-01

    Background: Diabetes is a serious disease that spread in the world dramatically. The diabetes patient has an average of risk to experience complications. Take advantage of recorded information to build ontology as information technology solution will help to predict patients who have average of risk level with certain complication. It is helpful to search and present patient’s history regarding different risk factors. Discovering diabetes complications could be useful to prevent or delay the complications. Method: We designed ontology based model, using adult diabetes patients’ data, to discover the rules of diabetes with its complications in disease to disease relationship. Result: Various rules between different risk factors of diabetes Patients and certain complications generated. Furthermore, new complications (diseases) might be discovered as new finding of this study, discovering diabetes complications could be useful to prevent or delay the complications. Conclusion: The system can identify the patients who are suffering from certain risk factors such as high body mass index (obesity) and starting controlling and maintaining plan. PMID:26862251

  15. Heidegger, ontological death, and the healing professions.

    PubMed

    Aho, Kevin A

    2016-03-01

    In Being and Time, Martin Heidegger introduces a unique interpretation of death as a kind of world-collapse or breakdown of meaning that strips away our ability to understand and make sense of who we are. This is an 'ontological death' in the sense that we cannot be anything because the intelligible world that we draw on to fashion our identities and sustain our sense of self has lost all significance. On this account, death is not only an event that we can physiologically live through; it can happen numerous times throughout the finite span of our lives. This paper draws on Arthur Frank's (At the will of the body: reflections on illness. Houghton, Boston, 1991) narrative of critical illness to concretize the experience of 'ontological death' and illuminate the unique challenges it poses for health care professionals. I turn to Heidegger's conception of 'resoluteness' (Entschlossenheit) to address these challenges, arguing for the need of health care professionals to help establish a discursive context whereby the critically ill can begin to meaningfully express and interpret their experience of self-loss in a way that acknowledges the structural vulnerability of their own identities and is flexible enough to let go of those that have lost their significance or viability.

  16. Spatial cyberinfrastructures, ontologies, and the humanities

    PubMed Central

    Sieber, Renee E.; Wellen, Christopher C.; Jin, Yuan

    2011-01-01

    We report on research into building a cyberinfrastructure for Chinese biographical and geographic data. Our cyberinfrastructure contains (i) the McGill-Harvard-Yenching Library Ming Qing Women's Writings database (MQWW), the only online database on historical Chinese women's writings, (ii) the China Biographical Database, the authority for Chinese historical people, and (iii) the China Historical Geographical Information System, one of the first historical geographic information systems. Key to this integration is that linked databases retain separate identities as bases of knowledge, while they possess sufficient semantic interoperability to allow for multidatabase concepts and to support cross-database queries on an ad hoc basis. Computational ontologies create underlying semantics for database access. This paper focuses on the spatial component in a humanities cyberinfrastructure, which includes issues of conflicting data, heterogeneous data models, disambiguation, and geographic scale. First, we describe the methodology for integrating the databases. Then we detail the system architecture, which includes a tier of ontologies and schema. We describe the user interface and applications that allow for cross-database queries. For instance, users should be able to analyze the data, examine hypotheses on spatial and temporal relationships, and generate historical maps with datasets from MQWW for research, teaching, and publication on Chinese women writers, their familial relations, publishing venues, and the literary and social communities. Last, we discuss the social side of cyberinfrastructure development, as people are considered to be as critical as the technical components for its success. PMID:21444819

  17. Quality of Computationally Inferred Gene Ontology Annotations

    PubMed Central

    Škunca, Nives; Altenhoff, Adrian; Dessimoz, Christophe

    2012-01-01

    Gene Ontology (GO) has established itself as the undisputed standard for protein function annotation. Most annotations are inferred electronically, i.e. without individual curator supervision, but they are widely considered unreliable. At the same time, we crucially depend on those automated annotations, as most newly sequenced genomes are non-model organisms. Here, we introduce a methodology to systematically and quantitatively evaluate electronic annotations. By exploiting changes in successive releases of the UniProt Gene Ontology Annotation database, we assessed the quality of electronic annotations in terms of specificity, reliability, and coverage. Overall, we not only found that electronic annotations have significantly improved in recent years, but also that their reliability now rivals that of annotations inferred by curators when they use evidence other than experiments from primary literature. This work provides the means to identify the subset of electronic annotations that can be relied upon—an important outcome given that >98% of all annotations are inferred without direct curation. PMID:22693439

  18. Ontology patterns for complex topographic feature yypes

    USGS Publications Warehouse

    Varanka, Dalia E.

    2011-01-01

    Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.

  19. Duelling Ontologies: Might Vitalism Offer Balance and Value?

    PubMed

    Richards, Dennis; Emmanuel, Elizabeth; Grace, Sandra

    2016-12-16

    This article is part of a project investigating chiropractors' beliefs on the role of vitalism in their philosophical and practice approaches and how that might contribute to addressing current epidemics of non-communicable diseases. It aims to present atomism, reductionism, materialism and mechanism as fundamental ontologies in biomedicine and to examine what role these might play in its struggle to deal with these epidemics; to present vitalism as a fundamental ontology existing in chiropractic along with these ontologies of biomedicine; and to discuss how imbalances in the use of these ontologies and practices stemming from them might be contributing to difficulties in addressing these epidemics. The use of more balanced approaches by chiropractors involving not only mechanistic biomedical ontologies but also an increased focus on vitalism might offer value in addressing these epidemics and should be investigated.

  20. An Agent-Based Data Mining System for Ontology Evolution

    NASA Astrophysics Data System (ADS)

    Hadzic, Maja; Dillon, Darshan

    We have developed an evidence-based mental health ontological model that represents mental health in multiple dimensions. The ongoing addition of new mental health knowledge requires a continual update of the Mental Health Ontology. In this paper, we describe how the ontology evolution can be realized using a multi-agent system in combination with data mining algorithms. We use the TICSA methodology to design this multi-agent system which is composed of four different types of agents: Information agent, Data Warehouse agent, Data Mining agents and Ontology agent. We use UML 2.1 sequence diagrams to model the collaborative nature of the agents and a UML 2.1 composite structure diagram to model the structure of individual agents. The Mental Heath Ontology has the potential to underpin various mental health research experiments of a collaborative nature which are greatly needed in times of increasing mental distress and illness.

  1. An Ontology-Based Framework for Geographic Data Integration

    NASA Astrophysics Data System (ADS)

    Vidal, Vânia M. P.; Sacramento, Eveline R.; de Macêdo, José Antonio Fernandes; Casanova, Marco Antonio

    Ontologies have been extensively used to model domain-specific knowledge. Recent research has applied ontologies to enhance the discovery and retrieval of geographic data in Spatial Data Infrastructures (SDIs). However, in those approaches it is assumed that all the data required for answering a query can be obtained from a single data source. In this work, we propose an ontology-based framework for the integration of geographic data. In our approach, a query posed on a domain ontology is rewritten into sub-queries submitted over multiples data sources, and the query result is obtained by the proper combination of data resulting from these sub-queries. We illustrate how our framework allows the combination of data from different sources, thus overcoming some limitations of other ontology-based approaches. Our approach is illustrated by an example from the domain of aeronautical flights.

  2. Extending ontologies by finding siblings using set expansion techniques

    PubMed Central

    Fabian, Götz; Wächter, Thomas; Schroeder, Michael

    2012-01-01

    Motivation: Ontologies are an everyday tool in biomedicine to capture and represent knowledge. However, many ontologies lack a high degree of coverage in their domain and need to improve their overall quality and maturity. Automatically extending sets of existing terms will enable ontology engineers to systematically improve text-based ontologies level by level. Results: We developed an approach to extend ontologies by discovering new terms which are in a sibling relationship to existing terms of an ontology. For this purpose, we combined two approaches which retrieve new terms from the web. The first approach extracts siblings by exploiting the structure of HTML documents, whereas the second approach uses text mining techniques to extract siblings from unstructured text. Our evaluation against MeSH (Medical Subject Headings) shows that our method for sibling discovery is able to suggest first-class ontology terms and can be used as an initial step towards assessing the completeness of ontologies. The evaluation yields a recall of 80% at a precision of 61% where the two independent approaches are complementing each other. For MeSH in particular, we show that it can be considered complete in its medical focus area. We integrated the work into DOG4DAG, an ontology generation plugin for the editors OBO-Edit and Protégé, making it the first plugin that supports sibling discovery on-the-fly. Availability: Sibling discovery for ontology is available as part of DOG4DAG (www.biotec.tu-dresden.de/research/schroeder/dog4dag) for both Protégé 4.1 and OBO-Edit 2.1. Contact: ms@biotec.tu-dresden.de; goetz.fabian@biotec.tu-dresden.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689774

  3. Semi-automated ontology generation within OBO-Edit

    PubMed Central

    Wächter, Thomas; Schroeder, Michael

    2010-01-01

    Motivation: Ontologies and taxonomies have proven highly beneficial for biocuration. The Open Biomedical Ontology (OBO) Foundry alone lists over 90 ontologies mainly built with OBO-Edit. Creating and maintaining such ontologies is a labour-intensive, difficult, manual process. Automating parts of it is of great importance for the further development of ontologies and for biocuration. Results: We have developed the Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG), a system which supports the creation and extension of OBO ontologies by semi-automatically generating terms, definitions and parent–child relations from text in PubMed, the web and PDF repositories. DOG4DAG is seamlessly integrated into OBO-Edit. It generates terms by identifying statistically significant noun phrases in text. For definitions and parent–child relations it employs pattern-based web searches. We systematically evaluate each generation step using manually validated benchmarks. The term generation leads to high-quality terms also found in manually created ontologies. Up to 78% of definitions are valid and up to 54% of child–ancestor relations can be retrieved. There is no other validated system that achieves comparable results. By combining the prediction of high-quality terms, definitions and parent–child relations with the ontology editor OBO-Edit we contribute a thoroughly validated tool for all OBO ontology engineers. Availability: DOG4DAG is available within OBO-Edit 2.1 at http://www.oboedit.org Contact: thomas.waechter@biotec.tu-dresden.de; Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:20529942

  4. Understanding and using the meaning of statements in a bio-ontology: recasting the Gene Ontology in OWL.

    PubMed

    Aranguren, Mikel Egaña; Bechhofer, Sean; Lord, Phillip; Sattler, Ulrike; Stevens, Robert

    2007-02-20

    The bio-ontology community falls into two camps: first we have biology domain experts, who actually hold the knowledge we wish to capture in ontologies; second, we have ontology specialists, who hold knowledge about techniques and best practice on ontology development. In the bio-ontology domain, these two camps have often come into conflict, especially where pragmatism comes into conflict with perceived best practice. One of these areas is the insistence of computer scientists on a well-defined semantic basis for the Knowledge Representation language being used. In this article, we will first describe why this community is so insistent. Second, we will illustrate this by examining the semantics of the Web Ontology Language and the semantics placed on the Directed Acyclic Graph as used by the Gene Ontology. Finally we will reconcile the two representations, including the broader Open Biomedical Ontologies format. The ability to exchange between the two representations means that we can capitalise on the features of both languages. Such utility can only arise by the understanding of the semantics of the languages being used. By this illustration of the usefulness of a clear, well-defined language semantics, we wish to promote a wider understanding of the computer science perspective amongst potential users within the biological community.

  5. Constructing a Geology Ontology Using a Relational Database

    NASA Astrophysics Data System (ADS)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  6. Using analytic hierarchy process approach in ontological multicriterial decision making - Preliminary considerations

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.

    2012-10-01

    In this paper we consider combining ontologically demarcated information with Saaty's Analytic Hierarchy Process (AHP) [1] for the multicriterial assessment of offers during contract negotiations. The context for the proposal is provided by the Agents in Grid project (AiG; [2]), which aims at development of an agent-based infrastructure for efficient resource management in the Grid. In the AiG project, software agents representing users can either (1) join a team and earn money, or (2) find a team to execute a job. Moreover, agents form teams, managers of which negotiate with clients and workers terms of potential collaboration. Here, ontologically described contracts (Service Level Agreements) are the results of autonomous multiround negotiations. Therefore, taking into account relatively complex nature of the negotiated contracts, multicriterial assessment of proposals plays a crucial role. The AHP method is based on pairwise comparisons of criteria and relies on the judgement of a panel of experts. It measures how well does an offer serve the objective of a decision maker. In this paper, we propose how the AHP method can be used to assess ontologically described contract proposals.

  7. Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies

    PubMed Central

    Baskauf, Steve; Blum, Stanley; Bowers, Shawn; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Tuama, Éamonn Ó.; Schildhauer, Mark; Smith, Barry; Stucky, Brian J.; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers

  8. Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.

    PubMed

    Walls, Ramona L; Deck, John; Guralnick, Robert; Baskauf, Steve; Beaman, Reed; Blum, Stanley; Bowers, Shawn; Buttigieg, Pier Luigi; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Morrison, Norman; Ó Tuama, Éamonn; Schildhauer, Mark; Smith, Barry; Stucky, Brian J; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.

  9. Ion Channel ElectroPhysiology Ontology (ICEPO) – a case study of text mining assisted ontology development

    PubMed Central

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Background Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. Methods In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. Results The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. Conclusions This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text

  10. Representations of spacetime: Formalism and ontological commitment

    NASA Astrophysics Data System (ADS)

    Bain, Jonathan Stanley

    This dissertation consists of two parts. The first is on the relation between formalism and ontological commitment in the context of theories of spacetime, and the second is on scientific realism. The first part begins with a look at how the substantivalist/relationist debate over the ontological status of spacetime has been influenced by a particular mathematical formalism, that of tensor analysis on differential manifolds (TADM). This formalism has motivated the substantivalist position known as manifold substantivalism. Chapter 1 focuses on the hole argument which maintains that manifold substantivalism is incompatible with determinism. I claim that the realist motivations underlying manifold substantivalism can be upheld, and the hole argument avoided, by adopting structural realism with respect to spacetime. In this context, this is the claim that it is the structure that spacetime points enter into that warrants belief and not the points themselves. In Chapter 2, an elimination principle is defined by means of which a distinction can be made between surplus structure and essential structure with respect to formulations of a theory in two distinct mathematical formulations and some prior ontological commitments. This principle is then used to demonstrate that manifold points may be considered surplus structure in the formulation of field theories. This suggests that, if we are disposed to read field theories literally, then, at most, it should be the essential structure common to all alternative formulations of such theories that should be taken literally. I also investigate how the adoption of alternative formalisms informs other issues in the philosophy of spacetime. Chapter 3 offers a realist position which takes a semantic moral from the preceding investigation and an epistemic moral from work done on reliability. The semantic moral advises us to read only the essential structure of our theories literally. The epistemic moral shows us that such structure

  11. A unified anatomy ontology of the vertebrate skeletal system.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  12. Enabling Ontology Based Semantic Queries in Biomedical Database Systems

    PubMed Central

    Zheng, Shuai; Lu, James

    2014-01-01

    There is a lack of tools to ease the integration and ontology based semantic queries in biomedical databases, which are often annotated with ontology concepts. We aim to provide a middle layer between ontology repositories and semantically annotated databases to support semantic queries directly in the databases with expressive standard database query languages. We have developed a semantic query engine that provides semantic reasoning and query processing, and translates the queries into ontology repository operations on NCBO BioPortal. Semantic operators are implemented in the database as user defined functions extended to the database engine, thus semantic queries can be directly specified in standard database query languages such as SQL and XQuery. The system provides caching management to boosts query performance. The system is highly adaptable to support different ontologies through easy customizations. We have implemented the system DBOntoLink as an open source software, which supports major ontologies hosted at BioPortal. DBOntoLink supports a set of common ontology based semantic operations and have them fully integrated with a database management system IBM DB2. The system has been deployed and evaluated with an existing biomedical database for managing and querying image annotations and markups (AIM). Our performance study demonstrates the high expressiveness of semantic queries and the high efficiency of the queries. PMID:25541585

  13. Providing visualisation support for the analysis of anatomy ontology data

    PubMed Central

    Dadzie, Aba-Sah; Burger, Albert

    2005-01-01

    Background Improvements in technology have been accompanied by the generation of large amounts of complex data. This same technology must be harnessed effectively if the knowledge stored within the data is to be retrieved. Storing data in ontologies aids its management; ontologies serve as controlled vocabularies that promote data exchange and re-use, improving analysis. The Edinburgh Mouse Atlas Project stores the developmental stages of the mouse embryo in anatomy ontologies. This project is looking at the use of visual data overviews for intuitive analysis of the ontology data. Results A prototype has been developed that visualises the ontologies using directed acyclic graphs in two dimensions, with the ability to study detail in regions of interest in isolation or within the context of the overview. This is followed by the development of a technique that layers individual anatomy ontologies in three-dimensional space, so that relationships across multiple data sets may be mapped using physical links drawn along the third axis. Conclusion Usability evaluations of the applications confirmed advantages in visual analysis of complex data. This project will look next at data input from multiple sources, and continue to develop the techniques presented to provide intuitive identification of relationships that span multiple ontologies. PMID:15790390

  14. Standardized description of scientific evidence using the Evidence Ontology (ECO).

    PubMed

    Chibucos, Marcus C; Mungall, Christopher J; Balakrishnan, Rama; Christie, Karen R; Huntley, Rachael P; White, Owen; Blake, Judith A; Lewis, Suzanna E; Giglio, Michelle

    2014-01-01

    The Evidence Ontology (ECO) is a structured, controlled vocabulary for capturing evidence in biological research. ECO includes diverse terms for categorizing evidence that supports annotation assertions including experimental types, computational methods, author statements and curator inferences. Using ECO, annotation assertions can be distinguished according to the evidence they are based on such as those made by curators versus those automatically computed or those made via high-throughput data review versus single test experiments. Originally created for capturing evidence associated with Gene Ontology annotations, ECO is now used in other capacities by many additional annotation resources including UniProt, Mouse Genome Informatics, Saccharomyces Genome Database, PomBase, the Protein Information Resource and others. Information on the development and use of ECO can be found at http://evidenceontology.org. The ontology is freely available under Creative Commons license (CC BY-SA 3.0), and can be downloaded in both Open Biological Ontologies and Web Ontology Language formats at http://code.google.com/p/evidenceontology. Also at this site is a tracker for user submission of term requests and questions. ECO remains under active development in response to user-requested terms and in collaborations with other ontologies and database resources. Database URL: Evidence Ontology Web site: http://evidenceontology.org.

  15. Inexact Matching of Ontology Graphs Using Expectation-Maximization

    PubMed Central

    Doshi, Prashant; Kolli, Ravikanth; Thomas, Christopher

    2009-01-01

    We present a new method for mapping ontology schemas that address similar domains. The problem of ontology matching is crucial since we are witnessing a decentralized development and publication of ontological data. We formulate the problem of inferring a match between two ontologies as a maximum likelihood problem, and solve it using the technique of expectation-maximization (EM). Specifically, we adopt directed graphs as our model for ontology schemas and use a generalized version of EM to arrive at a map between the nodes of the graphs. We exploit the structural, lexical and instance similarity between the graphs, and differ from the previous approaches in the way we utilize them to arrive at, a possibly inexact, match. Inexact matching is the process of finding a best possible match between the two graphs when exact matching is not possible or is computationally difficult. In order to scale the method to large ontologies, we identify the computational bottlenecks and adapt the generalized EM by using a memory bounded partitioning scheme. We provide comparative experimental results in support of our method on two well-known ontology alignment benchmarks and discuss their implications. PMID:20160892

  16. Multiple ontologies in action: composite annotations for biosimulation models.

    PubMed

    Gennari, John H; Neal, Maxwell L; Galdzicki, Michal; Cook, Daniel L

    2011-02-01

    There now exists a rich set of ontologies that provide detailed semantics for biological entities of interest. However, there is not (nor should there be) a single source ontology that provides all the necessary semantics for describing biological phenomena. In the domain of physiological biosimulation models, researchers use annotations to convey semantics, and many of these annotations require the use of multiple reference ontologies. Therefore, we have developed the idea of composite annotations that access multiple ontologies to capture the physics-based meaning of model variables. These composite annotations provide the semantic expressivity needed to disambiguate the often-complex features of biosimulation models, and can be used to assist with model merging and interoperability. In this paper, we demonstrate the utility of composite annotations for model merging by describing their use within SemGen, our semantics-based model composition software. More broadly, if orthogonal reference ontologies are to meet their full potential, users need tools and methods to connect and link these ontologies. Our composite annotations and the SemGen tool provide one mechanism for leveraging multiple reference ontologies.

  17. Arthrogryposis as a Syndrome: Gene Ontology Analysis

    PubMed Central

    Hall, Judith G.; Kiefer, Jeff

    2016-01-01

    Arthrogryposis by definition has multiple congenital contractures. All types of arthrogryposis have decreased in utero fetal movement. Because so many things are involved in normal fetal movement, there are many causes and processes that can go awry. In this era of molecular genetics, we have tried to place the known mutated genes seen in genetic forms of arthrogryposis into biological processes or cellular functions as defined by gene ontology. We hope this leads to better identification of all interacting pathways and processes involved in the development of fetal movement in order to improve diagnosis of the genetic forms of arthrogryposis, to lead to the development of molecular therapies, and to help better define the natural history of various types of arthrogryposis. PMID:27587986

  18. A novel insight into Gene Ontology semantic similarity.

    PubMed

    Xu, Yungang; Guo, Maozu; Shi, Wenli; Liu, Xiaoyan; Wang, Chunyu

    2013-06-01

    Existing methods for computing the semantic similarity between Gene Ontology (GO) terms are often based on external datasets and, therefore are not intrinsic to GO. Furthermore, they not only fail to handle identical annotations but also show a strong bias toward well-annotated proteins when being used for measuring similarity of proteins. Inspired by the concept of cellular differentiation and dedifferentiation in developmental biology, we propose a shortest semantic differentiation distance (SSDD) based on the concept of semantic totipotency to measure the semantic similarity of GO terms and further compare the functional similarity of proteins. Using human ratings and a benchmark dataset, SSDD was found to improve upon existing methods for computing the semantic similarity of GO terms. An in-depth analysis shows that SSDD is able to distinguish identical annotations and does not depend on annotation richness, thus producing more unbiased and reliable results. Online services can be accessed at the Gene Functional Similarity Analysis Tools website (GFSAT: http://nclab.hit.edu.cn/GFSAT).

  19. Automated Gene Ontology annotation for anonymous sequence data.

    PubMed

    Hennig, Steffen; Groth, Detlef; Lehrach, Hans

    2003-07-01

    Gene Ontology (GO) is the most widely accepted attempt to construct a unified and structured vocabulary for the description of genes and their products in any organism. Annotation by GO terms is performed in most of the current genome projects, which besides generality has the advantage of being very convenient for computer based classification methods. However, direct use of GO in small sequencing projects is not easy, especially for species not commonly represented in public databases. We present a software package (GOblet), which performs annotation based on GO terms for anonymous cDNA or protein sequences. It uses the species independent GO structure and vocabulary together with a series of protein databases collected from various sites, to perform a detailed GO annotation by sequence similarity searches. The sensitivity and the reference protein sets can be selected by the user. GOblet runs automatically and is available as a public service on our web server. The paper also addresses the reliability of automated GO annotations by using a reference set of more than 6000 human proteins. The GOblet server is accessible at http://goblet.molgen.mpg.de.

  20. Computational algorithms to predict Gene Ontology annotations

    PubMed Central

    2015-01-01

    Background Gene function annotations, which are associations between a gene and a term of a controlled vocabulary describing gene functional features, are of paramount importance in modern biology. Datasets of these annotations, such as the ones provided by the Gene Ontology Consortium, are used to design novel biological experiments and interpret their results. Despite their importance, these sources of information have some known issues. They are incomplete, since biological knowledge is far from being definitive and it rapidly evolves, and some erroneous annotations may be present. Since the curation process of novel annotations is a costly procedure, both in economical and time terms, computational tools that can reliably predict likely annotations, and thus quicken the discovery of new gene annotations, are very useful. Methods We used a set of computational algorithms and weighting schemes to infer novel gene annotations from a set of known ones. We used the latent semantic analysis approach, implementing two popular algorithms (Latent Semantic Indexing and Probabilistic Latent Semantic Analysis) and propose a novel method, the Semantic IMproved Latent Semantic Analysis, which adds a clustering step on the set of considered genes. Furthermore, we propose the improvement of these algorithms by weighting the annotations in the input set. Results We tested our methods and their weighted variants on the Gene Ontology annotation sets of three model organism genes (Bos taurus, Danio rerio and Drosophila melanogaster ). The methods showed their ability in predicting novel gene annotations and the weighting procedures demonstrated to lead to a valuable improvement, although the obtained results vary according to the dimension of the input annotation set and the considered algorithm. Conclusions Out of the three considered methods, the Semantic IMproved Latent Semantic Analysis is the one that provides better results. In particular, when coupled with a proper

  1. Obol: Integrating Language and Meaning in Bio-Ontologies

    PubMed Central

    2004-01-01

    Ontologies are intended to capture and formalize a domain of knowledge. The ontologies comprising the Open Biological Ontologies (OBO) project, which includes the Gene Ontology (GO), are formalizations of various domains of biological knowledge. Ontologies within OBO typically lack computable definitions that serve to differentiate a term from other similar terms. The computer is unable to determine the meaning of a term, which presents problems for tools such as automated reasoners. Reasoners can be of enormous benefit in managing a complex ontology. OBO term names frequently implicitly encode the kind of definitions that can be used by computational tools, such as automated reasoners. The definitions encoded in the names are not easily amenable to computation, because the names are ostensibly natural language phrases designed for human users. These names are highly regular in their grammar, and can thus be treated as valid sentences in some formal or computable language.With a description of the rules underlying this formal language, term names can be parsed to derive computable definitions, which can then be reasoned over. This paper describes the effort to elucidate that language, called Obol, and the attempts to reason over the resulting definitions. The current implementation finds unique non-trivial definitions for around half of the terms in the GO, and has been used to find 223 missing relationships, which have since been added to the ontology. Obol has utility as an ontology maintenance tool, and as a means of generating computable definitions for a whole ontology. The software is available under an open-source license from: http://www.fruitfly. org/~cjm/obol. Supplementary material for this article can be found at: http://www. interscience.wiley.com/jpages/1531-6912/suppmat. PMID:18629143

  2. The Application of Ontological Methods toward Coastal Restoration

    NASA Astrophysics Data System (ADS)

    Ramachandran, R.; Movva, S.; Hardin, D.

    2007-12-01

    At the fall 2006 AGU meeting the Information Technology and Systems Center at the University of Alabama in Huntsville debuted a tool for ontology based search and resource aggregation called Noesis. Since that time Noesis, with a new ontology for seagrass habitats in the Gulf of Mexico, has been utilized to support evaluations of potential seagrass restoration sites. The seagrass ontology was generated from a standard stressor conceptual model description for five species of seagrass common to the Northern Gulf of Mexico. Coupling the seagrass ontology with the existing atmospheric science ontology allowed scientists to locate and retrieve substantial information about the seagrass habitat as well as stressors that impact the habitat induced by climate change and short term atmospheric phenomena. A domain specific catalog of seagrass resources was constructed and an application ontology developed that mapped the keywords of the catalog to the combined (atmospheric and seagrass) ontologies of Noesis. Noesis uses domain ontologies to help the user scope the search queries to ensure that the search results are both accurate and complete. The domain ontologies guide the user to refine their search query and thereby reduce the user's burden of experimenting with different search strings. Semantics are captured by refining the query terms to cover synonyms, specializations, generalizations and related concepts. As a resource aggregator Noesis categorizes search results from different online resources such as education materials, publications, datasets, web search engines that might be of interest to the user. This presentation will give an overview of Noesis and describe how it has been applied to coastal restoration investigations.

  3. The Domain Shared by Computational and Digital Ontology: A Phenomenological Exploration and Analysis

    ERIC Educational Resources Information Center

    Compton, Bradley Wendell

    2009-01-01

    The purpose of this dissertation is to explore and analyze a domain of research thought to be shared by two areas of philosophy: computational and digital ontology. Computational ontology is philosophy used to develop information systems also called computational ontologies. Digital ontology is philosophy dealing with our understanding of Being…

  4. Controlled vocabularies and ontologies in proteomics: overview, principles and practice.

    PubMed

    Mayer, Gerhard; Jones, Andrew R; Binz, Pierre-Alain; Deutsch, Eric W; Orchard, Sandra; Montecchi-Palazzi, Luisa; Vizcaíno, Juan Antonio; Hermjakob, Henning; Oveillero, David; Julian, Randall; Stephan, Christian; Meyer, Helmut E; Eisenacher, Martin

    2014-01-01

    This paper focuses on the use of controlled vocabularies (CVs) and ontologies especially in the area of proteomics, primarily related to the work of the Proteomics Standards Initiative (PSI). It describes the relevant proteomics standard formats and the ontologies used within them. Software and tools for working with these ontology files are also discussed. The article also examines the "mapping files" used to ensure correct controlled vocabulary terms that are placed within PSI standards and the fulfillment of the MIAPE (Minimum Information about a Proteomics Experiment) requirements. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.

  5. Uberon, an integrative multi-species anatomy ontology

    PubMed Central

    2012-01-01

    We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org PMID:22293552

  6. Simplified ontologies allowing comparison of developmental mammalian gene expression

    PubMed Central

    Kruger, Adele; Hofmann, Oliver; Carninci, Piero; Hayashizaki, Yoshihide; Hide, Winston

    2007-01-01

    Model organisms represent an important resource for understanding the fundamental aspects of mammalian biology. Mapping of biological phenomena between model organisms is complex and if it is to be meaningful, a simplified representation can be a powerful means for comparison. The Developmental eVOC ontologies presented here are simplified orthogonal ontologies describing the temporal and spatial distribution of developmental human and mouse anatomy. We demonstrate the ontologies by identifying genes showing a bias for developmental brain expression in human and mouse. PMID:17961239

  7. Reuse of termino-ontological resources and text corpora for building a multilingual domain ontology: an application to Alzheimer's disease.

    PubMed

    Dramé, Khadim; Diallo, Gayo; Delva, Fleur; Dartigues, Jean François; Mouillet, Evelyne; Salamon, Roger; Mougin, Fleur

    2014-04-01

    Ontologies are useful tools for sharing and exchanging knowledge. However ontology construction is complex and often time consuming. In this paper, we present a method for building a bilingual domain ontology from textual and termino-ontological resources intended for semantic annotation and information retrieval of textual documents. This method combines two approaches: ontology learning from texts and the reuse of existing terminological resources. It consists of four steps: (i) term extraction from domain specific corpora (in French and English) using textual analysis tools, (ii) clustering of terms into concepts organized according to the UMLS Metathesaurus, (iii) ontology enrichment through the alignment of French and English terms using parallel corpora and the integration of new concepts, (iv) refinement and validation of results by domain experts. These validated results are formalized into a domain ontology dedicated to Alzheimer's disease and related syndromes which is available online (http://lesim.isped.u-bordeaux2.fr/SemBiP/ressources/ontoAD.owl). The latter currently includes 5765 concepts linked by 7499 taxonomic relationships and 10,889 non-taxonomic relationships. Among these results, 439 concepts absent from the UMLS were created and 608 new synonymous French terms were added. The proposed method is sufficiently flexible to be applied to other domains.

  8. Effects of an ontology display with history representation on organizational memory information systems.

    PubMed

    Hwang, Wonil; Salvendy, Gavriel

    2005-06-10

    Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.

  9. Fuzzy ontologies for semantic interpretation of remotely sensed images

    NASA Astrophysics Data System (ADS)

    Djerriri, Khelifa; Malki, Mimoun

    2015-10-01

    Object-based image classification consists in the assignment of object that share similar attributes to object categories. To perform such a task the remote sensing expert uses its personal knowledge, which is rarely formalized. Ontologies have been proposed as solution to represent domain knowledge agreed by domain experts in a formal and machine readable language. Classical ontology languages are not appropriate to deal with imprecision or vagueness in knowledge. Fortunately, Description Logics for the semantic web has been enhanced by various approaches to handle such knowledge. This paper presents the extension of the traditional ontology-based interpretation with fuzzy ontology of main land-cover classes in Landsat8-OLI scenes (vegetation, built-up areas, water bodies, shadow, clouds, forests) objects. A good classification of image objects was obtained and the results highlight the potential of the method to be replicated over time and space in the perspective of transferability of the procedure.

  10. The unexpected high practical value of medical ontologies.

    PubMed

    Pinciroli, Francesco; Pisanelli, Domenico M

    2006-01-01

    Ontology is no longer a mere research topic, but its relevance has been recognized in several practical fields. Current applications areas include natural language translation, e-commerce, geographic information systems, legal information systems and biology and medicine. It is the backbone of solid and effective applications in health care and can help to build more powerful and more interoperable medical information systems. The design and implementation of ontologies in medicine is mainly focused on the re-organization of medical terminologies. This is obviously a difficult task and requires a deep analysis of the structure and the concepts of such terminologies, in order to define domain ontologies able to provide both flexibility and consistency to medical information systems. The aim of this special issue of Computers in Biology and Medicine is to report the current evolution of research in biomedical ontologies, presenting both papers devoted to methodological issues and works with a more applicative emphasis.

  11. Missing the (question) mark? What is a turn to ontology?

    PubMed

    Woolgar, Steve; Lezaun, Javier

    2015-06-01

    Our introductory essay in this journal's 2013 Special Issue on the 'turn to ontology' examined the shift from epistemology to ontology in science and technology studies and explored the implications of the notion of enactment. Three responses to that Special Issue argue that (I) there is no fundamental qualitative difference between the ontological turn and social constructivism, (2) we need to be wary of overly generic use of the term 'ontology' and (3) the language of 'turns' imposes constraints on the richness and diversity of science and technology studies. In this brief reply, we show how each of those critiques varies in its commitment to circumspection about making objective determinations of reality and to resisting reification. We illustrate our point by considering overlapping discussions in anthropology. This brings out the crucial difference between the science and technology studies slogan 'it could be otherwise' and the multinaturalist motto 'it actually is otherwise'.

  12. The environment ontology: contextualising biological and biomedical entities

    PubMed Central

    2013-01-01

    As biological and biomedical research increasingly reference the environmental context of the biological entities under study, the need for formalisation and standardisation of environment descriptors is growing. The Environment Ontology (ENVO; http://www.environmentontology.org) is a community-led, open project which seeks to provide an ontology for specifying a wide range of environments relevant to multiple life science disciplines and, through an open participation model, to accommodate the terminological requirements of all those needing to annotate data using ontology classes. This paper summarises ENVO’s motivation, content, structure, adoption, and governance approach. The ontology is available from http://purl.obolibrary.org/obo/envo.owl - an OBO format version is also available by switching the file suffix to “obo”. PMID:24330602

  13. Operational Plan Ontology Model for Interconnection and Interoperability

    NASA Astrophysics Data System (ADS)

    Long, F.; Sun, Y. K.; Shi, H. Q.

    2017-03-01

    Aiming at the assistant decision-making system’s bottleneck of processing the operational plan data and information, this paper starts from the analysis of the problem of traditional expression and the technical advantage of ontology, and then it defines the elements of the operational plan ontology model and determines the basis of construction. Later, it builds up a semi-knowledge-level operational plan ontology model. Finally, it probes into the operational plan expression based on the operational plan ontology model and the usage of the application software. Thus, this paper has the theoretical significance and application value in the improvement of interconnection and interoperability of the operational plan among assistant decision-making systems.

  14. An ontology approach to comparative phenomics in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant phenotypes (observable characteristics) are described using many different formats and specialized vocabularies or "ontologies". Similar phenotypes in different species may be given different names. These differences in terms complicate phenotype comparisons across species. This research descr...

  15. CLOnE: Controlled Language for Ontology Editing

    NASA Astrophysics Data System (ADS)

    Funk, Adam; Tablan, Valentin; Bontcheva, Kalina; Cunningham, Hamish; Davis, Brian; Handschuh, Siegfried

    This paper presents a controlled language for ontology editing and a software implementation, based partly on standard NLP tools, for processing that language and manipulating an ontology. The input sentences are analysed deterministically and compositionally with respect to a given ontology, which the software consults in order to interpret the input's semantics; this allows the user to learn fewer syntactic structures since some of them can be used to refer to either classes or instances, for example. A repeated-measures, task-based evaluation has been carried out in comparison with a well-known ontology editor; our software received favourable results for basic tasks. The paper also discusses work in progress and future plans for developing this language and tool.

  16. Similarity Based Semantic Web Service Match

    NASA Astrophysics Data System (ADS)

    Peng, Hui; Niu, Wenjia; Huang, Ronghuai

    Semantic web service discovery aims at returning the most matching advertised services to the service requester by comparing the semantic of the request service with an advertised service. The semantic of a web service are described in terms of inputs, outputs, preconditions and results in Ontology Web Language for Service (OWL-S) which formalized by W3C. In this paper we proposed an algorithm to calculate the semantic similarity of two services by weighted averaging their inputs and outputs similarities. Case study and applications show the effectiveness of our algorithm in service match.

  17. The Ontology of Command and Control (C2)

    DTIC Science & Technology

    2009-06-01

    Research and Technology Symposium (ICCRTS) was held Jun 15-17, 2009, in Washington, DC 14. ABSTRACT see report 15. SUBJECT TERMS 16. SECURITY...by ontology technology are indispensable.2 To identify the high frequency terms of the C2 domain, which will form the C2 Core Ontology, we need to...vocabulary. The Commander’s staff, including intelligence analysts, are subject matter experts on the technologies of information and intelligence

  18. Knowledge Discovery from Biomedical Ontologies in Cross Domains

    PubMed Central

    Shen, Feichen; Lee, Yugyung

    2016-01-01

    In recent years, there is an increasing demand for sharing and integration of medical data in biomedical research. In order to improve a health care system, it is required to support the integration of data by facilitating semantic interoperability systems and practices. Semantic interoperability is difficult to achieve in these systems as the conceptual models underlying datasets are not fully exploited. In this paper, we propose a semantic framework, called Medical Knowledge Discovery and Data Mining (MedKDD), that aims to build a topic hierarchy and serve the semantic interoperability between different ontologies. For the purpose, we fully focus on the discovery of semantic patterns about the association of relations in the heterogeneous information network representing different types of objects and relationships in multiple biological ontologies and the creation of a topic hierarchy through the analysis of the discovered patterns. These patterns are used to cluster heterogeneous information networks into a set of smaller topic graphs in a hierarchical manner and then to conduct cross domain knowledge discovery from the multiple biological ontologies. Thus, patterns made a greater contribution in the knowledge discovery across multiple ontologies. We have demonstrated the cross domain knowledge discovery in the MedKDD framework using a case study with 9 primary biological ontologies from Bio2RDF and compared it with the cross domain query processing approach, namely SLAP. We have confirmed the effectiveness of the MedKDD framework in knowledge discovery from multiple medical ontologies. PMID:27548262

  19. Developing a Domain Ontology for the Hydrologic Community

    NASA Astrophysics Data System (ADS)

    Piasecki, M.; Beran, B.

    2005-12-01

    The purpose of this study is to develop a domain ontology for hydraulic science and engineering by extending the Semantic Web for Earth and Environmental Terminology (SWEET) ontologies. SWEET provides an extensive list of terms for Earth Sciences expressed in Web Ontology Language (OWL). When compared to SWEET, our proposed ontology is much smaller in scope but more detailed within its domain. Extensions can involve different type of additions such as introduction of new terms (e.g. Hydrologic Unit, Jetty etc.) some of which may depend on other features (e.g. upstream, downstream depends on flow direction), increasing the level of detail for an existing element (e.g. by creating subclasses of EarthRealm:Dams, and adding dam types - Cofferdam, arch dam, embankment dam etc.-) or introducing new phenomena based on existing processes in the SWEET ontologies. Development of this ontology follows the scalability, orthogonality, application-independence and natural language-independence principles. Besides itself being an example of community involvement, contributions and critique from other members of hydrologic community will help further shaping this product to fit the needs of a larger neighboring user community

  20. Suggesting Missing Relations in Biomedical Ontologies Based on Lexical Regularities.

    PubMed

    Quesada-Martínez, Manuel; Fernández-Breis, Jesualdo Tomás; Karlsson, Daniel

    2016-01-01

    The number of biomedical ontologies has increased significantly in recent years. Many of such ontologies are the result of efforts of communities of domain experts and ontology engineers. The development and application of quality assurance (QA) methods should help these communities to develop useful ontologies for both humans and machines. According to previous studies, biomedical ontologies are rich in natural language content, but most of them are not so rich in axiomatic terms. Here, we are interested in studying the relation between content in natural language and content in axiomatic form. The analysis of the labels of the classes permits to identify lexical regularities (LRs), which are sets of words that are shared by labels of different classes. Our assumption is that the classes exhibiting an LR should be logically related through axioms, which is used to propose an algorithm to detect missing relations in the ontology. Here, we analyse a lexical regularity of SNOMED CT, congenital stenosis, which is reported as problematic by the SNOMED CT maintenance team.

  1. Biomedical imaging ontologies: A survey and proposal for future work

    PubMed Central

    Smith, Barry; Arabandi, Sivaram; Brochhausen, Mathias; Calhoun, Michael; Ciccarese, Paolo; Doyle, Scott; Gibaud, Bernard; Goldberg, Ilya; Kahn, Charles E.; Overton, James; Tomaszewski, John; Gurcan, Metin

    2015-01-01

    Background: Ontology is one strategy for promoting interoperability of heterogeneous data through consistent tagging. An ontology is a controlled structured vocabulary consisting of general terms (such as “cell” or “image” or “tissue” or “microscope”) that form the basis for such tagging. These terms are designed to represent the types of entities in the domain of reality that the ontology has been devised to capture; the terms are provided with logical definitions thereby also supporting reasoning over the tagged data. Aim: This paper provides a survey of the biomedical imaging ontologies that have been developed thus far. It outlines the challenges, particularly faced by ontologies in the fields of histopathological imaging and image analysis, and suggests a strategy for addressing these challenges in the example domain of quantitative histopathology imaging. Results and Conclusions: The ultimate goal is to support the multiscale understanding of disease that comes from using interoperable ontologies to integrate imaging data with clinical and genomics data. PMID:26167381

  2. Indivisibility, Complementarity and Ontology: A Bohrian Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Roldán-Charria, Jairo

    2014-12-01

    The interpretation of quantum mechanics presented in this paper is inspired by two ideas that are fundamental in Bohr's writings: indivisibility and complementarity. Further basic assumptions of the proposed interpretation are completeness, universality and conceptual economy. In the interpretation, decoherence plays a fundamental role for the understanding of measurement. A general and precise conception of complementarity is proposed. It is fundamental in this interpretation to make a distinction between ontological reality, constituted by everything that does not depend at all on the collectivity of human beings, nor on their decisions or limitations, nor on their existence, and empirical reality constituted by everything that not being ontological is, however, intersubjective. According to the proposed interpretation, neither the dynamical properties, nor the constitutive properties of microsystems like mass, charge and spin, are ontological. The properties of macroscopic systems and space-time are also considered to belong to empirical reality. The acceptance of the above mentioned conclusion does not imply a total rejection of the notion of ontological reality. In the paper, utilizing the Aristotelian ideas of general cause and potentiality, a relation between ontological reality and empirical reality is proposed. Some glimpses of ontological reality, in the form of what can be said about it, are finally presented.

  3. HuPSON: the human physiology simulation ontology

    PubMed Central

    2013-01-01

    Background Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. Results We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios. The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). Conclusions HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain. PMID:24267822

  4. Gene function prediction based on the Gene Ontology hierarchical structure.

    PubMed

    Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao

    2014-01-01

    The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.

  5. Effects of Guideline-Based Training on the Quality of Formal Ontologies: A Randomized Controlled Trial

    PubMed Central

    Boeker, Martin; Jansen, Ludger; Grewe, Niels; Röhl, Johannes; Schober, Daniel; Seddig-Raufie, Djamila; Schulz, Stefan

    2013-01-01

    Background The importance of ontologies in the biomedical domain is generally recognized. However, their quality is often too poor for large-scale use in critical applications, at least partially due to insufficient training of ontology developers. Objective To show the efficacy of guideline-based ontology development training on the performance of ontology developers. The hypothesis was that students who received training on top-level ontologies and design patterns perform better than those who only received training in the basic principles of formal ontology engineering. Methods A curriculum was implemented based on a guideline for ontology design. A randomized controlled trial on the efficacy of this curriculum was performed with 24 students from bioinformatics and related fields. After joint training on the fundamentals of ontology development the students were randomly allocated to two groups. During the intervention, each group received training on different topics in ontology development. In the assessment phase, all students were asked to solve modeling problems on topics taught differentially in the intervention phase. Primary outcome was the similarity of the students’ ontology artefacts compared with gold standard ontologies developed by the authors before the experiment; secondary outcome was the intra-group similarity of group members’ ontologies. Results The experiment showed no significant effect of the guideline-based training on the performance of ontology developers (a) the ontologies developed after specific training were only slightly but not significantly closer to the gold standard ontologies than the ontologies developed without prior specific training; (b) although significant differences for certain ontologies were detected, the intra-group similarity was not consistently influenced in one direction by the differential training. Conclusion Methodologically limited, this study cannot be interpreted as a general failure of a guideline

  6. Bohmian mechanics without wave function ontology

    NASA Astrophysics Data System (ADS)

    Solé, Albert

    2013-11-01

    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated as quasi-Newtonian, via the postulation of forces proportional to acceleration; advocates of the guidance approach defend the notion that the theory is essentially first-order and incorporates some concepts akin to those of Aristotelian physics. Here I analyze whether the desideratum of an interpretation of Bohmian mechanics that is both explanatorily adequate and not committed to configuration space realism favors one of these two approaches to the theory over the other. Contrary to some recent claims in the literature, I argue that the quasi-Newtonian approach based on the idea of a quantum potential does not come out the winner.

  7. Emmanuel Levinas and the ontology of eating.

    PubMed

    Goldstein, David

    2010-01-01

    This essay examines the existential philosophy of Emmanuel Levinas in relation to issues of food and eating. I argue that for Levinas, the act of eating is central to founding the ethical self, and that any understanding of Levinas's approach to embodiment must begin with what it means for us to ingest the outside world. Even in Levinas's earliest work, food is already a freighted ontological category. As his ideas mature, eating is transformed from the grounding for an ethical system to the system itself. The act of giving bread to another person takes its place as the ethical gesture par excellence. The story is not that we eat. The story is that we eat and develop a relationship to eating, and that relationship in turn helps determine our sense of ourselves in the world. Eating is the ethical event. The essay ends by asking how Levinas can help us answer the question, what would it mean to imagine every bite I take, or give to another, as a direct engagement with my own and my neighbor's existence?

  8. Summarizing and visualizing structural changes during the evolution of biomedical ontologies using a Diff Abstraction Network.

    PubMed

    Ochs, Christopher; Perl, Yehoshua; Geller, James; Haendel, Melissa; Brush, Matthew; Arabandi, Sivaram; Tu, Samson

    2015-08-01

    Biomedical ontologies are a critical component in biomedical research and practice. As an ontology evolves, its structure and content change in response to additions, deletions and updates. When editing a biomedical ontology, small local updates may affect large portions of the ontology, leading to unintended and potentially erroneous changes. Such unwanted side effects often go unnoticed since biomedical ontologies are large and complex knowledge structures. Abstraction networks, which provide compact summaries of an ontology's content and structure, have been used to uncover structural irregularities, inconsistencies and errors in ontologies. In this paper, we introduce Diff Abstraction Networks ("Diff AbNs"), compact networks that summarize and visualize global structural changes due to ontology editing operations that result in a new ontology release. A Diff AbN can be used to support curators in identifying unintended and unwanted ontology changes. The derivation of two Diff AbNs, the Diff Area Taxonomy and the Diff Partial-area Taxonomy, is explained and Diff Partial-area Taxonomies are derived and analyzed for the Ontology of Clinical Research, Sleep Domain Ontology, and eagle-i Research Resource Ontology. Diff Taxonomy usage for identifying unintended erroneous consequences of quality assurance and ontology merging are demonstrated.

  9. Determining Fitness-For-Use of Ontologies Through Change Management, Versioning and Publication Best Practices

    NASA Astrophysics Data System (ADS)

    West, P.; Zednik, S.; Fu, L.; Ma, X.; Fox, P. A.

    2015-12-01

    There is a large and growing number of domain ontologies available for researchers to leverage in their applications. When evaluating the use of an ontology it is important to not only consider whether the concepts and relationships defined in the ontology meet the requirements for purpose of use, but also how the change management, versioning and publication practices followed by the ontology publishers affect the maturity, stability, and long-term fitness-for-use of the ontology. In this presentation we share our experiences and a list of best practices we have developed when determining fitness for use of existing ontologies, and the process we follow when developing of our own ontologies and extensions to existing ontologies. Our experience covers domains such as solar terrestrial physics, geophysics and oceanography; and the use of general purpose ontologies such as those with representations of people, organizations, data catalogs, observations and measurements and provenance. We will cover how we determine ontology scope, manage ontology change, specify ontology version, and what best practices we follow for ontology publication and use. The implications of following these best practices is that the ontologies we use and develop are mature, stable, have a well-defined scope, and are published in accordance with linked data principles.

  10. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    NASA Astrophysics Data System (ADS)

    Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti

    2016-07-01

    In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during

  11. An Ontology Design Pattern for Surface Water Features

    SciTech Connect

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E; Feng, Chen-Chieh; Usery, Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  12. Towards a Consistent and Scientifically Accurate Drug Ontology.

    PubMed

    Hogan, William R; Hanna, Josh; Joseph, Eric; Brochhausen, Mathias

    2013-01-01

    Our use case for comparative effectiveness research requires an ontology of drugs that enables querying National Drug Codes (NDCs) by active ingredient, mechanism of action, physiological effect, and therapeutic class of the drug products they represent. We conducted an ontological analysis of drugs from the realist perspective, and evaluated existing drug terminology, ontology, and database artifacts from (1) the technical perspective, (2) the perspective of pharmacology and medical science (3) the perspective of description logic semantics (if they were available in Web Ontology Language or OWL), and (4) the perspective of our realism-based analysis of the domain. No existing resource was sufficient. Therefore, we built the Drug Ontology (DrOn) in OWL, which we populated with NDCs and other classes from RxNorm using only content created by the National Library of Medicine. We also built an application that uses DrOn to query for NDCs as outlined above, available at: http://ingarden.uams.edu/ingredients. The application uses an OWL-based description logic reasoner to execute end-user queries. DrOn is available at http://code.google.com/p/dr-on.

  13. Anatomical reasoning in the informatics age: Principles, ontologies, and agendas.

    PubMed

    Trelease, Robert B

    2006-03-01

    Reasoning about anatomy shares historical scientific roots with formal logic and artificial intelligence. With advances in computer-based intelligent programming, high-level biological structural knowledge may be exploited directly for biomedical research, clinical tasks, and educational applications. We consider the special nature of anatomical domain knowledge, emphasizing the complex concepts and semantics that must be represented in the development of ontologies, formally structured databases of biological information. We review the evolution of the fundamental scientific principles of logic and artificial intelligence needed for building machines that can make use of anatomical knowledge. We look at methods for compiling ontologies and compare the structural designs of the Foundational Model of Anatomy and Open GALEN ontologies. We further consider issues related to mapping developing anatomy resources with other biological ontologies in genomics, proteomics, and physiology. Although early results are promising, considerable resources and continuing effort must be committed to completing and extending anatomical ontologies for the ultimate success of computer-based anatomical reasoning. Anat Rec (Part B: New Anat) 289B:72-84, 2006. (c) 2006 Wiley-Liss, Inc.

  14. Statistical algorithms for ontology-based annotation of scientific literature

    PubMed Central

    2014-01-01

    Background Ontologies encode relationships within a domain in robust data structures that can be used to annotate data objects, including scientific papers, in ways that ease tasks such as search and meta-analysis. However, the annotation process requires significant time and effort when performed by humans. Text mining algorithms can facilitate this process, but they render an analysis mainly based upon keyword, synonym and semantic matching. They do not leverage information embedded in an ontology's structure. Methods We present a probabilistic framework that facilitates the automatic annotation of literature by indirectly modeling the restrictions among the different classes in the ontology. Our research focuses on annotating human functional neuroimaging literature within the Cognitive Paradigm Ontology (CogPO). We use an approach that combines the stochastic simplicity of naïve Bayes with the formal transparency of decision trees. Our data structure is easily modifiable to reflect changing domain knowledge. Results We compare our results across naïve Bayes, Bayesian Decision Trees, and Constrained Decision Tree classifiers that keep a human expert in the loop, in terms of the quality measure of the F1-mirco score. Conclusions Unlike traditional text mining algorithms, our framework can model the knowledge encoded by the dependencies in an ontology, albeit indirectly. We successfully exploit the fact that CogPO has explicitly stated restrictions, and implicit dependencies in the form of patterns in the expert curated annotations. PMID:25093071

  15. Advancing Science through Mining Libraries, Ontologies, and Communities*

    PubMed Central

    Evans, James A.; Rzhetsky, Andrey

    2011-01-01

    Life scientists today cannot hope to read everything relevant to their research. Emerging text-mining tools can help by identifying topics and distilling statements from books and articles with increased accuracy. Researchers often organize these statements into ontologies, consistent systems of reality claims. Like scientific thinking and interchange, however, text-mined information (even when accurately captured) is complex, redundant, sometimes incoherent, and often contradictory: it is rooted in a mixture of only partially consistent ontologies. We review work that models scientific reason and suggest how computational reasoning across ontologies and the broader distribution of textual statements can assess the certainty of statements and the process by which statements become certain. With the emergence of digitized data regarding networks of scientific authorship, institutions, and resources, we explore the possibility of accounting for social dependences and cultural biases in reasoning models. Computational reasoning is starting to fill out ontologies and flag internal inconsistencies in several areas of bioscience. In the not too distant future, scientists may be able to use statements and rich models of the processes that produced them to identify underexplored areas, resurrect forgotten findings and ideas, deconvolute the spaghetti of underlying ontologies, and synthesize novel knowledge and hypotheses. PMID:21566119

  16. Quality assurance of the gene ontology using abstraction networks.

    PubMed

    Ochs, Christopher; Perl, Yehoshua; Halper, Michael; Geller, James; Lomax, Jane

    2016-06-01

    The gene ontology (GO) is used extensively in the field of genomics. Like other large and complex ontologies, quality assurance (QA) efforts for GO's content can be laborious and time consuming. Abstraction networks (AbNs) are summarization networks that reveal and highlight high-level structural and hierarchical aggregation patterns in an ontology. They have been shown to successfully support QA work in the context of various ontologies. Two kinds of AbNs, called the area taxonomy and the partial-area taxonomy, are developed for GO hierarchies and derived specifically for the biological process (BP) hierarchy. Within this framework, several QA heuristics, based on the identification of groups of anomalous terms which exhibit certain taxonomy-defined characteristics, are introduced. Such groups are expected to have higher error rates when compared to other terms. Thus, by focusing QA efforts on anomalous terms one would expect to find relatively more erroneous content. By automatically identifying these potential problem areas within an ontology, time and effort will be saved during manual reviews of GO's content. BP is used as a testbed, with samples of three kinds of anomalous BP terms chosen for a taxonomy-based QA review. Additional heuristics for QA are demonstrated. From the results of this QA effort, it is observed that different kinds of inconsistencies in the modeling of GO can be exposed with the use of the proposed heuristics. For comparison, the results of QA work on a sample of terms chosen from GO's general population are presented.

  17. A Separable, Dynamically Local Ontological Model of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pienaar, Jacques

    2016-01-01

    A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.

  18. Strengths and limitations of formal ontologies in the biomedical domain

    PubMed Central

    Schulz, Stefan; Stenzhorn, Holger; Boeker, Martin; Smith, Barry

    2010-01-01

    We propose a typology of representational artifacts for health care and life sciences domains and associate this typology with different kinds of formal ontology and logic, drawing conclusions as to the strengths and limitations for ontology of different kinds of logical resources, with a focus on description logics. The four types of domain representation we consider are: (i) lexico-semantic representation, (ii) representation of types of entities, (iii) representations of background knowledge, and (iv) representation of individuals. We advocate a clear distinction of the four kinds of representation in order to provide a more rational basis for using of ontologies and related artifacts to advance integration of data and interoperability of associated reasoning systems. We highlight the fact that only a minor portion of scientifically relevant facts in a domain such as biomedicine can be adequately represented by formal ontologies when the latter are conceived as representations of entity types. In particular, the attempt to encode default or probabilistic knowledge using ontologies so conceived is prone to produce unintended, erroneous models. PMID:20640238

  19. The Plant Ontology: A Tool for Plant Genomics.

    PubMed

    Cooper, Laurel; Jaiswal, Pankaj

    2016-01-01

    The use of controlled, structured vocabularies (ontologies) has become a critical tool for scientists in the post-genomic era of massive datasets. Adoption and integration of common vocabularies and annotation practices enables cross-species comparative analyses and increases data sharing and reusability. The Plant Ontology (PO; http://www.plantontology.org/ ) describes plant anatomy, morphology, and the stages of plant development, and offers a database of plant genomics annotations associated to the PO terms. The scope of the PO has grown from its original design covering only rice, maize, and Arabidopsis, and now includes terms to describe all green plants from angiosperms to green algae.This chapter introduces how the PO and other related ontologies are constructed and organized, including languages and software used for ontology development, and provides an overview of the key features. Detailed instructions illustrate how to search and browse the PO database and access the associated annotation data. Users are encouraged to provide input on the ontology through the online term request form and contribute datasets for integration in the PO database.

  20. Enabling Enrichment Analysis with the Human Disease Ontology

    PubMed Central

    LePendu, Paea; Musen, Mark A.; Shah, Nigam H.

    2012-01-01

    Advanced statistical methods used to analyze high-throughput data such as gene-expression assays result in long lists of “significant genes.” One way to gain insight into the significance of altered expression levels is to determine whether Gene Ontology (GO) terms associated with a particular biological process, molecular function, or cellular component are over- or under-represented in the set of genes deemed significant. This process, referred to as enrichment analysis, profiles a gene-set, and is widely used to make sense of the results of high-throughput experiments. Our goal is to develop and apply general enrichment analysis methods to profile other sets of interest, such as patient cohorts from the electronic medical record, using a variety of ontologies including SNOMED CT, MedDRA, RxNorm, and others. Although it is possible to perform enrichment analysis using ontologies other than the GO, a key pre-requisite is the availability of a background set of annotations to enable the enrichment calculation. In the case of the GO, this background set is provided by the Gene Ontology Annotations. In the current work, we describe: (i) a general method that uses hand-curated GO annotations as a starting point for creating background datasets for enrichment analysis using other ontologies; and (ii) a gene–disease background annotation set—that enables disease-based enrichment—to demonstrate feasibility of our method. PMID:21550421

  1. An integrated pharmacokinetics ontology and corpus for text mining

    PubMed Central

    2013-01-01

    Background Drug pharmacokinetics parameters, drug interaction parameters, and pharmacogenetics data have been unevenly collected in different databases and published extensively in the literature. Without appropriate pharmacokinetics ontology and a well annotated pharmacokinetics corpus, it will be difficult to develop text mining tools for pharmacokinetics data collection from the literature and pharmacokinetics data integration from multiple databases. Description A comprehensive pharmacokinetics ontology was constructed. It can annotate all aspects of in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. It covers all drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK-corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK-corpus was demonstrated by a drug interaction extraction text mining analysis. Conclusions The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK-corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions. PMID:23374886

  2. Neuroanatomical domain of the foundational model of anatomy ontology

    PubMed Central

    2014-01-01

    Background The diverse set of human brain structure and function analysis methods represents a difficult challenge for reconciling multiple views of neuroanatomical organization. While different views of organization are expected and valid, no widely adopted approach exists to harmonize different brain labeling protocols and terminologies. Our approach uses the natural organizing framework provided by anatomical structure to correlate terminologies commonly used in neuroimaging. Description The Foundational Model of Anatomy (FMA) Ontology provides a semantic framework for representing the anatomical entities and relationships that constitute the phenotypic organization of the human body. In this paper we describe recent enhancements to the neuroanatomical content of the FMA that models cytoarchitectural and morphological regions of the cerebral cortex, as well as white matter structure and connectivity. This modeling effort is driven by the need to correlate and reconcile the terms used in neuroanatomical labeling protocols. By providing an ontological framework that harmonizes multiple views of neuroanatomical organization, the FMA provides developers with reusable and computable knowledge for a range of biomedical applications. Conclusions A requirement for facilitating the integration of basic and clinical neuroscience data from diverse sources is a well-structured ontology that can incorporate, organize, and associate neuroanatomical data. We applied the ontological framework of the FMA to align the vocabularies used by several human brain atlases, and to encode emerging knowledge about structural connectivity in the brain. We highlighted several use cases of these extensions, including ontology reuse, neuroimaging data annotation, and organizing 3D brain models. PMID:24398054

  3. The NIFSTD and BIRNLex vocabularies: building comprehensive ontologies for neuroscience.

    PubMed

    Bug, William J; Ascoli, Giorgio A; Grethe, Jeffrey S; Gupta, Amarnath; Fennema-Notestine, Christine; Laird, Angela R; Larson, Stephen D; Rubin, Daniel; Shepherd, Gordon M; Turner, Jessica A; Martone, Maryann E

    2008-09-01

    A critical component of the Neuroscience Information Framework (NIF) project is a consistent, flexible terminology for describing and retrieving neuroscience-relevant resources. Although the original NIF specification called for a loosely structured controlled vocabulary for describing neuroscience resources, as the NIF system evolved, the requirement for a formally structured ontology for neuroscience with sufficient granularity to describe and access a diverse collection of information became obvious. This requirement led to the NIF standardized (NIFSTD) ontology, a comprehensive collection of common neuroscience domain terminologies woven into an ontologically consistent, unified representation of the biomedical domains typically used to describe neuroscience data (e.g., anatomy, cell types, techniques), as well as digital resources (tools, databases) being created throughout the neuroscience community. NIFSTD builds upon a structure established by the BIRNLex, a lexicon of concepts covering clinical neuroimaging research developed by the Biomedical Informatics Research Network (BIRN) project. Each distinct domain module is represented using the Web Ontology Language (OWL). As much as has been practical, NIFSTD reuses existing community ontologies that cover the required biomedical domains, building the more specific concepts required to annotate NIF resources. By following this principle, an extensive vocabulary was assembled in a relatively short period of time for NIF information annotation, organization, and retrieval, in a form that promotes easy extension and modification. We report here on the structure of the NIFSTD, and its predecessor BIRNLex, the principles followed in its construction and provide examples of its use within NIF.

  4. A study on heterogeneous distributed spatial information platform based on semantic Web services

    NASA Astrophysics Data System (ADS)

    Peng, Shuang-yun; Yang, Kun; Xu, Quan-li; Huang, Bang-mei

    2008-10-01

    With the development of Semantic Web technology, the spatial information service based on ontology is an effective way for sharing and interoperation of heterogeneous information resources in the distributed network environment. This paper discusses spatial information sharing and interoperability in the Semantic Web Services architecture. Through using Ontology record spatial information in sharing knowledge system, explicit and formalization expresses the default and the concealment semantic information. It provides the prerequisite for spatial information sharing and interoperability; Through Semantic Web Services technology parses Ontology and intelligent buildings services under network environment, form a network of services. In order to realize the practical applications of spatial information sharing and interoperation in different brunches of CDC system, a prototype system for HIV/AIDS information sharing based on geo-ontology has also been developed by using the methods described above.

  5. Visualization and Ontology of Geospatial Intelligence

    NASA Astrophysics Data System (ADS)

    Chan, Yupo

    Recent events have deepened our conviction that many human endeavors are best described in a geospatial context. This is evidenced in the prevalence of location-based services, as afforded by the ubiquitous cell phone usage. It is also manifested by the popularity of such internet engines as Google Earth. As we commute to work, travel on business or pleasure, we make decisions based on the geospatial information provided by such location-based services. When corporations devise their business plans, they also rely heavily on such geospatial data. By definition, local, state and federal governments provide services according to geographic boundaries. One estimate suggests that 85 percent of data contain spatial attributes.

  6. Data Ontology and an Information System Realization for Web-Based Management of Image Measurements

    PubMed Central

    Prodanov, Dimiter

    2011-01-01

    Image acquisition, processing, and quantification of objects (morphometry) require the integration of data inputs and outputs originating from heterogeneous sources. Management of the data exchange along this workflow in a systematic manner poses several challenges, notably the description of the heterogeneous meta-data and the interoperability between the software used. The use of integrated software solutions for morphometry and management of imaging data in combination with ontologies can reduce meta-data loss and greatly facilitate subsequent data analysis. This paper presents an integrated information system, called LabIS. The system has the objectives to automate (i) the process of storage, annotation, and querying of image measurements and (ii) to provide means for data sharing with third party applications consuming measurement data using open standard communication protocols. LabIS implements 3-tier architecture with a relational database back-end and an application logic middle tier realizing web-based user interface for reporting and annotation and a web-service communication layer. The image processing and morphometry functionality is backed by interoperability with ImageJ, a public domain image processing software, via integrated clients. Instrumental for the latter feat was the construction of a data ontology representing the common measurement data model. LabIS supports user profiling and can store arbitrary types of measurements, regions of interest, calibrations, and ImageJ settings. Interpretation of the stored measurements is facilitated by atlas mapping and ontology-based markup. The system can be used as an experimental workflow management tool allowing for description and reporting of the performed experiments. LabIS can be also used as a measurements repository that can be transparently accessed by computational environments, such as Matlab. Finally, the system can be used as a data sharing tool. PMID:22275893

  7. A novel paradigm for cell and molecule interaction ontology: from the CMM model to IMGT-ONTOLOGY

    PubMed Central

    2010-01-01

    Background Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other disciplines, it is necessary to have a list of the most important and frequently used concepts coherently defined. Results We propose a novel paradigm for generating new concepts for an ontology, starting from model rather than developing a database. We apply that approach to generate concepts for cell and molecule interaction starting from an agent based model. This effort provides a solid infrastructure that is useful to overcome the semantic ambiguities that arise between biologists and mathematicians, physicists, and computer scientists, when they interact in a multidisciplinary field. Conclusions This effort represents the first attempt at linking molecule ontology with cell ontology, in IMGT-ONTOLOGY, the well established ontology in immunogenetics and immunoinformatics, and a paradigm for life science biology. With the increasing use of models in biology and medicine, the need to link different levels, from molecules to cells to tissues and organs, is increasingly important. PMID:20167082

  8. Perceptual Pragmatism and the Naturalized Ontology of Color.

    PubMed

    Chirimuuta, Mazviita

    2017-01-01

    This paper considers whether there can be any such thing as a naturalized metaphysics of color-any distillation of the commitments of perceptual science with regard to color ontology. I first make some observations about the kinds of philosophical commitments that sometimes bubble to the surface in the psychology and neuroscience of color. Unsurprisingly, because of the range of opinions expressed, an ontology of color cannot simply be read off from scientists' definitions and theoretical statements. I next consider two alternative routes. First, conceptual pluralism inspired by Mark Wilson's analysis of scientific representation. I argue that these findings leave the prospects for a naturalized color ontology rather dim. Second, I outline a naturalized epistemology of perception. I ask how the correctness and informativeness of perceptual states is understood by contemporary perceptual science. I argue that the detectionist ideal of correspondence should be replaced by the pragmatic ideal of usefulness. I argue that this result has significant implications for the metaphysics of color.

  9. OntoSoft: An Ontology for Capturing Scientific Software Metadata

    NASA Astrophysics Data System (ADS)

    Gil, Y.

    2015-12-01

    We have developed OntoSoft, an ontology to describe metadata for scientific software. The ontology is designed considering how scientists would approach the reuse and sharing of software. This includes supporting a scientist to: 1) identify software, 2) understand and assess software, 3) execute software, 4) get support for the software, 5) do research with the software, and 6) update the software. The ontology is available in OWL and contains more than fifty terms. We have used OntoSoft to structure the OntoSoft software registry for geosciences, and to develop user interfaces to capture its metadata. OntoSoft is part of the NSF EarthCube initiative and contributes to its vision of scientific knowledge sharing, in this case about scientific software.

  10. Controlled vocabularies and ontologies in proteomics: Overview, principles and practice☆

    PubMed Central

    Mayer, Gerhard; Jones, Andrew R.; Binz, Pierre-Alain; Deutsch, Eric W.; Orchard, Sandra; Montecchi-Palazzi, Luisa; Vizcaíno, Juan Antonio; Hermjakob, Henning; Oveillero, David; Julian, Randall; Stephan, Christian; Meyer, Helmut E.; Eisenacher, Martin

    2014-01-01

    This paper focuses on the use of controlled vocabularies (CVs) and ontologies especially in the area of proteomics, primarily related to the work of the Proteomics Standards Initiative (PSI). It describes the relevant proteomics standard formats and the ontologies used within them. Software and tools for working with these ontology files are also discussed. The article also examines the “mapping files” used to ensure correct controlled vocabulary terms that are placed within PSI standards and the fulfillment of the MIAPE (Minimum Information about a Proteomics Experiment) requirements. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan. PMID:23429179

  11. Grinder Variant System Design and Implementation Based on Ontology

    NASA Astrophysics Data System (ADS)

    Yang, G. H.; Zhang, T. P.

    In order to improve the efficiency of product design and reuse in heterogeneous system of knowledge sharing, this paper introduced the concept of ontology into product variant design, and grinding machine design was as an example. A lot of experience and accumulated knowledge in product design was shared and reused. It is precisely to formulate ontology knowledge such as variant design features and parameter, and applied the software protégé4.3 to construct ontology model, as well as runed resoning on model data information. It developed a set of complete product intelligent system of variant design, which can effectively solve the problem of the repeated design and greatly shorten product development cycle.

  12. Ontology Development and Evolution in the Accident Investigation Domain

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert; Berrios, Dan; Williams, James

    2004-01-01

    InvestiigationOrganizer (IO) is a collaborative semantic web system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, allowing investigators to integrate evidence, causal models, and investigation results. IO has been used to support investigations ranging from a small property damage case to the loss of the Space Shuttle Columbia. Through IO'S use in these investigations, we have learned significant lessons? about the application of ontologies and semantic systems to solving real-world problems. This paper will describe the development of the ontology within IO, from the initial development, its growth in response to user requests during use in investigations, and the recent work that was done to control the results of that growth. This paper will also describe the lessons learned from this experience and how they may apply to the implementaton of future ontologies and semantic systems.

  13. Ontology-Based Federated Data Access to Human Studies Information

    PubMed Central

    Sim, Ida; Carini, Simona; Tu, Samson W.; Detwiler, Landon T.; Brinkley, James; Mollah, Shamim A.; Burke, Karl; Lehmann, Harold P.; Chakraborty, Swati; Wittkowski, Knut M.; Pollock, Brad H.; Johnson, Thomas M.; Huser, Vojtech

    2012-01-01

    Human studies are one of the most valuable sources of knowledge in biomedical research, but data about their design and results are currently widely dispersed in siloed systems. Federation of these data is needed to facilitate large-scale data analysis to realize the goals of evidence-based medicine. The Human Studies Database project has developed an informatics infrastructure for federated query of human studies databases, using a generalizable approach to ontology-based data access. Our approach has three main components. First, the Ontology of Clinical Research (OCRe) provides the reference semantics. Second, a data model, automatically derived from OCRe into XSD, maintains semantic synchrony of the underlying representations while facilitating data acquisition using common XML technologies. Finally, the Query Integrator issues queries distributed over the data, OCRe, and other ontologies such as SNOMED in BioPortal. We report on a demonstration of this infrastructure on data acquired from institutional systems and from ClinicalTrials.gov. PMID:23304360

  14. Mapping the entangled ontology of science teachers' lived experience

    NASA Astrophysics Data System (ADS)

    Daugbjerg, Peer S.; de Freitas, Elizabeth; Valero, Paola

    2015-09-01

    In this paper we investigate how the bodily activity of teaching, along with the embodied aspect of lived experience, relates to science teachers' ways of dealing with bodies as living organisms which are both the subject matter as well as the site or vehicle of learning. More precisely, the following questions are pursued: (1) In what ways do primary science teachers refer to the lived and living body in teaching and learning? (2) In what ways do primary science teachers tap into past experiences in which the body figured prominently in order to teach students about living organisms? We draw on the relational ontology and intra-action of Karen Barad (J Women Cult Soc 28(3): 801, 2003) as she argues for a "relational ontology" that sees a relation as a dynamic flowing entanglement of a matter and meaning. We combine this with the materialist phenomenological studies of embodiment by SungWon Hwang and Wolff-Michael Roth (Scientific and mathematical bodies, Sense Publishers, Rotterdam, 2011), as they address how the teachers and students are present in the classroom with/in their "living and lived bodies". Our aim is to use theoretical insights from these two different but complementary approaches to map the embodiment of teachers' experiences and actions. We build our understanding of experience on the work of John Dewey (Experience and education, Simon & Schuster, New York, 1938) and also Jean Clandinin and Michael Connelly (Handbook of qualitative research, Sage Publications, California, 2000), leading us to propose three dimensions: settings, relations and continuity. This means that bodies and settings are mutually entailed in the present relation, and furthermore that the past as well as the present of these bodies and settings—their continuity—is also part of the present relation. We analyse the entanglement of lived experience and embodied teaching using these three proposed dimensions of experience. Analysing interviews and observations of three Danish

  15. DeMO: An Ontology for Discrete-event Modeling and Simulation.

    PubMed

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-09-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community.

  16. A unified software framework for deriving, visualizing, and exploring abstraction networks for ontologies.

    PubMed

    Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A

    2016-08-01

    Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated.

  17. OWL 2 learn profile: an ontology sublanguage for the learning domain.

    PubMed

    Heiyanthuduwage, Sudath R; Schwitter, Rolf; Orgun, Mehmet A

    2016-01-01

    Many experimental ontologies have been developed for the learning domain for use at different institutions. These ontologies include different OWL/OWL 2 (Web Ontology Language) constructors. However, it is not clear which OWL 2 constructors are the most appropriate ones for designing ontologies for the learning domain. It is possible that the constructors used in these learning domain ontologies match one of the three standard OWL 2 profiles (sublanguages). To investigate whether this is the case, we have analysed a corpus of 14 ontologies designed for the learning domain. We have also compared the constructors used in these ontologies with those of the OWL 2 RL profile, one of the OWL 2 standard profiles. The results of our analysis suggest that the OWL 2 constructors used in these ontologies do not exactly match the standard OWL 2 RL profile, but form a subset of that profile which we call OWL 2 Learn.

  18. The EMBRACE web service collection

    PubMed Central

    Pettifer, Steve; Ison, Jon; Kalaš, Matúš; Thorne, Dave; McDermott, Philip; Jonassen, Inge; Liaquat, Ali; Fernández, José M.; Rodriguez, Jose M.; Partners, INB-; Pisano, David G.; Blanchet, Christophe; Uludag, Mahmut; Rice, Peter; Bartaseviciute, Edita; Rapacki, Kristoffer; Hekkelman, Maarten; Sand, Olivier; Stockinger, Heinz; Clegg, Andrew B.; Bongcam-Rudloff, Erik; Salzemann, Jean; Breton, Vincent; Attwood, Teresa K.; Cameron, Graham; Vriend, Gert

    2010-01-01

    The EMBRACE (European Model for Bioinformatics Research and Community Education) web service collection is the culmination of a 5-year project that set out to investigate issues involved in developing and deploying web services for use in the life sciences. The project concluded that in order for web services to achieve widespread adoption, standards must be defined for the choice of web service technology, for semantically annotating both service function and the data exchanged, and a mechanism for discovering services must be provided. Building on this, the project developed: EDAM, an ontology for describing life science web services; BioXSD, a schema for exchanging data between services; and a centralized registry (http://www.embraceregistry.net) that collects together around 1000 services developed by the consortium partners. This article presents the current status of the collection and its associated recommendations and standards definitions. PMID:20462862

  19. Towards Ontology as Knowledge Representation for Intellectual Capital Measurement

    NASA Astrophysics Data System (ADS)

    Zadjabbari, B.; Wongthongtham, P.; Dillon, T. S.

    For many years, physical asset indicators were the main evidence of an organization’s successful performance. However, the situation has changed after information technology revolution in the knowledge-based economy. Since 1980’s business performance has not been limited only to physical assets instead intellectual capital are increasingly playing a major role in business performance. In this paper, we utilize ontology as a tool for knowledge representation in the domain of intellectual capital measurement. The ontology classifies ways of intangible capital measurement.

  20. ODISEES: Ontology-Driven Interactive Search Environment for Earth Sciences

    NASA Technical Reports Server (NTRS)

    Rutherford, Matthew T.; Huffer, Elisabeth B.; Kusterer, John M.; Quam, Brandi M.

    2015-01-01

    This paper discusses the Ontology-driven Interactive Search Environment for Earth Sciences (ODISEES) project currently being developed to aid researchers attempting to find usable data among an overabundance of closely related data. ODISEES' ontological structure relies on a modular, adaptable concept modeling approach, which allows the domain to be modeled more or less as it is without worrying about terminology or external requirements. In the model, variables are individually assigned semantic content based on the characteristics of the measurements they represent, allowing intuitive discovery and comparison of data without requiring the user to sift through large numbers of data sets and variables to find the desired information.

  1. Ontologies and Databases: The DL-Lite Approach

    NASA Astrophysics Data System (ADS)

    Calvanese, Diego; de Giacomo, Giuseppe; Lembo, Domenico; Lenzerini, Maurizio; Poggi, Antonella; Rodriguez-Muro, Mariano; Rosati, Riccardo

    Ontologies provide a conceptualization of a domain of interest. Nowadays, they are typically represented in terms of Description Logics (DLs), and are seen as the key technology used to describe the semantics of information at various sites. The idea of using ontologies as a conceptual view over data repositories is becoming more and more popular, but for it to become widespread in standard applications, it is fundamental that the conceptual layer through which the underlying data layer is accessed does not introduce a significant overhead in dealing with the data. Based on these observations, in recent years a family of DLs, called DL-Lite, has been proposed, which is specifically tailored to capture basic ontology and conceptual data modeling languages, while keeping low complexity of reasoning and of answering complex queries, in particular when the complexity is measured w.r.t. the size of the data. In this article, we present a detailed account of the major results that have been achieved for the DL-Lite family. Specifically, we concentrate on DL-Lite_{mathcal{A},id}, an expressive member of this family, present algorithms for reasoning and query answering over DL-Lite_{mathcal{A},id} ontologies, and analyze their computational complexity. Such algorithms exploit the distinguishing feature of the logics in the DL-Lite family, namely that ontology reasoning and answering unions of conjunctive queries is first-order rewritable, i.e., it can be delegated to a relational database management system. We analyze also the effect of extending the logic with typical DL constructs, and show that for most such extensions, the nice computational properties of the DL-Lite family are lost. We address then the problem of accessing relational data sources through an ontology, and present a solution to the notorious impedance mismatch between the abstract objects in the ontology and the values appearing in data sources. The solution exploits suitable mappings that create the

  2. The development of non-coding RNA ontology

    PubMed Central

    Eilbeck, Karen; Smith, Barry; Blake, Judith A.; Dou, Dejing; Huang, Weili; Natale, Darren A.; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T.; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J.; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M.; Tan, Ming

    2016-01-01

    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data. PMID:27990175

  3. Effects of student ontological position on cognition of human origins

    NASA Astrophysics Data System (ADS)

    Ervin, Jeremy Alan

    In this study, the narratives from a hermeneutical dialectic cycle of three high school students were analyzed to understand the influences of ontological position on the learning of human origins. The interpretation of the narratives provides the reader an opportunity to consider the learning process from the perspective of worldview and conceptual change theories. Questions guiding this research include: Within a context of a worldview, what is the range of ontological positions among a high school AP biology class? To what extent does ontological position influence the learning of scientific concepts about human origins? If a student's ontological position is contradictory to scientific explanation of human origins, how will learning strategies and motivations change? All consenting students in an AP biology class were interviewed in order to select three students who represented three different ontological positions of a worldview: No Supernatural, Supernatural Without Impact, or Supernatural Impact. The issue of worldview is addressed at length in this work. Consenting students had completed the graduation requirements in biology, but were taking an additional biology course in preparation for college. Enrollment in an AP biology course was assumed to indicate that the selected students have an understanding of the concept of human origins at a comprehensive level, but not necessarily at an apprehension level, both being needed for conceptual change. Examination of the narratives reveals that students may alternate between two ontological positions in order to account for inconsistencies within a situation. This relativity enables the range of ontological positions to vary depending on concepts being considered. Not all Supernatural Impact positions conflict with biological understanding of human origins due to the ability of some to create a dichotomy between religion and school. Any comprehended concepts within this dichotomy lead to plagiaristic knowledge

  4. A Simulation Model Articulation of the REA Ontology

    NASA Astrophysics Data System (ADS)

    Laurier, Wim; Poels, Geert

    This paper demonstrates how the REA enterprise ontology can be used to construct simulation models for business processes, value chains and collaboration spaces in supply chains. These models support various high-level and operational management simulation applications, e.g. the analysis of enterprise sustainability and day-to-day planning. First, the basic constructs of the REA ontology and the ExSpect modelling language for simulation are introduced. Second, collaboration space, value chain and business process models and their conceptual dependencies are shown, using the ExSpect language. Third, an exhibit demonstrates the use of value chain models in predicting the financial performance of an enterprise.

  5. Ontology Language to Support Description of Experiment Control System Semantics, Collaborative Knowledge-Base Design and Ontology Reuse

    SciTech Connect

    Vardan Gyurjyan, D Abbott, G Heyes, E Jastrzembski, B Moffit, C Timmer, E Wolin

    2009-10-01

    In this paper we discuss the control domain specific ontology that is built on top of the domain-neutral Resource Definition Framework (RDF). Specifically, we will discuss the relevant set of ontology concepts along with the relationships among them in order to describe experiment control components and generic event-based state machines. Control Oriented Ontology Language (COOL) is a meta-data modeling language that provides generic means for representation of physics experiment control processes and components, and their relationships, rules and axioms. It provides a semantic reference frame that is useful for automating the communication of information for configuration, deployment and operation. COOL has been successfully used to develop a complete and dynamic knowledge-base for experiment control systems, developed using the AFECS framework.

  6. Re-use of standard ontologies in a water quality vocabulary (Invited)

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Simons, B.; Yu, J.

    2013-12-01

    Observations provide the key constraints on environmental and earth science investigations. Where an investigation uses data sourced from multiple providers, data fusion depends on the observation classifications being comparable. Standard models for observation metadata are available (ISO 19156) which provide slots for key classifiers, in particular, the observed property and observation procedure. While universal use of common vocabularies might be desirable in achieving interoperability, this is unlikely in practice. However, semantic web vocabularies provide the means for asserting proximity and other relationships between items in different vocabularies, thus enabling mediation as an interoperability solution. Here we report on the development of a vocabulary for water quality observations in which recording relationships with existing vocabularies was a core strategy. The vocabulary is required to enable combination of a number of groundwater, surface water and marine water quality datasets on an ongoing basis. Our vocabulary model is based on the principle that observations generally report values of specific parameters which are defined by combining a number of facets. We start from Quantities, Units, Dimensions and Data Types (QUDT), which is an OWL ontology developed by NASA and TopQuadrant. We extend this with two additional classes, for Observed Property and Identified Object, and two linking properties, which enable us to create an observed property vocabulary for water quality applications. This ontology is comparable with models for observed properties developed as part of OGC's Observations and Measurements v1.0 standard, the INSPIRE Generic Conceptual Model, and may also be compared with the W3C SSN Ontology, which is based on the DOLCE Ultralite upper-ontology. Water quality observations commonly report concentrations of chemicals, both natural and contaminant, so we tie many of the Identified Objects to items from Chemical Entities of Biological

  7. An Approach to Folksonomy-Based Ontology Maintenance for Learning Environments

    ERIC Educational Resources Information Center

    Gasevic, D.; Zouaq, Amal; Torniai, Carlo; Jovanovic, J.; Hatala, Marek

    2011-01-01

    Recent research in learning technologies has demonstrated many promising contributions from the use of ontologies and semantic web technologies for the development of advanced learning environments. In spite of those benefits, ontology development and maintenance remain the key research challenges to be solved before ontology-enhanced learning…

  8. Ontologies for Effective Use of Context in E-Learning Settings

    ERIC Educational Resources Information Center

    Jovanovic, Jelena; Gasevic, Dragan; Knight, Colin; Richards, Griff

    2007-01-01

    This paper presents an ontology-based framework aimed at explicit representation of context-specific metadata derived from the actual usage of learning objects and learning designs. The core part of the proposed framework is a learning object context ontology, that leverages a range of other kinds of learning ontologies (e.g., user modeling…

  9. Taking Uptaking up, or, a Deconstructionist "Ontology of Difference" and a Developmental One

    ERIC Educational Resources Information Center

    Kellogg, David

    2009-01-01

    Not too long ago, Wolff-Michael Roth suggested that this space might be made into a kind of open house. The author of this article wants to use Roth's suggestion to take up his own intriguing editorial on the ontology of difference. The author wants to show that the ontology of difference is nonidentical with the ontology of difference: It can be…

  10. Using Ontological Engineering to Overcome AI-ED Problems: Contribution, Impact and Perspectives

    ERIC Educational Resources Information Center

    Mizoguchi, Riichiro; Bourdeau, Jacqueline

    2016-01-01

    This article reflects on the ontology engineering methodology discussed by the paper entitled "Using Ontological Engineering to Overcome AI-ED Problems" published in this journal in 2000. We discuss the achievements obtained in the last 10 years, the impact of our work as well as recent trends and perspectives in ontology engineering for…

  11. OntoTrader: An Ontological Web Trading Agent Approach for Environmental Information Retrieval

    PubMed Central

    Iribarne, Luis; Padilla, Nicolás; Ayala, Rosa; Asensio, José A.; Criado, Javier

    2014-01-01

    Modern Web-based Information Systems (WIS) are becoming increasingly necessary to provide support for users who are in different places with different types of information, by facilitating their access to the information, decision making, workgroups, and so forth. Design of these systems requires the use of standardized methods and techniques that enable a common vocabulary to be defined to represent the underlying knowledge. Thus, mediation elements such as traders enrich the interoperability of web components in open distributed systems. These traders must operate with other third-party traders and/or agents in the system, which must also use a common vocabulary for communication between them. This paper presents the OntoTrader architecture, an Ontological Web Trading agent based on the OMG ODP trading standard. It also presents the ontology needed by some system agents to communicate with the trading agent and the behavioral framework for the SOLERES OntoTrader agent, an Environmental Management Information System (EMIS). This framework implements a “Query-Searching/Recovering-Response” information retrieval model using a trading service, SPARQL notation, and the JADE platform. The paper also presents reflection, delegation and, federation mediation models and describes formalization, an experimental testing environment in three scenarios, and a tool which allows our proposal to be evaluated and validated. PMID:24977211

  12. OntoTrader: an ontological Web trading agent approach for environmental information retrieval.

    PubMed

    Iribarne, Luis; Padilla, Nicolás; Ayala, Rosa; Asensio, José A; Criado, Javier

    2014-01-01

    Modern Web-based Information Systems (WIS) are becoming increasingly necessary to provide support for users who are in different places with different types of information, by facilitating their access to the information, decision making, workgroups, and so forth. Design of these systems requires the use of standardized methods and techniques that enable a common vocabulary to be defined to represent the underlying knowledge. Thus, mediation elements such as traders enrich the interoperability of web components in open distributed systems. These traders must operate with other third-party traders and/or agents in the system, which must also use a common vocabulary for communication between them. This paper presents the OntoTrader architecture, an Ontological Web Trading agent based on the OMG ODP trading standard. It also presents the ontology needed by some system agents to communicate with the trading agent and the behavioral framework for the SOLERES OntoTrader agent, an Environmental Management Information System (EMIS). This framework implements a "Query-Searching/Recovering-Response" information retrieval model using a trading service, SPARQL notation, and the JADE platform. The paper also presents reflection, delegation and, federation mediation models and describes formalization, an experimental testing environment in three scenarios, and a tool which allows our proposal to be evaluated and validated.

  13. Representing Energy. I. Representing a Substance Ontology for Energy

    ERIC Educational Resources Information Center

    Scherr, Rachel E.; Close, Hunter G.; McKagan, Sarah B.; Vokos, Stamatis

    2012-01-01

    The nature of energy is not typically an explicit topic of physics instruction. Nonetheless, verbal and graphical representations of energy articulate models in which energy is conceptualized as a quasimaterial substance, a stimulus, or a vertical location. We argue that a substance ontology for energy is particularly productive in developing…

  14. Ontological Metaphors for Negative Energy in an Interdisciplinary Context

    ERIC Educational Resources Information Center

    Dreyfus, Benjamin W.; Geller, Benjamin D.; Gouvea, Julia; Sawtelle, Vashti; Turpen, Chandra; Redish, Edward F.

    2014-01-01

    Teaching about energy in interdisciplinary settings that emphasize coherence among physics, chemistry, and biology leads to a more central role for chemical bond energy. We argue that an interdisciplinary approach to chemical energy leads to modeling chemical bonds in terms of negative energy. While recent work on ontological metaphors for energy…

  15. Helping Students Understand Challenging Topics in Science through Ontology Training

    ERIC Educational Resources Information Center

    Slotta, James D.; Chi, Michelene T. H.

    2006-01-01

    Chi (2005) proposed that students experience difficulty in learning about physics concepts such as light, heat, or electric current because they attribute to these concepts an inappropriate ontological status of material substances rather than the more veridical status of emergent processes. Conceptual change could thus be facilitated by training…

  16. Consistency and Development of Teachers' Epistemological and Ontological World Views

    ERIC Educational Resources Information Center

    Olafson, Lori; Schraw, Gregory; Vander Veldt, Michelle

    2010-01-01

    We examined epistemological and ontological world views using self-report surveys, brief written reflections, and an extended written action research project for a sample of 16 graduate students enrolled in an education class at a large university on the West coast of the USA. We made two predictions. We anticipated that the majority of students…

  17. The Semantic Web: Differentiating between Taxonomies and Ontologies.

    ERIC Educational Resources Information Center

    Adams, Katherine

    2002-01-01

    Explains the concept of a semantic Web where software agents perform jobs for end-users by using hierarchies, metadata, and structured vocabularies. Discusses taxonomies; defining ontologies and taxonomies; standardized language and conceptual relationships; different points of emphasis; and topic maps as new Web infrastructure. (LRW)

  18. Ontology for E-Learning: A Case Study

    ERIC Educational Resources Information Center

    Colace, Francesco; De Santo, Massimo; Gaeta, Matteo

    2009-01-01

    Purpose: The development of adaptable and intelligent educational systems is widely considered one of the great challenges in scientific research. Among key elements for building advanced training systems, an important role is played by methodologies chosen for knowledge representation. In this scenario, the introduction of ontology formalism can…

  19. The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations.

    PubMed

    Chibucos, Marcus C; Siegele, Deborah A; Hu, James C; Giglio, Michelle

    2017-01-01

    The Evidence and Conclusion Ontology (ECO) is a community resource for describing the various types of evidence that are generated during the course of a scientific study and which are typically used to support assertions made by researchers. ECO describes multiple evidence types, including evidence resulting from experimental (i.e., wet lab) techniques, evidence arising from computational methods, statements made by authors (whether or not supported by evidence), and inferences drawn by researchers curating the literature. In addition to summarizing the evidence that supports a particular assertion, ECO also offers a means to document whether a computer or a human performed the process of making the annotation. Incorporating ECO into an annotation system makes it possible to leverage the structure of the ontology such that associated data can be grouped hierarchically, users can select data associated with particular evidence types, and quality control pipelines can be optimized. Today, over 30 resources, including the Gene Ontology, use the Evidence and Conclusion Ontology to represent both evidence and how annotations are made.

  20. A Learning Design Ontology Based on the IMS Specification

    ERIC Educational Resources Information Center

    Amorim, Ricardo R.; Lama, Manuel; Sanchez, Eduardo; Riera, Adolfo; Vila, Xose A.

    2006-01-01

    In this paper, we present an ontology to represent the semantics of the IMS Learning Design (IMS LD) specification, a meta-language used to describe the main elements of the learning design process. The motivation of this work relies on the expressiveness limitations found on the current XML-Schema implementation of the IMS LD conceptual model. To…

  1. An OWL Ontology for Metadata of Interactive Learning Objects

    ERIC Educational Resources Information Center

    Luz, Bruno N.; Santos, Rafael; Alves, Bruno; Areão, Andreza S.; Yokoyama, Marcos H.; Guimarães, Marcelo P.

    2015-01-01

    The main purpose of this paper is to present the importance of Interactive Learning Objects (ILO) to improve the teaching-learning process by assuring a constant interaction among teachers and students, which in turn, allows students to be constantly supported by the teacher. The paper describes the ontology that defines the ILO available on the…

  2. Awareness of Wholes: The Ontological Difference as an Educative Source

    ERIC Educational Resources Information Center

    Yosef-Hassidim, Doron

    2016-01-01

    Inspired by Heidegger's philosophy, this article calls for revisiting the role of education and offers an educational goal of examining the meaning of being a human being. Through interpreting the ontological difference, awareness of wholes is suggested as a crucial means for discovering new meanings about ourselves, and Heidegger's perception of…

  3. To Explain the Educational Arguments of Ontology Thought by Sabzevari

    ERIC Educational Resources Information Center

    Amini, Mehrnosh; Najafi, Mohamad

    2015-01-01

    Educational challenge and issue in modern world has been of the ideologist's interest for educational implications to find inner talents and abilities and his knowledge of human existence to educate health characteristic of teachers. This article is to investigate educational aspects and reasons of ontology philosophy by Sabzevari, Iranian thinker…

  4. Epistemology, Ontology and Ethics: "Galaxies Away from the Engineering World"?

    ERIC Educational Resources Information Center

    Christensen, Steen Hyldgaard; Erno-Kjolhede, Erik

    2008-01-01

    Philosophy of technology/philosophy of science has recently become part of the curriculum of engineering degree programmes in Denmark. However, to what extent do teachers of engineering see it as meaningful for students to work with relatively abstract philosophical concepts such as epistemology, ontology and ethics as part of engineering degree…

  5. Automatic Generation of Tests from Domain and Multimedia Ontologies

    ERIC Educational Resources Information Center

    Papasalouros, Andreas; Kotis, Konstantinos; Kanaris, Konstantinos

    2011-01-01

    The aim of this article is to present an approach for generating tests in an automatic way. Although other methods have been already reported in the literature, the proposed approach is based on ontologies, representing both domain and multimedia knowledge. The article also reports on a prototype implementation of this approach, which…

  6. Conceptual Change in Learning Genetics: An Ontological Perspective

    ERIC Educational Resources Information Center

    Tsui, Chi-Yan; Treagust, David

    2004-01-01

    This article examines conceptual learning of genetics in a Year 10 Australian classroom from an ontological perspective. The study was part of a larger research project about teaching and learning genetics with computer-based multiple representations. Genetics is an important but difficult topic to teach and learn at school. The study used an…

  7. The Construction of an Ontology-Based Ubiquitous Learning Grid

    ERIC Educational Resources Information Center

    Liao, Ching-Jung; Chou, Chien-Chih; Yang, Jin-Tan David

    2009-01-01

    The purpose of this study is to incorporate adaptive ontology into ubiquitous learning grid to achieve seamless learning environment. Ubiquitous learning grid uses ubiquitous computing environment to infer and determine the most adaptive learning contents and procedures in anytime, any place and with any device. To achieve the goal, an…

  8. Developing Standard Ontological Behavior Representations to Support Composability

    DTIC Science & Technology

    2004-12-01

    technologies for representing domains through formalized ontologies are evolving. Sir Tim Bemers -Lee, in 1999, set forth his Semantic Web vision (Berners...Software Development. Proceedings of the Interservice/ Industry Training, Simulation and Education Conference (IIITSEC) 2002, Orlando, FL. Bemers -Lee

  9. Defining Resilience and Vulnerability Based on Ontology Engineering Approach

    NASA Astrophysics Data System (ADS)

    Kumazawa, T.; Matsui, T.; Endo, A.

    2014-12-01

    It is necessary to reflect the concepts of resilience and vulnerability into the assessment framework of "Human-Environmental Security", but it is also in difficulty to identify the linkage between both concepts because of the difference of the academic community which has discussed each concept. The authors have been developing the ontology which deals with the sustainability of the social-ecological systems (SESs). Resilience and vulnerability are also the concepts in the target world which this ontology covers. Based on this point, this paper aims at explicating the semantic relationship between the concepts of resilience and vulnerability based on ontology engineering approach. For this purpose, we first examine the definitions of resilience and vulnerability which the existing literatures proposed. Second, we incorporate the definitions in the ontology dealing with sustainability of SESs. Finally, we focus on the "Water-Energy-Food Nexus Index" to assess Human-Environmental Security, and clarify how the concepts of resilience and vulnerability are linked semantically through the concepts included in these index items.

  10. Reasoning across Ontologically Distinct Levels: Students' Understandings of Molecular Genetics

    ERIC Educational Resources Information Center

    Duncan, Ravit Golan; Reiser, Brian J.

    2007-01-01

    In this article we apply a novel analytical framework to explore students' difficulties in understanding molecular genetics--a domain that is particularly challenging to learn. Our analytical framework posits that reasoning in molecular genetics entails mapping across ontologically distinct levels--an information level containing the genetic…

  11. Research and Conceptualization of Ontologies in Intelligent Learning Systems

    ERIC Educational Resources Information Center

    Deliyska, Boryana; Manoilov, Peter

    2010-01-01

    The intelligent learning systems provide direct customized instruction to the learners without the intervention of human tutors on the basis of Semantic Web resources. Principal roles use ontologies as instruments for modeling learning processes, learners, learning disciplines and resources. This paper examines the variety, relationships, and…

  12. Information-theoretic evaluation of predicted ontological annotations

    PubMed Central

    Clark, Wyatt T.; Radivojac, Predrag

    2013-01-01

    Motivation: The development of effective methods for the prediction of ontological annotations is an important goal in computational biology, with protein function prediction and disease gene prioritization gaining wide recognition. Although various algorithms have been proposed for these tasks, evaluating their performance is difficult owing to problems caused both by the structure of biomedical ontologies and biased or incomplete experimental annotations of genes and gene products. Results: We propose an information-theoretic framework to evaluate the performance of computational protein function prediction. We use a Bayesian network, structured according to the underlying ontology, to model the prior probability of a protein’s function. We then define two concepts, misinformation and remaining uncertainty, that can be seen as information-theoretic analogs of precision and recall. Finally, we propose a single statistic, referred to as semantic distance, that can be used to rank classification models. We evaluate our approach by analyzing the performance of three protein function predictors of Gene Ontology terms and provide evidence that it addresses several weaknesses of currently used metrics. We believe this framework provides useful insights into the performance of protein function prediction tools. Contact: predrag@indiana.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813009

  13. Reciprocal Ontological Models Show Indeterminism Comparable to Quantum Theory

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Somshubhro; Banik, Manik; Bhattacharya, Some Sankar; Ghosh, Sibasish; Kar, Guruprasad; Mukherjee, Amit; Roy, Arup

    2017-02-01

    We show that within the class of ontological models due to Harrigan and Spekkens, those satisfying preparation-measurement reciprocity must allow indeterminism comparable to that in quantum theory. Our result implies that one can design quantum random number generator, for which it is impossible, even in principle, to construct a reciprocal deterministic model.

  14. Ontology-Based e-Assessment for Accounting Education

    ERIC Educational Resources Information Center

    Litherland, Kate; Carmichael, Patrick; Martínez-García, Agustina

    2013-01-01

    This summary reports on a pilot of a novel, ontology-based e-assessment system in accounting. The system, OeLe, uses emerging semantic technologies to offer an online assessment environment capable of marking students' free text answers to questions of a conceptual nature. It does this by matching their response with a "concept map" or…

  15. Ontological Relations and the Capability Maturity Model Applied in Academia

    ERIC Educational Resources Information Center

    de Oliveira, Jerônimo Moreira; Campoy, Laura Gómez; Vilarino, Lilian

    2015-01-01

    This work presents a new approach to the discovery, identification and connection of ontological elements within the domain of characterization in learning organizations. In particular, the study can be applied to contexts where organizations require planning, logic, balance, and cognition in knowledge creation scenarios, which is the case for the…

  16. Application of Alignment Methodologies to Spatial Ontologies in the Hydro Domain

    NASA Astrophysics Data System (ADS)

    Lieberman, J. E.; Cheatham, M.; Varanka, D.

    2015-12-01

    Ontologies are playing an increasing role in facilitating mediation and translation between datasets representing diverse schemas, vocabularies, or knowledge communities. This role is relatively straightforward when there is one ontology comprising all relevant common concepts that can be mapped to entities in each dataset. Frequently, one common ontology has not been agreed to. Either each dataset is represented by a distinct ontology, or there are multiple candidates for commonality. Either the one most appropriate (expressive, relevant, correct) ontology must be chosen, or else concepts and relationships matched across multiple ontologies through an alignment process so that they may be used in concert to carry out mediation or other semantic operations. A resulting alignment can be effective to the extent that entities in in the ontologies represent differing terminology for comparable conceptual knowledge. In cases such as spatial ontologies, though, ontological entities may also represent disparate conceptualizations of space according to the discernment methods and application domains on which they are based. One ontology's wetland concept may overlap in space with another ontology's recharge zone or wildlife range or water feature. In order to evaluate alignment with respect to spatial ontologies, alignment has been applied to a series of ontologies pertaining to surface water that are used variously in hydrography (characterization of water features), hydrology (study of water cycling), and water quality (nutrient and contaminant transport) application domains. There is frequently a need to mediate between datasets in each domain in order to develop broader understanding of surface water systems, so there is a practical as well theoretical value in the alignment. From a domain expertise standpoint, the ontologies under consideration clearly contain some concepts that are spatially as well as conceptually identical and then others with less clear

  17. SPASE "allowed values" ontology - Semantic Web based glue for the connection of EU-ESPAS and Japanese IUGONET projects

    NASA Astrophysics Data System (ADS)

    Ritschel, B.; Neher, G.; Borchert, F.

    2012-12-01

    Both the European Union project ESPAS (2011-2015) and the Japanese IUGONET project (2009-2014) have the same scientific objects: the design, implementation, and provision of an e-science infrastructure for the retrieval and access to space weather relevant data, information and value added services. Despite similarity of the data model, basic system ideas, and techniques the physical implementation of the system backend and web portal are different. The IUGONET system, which is already operating since 2011, is based on DSPACE's metadata registering, retrieving, providing and harvesting capabilities, whereas the ESPAS system software (still in development) is based on OGC compatible standards and components. IUGONET uses an extension of the SPASE data model, both for the structure and for the values of metadata. ESPAS plans to use an enhanced version of the SPASE based context related values. This means, from a semantic point of view, the used keyword vocabulary for the description of context information of information objects, such as e.g. data files, is almost the same in both projects. Modeling the controlled SPASE keyword vocabulary ("allowed values") in the SPASE standard as SKOS based ontology enables the use and reuse of a common and standardized keyword vocabulary in the space weather domain. This vocabulary can be reused in related projects like the GFZ ISDC ontology network that uses a semantic web based approach and related implications such as linked data integration and inference based reasoning. This paper describes a first modeling approach of the SPASE keyword ontology based on SPASE version 2.2.2 and the connection with other keyword vocabularies. Another aspect is the demonstration of the integration of the SPASE keyword ontology into the SPACE software and the description of the planned integration into the ESPAS software.

  18. Towards a Pattern-Driven Topical Ontology Modeling Methodology in Elderly Care Homes

    NASA Astrophysics Data System (ADS)

    Tang, Yan; de Baer, Peter; Zhao, Gang; Meersman, Robert; Pudkey, Kevin

    This paper presents a pattern-driven ontology modeling methodology, which is used to create topical ontologies in the human resource management (HRM) domain. An ontology topic is used to group concepts from different contexts (or even from different domain ontologies). We use the Organization for Economic Co-operation and Development (OECD) and the National Vocational Qualification (NVQ) as the resource to create the topical ontologies in this paper. The methodology is implemented in a tool called PAD-ON suit. The paper approach is illustrated with a use case from elderly care homes in UK.

  19. New non-linear color look-up table for visualization of brain fractional anisotropy based on normative measurements - principals and first clinical use.

    PubMed

    Keller, Jiří; Rulseh, Aaron M; Komárek, Arnošt; Latnerová, Iva; Rusina, Robert; Brožová, Hana; Vymazal, Josef

    2013-01-01

    Fractional anisotropy (FA) is the most commonly used quantitative measure of diffusion in the brain. Changes in FA have been reported in many neurological disorders, but the implementation of diffusion tensor imaging (DTI) in daily clinical practice remains challenging. We propose a novel color look-up table (LUT) based on normative data as a tool for screening FA changes. FA was calculated for 76 healthy volunteers using 12 motion-probing gradient directions (MPG), a subset of 59 subjects was additionally scanned using 30 MPG. Population means and 95% prediction intervals for FA in the corpus callosum, frontal gray matter, thalamus and basal ganglia were used to create the LUT. Unique colors were assigned to inflection points with continuous ramps between them. Clinical use was demonstrated on 17 multiple system atrophy (MSA) patients compared to 13 patients with Parkinson disease (PD) and 17 healthy subjects. Four blinded radiologists classified subjects as MSA/non-MSA. Using only the LUT, high sensitivity (80%) and specificity (84%) were achieved in differentiating MSA subjects from PD subjects and controls. The LUTs generated from 12 and 30 MPG were comparable and accentuate FA abnormalities.

  20. New Non-Linear Color Look-Up Table for Visualization of Brain Fractional Anisotropy Based on Normative Measurements – Principals and First Clinical Use

    PubMed Central

    Keller, Jiří; Rulseh, Aaron M.; Komárek, Arnošt; Latnerová, Iva; Rusina, Robert; Brožová, Hana; Vymazal, Josef

    2013-01-01

    Fractional anisotropy (FA) is the most commonly used quantitative measure of diffusion in the brain. Changes in FA have been reported in many neurological disorders, but the implementation of diffusion tensor imaging (DTI) in daily clinical practice remains challenging. We propose a novel color look-up table (LUT) based on normative data as a tool for screening FA changes. FA was calculated for 76 healthy volunteers using 12 motion-probing gradient directions (MPG), a subset of 59 subjects was additionally scanned using 30 MPG. Population means and 95% prediction intervals for FA in the corpus callosum, frontal gray matter, thalamus and basal ganglia were used to create the LUT. Unique colors were assigned to inflection points with continuous ramps between them. Clinical use was demonstrated on 17 multiple system atrophy (MSA) patients compared to 13 patients with Parkinson disease (PD) and 17 healthy subjects. Four blinded radiologists classified subjects as MSA/non-MSA. Using only the LUT, high sensitivity (80%) and specificity (84%) were achieved in differentiating MSA subjects from PD subjects and controls. The LUTs generated from 12 and 30 MPG were comparable and accentuate FA abnormalities. PMID:23990954

  1. Comparison of fractional vegetation cover estimations using dimidiate pixel models and look-up table inversions of the PROSAIL model from Landsat 8 OLI data

    NASA Astrophysics Data System (ADS)

    Ding, Yanling; Zhang, Hongyan; Li, Zhenwang; Xin, Xiaoping; Zheng, Xingming; Zhao, Kai

    2016-07-01

    Fractional vegetation cover (FVC) is an important variable for describing the quality and changes of vegetation in terrestrial ecosystems. Dimidiate pixel models and physical models are widely used to estimate FVC. Six dimidiate pixel models based on different vegetation indices (VI) and four look-up table (LUT) methods were compared to estimate FVC from Landsat 8 OLI data. Comparisons with in situ FVC of steppe and corn showed that the model proposed by Baret et al., which is based on the normalized difference vegetation index (NDVI), predicted FVC most accurately followed by Carlson and Ripley's method. Gutman and Ignatov's method overestimated FVC. Modified soil adjusted vegetation index (MSAVI) and the mixture of NDVI and RVI showed potential to replace NDVI in Gutman and Ignatov's model, whereas the difference vegetation index (DVI) performed less well. At low vegetation cover, the LUT using reflectances to constrain the cost function performed better than LUTs using VI to constrain the cost function, whereas at high vegetation cover, the LUT based on NDVI estimated FVC most accurately. The applications of DVI and MSAVI to constrain the cost function also obtained improvement at high vegetation cover. Overall, the accuracies of LUT methods were a little lower than those of dimidiate pixel models.

  2. Adaptive-weighted cubic B-spline using lookup tables for fast and efficient axial resampling of 3D confocal microscopy images.

    PubMed

    Indhumathi, C; Cai, Y Y; Guan, Y Q; Opas, M; Zheng, J

    2012-01-01

    Confocal laser scanning microscopy has become a most powerful tool to visualize and analyze the dynamic behavior of cellular molecules. Photobleaching of fluorochromes is a major problem with confocal image acquisition that will lead to intensity attenuation. Photobleaching effect can be reduced by optimizing the collection efficiency of the confocal image by fast z-scanning. However, such images suffer from distortions, particularly in the z dimension, which causes disparities in the x, y, and z directions of the voxels with the original image stacks. As a result, reliable segmentation and feature extraction of these images may be difficult or even impossible. Image interpolation is especially needed for the correction of undersampling artifact in the axial plane of three-dimensional images generated by a confocal microscope to obtain cubic voxels. In this work, we present an adaptive cubic B-spline-based interpolation with the aid of lookup tables by deriving adaptive weights based on local gradients for the sampling nodes in the interpolation formulae. Thus, the proposed method enhances the axial resolution of confocal images by improving the accuracy of the interpolated value simultaneously with great reduction in computational cost. Numerical experimental results confirm the effectiveness of the proposed interpolation approach and demonstrate its superiority both in terms of accuracy and speed compared to other interpolation algorithms.

  3. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display.

    PubMed

    Jia, Jia; Wang, Yongtian; Liu, Juan; Li, Xin; Pan, Yijie; Sun, Zhumei; Zhang, Bin; Zhao, Qing; Jiang, Wei

    2013-03-01

    A fast algorithm with low memory usage is proposed to generate the hologram for full-color 3D display based on a compressed look-up table (C-LUT). The C-LUT is described and built to reduce the memory usage and speed up the calculation of the computer-generated hologram (CGH). Numerical simulations and optical experiments are performed to confirm this method, and several other algorithms are compared. The results show that the memory usage of the C-LUT is kept low when number of depth layers of the 3D object is increased, and the time for building the C-LUT is independent of the number of depth layers of the 3D object. The algorithm based on C-LUT is an efficient method for saving memory usage and calculation time, and it is expected that it could be used for realizing real-time and full-color 3D holographic display in the future.

  4. Interactive ontology debugging: Two query strategies for efficient fault localization.

    PubMed

    Shchekotykhin, Kostyantyn; Friedrich, Gerhard; Fleiss, Philipp; Rodler, Patrick

    2012-04-01

    Effective debugging of ontologies is an important prerequisite for their broad application, especially in areas that rely on everyday users to create and maintain knowledge bases, such as the Semantic Web. In such systems ontologies capture formalized vocabularies of terms shared by its users. However in many cases users have different local views of the domain, i.e. of the context in which a given term is used. Inappropriate usage of terms together with natural complications when formulating and understanding logical descriptions may result in faulty ontologies. Recent ontology debugging approaches use diagnosis methods to identify causes of the faults. In most debugging scenarios these methods return many alternative diagnoses, thus placing the burden of fault localization on the user. This paper demonstrates how the target diagnosis can be identified by performing a sequence of observations, that is, by querying an oracle about entailments of the target ontology. To identify the best query we propose two query selection strategies: a simple "split-in-half" strategy and an entropy-based strategy. The latter allows knowledge about typical user errors to be exploited to minimize the number of queries. Our evaluation showed that the entropy-based method significantly reduces the number of required queries compared to the "split-in-half" approach. We experimented with different probability distributions of user errors and different qualities of the a priori probabilities. Our measurements demonstrated the superiority of entropy-based query selection even in cases where all fault probabilities are equal, i.e. where no information about typical user errors is available.

  5. Interactive ontology debugging: Two query strategies for efficient fault localization☆

    PubMed Central

    Shchekotykhin, Kostyantyn; Friedrich, Gerhard; Fleiss, Philipp; Rodler, Patrick

    2012-01-01

    Effective debugging of ontologies is an important prerequisite for their broad application, especially in areas that rely on everyday users to create and maintain knowledge bases, such as the Semantic Web. In such systems ontologies capture formalized vocabularies of terms shared by its users. However in many cases users have different local views of the domain, i.e. of the context in which a given term is used. Inappropriate usage of terms together with natural complications when formulating and understanding logical descriptions may result in faulty ontologies. Recent ontology debugging approaches use diagnosis methods to identify causes of the faults. In most debugging scenarios these methods return many alternative diagnoses, thus placing the burden of fault localization on the user. This paper demonstrates how the target diagnosis can be identified by performing a sequence of observations, that is, by querying an oracle about entailments of the target ontology. To identify the best query we propose two query selection strategies: a simple “split-in-half” strategy and an entropy-based strategy. The latter allows knowledge about typical user errors to be exploited to minimize the number of queries. Our evaluation showed that the entropy-based method significantly reduces the number of required queries compared to the “split-in-half” approach. We experimented with different probability distributions of user errors and different qualities of the a priori probabilities. Our measurements demonstrated the superiority of entropy-based query selection even in cases where all fault probabilities are equal, i.e. where no information about typical user errors is available. PMID:23543507

  6. OPIC: Ontology-driven Patient Information Capturing system for epilepsy.

    PubMed

    Sahoo, Satya S; Zhao, Meng; Luo, Lingyun; Bozorgi, Alireza; Gupta, Deepak; Lhatoo, Samden D; Zhang, Guo-Qiang

    2012-01-01

    The widespread use of paper or document-based forms for capturing patient information in various clinical settings, for example in epilepsy centers, is a critical barrier for large-scale, multi-center research studies that require interoperable, consistent, and error-free data collection. This challenge can be addressed by a web-accessible and flexible patient data capture system that is supported by a common terminological system to facilitate data re-usability, sharing, and integration. We present OPIC, an Ontology-driven Patient Information Capture (OPIC) system that uses a domain-specific epilepsy and seizure ontology (EpSO) to (1) support structured entry of multi-modal epilepsy data, (2) proactively ensure quality of data through use of ontology terms in drop-down menus, and (3) identify and index clinically relevant ontology terms in free-text fields to improve accuracy of subsequent analytical queries (e.g. cohort identification). EpSO, modeled using the Web Ontology Language (OWL), conforms to the recommendations of the International League Against Epilepsy (ILAE) classification and terminological commission. OPIC has been developed using agile software engineering methodology for rapid development cycles in close collaboration with domain expert and end users. We report the result from the initial deployment of OPIC at the University Hospitals Case Medical Center (UH CMC) epilepsy monitoring unit (EMU) as part of the NIH-funded project on Sudden Unexpected Death in Epilepsy (SUDEP). Preliminary user evaluation shows that OPIC has achieved its design objectives to be an intuitive patient information capturing system that also reduces the potential for data entry errors and variability in use of epilepsy terms.

  7. The Pre-Eclampsia Ontology: A Disease Ontology Representing the Domain Knowledge Specific to Pre-Eclampsia

    PubMed Central

    Mizuno, Satoshi; Ogishima, Soichi; Nishigori, Hidekazu; Jamieson, Daniel G.; Verspoor, Karin; Tanaka, Hiroshi; Yaegashi, Nobuo; Nakaya, Jun

    2016-01-01

    Pre-eclampsia (PE) is a clinical syndrome characterized by new-onset hypertension and proteinuria at ≥20 weeks of gestation, and is a leading cause of maternal and perinatal morbidity and mortality. Previous studies have gathered abundant data about PE such as risk factors and pathological findings. However, most of these data are not semantically structured. Clinical data on PE patients are often generated with semantic heterogeneity such as using disparate terminology to describe the same phenomena. In clinical studies, interoperability of heterogenic clinical data is required in various situations. In such a situation, it is necessary to develop an interoperable and standardized semantic framework to research the pathology of PE more comprehensively and to achieve interoperability of heterogenic clinical data of PE patients. In this study, we developed an ontology representing clinical features, treatments, genetic factors, environmental factors, and other aspects of the current knowledge in the domain of PE. We call this pre-eclampsia ontology “PEO”. To achieve interoperability with other ontologies, the core structure of PEO was compliant with the hierarchy of the Basic Formal Ontology (BFO). The PEO incorporates a wide range of key concepts and terms of PE from clinical and biomedical research in structuring the knowledge base that is specific to PE; therefore, PEO is expected to enhance PE-specific information retrieval and knowledge discovery in both clinical and biomedical research fields. PMID:27788142

  8. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots.

    PubMed

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-03-11

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.

  9. SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    PubMed Central

    Li, Xin; Bilbao, Sonia; Martín-Wanton, Tamara; Bastos, Joaquim; Rodriguez, Jonathan

    2017-01-01

    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning. PMID:28287468

  10. Establishing and harmonizing ontologies in an interdisciplinary health care clinical research environment.

    PubMed

    Smith, Barry; Brochhausen, Mathias

    2008-01-01

    Ontologies are being ever more commonly used in biomedical informatics. The paper provides a survey of some of these uses, and of the relations between ontologies and other terminology resources. In order for ontologies to become truly useful, two objectives must be met. First, ways must be found for the transparent evaluation of ontologies. Second, existing ontologies need to be harmonized. The authors argue that one key foundation for both ontology evaluation and harmonization is the adoption of a realist paradigm in ontology development. For science-based ontologies of the sort which concern us in the eHealth arena, it is reality that provides the common benchmark against which ontologies can be evaluated and aligned within larger frameworks. Given the current multitude of ontologies in the biomedical domain the need for harmonization is becoming ever more urgent. An example of such harmonization within the ACGT project is described, which draws on ontology-based computing as a basis for sharing clinical and laboratory data on cancer research.

  11. Speeding up Batch Alignment of Large Ontologies Using MapReduce.

    PubMed

    Thayasivam, Uthayasanker; Doshi, Prashant

    2013-09-01

    Real-world ontologies tend to be very large with several containing thousands of entities. Increasingly, ontologies are hosted in repositories, which often compute the alignment between the ontologies. As new ontologies are submitted or ontologies are updated, their alignment with others must be quickly computed. Therefore, aligning several pairs of ontologies quickly becomes a challenge for these repositories. We project this problem as one of batch alignment and show how it may be approached using the distributed computing paradigm of MapReduce. Our approach allows any alignment algorithm to be utilized on a MapReduce architecture. Experiments using four representative alignment algorithms demonstrate flexible and significant speedup of batch alignment of large ontology pairs using MapReduce.

  12. An automatic method for the enrichment of DICOM metadata using biomedical ontologies.

    PubMed

    Perez, Wilson; Tello, Andres; Saquicela, Victor; Vidal, Maria-Esther; La Cruz, Alexandra

    2015-01-01

    This work is a novel contribution for enriching medical images using semantic annotations with a strategy for unifying different ontologies and instances of DICOM medical files. We present the L-MOM library (Library for Mapping of Ontological Metadata) as a tool for making an automatic mapping between instances of DICOM medical files and different medical ontologies (e.g., FMA, RadLex, MeSH). The main contributions are: i) the domain independent L-MOM library which is able to integrate DICOM metadata with ontologies from different domains; ii) a strategy to automatically annotate DICOM data with universally accepted medical ontologies, and provide values of similarity between ontologies and DICOM metadata; and iii) a framework to traverse ontological concepts that characterized clinical studies of patients registered in the framework catalog.

  13. The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration

    PubMed Central

    Smith, Barry; Ashburner, Michael; Rosse, Cornelius; Bard, Jonathan; Bug, William; Ceusters, Werner; Goldberg, Louis J; Eilbeck, Karen; Ireland, Amelia; Mungall, Christopher J; Leontis, Neocles; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Shah, Nigam; Whetzel, Patricia L; Lewis, Suzanna

    2010-01-01

    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies, which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium is pursuing a strategy to overcome this problem. Existing OBO ontologies, including the Gene Ontology, are undergoing coordinated reform, and new ontologies are being created on the basis of an evolving set of shared principles governing ontology development. The result is an expanding family of ontologies designed to be interoperable and logically well formed and to incorporate accurate representations of biological reality. We describe this OBO Foundry initiative and provide guidelines for those who might wish to become involved. PMID:17989687

  14. Module Extraction for Efficient Object Queries over Ontologies with Large ABoxes

    PubMed Central

    Xu, Jia; Shironoshita, Patrick; Visser, Ubbo; John, Nigel; Kabuka, Mansur

    2015-01-01

    The extraction of logically-independent fragments out of an ontology ABox can be useful for solving the tractability problem of querying ontologies with large ABoxes. In this paper, we propose a formal definition of an ABox module, such that it guarantees complete preservation of facts about a given set of individuals, and thus can be reasoned independently w.r.t. the ontology TBox. With ABox modules of this type, isolated or distributed (parallel) ABox reasoning becomes feasible, and more efficient data retrieval from ontology ABoxes can be attained. To compute such an ABox module, we present a theoretical approach and also an approximation for SHIQ ontologies. Evaluation of the module approximation on different types of ontologies shows that, on average, extracted ABox modules are significantly smaller than the entire ABox, and the time for ontology reasoning based on ABox modules can be improved significantly. PMID:26848490

  15. Physical Properties of Biological Entities: An Introduction to the Ontology of Physics for Biology

    PubMed Central

    Cook, Daniel L.; Bookstein, Fred L.; Gennari, John H.

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities—molecules, cells, organs—are well-established, there are no principled ontologies of physical properties—energies, volumes, flow rates—of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. PMID:22216106

  16. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    PubMed

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  17. Community-based Ontology Development, Annotation and Discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia

    PubMed Central

    Ong, Edison; He, Yongqun

    2016-01-01

    Hundreds of biological and biomedical ontologies have been developed to support data standardization, integration and analysis. Although ontologies are typically developed for community usage, community efforts in ontology development are limited. To support ontology visualization, distribution, and community-based annotation and development, we have developed Ontokiwi, an ontology extension to the MediaWiki software. Ontokiwi displays hierarchical classes and ontological axioms. Ontology classes and axioms can be edited and added using Ontokiwi form or MediaWiki source editor. Ontokiwi also inherits MediaWiki features such as Wikitext editing and version control. Based on the Ontokiwi/MediaWiki software package, we have developed Ontobedia, which targets to support community-based development and annotations of biological and biomedical ontologies. As demonstrations, we have loaded the Ontology of Adverse Events (OAE) and the Cell Line Ontology (CLO) into Ontobedia. Our studies showed that Ontobedia was able to achieve expected Ontokiwi features. PMID:27570653

  18. An Ontology for Uncertainty in Climate Change Projections

    NASA Astrophysics Data System (ADS)

    King, A. W.

    2011-12-01

    Paraphrasing Albert Einstein's aphorism about scientific quantification: not all uncertainty that counts can be counted, and not all uncertainty that can be counted counts. The meaning of the term "uncertainty" in climate change science and assessment is itself uncertain. Different disciplines and perspectives bring different nuances if not meanings of the term to the conversation. For many scientists, uncertainty is somehow associated with statistical dispersion and standard error. For many users of climate change information, uncertainty is more related to their confidence, or lack thereof, in climate models. These "uncertainties" may be related, but they are not identical, and there is considerable room for confusion and misunderstanding. A knowledge framework, a system of concepts and vocabulary, for communicating uncertainty can add structure to the characterization and quantification of uncertainty and aid communication among scientists and users. I have developed an ontology for uncertainty in climate change projections derived largely from the report of the W3C Uncertainty Reasoning for the World Wide Web Incubator Group (URW3-XG) dealing with the problem of uncertainty representation and reasoning on the World Wide Web. I have adapted this ontology for uncertainty about information to uncertainty about climate change. Elements of the ontology apply with little or no translation to the information of climate change projections, with climate change almost a use case. Other elements can be translated into language used in climate-change discussions; translating aleatory uncertainty in the UncertaintyNature class as irreducible uncertainty is an example. I have added classes for source of uncertainty (UncertaintySource) (different model physics, for example) and metrics of uncertainty (UncertaintyMetric), at least, in the case of the latter, for those instances of uncertainty that can be quantified (i.e., counted). The statistical standard deviation isa member

  19. Ontological and Epistemological Issues Regarding Climate Models and Computer Experiments

    NASA Astrophysics Data System (ADS)

    Vezer, M. A.

    2010-12-01

    Recent philosophical discussions (Parker 2009; Frigg and Reiss 2009; Winsberg, 2009; Morgon 2002, 2003, 2005; Gula 2002) about the ontology of computer simulation experiments and the epistemology of inferences drawn from them are of particular relevance to climate science as computer modeling and analysis are instrumental in understanding climatic systems. How do computer simulation experiments compare with traditional experiments? Is there an ontological difference between these two methods of inquiry? Are there epistemological considerations that result in one type of inference being more reliable than the other? What are the implications of these questions with respect to climate studies that rely on computer simulation analysis? In this paper, I examine these philosophical questions within the context of climate science, instantiating concerns in the philosophical literature with examples found in analysis of global climate change. I concentrate on Wendy Parker’s (2009) account of computer simulation studies, which offers a treatment of these and other questions relevant to investigations of climate change involving such modelling. Two theses at the center of Parker’s account will be the focus of this paper. The first is that computer simulation experiments ought to be regarded as straightforward material experiments; which is to say, there is no significant ontological difference between computer and traditional experimentation. Parker’s second thesis is that some of the emphasis on the epistemological importance of materiality has been misplaced. I examine both of these claims. First, I inquire as to whether viewing computer and traditional experiments as ontologically similar in the way she does implies that there is no proper distinction between abstract experiments (such as ‘thought experiments’ as well as computer experiments) and traditional ‘concrete’ ones. Second, I examine the notion of materiality (i.e., the material commonality between

  20. Biomedical Ontologies in Action: Role in Knowledge Management, Data Integration and Decision Support

    PubMed Central

    Bodenreider, O.

    2008-01-01

    Summary Objectives To provide typical examples of biomedical ontologies in action, emphasizing the role played by biomedical ontologies in knowledge management, data integration and decision support. Methods Biomedical ontologies selected for their practical impact are examined from a functional perspective. Examples of applications are taken from operational systems and the biomedical literature, with a bias towards recent journal articles. Results The ontologies under investigation in this survey include SNOMED CT, the Logical Observation Identifiers, Names, and Codes (LOINC), the Foundational Model of Anatomy, the Gene Ontology, RxNorm, the National Cancer Institute Thesaurus, the International Classification of Diseases, the Medical Subject Headings (MeSH) and the Unified Medical Language System (UMLS). The roles played by biomedical ontologies are classified into three major categories: knowledge management (indexing and retrieval of data and information, access to information, mapping among ontologies); data integration, exchange and semantic interoperability; and decision support and reasoning (data selection and aggregation, decision support, natural language processing applications, knowledge discovery). Conclusions Ontologies play an important role in biomedical research through a variety of applications. While ontologies are used primarily as a source of vocabulary for standardization and integration purposes, many applications also use them as a source of computable knowledge. Barriers to the use of ontologies in biomedical applications are discussed. PMID:18660879

  1. Transporter assays and assay ontologies: useful tools for drug discovery.

    PubMed

    Zdrazil, Barbara; Chichester, Christine; Zander Balderud, Linda; Engkvist, Ola; Gaulton, Anna; Overington, John P

    2014-06-01

    Transport proteins represent an eminent class of drug targets and ADMET (absorption, distribution, metabolism, excretion, toxicity) associated genes. There exists a large number of distinct activity assays for transport proteins, depending on not only the measurement needed (e.g. transport activity, strength of ligand–protein interaction), but also due to heterogeneous assay setups used by different research groups. Efforts to systematically organize this (divergent) bioassay data have large potential impact in Public-Private partnership and conventional commercial drug discovery. In this short review, we highlight some of the frequently used high-throughput assays for transport proteins, and we discuss emerging assay ontologies and their application to this field. Focusing on human P-glycoprotein (Multidrug resistance protein 1; gene name: ABCB1, MDR1), we exemplify how annotation of bioassay data per target class could improve and add to existing ontologies, and we propose to include an additional layer of metadata supporting data fusion across different bioassays.

  2. Modelling system level health information exchange: an ontological approach.

    PubMed

    McMurray, J; Zhu, L; McKillop, I; Chen, H

    2015-01-01

    Investment of resources to purposively improve the movement of information between health system providers is currently made with imperfect information. No inventories of system-level digital information flows currently exist, nor do measures of inter-organizational electronic information. exchange (HIE). Using Protégé 4, an open-source OWL Web ontology language editor and knowledge-based framework we formalized a model that decomposes inter-organizational electronic health information flow into derivative concepts such as diversity, breadth, volume, structure, standardization and connectivity. Self-reported data from a regional health system is used to measure HIE; the ontology identifies providers with low and high HIE, useful for planners, and using a related database is used to monitor data quality.

  3. Expansion of the Gene Ontology knowledgebase and resources

    PubMed Central

    2017-01-01

    The Gene Ontology (GO) is a comprehensive resource of computable knowledge regarding the functions of genes and gene products. As such, it is extensively used by the biomedical research community for the analysis of -omics and related data. Our continued focus is on improving the quality and utility of the GO resources, and we welcome and encourage input from researchers in all areas of biology. In this update, we summarize the current contents of the GO knowledgebase, and present several new features and improvements that have been made to the ontology, the annotations and the tools. Among the highlights are 1) developments that facilitate access to, and application of, the GO knowledgebase, and 2) extensions to the resource as well as increasing support for descriptions of causal models of biological systems and network biology. To learn more, visit http://geneontology.org/. PMID:27899567

  4. Embedding the guideline elements model in web ontology language.

    PubMed

    Tran, Nam; Michel, George; Krauthammer, Michael; Shiffman, Richard N

    2009-11-14

    The Guideline Elements Model (GEM) uses XML to represent the heterogeneous knowledge contained in clinical practice guidelines. GEM has important applications in computer aided guideline authoring and clinical decision support systems. However, its XML representation format could limit its potential impact, as semantic web ontology languages, such as OWL, are becoming major knowledge representation frameworks in medical informatics. In this work, we present a faithful translation of GEM from XML into OWL. This translation is intended to keep the knowledge model of GEM intact, as this knowledge model has been carefully designed and has become a recognized standard. An OWL representation would make GEM more applicable in medical informatics systems that rely on semantic web. This work will also be the initial step in making GEM a guideline recommendation ontology.

  5. China’s National Health Policies: An Ontological Analysis

    PubMed Central

    Dai, Guobin; Deng, Fang; Ramaprasad, Arkalgud; Syn, Thant

    2016-01-01

    The health care system in China is facing a multitude of challenges owing to the changing demographics of the country, the evolving economics of health care, and the emerging epidemiology of health as well as diseases. China’s many national health care policies are documented in Chinese text documents. It is necessary to map the policies synoptically, systemically, and systematically to discover their emphases and biases, assess them, and modify them in the future. Using a logically constructed ontology of health care policies based on the common bodies of knowledge as a lens, we map the current policies to reveal their ‘bright’, ‘light’, and ‘blind/blank’ spots. The ontological map will help (a) develop a roadmap for future health care policies in China, and (b) compare and contrast China’s health care policies with other countries’. PMID:28210417

  6. Identifying Mismatches in Alignments of Large Anatomical Ontologies

    PubMed Central

    Zhang, Songmao; Bodenreider, Olivier

    2007-01-01

    Objective: The objective of this study is to propose a model of matching errors for identifying mismatches in alignments of large anatomical ontologies. Methods: Three approaches to identifying mismatches are utilized: 1) lexical, based on the presence of modifiers in the names of the concepts aligned; 2) structural, identifying conflicting relations resulting from the alignment; and 3) semantic, based on disjoint top-level categories across ontologies. Results: 83% of the potential mismatches identified by the HMatch system are identified by at least one of the approaches. Conclusions: Although not a substitute for a careful validation of the matches, these approaches significantly reduce the need for manual validation by effectively characterizing most mismatches. PMID:18693957

  7. Ontology patterns-based transformation of clinical information.

    PubMed

    Legaz-García, María del Carmen; Martínez-Costa, Catalina; Miñarro-Giménez, José Antonio; Fernández-Breis, Jesualdo Tomás; Schulz, Stefan; Menárguez-Tortosa, Marcos

    2014-01-01

    The semantic interoperability of clinical information requires methods able to transform heterogeneous data sources from both technological and structural perspectives, into representations that facilitate the sharing of meaning. The SemanticHealthNet (SHN) project proposes using semantic content patterns for representing clinical information based on a model of meaning, preventing users from a deep knowledge on ontology and description logics formalism. In this work we propose a flexible transformation method that uses semantic content patterns to guide the mapping between the source data and a target domain ontology. As use case we show how one of the semantic content patterns proposed in SHN can be used to transform heterogeneous data about medication administration.

  8. Strategic reading, ontologies, and the future of scientific publishing.

    PubMed

    Renear, Allen H; Palmer, Carole L

    2009-08-14

    The revolution in scientific publishing that has been promised since the 1980s is about to take place. Scientists have always read strategically, working with many articles simultaneously to search, filter, scan, link, annotate, and analyze fragments of content. An observed recent increase in strategic reading in the online environment will soon be further intensified by two current trends: (i) the widespread use of digital indexing, retrieval, and navigation resources and (ii) the emergence within many scientific disciplines of interoperable ontologies. Accelerated and enhanced by reading tools that take advantage of ontologies, reading practices will become even more rapid and indirect, transforming the ways in which scientists engage the literature and shaping the evolution of scientific publishing.

  9. Leveraging an ESIP Data-Type Ontology to Support Visualization

    NASA Astrophysics Data System (ADS)

    Del Rio, N.; Pinheiro da Silva, P.

    2010-12-01

    Decades of visualization research have yielded a large body of knowledge with the goal of helping users determine what visualization techniques are best suited to their data and analytical goals. However, this knowledge is aimed at understanding the process of visualization at the conceptual and logical levels leaving users with the burden of learning how to adapt these concepts to build real applications that can visualize their data. Our effort known as Visualization Knowledge (VisKo), leverages semantic Web technologies to bridge the knowledge gap between the conceptual models and the physical toolkits that implement these models in order to support an environment where visualization pipelines can be automatically synthesized. Because VisKo targets actual visualization toolkits, a significant portion of the knowledge base is focused on the relationship between “operators” and “parameters”, which together define and “operation”; the sequencing of these operations is what comprises a visualization pipeline. In a scientific setting, many of these operations support transformations that map scientific datasets into their inherent geometrical representations. Rather than encoding this knowledge about the different scientific data types and their possible geometries, VisKo reuses the Federation of Earth Science Information Partners (ESIP) Data Type ontology. This ontology provides specific knowledge about geometries such as contours and volumes and has been used to support our “gravity map” and “Hole's tomography” visualization scenarios here at UTEP. The ESIP ontology was opted over other standards such as GML because of how specific GML is to GIS, which tends to focus on surfaces rather than volumes. In a broader scientific setting, a more general ontology such as ESIP’s provides more flexibility with how we can visualize different datasets.

  10. Building a Cell and Anatomy Ontology of Caenorhabditis Elegans

    PubMed Central

    Sternberg, Paul W.

    2003-01-01

    We are endowed with a rich knowledge about Caenorhabditis elegans. Its stereotyped anatomy and development has stimulated research and resulted in the accumulation of cell-based information concerning gene expression, and the role of specific cells in developmental signalling and behavioural circuits. To make the information more accessible to sophisticated queries and automated retrieval systems, WormBase has begun to construct a C. elegans cell and anatomy ontology. Here we present our strategies and progress. PMID:18629098

  11. Ontology based standardization of petri net modeling for signaling pathways.

    PubMed

    Takai-Igarashi, Takako

    2011-01-01

    Taking account of the great availability of Petri nets in modeling and analyzing large complicated signaling networks, semantics of Petri nets is in need of systematization for the purpose of consistency and reusability of the models. This paper reports on standardization of units of Petri nets on the basis of an ontology that gives an intrinsic definition to the process of signaling in signaling pathways.

  12. Semantics, ontologies and eScience for the geosciences

    NASA Astrophysics Data System (ADS)

    Reitsma, Femke; Laxton, John; Ballard, Stuart; Kuhn, Werner; Abdelmoty, Alia

    2009-04-01

    Semantics, ontologies and eScience are key areas of research that aim to deal with the growing volume, number of sources and heterogeneity of geoscience data, information and knowledge. Following a workshop held at the eScience Institute in Edinburgh on the 7-9th of March 2008, this paper discusses some of the significant research topics and challenges for enhancing geospatial computing using semantic and grid technologies.

  13. Using Multiple Ontologies to Integrate Complex Biological Data

    PubMed Central

    Petri, Victoria; Pasko, Dean; Bromberg, Susan; Wu, Wenhua; Chen, Jiali; Nenasheva, Nataliya; Kwitek, Anne; Twigger, Simon; Jacob, Howard

    2005-01-01

    The strength of the rat as a model organism lies in its utility in pharmacology, biochemistry and physiology research. Data resulting from such studies is difficult to represent in databases and the creation of user-friendly data mining tools has proved difficult. The Rat Genome Database has developed a comprehensive ontology-based data structure and annotation system to integrate physiological data along with environmental and experimental factors, as well as genetic and genomic information. RGD uses multiple ontologies to integrate complex biological information from the molecular level to the whole organism, and to develop data mining and presentation tools. This approach allows RGD to indicate not only the phenotypes seen in a strain but also the specific values under each diet and atmospheric condition, as well as gender differences. Harnessing the power of ontologies in this way allows the user to gather and filter data in a customized fashion, so that a researcher can retrieve all phenotype readings for which a high hypoxia is a factor. Utilizing the same data structure for expression data, pathways and biological processes, RGD will provide a comprehensive research platform which allows users to investigate the conditions under which biological processes are altered and to elucidate the mechanisms of disease. PMID:18629202

  14. Harnessing ontology and machine learning for RSO classification.

    PubMed

    Liu, Bin; Yao, Li; Han, Dapeng

    2016-01-01

    Classification is an important part of resident space objects (RSOs) identification, which is a main focus of space situational awareness. Owing to the absence of some features caused by the limited and uncertain observations, RSO classification remains a difficult task. In this paper, an ontology for RSO classification named OntoStar is built upon domain knowledge and machine learning rules. Then data describing RSO are represented by OntoStar. A demo shows how an RSO is classified based on OntoStar. It is also shown in the demo that traceable and comprehensible reasons for the classification can be given, hence the classification can be checked and validated. Experiments on WEKA show that ontology-based classification gains a relatively high accuracy and precision for classifying RSOs. When classifying RSOs with imperfect data, ontology-based classification keeps its performances, showing evident advantages over classical machine learning classifiers who either have increases of 5 % at least in FP rate or have decreases of 5 % at least in indexes such as accuracy, precision and recall.

  15. Ontology-based data integration between clinical and research systems.

    PubMed

    Mate, Sebastian; Köpcke, Felix; Toddenroth, Dennis; Martin, Marcus; Prokosch, Hans-Ulrich; Bürkle, Thomas; Ganslandt, Thomas

    2015-01-01

    Data from the electronic medical record comprise numerous structured but uncoded elements, which are not linked to standard terminologies. Reuse of such data for secondary research purposes has gained in importance recently. However, the identification of relevant data elements and the creation of database jobs for extraction, transformation and loading (ETL) are challenging: With current methods such as data warehousing, it is not feasible to efficiently maintain and reuse semantically complex data extraction and trans-formation routines. We present an ontology-supported approach to overcome this challenge by making use of abstraction: Instead of defining ETL procedures at the database level, we use ontologies to organize and describe the medical concepts of both the source system and the target system. Instead of using unique, specifically developed SQL statements or ETL jobs, we define declarative transformation rules within ontologies and illustrate how these constructs can then be used to automatically generate SQL code to perform the desired ETL procedures. This demonstrates how a suitable level of abstraction may not only aid the interpretation of clinical data, but can also foster the reutilization of methods for un-locking it.

  16. Design and evaluation of a bacterial clinical infectious diseases ontology.

    PubMed

    Gordon, Claire L; Pouch, Stephanie; Cowell, Lindsay G; Boland, Mary Regina; Platt, Heather L; Goldfain, Albert; Weng, Chunhua

    2013-01-01

    With antimicrobial resistance increasing worldwide, there is a great need to use automated antimicrobial decision support systems (ADSSs) to lower antimicrobial resistance rates by promoting appropriate antimicrobial use. However, they are infrequently used mostly because of their poor interoperability with different health information technologies. Ontologies can augment portable ADSSs by providing an explicit knowledge representation for biomedical entities and their relationships, helping to standardize and integrate heterogeneous data resources. We developed a bacterial clinical infectious diseases ontology (BCIDO) using Protégé-OWL. BCIDO defines a controlled terminology for clinical infectious diseases along with domain knowledge commonly used in hospital settings for clinical infectious disease treatment decision-making. BCIDO has 599 classes and 2355 object properties. Terms were imported from or mapped to Systematized Nomenclature of Medicine, Unified Medical Language System, RxNorm and National Center for Bitechnology Information Organismal Classification where possible. Domain expert evaluation using the "laddering" technique, ontology visualization, and clinical notes and scenarios, confirmed the correctness and potential usefulness of BCIDO.

  17. The biomedical ethics ontology proposal: excellent aims, questionable methods.

    PubMed

    Dubois, James M

    2009-03-01

    KOEPSELL ET AL. (2009) DESCRIBE AN IDEAL biomedical ethics committee environment with efficiencies such as electronic and universal application forms and consent templates, automated decision-trees, and broad sharing of data. However, it is unclear that a biomedical ethics ontology (BMEO) is necessary or even helpful in establishing such environment. Two features of any applied ontology are particularly problematic in establishing a useful BMEO: (1) an ontology is a description of a domain of reality; and (2) the description is subject to ongoing revision as it is developed through open processes, e.g., the use of a wiki. A BMEO would need to address two main kinds of entities, regulatory definitions and ethical concepts, and is ill-suited to both. Regulatory definitions are fiats and ought to be adopted verbatim to ensure compliance, but in such cases we do not need the assistance of ontologists, and their modes of working (constant revision within open wiki-based communities) might even be counterproductive. Ethical concepts within pluralistic societies are social constructs, not a priori concepts or biological natural kinds, and the prospects of generating intuitive definitions that enjoy broad acceptance across cultures and institutional settings are slim. In making these arguments, I draw from the writings of leading applied ontologists and Koepsell et al.'s own proof of concept.

  18. The ontology of quantum field theory: Structural realism vindicated?

    PubMed

    Glick, David

    2016-10-01

    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure.

  19. The ontological status of western science and medicine

    PubMed Central

    Hankey, Alex

    2012-01-01

    This paper traces the revolutionary changes that have transformed the ontological status of western physics and biology over the last thirty years, so as to show in detail how they have moved towards the perspective of the Vedic sciences. From this it appears that Ayurveda's more holistic approach is no longer in opposition to the views of physics and biology. In physics, experimental verification of phenomena associated with quantum correlations have forced scientists to accept that the macroscopic world is not strongly objective: traditional western scientific ontology stands rejected. One consequence is that the world is not necessarily reductionist i.e. based solely on the properties of its tiniest constituents. In biology, the 1930's discovery of homeostasis has reached a natural climax: the feedback instabilities, identified by Norbert Wiener as inevitably accompanying control processes, are now recognized to be states of optimal regulation, where organisms centre their function. The non-reductive properties of these states clearly distinguish the theory of control from previous physical theories; they now occupy the centre-stage of life. Possibly against expectation, their non-reductive nature makes their physics holistic: western biology seems to have broken free of reductionist physics. When Ayurveda and bioscience are compared in light of these little appreciated advances in fundamental science, the supposed differences between them are vastly reduced – they practically dissolve. Instead of being poles apart, the ontologies of western science and Ayurveda seem to have become almost identical. PMID:23125507

  20. Ontology-Based Data Integration between Clinical and Research Systems

    PubMed Central

    Mate, Sebastian; Köpcke, Felix; Toddenroth, Dennis; Martin, Marcus; Prokosch, Hans-Ulrich

    2015-01-01

    Data from the electronic medical record comprise numerous structured but uncoded ele-ments, which are not linked to standard terminologies. Reuse of such data for secondary research purposes has gained in importance recently. However, the identification of rele-vant data elements and the creation of database jobs for extraction, transformation and loading (ETL) are challenging: With current methods such as data warehousing, it is not feasible to efficiently maintain and reuse semantically complex data extraction and trans-formation routines. We present an ontology-supported approach to overcome this challenge by making use of abstraction: Instead of defining ETL procedures at the database level, we use ontologies to organize and describe the medical concepts of both the source system and the target system. Instead of using unique, specifically developed SQL statements or ETL jobs, we define declarative transformation rules within ontologies and illustrate how these constructs can then be used to automatically generate SQL code to perform the desired ETL procedures. This demonstrates how a suitable level of abstraction may not only aid the interpretation of clinical data, but can also foster the reutilization of methods for un-locking it. PMID:25588043